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Abstract

The Rosenzweig-MacArthur is one of the simplest models in populational
biology to present a Hopf bifurction. By adding seasonal variation to the
model the fixed point on one side of the Hopf bifurcation becomes a limit cycle
and, on the other side of the bifurcation, the Hopf limit cycle is transformed
into a torus, therefore the Hopf bifurcation becomes a torus bifurcation, and
soon deterministic chaos can follow via torus destruction. We examine this
route to chaos including stochastic versions that would be the only processes
observed in real world systems.

This study shows the torus destruction into chaos with positive Lyapunov
exponents. This chaotic behaviour is observed in parameter regions where
also a time scale separation is possible, which enables stochastic versions of
the model. The chaotic dynamics are observed inside Arnol’d tongues on the
torus.

Homologous bifurcation structures and torus destruction into chaos arise
also in other population biological systems. These models, specially when
studying real world data, are usually highly complex. Accordingly, the pre-
sented analysis can be used as a study case for more complex systems also
in view of the stochastic modeling.

Keywords: Rosenzweig-MacArthur model, torus bifurcation, stochastic
systems, stoichiometric formulation, deterministic chaos, Lyapunov spectrum
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Resumo

Muitos modelos matemáticos utilizados na investigação cient́ıfica da biolo-
gia populacional e da epidemiologia exibem comportamento determińıstico
dinâmico caótico emergindo de bifurcações no toro e além disso da destruição
do atrator do toro. Estes modelos são geralmente bastante complexos e pos-
suem dimensão elevada, consequentemente, o estudo de tais dinâmicas não
é bastante intuitivo nestes modelos. Então um modelo mais simples, de di-
mensão menor, que exibe essas propriedades deve ser analisado para obter
a análise mais pormenorizada do comportamento caótico de modelos com-
plexos.

Na dinâmica populacional, uma bifurcação no toro geralmente ocorre
quando se considera a variação sazonal de um dos parâmetros de um sis-
tema que já exibe uma bifurcação de Hopf na sua dinâmica.

O principal objetivo da presente dissertação é estudar o comportamento
dinâmico de um modelo predador-presa que apresenta uma bifurcação de
Hopf. E, adicionando ainda mais complexidade ao modelo, pretende-se con-
tinuar uma análise das crescentes bifurcações no toro e do caos determińıstico
próximos da destruição do toro.

Um dos modelos populacionais biológicos mais simples exibindo uma bi-
furcação de Hopf é o modelo Rosenzweig-MacArthur, devido à sua não lin-
earidade cúbica proveniente da função de resposta Holling tipo II por meio de
uma transformação orbitalmente equivalente. Assim, começamos por intro-
duzir as equações de Lotka-Volterra para descrever modelos predador-presa
e a categorização de funções de resposta por Holling em tipo I, II e III.

No entanto, a função de resposta Holling tipo II, que neste modelo per-
mite uma bifurcação de Hopf, devido à não linearidade cúbica observada, não
está diretamente relacionada com a transição de uma classe de população
para outra que permita uma versão estocástica automaticamente. Em vez
disso, um argumento de separação de escala de tempo conduz ao modelo
simples bidimensional Rosenzweig-MacArthur a partir de um modelo mais
complexo, através de classes adicionais de predadores em digestão de alimen-
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tos e predadores em busca de presas. Isto significa que os predadores mudam
o seu estado de busca para manuseio quando capturam uma presa depen-
dendo da população das presas e da própria taxa de caça dos predadores. Os
predadores que capturaram uma presa irão levar algum tempo para lidar com
ela e digeri-la, enquanto neste estado de manuseio um predador não procura
nem captura qualquer presa. Além disso, assume-se que as presas consomem
algum tipo de recurso ou espaço, a fim de procriar. Este recurso ou o espaço
é limitado, portanto, a soma da população de presas e de recursos/espaço
dispońıvel é constante.

Este modelo estendido permite uma generalização estocástica com a versão
estocástica de uma bifurcação de Hopf, e, finalmente, também com a sazon-
alidade adicional que permite uma bifurcação no toro. Calcularam-se os
estados estacionários do modelo reduzido bidimensional e do modelo tridi-
mensional estendido. Também foi feita uma análise de estabilidade de ambos
os sistemas que foi realizada através de matrizes Jacobianas e avaliação val-
ores próprios. As simulações deterministas foram então conduzidas com um
determinado conjunto de parâmetros que onde se encaixa o argumento de
separação de escala.

A simulação estocástica foi realizada em primeiro lugar na forma de
uma equação de perda-ganho para as probabilidades de estados separados,
a equação mestre. No entanto, a aproximação da equação mestre provou ser
computacionalmente exigente e uma vez que para uma análise mais apro-
fundada dos expoentes de Lyapunov, esta simulação precisa ser calculada
repetitivamente, portanto, seria necessária uma simulação mais rápida. Por
isso, introduziu-se um tipo especial de equação mestre, a equação diferencial
Fokker-Planck. Esta é derivada como uma expansão de Taylor na equação
mestre com densidades. Isto permitiu simulações mais rápidas que são apro-
priadas para os próximos cálculos pesados dos expoentes de Lyapunov.

Introduziu-se uma variação sazonal no modelo, ambos com forçamento
sazonal direto e por extensão em um sistema de quatro dimensões através
do oscilador de Hopf. O oscilador de Hopf prova ser uma ferramenta mais
adequada para simular sazonalidade do que uma aproximação mais usual
com um oscilador harmônico, devido ao oscilador de Hopf convergir para um
ciclo limite de quaisquer de condições iniciais. Isto não seria viável com um
oscilador harmônico, onde as variações estocásticas e também erros numéricos
levam a saltos em diferentes trajetórias com diferentes ciclos limites como
soluções.

O parâmetro escolhido aqui para flutuar periodicamente com um oscilador
de Hopf foi a taxa de caça do predador. O que implica que, num modelo
de biologia populacional, os predadores caçam presas mais depressa e mais
facilmente durante certas épocas do ano. Isso também coincide com estudos
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anteriores realizados na dinâmica caótica das modelos predador-presa.
Em versões sazonalmente forçadas o ponto fixo da bifurcação de Hopf, por

um lado torna-se um ciclo limite, e por outro o ciclo limite de Hopf torna-se
um toro, por conseguinte, a bifurcação de Hopf torna-se uma bifurcação no
toro, e através da destruição do toro o parâmetro espaço pode seguir caos
determińıstico. Investigou-se essa rota para o caos também no ponto de vista
de versões estocásticas, já que em sistemas do mundo real seriam observados
apenas esses processos estocásticos.

Além disso realizou-se uma análise do espectro de Lyapunov como um
conjunto de expoentes. O espectro de Lyapunov é uma boa caracterização da
taxa de separação de trajetórias com partida nas condições iniciais vizinhas.

O espectro de Lyapunov fornece informações relevantes sobre o comporta-
mento dinâmico do sistema. Assim, quando todos os expoentes de Lyapunov
são negativos, as trajetórias a partir de condições iniciais vizinhas estão-se a
aproximar com o tempo, e, por exemplo, aparecerem pontos fixos. Se o maior
expoente de Lyapunov for igual a zero, então, as trajetórias são estão-se a
aproximar numa única direção e a separação é constante na outra direção,
portanto, podem aparecer ciclos limite e uma bifurcação está a ocorrer pelo
meio. E se pelo menos um dos expoentes é positivo, então, pelo menos,
numa direçã as trajetórias das condições iniciais vizinhas estão a crescer, por
conseguinte, a dinâmica do sistema será caótica.

Os expoentes Lyapunov podem ser calculados através de uma decom-
posição do produto de matrizes Jacobianas ao longo de uma órbita. Este
produto de matrizes é decomposto numa matriz ortonormal e numa ma-
triz triangular superior direita. Onde a matriz ortonormal transporta a in-
formação sobre a direção da divergência entre as trajetórias, enquanto a ma-
triz triangular superior direito transporta, principalmente nos seus elementos
diagonais, a taxa de separação real em cada direção da matriz ortonormal.
Durante a realização de um cálculo numérico do espectro de Lyapunov em
algumas regiões de parâmetros surgem saltos inesperados na curva de outro
modo relativamente suave do espectro. Estes saltos aparecem especifica-
mente em simulações com a variação sazonal de uma força relativamente
pequena. As irregularidades tornam-se saltos sobre as trajetórias entre atra-
tores coexistentes. Para evitar estes saltos entre atratores os valores iniciáis
das simulações são modificados, para que seja posśıvel ficar próximo de um
atrator sem saltar para trajetórias vizinhas que estão na bacia de atração de
um atrator diferente.

O presente estudo mostra que a destruição do toro no caos com expoentes
de Lyapunov positivos pode ocorrer em regiões de parâmetros onde também
é posśıvel a separação da escala de tempo e, portanto versões estocásticos
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do modelo. O movimento caótico é observado dentro ĺınguas de Arnol’d de
valores racionais da frequência de forçamento e da frequência própria do ci-
clo limite de Hopf não forçado. Tais bifurcações no toro e destruição do toro
em caos também são observados noutros sistemas biológicos populacionais, e
foram, por exemplo, encontrados em modelos epidemiológicos estendidos de
varias estirpes sobre a dengue. Para entender tais cenários dinâmicos melhor
também sob perturbações, o atual sistema de baixa dimensão pode servir
como um bom caso de estudo.

Palavras-chave: modelo de Rosenzweig-MacArthur, bifurcação de torus,
sistemas estocásticos, formulação estoquiométrica, caos determińıstico, es-
pectro de Lyapunov
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Introduction

Many mathematical models used in the scientific research of population bi-
ology and epidemiology display deterministic chaotic dynamical behavior
emerging from torus bifurcations and further destruction of the torus at-
tractor itself. These models are usually rather complex and high dimen-
sional, consequently the study of such dynamics is not quite intuitive in
these models. Thereupon a lower dimensional simpler model that displays
these properties should be analyzed to get a more detailed insight into the
chaotic behavior of complex models.

In population dynamics, a torus bifurcation usually occurs when consid-
ering seasonal variation of one of the parameters of a system that already
displays a Hopf bifurcation in its dynamics.

The main objective of the present thesis is to study the dynamical be-
havior of a predator-prey model which displays a Hopf bifurcation. And by
adding further complexity to the model we aim to perform an analysis of
uprising torus bifurcations and deterministic chaos upcoming from torus de-
struction.

In chapter one we start by introducing the Lotka-Volterra equations to
describe predator-prey models. We perform a short analysis on the stationary
states and the categorization of response functions by Holling into type I, II
and III.

Further we present the model to be analyzed. It is a predator-prey model
in which the predators are divided in two exclusive states of food handling and
prey searching. This means the predators change their state from searching
into handling when they successfully catch a prey depending on the prey
population and the own hunting rate of the predators. Predators that have
caught a prey will take some time to handle and digest it, while in this
handling state a predator does not search nor catch any prey. Additionally,
the prey are assumed to consume some kind of resource or space in order to
procreate. This resource or space is limited, thus the sum of prey population
and resource/space available is constant.
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However, the Holling type II response function, which in this model allows
a Hopf bifurcation due to the upcoming cubic nonlinearity, is not directly
related to a transition from one to another population class which would
allow a stochastic version straight away. Instead, a time scale separation
argument leads from a more complex model to the simple two dimensional
Rosenzweig-MacArthur model.

We compute the stationary states of both, the reduced two dimensional
model and the extended three dimensional model. Also a stability analysis
of both systems is conducted via Jacobian matrices and eigenvalues evalua-
tion. Deterministic simulations are then conducted with a given parameter
set that fits the scale separation argument.

The extended model presented in chapter one allows a stochastic general-
ization with the stochastic version of a Hopf bifurcation, and ultimately also
with additional seasonality allowing a torus bifurcation. Thus, chapter two
focusses in the stochastic simulations of the model.

First, the stochastic simulation is realized as a gain-loss equation for the
probabilities of the separate states, the master equation. Nevertheless, the
master equation approach proves to be computationally expensive and since
for further analysis of the Lyapunov exponents, this simulation needs to be
computed repetitively, a faster simulation is required. Hence we introduce a
special type of master equation, the Fokker-Planck differential equation. It is
derived as a Taylor’s expansion on the Master equation with densities. This
will allow us faster simulations which will be appropriate for the upcoming
heavy calculations of the Lyapunov exponents.

The results of chapters one and two have been presented by the author at
the Seventh Workshop in Dynamichal Systems Applied to Biological Sciences
in Évora in 2016. The results were also published in conference contributions
at the International Conference in Numerical Analysis and Applied Math-
ematics in Rhodes, Greece in 2015[15] and at the Proceedings of the 15th
International Conference on Mathematical Methods in Science and Enge-
neering in Cádiz, Spain in 2015 [6].

In chapter three we introduce seasonal variation in the model, both with
direct seasonal forcing and by extension into a four dimensional system via
Hopf oscillator. The Hopf oscillator proves to be a more adequate tool to
simulate seasonality than a more usual approach with an harmonic oscilla-
tor due to the Hopf oscillator converging into one limit cycle from any set
of initial conditions.This would not be feasible with an harmonic oscillator
where the stochastic variations and also numerical errors lead to jumps into
different trajectories with different limit cycles as solutions.
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The parameter chosen here to fluctuate periodically with a Hopf oscillator
is the predator hunting rate. Which implies that, in a population biology
model, predators hunt prey faster and easier during certain seasons of the
year. This also matches previous studies performed on chaotic dynamics of
predator-prey models.

In seasonally forced versions the fixed point on one side of the Hopf bi-
furcation becomes a limit cycle and the Hopf limit cycle on the other hand
becomes a torus, hence the Hopf bifurcation becomes a torus bifurcation,
and via torus destruction soon deterministic chaos can follow in parameter
space. We investigate this route to chaos also in view of stochastic versions,
since in real world systems only such stochastic processes would be observed.

Additionally, in chapter four, we carry out an analysis of the Lyapunov
spectrum as a set of exponents. The Lyapunov spectrum is a good character-
ization of the rate of separation of trajectories starting at neighboring initial
conditions.

The Lyapunov spectrum delivers relevant information about the dynam-
ical behavior of the system. Hence, when all Lyapunov exponents are nega-
tive, the trajectories starting from neighboring initial conditions are getting
closer with the time, e.g. fix points appear. If the biggest Lyapunov exponent
is equal to zero, then the trajectories are getting closer only in one direction
and the separation is being constant in the other direction, hence limit cy-
cles appear and a bifurcation is happening in between. And if at least one
of the exponents is positive, then at least in one direction the trajectories of
neighboring initial conditions are growing apart, hence the dynamics of the
system are chaotic.

The Lyapunov exponents can be computed through a decomposition of
the product of Jacobian matrices along an orbit. This product matrix is de-
composed into an orthonormal matrix and an upper right triangular matrix.
In this decomposition, the orthonormal matrix carries the information about
the direction of the divergence between the trajectories, while the upper
right triangular matrix carries, mainly in its diagonal elements, the actual
separation rate in each direction of the orthonormal matrix.

While conducting a numerical computation of the Lyapunov spectrum
on some parameter regions unexpected jumps arise in the otherwise rela-
tively smooth curve of the spectrum. These jumps appear specifically on
simulations with a seasonal variation of a comparatively small force. The
irregularities turn out to be jumps on the trajectories between coexisting at-
tractors. We avoid these jumps between attractors by varying in the initial
values of the simulations, so that we stay close to one attractor and are able
to track it down from one set of initial values without jumping into neigh-
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boring trajectories that happen to be on the basin of attraction of a different
attractor.

The results of the seasonal variation and the Lyapunov spectra analysis
have been presented and published by the author at the Conference on Com-
putational and Mathematical Methods in Scientific Engeneering in Cádiz,
Spain in 2016 [7]. These results have been also partially submitted to other
publications [16].

Our study shows that the torus destruction into chaos with positive Lya-
punov exponents can occur in parameter regions where also the time scale
separation and hence stochastic versions of the model are possible. The
chaotic motion is observed inside Arnol’d tongues of rational values of the
forcing frequency and the eigenfrequency of the unforced Hopf limit cycle.
Such torus bifurcations and torus destruction into chaos are also observed
in other biological population systems, and were found, for example, in ex-
tended multi-strain epidemiological models on dengue fever. To understand
such dynamical scenarios better also under noise, the present low dimensional
system can serve as a good study case.
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Chapter 1

The Rosenzweig-MacArthur
Model

1.1 Preface: The Lotka Volterra System

The Lotka-Volterra equations are a system of two non linear linked differen-
tial equations of first order and they describe the interactions of populations
of predators and prey. These equations were described independently by
Alfred J. Lotka in 1925 and Vito Volterra in 1926. Volterra developed this
model to explain the fluctuations that had been observed in the fish pop-
ulation in the Adriatic sea [1]. Lotka derived a similar model through the
logistic equation in the theory of autocalatytic chemical reactions [8].

The equations of this model are

ẋ = αx− βxy (1.1)

ẏ = −δy + γxy

where x represents a population of prey. They are assumed to have an un-
limited food supply and hence reproduce at a rate α. The population of prey
decreases proportional to their own population size and to the population
size of predators given by y at a given rate β which represents the hunting
rate of the predators.
The predators are assumed to procreate only if they have prey and at a rate
γ being proportional to both populations. Finally δ represents the death rate
of the predators.

The system (1.1) can be integrated directly and any solution satisfies the
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10 CHAPTER 1. THE ROSENZWEIG-MACARTHUR MODEL

conservation law

C = α ln y(t)− βy(t)− δx(t) + γ lnx(t) (1.2)

for a constant C and for all t.
This means that the solutions are periodic oscillations, meaning that they do
not contract nor expand, which already gives some hints that this model is
too simple and does not really show much resemblance with biological pro-
cesses.

1.1.1 Stationary states

The ODE system (1.1) has one coexistence stationary state other than the
trivial one at x = 0 and y = 0. It is given by

x∗ =
δ

γ
(1.3)

y∗ =
α

β
.

To analyze the stability at the fixed points we first write the Jacobian matrix

J =

(
α− βy −βx
γy γx− δ

)
. (1.4)

At the extinction fixed point (0,0) the eigenvalues are

λ1 = α, λ2 = −δ (1.5)

which yields that the extinction point is a saddle point since α and δ are
positive. This means that it is an unstable fixed point. Biologically it makes
sense that the extinction point is unstable since both populations tend to
aim for surviving.
At the stationary state of coexistence the eigenvalues are

λ1 = i
√
αδ, λ2 = −i√αγ (1.6)

so, the sationary state is not hiperbolic. But we have seen that the solutions
are closed curves that form cycles arround the stationary state.

1.1.2 Holling response functions

In order to avoid the periodic cycles that are yielded by the Lotka-Volterra
model one can substitute the constant parameters with variable response
functions.
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Figure 1.1: The three types of response functions as classified by Holling.
Type I in blue grows linearly until it reaches a maximum and then becomes
constant. Type II in lilac where the growth is descelerate with increasing
number of prey. Type III in green in form of the logistic growth function.

Type I

Functional response of Type one assumes that the consuming and hunting
rates are linear up to a maximum where they become constant. This type of
function is used in the Lotka-Volterra model.

Type II

The type II functional response assumes that the consumption rate is descel-
erated with increased population explained by a limited capacity in process-
ing food, for instance, by assuming that searching food and handling food
are two separated states of the consumer.
Functions of Type II have the form

f(x) =
cx

d+ x
(1.7)

where x denotes some resource, food or prey.
An example of a predator prey model with Holling type II response is the
Rosenzweig MacArthur model, which will be further analyzed in more detail.
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Type III

Type III functions are similar to type II, but now additionally the consump-
tion rate is more than linear at low levels of resource. This is to be expected
for instance if a population of predators first has to learn how to hunt effi-
ciently. Holling type III response functions can be modeled with the logistic
growth function

f(x) =
L

1 + e−k(x−x0)
(1.8)

where L is the height of the curve, k determines the steepness and x0 the
horizontal possition of the curve.

1.2 Modelling the problem

We begin by describing the reactions of a dynamical system in population
biology, where S represents an amount of resources or space and X is a pop-
ulation of preys that consumes said resources. Y is a population of predators
which can assume two different states: Ys are searching predators who are
hungry and therefore looking for prey and Yh are handling predators who
have already satisfied their hunger and will not search for prey during this
digestion state. This leads to the reaction scheme

S +X
β−→ X +X (1.9)

X
α−→ S (1.10)

X + Ys
b−→ Yh (1.11)

Yh
k−→ Ys (1.12)

Yh
ν−→ Yh + Ys (1.13)

Ys
µ−→ ∅ (1.14)

Yh
µ−→ ∅ . (1.15)

Reaction (1.9) represents a prey consuming resources to procreate at a rate
β. Reaction (1.10) shows preys dying at a rate α and unlocking space or
resources. In reaction (1.11) we model searching predators who hunt prey
and change their state to handling at a rate b. Handling predators become
hungry again and change their state to searching at a rate k in reaction
(1.12). Handling predators can also give birth to other predators at a rate
ν, these newborn predators are assumed to be in searching state in reaction
(1.13). Reaction (1.14) and (1.15) model predators dying at a rate µ.
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Now we can write the differential equations that describe the changes of
the system during time as

Ẋ =
β

N
X(N −X)− αX − b

N
XYs (1.16)

Ẏh =
b

N
XYs − kYh − µYh (1.17)

Ẏs = − b

N
XYs + kYh − µYs + νYh (1.18)

where N := X + S represents the maximal possible prey population, and
remains constant. We can write equation (1.16) as follows

Ẋ = %X

(
1− X

κ

)
− b

N
XYs (1.19)

by defining the growth rate % and the carrying capacity κ by

% := β − α and κ := N

(
1− α

β

)
as often used in ecology whereas Eq. (1.16) appears frequently in epidemiology[14].

1.3 Time Scale Separation

We consider now the processes in reactions (1.11) and (1.12) further. For
many ecological studies this is a valid assuption. We can assume that the
processes of predators hunting prey and handling it happen much faster than
the processes of death and reproduction of preys and predators. That leads
us to expect that the system of reactions (1.11) and (1.12) is almost in
equilibrium in relation to the birth and death processes of reactions (1.9),
(1.10), (1.13), (1.14) and (1.15).

Therefore we replace the fast variables k and b by new re-scaled variables
of the order of the slow variables

k̂ := εk and b̂ := εb .

We choose ε small enough to assume that the parameters k̂ and b̂ have the
same scale as µ, ν, α and β. We now multiply equations (1.17) and (1.18)
with ε and investigate the limit for ε→ 0 [13]. We get

0 =
b̂

N
XYs − k̂Yh (1.20)

0 = − b̂

N
XYs + k̂Yh . (1.21)
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This system has a trivial equilibrium where Yh = 0 and Ys = 0, and another
equilibrium of coexistence. To find the non-trivial fixed point define Y :=
Ys + Yh as the total population of foxes and use this to get values for Yh and
Ys as a function of X and Y as

Ys =
k̂Y

k̂ + b̂
N
X

=
εkY

εk + εb
N
X

=
kY

k + b
N
X

(1.22)

Yh = X
Y

k̂

b̂
N +X

= X
Y

εk
εb
N +X

= X
Y

k
b
N +X

. (1.23)

We insert these values into equation (1.16) to get

Ẋ = %X

(
1− X

κ

)
− k X

k
b
N +X

Y (1.24)

and use (1.17) and (1.18) to find a value for Ẏ

d

dt
Y =

d

dt
(Ys + Yh) = −µ(Ys + Yh) + νYh = −µY + νX

Y
k
b
N +X

. (1.25)

This leads us to the system of a Rosenzweig-MacArthur type model with
Holling type II response function

Ẋ =%X

(
1− X

κ

)
− k X

k
b
N +X

Y

Ẏ =− µY + ν
X

k
b
N +X

Y .

(1.26)

This system will later be compared to the system of equations (1.16), (1.17)
and (1.18).
We calculate its stationary state of coexistence, apart from the two trivial
fixed points X∗ = Y ∗ = 0 and Y ∗ = 0, X∗ = κ, and obtain

X∗ =
µk
b
N

ν − µ
(1.27)

Y ∗ =
ν

k
%

Nk

b(ν − µ)

(
1−

µk
b
N

κ(ν − µ)

)
. (1.28)

For simplification we define ϕ(X) := X
k
b
N+X

. Note that ϕ(X∗) = µ
ν
. Using

this function we can write the Jacobi Matrix of the stationary state as follows

A =

(
%
(
1− X∗

κ

)
− %X∗

κ
− kϕ′(X∗)Y ∗ −k

ν
µ

νϕ′(X∗)Y ∗ 0

)
. (1.29)
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Again for further simplification we define

ã := %

(
1− X

κ

)
− %X

κ
and b̃ := νϕ′(X)Y ,

and write the Jacobi Matrix in a simpler form

A =

(
ã− κ

µ
b̃ −κ

ν
µ

b̃ 0

)
(1.30)

to calculate the eigenvalues

λ1/2 =
ã− k

ν
b̃±

√(
ã− k

ν
b̃
)2
− 4b̃k

ν
µ

2
. (1.31)

A Hopf bifurcation arises when the eigenvalues of the Jacobi Matrix cross
the imaginary axis because of a variation of the parameters. Here we can
see that this system has a Hopf bifurcation point for ã − k

ν
b̃ = 0, i.e. a

point where we have only a rotational part via the imaginary unit from the
square root with negative argument, but no contraction or expansion from
the real part of the eigenvalues. If ã− k

ν
b̃ = 0 then the eigenvalues are purely

imaginary, if ã− k
ν
b̃ < 0 then the real part of the eigenvalues is negative and

for ã− k
ν
b̃ > 0 the real part of the the two eigenvalues will be positive. When

changing relevant parameters the slope is non vanishing at the bifurcation
point.

Inserting the designated values for ã and b̃ and solving for ν gives

νH =
κ
N

+ κ
b

κ
N
− κ

b

· µ (1.32)

as the value νH of the parameter ν at which the Hopf bifurcation happens.

1.4 Stationary States and Stability Analysis

Let us define Z := Ys in order to write our differential equations system in
the following form

Ẋ = %X

(
1− X

κ

)
− b

N
XZ (1.33)

Ẏ = (ν − µ)Y − νZ (1.34)

Ż =
b

N
XZ + (k + ν)(Y − Z)− µZ . (1.35)
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We incorporate the total number of prey units and the total number of preda-
tors, and needing a third degree of freedom we use Z := Ys. In this form
we can easily consider a two dimensional reduced system of states X and Y
in a Rosenzweig-MacArthur model as well as the original extended system
with the searching and handling process explicitly included. We will first
investigate the reduced system and use the results from its fixed point and
stability analysis to then understand the behavior of the extended system.

1.4.1 Two Dimensional Reduced System

First consider a time scale separation of equation (1.35). This leads us to
analyze Z as a function of X and Y

Z(X, Y ) =
k̂

k̂ + b̂
N
X
Y =

k

k + b
N
X
Y. (1.36)

Since k̂ = εk and b̂ = εb we can cancel the epsilons and work with k and b
instead of k̂ and b̂. Now we have the following two dimensional system

Ẋ = %X

(
1− X

κ

)
− b

N
XZ(X, Y ) (1.37)

Ẏ = (ν − µ)Y − νZ(X, Y ) . (1.38)

Apart from the trivial ones, it has stationary states at

X∗a =
µ

ν − µ
· k
b
N (1.39)

Y ∗a =
ν

ν − µ
· %
b

(
1− ν

ν − µ
· k
b
· N
κ

)
N . (1.40)

From the condition Y ∗a = 0, where the stationary state of coexistence
meets the stationary state of extinction, we obtain the value of ν of the
transcritical bifurcation as

νtranscritical =

(
1 +

k

b
· N
κ

)
. (1.41)

With the Jacobian matrix

A =

(
%µ
ν
− %

(
1 + µ

ν

) X∗a
κ

−1
ε
k̂ µ
ν

ε(µ− ν) %
k̂

(
1− X∗a

κ

)
0

)
=

(
a11 a12
a21 a22

)
. (1.42)
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The eigenvalues are of the form

(λa)1/2 =
1

2
a11︸︷︷︸
ra

±
√

1

4
a211 − a12a21︸ ︷︷ ︸

ωa

(1.43)

and were already explicitly given in equation (1.31). This gives the basis of
the system in terms of its bifurcations, and most of it can be used in the
understanding of the extended system.

1.4.2 Three Dimensional Extended System

The original three dimensional system of equations (1.33), (1.34), (1.35), has
a stationary state of coexistence at

X∗b =
µ

ν − µ
kb

N
+ ν − µ

(
ν

ν − µ

)
= X∗a + ε

µ

ν − µ
µ

b̂
N (1.44)

Y ∗b = %
N

b

ν

ν − µ

(
1 +

µ(µ+ k)

κ(ν − µ)

)
(1.45)

Z∗b = %
N

b

(
1 +

µ(µ+ k)

κ(ν − µ)

)
(1.46)

and its Jacobi matrix is

B =

 −%X
∗
b

κ
0 − b

N
X∗b

0 ν − µ −ν
−%
(

1− X∗b
κ

)
k + ν − b

N
X∗b − (k + ν)− µ

 =:

b11 0 b13
0 b22 b23
b31 b32 b33

 .

The eigenvalues are the solutions of the characteristic polynomial

0 =|B − λ1| = −λ3 + (b11 + b22 + b33)︸ ︷︷ ︸
=:b2

λ2

+ (−b11b22 − b11b33 − b22b23 + b31b13 + b32b23)︸ ︷︷ ︸
=:b1

λ

+ b11b22b23 − b31b22b13 − b32b23b11︸ ︷︷ ︸
=:b0

=− λ3 + b2λ
2 + b1λ+ b0 .

(1.47)

Now let us assume that the rotational behavior is similar to the one in the
reduced two dimensional system. That means that we can expect two eigen-
values to have complex values close to the eigenvalues of the reduced system
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and the third eigenvalue would have a real value to be largely negative, as it
turns out of order of 1

ε

(λb)1/2 = rb︸︷︷︸
ra+εq

±i ωb︸︷︷︸
ωa+εω

, λb3 = c. (1.48)

We evaluate the characteristic polynomial for these values and obtain

−λ3 + (2rb + c)︸ ︷︷ ︸
b2

λ2 + (−2crb − r2b − ω2
b )λ+ cr2b + cω2 = 0 . (1.49)

Now we use 2rb + c = b2 to find c as

c = b11 + b22 + b33 − 2(ra + εq) (1.50)

⇒ λ3 = λ( 1
ε ) + λ(1) +O(ε) (1.51)

with eigenvalue parts of order (1/ε), hence λ( 1
ε), and of order 1, hence λ(1)

given by

λ( 1
ε) =− 1

ε

(
b̂

N
X∗a + k̂

)
(1.52)

λ(1) =− %X
∗
a

κ
+ ν − µ−

(
b̂

µN

(ν − µ)b̂
+ ν + µ

)

+
µ

ν − µ
(µ− 2ν)− %µ

ν

(
1− µkN

(µ+ ν)bκ

)
.

(1.53)

These values were confirmed numerically by simulations.
This finishes the analysis of the deterministic dynamical system. Now we
will use the results from above to construct a stochastic system with a Hopf
bifurcation corresponding to the one we just saw in the deterministic model.

1.5 Simulation

For the model to fulfill a time scale separation we asign values to the parame-
ters that conform an ecological model. In this sense the preys have a lifespan
of roughly half a year, so α := 1

1y
2

= 2y−1. Assuming they procreate fast

gives β := 20α. We assume that the predators have a lifespan of 10 months
and a procreation rate twice as fast as the mortality, so µ := 1

10y
12

= 6
5
y−1 and

ν := 2µ . Further, the predators would have a digestion rate of 1 day, hence
k := 1

1d
= 365y−1. And varying the predator hunting rate.
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Figure 1.2: Spiraling into a fixpoint for b = 2k, on the left side, and into a
limit cycle for b = 6.5k.





Chapter 2

Master Equation and
Fokker-Planck Equation

2.1 Master Equation

Generally speaking, the master equation is derived as the differential of the
Chapman-Kolmogorov equation for Markovian stochastic processes[11]. Its
name is derived from a paper of A. Nordsieck et. al. from 1940 in which it
had the role of a general equation from which all the other results were de-
rived [9]. The master equation can be interpreted as a gain-loss equation for
the probabilities of separate states. We use this more intuitive interpretation
to derive the master equation for our model.

Keeping in mind our definitions of Y = Yh +Ys and Z = Ys, we can write
the reaction scheme as a stochastic process in terms of a master equation
[14, 11, 2] of our system in dependency of X, Y and Z. For n = (X, Y, Z)tr

(using the underbar notation n for a vector and ntr for its transpose) we have
the master equation as time evolution equation of the probabilities to find
the state n at time t given by

d

dt
p(n) =

∑
ñ6=n

wn,ñp(ñ)−
∑
ñ6=n

wñ,np(n) . (2.1)

We can restrain to the ñ that only differ on one of the three components by
1 from n, due to the limit of small transition probability changes in small

21
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Figure 2.1: Spiraling into a fix point on the left and into the limit cycle on the
right, starting from arbitrary initial conditions of stochastic and deterministic
system in comparison. The parameters are set as in Section 1.5 throughout
this chapter.

time steps ∆t, obaining

d

dt
p(X, Y, Z) =

β

N
(N − (X − 1))(X − 1)p(X − 1, Y, Z)

+ α(X + 1)p(X + 1, Y, Z)

+
b

N
(X + 1)(Z + 1)p(X + 1, Y, Z + 1)

+ k(Y − Z + 1)p(X, Y, Z − 1)

+ ν(Y − Z)p(X, Y − 1, Z − 1)

+ µ(Z + 1)p(X, Y + 1, Z + 1)

+ µ(Y − Z + 1)p(X, Y + 1, Z)

−
(
β

N
(N −X)X + αX +

b

N
XZ + k(Y − Z)

+ ν(Y − Z) + µZ + µ(Y − Z)
)
p(X, Y, Z) .

(2.2)

Using Gillespie’s algorithm [3, 4] with exponential waiting times between
jumps of states, we can simulate stochastic realizations of the process XY Z
and compare with the deterministic version of the model given by the ODE
system, equations (1.33) to (1.35), see figure 2.1. We start with initial condi-
tions outside the expected limit cycle for b = 6.5·k and oscillate into the limit
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cycle, once we passed the Hopf bifurcation point. The stochastic realization
plotted here fluctuates well around the mean field curve.
However, in systems with large population size N the simulation of the mas-
ter equation becomes very slow, due to large numbers of transitions in small
time intervals, and approximation methods are desired. Hence we reformu-
late the master equation in densities x := X/N , y := Y/N and z := Z/N and
then can use Taylor’s expansion in 1/N to obtain a Fokker-Planck equation
giving a stochastic differential equation (SDE) system. This SDE system is
much faster in simulations, since it does not depend explicitly on simulation
steps proportional to the system size.

2.2 From Master Equation to Fokker-Planck

Equation
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Figure 2.2: Time series plot for the prey population X(t), the total number
of predators Y (t) and the searching predators Z(t) = Ys(t). Fluctuations
around the fix point in green, the deterministic system in blue, the Master
Equation approach in red and the Fokker-Planck appraoch in pink.

The Fokker-Planck equation is a special kind of master equation which
is often used as an approximation to the actual equation[11]. We will derive
the Fokker-Planck equation by conducting a Taylor’s transformation on the
transition probabily from a density state to a neighboring state.

With densities x := X/N , y := Y/N and z := Z/N we get the master
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equation

d

dt
p(x, y, z, t) = Nβ

(
1−

(
x− 1

N

))(
x− 1

N

)
p

(
x− 1

N
, y, z, t

)
+Nα

(
x+

1

N

)
p

(
x+

1

N
, y, z, t

)
+Nb

(
x+

1

N

)(
z +

1

N

)
p

(
x+

1

N
, y, z +

1

N
, t

)
+Nk

(
y − z +

1

N

)
p

(
x, y, z − 1

N
, t

)
+Nν (y − z) p

(
x, y − 1

N
, z − 1

N
, t

)
+Nµ

(
z +

1

N

)
p

(
x, y +

1

N
, z +

1

N
, t

)
+Nµ

(
y − z +

1

N

)
p

(
x, y +

1

N
, z, t

)
−
(
Nβ (1− x)x+Nαx+Nbxz +Nk (y − z)

+Nν (y − z) +Nµz +Nµ (y − z)
)
p (x, y, z, t) .

(2.3)

with x := (x, y, z)tr as state vector and for the seven transitions wj(x) and
vectors of small changes ∆xj := 1

N
· rj, with

r1 =

−1
0
0

 , r2 =

1
0
0

 , r3 =

1
0
1

 , r4 =

 0
0
−1

 ,

r5 =

 0
−1
−1

 , r6 =

0
1
1

 , r7 =

0
1
0

 .

Then the master equation, Eq. (2.3), can be written in the easily gener-
alizable form for n = 7 transitions

d

dt
p(x, t) =

n∑
j=1

(
Nwj(x+ ∆xj) · p(x+ ∆xj, t) −Nwj(x) · p(x, t)

)
(2.4)

and with the gradient vector

∇x =

 ∂
∂x
∂
∂y
∂
∂z

 = ∂x (2.5)
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Figure 2.3: Spiraling into a fixpoint for b = 2k, on the left side, and into
a limit cycle for b = 6.5k on the right side. The deterministic system in
blue, the Master Equation approach in red and the Fokker Planck equation
in pink.

using the interchangable notations ∇x or ∂x in the following. Taylor’s ex-
pansion gives

wj(x+ ∆xj) · p(x+ ∆xj, t) =
∞∑
ν=0

1

ν!

(
∆xj · ∇x

)ν
wj(x) p(x, t) (2.6)

and to second order applied to the master equation, Eq. (2.4), we obtain the
following Fokker-Planck equation

∂

∂t
p(x, t) = −∇x

(
n∑
j=1

(−rj · wj(x)) p(x, t)

)
+
σ2

2

n∑
j=1

(rj · ∇x)
2wj(x) p(x, t)

(2.7)
or in different notation

∂

∂t
p(x, t) = −∂x

(
f(x) p(x, t)

)
+
σ2

2

→
∂x

(
G2(x) p(x, t)

) ←
∂x . (2.8)

Here the expression
→
∂x (G2(x) p(x, t))

←
∂x is simply a quadratic form, for the
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XY Z system being explicitly

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·

 g11 g12 g13
g21 g22 g23
g31 g32 g33

2

p(x, t) ·



←
∂
∂x

←
∂
∂y

←
∂
∂z


. (2.9)

The partial derivatives are acting to the right respectively to the left around

the matrix G2p, which is indicated by the arrows on the gradients,
→
∂x and

←
∂x, in Eq. (2.8). Hence for the vector in the drift term f(x) and the matrix
of the diffusion term G2(x) we have the explicit form from the transitions
wj(x)

f(x) =
n∑
j=1

f
j
(x) =

n∑
j=1

(−rj · wj(x)) (2.10)

and

G2(x) =
n∑
j=1

G2
j(x) =

n∑
j=1

rj · rtrj wj(x) (2.11)

with in the case of the XY Z system the three dimensional matrix

rj · rtrj =

 rx
ry
rz

 · (rx, ry, rz) =

 r2x rx · ry rx · rz
rx · ry r2y ry · rz
rx · rz ry · rz r2z

 (2.12)

this matrix is always symmetric, also in more general cases. This allows
easily to take the matrix square root G(x) = T

√
ΛT tr from the decomposition

G2(x) = TΛT−1. Corresponding to the Fokker-Planck equation we obtain
the stochastic differential equation system

d

dt
x = f(x) + σG(x) · ε(t) (2.13)

with σ = 1/
√
N and in the XY Z case the three dimensional Gaussian normal

noise vector ε(t) = (εx(t), εy(t), εz(t))
tr.



Chapter 3

Seasonal Forcing and Torus
Bifurcation

3.1 Seasonal Forcing of the Predator Birth

Rate

We recall the Rosenzweig-MacArthur model with Holling type II response
function

Ẋ = %X

(
1− X

κ

)
− k X

k
b
N +X

Y

Ẏ = −µY + ν
X

k
b
N +X

Y .

(3.1)

Now, we want to implement seasonal variation on the predator birth rate.
For this we define a new predator birth rate ν(t) dependet on the time with
a cosinusoidal variation around a mean predator birth rate ν0, hence

ν = ν(t) = ν0(1 + µ cos(ω(t+ φ))) (3.2)

with frequency ω = 2π 1
T

and period T = 1year. The phase offset φ is useful
to describe models where the birth rate is maximal in the summer on a time
scale given in years, for our theoretical study it is not needed. Hence we can
assume perfect cosinusoidal forcing and set φ = 0. We get the seasonally
forced system with forced parameter ν(t)

Ẋ = %X

(
1− X

κ

)
− k X

k
b
N +X

Y

Ẏ = −µY + ν(t)
X

k
b
N +X

Y

ν(t) = ν0(1 + ηcos(ωt))

(3.3)

27
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Figure 3.1: A torus trajectory for the seasonally forced system. Transients
are cut off to show the final atractor.

This is, however, a non-autonomous system, and in order to keep the clas-
sification of limit cycles, tori and others, an autonomous system is needed.
So, we have to transform the seasonally forced, non-autonomous system into
an autonomous system. This is achieved by implementing additional dimen-
sions given by an oscillator.

3.2 Autonomous System via Hopf Oscillator

We use here a Hopf oscillator with a stable sinusoidal limit cycle instead
of a most commonly used harmonic oscillator in order to avoid jumping
between trajectories when varying initial conditions. The equations of the
Hopf oscillator are

ẋ = −ωy + cx(η2 − (x2 + y2))

ẏ = ωx+ cy(η2 − (x2 + y2))
. (3.4)

If we choose appropiate initial conditions, in this case x(t0) = η, y(t0) = 0
[16], the solution of the Hopf oscillator is

x(t) = ηcos(ωt) .

Coupling the whole system with the Hopf oscillator yields
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Figure 3.2: A Hopf oscillator converges into a stable sinusoidal limit cycle,
making it more stable to numerical errors than the harmonic oscillator.

Ẋ = %X

(
1− X

κ

)
− k X

k
b
N +X

Y

Ẏ = −µY + ν0(1 + x)
X

k
b
N +X

Y

ẋ = −ωy + cx(η2 − (x2 + y2))

ẏ = ωx+ cy(η2 − (x2 + y2))

(3.5)





Chapter 4

Lyapunov Spectra Analysis

The Lyapunov spectrum of a dynamichal system is the set of Lyapunov ex-
ponents of the system. Lyapunov exponents give a quantification of the
separation of neighboring initial states. Hence when all Lyapunov exponents
are negative, the trajectories starting from neighboring initial conditions are
getting closer with the time, e.g. limit cycles appear. If the biggest Lyapunov
exponent is equal to zero, then a bifurcation is occuring. And if at least one
of the exponents is positive, the dynamics of the system are chaotic.
Lyapunov exponents are defined as the real part of the eigenvalues on the
fixpoints of a system. On limit cycles, they are defined as the real part of
the Floquet multipliers.
An effective way to compute the Lyapunov spectrum is by first conducting
a QR-decomposition on a sequence of Jacobian matrices along points on an
orbit. Then adding up the logarithms of the diagonal entries of the upper
right triangular matrix R [10].

4.1 Jacobian Matrices

In order to calculate the Lyapunov exponents of the forced Rosenzweig-
MacArthur system and the autonomous four-dimensional system, we com-
pute first the respective Jacobian matrices.
Recall the definition of ϕ stated while conducting the stability analysis of
the reduced two-dimensional model

ϕ =
X

k
b
N +X

. (4.1)
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The Jacobian matrix for the two-dimensional forced Rosenzweig-MacArthur
system is then

A =

(
%
(
1− 2X

κ

)
− kϕ′(X)Y −kϕ(X)

ν(t)ϕ′(X)Y −µ+ ν(t)ϕ(X)

)
(4.2)

and for the autonomous four-dimensional system

B =

(
%
(
1− 2X

κ

)
− kϕ′(X)Y −kϕ(X) 0 0

ν(t)ϕ′(X)Y −µ + ν0(1 + x)ϕ(X) ν0ϕ(X)Y 0

0 0 c(η2 − (x2 + y2))− 2cx2 −ω − 2cxy

0 0 ω − 2cxy c(η2 − (x2 + y2))− 2cx2

)
(4.3)

4.2 Computation of the Lyapunov Spectrum

Now that we have the expression of the Jacobian matricesDf we can compute
them at a series points xi along an orbit. We look at Nt iterations along an
orbit, each at a time step of ∆t. For the computation we set ∆t = 10−3. We
have the product of the Nt Jacobian matrices

DfNt :=
Nt∏
i=1

= Df(xNt) ·Df(xNt−1) · ... ·Df(x2) ·Df(x1) . (4.4)

We start by decomposing the first Jacobian matrix Df(x1) into a orthonor-
mal matrix Q1 and an upper right triangular matrix R1 and get

DfNt = Df(xNt) ·Df(xNt−1) · ... ·Df(x2) ·Q1 ·R1 . (4.5)

Now we decompose the matrix Df(x2) ·Q1 into another orthonormal matrix
Q2 and an upper right triangular matrix R2

DfNt = Df(xNt) ·Df(xNt−1) · ... ·Q2 ·R2 ·R1 . (4.6)

We repeat this decomposition of the product of the Jacobian matrix at the
time step i Df(xi) with the orthogonal matrix Qi−1 at the previous step. At
the end we get

DfNt = QNt ·RNt ·RNt−1 · ... ·R2 ·R1 . (4.7)

Geometrically speaking, this matrix carries the information about the devi-
ation from neighboring states after Nt timesteps of size t. Also, solely the
orthogonal matrix QN−t carries all the information about the direction of
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said deviations. The information about the length of these deviations is car-
ried in the product of the upper triangular matrices

∏Nt
i=0R

i.
This information is best coded into the Lyapunov exponents λk given as

λk = lim
Nt→∞

1

N∆t
ln

N∏
i=1

rikk = lim
Nt→∞

1

N∆t

N∑
i=1

ln rikk . (4.8)

Where rikk are the diagonal entries of the triangular matrix Ri.

4.3 Parameters used in previous studies
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Figure 4.1: Lyapunov spectrum of the unforced Rosenzweig-MacArthur
model with parameters as set by Rinaldi et al. with a transcritical point
at ν = 1.3µ given by both eigenvalues of the Jacobian matrix becoming com-
plex conjugated and having identical real part. And a Hopf bifurcation point
at ν = 1.85714µ given by both eigenvalues of the Jacobian matrix becoming
zero and after the bifurcation point one of the eigenvalues stays zero and the
other becomes negative.

In 1993, an analysis of the chaotic behaviour of predator prey systems was
conducted by Rinaldi, Muratori and Kuznetsov [12]. There, the following
parameters were given for the Rosenzweig-MacArthur model with Holling
type II response function with lumped parameters ã and b̃ e.g.

Ẋ = r̃X

(
1− X

k̃

)
− ãX

b̃+X
Y

Ẏ = −d̃Y + ẽ
ãX

b̃+X
Y

(4.9)
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with the default parameters given as k̃ = ẽ = 1, r̃ = d̃ = 2π, ã = 2 · 2π and
b̃ = 0.3. Hence in comparison with our notation we have from these lumped
parameters % = r̃ = 2π, κ = k̃ = 1, k = ã = 2 · 2π, b = ã

b̃
·N = 2·2π

0.3
·N with

N = 1 by default, µ = d = 2π and ν = ẽ · ã = 2 · 2π.

4.4 Numerical Computation
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Figure 4.2: On the left: Lyapunov spectrum of the 4-dimensional autonomous
system of the Rosenzweig-MacArthur coupled with a Hopf oscillator show-
ing the two trivial Lyapunov exponents zero and 2cη = −10 as well as the
non-trivial Lyapunov exponents. On the right: Lyapunov spectrum of the
forced 2-dimensional Rosenzweig-MacArthur model showing only the two
non-trivial Lyapunov exponents.

The Lyapunov exponents of the Hopf oscillator can be calculated ana-
lytically [16]. For the system of the Hopf oscillator as in equations (3.4) we
obtain the two Lyapunov exponents λ1 = 0 and λ2 = −cη2.

Now, using the parameters of the studies of Rinaldi et al. we can com-
pute numerical values for the Lyapunov exponents. For the seasonal forcing
via Hopf oscillator on a Rosenzweig-MacArthur system we asume a season-
ality strength of η = 0.5 and a contraction value of c = 20. We obtain the
values for two of the Lyapunov exponents λ1 = −0.0037 and λ2 = −10.086
in already very good agreement with the theoretical values of λ1 = 0 and
λ2 = −cη2 = 10. And the other two non-trivial Lyapunov exponents are



4.4. NUMERICAL COMPUTATION 35

unchanged from a two-dimensional model.

4.4.1 Attractor Tracking
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Figure 4.3: Lyapunov spectrum for small seasonal forcing η = 0.1 with Lya-
punov exponents occasionally close to zero, indicating a torus as attractor.

For small seasonal forcing η = 0.1 and parameters as used by Rinaldi et
al. we get a Lyapunov spectrum as depicted in figure 4.3. Here we see what
can be interpreted as a Hopf bifurcation at around ν = 1.8µ as one Lyapunov
exponent gets close to zero while the other is negative.

Yet zooming into the parameter region shows irregularities in an other-
wise smooth curve as can be seen in figure 4.4. These irregularities are due
to numerical errors that when starting from the same initial values lead to
jumps into a neighboring trajectory that is converging into a different attrac-
tor.

To avoid these jumps between coexisting attractors we change the initial
values on each calculation of the Lyapunov exponents to the final values of
the calculation on the step before. Starting on the first step with the initial
values X0(t0) and Y0(t0), at the end of the calculation of the first Lyapunov
exponents we end with values X0(Tmax) and Y0(tmax) with tmax := Nt∆t.
Now, in the next step we start the calculation at the initial values X1(t0) =
X0(tmax) Y1(t0) = Y0(tmax). And on the i-th step we start with the initial
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Figure 4.4: Zooming into the parameter space reveals co-existing attractors
around the region of the torus bifurcation. For inital values X(t0) = 0.167
and Y (t0) = 0.0015.

values that were the final values of the step before, Xi(t0) = Xi−1(tmax) and
Yi(t0) = Yi−1(tmax).
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Figure 4.5: Tracking the different attractors from the initial values.

By changing the initial values for the computation of each Lyapunov expo-
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nent for a different parameter ν0 we make sure that the trajectories followed
to do the computation stay in the same attractor. Hence we track one of two
coexisting attractors by specifying the initial values on the first computation
X0(t0) and Y0(t0).

The Lyapunov spectrum given with fixed initial values X0(t0) = 0.380010
and Y0(t0) = 0.162432 used to track the torus is given in figure 4.5 on the
right graphic. Now, here we can clearly see the torus given by one Lyapunov
exponent being zero and the other one negative.

4.5 Lyapunov Spectra for Two-Dimensional

Parameter Space
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Figure 4.6: Lyapunov characteristic exponents for two varying parameters,
the mean predator birth eat µ0 and the seasonality η. On the left with
parameters that allow a time scale separation. On the right with parameters
as useb by Rinaldi et. al. [12]

Since the dynamics of the system are given by the value of its dominant
Lyapunov exponent, it is in our interest now to investigate the values of said
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Figure 4.7: Zooming into the parameter region that displays the Arnol’d
tongues. Parameters set as used by Rinaldi et. al. [12].

dominant exponent in two-dimensional parameter space. We vary now the
seasonality strength η and the mean predator birth rate νo.

In figure 4.6 we display the Lyapunov characteristic exponents in the two
dimensional parameter space coded in a color scale from blue to red. In yel-
low the non-trivial dominant Lyapunov exponents are zero and it indicates
torus attractors, in blue and green the negative non-trivial dominant Lya-
punov exponents are negative and indicate limit cycles (the yellow or light
green lines inside green areas indicate limit cycle bifurcations) and in orange
and red the positive dominant Lyapunov exponents indicate chaotic attrac-
tors.

The green wedges of negative dominant non-trivial exponents in the large
yellow areas of zero non-trivial exponents indicate the Arnol’d tongues of
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limit cycles on the tori. They can be seen more detailed when zooming into
the right parameter region as in figure 4.7.

Only in these Arnol’d tongues we find characteristic exponents indicat-
ing bifurcations into chaotic dynamics, i.e. positive Lyapunov exponents in
orange and red, hence the phase locking on the tori breaks up into more
than two dimensional dynamic attractors, since three dimensions are needed
for deterministic chaos to allow non-returning attractors different from limit
cycles.

We have shown the existence of deterministic chaotic dynamics through
torus break up also for parameter values which allow a time scale sepa-
ration from a more complex stoichiometric system to the two-dimensional
Rosenzweig-MacArthur model. This allows in future studies the analysis of
stochastic systems derived from such a stoichiometric system. So we can an-
alyze the stochastic behaviour around the torus bifurcation and torus break
up into deterministic chaos. This is of major interest especially in analyzing
real world systems and empirical data to perform parameter estimation.





Conclusion

We have presented the Rosenzweig-MacArthur model as a predator-prey
model with additional classes of handling and searching predators. Through
a time scale separation argument we showed similarities between the dy-
namical behavior of the extended model and the classical two dimensional
Rosenzweig-MacArthur model.

This extended model proved to be useful to derive a stochastic process
from the stoichiometric system. Hence, we used this extended model to
perform stochastic simulations in the form of a master equation and a Fokker-
Planck equation.

Following our main goal to perform an analysis of uprising Torus bifur-
cations we added seasonal variation to our model. We implemented this via
direct forcing and via Hopf oscillator. With the additional seasonal variation
we could examine the Hopf bifurcation turn into a Torus bifurcation.

In order to examine the dynamical behaviour beyond the observed torus
we analyze the Lyapunov spectrum of the model. The computation of the
Lyapunov spectrum of the seasonally forced revealed coexisting attractors for
small seasonal variation. Throughout attractor tracking we could compute
the Lyapunov exponent of coexisting attractors, showing positive Lyapunov
exponents beyond the torus, hence chaotic dynamical behaviour due to torus
destruction.

We focussed our further analysis in the characteristic Lyapunov exponent
since it is the carrier of relevant information about bifurcations. Finally, we
can perform an analysis of the characteristic Lyapunov exponents on a two
dimensional parameter space. This analysis shows that the chaotic regions
appear only behind wedges of stable limit cycles on the torus attractors.
These wedges turned out to be the Arnol’d tongues.

In further studies the discovered coexisting multiple attractors can be
analyzed in greater detail. Also more detailed profound investigations on the
stochastic processes can be carried out, specifically for the parameter regions
with stoichiometric systems that are now possible. Also, more complex pop-

41
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ulation biological systems, e.g. epidemiological multi-strain models which
already present torus bifurcations in autonomous systems and transitions
into chaotic behaviour can be analyzed using the Lyapunov spectra as shown
here additionally to classical numerical bifurcation analysis via continuation.

However, these results are encouraging for the understanding of such
larger population dynamical systems. Furthermore the stochastic processes
described here as master equation and Fokker-Planck equation lead to new
tools for empirical data analysis.
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