Analysis on Manifolds Solution of Exercise Problems

Yan Zeng

Version 0.1.1, last revised on 2014-03-25.

Abstract

This is a solution manual of selected exercise problems from *Analysis on manifolds*, by James R. Munkres [1]. If you find any typos/errors, please email me at zypublic@hotmail.com.

Contents

1	Review of Linear Algebra	3
2	Matrix Inversion and Determinants	3
3	Review of Topology in \mathbb{R}^n	4
4	Compact Subspaces and Connected Subspace of \mathbb{R}^n	5
5	The Derivative	5
6	Continuously Differentiable Functions	5
7	The Chain Rule	6
8	The Inverse Function Theorem	6
9	The Implicit Function Theorem	6
10	The Integral over a Rectangle	6
11	Existence of the Integral	7
12	Evaluation of the Integral	7
13	The Integral over a Bounded Set	7
14	Rectifiable Sets	7
15	Improper Integrals	7
16	Partition of Unity	7
17	The Change of Variables Theorem	7
18	Diffeomorphisms in \mathbb{R}^n	7

19 Proof of the Change of Variables Theorem	7
20 Applications of Change of Variables	7
21 The Volume of a Parallelepiped	7
22 The Volume of a Parametrized-Manifold	8
23 Manifolds in \mathbb{R}^n	10
24 The Boundary of a Manifold	11
25 Integrating a Scalar Function over a Manifold	13
26 Multilinear Algebra	15
27 Alternating Tensors	16
28 The Wedge Product	16
29 Tangent Vectors and Differential Forms	18
30 The Differential Operator	19
31 Application to Vector and Scalar Fields	20
32 The Action of a Differentiable Map	22
33 Integrating Forms over Parametrized-Manifolds	26
34 Orientable Manifolds	27
35 Integrating Forms over Oriented Manifolds	29
36 A Geometric Interpretation of Forms and Integrals	31
37 The Generalized Stokes' Theorem	31
38 Applications to Vector Analysis	33
39 The Poincaré Lemma	34
40 The deRham Groups of Punctured Euclidean Space	35
41 Differentiable Manifolds and Riemannian Manifolds	36

Review of Linear Algebra 1

A good textbook on linear algebra from the viewpoint of finite-dimensional spaces is Lax [2]. In the below, we make connections between the results presented in the current section and that reference.

Theorem 1.1 (page 2) corresponds to Lax [2, page 5], Chapter 1, Lemma 1.

Theorem 1.2 (page 3) corresponds to Lax [2, page 6], Chapter 1, Theorem 4.

Theorem 1.5 (page 7) corresponds to Lax [2, page 37], Chapter 4, Theorem 2 and the paragraph below Theorem 2.

2. (Theorem 1.3, page 5) If A is an n by m matrix and B is an m by p matrix, show that

$$|A \cdot B| \le m|A||B|.$$

Proof. For any $i = 1, \dots, n, j = 1, \dots, p$, we have

$$\left|\sum_{k=1}^{m} a_{ik} b_{kj}\right| \le \sum_{k=1}^{m} |a_{ik} b_{kj}| \le |A| \sum_{k=1}^{m} |b_{kj}| \le m|A||B|.$$

Therefore,

$$|A \cdot B| = \max\left\{ \left| \sum_{k=1}^{m} a_{ik} b_{kj} \right|; i = 1, \cdots, n, j = 1, \cdots, p \right\} \le m|A||B|.$$

3. Show that the sup norm on \mathbb{R}^2 is not derived from an inner product on \mathbb{R}^2 . [*Hint*: Suppose $\langle x, y \rangle$ is an inner product on \mathbb{R}^2 (not the dot product) having the property that $|x| = \langle x, x \rangle^{1/2}$. Compute $\langle x \pm y, x \pm y \rangle$ and apply to the case $x = e_1$ and $y = e_2$.]

Proof. Suppose $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^2 having the property that $|x| = \langle x, x \rangle^{\frac{1}{2}}$, where |x| is the sup norm. By the equality $\langle x, y \rangle = \frac{1}{4}(|x+y|^2 - |x-y|^2)$, we have

$$\begin{split} \langle e_1, e_1 + e_2 \rangle &= \frac{1}{4} (|2e_1 + e_2|^2 - |e_2|^2) = \frac{1}{4} (4-1) = \frac{3}{4}, \\ \langle e_1, e_2 \rangle &= \frac{1}{4} (|e_1 + e_2|^2 - |e_1 - e_2|^2) = \frac{1}{4} (1-1) = 0, \\ \langle e_1, e_1 \rangle &= |e_1|^2 = 1. \end{split}$$

So $\langle e_1, e_1 + e_2 \rangle \neq \langle e_1, e_2 \rangle + \langle e_1, e_1 \rangle$, which implies $\langle \cdot, \cdot \rangle$ cannot be an inner product. Therefore, our assumption is not true and the sup norm on \mathbb{R}^2 is not derived from an inner product on \mathbb{R}^2 .

2 Matrix Inversion and Determinants

1. Consider the matrix

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & -1 \\ 0 & 1 \end{array} \right)$$

,

- (a) Find two different left inverse for A.
- (b) Show that A has no right inverse.

(a)

Proof.
$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$$
. Then $BA = \begin{pmatrix} b_{11} + b_{12} & 2b_{11} - b_{12} + b_{13} \\ b_{21} + b_{22} & 2b_{21} - b_{12} + b_{23} \end{pmatrix}$. So $BA = I_2$ if and only if
$$\begin{cases} b_{11} + b_{12} = 1 \\ b_{21} + b_{22} = 0 \\ 2b_{11} - b_{12} + b_{13} = 0 \\ 2b_{21} - b_{22} + b_{23} = 1. \end{cases}$$

Plug $-b_{12} = b_{11} - 1$ and $-b_{22} = b_{21}$ into the las two equations, we have

$$\begin{cases} 3b_{11} + b_{13} = 1\\ 3b_{21} + b_{23} = 1 \end{cases}$$

So we can have the following two different left inverses for A: $B_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ and $B_2 = \begin{pmatrix} 1 & 0 & -2 \\ 1 & -1 & -2 \end{pmatrix}$. \Box

(b)

Proof. By Theorem 2.2, A has no right inverse.

2.

Proof. (a) By Theorem 1.5, $n \ge m$ and among the *n* row vectors of *A*, there are exactly *m* of them are linearly independent. By applying elementary row operations to *A*, we can reduce *A* to the echelon form $\begin{bmatrix} I_m \\ 0 \end{bmatrix}$. So we can find a matrix *D* that is a product of elementary matrices such that $DA = \begin{bmatrix} I_m \\ 0 \end{bmatrix}$. (b) If rank A = m, by part (a) there exists a matrix *D* that is a product of elementary matrices such that

$$DA = \begin{bmatrix} I_m \\ 0 \end{bmatrix}.$$

Let $B = [I_m, 0]D$, then $BA = I_m$, i.e. B is a left inverse of A. Conversely, if B is a left inverse of A, it is easy to see that A as a linear mapping from \mathbb{R}^m to \mathbb{R}^n is injective. This implies the column vectors of A are linearly independent, i.e. rankA = m.

(c) A has a right inverse if and only if A^{tr} has a left inverse. By part (b), this implies rank $A = \operatorname{rank} A^{tr} = n$.

4.

Proof. Suppose $(D_k)_{k=1}^K$ is a sequence of elementary matrices such that $D_K \cdots D_2 D_1 A = I_n$. Note $D_K \cdots D_2 D_1 A = D_K \cdots D_2 D_1 I_n A$, we can conclude $A^{-1} = D_K \cdots D_2 D_1 I_n$.

5.

Proof.
$$A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \frac{1}{d-bc}$$
 by Theorem 2.14.

3 Review of Topology in \mathbb{R}^n

2.

Proof.
$$X = \mathbb{R}, Y = (0, 1], \text{ and } A = Y.$$

3.

Proof. For any closed subset C of Y, $f^{-1}(C) = [f^{-1}(C) \cap A] \cup [f^{-1}(C) \cap B]$. Since $f^{-1}(C) \cap A$ is a closed subset of A, there must be a closed subset D_1 of X such that $f^{-1}(C) \cap A = D_1 \cap A$. Similarly, there is a closed subset D_2 of X such that $f^{-1}(C) \cap B = D_2 \cap B$. So $f^{-1}(C) = [D_1 \cap A] \cup [D_2 \cap B]$. A and B are closed in X, so $D_1 \cap A$, $D_2 \cap B$ and $[D_1 \cap A] \cup [D_2 \cap B]$ are all closed in X. This shows f is continuous. \Box

7.

Proof. (a) Take $f(x) \equiv y_0$ and let g be such that $g(y_0) \neq z_0$ but $g(y) \rightarrow z_0$ as $y \rightarrow y_0$.

Compact Subspaces and Connected Subspace of \mathbb{R}^n 4

1.

Proof. (a) Let $x_n = (2n\pi + \frac{\pi}{2})^{-1}$ and $y_n = (2n\pi - \frac{\pi}{2})^{-1}$. Then as $n \to \infty$, $|x_n - y_n| \to 0$ but $|\sin \frac{1}{x_n} - \sin \frac{1}{y_n}| = \frac{\pi}{2}$

3.

Proof. The boundedness of X is clear. Since for any $i \neq j$, $||e_i - e_j|| = 1$, the sequence $(e_i)_{i=1}^{\infty}$ has no accumulation point. So X cannot be compact. Also, the fact $||e_i - e_j|| = 1$ for $i \neq j$ shows each e_i is an isolated point of X. Therefore X is closed. Combined, we conclude X is closed, bounded, and noncompact.

The Derivative $\mathbf{5}$

1.

Proof. By definition, $\lim_{t\to 0} \frac{f(a+tu)-f(a)}{t}$ exists. Consequently, $\lim_{t\to 0} \frac{f(a+tu)-f(a)}{t} = \lim_{t\to 0} \frac{f(a+tcu)-f(a)}{ct}$ exists and is equal to cf'(a; u).

2.

Proof. (a) $f(u) = f(u_1, u_2) = \frac{u_1 u_2}{u_1^2 + u_2^2}$. So $\frac{f(tu) - f(0)}{t} = \frac{1}{t} \frac{t^2 u_1 u_2}{t^2 (u_1^2 + u_2^2)} = \frac{1}{t} \frac{u_1 u_2}{u_1^2 + u_2^2}.$

In order for $\lim_{t\to 0} \frac{f(tu)-f(0)}{t}$ to exist, it is necessary and sufficient that $u_1u_2 = 0$ and $u_1^2 + u_2^2 \neq 0$. So for vectors (1,0) and (0,1), f'(0;u) exists, and we have f'(0;(1,0)) = f'(0;(0,1)) = 0.

(b) Yes, $D_1 f(0) = D_2 f(0) = 0$.

(c) No, because f is not continuous at 0: $\lim_{(x,y)\to 0, y=kx} f(x,y) = \frac{kx^2}{x^2+k^2x^2} = \frac{k}{1+k^2}$. For $k \neq 0$, the limit is not equal to f(0).

(d) See (c).

6 **Continuously Differentiable Functions**

1.

Proof. We note

$$\frac{|xy|}{\sqrt{x^2+y^2}} \le \frac{1}{2} \frac{x^2+y^2}{\sqrt{x^2+y^2}} = \frac{1}{2} \sqrt{x^2+y^2}.$$

So $\lim_{(x,y)\to 0} \frac{|xy|}{\sqrt{x^2+y^2}} = 0$. This shows f(x,y) = |xy| is differentiable at 0 and the derivative is 0. However, for any fixed y, f(x,y) is not a differentiable function of x at 0. So its partial derivative w.r.t. x does not exist in a neighborhood of 0, which implies f is not of class C^1 in a neighborhood of 0.

7 The Chain Rule

8 The Inverse Function Theorem

9 The Implicit Function Theorem

10 The Integral over a Rectangle

6.

Proof. (a) Straightforward from the Riemann condition (Theorem 10.3).

(b) Among all the sub-rectangles determined by P, those whose sides contain the newly added point have a combined volume no greater than $(\text{mesh}P)(\text{width}(Q))^{n-1}$. So

$$0 \le L(f, P'') - L(f, P) \le 2M(\operatorname{mesh} P)(\operatorname{width} Q)^{n-1}.$$

The result for upper sums can be derived similarly.

(c) Given $\varepsilon > 0$, choose a partition P' such that $U(f, P') - L(f, P') < \frac{\varepsilon}{2}$. Let N be the number of partition points in P' and let

$$\delta = \frac{\varepsilon}{8MN(\text{width}Q)^{n-1}}.$$

Suppose P has mesh less than δ , the common refinement P'' of P and P' is obtained by adjoining at most N points to P. So by part (b)

$$0 \le L(f, P'') - L(f, P) \le N \cdot 2M(\operatorname{mesh} P)(\operatorname{width} Q)^{n-1} \le 2MN(\operatorname{width} Q)^{n-1} \frac{\varepsilon}{8MN(\operatorname{width} Q)^{n-1}} = \frac{\varepsilon}{4}.$$

Similarly, we can show $0 \le U(f, P) - U(f, P'') \le \frac{\varepsilon}{4}$. So

$$\begin{split} U(f,P) - L(f,P) &= \left[U(f,P) - U(f,P'') \right] + \left[L(f,P'') - L(f,P) \right] + \left[U(f,P'') - L(f,P'') \right] \\ &\leq \frac{\varepsilon}{4} + \varepsilon 4 + \left[U(f,P') - L(f,P') \right] \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon. \end{split}$$

This shows for any given $\varepsilon > 0$, there is a $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ for every partition P of mesh less than δ .

7.

Proof. (Sufficiency) Note $|\sum_{R} f(x_R)v(R) - A| < \varepsilon$ can be written as

$$A - \varepsilon < \sum_{R} f(x_R) v(R) < A + \varepsilon$$

This shows $U(f, P) \leq A + \varepsilon$ and $L(f, P) \geq A - \varepsilon$. So $U(f, P) - L(f, P) \leq 2\varepsilon$. By Problem 6, we conclude f is integrable over Q, with $\int_{Q} f \in [A - \varepsilon, A + \varepsilon]$. Since ε is arbitrary, we conclude $\int_{Q} f = A$.

(Necessity) By Problem 6, for any given $\varepsilon > 0$, there is a $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ for every partition P of mesh less than δ . For any such partition P, if for each sub-rectangle R determined by P, x_R is a point of R, we must have

$$L(f, P) - A \le \sum_{R} f(x_R)v(R) - A \le U(f, P) - A.$$

Since $L(f, P) \leq A \leq U(f, P)$, we conclude

$$\left|\sum_{R} f(x_{R})v(R) - A\right| \le U(f, P) - L(f, P) < \varepsilon.$$

- 11 Existence of the Integral
- 12 Evaluation of the Integral
- 13 The Integral over a Bounded Set
- 14 Rectifiable Sets
- 15 Improper Integrals
- 16 Partition of Unity
- 17 The Change of Variables Theorem
- 18 Diffeomorphisms in \mathbb{R}^n
- 19 Proof of the Change of Variables Theorem
- 20 Applications of Change of Variables

21 The Volume of a Parallelepiped

1. (a)

Proof. Let
$$v = (a, b, c)$$
, then $X^{tr}X = (I_3, v^{tr}) \begin{pmatrix} I_3 \\ v \end{pmatrix} = I_3 + \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a, b, c) = \begin{pmatrix} 1+a^2 & ab & ac \\ ab & 1+b^2 & bc \\ ca & cb & 1+c^2 \end{pmatrix}$. \Box

(b)

Proof. We use both methods:

$$V(X) = [\det(X^{tr} \cdot X)]^{1/2} = [(1+a^2)(1+b^2+c^2) - ab \cdot ab + ca \cdot (-ac)]^{1/2} = (1+a^2+b^2+c^2)^{1/2}$$

and

$$V(X) = \left[\det^2 I_3 + \det^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{pmatrix} + \det^2 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix} + \det^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix} \right]^{1/2} = (1 + c^2 + a^2 + b^2)^{1/2}.$$

2.

Proof. Let $X = (x_1, \dots, x_i, \dots, x_k)$ and $Y = (x_1, \dots, \lambda x_i, \dots, x_k)$. Then $V(Y) = [\sum_{[I]} \det^2 Y_I]^{1/2} = [\sum_{[I]} \lambda^2 \det^2 X_I]^{1/2} = |\lambda| [\sum_{[I]} \det^2 X_I]^{\frac{1}{2}} = |\lambda| V(X)$. \Box 3.

Proof. Suppose \mathcal{P} is determined by x_1, \dots, x_k . Then $V(h(\mathcal{P})) = V(\lambda x_1, \dots, \lambda x_k) = |\lambda| V(x_1, \lambda x_2, \dots, \lambda x_k) = \dots = |\lambda|^k V(x_1, x_2, \dots, x_k) = |\lambda|^k V(\mathcal{P}).$

4. (a)

Proof. Straightforward.

(b)

Proof.

$$\begin{split} \|a\|^2 \|b\|^2 - \langle a, b \rangle^2 &= (\sum_{i=1}^3 a_i^2) (\sum_{j=1}^3 b_j^2) - (\sum_{k=1}^3 a_k b_k)^2 \\ &= \sum_{i,j=1}^3 a_i^2 b_j^2 - \sum_{k=1}^3 a_k^2 b_k^2 - 2(a_1 b_1 a_2 b_2 + a_1 b_1 a_3 b_3 + a_2 b_2 a_3 b_3) \\ &= \sum_{i,j=1, i \neq j}^3 a_i^2 b_j^2 - 2(a_1 b_1 a_2 b_2 + a_1 b_1 a_3 b_3 + a_2 b_2 a_3 b_3) \\ &= (a_2 b_3 - a_3 b_2)^2 + (a_1 b_3 - a_3 b_1)^2 + (a_1 b_2 - a_2 b_1)^2 \\ &= \det^2 \begin{pmatrix} a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} + \det^2 \begin{pmatrix} a_1 & b_1 \\ a_3 & b_3 \end{pmatrix} + \det^2 \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}. \end{split}$$

5. (a)

Proof. Suppose V_1 and V_2 both satisfy conditions (i)-(iv). Then by the Gram-Schmidt process, the uniqueness is reduced to $V_1(x_1, \dots, x_k) = V_2(x_1, \dots, x_k)$, where x_1, \dots, x_k are orthonormal.

(b)

Proof. Following the hint, we can assume without loss of generality that $W = \mathbb{R}^n$ and the inner product is the dot product on \mathbb{R}^n . Let $V(x_1, \dots, x_k)$ be the volume function, then (i) and (ii) are implied by Theorem 21.4, (iii) is Problem 2, and (iv) is implied by Theorem 21.3: $V(x_1, \dots, x_k) = [\det(X^{tr}X)]^{1/2}$.

22 The Volume of a Parametrized-Manifold

1.

Proof. By definition, $v(Z_{\beta}) = \int_{A} V(D\beta)$. Let x denote the general point of A; let $y = \alpha(x)$ and $z = h \circ \alpha(x) = \beta(y)$. By chain rule, $D\beta(x) = Dh(y) \cdot D\alpha(x)$. So $[V(D\beta(x))]^2 = \det(D\alpha(x)^{tr}Dh(y)^{tr}Dh(y)D\alpha(x)) = [V(D\alpha(x))]^2$ by Theorem 20.6. So $v(Z_{\beta}) = \int_{A} V(D\beta) = \int_{A} V(D\alpha) = v(Y_{\alpha})$.

2.

Proof. Let x denote the general point of A. Then

$$D\alpha(x) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \\ D_1 f(x) & D_2 f(x) & \cdots & D_k f(x) \end{pmatrix}$$

and by Theorem 21.4, $V(D\alpha(x)) = \left[1 + \sum_{i=1}^{k} (D_i f(x))^2\right]^{1/2}$. So $v(Y_\alpha) = \int_A \left[1 + \sum_{i=1}^{k} (D_i f(x))^2\right]^{1/2}$. \Box 3. (a)

Proof. $v(Y_{\alpha}) = \int_{A} V(D\alpha)$ and $\int_{Y_{\alpha}} \pi_{i} dV = \int_{A} \pi_{i} \circ \alpha V(D\alpha)$. Since $D\alpha(t) = \begin{pmatrix} -a \sin t \\ a \cos t \end{pmatrix}$, $V(D\alpha) = |a|$. So $v(Y_{\alpha}) = |a|\pi$, $\int_{Y_{\alpha}} \pi_{1} dV = \int_{0}^{\pi} a \cos t |a| = 0$, and $\int_{Y_{\alpha}} \pi_{2} dV = \int_{0}^{\pi} a \sin t |a| = 2a|a|$. Hence the centroid is $(0, 2a/\pi)$.

(b)

Proof. By Example 4, $v(Y_{\alpha}) = 2\pi a^2$ and

$$\begin{split} \int_{Y_{\alpha}} \pi_1 dV &= \int_A x \frac{a}{\sqrt{a^2 - x^2 - y^2}} = \int_0^{2\pi} \int_0^a \frac{r \cos \theta \cdot ar}{\sqrt{a^2 - r^2}} = 0, \\ \int_{Y_{\alpha}} \pi_2 dV &= \int_A y \frac{a}{\sqrt{a^2 - x^2 - y^2}} = \int_0^{2\pi} \int_0^a \frac{r \sin \theta \cdot ar}{\sqrt{a^2 - r^2}} = 0, \\ \int_{Y_{\alpha}} \pi_3 dV &= \int_A \sqrt{a^2 - x^2 - y^2} \frac{a}{\sqrt{a^2 - x^2 - y^2}} = a^3 \pi. \end{split}$$

So the centroid is $(0, 0, \frac{a}{2})$.

4. (a)

Proof. $v(\Delta_1(R)) = \int_A V(D\alpha)$, where A is the (open) triangle in \mathbb{R}^2 with vertices (a, b), (a + h, b) and (a + h, b + h). $V(D\alpha)$ is a continuous function on the compact set \overline{A} , so it achieves its maximum M and minimum m on \overline{A} . Let $x_1, x_2 \in \overline{A}$ be such that $V(D\alpha(x_1)) = M$ and $V(D\alpha(x_2)) = m$, respectively. Then

$$v(A) \cdot m \le v(\Delta_1(R)) \le v(A) \cdot M.$$

By considering the segment connecting x_1 and x_2 , we can find a point $\xi \in \overline{A}$ such that $V(D\alpha(\xi))v(A) = \int_A V(D\alpha)$. This shows there is a point ξ of R such that

$$v(\Delta_1(R)) = \int_A V(D\alpha) = V(D\alpha(\xi))v(A) = \frac{1}{2}V(D\alpha(\xi)) \cdot v(R).$$

A similar result for $v(\Delta_2(R))$ can be proved similarly.

(b)

Proof. $V(D\alpha)$ as a continuous function is uniformly continuous on the compact set Q.

(c)

Proof.

$$\begin{split} \left| A(P) - \int_{Q} V(D\alpha) \right| &\leq \sum_{R} \left| v(\Delta_{1}(R)) + v(\Delta_{2}(R)) - \int_{R} V(D\alpha) \right| \\ &= \sum_{R} \left| \frac{1}{2} \left[V(D\alpha(\xi_{1}(R))) + V(D\alpha(\xi_{2}(R))) \right] v(R) - \int_{R} V(D\alpha) \right| \\ &\leq \sum_{R} \int_{R} \left| \frac{V(D\alpha(\xi_{1}(R))) + V(D\alpha(\xi_{2}(R)))}{2} - V(D\alpha) \right|. \end{split}$$

Given $\varepsilon > 0$, there exists a $\delta > 0$ such that if $x_1, x_2 \in Q$ with $|x_1 - x_2| < \delta$, we must have $|V(D\alpha(x_1)) - V(D\alpha(x_2))| < \frac{\varepsilon}{v(Q)}$. So for every partition P of Q of mesh less than δ ,

$$\left|A(P) - \int_{Q} V(D\alpha)\right| < \sum_{R} \int_{R} \frac{\varepsilon}{v(Q)} = \varepsilon.$$

23 Manifolds in \mathbb{R}^n

1.

Proof. In this case, we set $U = \mathbb{R}$ and $V = M = \{(x, x^2) : x \in \mathbb{R}\}$. Then α maps U onto V in a one-to-one fashion. Moreover, we have

(1) α is of class C^{∞} . (2) $\alpha^{-1}((x, x^2)) = x$ is continuous, for $(x_n, x_n^2) \to (x, x^2)$ as $n \to \infty$ implies $x_n \to x$ as $n \to \infty$. (3) $D\alpha(x) = \begin{bmatrix} 1\\2x \end{bmatrix}$ has rank 1 for each $x \in U$.

So M is a 1-manifold in \mathbb{R}^2 covered by the single coordinate patch α .

2.

Proof. We let $U = \mathbb{H}^1$ and $V = N = \{(x, x^2) : x \in \mathbb{H}^1\}$. Then β maps U onto V in a one-to-one fashion. Moreover, we have

(1) β is of class C^{∞} . (2) $\beta^{-1}((x, x^2)) = x$ is continuous. (3) $D\beta(x) = \begin{bmatrix} 1\\ 2x \end{bmatrix}$ has rank 1 for each $x \in \mathbb{H}^1$.

So N is a 1-manifold in \mathbb{R}^2 covered by the single coordinate patch β .

Proof. For any point $p \in S^1$ with $p \neq (1,0)$, we let $U = (0,2\pi)$, $V = S^1 - (1,0)$, and $\alpha : U \to V$ be defined by $\alpha(\theta) = (\cos \theta, \sin \theta)$. Then α maps U onto V continuously in a one-to-one fashion. Moreover, (1) α is of class C^{∞} .

(2)
$$\alpha^{-1}$$
 is continuous, for $(\cos \theta_n, \sin \theta_n) \to (\cos \theta, \sin \theta)$ as $n \to \infty$ implies $\theta_n \to \theta$ as $n \to \infty$.
(3) $D\alpha(\theta) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$ has rank 1.

So α is a coordinate patch. For p = (1,0), we consider $U = (-\pi,\pi)$, $V = S^1 - (-1,0)$, and $\beta : U \to V$ be defined by $\beta(\theta) = (\cos \theta, \sin \theta)$. We can prove in a similar way that β is a coordinate patch. Combined, we can conclude the unit circle S^1 is a 1-manifold in \mathbb{R}^2 .

(b)

Proof. We claim α^{-1} is not continuous. Indeed, for $t_n = 1 - \frac{1}{n}$, $\alpha(t_n) \to (1,0)$ on S^1 as $n \to \infty$, but $\alpha^{-1}(\alpha(t_n)) = t_n \to 1 \neq \alpha^{-1}((1,0)) = 0$ as $n \to \infty$.

4.

Proof. Let U = A and $V = \{(x, f(x)) : x \in A\}$. Define $\alpha : U \to V$ by $\alpha(x) = (x, f(x))$. Then α maps U onto V in a one-to-one fashion. Moreover, (1) α is of class C^r

(1)
$$\alpha$$
 is of class C .
(2) α^{-1} is continuous, for $(x_n, f(x_n)) \to (x, f(x))$ as $n \to \infty$ implies $x_n \to x$ as $n \to \infty$.
(3) $D\alpha(x) = \begin{bmatrix} I_k \\ Df(x) \end{bmatrix}$ has rank k .
So V is a k -manifold in \mathbb{R}^{k+1} with a single coordinate patch α .

5.

Proof. For any $x \in M$ and $y \in N$, there is a coordinate patch α for x and a coordinate patch β for y, respectively. Denote by U the domain of α , which is open in \mathbb{R}^k and by W the domain of β , which is open in either \mathbb{R}^l or \mathbb{H}^l . Then $U \times W$ is open in either \mathbb{R}^{k+l} or \mathbb{H}^{k+l} , depending on W is open in \mathbb{R}^l or \mathbb{H}^l . This is the essential reason why we need at least one manifold to have no boundary: if both M and N have boundaries, $U \times W$ may not be open in \mathbb{R}^{k+l} or \mathbb{H}^{k+l} .

The rest of the proof is routine. We define a map $f: U \times W \to \alpha(U) \times \beta(W)$ by $f(x, y) = (\alpha(x), \beta(y))$. Since $\alpha(U)$ is open in M and $\beta(W)$ is open in N by the definition of coordinate patch, $f(U \times W) = \alpha(U) \times \beta(W)$ is open in $M \times N$ under the product topology. f is one-to-one and continuous, since α and β enjoy such properties. Moreover,

(1) f is of class C^r , since α and β are of class C^r .

(2) $f^{-1} = (\alpha^{-1}, \beta^{-1})$ is continuous since α^{-1} and β^{-1} are continuous. (3) $Df(x, y) = \begin{bmatrix} D\alpha(x) & 0\\ 0 & D\beta(y) \end{bmatrix}$ clearly has rank k + l for each $(x, y) \in U \times W$.

Therefore, we conclude $M \times N$ is a k + l manifold in \mathbb{R}^{m+n} .

Proof. We define $\alpha_1 : [0,1) \to [0,1)$ by $\alpha_1(x) = x$ and $\alpha_2 : [0,1) \to (0,1]$ by $\alpha_2(x) = -x + 1$. Then it's easy to check α_1 and α_2 are both coordinate patches.

(b)

Proof. Intuitively $I \times I$ cannot be a 2-manifold since it has "corners". For a formal proof, assume $I \times I$ is a 2-manifold of class C^r with $r \ge 1$. By Theorem 24.3, $\partial(I \times I)$, the boundary of $I \times I$, is a 1-manifold without boundary of class C^r . Assume α is a coordinate patch of $\partial(I \times I)$ whose image includes one of those corner points. Then $D\alpha$ cannot exist at that corner point, contradiction. In conclusion, $I \times I$ cannot be a 2-manifold of class C^r with $r \ge 1$.

24 The Boundary of a Manifold

1.

Proof. The equation for the solid torus N in cartesian coordinates is $(b - \sqrt{x^2 + y^2})^2 + z^2 \leq a^2$, and the equation for the torus T in cartesian coordinates is $(b - \sqrt{x^2 + y^2})^2 + z^2 = a^2$. Define $\mathcal{O} = \mathbb{R}$ and $f : \mathcal{O} \to \mathbb{R}$ $\lceil 2x - \frac{2xb}{2} \rceil$

by
$$f(x, y, z) = a^2 - z^2 - (b - \sqrt{x^2 + y^2})^2$$
. Then $Df(x, y, z) = \begin{vmatrix} 2x - \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \\ 2y - \frac{2yb}{\sqrt{x^2 + y^2}} \\ -2z \end{vmatrix}$ has rank 1 at each point of

T. By Theorem 24.4, N is a 3-manifold and $T = \partial N$ is a 2-manifold without boundary.

2.

Proof. We first prove a regularization result.

Lemma 24.1. Let $f : \mathbb{R}^{n+k} \to \mathbb{R}^n$ be of class C^r . Assume Df has rank n at a point p, then there is an open set $W \subset \mathbb{R}^{n+k}$ and a C^r -function $G : W \to \mathbb{R}^{n+k}$ with C^r -inverse such that G(W) is an open neighborhood of p and $f \circ G : W \to \mathbb{R}^n$ is the projection mapping to the first n coordinates.

Proof. We write any point $x \in \mathbb{R}^{n+k}$ as (x_1, x_2) with $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^k$. We first assume $D_{x_1}f(p)$ has rank n. Define $F(x) = (f(x), x_2)$, then $DF = \begin{bmatrix} D_{x_1}f & D_{x_2}f \\ 0 & I_k \end{bmatrix}$. So $\det DF(p) = \det D_{x_1}f(p) \neq 0$. By the inverse function theorem, there is an open set U of \mathbb{R}^{n+k} containing p such that F carries U in a one-to-one fashion onto an open set W of \mathbb{R}^{n+k} and its inverse function G is of class C^r . Denote by $\pi : \mathbb{R}^{n+k} \to \mathbb{R}^n$ the projection $\pi(x) = x_1$, then $f \circ G(x) = \pi \circ F \circ G(x) = \pi(x)$ on W.

In general, since Df(p) has rank n, there will be $j_1 < \cdots < j_n$ such that the matrix $\frac{\partial(f_1, \cdots, f_n)}{\partial(x^{j_1}, \cdots, x^{j_n})}$ has rank n at p. Here x^j denotes the j-th coordinate of x. Define $H : \mathbb{R}^{n+k} \to \mathbb{R}^{n+k}$ as the permutation that swaps the pairs $(x^1, x^{j_1}), (x^2, x^{j_2}), \cdots, (x^n, x^{j_n})$, i.e. $H(x) = (x^{j_1}, x^{j_2}, \cdots, x^{j_n}, \cdots) - (p^{j_1}, p^{j_2}, \cdots, p^{j_n}, \cdots) + p$. Then H(p) = p and $D(f \circ H)(p) = Df(H(p))DH(p) = Df(p) \cdot DH(p)$. So $D_{x_1}(f \circ H)(p) = \frac{\partial(f_1, \cdots, f_n)}{\partial(x^{j_1}, \cdots, x^{j_n})}(p)$ and $f \circ H$ is of the type considered previously. So using the notation of the previous paragraph, $f \circ (H \circ G)(x) = \pi(x)$ on W.

By the lemma and using its notation, $\forall p \in M = \{x : f(x) = 0\}$, there is a C^r -diffeomorphism G between an open set W of \mathbb{R}^{n+k} and an open set U of \mathbb{R}^{n+k} containing p, such that $f \circ G = \pi$ on W. So $U \cap M = \{x \in U : f(x) = 0\} = G(W) \cap (f \circ G \circ G^{-1})^{-1}(\{0\}) = G(W) \cap G(\pi^{-1}(\{0\})) = G(W \cap \{0\} \times \mathbb{R}^k)$. Therefore $\alpha(x_1, \dots, x_k) := G((0, x_1, \dots, x_k))$ is a k-dimensional coordinate patch on M about p. Since p is arbitrarily chosen, we have proved M is a k-manifold without boundary in \mathbb{R}^{n+k} .

Now, $\forall p \in N = \{x : f_1(x) = \cdots = f_{n-1}(x), f_n(x) \geq 0\}$, there are two cases: $f_n(p) > 0$ and $f_n(p) = 0$. For the first case, by an argument similar to that of M, we can find a C^r -diffeomorphism G_1 between an open set W of \mathbb{R}^{n+k} and an open set U of \mathbb{R}^{n+k} containing p, such that $f \circ G_1 = \pi_1$ on W. Here π_1 is the projection mapping to the first (n-1) coordinates. So $U \cap N = U \cap \{x : f_1(x) = \cdots = f_{n-1}(x) = 0\} \cap \{x : f_n(x) \geq 0\} = G_1(W \cap \{0\} \times \mathbb{R}^{k+1}) \cap \{x \in U : f_n(x) \geq 0\}$. When U is sufficiently small, by the continuity of f_n and the fact $f_n(p) > 0$, we can assume $f_n(x) > 0, \forall x \in U$. So

$$U \cap N = U \cap \{x : f_1(x) = \dots = f_n(x) = 0, f_n(x) > 0\}$$

= $G_1(W \cap \{0\} \times \mathbb{R}^{k+1}) \cap \{x \in U : f_n(x) > 0\}$
= $G_1(W \cap \{0\} \times \mathbb{R}^{k+1} \cap G_1^{-1}(U \cap \{x : f_n(x) > 0\}))$
= $G_1([W \cap G_1^{-1}(U \cap \{x : f_n(x) > 0\})] \cap \{0\} \times \mathbb{R}^{k+1}).$

This shows $\beta(x_1, \dots, x_{k+1}) := G_1((0, x_1, \dots, x_{k+1}))$ is a (k+1)-dimensional coordinate patch on N about p.

For the second case, we note p is necessarily in M. So Df(p) is of rank n and there is a C^r -diffeomorphism G between an open set W of \mathbb{R}^{n+k} and an open set U of \mathbb{R}^{n+k} containing p, such that $f \circ G = \pi$ on W. So $U \cap N = \{x \in U : f_1(x) = \cdots = f_{n-1}(x) = 0, f_n(x) \ge 0\} = G(W) \cap (\pi \circ G^{-1})^{-1}(\{0\} \times [0, \infty)) = G(W \cap \pi^{-1}(\{0\} \times [0, \infty))) = G(W \cap \{0\} \times [0, \infty) \times \mathbb{R}^k)$. This shows $\gamma(x_1, \cdots, x_{k+1}) := G((0, x_{k+1}, x_1, \cdots, x_k))$ is a (k+1)-dimensional coordinate patch on N about p.

In summary, we have shown N is a (k+1)-manifold. Lemma 24.2 shows $\partial N = M$.

3.

Proof. Define $H : \mathbb{R}^3 \to \mathbb{R}^2$ by H(x, y, z) = (f(x, y, z), g(x, y, z)). By the theorem proved in Problem 2, if $DH(x, y, z) = \begin{bmatrix} D_x f(x, y, z) & D_y f(x, y, z) & D_z f(x, y, z) \\ D_x g(x, y, z) & D_y g(x, y, z) & D_z g(x, y, z) \end{bmatrix}$ has rank 2 for $(x, y, z) \in M := \{(x, y, z) : f(x, y, z) = g(x, y, z) = 0\}$, M is a 1-manifold without boundary in \mathbb{R}^3 , i.e. a C^r curve without singularities.

4.

Proof. We define $f(x) = (f_1(x), f_2(x)) = (||x||^2 - a^2, x_n)$. Let $N = \{x : f_1(x) = 0, f_2(x) \ge 0\} = S^{n-1}(a) \cap \mathbb{H}^n$ and $M = \{x : f(x) = 0\}$. Since $Df(x) = \begin{bmatrix} 2x_1 & 2x_2 & \cdots & 2x_{n-1} & 2x_n \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2x_1 & 2x_2 & \cdots & 2x_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$ has rank 2 on M and $\partial f_1 / \partial x = [2x_1, 2x_2, \cdots, 2x_n]$ has rank 1 on N, by the theorem proved in Problem 2, $E_+^{n-1}(a) = N$ is an (n-1) manifold whose boundary is the (n-2) manifold M. Geometrically, M is $S^{n-2}(a)$.

5. (a)

Proof. We write any point $x \in \mathbb{R}^9$ as $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, where $x_1 = [x_{11}, x_{12}, x_{13}]$, $x_2 = [x_{21}, x_{22}, x_{23}]$, and $x_3 = [x_{31}, x_{32}, x_{33}]$. Define $f_1(x) = ||x_1||^2 - 1$, $f_2(x) = ||x_2||^2 - 1$, $f_3(x) = ||x_3||^2 - 1$, $f_4(x) = (x_1, x_2)$, $f_5(x) = (x_1, x_3)$, and $f_6(x) = (x_2, x_3)$. Then $\mathcal{O}(3)$ is the solution set of the equation f(x) = 0. \Box (b)

Proof. We note

$$Df(x) = \frac{\partial(f_1, \cdots, f_6)}{\partial(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33})}$$

$$= \begin{bmatrix} 2x_{11} & 2x_{12} & 2x_{13} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2x_{21} & 2x_{22} & 2x_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2x_{31} & 2x_{32} & 2x_{33} \\ x_{21} & x_{22} & x_{23} & x_{11} & x_{12} & x_{13} & 0 & 0 & 0 \\ x_{31} & x_{32} & x_{33} & 0 & 0 & 0 & x_{11} & x_{12} & x_{13} \\ 0 & 0 & 0 & x_{31} & x_{32} & x_{33} & x_{21} & x_{22} & x_{23} \end{bmatrix}$$

Since x_1, x_2, x_3 are pairwise orthogonal and are non-zero, we conclude x_1, x_2 and x_3 are independent. From the structure of Df, the row space of Df(x) for $x \in \mathcal{O}(3)$ has rank 6. By the theorem proved in Problem 2, $\mathcal{O}(3)$ is a 3-manifold without boundary in \mathbb{R}^9 . Finally, $\mathcal{O}(3) = \{x : f(x) = 0\}$ is clearly bounded and closed, hence compact.

6.

Proof. The argument is similar to that of Problem 5, and the dimension $= n^2 - n - \frac{n(n-1)}{2} = \frac{n(n-1)}{2}$.

25 Integrating a Scalar Function over a Manifold

1.

Proof. To see $\alpha(t, z)$ is a coordinate patch, we note that α is one-to-one and onto $S^2(a) - D$, where $D = \{(x, y, z) : (\sqrt{a^2 - z^2}, 0, z), |z| \le a\}$ is a closed set and has measure zero in $S^2(a)$ (note D is a parametrized 1-manifold, hence it has measure zero in \mathbb{R}^2). On the set $\{(t, z) : 0 < t < 2\pi, |z| < a\}$, α is smooth and $\alpha^{-1}(x, y, z) = (t, z)$ is continuous on $S^2(a) - D$. Finally, by the calculation done in the text, the rank of $D\alpha$ is 2 on $\{(t, z) : 0 < t < 2\pi, |z| < a\}$.

$$\begin{aligned} (D\alpha)^{tr} D\alpha \\ &= \begin{bmatrix} -(a^2 - z^2)^{1/2} \sin t & (a^2 - z^2)^{1/2} \cos t & 0\\ (-z \cos t)/(a^2 - z^2)^{1/2} & (-z \sin t)/(a^2 - z^2)^{1/2} & 1 \end{bmatrix} \begin{bmatrix} -(a^2 - z^2)^{1/2} \sin t & (-z \cos t)/(a^2 - z^2)^{1/2}\\ (a^2 - z^2)^{1/2} \cos t & (-z \sin t)/(a^2 - z^2)^{1/2} \end{bmatrix} \\ &= \begin{bmatrix} a^2 - z^2 & 0\\ 0 & \frac{a^2}{a^2 - z^2} \end{bmatrix}. \end{aligned}$$

So $V(D\alpha) = a$ and $v(S^2(a)) = \int_{\{(t,z): 0 < t < 2\pi, |z| < a\}} V(D\alpha) = 4\pi a^2.$

4.

Proof. Let (α_j) be a family of coordinate patches that covers M. Then $(h \circ \alpha_j)$ is a family of coordinate patches that covers N. Suppose ϕ_1, \dots, ϕ_l is a partition of unity on M that is dominated by (α_j) , then

 $\phi_1 \circ h^{-1}, \dots, \phi_l \circ h^{-1}$ is a partition of unity on N that is dominated by $(h \circ \alpha_j)$. Then

$$\begin{split} \int_{N} f dV &= \sum_{i=1}^{l} \int_{N} (\phi_{i} \circ h^{-1}) f dV \\ &= \sum_{i=1}^{l} \int_{IntU_{i}} (\phi_{i} \circ h^{-1} \circ h \circ \alpha_{i}) (f \circ h \circ \alpha_{i}) V(D(h \circ \alpha_{i})) \\ &= \sum_{i=1}^{l} \int_{IntU_{i}} (\phi_{i} \circ \alpha_{i}) (f \circ h \circ \alpha_{i}) V(D\alpha_{i}) \\ &= \sum_{i=1}^{l} \int_{M} \phi_{i}(f \circ h) dV \\ &= \int_{M} f \circ h dV. \end{split}$$

In particular, by setting $f \equiv 1$, we get v(N) = v(M).

6.

Proof. Let $L_0 = \{x \in \mathbb{R}^n : x_i > 0\}$. Then $M \cap L_0$ is a manifold, for if $\alpha : U \to V$ is a coordinate patch on $M, \alpha : U \cap \alpha^{-1}(L_0) \to V \cap L_0$ is a coordinate patch on $M \cap L$. Similarly, if we let $L_1 = \{x \in \mathbb{R}^n : x_i < 0\}$, $M \cap L_1$ is a manifold. Theorem 25.4 implies

$$c_i(M) = \frac{1}{v(M)} \int_M \pi dV = \frac{1}{v(M)} \left[\int_{M \cap L_0} \pi dV + \int_{M \cap L_1} \pi dV \right].$$

Suppose (α_j) is a family of coordinate patches on $M \cap L_0$ and there is a partition of unity ϕ_1, \dots, ϕ_l on $M \cap L_0$ that is dominated by (α_j) , then

$$\int_{M \cap L_0} \pi_i dV = \sum_{j=1}^l \int_M (\phi_j \pi_i) dV = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ \alpha_j) V(D\alpha_j)$$

Define $f : \mathbb{R}^n \to \mathbb{R}^n$ by $f(x) = (x_1, \dots, -x_i, \dots, x_n)$. It's easy to see $(f \circ \alpha_j)$ is a family of coordinate patches on $M \cap L_1$ and $\phi_1 \circ f, \dots, \phi_l \circ f$ is a partition of unity on $M \cap L_1$ that is dominated by $(f \circ \alpha_j)$. Therefore

$$\int_{M\cap L_1} \pi_i dV = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ f \circ f \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_i \circ f \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_j \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_j \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) (\pi_j \circ \alpha_j) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) V(D(f \circ \alpha_j)) = \sum_{j=1}^l \int_{IntU_j} (\phi_j \circ \alpha_j) V(D(f \circ \alpha_j)) V($$

In order to show $c_i(M) = 0$, it suffices to show $(\pi_i \circ \alpha_j)V(D\alpha_j) = -(\pi_i \circ f \circ \alpha_j)V(D(f \circ \alpha_j))$. Indeed,

$$V^{2}(D(f \circ \alpha_{j}))(x) = V^{2}(Df(\alpha_{j}(x))D\alpha_{j}(x))$$

= det $(D\alpha_{j}(x)^{tr}Df(\alpha_{j}(x))^{tr}Df(\alpha_{j}(x))D\alpha_{j}(x))$
= det $(D\alpha_{j}(x)^{tr}D\alpha_{j}(x))$
= $V^{2}(D\alpha)(x),$

and $\pi_i \circ f = -\pi_i$. Combined, we conclude $\int_{M \cap L_1} \pi_i dV = -\int_{M \cap L_0} \pi_i dV$. Hence $c_i(M) = 0$. \Box 8. (a)

Proof. Let (α_i) be a family of coordinate patches on M and ϕ_1, \dots, ϕ_l a partition of unity on M dominated by (α_i) . Let (β_j) be a family of coordinate patches on N and ψ_1, \dots, ψ_k a partition of unity on N dominated

by (β_j) . Then it's easy to see $((\alpha_i, \beta_j))_{i,j}$ is a family of coordinate patches on $M \times N$ and $(\phi_m \psi_n)_{1 \le m \le l, 1 \le n \le k}$ is a partition of unity on $M \times N$ dominated by $((\alpha_i, \beta_j))_{i,j}$. Then

$$\begin{split} \int_{M \times N} f \cdot g dV &= \sum_{1 \le m \le l, 1 \le n \le k} \int_{M \times N} (\phi_m f)(\psi_n g) dV \\ &= \sum_{1 \le m \le l, 1 \le n \le k} \int_{IntU_m \times IntV_n} (\phi_m \circ \alpha_m \cdot f \circ \alpha_m) V(D\alpha_m)(\psi_n \circ \beta_n \cdot g \circ \beta_n) V(D\beta_n) \\ &= \sum_{1 \le m \le l, 1 \le n \le k} \int_{IntU_m} (\phi_m \circ \alpha_m \cdot f \circ \alpha_m) V(D\alpha_m) \int_{IntV_n} (\psi_n \circ \beta_n \cdot g \circ \beta_n) V(D\beta_n) \\ &= [\int_M f dV] [\int_N g dV]. \end{split}$$

(b)

Proof. Set f = 1 and g = 1 in (a).

(c)

Proof. By (a), $v(S^1 \times S^1) = v(S^1) \cdot v(S^1) = 4\pi^2 a^2$.

26 Multilinear Algebra

4.

Proof. By Example 1, it is easy to see f and g are not tensors on \mathbb{R}^4 . h is a tensor: $h = \phi_{1,1} - 7\phi_{2,3}$. \Box 5.

Proof. f and h are not tensors. g is a tensor and $g = 5\phi_{3,2,3,4,4}$.

6. (a)

Proof.
$$f = 2\phi_{1,2,2} - \phi_{2,3,1}, g = \phi_{2,1} - 5\phi_{3,1}.$$
 So $f \otimes g = 2\phi_{1,2,2,2,1} - 10\phi_{1,2,2,3,1} - \phi_{2,3,1,2,1} + 5\phi_{2,3,1,3,1}.$ (b)

Proof.
$$f \otimes g(x, y, z, u, v) = 2x_1y_2z_2u_2v_1 - 10x_1y_2z_2u_3v_1 - x_2y_3z_1u_2v_1 + 5x_2y_3z_1u_3v_1.$$

7.

Proof. Suppose $f = \sum_{I} d_{I}\phi_{I}$ and $g = \sum_{J} d_{J}\phi_{J}$. Then $f \otimes g = (\sum_{I} d_{I}\phi_{I}) \otimes (\sum_{J} d_{J}\phi_{J}) = \sum_{I,J} d_{I}d_{J}\phi_{I} \otimes \phi_{J} = \sum_{I,J} d_{I}d_{J}\phi_{I,J}$. This shows the four properties stated in Theorem 26.4 characterize the tensor product uniquely.

8.

Proof. For any $x \in \mathbb{R}^m$, $T^*f(x) = f(T(x)) = f(B \cdot x) = (AB) \cdot x$. So the matrix of the 1-tensor T^*f on \mathbb{R}^m is AB.

27**Alternating Tensors**

1.

Proof. Since h is not multilinear, h is not an alternating tensor. $f = \phi_{1,2} - \phi_{2,1} + \phi_{1,1}$ is a tensor. The only permutation of $\{1,2\}$ are the identity mapping id and $\sigma : \sigma(1) = 2, \sigma(2) = 1$. So f is alternating if and only if $f^{\sigma}(x,y) = -f(x,y)$. Since $f^{\sigma}(x,y) = f(y,x) = y_1x_2 - y_2x_1 + y_1x_1 \neq -f(x,y)$, we conclude f is not alternating.

Similarly, $g = \phi_{1,3} - \phi_{3,2}$ is a tensor. And $g^{\sigma} = \phi_{2,1} - \phi_{2,3} \neq -g$. So g is not alternating.

3.

Proof. Suppose $I = (i_1, \dots, i_k)$. If $\{i_1, \dots, i_k\} \neq \{j_1, \dots, j_k\}$ (set equality), then $\phi_I(a_{j_1}, \dots, a_{j_k}) = 0$. If $\{i_1, \cdots, i_k\} = \{j_1, \cdots, j_k\}, \text{ there must exist a permutation } \sigma \text{ of } \{1, 2, \cdots, k\}, \text{ such that } I = (i_1, \cdots, i_k) = (j_{\sigma(1)}, \cdots, j_{\sigma(k)}). \text{ Then } \phi_I(a_{j_1}, \cdots, a_{j_k}) = (\operatorname{sgn}\sigma)(\phi_I)^{\sigma}(a_{j_1}, \cdots, a_{j_k}) = (\operatorname{sgn}\sigma)\phi_I(a_{j_{\sigma(1)}}, \cdots, a_{j_{\sigma(k)}}) = \operatorname{sgn}\sigma.$ In summary, we have

$$\phi_I(a_{j_1},\cdots,a_{j_k}) = \begin{cases} \operatorname{sgn}\sigma & \text{if there is a permutation } \sigma \text{ of } \{1,2,\cdots,k\} \text{ such that } I = J_\sigma = (j_{\sigma(1)},\cdots,j_{\sigma(k)}) \\ 0 & \text{otherwise.} \end{cases}$$

4.

Proof. For any $v_1, \dots, v_k \in V$ and a permutation σ of $\{1, \dots, k\}$.

$$(T^*f)^{\sigma}(v_1, \cdots, v_k) = T^*f(v_{\sigma(1)}, \cdots, v_{\sigma(k)}) = f(T(v_{\sigma(1)}), \cdots, T(v_{\sigma(k)})) = f^{\sigma}(T(v_1), \cdots, T(v_k))$$

= $(\operatorname{sgn}\sigma)f(T(v_1), \cdots, T(v_k)) = (\operatorname{sgn}\sigma)T^*f(v_1, \cdots, v_k).$

So $(T^*f)^{\sigma} = (\operatorname{sgn} \sigma)T^*f$, which implies $T^*f \in \mathcal{A}^k(V)$.

5.

Proof. We follow the hint and prove $\phi_{I_{\sigma}} = (\phi_I)^{\sigma^{-1}}$. Indeed, suppose a_1, \dots, a_n is a basis of the underlying vector space V, then

$$(\phi_I)^{\sigma^{-1}}(a_{j_1},\cdots,a_{j_k}) = (\phi_I)(a_{j_{\sigma^{-1}(1)}},\cdots,a_{j_{\sigma^{-1}(k)}}) = \begin{cases} 0 & \text{if } I \neq (j_{\sigma^{-1}(1)},\cdots,j_{\sigma^{-1}(k)}) \\ 1 & \text{if } I = (j_{\sigma^{-1}(1)},\cdots,j_{\sigma^{-1}(k)}) \end{cases}$$
$$= \begin{cases} 0 & \text{if } I_{\sigma} \neq (j_{\sigma\circ\sigma^{-1}(1)},\cdots,j_{\sigma\circ\sigma^{-1}(k)}) = J \\ 1 & \text{if } I_{\sigma} = (j_{\sigma\circ\sigma^{-1}(1)},\cdots,j_{\sigma\circ\sigma^{-1}(k)}) = J \end{cases}$$
$$= \phi_{I_{\sigma}}(a_{j_1},\cdots,a_{j_k}).$$

Thus, $\phi_I = \sum_{\sigma} (\operatorname{sgn}\sigma) (\phi_I)^{\sigma} = \sum_{\sigma^{-1}} (\operatorname{sgn}\sigma^{-1}) (\phi_I)^{\sigma^{-1}} = \sum_{\sigma^{-1}} (\operatorname{sgn}\sigma) \phi_{I_{\sigma}} = \sum_{\sigma} (\operatorname{sgn}\sigma) \phi_{I_{\sigma}}.$

The Wedge Product $\mathbf{28}$

1. (a)

 $Proof. \ F = 2\phi_2 \otimes \phi_2 \otimes \phi_1 + \phi_1 \otimes \phi_5 \otimes \phi_4, G = \phi_1 \otimes \phi_3 + \phi_3 \otimes \phi_1. \ \text{So} \ AF = 2\phi_2 \wedge \phi_2 \wedge \phi_1 + \phi_1 \wedge \phi_5 \wedge \phi_4 = -\phi_1 \wedge \phi_4 \wedge \phi_6 \wedge \phi_6 \wedge \phi_6 \wedge \phi_6 \wedge \phi_6 = -\phi_1 \wedge \phi_1 \wedge \phi_6 \wedge \phi_6$ and $AG = \phi_1 \wedge \phi_3 - \phi_1 \wedge \phi_3 = 0$, by Step 9 of the proof of Theorem 28.1.

$$Proof. \ (AF) \land h = -\phi_1 \land \phi_4 \land \phi_5 \land (\phi_1 - 2\phi_3) = 2\phi_1 \land \phi_4 \land \phi_5 \land \phi_3 = 2\phi_1 \land \phi_3 \land \phi_4 \land \phi_5.$$

(c)

$$Proof. \ (AF)(x,y,z) = -\phi_1 \wedge \phi_4 \wedge \phi_5(x,y,z) = -\det \begin{bmatrix} x_1 & y_1 & z_1 \\ x_4 & y_4 & z_4 \\ x_5 & y_5 & z_5 \end{bmatrix} = -x_1y_4z_5 + x_1y_5z_4 + x_4y_1z_5 - x_4y_5z_1 - x_5y_1z_4 + x_5y_4z_1.$$

2.

Proof. Suppose G is a k-tensor, then $AG(v_1, \dots, v_k) = \sum_{\sigma} (\operatorname{sgn} \sigma) G^{\sigma}(v_1, \dots, v_k) = \sum_{\sigma} (\operatorname{sgn} \sigma) G(v_1, \dots, v_k) = \sum_{\sigma} (\operatorname{sgn} \sigma) G(v_1, \dots, v_k) = \sum_{\sigma} (\operatorname{sgn} \sigma) G(v_1, \dots, v_k)$. Let e be an elementary permutation. Then $e: \sigma \to e \circ \sigma$ is an isomorphism on the permutation group S_k of $\{1, 2, \dots, k\}$. So S_k can be divided into two disjoint subsets U_1 and U_2 so that e establishes a one-to-one correspondence between U_1 and U_2 . By the fact $\operatorname{sgn} e \circ \sigma = -\operatorname{sgn} \sigma$, we conclude $\sum_{\sigma} (\operatorname{sgn} \sigma) = 0$. This implies AG = 0.

3.

Proof. We work by induction. For k = 2, $\frac{1}{l_1!l_2!}A(f_1 \otimes f_2) = f_1 \wedge f_2$ by the definition of \wedge . Assume for k = n, the claim is true. Then for k = n + 1,

$$\frac{1}{l_1!\cdots l_n!l_{n+1}!}A(f_1\otimes\cdots\otimes f_n\otimes f_{n+1}) = \frac{1}{l_1!\cdots l_n!}\frac{1}{l_{n+1}!}A((f_1\otimes\cdots\times f_n)\otimes f_{n+1}) = \frac{1}{l_1!\cdots l_n!}A(f_1\otimes\cdots\otimes f_n)\wedge f_{n+1}$$

by Step 6 of the proof of Theorem 28.1. By induction, $\frac{1}{l_1!\cdots l_n!}A(f_1 \otimes \cdots \otimes f_n) = f_1 \wedge \cdots \wedge f_n$. So $\frac{1}{l_1!\cdots l_n!l_{n+1}!}A(f_1 \otimes \cdots \otimes f_n \otimes f_{n+1}) = f_1 \wedge \cdots \wedge f_n \wedge f_{n+1}$. By the principle of mathematical induction,

$$\frac{1}{l_1!\cdots l_k!}A(f_1\otimes\cdots\otimes f_k)=f_1\wedge\cdots\wedge f_k$$

for any k.

4.

Proof. $\phi_{i_1} \wedge \cdots \phi_{i_k}(x_1, \cdots, x_k) = A(\phi_{i_1} \otimes \cdots \otimes \phi_{i_k})(x_1, \cdots, x_k) = \sum_{\sigma} (\operatorname{sgn} \sigma)(\phi_{i_1} \otimes \cdots \otimes \phi_{i_k})^{\sigma}(x_1, \cdots, x_k) = \sum_{\sigma} (\operatorname{sgn} \sigma)(\phi_{i_1} \otimes \cdots \otimes \phi_{i_k})(x_{\sigma(1)}, \cdots, x_{\sigma(k)}) = \sum_{\sigma} (\operatorname{sgn} \sigma)x_{i_1,\sigma(1)}, \cdots, x_{i_k,\sigma(k)} = \det X_I.$

Proof. Suppose F is a k-tensor. Then

$$T^*(F^{\sigma})(v_1, \cdots, v_k) = F^{\sigma}(T(v_1), \cdots, T(v_k))$$

= $F(T(v_{\sigma(1)}), \cdots, T(v_{\sigma(k)}))$
= $T^*F(v_{\sigma(1)}, \cdots, v_{\sigma(k)})$
= $(T^*F)^{\sigma}(v_1, \cdots, v_k).$

6. (a)

 $\begin{array}{l} Proof. \ T^*\psi_I(v_1,\cdots,v_k) = \psi_I(T(v_1),\cdots,T(v_k)) = \psi_I(B \cdot v_1,\cdots,B \cdot v_k). \ \text{In particular, for } \bar{J} = (\bar{j}_1,\cdots,\bar{j}_k), \\ c_{\bar{J}} = \sum_{[J]} c_J\psi_J(e_{\bar{j}_1},\cdots,e_{\bar{j}_k}) = T^*\psi_I(e_{\bar{j}_1},\cdots,e_{\bar{j}_k}) = \psi_I(B \cdot e_{\bar{j}_1},\cdots,B \cdot e_{\bar{j}_k}) = \psi_I(\beta_{\bar{j}_1},\cdots,\beta_{\bar{j}_k}) \text{ where } \beta_i \text{ is the } i\text{-th column of } B. \ \text{So } c_{\bar{J}} = \det[\beta_{\bar{j}_1},\cdots,\beta_{\bar{j}_k}]_I. \ \text{Therefore, } c_J \text{ is the determinant of the matrix consisting of the } i_1,\cdots,i_k \text{ rows and the } j_1,\cdots,j_k \text{ columns of } B, \text{ where } I = (i_1,\cdots,i_k) \text{ and } J = (j_1,\cdots,j_k). \end{array}$

(b)

Proof. $T^*f = \sum_{[I]} d_I T^*(\psi_I) = \sum_{[I]} d_I \sum_{[I]} \det B_{I,J} \psi_J = \sum_{[J]} (\sum_{[I]} d_I \det B_{I,J}) \psi_J$ where $B_{I,J}$ is the matrix consisting of the i_1, \dots, i_k rows and the j_1, \dots, j_k columns of B $(I = (i_1, \dots, i_k)$ and $J = (j_1, \dots, j_k))$. \Box

$\mathbf{29}$ **Tangent Vectors and Differential Forms**

1.

Proof.
$$\gamma_*(t;e_1) = (\gamma(t); D\gamma(t) \cdot e_1) = (\gamma(t); \begin{bmatrix} \gamma'_1(t) \\ \cdots \\ \gamma'_n(t) \end{bmatrix}$$
), which is the velocity vector of γ corresponding to the parameter value t .

parameter value t.

2.

Proof. The velocity vector of the curve $\gamma(t) = \alpha(x+tv)$ corresponding to parameter value t = 0 is calculated by $\frac{d}{dt}\gamma(t)|_{t=0} = \lim_{t\to 0} \frac{\alpha(x+tv) - \alpha(x)}{t} = D\alpha(x) \cdot v$. So $\alpha_*(x;v) = (\alpha(x); D\alpha(x) \cdot v) = (\alpha(x); \frac{d}{dt}\gamma(t)|_{t=0})$.

3.

Proof. Suppose $\alpha : U_{\alpha} \to V_{\alpha}$ and $\beta : U_{\beta} \to V_{\beta}$ are two coordinate patches about p, with $\alpha(x) = \beta(y) = p$. Because \mathbb{R}^k is spanned by the vectors e_1, \dots, e_k , the space $\mathcal{T}_p^{\alpha}(M)$ obtained by using α is spanned by the vectors $(p; \frac{\partial \alpha(x)}{\partial x_j})_{j=1}^k$ and the space $\mathcal{T}_p^\beta(M)$ obtained by using β is spanned by the vectors $(p; \frac{\partial \beta(y)}{\partial y_i})_{i=1}^k$. Let $W = V_\alpha \cap V_\beta, U'_\alpha = \alpha^{-1}(W)$, and $U'_\beta = \beta^{-1}(W)$. Then $\beta^{-1} \circ \alpha : U'_\alpha \to U'_\beta$ is a C^r -diffeomorphism by Theorem 24.1. By chain rule,

$$D\alpha(x) = D(\beta \circ \beta^{-1} \circ \alpha)(x) = D\beta(y) \cdot D(\beta^{-1} \circ \alpha)(x).$$

Since $D(\beta^{-1} \circ \alpha)(x)$ is of rank k, the linear space spanned by $(\partial \alpha(x)/\partial x_j)_{j=1}^k$ agrees with the linear space spanned by $(\partial \beta(y) / \partial y_i)_{i=1}^k$.

4. (a)

Proof. Suppose $\alpha: U \to V$ is a coordinate patch about p, with $\alpha(x) = p$. Since $p \in M - \partial M$, we can without loss of generality assume U is an open subset of \mathbb{R}^k . By the definition of tangent vector, there exists $u \in \mathbb{R}^k$ such that $v = D\alpha(x) \cdot u$. For ε sufficiently small, $\{x + tu : |t| \le \varepsilon\} \subset U$ and $\gamma(t) := \alpha(x + tu) \; (|t| \le \varepsilon)$ has its image in M. Clearly $\frac{d}{dt}\gamma(t)|_{t=0} = D\alpha(x) \cdot u = v$.

(b)

Proof. Suppose $\gamma: (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ is a parametrized-curve whose image set lies in M. Denote $\gamma(0)$ by p and assume $\alpha: U \to V$ is a coordinate patch about p. For $v := \frac{d}{dt}\gamma(t)|_{t=0}$, we define $u = D\alpha^{-1}(p) \cdot v$. Then

$$\alpha_*(x; u) = (p; D\alpha(x) \cdot u) = (p; D\alpha(x) \cdot D\alpha^{-1}(p) \cdot v) = (p; D(\alpha \circ \alpha^{-1})(p) \cdot v) = (p; v).$$

So the velocity vector of γ corresponding to parameter value t = 0 is a tangent vector.

5.

Proof. Similar to the proof of Problem 4, with $(-\varepsilon, \varepsilon)$ changed to $[0, \varepsilon)$ or $(-\varepsilon, 0]$. We omit the details.

30 The Differential Operator

2.

Proof. $d\omega = -xdx \wedge dy - zdy \wedge dz$. So $d(d\omega) = -dx \wedge dx \wedge dy - dz \wedge dy \wedge dz = 0$. Meanwhile,

$$d\eta = -2yzdz \wedge dy + 2dx \wedge dz = 2yzdy \wedge dz + 2dx \wedge dz$$

and

$$\omega \wedge \eta = (-xy^2z^2 - 3x)dx \wedge dy + (2x^2y + xyz)dx \wedge dz + (6x - y^2z^3)dy \wedge dz$$

So

$$d(\omega \wedge \eta) = (-2xy^2z - 2x^2 - xz + 6)dx \wedge dy \wedge dz,$$

$$(d\omega) \wedge \eta = -2x^2dx \wedge dy \wedge dz - xzdx \wedge dy \wedge dz,$$

and

$$\omega \wedge d\eta = 2xy^2 z dx \wedge dy \wedge dz - 6dx \wedge dy \wedge dz.$$

Therefore, $(d\omega) \wedge \eta - \omega \wedge d\eta = (-2xy^2z - 2x^2 - xz + 6)dx \wedge dy \wedge dz = d(\omega \wedge \eta).$

3.

Proof. In \mathbb{R}^2 , $\omega = ydx - xdy$ vanishes at $x_0 = (0, 0)$, but $d\omega = -2dx \wedge dy$ does not vanish at x_0 . In general, suppose ω is a k-form defined in an open set A of \mathbb{R}^n , and it has the general form $\omega = \sum_{[I]} f_I dx_I$. If it vanishes at each x in a neighborhood of x_0 , we must have $f_I = 0$ in a neighborhood of x_0 for each I. By continuity, we conclude $f_I \equiv 0$ in a neighborhood of x_0 , including x_0 . So $d\omega = \sum_{[I]} df_I \wedge dx_I = \sum_{[I]} (\sum_i D_i f dx_i) \wedge dx_I$ vanishes at x_0 .

Proof.
$$d\omega = d\left(\frac{x}{x^2+y^2}dx\right) + d\left(\frac{y}{x^2+y^2}dy\right) = \frac{2xy}{(x^2+y^2)^2}dx \wedge dy + \frac{-2xy}{(x^2+y^2)^2}dx \wedge dy = 0$$
. So ω is closed. Define $\theta = \frac{1}{2}\log(x^2+y^2)$, then $d\theta = \omega$. So ω is exact on A .

Proof.
$$d\omega = \frac{-(x^2+y^2)+2y^2}{(x^2+y^2)^2} dy \wedge dx + \frac{x^2+y^2-2x^2}{(x^2+y^2)^2} dx \wedge dy = 0.$$
 So ω is closed. (c)

Proof. We consider the following transformation from $(0, \infty) \times (0, 2\pi)$ to B:

$$\begin{cases} x = r\cos t\\ y = r\sin t. \end{cases}$$

Then

$$\det \frac{\partial(x,y)}{\partial(r,t)} = \det \begin{bmatrix} \cos t & -r\sin t\\ \sin t & r\cos t \end{bmatrix} = r \neq 0.$$

By part (b) and the inverse function theorem (Theorem 8.2, the global version), we conclude ϕ is of class C^{∞} .

(d)

Proof. Using the transformation given in part (c), we have $dx = \cos t dr - r \sin t dt$ and $dy = \sin t dr + r \cos t dt$. So $\omega = [-r \sin t (\cos t dr - r \sin t dt) + r \cos t (\sin t dr + r \cos t dt)]/r^2 = dt = d\phi$.

(e)

Proof. We follow the hint. Suppose g is a closed 0-form in B. Denote by a the point (-1,0) of \mathbb{R}^2 . For any $x \in B$, let $\gamma(t) : [0,1] \to B$ be the segment connecting a and x, with $\gamma(0) = a$ and $\gamma(1) = x$. Then by mean-value theorem (Theorem 7.3), there exists $t_0 \in (0,1)$, such that $g(a) - g(x) = Dg(a + t_0(x-a)) \cdot (a-x)$. Since g is closed in B, Dg = 0 in B. This implies g(x) = g(a) for any $x \in B$.

(f)

Proof. First, we note ϕ is not well-defined in all of A, so part (d) can not be used to prove ω is exact in A. Assume $\omega = df$ in A for some 0-form f. Then $d(f - \phi) = df - d\phi = \omega - \omega = 0$ in B. By part (e), $f - \phi$ is a constant in B. Since $\lim_{y \downarrow 0} \phi(1, y) = 0$ and $\lim_{y \uparrow 0} \phi(1, y) = 2\pi$, f(1, y) has different limits when y approaches 0 through positive and negative values. This is a contradiction since f is C^1 function defined everywhere in A.

6.

Proof. $d\eta = \sum_{i=1}^{n} (-1)^{i-1} D_i f_i dx_i \wedge dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n = \sum_{i=1}^{n} D_i f_i dx_1 \wedge \cdots \wedge dx_n$. So $d\eta = 0$ if and only if $\sum_{i=1}^{n} D_i f_i = 0$. Since $D_i f_i(x) = \frac{\|x\|^2 - mx_i^2}{\|x\|^{m+2}}$, $\sum_{i=1}^{n} D_i f_i(x) = \frac{n-m}{\|x\|^m}$. So $d\eta = 0$ if and only if m = n. \Box 7.

Proof. By linearity, it suffices to prove the theorem for $\omega = fdx_I$, where $I = (i_1, \dots, i_{k-1})$ is a k-tuple from $\{1, \dots, n\}$ in ascending order. Indeed, in this case, $h(x) = d(fdx_I)(x)((x;v_1), \dots, (x;v_k)) = (\sum_{i=1}^n D_i f(x) dx_i \wedge dx_I)((x;v_1), \dots, (x;v_k))$. Let $X = [v_1 \cdots v_k]$. For each $j \in \{1, \dots, k\}$, let $Y_j = [v_1 \cdots \hat{v}_j \cdots v_k]$. Then by Theorem 2.15 and Problem 4 of §28,

$$\det X(i, i_1, \cdots, i_{k-1}) = \sum_{j=1}^k (-1)^{j-1} v_{ij} \det Y_j(i_1, \cdots, i_{k-1}).$$

Therefore

$$h(x) = \sum_{i=1}^{n} D_i f(x) \det X(i, i_1, \cdots, i_{k-1})$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{k} D_i f(x) (-1)^{j-1} v_{ij} \det Y_j(i_1, \cdots, i_{k-1})$$

=
$$\sum_{j=1}^{k} (-1)^{j-1} Df(x) \cdot v_j \det Y_j(i_1, \cdots, i_{k-1}).$$

Meanwhile, $g_j(x) = \omega(x)((x;v_1), \cdots, \widehat{(x;v_j)}, \cdots, (x;v_k)) = f(x) \det Y_j(i_1, \cdots, i_{k-1})$. So

$$Dg_j(x) = Df(x)\det Y_j(i_1, \cdots, i_{k-1})$$

and consequently, $h(x) = \sum_{j=1}^{k} (-1)^{j-1} Dg_j(x) \cdot v_j$. In particular, for k = 1, $h(x) = Df(x) \cdot v$, which is a directional derivative.

31 Application to Vector and Scalar Fields

1.

Proof. (Proof of Theorem 31.1) It is straightforward to check that α_i and β_j are isomorphisms. Moreover, $d \circ \alpha_0(f) = df = \sum_{i=1}^n D_i f dx_i$ and $\alpha_1 \circ \operatorname{grad}(f) = \alpha_1((x; \sum_{i=1}^n D_i f(x)e_i)) = \sum_{i=1}^n D_i f(x) dx_i$. So $d \circ \alpha_0 = \alpha_1 \circ \operatorname{grad}$.

Also, $d \circ \beta_{n-1}(G) = d(\sum_{i=1}^{n} (-1)^{i-1} g_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n) = \sum_{i=1}^{n} (-1)^{i-1} D_i g_i dx_i \wedge dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$ $\dots \wedge dx_n = (\sum_{i=1}^{n} D_i g_i) dx_1 \wedge \dots \wedge dx_n$, and $\beta_n \circ \operatorname{div}(G) = \beta_n (\sum_{i=1}^{n} D_i g_i) = (\sum_{i=1}^{n} D_i g_i) dx_1 \wedge \dots \wedge dx_n$. So $d \circ \beta_{n-1} = \beta_n \circ \operatorname{div}$.

 $\begin{array}{l} (\text{Proof of Theorem 31.2}) \text{ We only need to check } d \circ \alpha_1 = \beta_2 \circ \text{curl. Indeed, } d \circ \alpha_1(F) = d(\sum_{i=1}^3 f_i dx_i) = \\ (D_2 f_1 dx_2 + D_3 f_1 dx_3) \wedge dx_1 + (D_1 f_2 dx_1 + D_3 f_2 dx_3) \wedge dx_2 + (D_1 f_3 dx_1 + D_2 f_3 dx_2) \wedge dx_3 = (D_2 f_3 - D_3 f_2) dx_2 \wedge dx_3 + (D_3 f_1 - D_1 f_3) dx_3 \wedge dx_1 + (D_1 f_2 - D_2 f_1) dx_1 \wedge dx_2, \text{ and } \beta_2 \circ \text{curl}(F) = \beta_2((x; (D_2 f_3 - D_3 f_2) e_1 + (D_3 f_1 - D_1 f_3) e_2 + (D_1 f_2 - D_2 f_1) e_3)) = (D_2 f_3 - D_3 f_2) dx_2 \wedge dx_3 - (D_3 f_1 - D_1 f_3) dx_1 \wedge dx_3 + (D_1 f_2 - D_2 f_1) dx_1 \wedge dx_2. \\ \text{So } d \circ \alpha_1 = \beta_2 \circ \text{curl.} \end{array}$

2.

Proof.
$$\alpha_1 F = f_1 dx_1 + f_2 dx_2$$
 and $\beta_1 F = f_1 dx_2 - f_2 dx_1$.

3. (a)

Proof. Let f be a scalar field in A and $F(x) = (x; [f_1(x), f_2(x), f_3(x)])$ be a vector field in A. Define $\omega_F^1 = f_1 dx_1 + f_2 dx_2 + f_3 dx_3$ and $\omega_F^2 = f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2$. Then it is straightforward to check that $d\omega_F^1 = w_{\text{curl}F}^2$ and $d\omega_F^2 = (\text{div}F)dx_1 \wedge dx_2 \wedge dx_3$. So by the general principle $d(d\omega) = 0$, we have

$$0 = d(df) = d\left(\omega_{\text{grad}f}^{1}\right) = \omega_{\text{curl grad}f}^{2}$$

and

$$0 = d(d\omega_F^1) = d\left(\omega_{\operatorname{curl} F}^2\right) = (\operatorname{div} \operatorname{curl} F)dx_1 \wedge dx_2 \wedge dx_3$$

These two equations imply that $\operatorname{curl} \operatorname{grad} f = 0$ and $\operatorname{div} \operatorname{curl} F = 0$.

4. (a)

Proof. $\gamma_2(\alpha H + \beta G) = \sum_{i < j} [\alpha h_{ij}(x) + \beta g_{ij}(x)] dx_i \wedge dx_j = \alpha \sum_{i < j} h_{ij}(x) dx_i \wedge dx_j + \beta \sum_{i < j} g_{ij}(x) dx_i \wedge dx_j = \alpha \gamma_2(H) + \beta \gamma_2(G)$. So γ_2 is a linear mapping. It is also easy to see γ_2 is one-to-one and onto as the skew-symmetry of H implies $h_{ii} = 0$ and $h_{ij} + h_{ji} = 0$.

(b)

Proof. Suppose *F* is a vector field in *A* and *H* ∈ *S*(*A*). We define *twist* : {vector fields in *A*} → *S*(*A*) by $twist(F)_{ij} = D_i f_j - D_j f_i$, and $spin : S(A) \rightarrow$ {vector fields in *A*} by $spin(H) = (x; (D_4 h_{23} - D_3 h_{24} + D_2 h_{34}, -D_4 h_{13} + D_3 h_{14} - D_1 h_{34}, D_4 h_{12} - D_2 h_{14} + D_1 h_{24}, -D_3 h_{12} + D_2 h_{13} - D_1 h_{23})). □$

5.
$$(a)$$

Proof. Suppose $\omega = \sum_{i=1}^{n} a_i dx_i$ is a 1-form such that $\omega(x)(x;v) = \langle f(x), v \rangle$. Then $\sum_{i=1}^{n} a_i(x)v_i = \sum_{i=1}^{n} f_i(x)v_i$. Choose $v = e_i$, we conclude $a_i = f_i$. So $\omega = \alpha_1 F$.

Proof. Suppose ω is an (n-1) form such that $\omega(x)((x;v_1),\cdots,(x;v_{n-1})) = \varepsilon V(g(x),v_1,\cdots,v_{n-1})$. Assume ω has the representation $\sum_{i=1}^{n} a_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$, then

$$\begin{aligned} \omega(x)((x;v_1),\cdots,(x;v_{n-1})) &= \sum_{i=1}^n a_i(x) \det[v_1,\cdots,v_{n-1}]_{(1,\cdots,\hat{i},\cdots,n)} \\ &= \sum_{i=1}^n (-1)^{i-1} [(-1)^{i-1} a_i(x)] \det[v_1,\cdots,v_{n-1}]_{(1,\cdots,\hat{i},\cdots,n)} \\ &= \det[a(x),v_1,\cdots,v_{n-1}], \end{aligned}$$

where $a(x) = [a_1(x), \dots, (-1)^{i-1}a_i(x), \dots, (-1)^{n-1}a_n(x)]^{Tr}$. Since

$$\varepsilon V(g(x), v_1, \cdots, v_{n-1}) = \det[g(x), v_1, \cdots, v_{n-1}],$$

we can conclude $det[a(x), v_1, \cdots, v_{n-1}] = det[g(x), v_1, \cdots, v_{n-1}]$, or equivalently,

$$\det[a(x) - g(x), v_1, \cdots, v_{n-1}] = 0.$$

Since v_1, \dots, v_{n-1} can be arbitrary, we must have g(x) = a(x), i.e. $\omega = \sum_{i=1}^n (-1)^{i-1} g_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n = \beta_{n-1} G$.

(c)

Proof. Suppose $\omega = f dx_1 \wedge \cdots \wedge dx_n$ is an *n*-form such that $\omega(x)((x; v_1), \cdots, (x; v_n)) = \varepsilon \cdot h(x) \cdot V(v_1, \cdots, v_n)$. This is equivalent to $f(x) \det[v_1, \cdots, v_n] = h(x) \det[v_1, \cdots, v_n]$. So f = h and $\omega = \beta_n h$.

32 The Action of a Differentiable Map

1.

Proof. Let ω , η and θ be 0-forms. Then (1) $\beta^*(a\omega + b\eta) = a\omega \circ \beta + b\eta \circ \beta = a\beta^*(\omega) + b\beta^*(\eta)$. (2) $\beta^*(\omega \wedge \theta) = \beta^*(\omega \cdot \theta) = \omega \circ \beta \cdot \theta \circ \beta = \beta^*(\omega) \cdot \beta^*(\theta) = \beta^*(\omega) \wedge \beta^*(\theta)$. (3) $(\beta \circ \alpha)^*\omega = \omega \circ \beta \circ \alpha = \alpha^*(\omega \circ \beta) = \alpha^*(\beta^*\omega)$.

2.

Proof.

 $d\alpha_1 \wedge d\alpha_3 \wedge d\alpha_5$

- $= (D_1\alpha_1 dx_1 + D_2\alpha_1 dx_2 + D_3\alpha_1 dx_3) \wedge (D_1\alpha_3 dx_1 + D_2\alpha_3 dx_2 + D_3\alpha_3 dx_3) \\ \wedge (D_1\alpha_5 dx_1 + D_2\alpha_5 dx_2 + D_3\alpha_5 dx_3)$
- $= (D_1\alpha_1D_2\alpha_3dx_1 \wedge dx_2 + D_1\alpha_1D_3\alpha_3dx_1 \wedge dx_3 + D_2\alpha_1D_1\alpha_3dx_2 \wedge dx_1 + D_2\alpha_1D_3\alpha_3dx_2 \wedge dx_3 + D_3\alpha_1D_1\alpha_3dx_3 \wedge dx_1 + D_3\alpha_1D_2\alpha_3dx_3 \wedge dx_2) \wedge (D_1\alpha_5dx_1 + D_2\alpha_5dx_2 + D_3\alpha_5dx_3)$
- $= D_{2}\alpha_{1}D_{3}\alpha_{3}D_{1}\alpha_{5}dx_{2} \wedge dx_{3} \wedge dx_{1} + D_{3}\alpha_{1}D_{2}\alpha_{3}D_{1}\alpha_{5}dx_{3} \wedge dx_{2} \wedge dx_{1} + D_{1}\alpha_{1}D_{3}\alpha_{3}D_{2}\alpha_{5}dx_{1} \wedge dx_{3} \wedge dx_{2} + D_{3}\alpha_{1}D_{1}\alpha_{3}D_{2}\alpha_{5}dx_{3} \wedge dx_{1} \wedge dx_{2} + D_{1}\alpha_{1}D_{2}\alpha_{3}D_{3}\alpha_{5}dx_{1} \wedge dx_{2} \wedge dx_{3} + D_{2}\alpha_{1}D_{1}\alpha_{3}D_{3}\alpha_{5}dx_{2} \wedge dx_{1} \wedge dx_{3}$
- $= (D_2\alpha_1D_3\alpha_3D_1\alpha_5 D_3\alpha_1D_2\alpha_3D_1\alpha_5 D_1\alpha_1D_3\alpha_3D_2\alpha_5 + D_3\alpha_1D_1\alpha_3D_2\alpha_5 + D_1\alpha_1D_2\alpha_3D_3\alpha_5 D_2\alpha_1D_1\alpha_3D_3\alpha_5)dx_1 \wedge dx_2 \wedge dx_3$

$$= \det \begin{bmatrix} D_1 \alpha_1 & D_2 \alpha_1 & D_3 \alpha_1 \\ D_1 \alpha_3 & D_2 \alpha_3 & D_3 \alpha_3 \\ D_1 \alpha_5 & D_2 \alpha_5 & D_3 \alpha_5 \end{bmatrix} dx_1 \wedge dx_2 \wedge dx_3$$

 $= \det D\alpha(1,3,5)dx_1 \wedge dx_2 \wedge dx_3.$

So $\alpha^*(dy_{(1,3,5)} = \alpha^*(dy_1 \wedge dy_3 \wedge dy_5) = \alpha^*(dy_1) \wedge \alpha^*(dy_3) \wedge \alpha^*(dy_5) = d\alpha_1 \wedge d\alpha_3 \wedge d\alpha_5 = \det \frac{\partial \alpha_{(1,3,5)}}{\partial x} dx_1 \wedge dx_2 \wedge dx_3$. This confirms Theorem 32.2.

3.

Proof. $d\omega = -xdx \wedge dy - 3dy \wedge dz$, $\alpha^*(\omega) = x \circ \alpha \cdot y \circ \alpha d\alpha_1 + 2z \circ \alpha d\alpha_2 - y \circ \alpha d\alpha_3 = u^3 v(udv + vdu) + 2(3u + v) \cdot (2udu) - u^2(3du + dv) = (u^3v^2 + 9u^2 + 4uv)du + (u^4v - u^2)dv$. Therefore

$$\begin{aligned} \alpha^*(d\omega) &= -x \circ \alpha d\alpha_1 \wedge d\alpha_2 - 3d\alpha_2 \wedge d\alpha_3 \\ &= -uv(udv + vdu) \wedge (2udu) - 2(2udu) \wedge (3du + dv) - (2udu) \wedge (3du + dv) \\ &= (2u^3v - 6u)du \wedge dv, \end{aligned}$$

and

$$d(\alpha^*\omega) = (2u^3vdv + 4udv) \wedge du + (4u^3vdu - 2udu) \wedge dv$$

= $(-2u^3v - 4u + 4u^3v - 2u)du \wedge dv$
= $(2u^3v - 6u)du \wedge dv.$

So $\alpha^*(d\omega) = d(\alpha^*\omega)$.

4.

Proof. Note $\alpha^* y_i = y_i \circ \alpha = \alpha_i$.

5.

Proof. $\alpha^*(dy_I)$ is an *l*-form in *A*, so we can write it as $\alpha^*(dy_I) = \sum_{[J]} h_J dx_J$, where *J* is an ascending *l*-tuple form the set $\{1, \dots, k\}$. Fix $J = (j_1, \dots, j_l)$, we have

$$\begin{aligned} h_J(x) &= \alpha^*(dy_I)(x)((x;e_{j_1}),\cdots,(x;e_{j_l})) \\ &= (dy_I)(x)(\alpha_*(x;e_{j_1}),\cdots,\alpha_*(x;e_{j_l})) \\ &= (dy_I)(x)((\alpha(x);D_{j_1}\alpha(x)),\cdots,(\alpha(x);D_{j_l}\alpha(x))) \\ &= \det[D_{j_1}\alpha(x),\cdots,D_{j_l}\alpha(x)]_I \\ &= \det\frac{\partial\alpha_I}{\partial x_J}(x). \end{aligned}$$

Therefore $\alpha^*(dy_I) = \sum_{[J]} \left(\det \frac{\partial \alpha_I}{\partial x_J} \right) dx_J.$ 6. (a)

Proof. We fix $x \in A$ and denote $\alpha(x)$ by y. Then $G(y) = \alpha_*(F(x)) = (y; D\alpha(x) \cdot f(x))$. Define $g(y) = D\alpha(x) \cdot f(x) = (D\alpha \cdot f)(\alpha^{-1}(y))$. Then $g_i(y) = (\sum_{j=1}^n D_j\alpha_i f_j)(\alpha^{-1}(y))$ and we have

$$\alpha^*(\alpha_1 G) = \alpha^*(\sum_{i=1}^n g_i dy_i) = \sum_{i=1}^n g_i \circ \alpha d\alpha_i = \sum_{i=1}^n g_i \circ \alpha \sum_{j=1}^n D_j \alpha_j dx_j = \sum_{j=1}^n (\sum_{i=1}^n D_j \alpha_i g_i \circ \alpha) dx_j.$$

Therefore $\alpha^*(\alpha_1 G) = \alpha_1 F$ if and only if

$$f_j = \sum_{i=1}^n D_j \alpha_i g_i \circ \alpha = \sum_{i=1}^n D_j \alpha_i \sum_{k=1}^n D_k \alpha_i f_k = [D_j \alpha_1 D_j \alpha_2 \cdots D_j \alpha_n] \cdot D\alpha \cdot f,$$

that is, $D\alpha(x)^{tr} \cdot D\alpha(x) \cdot f(x) = f(x)$. So $\alpha^*(\alpha_1 G) = \alpha_1 F$ if and only if $D\alpha(x)$ is an orthogonal matrix for each x.

(b)

Proof. $\beta_{n-1}F = \sum_{i=1}^{n} (-1)^{i-1} f_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$ and

$$\begin{aligned} \alpha^*(\beta_{n-1}G) &= \alpha^*(\sum_{i=1}^n (-1)^{i-1}g_i dy_1 \wedge \dots \wedge \widehat{dy_i} \wedge \dots \wedge dy_n) \\ &= \sum_{i=1}^n (-1)^{i-1}(g_i \circ \alpha)\alpha^*(dy_1 \wedge \dots \wedge \widehat{dy_i} \wedge \dots \wedge dy_n) \\ &= \sum_{i=1}^n (-1)^{i-1}(\sum_{j=1}^n D_j \alpha_i f_j) \left(\sum_{k=1}^n \det \frac{\partial(\alpha_1, \dots, \widehat{\alpha_i}, \dots, \alpha_n)}{\partial(x_1, \dots, \widehat{x_k}, \dots, x_n)} dx_1 \wedge \dots \wedge \widehat{dx_k} \wedge \dots \wedge dx_n\right). \end{aligned}$$

So $\alpha^*(\beta_{n-1}F) = \beta_{n-1}F$ if and only if for any $k \in \{1, \dots, n\}$,

$$f_{k} = \sum_{i,j=1}^{n} (-1)^{k+i} D_{j} \alpha_{i} f_{j} \det \frac{\partial(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n})}{\partial(x_{1}, \cdots, \widehat{x_{k}}, \cdots, x_{n})}$$
$$= \sum_{j=1}^{n} f_{j} \sum_{i=1}^{n} (-1)^{k+i} D_{j} \alpha_{i} \det \frac{\partial(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n})}{\partial(x_{1}, \cdots, \widehat{x_{k}}, \cdots, x_{n})}$$
$$= \sum_{j=1}^{n} f_{j} \delta_{kj} \det D\alpha$$
$$= f_{k} \det D\alpha.$$

Since F can be arbitrary, $\alpha^*(\beta_{n-1}F) = \beta_{n-1}F$ if and only if det $D\alpha = 1$.

Proof. $\alpha^*(\beta_n k) = \alpha^*(kdy_1 \wedge \dots \wedge dy_n) = k \circ \alpha \cdot \alpha^*(dy_1 \wedge \dots \wedge dy_n) = h \cdot \det D\alpha \cdot dx_1 \wedge \dots \wedge dx_n$ and $\beta_n h = hdx_1 \wedge \dots \wedge dx_n$. So $\alpha^*(\beta_n k) = \beta_n h$ for all h if and only if $\det D\alpha = 1$.

Proof. If α is an orientation-preserving isometry of \mathbb{R}^n , Exercise 6 implies $\alpha^*(\alpha_1 G) = \alpha_1 F$, $\alpha^*(\beta_{n-1}G) = \beta_{n-1}F$, and $\alpha^*(\beta_n k) = \beta_n h$, where F, G, h and k are as defined in Exercise 6. Fix $x \in A$ and let $y = \alpha(x)$. We need to show (1) $\tilde{\alpha}_n(\dim F)(\alpha) = \dim(\tilde{\alpha}_n(F))(\alpha)$. Indeed, $\dim(\tilde{\alpha}_n(F))(\alpha) = \dim(G(\alpha))$ and

(1)
$$\tilde{\alpha}_*(\operatorname{div} F)(y) = \operatorname{div}(\tilde{\alpha}_*(F))(y)$$
. Indeed, $\operatorname{div}(\tilde{\alpha}_*(F))(y) = \operatorname{div}G(y)$, and

$$\widetilde{\alpha}_*(\operatorname{div} F)(y) = \operatorname{div} F(x) = \beta_n^{-1} \circ \beta(\operatorname{div} F)(x) = \beta_n^{-1} \circ d(\beta_{n-1}F)(x) = \beta_n^{-1} \circ d(\alpha^*(\beta_{n-1}G))(x)$$
$$= \beta_n^{-1} \circ \alpha^* \circ d(\beta_{n-1}G)(x) = \beta_n^{-1} \circ \alpha^* \circ \beta_n(\operatorname{div} G)(x).$$

For any function $g \in C^{\infty}(B)$,

$$\beta_n^{-1} \circ \alpha^* \circ \beta_n(g) = \beta_n^{-1} \circ \alpha^*(gdy_1 \wedge \dots \wedge dy_n) = \beta_n^{-1}(g \circ \alpha \cdot \det D\alpha \cdot dx_1 \wedge \dots \wedge dx_n) = g \circ \alpha.$$

 So

$$\widetilde{\alpha}_*(\operatorname{div} F)(y) = \beta_n^{-1} \circ \alpha^* \circ \beta_n(\operatorname{div} G)(x) = \operatorname{div} G(\alpha(x)) = \operatorname{div} G(y) = \operatorname{div} (\widetilde{\alpha}_*(F))(y).$$

(2) $\widetilde{\alpha}_*(\operatorname{grad} h) = \operatorname{grad} \circ \widetilde{\alpha}_*(h)$. Indeed,

$$\widetilde{\alpha}_*(\operatorname{grad} h)(y) = \alpha_*(\operatorname{grad} h \circ \alpha^{-1}(y)) = \alpha_*(\operatorname{grad} h(x)) = (y; D\alpha(x) \cdot \begin{bmatrix} D_1 h(x) \\ \cdots \\ D_n h(x) \end{bmatrix}) = (y; D\alpha(x) \cdot (Dh(x))^{tr}),$$

and

$$grad \circ \widetilde{\alpha}_*(h)(y) = grad(h \circ \alpha^{-1})(y)$$

= $(y; [D(h \circ \alpha^{-1})(y)]^{tr})$
= $(y; [Dh(\alpha^{-1}(y)) \cdot D\alpha^{-1}(y)]^{tr})$
= $(y; [Dh(x) \cdot (D\alpha(x))^{-1}]^{tr}).$

Since $D\alpha$ is orthogonal, we have

$$\operatorname{grad} \circ \widetilde{\alpha}_*(h)(y) = (y; [Dh(x) \cdot (D\alpha(x))^{tr}]^{tr}) = (y; D\alpha(x) \cdot (Dh(x))^{tr}) = \widetilde{\alpha}_*(\operatorname{grad} h)(y)$$

(3) For n = 3, $\tilde{\alpha}_*(\operatorname{curl} F) = \operatorname{curl}(\tilde{\alpha}_* F)$. Indeed, $\operatorname{curl}(\tilde{\alpha}_* F)(y) = \operatorname{curl} G(y)$, and

$$\widetilde{\alpha}_{*}(\operatorname{curl} F)(y) = \alpha_{*}(\operatorname{curl} F(\alpha^{-1}(y)))$$

$$= \alpha_{*}(\beta_{2}^{-1} \circ \beta_{2} \circ \operatorname{curl} F(x))$$

$$= \alpha_{*}(\beta_{2}^{-1} \circ d \circ \alpha_{1} F(x))$$

$$= \alpha_{*}(\beta_{2}^{-1} \circ d \circ \alpha^{*} \circ \alpha_{1} G(x))$$

$$= \alpha_{*}(\beta_{2}^{-1} \circ \alpha^{*} \circ d \circ \alpha_{1} G(x))$$

$$= \alpha_{*}(\beta_{2}^{-1} \circ \alpha^{*} \circ \beta_{2} \circ \operatorname{curl} G(x))$$

Let *H* be a vector field in *B*, we show $\alpha_*(\beta_2^{-1} \circ \alpha^* \circ \beta_2(H)(x)) = H(\alpha(x)) = H(y)$. Indeed,

$$\begin{aligned} &\alpha_*(\beta_2^{-1} \circ \alpha^* \circ \beta_2(H)(x)) \\ &= &\alpha_*(\beta_2^{-1} \circ \alpha^*(\sum_{i=1}^n (-1)^{i-1} h_i dy_1 \wedge \dots \wedge \widehat{dy_i} \wedge \dots \wedge dy_n)) \\ &= &\alpha_* \circ \beta_2^{-1} \left(\sum_{i=1}^n (-1)^{i-1} h_i \circ \alpha \sum_{j=1}^n \det \frac{\partial(\alpha_1, \dots, \widehat{\alpha_i}, \dots, \alpha_n)}{\partial(x_1, \dots, \widehat{x_j}, \dots, x_n)} dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n \right) \\ &= &\alpha_* \circ \beta_2^{-1} \left(\sum_{j=1}^n \left(\sum_{i=1}^n (-1)^{i-1} h_i \circ \alpha \cdot \det \frac{\partial(\alpha_1, \dots, \widehat{\alpha_i}, \dots, \alpha_n)}{\partial(x_1, \dots, \widehat{x_j}, \dots, x_n)} \right) dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n \right) \\ &= &\alpha_* \left(\sum_{j=1}^n \left(\sum_{i=1}^n (-1)^{i+j} h_i \circ \alpha \cdot \det \frac{\partial(\alpha_1, \dots, \widehat{\alpha_i}, \dots, \alpha_n)}{\partial(x_1, \dots, \widehat{x_j}, \dots, x_n)} \right) e_j \right). \end{aligned}$$

Using the definition of α_* and the fact that $\det D\alpha = 1$, we have

$$\alpha_* \left(\sum_{j=1}^n \left(\sum_{i=1}^n (-1)^{i+j} h_i \circ \alpha \cdot \det \frac{\partial(\alpha_1, \cdots, \widehat{\alpha_i}, \cdots, \alpha_n)}{\partial(x_1, \cdots, \widehat{x_j}, \cdots, x_n)} \right) e_j \right)$$

$$= D\alpha(x) \cdot \begin{bmatrix} \sum_{i=1}^n (-1)^{i+1} h_i \circ \alpha \cdot \det \frac{\partial(\alpha_1, \cdots, \widehat{\alpha_i}, \cdots, \alpha_n)}{\partial(\widehat{x_1}, \cdots, \widehat{x_n})} \\ \cdots \\ \sum_{i=1}^n (-1)^{i+j} h_i \circ \alpha \cdot \det \frac{\partial(\alpha_1, \cdots, \widehat{\alpha_i}, \cdots, \alpha_n)}{\partial(x_1, \cdots, \widehat{x_j}, \cdots, x_n)} \\ \cdots \\ \sum_{i=1}^n (-1)^{i+n} h_i \circ \alpha \cdot \det \frac{\partial(\alpha_1, \cdots, \widehat{\alpha_i}, \cdots, \alpha_n)}{\partial(x_1, \cdots, \widehat{x_n})} \end{bmatrix}.$$

So the k-th component of the above column vector is

$$\sum_{j=1}^{n} D_{j} \alpha_{k} \sum_{i=1}^{n} (-1)^{i+j} h_{i} \circ \alpha \cdot \det \frac{\partial(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n})}{\partial(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n})}$$

$$= \sum_{i=1}^{n} h_{i} \circ \alpha \sum_{j=1}^{n} (-1)^{i+j} D_{j} \alpha_{k} \det \frac{\partial(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n})}{\partial(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n})}$$

$$= h_{k} \circ \alpha \det D\alpha$$

$$= h_{k} \circ \alpha.$$

Thus, we have proved $\alpha_*(\beta_2^{-1} \circ \alpha^* \circ \beta_2(H)(x)) = H(y)$. Replace H with $\operatorname{curl} G$, we have $\widetilde{\alpha}_*(\operatorname{curl} F)(y) = \operatorname{curl} G(y) = \operatorname{curl} (\widetilde{\alpha}_* F)(y)$.

Integrating Forms over Parametrized-Manifolds 33

1.

 $\begin{array}{l} \textit{Proof. } \int_{Y_{\alpha}} (x_2 dx_2 \wedge dx_3 + x_1 x_3 dx_1 \wedge dx_3) = \int_A v \det \begin{bmatrix} 0 & 1 \\ 2u & 2v \end{bmatrix} + u(u^2 + v^2 + 1) \det \begin{bmatrix} 1 & 0 \\ 2u & 2v \end{bmatrix} = \int_A -2uv + 2uv(u^2 + v^2 + 1) = 1. \end{array}$

2.

Proof.

$$\begin{split} & \int_{Y_{\alpha}} x_1 dx_1 \wedge dx_4 \wedge dx_3 + 2x_2 x_3 dx_1 \wedge dx_2 \wedge dx_3 \\ = & \int_A \alpha^* (-x_1 dx_1 \wedge dx_3 \wedge dx_4 + 2x_2 x_3 dx_1 \wedge dx_2 \wedge dx_3) \\ = & \int_A \left[-s \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 4(2u-t) & 2(t-2u) \end{bmatrix} + 2ut \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right] ds \wedge du \wedge dt \\ = & \int_A 4s(2u-t) + 2ut \\ = & 6. \end{split}$$

3. (a)

Proof.

$$\begin{split} &\int_{Y_{\alpha}} \frac{1}{\|x\|^{m}} (x_{1} dx_{2} \wedge dx_{3} - x_{2} dx_{1} \wedge dx_{3} + x_{3} dx_{1} \wedge dx_{2}) \\ &= \int_{A} \frac{1}{\|(u, v, (1 - u^{2} - v^{2})^{1/2})\|^{m}} \left[u \det \frac{\partial(x_{2}, x_{3})}{\partial(u, v)} - v \det \frac{\partial(x_{1}, x_{3})}{\partial(u, v)} + (1 - u^{2} - v^{2})^{1/2} \det \frac{\partial(x_{1}, x_{2})}{\partial(u, v)} \right] \\ &= \int_{A} u \det \left[-\frac{0}{1 - u^{2} - v^{2}} - \frac{1}{\sqrt{1 - u^{2} - v^{2}}} \right] - v \det \left[-\frac{1}{1 - u^{2} - v^{2}} - \frac{0}{\sqrt{1 - u^{2} - v^{2}}} \right] + (1 - u^{2} - v^{2})^{1/2} \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \int_{A} \frac{u^{2}}{\sqrt{1 - u^{2} - v^{2}}} + \frac{v^{2}}{\sqrt{1 - u^{2} - v^{2}}} + \sqrt{1 - u^{2} - v^{2}} \\ &= \int_{A} \frac{1}{\sqrt{1 - u^{2} - v^{2}}}. \end{split}$$

Apply change-of-variable, $\begin{cases} u = r \cos \theta \\ v = r \sin \theta \end{cases} \quad (0 \le r \le 1, 0 \le \theta < 2\pi), \text{ we have } \end{cases}$

$$\int_A \frac{1}{\sqrt{1-u^2-v^2}} = \int_{[0,1]^2} \frac{1}{\sqrt{1-r^2}} \det \begin{bmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{bmatrix} = 2\pi.$$

(b)

Proof. -2π .

4.

Proof. Suppose η has the representation $\eta = f dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k$, where dx_i is the standard elementary 1-form depending on the standard basis e_1, \cdots, e_k in \mathbb{R}^k . Let a_1, \cdots, a_k be another basis for \mathbb{R}^k and define $A = [a_1, \cdots, a_k]$. Then

$$\eta(x)((x;a_1),\cdots,(x;a_k)) = f(x)\det A$$

If the frame (a_1, \dots, a_k) is orthonormal and right-handed, det A = 1. We consequently have

$$\int_A \eta = \int_A f = \int_{x \in A} \eta(x)((x;a_1), \cdots, (x;a_k)).$$

34 Orientable Manifolds

1.

Proof. Let $\alpha : U_{\alpha} \to V_{\alpha}$ and $\beta : U_{\beta} \to V_{\beta}$ be two coordinate patches and suppose $W_{:}V_{\alpha} \cap V_{\beta}$ is non-empty. $\forall p \in W$, denote by x and y the points in $\alpha^{-1}(W)$ and $\beta^{-1}(W)$ such that $\alpha(x) = p = \beta(y)$, respectively. Then

$$D\alpha^{-1} \circ \beta(y) = D\alpha^{-1}(p) \cdot D\beta(y) = [D\alpha(x)]^{-1} \cdot D\beta(y)$$

So $\det D\alpha^{-1} \circ \beta(y) = [\det D\alpha(x)]^{-1} \det D\beta(y) > 0$. Since p is arbitrarily chosen, we conclude α and β overlap positively.

2.

Proof. Let $\alpha : U_{\alpha} \to V_{\alpha}$ and $\beta : U_{\beta} \to V_{\beta}$ be two coordinate patches and suppose $W := V_{\alpha} \cap V_{\beta}$ is non-empty. $\forall p \in W$, denote by x and y the points in $\alpha^{-1}(W)$ and $\beta^{-1}(W)$ such that $\alpha(x) = p = \beta(y)$, respectively. Then

$$D(\alpha \circ r)^{-1} \circ (\beta \circ r)(r^{-1}(y)) = D(\alpha \circ r)^{-1}(p) \cdot D(\beta \circ r)(r^{-1}(y))$$

= $D(r^{-1} \circ \alpha^{-1})(p) \cdot D(\beta \circ r)(r^{-1}(y))$
= $Dr^{-1}(x)D\alpha^{-1}(p) \cdot D\beta(y) \cdot Dr(r^{-1}(y)).$

Note $r^{-1} = r$ and $\det Dr = \det Dr^{-1} = -1$, we have

$$\det(D(\alpha \circ r)^{-1} \circ (\beta \circ r)(r^{-1}(y))) = [\det D\alpha(x)]^{-1} \det D\beta(y).$$

So if α and β overlap positively, so do $\alpha \circ r$ and $\beta \circ r$.

3.

Proof. Denote by *n* the unit normal field corresponding to the orientation of *M*. Then [n, T] is right-handed, i.e. det[n, T] > 0.

4.

 $\begin{array}{l} Proof. \ \frac{\partial \alpha}{\partial u} = \begin{bmatrix} -2\pi \sin(2\pi u) \\ 2\pi \cos(2\pi u) \\ 0 \end{bmatrix}, \ \frac{\partial \alpha}{\partial v} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \ \text{We need to find } n = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}, \ \text{such that det } \begin{bmatrix} n, \frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial v} \end{bmatrix} > 0, \ \|n\| = 1, \ \text{and } n \perp \operatorname{span} \{ \frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial v} \}. \ \text{Indeed}, \ \langle n, \frac{\partial \alpha}{\partial v} \rangle = 0 \ \text{implies } n_3 = 0, \ \langle n, \frac{\partial \alpha}{\partial u} \rangle = 0 \ \text{implies } -n_1 \sin(2\pi u) + n_2 \cos(2\pi u) = 0. \ \text{Combined with the condition } n_1^2 + n_2^2 + n_3^2 = n_1^2 + n_2^2 = 1 \ \text{and det } \begin{bmatrix} n_1 & -2\pi \sin(2\pi u) & 0 \\ n_2 & 2\pi \cos(2\pi u) & 0 \\ 0 & 0 & 1 \end{bmatrix} = (n_1 \cos(2\pi u) + n_2 \sin(2\pi u)) + n_2 \sin(2\pi u) + n_2 \sin(2\pi u)$

to this orientation of C is given by $n = \begin{bmatrix} \cos(2\pi u) \\ \sin(2\pi u) \\ 0 \end{bmatrix}$. In particular, for u = 0, $\alpha(0, v) = (1, 0, v)$ and $n = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

So n points outwards.

By Example 5, the orientation of $\{(x, y, z) : x^2 + y^2 = 1, z = 0\}$ is counter-clockwise and the orientation of $\{(x, y, z) : x^2 + y^2 = 1, z = 0\}$ is clockwise.

5.

Proof. We can regard M as a 2-manifold in \mathbb{R}^3 and apply Example 5. The unit normal vector of M as a 2-manifold is perpendicular to the plane where M lies on and points towards us. Example 5 then gives the unit tangent vector field corresponding to the induced orientation of ∂M . Denote by n the unit normal field corresponding to ∂M . If α is a coordinate patch of M, $[n, \frac{\partial \alpha}{\partial x_1}]$ is right-handed. Since $[\frac{\partial \alpha}{\partial x_1}, \frac{\partial \alpha}{\partial x_2}]$ is right-handed and $\frac{\partial \alpha}{\partial x_2}$ points into M, n points outwards from M.

Alternatively, we can apply Lemma 38.7.

6. (a)

Proof. The meaning of "well-defined" is that if x is covered by more than one coordinate patch of the same coordinate system, the definition of $\lambda(x)$ is unchanged. More precisely, assume x is both covered by α_{i_1} and α_{i_2} , as well as β_{j_1} and β_{j_2} , det $D(\alpha_{i_1}^{-1} \circ \beta_{j_1})(\beta_{j_1}^{-1}(x))$ and det $D(\alpha_{i_2}^{-1} \circ \beta_{j_2})(\beta_{j_2}^{-1}(x))$ have the same sign. Indeed,

$$det D(\alpha_{i_1}^{-1} \circ \beta_{j_1})(\beta_{j_1}^{-1}(x)) = det D(\alpha_{i_1}^{-1} \circ \alpha_{i_2} \circ \alpha_{i_2}^{-1} \circ \beta_{j_2} \circ \beta_{j_2}^{-1} \circ \beta_{j_1})(\beta_{j_1}^{-1}(x)) = det D(\alpha_{i_1}^{-1} \circ \alpha_{i_2})(\alpha_{i_2}^{-1}(x)) \cdot det D(\alpha_{i_2}^{-1} \circ \beta_{j_2})(\beta_{j_2}^{-1}(x)) \cdot det D(\beta_{j_2}^{-1} \circ \beta_{j_1})(\beta_{j_1}^{-1}(x)).$$

Since $\det D(\alpha_{i_1}^{-1} \circ \alpha_{i_2}) > 0$ and $\det D(\beta_{j_2}^{-1} \circ \beta_{j_1}) > 0$, we can conclude $\det D(\alpha_{i_1}^{-1} \circ \beta_{j_1})(\beta_{j_1}^{-1}(x))$ and $\det D(\alpha_{i_2}^{-1} \circ \beta_{j_2})(\beta_{j_2}^{-1}(x))$ have the same sign.

(b)

Proof. $\forall x, y \in M$. When x and y are sufficiently close, they can be covered by the same coordinate patch α_i and β_j . Since det $D\alpha_i^{-1} \circ \beta_j$ does not change sign in the place where α_i and β_j overlap (recall $\alpha_i^{-1} \circ \beta_j$ is a diffeomorphism from an open subset of \mathbb{R}^k to an open subset of \mathbb{R}^k), we conclude λ is a constant, in the place where α_i and β_j overlap. In particular, λ is continuous.

(c)

Proof. Since λ is continuous and λ is either 1 or -1, by the connectedness of M, λ must be a constant. More precisely, as the proof of part (b) has shown, $\{x \in M : \lambda(x) = 1\}$ and $\{x \in M : \lambda(x) = -1\}$ are both open sets. Since M is connected, exactly one of them is empty.

(d)

Proof. This is straightforward from part (a)-(c).

7.

Proof. By Example 4, the unit normal vector corresponding to the induced orientation of ∂M points outwards from M. This is a special case of Lemma 38.7.

8.

Proof. We consider a general problem similar to that of Example 4: Let M be an n-manifold in \mathbb{R}^n , oriented naturally, what is the induced orientation of ∂M ?

Suppose $h: U \to V$ is a coordinate patch on M belonging to the natural orientation of M, about the point p of ∂M . Then the map

$$h \circ b(x) = h(x_1, \cdots, x_{n-1}, 0)$$

gives the restricted coordinate patch on ∂M about p. The normal field N = (p; T) to ∂M corresponding to the induced orientation satisfies the condition that the frame

$$\left[(-1)^n T(p), \frac{\partial h(h^{-1}(p))}{\partial x_1}, \cdots, \frac{\partial h(h^{-1}(p))}{\partial x_{n-1}}\right]$$

is right-handed. Since Dh is right-handed, $(-1)^n T$ and $(-1)^{n-1} \frac{\partial h}{\partial x_n}$ lie on the same side of the tangent plane of M at p. Since $\frac{\partial h}{\partial x_n}$ points into M, T points outwards from M. Thus, the induced orientation of ∂M is characterized by the normal vector field to M pointing outwards from M. This is essentially Lemma 38.7.

To determine whether or not a coordinate patch on ∂M belongs to the induced orientation of ∂M , we suppose α is a coordinate patch on ∂M about p. Define $A(p) = D(h^{-1} \circ \alpha)(\alpha^{-1}(p))$. Then α belongs to the induced orientation if and only if $\operatorname{sgn}(\det A(p)) = (-1)^n$. Since $D\alpha(\alpha^{-1}(p)) = Dh((h^{-1}(p)) \cdot A(p))$, we have

$$[(-1)^n T(p), D\alpha(\alpha^{-1}(p))] = \left[(-1)^n T(p), \frac{\partial h(h^{-1}(p))}{\partial x_1}, \cdots, \frac{\partial h(h^{-1}(p))}{\partial x_{n-1}}\right] \begin{bmatrix} 1 & 0\\ 0 & A(p) \end{bmatrix}.$$

Therefore, α belongs to the induced orientation if and only if $[T(p), D\alpha(\alpha^{-1}(p))]$ is right-handed.

Back to our particular problem, the unit normal vector to S^{n-1} at p is $\frac{p}{\|p\|}$. So α belongs to the orientation of S^{n-1} if and only if $[p, D\alpha(\alpha^{-1}(p))]$ is right-handed. If $\alpha(u) = p$, we have

$$\left[p, D\alpha(\alpha^{-1}(p))\right] = \begin{bmatrix} u_1 & 1 & 0 & \cdots & 0 & 0\\ u_2 & 0 & 1 & \cdots & 0 & 0\\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ u_{n-1} & 0 & 0 & \cdots & 0 & 1\\ \sqrt{1 - \|u\|^2} & \frac{-u_1}{\sqrt{1 - \|u\|^2}} & \frac{-u_2}{\sqrt{1 - \|u\|^2}} & \cdots & \frac{-u_{n-2}}{\sqrt{1 - \|u\|^2}} & \frac{-u_{n-1}}{\sqrt{1 - \|u\|^2}} \end{bmatrix}$$

Plain calculation yields det $[p, D\alpha(\alpha^{-1}(p))] = (-1)^{n+1}/\sqrt{1 - ||u||^2}$. So α belongs to the orientation of S^{n-1} if and only if n is odd. Similarly, we can show β belongs to the orientation of S^{n-1} if and only if n is even. \Box

35 Integrating Forms over Oriented Manifolds

Notes. We view Theorem 17.1 (Substitution rule) in the light of integration of a form over an oriented manifold. The theorem states that, under certain conditions, $\int_{g((a,b))} f = \int_{(a,b)} (f \circ g) |g'|$. Throughout this note, we assume a < b. We also assume that when dx or dy appears in the integration formula, the formula means integration of a differential form over a manifold; when dx or dy is missing, the formula means Riemann integration over a domain.

First, as a general principle, $\int_a^b f(x)dx$ is regarded as the integration of the 1-form f(x)dx over the naturally oriented manifold (a, b), and is therefore equal to $\int_{(a,b)} f$ by definition. Similarly, $\int_b^a f(x)dx$ is regarded as the integration of f(x)dx over the manifold (a, b) whose orientation is reverse to the natural orientation, and is therefore equal to $-\int_a^b f(x)dx = -\int_{(a,b)} f$.

Second, if g' > 0, then g(a) < g(b) and $\int_{g(a)}^{g(b)} f(y)dy$ is the integration of the 1-form f(y)dy over the naturally oriented manifold (g(a), g(b)) with g a coordinate patch. So $\int_{g((a,b))} f = \int_{g(a)}^{g(b)} f(y)dy = \int_{(a,b)} g^*(f(y)dy) = \int_{(a,b)} f(g(x))g'(x)dx = \int_{(a,b)} f(g)g'$. If g' < 0, then g(a) > g(b) and $\int_{g(a)}^{g(b)} f(y)dy$ is the integration of the 1-form f(y)dy over the manifold (g(b), g(a)) whose orientation is reverse to the natural orientation. So $\int_{g((a,b))} f = -\int_{g(a)}^{g(b)} f(y)dy = -\int_{(a,b)} g^*(f(y)dy) = -\int_{(a,b)} f(g(x))g'(x)dx = \int_{(a,b)} f(g)(-g')$. Combined, we can conclude $\int_{g((a,b))} f = \int_{(a,b)} (f \circ g)|g'|$. 3. (a)

Proof. By Exercise 8 of §34, α and β always belong to different orientations of S^{n-1} . By Exercise 6 of §34, α and β belong to opposite orientations of S^{n-1} .

(b)

Proof. Assume $\beta^* \eta = -\alpha^* \eta$, then by Theorem 35.2 and part (a)

$$\int_{S^{n-1}} \eta = \int_{S^{n-1} \cap \{x \in \mathbb{R}^n : x_n > 0\}} \eta + \int_{S^{n-1} \cap \{x \in \mathbb{R}^n : x_n < 0\}} \eta = \int_A \alpha^* \eta + (-1) \int_A \beta^* \eta = 2 \int_A \alpha^* \eta.$$

Now we show $\beta^* \eta = -\alpha^* \eta$. Indeed, using our calculation in Exercise 8 of §34, we have

$$D\alpha(u) = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 1 \\ \frac{-u_1}{\sqrt{1 - \|u\|^2}} & \frac{-u_2}{\sqrt{1 - \|u\|^2}} & \cdots & \frac{-u_{n-2}}{\sqrt{1 - \|u\|^2}} & \frac{-u_{n-1}}{\sqrt{1 - \|u\|^2}} \end{bmatrix},$$

and

$$D\beta(u) = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 1 \\ \frac{u_1}{\sqrt{1 - \|u\|^2}} & \frac{u_2}{\sqrt{1 - \|u\|^2}} & \cdots & \frac{u_{n-2}}{\sqrt{1 - \|u\|^2}} & \frac{u_{n-1}}{\sqrt{1 - \|u\|^2}} \end{bmatrix}.$$

So for any $x \in A$,

$$\begin{split} \alpha^* \eta(x) &= \sum_{i=1}^n (-1)^{i-1} f_i \circ \alpha(u) \det D\alpha(1, \cdots, \widehat{i}, \cdots, n) du_1 \wedge \cdots \wedge du_{n-1} \\ &= \left\{ \sum_{i=1}^{n-1} u_i (-1)^{n-1-i} \frac{-u_i}{\sqrt{1 - \|u\|^2}} + (-1)^{n-1} \sqrt{1 - \|u\|^2} \right\} du_1 \wedge \cdots \wedge du_{n-1} \\ &= -\left\{ \sum_{i=1}^{n-1} u_i (-1)^{n-1-i} \frac{u_i}{\sqrt{1 - \|u\|^2}} + (-1)^{n-1} (-1) \sqrt{1 - \|u\|^2} \right\} du_1 \wedge \cdots \wedge du_{n-1} \\ &= -\sum_{i=1}^n (-1)^{i-1} f_i \circ \beta(u) \det D\beta(1, \cdots, \widehat{i}, \cdots, n) du_1 \wedge \cdots \wedge du_{n-1} \\ &= -\beta^* \eta(x). \end{split}$$

(c)

Proof. By our calculation in part (b), we have

$$\begin{split} \int_{A} \alpha^{*} \eta &= \int_{A} \sum_{i=1}^{n-1} (-1)^{i-1} u_{i} (-1)^{n-i} \frac{u_{i}}{\sqrt{1 - \|u\|^{2}}} + (-1)^{n-1} \sqrt{1 - \|u\|^{2}} \\ &= (-1)^{n-1} \int_{A} \frac{\sum_{i=1}^{n-1} u_{i}^{2}}{\sqrt{1 - \|u\|^{2}}} + \sqrt{1 - \|u\|^{2}} \\ &= \pm \int_{A} \frac{1}{\sqrt{1 - \|u\|^{2}}} \neq 0. \end{split}$$

36 A Geometric Interpretation of Forms and Integrals

1.

Proof. Define $b_i = [D(\alpha^{-1} \circ \beta)(y)]^{-1}a_i = D(\beta^{-1} \circ \alpha)(x)a_i$. Then

$$\begin{aligned} \beta_*(y;b_i) &= (p; D\beta(y)b_i) \\ &= (p; D\beta(y)[D(\alpha^{-1} \circ \beta)(y)]^{-1}a_i) \\ &= (p; D\beta(y)D(\beta^{-1} \circ \alpha)(x)a_i) \\ &= (p; D\alpha(x)a_i) \\ &= \alpha_*(x;a_i). \end{aligned}$$

Moreover, $[b_1, \dots, b_k] = D(\beta^{-1} \circ \alpha)(x)[a_1, \dots, a_k]$. Since det $D(\beta^{-1} \circ \alpha)(x) > 0$, $[b_1, \dots, b_k]$ is right-handed if and only if $[a_1, \dots, a_k]$ is right-handed.

37 The Generalized Stokes' Theorem

2.

Proof. Assume $\eta = d\omega$ for some form. Since $\partial S^{n-1} = \emptyset$, Stokes' Theorem implies $\int_{S^{n-1}} \eta = \int_{S^{n-1}} d\omega = \int_{\partial S^{n-1}} \omega = 0$. Contradiction.

3.

Proof. Apply Stokes' Theorem to $\omega = Pdx + Qdy$.

4. (a)

Proof. $D\alpha(u,v) = \begin{bmatrix} 1 & 0\\ -\frac{2u}{\sqrt{1-u^2-v^2}} & -\frac{2v}{\sqrt{1-u^2-v^2}}\\ 0 & 1 \end{bmatrix}$. By Lemma 38.3, the normal vector n corresponding to the orientation of M satisfies $n = \frac{c}{\|c\|}$, where

$$c = \begin{bmatrix} \det D\alpha(u, v)(2, 3) \\ -\det D\alpha(u, v)(1, 3) \\ \det D\alpha(u, v)(1, 2) \end{bmatrix} = \begin{bmatrix} -\frac{2u}{\sqrt{1-u^2-v^2}} \\ -1 \\ -\frac{2v}{\sqrt{1-u^2-v^2}} \end{bmatrix}.$$

Plain calculation shows $||c|| = \sqrt{\frac{1+3u^2+3v^2}{1-u^2-v^2}}$, so

$$n = \begin{bmatrix} -\frac{2u}{\sqrt{1+3u^2+3v^2}} \\ -\frac{\sqrt{1-u^2-v^2}}{\sqrt{1+3u^2+3v^2}} \\ -\frac{2v}{\sqrt{1+3u^2+3v^2}} \end{bmatrix}.$$

In particular, at the point $\alpha(0,0) = (0,2,0)$, $n = \begin{bmatrix} 0\\ -1\\ 0 \end{bmatrix}$, which points inwards into $\{(x_1,x_2,x_3): 4(x_1)^2 + (x_1)^2 + (x_2)^2 \le 4, x_2 \ge 0\}$.

 $(x_2)^2 + 4(x_3)^2 \le 4, x_2 \ge 0$ }. By Example 5 of §34, the tangent vector corresponding to the induced orientation of ∂M is easy to determine.

(b)

Proof. According to the result of part (a), we can choose the following coordinate patch which belongs to the induced orientation of ∂M : $\beta(\theta) = (\cos \theta, 0, \sin \theta)$ $(0 \le \theta 2\pi)$. By Theorem 35.2, we have

$$\int_{\partial M} x_2 dx_1 + 3x_1 dx_3 = \int_{[0,2\pi)} 3\cos\theta \cdot \cos\theta = 3\pi.$$

(c)

Proof. $d\omega = -dx_1 \wedge dx_2 + 3dx_1 \wedge dx_3$. So

$$\int_{M} d\omega = \int_{M} -dx_{1} \wedge dx_{2} + 3dx_{1} \wedge dx_{3}$$

$$= \int_{\{(u,v):u^{2}+v^{2}<1\}} -\det D\alpha(u,v)(1,2) + 3\det D\alpha(u,v)(1,3)$$

$$= \int_{\{(u,v):u^{2}+v^{2}<1\}} \left[\frac{2v}{\sqrt{1-u^{2}-v^{2}}} + 3\right]$$

$$= \int_{\{(\theta,r):0 \le r < 1, 0 \le \theta < 2\pi\}} \left[\frac{2r\sin\theta}{\sqrt{1-r^{2}}} + 3\right]r$$

$$= 3\pi.$$

5. (a)

Proof. By Stokes' Theorem, we have

$$\int_{M} d\omega = \int_{\partial M} \omega = \int_{S^{2}(d)} \omega + \int_{-S^{2}(c)} \omega = \int_{S^{2}(d)} \omega - \int_{S^{2}(c)} \omega = \frac{b}{d} - \frac{b}{c}.$$

(b)

Proof. If $d\omega = 0$, we conclude from part (a) that b = 0. This implies $\int_{S^2(r)} \omega = a$. To be continued ... (c)

Proof. If $\omega = d\eta$, by part (b) we conclude b = 0. Moreover, Stokes' Theorem implies $a = \int_{S^2(r)} \omega = \int_{S^2(r)} d\eta = 0$.

6.

Proof. $\int_M d(\omega \wedge \eta) = \int_{\partial M} \omega \wedge \eta = 0$. Since $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$, we conclude $\int_M \omega \wedge d\eta = (-1)^{k+1} \int_M d\omega \wedge \eta$. So $a = (-1)^{k+1}$.

38 Applications to Vector Analysis

1.

Proof. Let $M = \{x \in \mathbb{R}^3 : c \le ||x|| \le d\}$ oriented with the natural orientation. By the divergence theorem,

$$\int_{M} (\mathrm{div}G) dV = \int_{\partial M} \langle G, N \rangle dV$$

where N is the unit normal vector field to ∂M that points outwards from M. For the coordinate patch for M:

$$\begin{cases} x_1 = r \sin \theta \cos \phi \\ x_2 = r \sin \theta \sin \phi \\ x_3 = r \cos \theta, \end{cases} \quad (c \le r \le d, 0 \le \theta < \pi, 0 \le \phi < 2\pi)$$

we have

$$\det \frac{\partial(x_1, x_2, x_3)}{(r, \theta, \phi)} = \det \begin{bmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{bmatrix} = r^2 \sin \theta.$$

So $\int_{M} (\operatorname{div} G) dV = \int \frac{1}{r} \left| \operatorname{det} \frac{\partial(x_{1}, x_{2}, x_{3})}{(r, \theta, \phi)} \right| = 0$. Meanwhile $\int_{\partial M} \langle G, N \rangle dV = \int_{S^{2}(d)} \langle G, N_{r} \rangle dV - \int_{S^{2}(c)} \langle G, N_{r} \rangle dV$.

2. (a)

Proof. We let $M_3 = B^n(\varepsilon)$. Then for ε small enough, M_3 is contained by both $M_1 - \partial M_1$ and $M_2 - \partial M_2$. Applying the divergence theorem, we have (i = 1, 2)

$$0 = \int_{M_i - \text{Int}_{M_3}} (\text{div}G) dV = \int_{\partial M_i} \langle G, N_i \rangle dV - \int_{\partial M_3} \langle G, N_3 \rangle dV,$$

where N_3 is the unit outward normal vector field to ∂M_3 . This shows that regardless i = 1 or i = 2, $\int_{\partial M_i} \langle G, N_i \rangle dV$ is a constant $\int_{\partial M_3} \langle G, N_3 \rangle dV$.

(b)

Proof. We have shown that if the origin is contained in $M - \partial M$, the integral $\int_{\partial M} \langle G, N \rangle dV$ is a constant. If the origin is not contained in $M - \partial M$, by the compactness of M, we conclude the origin is in the exterior of M. Applying the divergence theorem implies $\int_{\partial M} \langle G, N \rangle dV = 0$. So this integral has only two possible values.

3.

Proof. Four possible values. Apply the divergence theorem (like in Exercise 3) and carry out the computation in the following four cases: 1) both p and q are contained by $M - \partial M$; 2) p is contained by $M - \partial M$ but q is not; 3) q is contained by $M - \partial M$ but p is not; 4) neither p nor q is contained by $M - \partial M$.

4.

Proof. Follow the hint and apply Lemma 38.5.

39 The Poincaré Lemma

2. (a)

Proof. Let $\omega \in \Omega^k(B)$ with $d\omega = 0$. Then $g^*\omega \in \Omega^k(A)$ and $d(g^*\omega) = g^*(d\omega) = 0$. Since A is homologically trivial in dimension k, there exists $\omega_1 \in \Omega^k(A)$ such that $d\omega_1 = g^*\omega$. Then $\omega_2 = (g^{-1})^*(\omega_1) \in \Omega^k(B)$ and $d\omega_2 = d(g^{-1})^*(\omega_1) = (g^{-1})^*(d\omega_1) = (g^{-1})^*g^*\omega = (g \circ g^{-1})^*\omega = \omega$. Since ω is arbitrary, we conclude B is homologically trivial in dimension k.

(b)

Proof. Let $A = [\frac{1}{2}, 1] \times [0, \pi]$ and $B = \{(x, y) : \frac{1}{2} \le \sqrt{x^2 + y^2} \le 1, x, y \ge 0\}$. Define $g : A \to B$ as $g(r, \theta) = (r \cos \theta, r \sin \theta)$. By the Poincaré lemma, A is homologically trivial in every dimension. By part (a) of this exercise problem, B is homologically trivial in every dimension. But B is clearly not star-convex. \Box

3.

Proof. Let $p \in A$ and define $X = \{x \in A : x \text{ can be joined by a broken-line path in }A\}$. Since \mathbb{R}^n is locally convex, it is easy to see X is an open subset of A.

(Sufficiency) Assume A is connected. Then X = A. For any closed 0-form f, $\forall x \in A$, denote by γ a broken-line path that joins x and p. We have by virtue of Newton-Leibnitz formula $0 = \int_{\gamma} df = f(x) - f(p)$. So f is a constant, i.e. an exact 0-form, on A. Hence A is homologically trivial in dimension 0.

(Necessity) Assume A is not connected. Then A can be decomposed into the joint union of at least two open subsets, say, A_1 and A_2 . Define

$$f = \begin{cases} 1, & \text{on } A_1 \\ 0, & \text{on } A_2. \end{cases}$$

Then f is a closed 0-form, but not exact. So A is not homologically trivial in dimension 0.

4.

Proof. Let $\eta = \sum_{[I]} f_I dx_I + \sum_{[J]} g_J dx_J \wedge dt$, where I denotes an ascending (k+1)-tuple and J denotes an ascending k-tuple, both from the set $\{1, \dots, n\}$. Then $P\eta = \sum_{[J]} g_J dx_J$ and

$$(P\eta)(x)((x;v_1),\cdots,(x;v_k)) = \sum_{[J]} (-1)^k (\mathcal{L}g_J) \det[v_1\cdots v_k]_J.$$

On the other hand,

$$w_i = D\alpha_t v_i = \begin{bmatrix} I_{n \times n} \\ 0 \end{bmatrix} v_i = \begin{bmatrix} v_i \\ 0 \end{bmatrix}.$$

 So

$$\begin{split} &\eta(y)((y;w_1),\cdots,(y;w_k),(y;e_{n+1}))\\ =& \sum_{[I]} f_I dx_I \left((y; \begin{bmatrix} v_1\\0 \end{bmatrix}),\cdots,(y; \begin{bmatrix} v_k\\0 \end{bmatrix}),(y; \begin{bmatrix} 0_{n\times 1}\\1 \end{bmatrix})\right)\\ &+ \sum_{[J]} g_I dx_J \wedge dt \left((y; \begin{bmatrix} v_1\\0 \end{bmatrix}),\cdots,(y; \begin{bmatrix} v_k\\0 \end{bmatrix}),(y; \begin{bmatrix} 0_{n\times 1}\\1 \end{bmatrix})\right)\\ =& 0 + \sum_{[J]} g_J \det[v_1\cdots v_k]_J\\ =& \sum_{[J]} g_J \det[v_1\cdots v_k]_J. \end{split}$$

Therefore

$$(-1)^{k} \int_{t=0}^{t=1} \eta(y)((y;w_{1}),\cdots,(y;w_{k}),(y;e_{n+1}))$$

$$= (-1)^{k} \sum_{[J]} \int_{t=0}^{t=1} g_{J} \det[v_{1}\cdots v_{k}]_{J}$$

$$= \sum_{[J]} (-1)^{k} (\mathcal{L}g_{J}) \det[v_{1}\cdots v_{k}]_{J}$$

$$= (P\eta)(x)((x;v_{1}),\cdots,(x;v_{k})).$$

40 The deRham Groups of Punctured Euclidean Space

1. (a)

Proof. This is already proved on page 334 of the book, esp. in the last paragraph.

(b)

Proof. To see \widetilde{T} is well-defined, suppose v + W = v' + W. Then $v - v' \in W$ and $T(v) - T(v') = T(v - v') \in W'$ by the linearity of T and the fact that T carries W into W'. Therefore T(v) + W' = T(v') + W', which shows \widetilde{T} is well-defined. The linearity of \widetilde{T} follows easily from that of T.

2.

Proof. $\forall v \in V$, we can uniquely write v as $v = \sum_{i=1}^{n} c_i a_i$ for some coefficients c_1, \dots, c_n . By the fact that $a_1, \dots, a_k \in W$, we conclude $v + W = \sum_{i=k+1}^{n} c_i(a_i + W)$. So the cosets $a_{k+1} + W, \dots, a_n + W$ spans V/W. To see $a_{k+1} + W, \dots, a_n + W$ are linearly independent, let us assume $\sum_{i=k+1}^{n} c_i(a_i + W) = 0$ for some coefficients c_{k+1}, \dots, c_n . Then $\sum_{i=k+1}^{n} c_i a_i \in W$ and there exist d_1, \dots, d_k such that $\sum_{i=k+1}^{n} c_i a_i = \sum_{j=1}^{k} d_j a_j$. By the linear independence of a_1, \dots, a_n , we conclude $c_{k+1} = \dots = c_n = 0$, i.e. the cosets $a_{k+1} + W, \dots, a_n + W$ are linearly independent.

4. (a)

Proof. $\dim H^i(U) = \dim H^i(V) = 0$, for all *i*.

(b)

Proof. dim $H^i(U) = \dim H^i(V) = 0$, for all *i*.

Proof. $\dim H^0(U) = \dim H^0(V) = 0.$

5.

Proof. Step 1. We prove the theorem for n = 1. Without loss of generality, we assume p < q. Let $A = \mathbb{R}^1 - p - q$; write $A = A_0 \cup A_1 \cup A_2$, where $A_0 = (-\infty, p)$, $A_1 = (p, q)$, and $A_2 = (q, \infty)$. If ω is a closed k-form in A, with k > 0, then $\omega | A_0, \omega | A_1$ and $\omega | A_2$ are closed. Since A_0, A_1, A_2 are all star-convex, there are k - 1 forms η_0, η_1 and η_2 on A_0, A_1 and A_2 , respectively, such that $d\eta_i = \omega | A_i$ for i = 0, 1, 2. Define $\eta = \eta_i$ on $A_i, i = 0, 1, 2$. Then η is well-defined and of class C^{∞} , and $d\eta = \omega$.

Now let f_0 be the 0-form in A defined by setting $f_0(x) = 0$ for $x \in A_1 \cup A_2$ and $f_0(x) = 1$ for $x \in A_0$; let f_1 be the 0-form in A defined by setting $f_1(x) = 0$ for $x \in A_0 \cup A_2$ and $f_1(x) = 1$ for $x \in A_1$. Then f_0 and f_1 are closed forms, and they are not exact. We show the cosets $\{f_0\}$ and $\{f_1\}$ form a basis for $H^0(A)$. Given a closed 0-form f in A, the forms $f|A_0, f|A_1$, and $f|A_2$ are closed and hence exact. Then there are constants c_0, c_1 , and c_2 such that $f|A_i = c_i, i = 0, 1, 2$. It follows that

$$f(x) = (c_0 - c_2)f_0(x) + (c_1 - c_2)f_1(x) + c_2$$

for $x \in A$. Then $\{f\} = (c_0 - c_2)\{f_0\} + (c_1 - c_2)\{f_1\}$, as desired.

Step 2. Similar to the proof of Theorem 40.4, step 2, we can show the following: if B is open in \mathbb{R}^n , then $B \times \mathbb{R}$ is open in \mathbb{R}^{n+1} , and for all k, dim $H^k(B) = \dim H^k(B \times \mathbb{R})$.

Step 3. Let $n \ge 1$. We assume the theorem true for n and prove it for n+1. We first prove the following Lemma 40.1. $\mathbb{R}^{n+1} - S \times \mathbb{H}^1$ and $\mathbb{R}^{n+1} - S \times \mathbb{L}^1$ are homologically trivial.

Proof. Let $U_1 = \mathbb{R}^{n+1} - \{p\} \times \mathbb{H}^1$, $V_1 = \mathbb{R}^{n+1} - \{q\} \times \mathbb{H}^1$, $A_1 = U_1 \cap V_1 = \mathbb{R}^{n+1} - S \times \mathbb{H}^1$, and $X_1 = U_1 \cup V_1 = \mathbb{R}^{n+1}$. Since U_1 and V_1 are star-convex, U_1 and V_1 are homologically trivial in all dimensions. By Theorem 40.3, for $k \ge 0$, $H^k(A_1) = H^{k+1}(X_1) = H^{k+1}(\mathbb{R}^{n+1}) = 0$. So $\mathbb{R}^{n+1} - S \times \mathbb{H}^1$ is homologically trivial in all dimensions. Similarly, $\mathbb{R}^{n+1} - S \times \mathbb{L}^1$ is homologically trivial in all dimensions. \Box

Now, we define $U = \mathbb{R}^{n+1} - S \times \mathbb{H}^1$, $V = \mathbb{R}^{n+1} - S \times \mathbb{L}^1$, and $A = U \cap V = \mathbb{R}^{n+1} - S \times \mathbb{R}^1$. Then $X := \mathbb{R}^{n+1} - p - q = U \cup V$. We have shown U and V are homologically trivial. It follows from Theorem 40.3 that $H^0(X)$ is trivial, and that

$$\dim H^{k+1}(X) = \dim H^k(A) \text{ for } k \ge 0.$$

Now Step 2 tells us that $H^k(A)$ has the same dimension as the deRham group of \mathbb{R}^n deleting two points, and the induction hypothesis implies that the latter has dimension 0 if $k \neq n-1$, and dimension 2 if k = n-1. The theorem follows.

6.

Proof. The theorem of Exercise 5 can be restated in terms of forms as follows: Let $A = \mathbb{R}^n - p - q$ with $n \ge 1$.

(a) If $k \neq n-1$, then every closed k-form on A is exact on A.

(b) There are two closed (n-1) forms, η_1 and η_2 , such that η_1 , η_2 , and $\eta_1 - \eta_2$ are not exact. And if η is any closed (n-1) form on A, then there exist unique scalars c_1 and c_2 such that $\eta - c_1\eta_1 - c_2\eta_2$ is exact. \Box

41 Differentiable Manifolds and Riemannian Manifolds

References

[1] J. Munkres. Analysis on manifolds, Westview Press, 1997. (document)

[2] P. Lax. Linear algebra and its applications, 2nd Edition, Wiley-Interscience, 2007.