Analysis on Manifolds Solution of Exercise Problems

Yan Zeng

Version 0.1.1, last revised on 2014-03-25.

Abstract

This is a solution manual of selected exercise problems from Analysis on manifolds, by James R. Munkres [1]. If you find any typos/errors, please email me at zypublic@hotmail.com.

Contents

1 Review of Linear Algebra 3
2 Matrix Inversion and Determinants 3
3 Review of Topology in \mathbb{R}^{n} 4
4 Compact Subspaces and Connected Subspace of \mathbb{R}^{n} 5
5 The Derivative 5
6 Continuously Differentiable Functions 5
7 The Chain Rule 6
8 The Inverse Function Theorem 6
9 The Implicit Function Theorem 6
10 The Integral over a Rectangle 6
11 Existence of the Integral 7
12 Evaluation of the Integral 7
13 The Integral over a Bounded Set 7
14 Rectifiable Sets 7
15 Improper Integrals $\quad 7$
16 Partition of Unity 7
17 The Change of Variables Theorem 7
18 Diffeomorphisms in $\mathbb{R}^{n} \quad 7$
19 Proof of the Change of Variables Theorem 7
20 Applications of Change of Variables 7
21 The Volume of a Parallelepiped 7
22 The Volume of a Parametrized-Manifold 8
23 Manifolds in \mathbb{R}^{n} 10
24 The Boundary of a Manifold 11
25 Integrating a Scalar Function over a Manifold 13
26 Multilinear Algebra 15
27 Alternating Tensors 16
28 The Wedge Product 16
29 Tangent Vectors and Differential Forms 18
30 The Differential Operator 19
31 Application to Vector and Scalar Fields 20
32 The Action of a Differentiable Map 22
33 Integrating Forms over Parametrized-Manifolds 26
34 Orientable Manifolds 27
35 Integrating Forms over Oriented Manifolds 29
36 A Geometric Interpretation of Forms and Integrals 31
37 The Generalized Stokes' Theorem 31
38 Applications to Vector Analysis 33
39 The Poincaré Lemma 34
40 The deRham Groups of Punctured Euclidean Space 35
41 Differentiable Manifolds and Riemannian Manifolds 36

1 Review of Linear Algebra

A good textbook on linear algebra from the viewpoint of finite-dimensional spaces is Lax [2]. In the below, we make connections between the results presented in the current section and that reference.

Theorem 1.1 (page 2) corresponds to Lax [2, page 5], Chapter 1, Lemma 1.
Theorem 1.2 (page 3) corresponds to Lax [2, page 6], Chapter 1, Theorem 4.
Theorem 1.5 (page 7) corresponds to Lax [2, page 37], Chapter 4, Theorem 2 and the paragraph below Theorem 2.
2. (Theorem 1.3, page 5) If A is an n by m matrix and B is an m by p matrix, show that

$$
|A \cdot B| \leq m|A||B|
$$

Proof. For any $i=1, \cdots n, j=1, \cdots, p$, we have

$$
\left|\sum_{k=1}^{m} a_{i k} b_{k j}\right| \leq \sum_{k=1}^{m}\left|a_{i k} b_{k j}\right| \leq|A| \sum_{k=1}^{m}\left|b_{k j}\right| \leq m|A||B| .
$$

Therefore,

$$
|A \cdot B|=\max \left\{\left|\sum_{k=1}^{m} a_{i k} b_{k j}\right| ; i=1, \cdots n, j=1, \cdots, p\right\} \leq m|A||B|
$$

3. Show that the sup norm on \mathbb{R}^{2} is not derived from an inner product on \mathbb{R}^{2}. [Hint: Suppose $\langle x, y\rangle$ is an inner product on \mathbb{R}^{2} (not the dot product) having the property that $|x|=\langle x, x\rangle^{1 / 2}$. Compute $\langle x \pm y, x \pm y\rangle$ and apply to the case $x=e_{1}$ and $y=e_{2}$.]

Proof. Suppose $\langle\cdot, \cdot\rangle$ is an inner product on \mathbb{R}^{2} having the property that $|x|=\langle x, x\rangle^{\frac{1}{2}}$, where $|x|$ is the sup norm. By the equality $\langle x, y\rangle=\frac{1}{4}\left(|x+y|^{2}-|x-y|^{2}\right)$, we have

$$
\begin{aligned}
& \left\langle e_{1}, e_{1}+e_{2}\right\rangle=\frac{1}{4}\left(\left|2 e_{1}+e_{2}\right|^{2}-\left|e_{2}\right|^{2}\right)=\frac{1}{4}(4-1)=\frac{3}{4} \\
& \left\langle e_{1}, e_{2}\right\rangle=\frac{1}{4}\left(\left|e_{1}+e_{2}\right|^{2}-\left|e_{1}-e_{2}\right|^{2}\right)=\frac{1}{4}(1-1)=0 \\
& \left\langle e_{1}, e_{1}\right\rangle=\left|e_{1}\right|^{2}=1
\end{aligned}
$$

So $\left\langle e_{1}, e_{1}+e_{2}\right\rangle \neq\left\langle e_{1}, e_{2}\right\rangle+\left\langle e_{1}, e_{1}\right\rangle$, which implies $\langle\cdot, \cdot\rangle$ cannot be an inner product. Therefore, our assumption is not true and the sup norm on \mathbb{R}^{2} is not derived from an inner product on \mathbb{R}^{2}.

2 Matrix Inversion and Determinants

1. Consider the matrix

$$
A=\left(\begin{array}{cc}
1 & 2 \\
1 & -1 \\
0 & 1
\end{array}\right)
$$

(a) Find two different left inverse for A.
(b) Show that A has no right inverse.
(a)

Proof. $B=\left(\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\end{array}\right)$. Then $B A=\left(\begin{array}{ll}b_{11}+b_{12} & 2 b_{11}-b_{12}+b_{13} \\ b_{21}+b_{22} & 2 b_{21}-b_{12}+b_{23}\end{array}\right)$. So $B A=I_{2}$ if and only if

$$
\left\{\begin{array}{l}
b_{11}+b_{12}=1 \\
b_{21}+b_{22}=0 \\
2 b_{11}-b_{12}+b_{13}=0 \\
2 b_{21}-b_{22}+b_{23}=1
\end{array}\right.
$$

Plug $-b_{12}=b_{11}-1$ and $-b_{22}=b_{21}$ into the las two equations, we have

$$
\left\{\begin{array}{l}
3 b_{11}+b_{13}=1 \\
3 b_{21}+b_{23}=1
\end{array}\right.
$$

So we can have the following two different left inverses for A : $B_{1}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $B_{2}=\left(\begin{array}{ccc}1 & 0 & -2 \\ 1 & -1 & -2\end{array}\right)$.
(b)

Proof. By Theorem 2.2, A has no right inverse.
2.

Proof. (a) By Theorem 1.5, $n \geq m$ and among the n row vectors of A, there are exactly m of them are linearly independent. By applying elementary row operations to A, we can reduce A to the echelon form $\left[\begin{array}{c}I_{m} \\ 0\end{array}\right]$. So we can find a matrix D that is a product of elementary matrices such that $D A=\left[\begin{array}{c}I_{m} \\ 0\end{array}\right]$.
(b) If $\operatorname{rank} A=m$, by part (a) there exists a matrix D that is a product of elementary matrices such that

$$
D A=\left[\begin{array}{c}
I_{m} \\
0
\end{array}\right]
$$

Let $B=\left[I_{m}, 0\right] D$, then $B A=I_{m}$, i.e. B is a left inverse of A. Conversely, if B is a left inverse of A, it is easy to see that A as a linear mapping from \mathbb{R}^{m} to \mathbb{R}^{n} is injective. This implies the column vectors of A are linearly independent, i.e. $\operatorname{rank} A=m$.
(c) A has a right inverse if and only if $A^{t r}$ has a left inverse. By part (b), this implies rank $A=\operatorname{rank} A^{t r}=$ n.
4.

Proof. Suppose $\left(D_{k}\right)_{k=1}^{K}$ is a sequence of elementary matrices such that $D_{K} \cdots D_{2} D_{1} A=I_{n}$. Note $D_{K} \cdots D_{2} D_{1} A=$ $D_{K} \cdots D_{2} D_{1} I_{n} A$, we can conclude $A^{-1}=D_{K} \cdots D_{2} D_{1} I_{n}$.
5.

Proof. $A^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \frac{1}{d-b c}$ by Theorem 2.14.

3 Review of Topology in \mathbb{R}^{n}

2.

Proof. $X=\mathbb{R}, Y=(0,1]$, and $A=Y$.
3.

Proof. For any closed subset C of $Y, f^{-1}(C)=\left[f^{-1}(C) \cap A\right] \cup\left[f^{-1}(C) \cap B\right]$. Since $f^{-1}(C) \cap A$ is a closed subset of A, there must be a closed subset D_{1} of X such that $f^{-1}(C) \cap A=D_{1} \cap A$. Similarly, there is a closed subset D_{2} of X such that $f^{-1}(C) \cap B=D_{2} \cap B$. So $f^{-1}(C)=\left[D_{1} \cap A\right] \cup\left[D_{2} \cap B\right]$. A and B are closed in X, so $D_{1} \cap A, D_{2} \cap B$ and $\left[D_{1} \cap A\right] \cup\left[D_{2} \cap B\right]$ are all closed in X. This shows f is continuous.
7.

Proof. (a) Take $f(x) \equiv y_{0}$ and let g be such that $g\left(y_{0}\right) \neq z_{0}$ but $g(y) \rightarrow z_{0}$ as $y \rightarrow y_{0}$.

4 Compact Subspaces and Connected Subspace of \mathbb{R}^{n}

1.

Proof. (a) Let $x_{n}=\left(2 n \pi+\frac{\pi}{2}\right)^{-1}$ and $y_{n}=\left(2 n \pi-\frac{\pi}{2}\right)^{-1}$. Then as $n \rightarrow \infty,\left|x_{n}-y_{n}\right| \rightarrow 0$ but $\left|\sin \frac{1}{x_{n}}-\sin \frac{1}{y_{n}}\right|=$ 2.
3.

Proof. The boundedness of X is clear. Since for any $i \neq j,\left\|e_{i}-e_{j}\right\|=1$, the sequence $\left(e_{i}\right)_{i=1}^{\infty}$ has no accumulation point. So X cannot be compact. Also, the fact $\left\|e_{i}-e_{j}\right\|=1$ for $i \neq j$ shows each e_{i} is an isolated point of X. Therefore X is closed. Combined, we conclude X is closed, bounded, and noncompact.

5 The Derivative

1.

Proof. By definition, $\lim _{t \rightarrow 0} \frac{f(a+t u)-f(a)}{t}$ exists. Consequently, $\lim _{t \rightarrow 0} \frac{f(a+t u)-f(a)}{t}=\lim _{t \rightarrow 0} \frac{f(a+t c u)-f(a)}{c t}$ exists and is equal to $c f^{\prime}(a ; u)$.
2.

Proof. (a) $f(u)=f\left(u_{1}, u_{2}\right)=\frac{u_{1} u_{2}}{u_{1}^{2}+u_{2}^{2}}$. So

$$
\frac{f(t u)-f(0)}{t}=\frac{1}{t} \frac{t^{2} u_{1} u_{2}}{t^{2}\left(u_{1}^{2}+u_{2}^{2}\right)}=\frac{1}{t} \frac{u_{1} u_{2}}{u_{1}^{2}+u_{2}^{2}}
$$

In order for $\lim _{t \rightarrow 0} \frac{f(t u)-f(0)}{t}$ to exist, it is necessary and sufficient that $u_{1} u_{2}=0$ and $u_{1}^{2}+u_{2}^{2} \neq 0$. So for vectors $(1,0)$ and $(0,1), f^{\prime}(0 ; u)$ exists, and we have $f^{\prime}(0 ;(1,0))=f^{\prime}(0 ;(0,1))=0$.
(b) Yes, $D_{1} f(0)=D_{2} f(0)=0$.
(c) No, because f is not continuous at $0: \lim _{(x, y) \rightarrow 0, y=k x} f(x, y)=\frac{k x^{2}}{x^{2}+k^{2} x^{2}}=\frac{k}{1+k^{2}}$. For $k \neq 0$, the limit is not equal to $f(0)$.
(d) See (c).

6 Continuously Differentiable Functions

1.

Proof. We note

$$
\frac{|x y|}{\sqrt{x^{2}+y^{2}}} \leq \frac{1}{2} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}=\frac{1}{2} \sqrt{x^{2}+y^{2}}
$$

So $\lim _{(x, y) \rightarrow 0} \frac{|x y|}{\sqrt{x^{2}+y^{2}}}=0$. This shows $f(x, y)=|x y|$ is differentiable at 0 and the derivative is 0 . However, for any fixed $y, f(x, y)$ is not a differentiable function of x at 0 . So its partial derivative w.r.t. x does not exist in a neighborhood of 0 , which implies f is not of class C^{1} in a neighborhood of 0 .

7 The Chain Rule

8 The Inverse Function Theorem

9 The Implicit Function Theorem

10 The Integral over a Rectangle

6.

Proof. (a) Straightforward from the Riemann condition (Theorem 10.3).
(b) Among all the sub-rectangles determined by P, those whose sides contain the newly added point have a combined volume no greater than $(\operatorname{mesh} P)(\operatorname{width}(Q))^{n-1}$. So

$$
0 \leq L\left(f, P^{\prime \prime}\right)-L(f, P) \leq 2 M(\operatorname{mesh} P)(\operatorname{width} Q)^{n-1} .
$$

The result for upper sums can be derived similarly.
(c) Given $\varepsilon>0$, choose a partition P^{\prime} such that $U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<\frac{\varepsilon}{2}$. Let N be the number of partition points in P^{\prime} and let

$$
\delta=\frac{\varepsilon}{8 M N(\operatorname{width} Q)^{n-1}}
$$

Suppose P has mesh less than δ, the common refinement $P^{\prime \prime}$ of P and P^{\prime} is obtained by adjoining at most N points to P. So by part (b)

$$
0 \leq L\left(f, P^{\prime \prime}\right)-L(f, P) \leq N \cdot 2 M(\operatorname{mesh} P)(\operatorname{width} Q)^{n-1} \leq 2 M N(\operatorname{width} Q)^{n-1} \frac{\varepsilon}{8 M N(\operatorname{width} Q)^{n-1}}=\frac{\varepsilon}{4}
$$

Similarly, we can show $0 \leq U(f, P)-U\left(f, P^{\prime \prime}\right) \leq \frac{\varepsilon}{4}$. So

$$
\begin{aligned}
U(f, P)-L(f, P) & =\left[U(f, P)-U\left(f, P^{\prime \prime}\right)\right]+\left[L\left(f, P^{\prime \prime}\right)-L(f, P)\right]+\left[U\left(f, P^{\prime \prime}\right)-L\left(f, P^{\prime \prime}\right)\right] \\
& \leq \frac{\varepsilon}{4}+\varepsilon 4+\left[U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)\right] \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

This shows for any given $\varepsilon>0$, there is a $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ for every partition P of mesh less than δ.
7.

Proof. (Sufficiency) Note $\left|\sum_{R} f\left(x_{R}\right) v(R)-A\right|<\varepsilon$ can be written as

$$
A-\varepsilon<\sum_{R} f\left(x_{R}\right) v(R)<A+\varepsilon .
$$

This shows $U(f, P) \leq A+\varepsilon$ and $L(f, P) \geq A-\varepsilon$. So $U(f, P)-L(f, P) \leq 2 \varepsilon$. By Problem 6, we conclude f is integrable over Q, with $\int_{Q} f \in[A-\varepsilon, A+\varepsilon]$. Since ε is arbitrary, we conclude $\int_{Q} f=A$.
(Necessity) By Problem 6, for any given $\varepsilon>0$, there is a $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ for every partition P of mesh less than δ. For any such partition P, if for each sub-rectangle R determined by P, x_{R} is a point of R, we must have

$$
L(f, P)-A \leq \sum_{R} f\left(x_{R}\right) v(R)-A \leq U(f, P)-A .
$$

Since $L(f, P) \leq A \leq U(f, P)$, we conclude

$$
\left|\sum_{R} f\left(x_{R}\right) v(R)-A\right| \leq U(f, P)-L(f, P)<\varepsilon .
$$

11 Existence of the Integral

12 Evaluation of the Integral

13 The Integral over a Bounded Set

14 Rectifiable Sets

15 Improper Integrals
16 Partition of Unity
17 The Change of Variables Theorem
18 Diffeomorphisms in \mathbb{R}^{n}
19 Proof of the Change of Variables Theorem

20 Applications of Change of Variables

21 The Volume of a Parallelepiped

1. (a)

Proof. Let $v=(a, b, c)$, then $X^{t r} X=\left(I_{3}, v^{t r}\right)\binom{I_{3}}{v}=I_{3}+\left(\begin{array}{l}a \\ b \\ c\end{array}\right)(a, b, c)=\left(\begin{array}{cc}1+a^{2} & a b \\ a b & 1+b^{2} \\ c a c \\ c a & c b \\ 1+c^{2}\end{array}\right)$.
(b)

Proof. We use both methods:

$$
V(X)=\left[\operatorname{det}\left(X^{t r} \cdot X\right)\right]^{1 / 2}=\left[\left(1+a^{2}\right)\left(1+b^{2}+c^{2}\right)-a b \cdot a b+c a \cdot(-a c)\right]^{1 / 2}=\left(1+a^{2}+b^{2}+c^{2}\right)^{1 / 2}
$$

and

$$
V(X)=\left[\operatorname{det}^{2} I_{3}+\operatorname{det}^{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & c
\end{array}\right)+\operatorname{det}^{2}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right)+\operatorname{det}^{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right)\right]^{1 / 2}=\left(1+c^{2}+a^{2}+b^{2}\right)^{1 / 2}
$$

2.

Proof. Let $X=\left(x_{1}, \cdots, x_{i}, \cdots, x_{k}\right)$ and $Y=\left(x_{1}, \cdots, \lambda x_{i}, \cdots, x_{k}\right)$. Then $V(Y)=\left[\sum_{[I]} \operatorname{det}^{2} Y_{I}\right]^{1 / 2}=$ $\left[\sum_{[I]} \lambda^{2} \operatorname{det}^{2} X_{I}\right]^{1 / 2}=|\lambda|\left[\sum_{[I]} \operatorname{det}^{2} X_{I}\right]^{\frac{1}{2}}=|\lambda| V(X)$.
3.

Proof. Suppose \mathcal{P} is determined by x_{1}, \cdots, x_{k}. Then $V(h(\mathcal{P}))=V\left(\lambda x_{1}, \cdots, \lambda x_{k}\right)=|\lambda| V\left(x_{1}, \lambda x_{2}, \cdots, \lambda x_{k}\right)=$ $\cdots=|\lambda|^{k} V\left(x_{1}, x_{2}, \cdots, x_{k}\right)=|\lambda|^{k} V(\mathcal{P})$.
4. (a)

Proof. Straightforward.
(b)

Proof.

$$
\begin{aligned}
\|a\|^{2}\|b\|^{2}-\langle a, b\rangle^{2} & =\left(\sum_{i=1}^{3} a_{i}^{2}\right)\left(\sum_{j=1}^{3} b_{j}^{2}\right)-\left(\sum_{k=1}^{3} a_{k} b_{k}\right)^{2} \\
& =\sum_{i, j=1}^{3} a_{i}^{2} b_{j}^{2}-\sum_{k=1}^{3} a_{k}^{2} b_{k}^{2}-2\left(a_{1} b_{1} a_{2} b_{2}+a_{1} b_{1} a_{3} b_{3}+a_{2} b_{2} a_{3} b_{3}\right) \\
& =\sum_{i, j=1, i \neq j}^{3} a_{i}^{2} b_{j}^{2}-2\left(a_{1} b_{1} a_{2} b_{2}+a_{1} b_{1} a_{3} b_{3}+a_{2} b_{2} a_{3} b_{3}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{1} b_{3}-a_{3} b_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
& =\operatorname{det}^{2}\left(\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right)+\operatorname{det}^{2}\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right)+\operatorname{det}^{2}\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right) .
\end{aligned}
$$

5. (a)

Proof. Suppose V_{1} and V_{2} both satisfy conditions (i)-(iv). Then by the Gram-Schmidt process, the uniqueness is reduced to $V_{1}\left(x_{1}, \cdots, x_{k}\right)=V_{2}\left(x_{1}, \cdots, x_{k}\right)$, where x_{1}, \cdots, x_{k} are orthonormal.
(b)

Proof. Following the hint, we can assume without loss of generality that $W=\mathbb{R}^{n}$ and the inner product is the dot product on \mathbb{R}^{n}. Let $V\left(x_{1}, \cdots, x_{k}\right)$ be the volume function, then (i) and (ii) are implied by Theorem 21.4, (iii) is Problem 2, and (iv) is implied by Theorem 21.3: $V\left(x_{1}, \cdots, x_{k}\right)=\left[\operatorname{det}\left(X^{t r} X\right)\right]^{1 / 2}$.

22 The Volume of a Parametrized-Manifold

1.

Proof. By definition, $v\left(Z_{\beta}\right)=\int_{A} V(D \beta)$. Let x denote the general point of A; let $y=\alpha(x)$ and $z=h \circ \alpha(x)=$ $\beta(y)$. By chain rule, $D \beta(x)=D h(y) \cdot D \alpha(x)$. So $[V(D \beta(x))]^{2}=\operatorname{det}\left(D \alpha(x)^{t r} D h(y)^{t r} D h(y) D \alpha(x)\right)=$ $[V(D \alpha(x))]^{2}$ by Theorem 20.6. So $v\left(Z_{\beta}\right)=\int_{A} V(D \beta)=\int_{A} V(D \alpha)=v\left(Y_{\alpha}\right)$.
2.

Proof. Let x denote the general point of A. Then

$$
D \alpha(x)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 \\
D_{1} f(x) & D_{2} f(x) & \cdots & D_{k} f(x)
\end{array}\right)
$$

and by Theorem 21.4, $V(D \alpha(x))=\left[1+\sum_{i=1}^{k}\left(D_{i} f(x)\right)^{2}\right]^{1 / 2}$. So $v\left(Y_{\alpha}\right)=\int_{A}\left[1+\sum_{i=1}^{k}\left(D_{i} f(x)\right)^{2}\right]^{1 / 2}$.
3. (a)

Proof. $v\left(Y_{\alpha}\right)=\int_{A} V(D \alpha)$ and $\int_{Y_{\alpha}} \pi_{i} d V=\int_{A} \pi_{i} \circ \alpha V(D \alpha)$. Since $D \alpha(t)=\binom{-a \sin t}{a \cos t}, V(D \alpha)=|a|$. So $v\left(Y_{\alpha}\right)=|a| \pi, \int_{Y_{\alpha}} \pi_{1} d V=\int_{0}^{\pi} a \cos t|a|=0$, and $\int_{Y_{\alpha}} \pi_{2} d V=\int_{0}^{\pi} a \sin t|a|=2 a|a|$. Hence the centroid is ($0,2 a / \pi$).
(b)

Proof. By Example 4, $v\left(Y_{\alpha}\right)=2 \pi a^{2}$ and

$$
\begin{gathered}
\int_{Y_{\alpha}} \pi_{1} d V=\int_{A} x \frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}}=\int_{0}^{2 \pi} \int_{0}^{a} \frac{r \cos \theta \cdot a r}{\sqrt{a^{2}-r^{2}}}=0 \\
\int_{Y_{\alpha}} \pi_{2} d V=\int_{A} y \frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}}=\int_{0}^{2 \pi} \int_{0}^{a} \frac{r \sin \theta \cdot a r}{\sqrt{a^{2}-r^{2}}}=0 \\
\int_{Y_{\alpha}} \pi_{3} d V=\int_{A} \sqrt{a^{2}-x^{2}-y^{2}} \frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}}=a^{3} \pi
\end{gathered}
$$

So the centroid is $\left(0,0, \frac{a}{2}\right)$.
4. (a)

Proof. $v\left(\Delta_{1}(R)\right)=\int_{A} V(D \alpha)$, where A is the (open) triangle in \mathbb{R}^{2} with vertices $(a, b),(a+h, b)$ and $(a+h, b+h) . V(D \alpha)$ is a continuous function on the compact set \bar{A}, so it achieves its maximum M and minimum m on \bar{A}. Let $x_{1}, x_{2} \in \bar{A}$ be such that $V\left(D \alpha\left(x_{1}\right)\right)=M$ and $V\left(D \alpha\left(x_{2}\right)\right)=m$, respectively. Then

$$
v(A) \cdot m \leq v\left(\Delta_{1}(R)\right) \leq v(A) \cdot M
$$

By considering the segment connecting x_{1} and x_{2}, we can find a point $\xi \in \bar{A}$ such that $V(D \alpha(\xi)) v(A)=$ $\int_{A} V(D \alpha)$. This shows there is a point ξ of R such that

$$
v\left(\Delta_{1}(R)\right)=\int_{A} V(D \alpha)=V(D \alpha(\xi)) v(A)=\frac{1}{2} V(D \alpha(\xi)) \cdot v(R)
$$

A similar result for $v\left(\Delta_{2}(R)\right)$ can be proved similarly.
(b)

Proof. $V(D \alpha)$ as a continuous function is uniformly continuous on the compact set Q.
(c)

Proof.

$$
\begin{aligned}
\left|A(P)-\int_{Q} V(D \alpha)\right| & \leq \sum_{R}\left|v\left(\Delta_{1}(R)\right)+v\left(\Delta_{2}(R)\right)-\int_{R} V(D \alpha)\right| \\
& =\sum_{R}\left|\frac{1}{2}\left[V\left(D \alpha\left(\xi_{1}(R)\right)\right)+V\left(D \alpha\left(\xi_{2}(R)\right)\right)\right] v(R)-\int_{R} V(D \alpha)\right| \\
& \leq \sum_{R} \int_{R}\left|\frac{V\left(D \alpha\left(\xi_{1}(R)\right)\right)+V\left(D \alpha\left(\xi_{2}(R)\right)\right)}{2}-V(D \alpha)\right|
\end{aligned}
$$

Given $\varepsilon>0$, there exists a $\delta>0$ such that if $x_{1}, x_{2} \in Q$ with $\left|x_{1}-x_{2}\right|<\delta$, we must have $\mid V\left(D \alpha\left(x_{1}\right)\right)-$ $V\left(D \alpha\left(x_{2}\right)\right) \left\lvert\,<\frac{\varepsilon}{v(Q)}\right.$. So for every partition P of Q of mesh less than δ,

$$
\left|A(P)-\int_{Q} V(D \alpha)\right|<\sum_{R} \int_{R} \frac{\varepsilon}{v(Q)}=\varepsilon
$$

23 Manifolds in \mathbb{R}^{n}

1.

Proof. In this case, we set $U=\mathbb{R}$ and $V=M=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$. Then α maps U onto V in a one-to-one fashion. Moreover, we have
(1) α is of class C^{∞}.
(2) $\alpha^{-1}\left(\left(x, x^{2}\right)\right)=x$ is continuous, for $\left(x_{n}, x_{n}^{2}\right) \rightarrow\left(x, x^{2}\right)$ as $n \rightarrow \infty$ implies $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
(3) $D \alpha(x)=\left[\begin{array}{c}1 \\ 2 x\end{array}\right]$ has rank 1 for each $x \in U$.

So M is a 1-manifold in \mathbb{R}^{2} covered by the single coordinate patch α.
2.

Proof. We let $U=\mathbb{H}^{1}$ and $V=N=\left\{\left(x, x^{2}\right): x \in \mathbb{H}^{1}\right\}$. Then β maps U onto V in a one-to-one fashion. Moreover, we have
(1) β is of class C^{∞}.
(2) $\beta^{-1}\left(\left(x, x^{2}\right)\right)=x$ is continuous.
(3) $D \beta(x)=\left[\begin{array}{c}1 \\ 2 x\end{array}\right]$ has rank 1 for each $x \in \mathbb{H}^{1}$.

So N is a 1-manifold in \mathbb{R}^{2} covered by the single coordinate patch β.
3. (a)

Proof. For any point $p \in S^{1}$ with $p \neq(1,0)$, we let $U=(0,2 \pi), V=S^{1}-(1,0)$, and $\alpha: U \rightarrow V$ be defined by $\alpha(\theta)=(\cos \theta, \sin \theta)$. Then α maps U onto V continuously in a one-to-one fashion. Moreover,
(1) α is of class C^{∞}.
(2) α^{-1} is continuous, for $\left(\cos \theta_{n}, \sin \theta_{n}\right) \rightarrow(\cos \theta, \sin \theta)$ as $n \rightarrow \infty$ implies $\theta_{n} \rightarrow \theta$ as $n \rightarrow \infty$.
(3) $D \alpha(\theta)=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$ has rank 1 .

So α is a coordinate patch. For $p=(1,0)$, we consider $U=(-\pi, \pi), V=S^{1}-(-1,0)$, and $\beta: U \rightarrow V$ be defined by $\beta(\theta)=(\cos \theta, \sin \theta)$. We can prove in a similar way that β is a coordinate patch. Combined, we can conclude the unit circle S^{1} is a 1-manifold in \mathbb{R}^{2}.
(b)

Proof. We claim α^{-1} is not continuous. Indeed, for $t_{n}=1-\frac{1}{n}, \alpha\left(t_{n}\right) \rightarrow(1,0)$ on S^{1} as $n \rightarrow \infty$, but $\alpha^{-1}\left(\alpha\left(t_{n}\right)\right)=t_{n} \rightarrow 1 \neq \alpha^{-1}((1,0))=0$ as $n \rightarrow \infty$.
4.

Proof. Let $U=A$ and $V=\{(x, f(x)): x \in A\}$. Define $\alpha: U \rightarrow V$ by $\alpha(x)=(x, f(x))$. Then α maps U onto V in a one-to-one fashion. Moreover,
(1) α is of class C^{r}.
(2) α^{-1} is continuous, for $\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow(x, f(x))$ as $n \rightarrow \infty$ implies $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
(3) $D \alpha(x)=\left[\begin{array}{c}I_{k} \\ D f(x)\end{array}\right]$ has rank k.

So V is a k-manifold in \mathbb{R}^{k+1} with a single coordinate patch α.
5.

Proof. For any $x \in M$ and $y \in N$, there is a coordinate patch α for x and a coordinate patch β for y, respectively. Denote by U the domain of α, which is open in \mathbb{R}^{k} and by W the domain of β, which is open in either \mathbb{R}^{l} or \mathbb{H}^{l}. Then $U \times W$ is open in either \mathbb{R}^{k+l} or \mathbb{H}^{k+l}, depending on W is open in \mathbb{R}^{l} or \mathbb{H}^{l}. This is the essential reason why we need at least one manifold to have no boundary: if both M and N have boundaries, $U \times W$ may not be open in \mathbb{R}^{k+l} or \mathbb{H}^{k+l}.

The rest of the proof is routine. We define a map $f: U \times W \rightarrow \alpha(U) \times \beta(W)$ by $f(x, y)=(\alpha(x), \beta(y))$. Since $\alpha(U)$ is open in M and $\beta(W)$ is open in N by the definition of coordinate patch, $f(U \times W)=$ $\alpha(U) \times \beta(W)$ is open in $M \times N$ under the product topology. f is one-to-one and continuous, since α and β enjoy such properties. Moreover,
(1) f is of class C^{r}, since α and β are of class C^{r}.
(2) $f^{-1}=\left(\alpha^{-1}, \beta^{-1}\right)$ is continuous since α^{-1} and β^{-1} are continuous.
(3) $D f(x, y)=\left[\begin{array}{cc}D \alpha(x) & 0 \\ 0 & D \beta(y)\end{array}\right]$ clearly has rank $k+l$ for each $(x, y) \in U \times W$.

Therefore, we conclude $M \times N$ is a $k+l$ manifold in \mathbb{R}^{m+n}.
6. (a)

Proof. We define $\alpha_{1}:[0,1) \rightarrow[0,1)$ by $\alpha_{1}(x)=x$ and $\alpha_{2}:[0,1) \rightarrow(0,1]$ by $\alpha_{2}(x)=-x+1$. Then it's easy to check α_{1} and α_{2} are both coordinate patches.
(b)

Proof. Intuitively $I \times I$ cannot be a 2-manifold since it has "corners". For a formal proof, assume $I \times I$ is a 2-manifold of class C^{r} with $r \geq 1$. By Theorem 24.3, $\partial(I \times I)$, the boundary of $I \times I$, is a 1-manifold without boundary of class C^{r}. Assume α is a coordinate patch of $\partial(I \times I)$ whose image includes one of those corner points. Then $D \alpha$ cannot exist at that corner point, contradiction. In conclusion, $I \times I$ cannot be a 2-manifold of class C^{r} with $r \geq 1$.

24 The Boundary of a Manifold

1.

Proof. The equation for the solid torus N in cartesian coordinates is $\left(b-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2} \leq a^{2}$, and the equation for the torus T in cartesian coordinates is $\left(b-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}=a^{2}$. Define $\mathcal{O}=\mathbb{R}$ and $f: \mathcal{O} \rightarrow \mathbb{R}$ by $f(x, y, z)=a^{2}-z^{2}-\left(b-\sqrt{x^{2}+y^{2}}\right)^{2}$. Then $D f(x, y, z)=\left[\begin{array}{c}2 x-\frac{2 x b}{\sqrt{x^{2}+y^{2}}} \\ 2 y-\frac{2 y b}{\sqrt{x^{2}+y^{2}}} \\ -2 z\end{array}\right]$ has rank 1 at each point of T. By Theorem 24.4, N is a 3 -manifold and $T=\partial N$ is a 2 -manifold without boundary.

2.

Proof. We first prove a regularization result.
Lemma 24.1. Let $f: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n}$ be of class C^{r}. Assume $D f$ has rank n at a point p, then there is an open set $W \subset \mathbb{R}^{n+k}$ and a C^{r}-function $G: W \rightarrow \mathbb{R}^{n+k}$ with C^{r}-inverse such that $G(W)$ is an open neighborhood of p and $f \circ G: W \rightarrow \mathbb{R}^{n}$ is the projection mapping to the first n coordinates.

Proof. We write any point $x \in \mathbb{R}^{n+k}$ as $\left(x_{1}, x_{2}\right)$ with $x_{1} \in \mathbb{R}^{n}$ and $x_{2} \in \mathbb{R}^{k}$. We first assume $D_{x_{1}} f(p)$ has rank n. Define $F(x)=\left(f(x), x_{2}\right)$, then $D F=\left[\begin{array}{cc}D_{x_{1}} f & D_{x_{2}} f \\ 0 & I_{k}\end{array}\right]$. So $\operatorname{det} D F(p)=\operatorname{det} D_{x_{1}} f(p) \neq 0$. By the inverse function theorem, there is an open set U of \mathbb{R}^{n+k} containing p such that F carries U in a one-to-one fashion onto an open set W of \mathbb{R}^{n+k} and its inverse function G is of class C^{r}. Denote by $\pi: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n}$ the projection $\pi(x)=x_{1}$, then $f \circ G(x)=\pi \circ F \circ G(x)=\pi(x)$ on W.

In general, since $D f(p)$ has rank n, there will be $j_{1}<\cdots<j_{n}$ such that the matrix $\frac{\partial\left(f_{1}, \cdots, f_{n}\right)}{\partial\left(x^{j}, \cdots, x^{j_{n}}\right)}$ has rank n at p. Here x^{j} denotes the j-th coordinate of x. Define $H: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n+k}$ as the permutation that swaps the pairs $\left(x^{1}, x^{j_{1}}\right),\left(x^{2}, x^{j_{2}}\right), \cdots,\left(x^{n}, x^{j_{n}}\right)$, i.e. $H(x)=\left(x^{j_{1}}, x^{j_{2}}, \cdots, x^{j_{n}}, \cdots\right)-\left(p^{j_{1}}, p^{j_{2}}, \cdots, p^{j_{n}}, \cdots\right)+p$. Then $H(p)=p$ and $D(f \circ H)(p)=D f(H(p)) D H(p)=D f(p) \cdot D H(p)$. So $D_{x_{1}}(f \circ H)(p)=\frac{\partial\left(f_{1}, \cdots, f_{n}\right)}{\partial\left(x^{j 1}, \cdots, x^{j n}\right)}(p)$ and $f \circ H$ is of the type considered previously. So using the notation of the previous paragraph, $f \circ(H \circ G)(x)=\pi(x)$ on W.

By the lemma and using its notation, $\forall p \in M=\{x: f(x)=0\}$, there is a C^{r}-diffeomorphism G between an open set W of \mathbb{R}^{n+k} and an open set U of \mathbb{R}^{n+k} containing p, such that $f \circ G=\pi$ on W. So $U \cap M=\{x \in U: f(x)=0\}=G(W) \cap\left(f \circ G \circ G^{-1}\right)^{-1}(\{0\})=G(W) \cap G\left(\pi^{-1}(\{0\})\right)=G\left(W \cap\{0\} \times \mathbb{R}^{k}\right)$. Therefore $\alpha\left(x_{1}, \cdots, x_{k}\right):=G\left(\left(0, x_{1}, \cdots, x_{k}\right)\right)$ is a k-dimensional coordinate patch on M about p. Since p is arbitrarily chosen, we have proved M is a k-manifold without boundary in \mathbb{R}^{n+k}.

Now, $\forall p \in N=\left\{x: f_{1}(x)=\cdots=f_{n-1}(x), f_{n}(x) \geq 0\right\}$, there are two cases: $f_{n}(p)>0$ and $f_{n}(p)=0$. For the first case, by an argument similar to that of M, we can find a C^{r}-diffeomorphism G_{1} between an open set W of \mathbb{R}^{n+k} and an open set U of \mathbb{R}^{n+k} containing p, such that $f \circ G_{1}=\pi_{1}$ on W. Here π_{1} is the projection mapping to the first $(n-1)$ coordinates. So $U \cap N=U \cap\left\{x: f_{1}(x)=\cdots=f_{n-1}(x)=0\right\} \cap\{x$: $\left.f_{n}(x) \geq 0\right\}=G_{1}\left(W \cap\{0\} \times \mathbb{R}^{k+1}\right) \cap\left\{x \in U: f_{n}(x) \geq 0\right\}$. When U is sufficiently small, by the continuity of f_{n} and the fact $f_{n}(p)>0$, we can assume $f_{n}(x)>0, \forall x \in U$. So

$$
\begin{aligned}
U \cap N & =U \cap\left\{x: f_{1}(x)=\cdots=f_{n}(x)=0, f_{n}(x)>0\right\} \\
& =G_{1}\left(W \cap\{0\} \times \mathbb{R}^{k+1}\right) \cap\left\{x \in U: f_{n}(x)>0\right\} \\
& =G_{1}\left(W \cap\{0\} \times \mathbb{R}^{k+1} \cap G_{1}^{-1}\left(U \cap\left\{x: f_{n}(x)>0\right\}\right)\right) \\
& =G_{1}\left(\left[W \cap G_{1}^{-1}\left(U \cap\left\{x: f_{n}(x)>0\right\}\right)\right] \cap\{0\} \times \mathbb{R}^{k+1}\right)
\end{aligned}
$$

This shows $\beta\left(x_{1}, \cdots, x_{k+1}\right):=G_{1}\left(\left(0, x_{1}, \cdots, x_{k+1}\right)\right)$ is a $(k+1)$-dimensional coordinate patch on N about p.

For the second case, we note p is necessarily in M. So $D f(p)$ is of rank n and there is a C^{r}-diffeomorphism G between an open set W of \mathbb{R}^{n+k} and an open set U of \mathbb{R}^{n+k} containing p, such that $f \circ G=\pi$ on W. So $U \cap N=\left\{x \in U: f_{1}(x)=\cdots=f_{n-1}(x)=0, f_{n}(x) \geq 0\right\}=G(W) \cap\left(\pi \circ G^{-1}\right)^{-1}(\{0\} \times[0, \infty))=$ $G\left(W \cap \pi^{-1}(\{0\} \times[0, \infty))\right)=G\left(W \cap\{0\} \times[0, \infty) \times \mathbb{R}^{k}\right)$. This shows $\gamma\left(x_{1}, \cdots, x_{k+1}\right):=G\left(\left(0, x_{k+1}, x_{1}, \cdots, x_{k}\right)\right)$ is a $(k+1)$-dimensional coordinate patch on N about p.

In summary, we have shown N is a $(k+1)$-manifold. Lemma 24.2 shows $\partial N=M$.
3.

Proof. Define $H: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $H(x, y, z)=(f(x, y, z), g(x, y, z))$. By the theorem proved in Problem 2, if $D H(x, y, z)=\left[\begin{array}{lll}D_{x} f(x, y, z) & D_{y} f(x, y, z) & D_{z} f(x, y, z) \\ D_{x} g(x, y, z) & D_{y} g(x, y, z) & D_{z} g(x, y, z)\end{array}\right]$ has rank 2 for $(x, y, z) \in M:=\{(x, y, z)$: $f(x, y, z)=g(x, y, z)=0\}, M$ is a 1-manifold without boundary in \mathbb{R}^{3}, i.e. a C^{r} curve without singularities.
4.

Proof. We define $f(x)=\left(f_{1}(x), f_{2}(x)\right)=\left(\|x\|^{2}-a^{2}, x_{n}\right)$. Let $N=\left\{x: f_{1}(x)=0, f_{2}(x) \geq 0\right\}=S^{n-1}(a) \cap \mathbb{H}^{n}$ and $M=\{x: f(x)=0\}$. Since $D f(x)=\left[\begin{array}{ccccc}2 x_{1} & 2 x_{2} & \cdots & 2 x_{n-1} & 2 x_{n} \\ 0 & 0 & \cdots & 0 & 1\end{array}\right]=\left[\begin{array}{ccccc}2 x_{1} & 2 x_{2} & \cdots & 2 x_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & 1\end{array}\right]$ has rank 2 on M and $\partial f_{1} / \partial x=\left[2 x_{1}, 2 x_{2}, \cdots, 2 x_{n}\right]$ has rank 1 on N, by the theorem proved in Problem $2, E_{+}^{n-1}(a)=N$ is an $(n-1)$ manifold whose boundary is the $(n-2)$ manifold M. Geometrically, M is $S^{n-2}(a)$.
5. (a)

Proof. We write any point $x \in \mathbb{R}^{9}$ as $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, where $x_{1}=\left[x_{11}, x_{12}, x_{13}\right]$, $x_{2}=\left[x_{21}, x_{22}, x_{23}\right]$, and $x_{3}=\left[x_{31}, x_{32}, x_{33}\right]$. Define $f_{1}(x)=\left\|x_{1}\right\|^{2}-1, f_{2}(x)=\left\|x_{2}\right\|^{2}-1, f_{3}(x)=\left\|x_{3}\right\|^{2}-1, f_{4}(x)=\left(x_{1}, x_{2}\right)$, $f_{5}(x)=\left(x_{1}, x_{3}\right)$, and $f_{6}(x)=\left(x_{2}, x_{3}\right)$. Then $\mathcal{O}(3)$ is the solution set of the equation $f(x)=0$.
(b)

Proof. We note

$$
\begin{aligned}
D f(x) & =\frac{\partial\left(f_{1}, \cdots, f_{6}\right)}{\partial\left(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33}\right)} \\
& =\left[\begin{array}{ccccccccc}
2 x_{11} & 2 x_{12} & 2 x_{13} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 x_{21} & 2 x_{22} & 2 x_{23} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 x_{31} & 2 x_{32} & 2 x_{33} \\
x_{21} & x_{22} & x_{23} & x_{11} & x_{12} & x_{13} & 0 & 0 & 0 \\
x_{31} & x_{32} & x_{33} & 0 & 0 & 0 & x_{11} & x_{12} & x_{13} \\
0 & 0 & 0 & x_{31} & x_{32} & x_{33} & x_{21} & x_{22} & x_{23}
\end{array}\right]
\end{aligned}
$$

Since x_{1}, x_{2}, x_{3} are pairwise orthogonal and are non-zero, we conclude x_{1}, x_{2} and x_{3} are independent. From the structure of $D f$, the row space of $D f(x)$ for $x \in \mathcal{O}(3)$ has rank 6. By the theorem proved in Problem 2, $\mathcal{O}(3)$ is a 3 -manifold without boundary in \mathbb{R}^{9}. Finally, $\mathcal{O}(3)=\{x: f(x)=0\}$ is clearly bounded and closed, hence compact.
6.

Proof. The argument is similar to that of Problem 5, and the dimension $=n^{2}-n-\frac{n(n-1)}{2}=\frac{n(n-1)}{2}$.

25 Integrating a Scalar Function over a Manifold

1.

Proof. To see $\alpha(t, z)$ is a coordinate patch, we note that α is one-to-one and onto $S^{2}(a)-D$, where $D=$ $\left\{(x, y, z):\left(\sqrt{a^{2}-z^{2}}, 0, z\right),|z| \leq a\right\}$ is a closed set and has measure zero in $S^{2}(a)$ (note D is a parametrized 1 -manifold, hence it has measure zero in \mathbb{R}^{2}). On the set $\{(t, z): 0<t<2 \pi,|z|<a\}, \alpha$ is smooth and $\alpha^{-1}(x, y, z)=(t, z)$ is continuous on $S^{2}(a)-D$. Finally, by the calculation done in the text, the rank of $D \alpha$ is 2 on $\{(t, z): 0<t<2 \pi,|z|<a\}$.

$$
\begin{aligned}
& (D \alpha)^{t r} D \alpha \\
= & {\left[\begin{array}{ccc}
-\left(a^{2}-z^{2}\right)^{1 / 2} \sin t & \left(a^{2}-z^{2}\right)^{1 / 2} \cos t & 0 \\
(-z \cos t) /\left(a^{2}-z^{2}\right)^{1 / 2} & (-z \sin t) /\left(a^{2}-z^{2}\right)^{1 / 2} & 1
\end{array}\right]\left[\begin{array}{cc}
-\left(a^{2}-z^{2}\right)^{1 / 2} \sin t & (-z \cos t) /\left(a^{2}-z^{2}\right)^{1 / 2} \\
\left(a^{2}-z^{2}\right)^{1 / 2} \cos t & (-z \sin t) /\left(a^{2}-z^{2}\right)^{1 / 2} \\
0
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
a^{2}-z^{2} & 0 \\
0 & \frac{a^{2}}{a^{2}-z^{2}}
\end{array}\right] . }
\end{aligned}
$$

So $V(D \alpha)=a$ and $v\left(S^{2}(a)\right)=\int_{\{(t, z): 0<t<2 \pi,|z|<a\}} V(D \alpha)=4 \pi a^{2}$.
4.

Proof. Let $\left(\alpha_{j}\right)$ be a family of coordinate patches that covers M. Then $\left(h \circ \alpha_{j}\right)$ is a family of coordinate patches that covers N. Suppose $\phi_{1}, \cdots, \phi_{l}$ is a partition of unity on M that is dominated by $\left(\alpha_{j}\right)$, then
$\phi_{1} \circ h^{-1}, \cdots, \phi_{l} \circ h^{-1}$ is a partition of unity on N that is dominated by $\left(h \circ \alpha_{j}\right)$. Then

$$
\begin{aligned}
\int_{N} f d V & =\sum_{i=1}^{l} \int_{N}\left(\phi_{i} \circ h^{-1}\right) f d V \\
& =\sum_{i=1}^{l} \int_{I n t U_{i}}\left(\phi_{i} \circ h^{-1} \circ h \circ \alpha_{i}\right)\left(f \circ h \circ \alpha_{i}\right) V\left(D\left(h \circ \alpha_{i}\right)\right) \\
& =\sum_{i=1}^{l} \int_{I n t U_{i}}\left(\phi_{i} \circ \alpha_{i}\right)\left(f \circ h \circ \alpha_{i}\right) V\left(D \alpha_{i}\right) \\
& =\sum_{i=1}^{l} \int_{M} \phi_{i}(f \circ h) d V \\
& =\int_{M} f \circ h d V
\end{aligned}
$$

In particular, by setting $f \equiv 1$, we get $v(N)=v(M)$.
6.

Proof. Let $L_{0}=\left\{x \in \mathbb{R}^{n}: x_{i}>0\right\}$. Then $M \cap L_{0}$ is a manifold, for if $\alpha: U \rightarrow V$ is a coordinate patch on $M, \alpha: U \cap \alpha^{-1}\left(L_{0}\right) \rightarrow V \cap L_{0}$ is a coordinate patch on $M \cap L$. Similarly, if we let $L_{1}=\left\{x \in \mathbb{R}^{n}: x_{i}<0\right\}$, $M \cap L_{1}$ is a manifold. Theorem 25.4 implies

$$
c_{i}(M)=\frac{1}{v(M)} \int_{M} \pi d V=\frac{1}{v(M)}\left[\int_{M \cap L_{0}} \pi d V+\int_{M \cap L_{1}} \pi d V\right]
$$

Suppose $\left(\alpha_{j}\right)$ is a family of coordinate patches on $M \cap L_{0}$ and there is a partition of unity $\phi_{1}, \cdots, \phi_{l}$ on $M \cap L_{0}$ that is dominated by $\left(\alpha_{j}\right)$, then

$$
\int_{M \cap L_{0}} \pi_{i} d V=\sum_{j=1}^{l} \int_{M}\left(\phi_{j} \pi_{i}\right) d V=\sum_{j=1}^{l} \int_{I n t U_{j}}\left(\phi_{j} \circ \alpha_{j}\right)\left(\pi_{i} \circ \alpha_{j}\right) V\left(D \alpha_{j}\right)
$$

Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(x)=\left(x_{1}, \cdots,-x_{i}, \cdots, x_{n}\right)$. It's easy to see $\left(f \circ \alpha_{j}\right)$ is a family of coordinate patches on $M \cap L_{1}$ and $\phi_{1} \circ f, \cdots, \phi_{l} \circ f$ is a partition of unity on $M \cap L_{1}$ that is dominated by $\left(f \circ \alpha_{j}\right)$. Therefore

$$
\int_{M \cap L_{1}} \pi_{i} d V=\sum_{j=1}^{l} \int_{I n t U_{j}}\left(\phi_{j} \circ f \circ f \circ \alpha_{j}\right)\left(\pi_{i} \circ f \circ \alpha_{j}\right) V\left(D\left(f \circ \alpha_{j}\right)\right)=\sum_{j=1}^{l} \int_{I n t U_{j}}\left(\phi_{j} \circ \alpha_{j}\right)\left(\pi_{i} \circ f \circ \alpha_{j}\right) V\left(D\left(f \circ \alpha_{j}\right)\right)
$$

In order to show $c_{i}(M)=0$, it suffices to show $\left(\pi_{i} \circ \alpha_{j}\right) V\left(D \alpha_{j}\right)=-\left(\pi_{i} \circ f \circ \alpha_{j}\right) V\left(D\left(f \circ \alpha_{j}\right)\right)$. Indeed,

$$
\begin{aligned}
V^{2}\left(D\left(f \circ \alpha_{j}\right)\right)(x) & =V^{2}\left(D f\left(\alpha_{j}(x)\right) D \alpha_{j}(x)\right) \\
& =\operatorname{det}\left(D \alpha_{j}(x)^{t r} D f\left(\alpha_{j}(x)\right)^{t r} D f\left(\alpha_{j}(x)\right) D \alpha_{j}(x)\right) \\
& =\operatorname{det}\left(D \alpha_{j}(x)^{t r} D \alpha_{j}(x)\right) \\
& =V^{2}(D \alpha)(x),
\end{aligned}
$$

and $\pi_{i} \circ f=-\pi_{i}$. Combined, we conclude $\int_{M \cap L_{1}} \pi_{i} d V=-\int_{M \cap L_{0}} \pi_{i} d V$. Hence $c_{i}(M)=0$.
8. (a)

Proof. Let $\left(\alpha_{i}\right)$ be a family of coordinate patches on M and $\phi_{1}, \cdots, \phi_{l}$ a partition of unity on M dominated by $\left(\alpha_{i}\right)$. Let $\left(\beta_{j}\right)$ be a family of coordinate patches on N and $\psi_{1}, \cdots, \psi_{k}$ a partition of unity on N dominated
by $\left(\beta_{j}\right)$. Then it's easy to see $\left(\left(\alpha_{i}, \beta_{j}\right)\right)_{i, j}$ is a family of coordinate patches on $M \times N$ and $\left(\phi_{m} \psi_{n}\right)_{1 \leq m \leq l, 1 \leq n \leq k}$ is a partition of unity on $M \times N$ dominated by $\left(\left(\alpha_{i}, \beta_{j}\right)\right)_{i, j}$. Then

$$
\begin{aligned}
\int_{M \times N} f \cdot g d V & =\sum_{1 \leq m \leq l, 1 \leq n \leq k} \int_{M \times N}\left(\phi_{m} f\right)\left(\psi_{n} g\right) d V \\
& =\sum_{1 \leq m \leq l, 1 \leq n \leq k} \int_{I n t U_{m} \times \operatorname{Int} V_{n}}\left(\phi_{m} \circ \alpha_{m} \cdot f \circ \alpha_{m}\right) V\left(D \alpha_{m}\right)\left(\psi_{n} \circ \beta_{n} \cdot g \circ \beta_{n}\right) V\left(D \beta_{n}\right) \\
& =\sum_{1 \leq m \leq l, 1 \leq n \leq k} \int_{I n t U_{m}}\left(\phi_{m} \circ \alpha_{m} \cdot f \circ \alpha_{m}\right) V\left(D \alpha_{m}\right) \int_{I n t V_{n}}\left(\psi_{n} \circ \beta_{n} \cdot g \circ \beta_{n}\right) V\left(D \beta_{n}\right) \\
& =\left[\int_{M} f d V\right]\left[\int_{N} g d V\right] .
\end{aligned}
$$

(b)

Proof. Set $f=1$ and $g=1$ in (a).
(c)

Proof. By (a), $v\left(S^{1} \times S^{1}\right)=v\left(S^{1}\right) \cdot v\left(S^{1}\right)=4 \pi^{2} a^{2}$.

26 Multilinear Algebra

4.

Proof. By Example 1, it is easy to see f and g are not tensors on \mathbb{R}^{4}. h is a tensor: $h=\phi_{1,1}-7 \phi_{2,3}$.
5.

Proof. f and h are not tensors. g is a tensor and $g=5 \phi_{3,2,3,4,4}$.
6. (a)

Proof. $f=2 \phi_{1,2,2}-\phi_{2,3,1}, g=\phi_{2,1}-5 \phi_{3,1}$. So $f \otimes g=2 \phi_{1,2,2,2,1}-10 \phi_{1,2,2,3,1}-\phi_{2,3,1,2,1}+5 \phi_{2,3,1,3,1}$.
(b)

Proof. $f \otimes g(x, y, z, u, v)=2 x_{1} y_{2} z_{2} u_{2} v_{1}-10 x_{1} y_{2} z_{2} u_{3} v_{1}-x_{2} y_{3} z_{1} u_{2} v_{1}+5 x_{2} y_{3} z_{1} u_{3} v_{1}$.
7.

Proof. Suppose $f=\sum_{I} d_{I} \phi_{I}$ and $g=\sum_{J} d_{J} \phi_{J}$. Then $f \otimes g=\left(\sum_{I} d_{I} \phi_{I}\right) \otimes\left(\sum_{J} d_{J} \phi_{J}\right)=\sum_{I, J} d_{I} d_{J} \phi_{I} \otimes \phi_{J}=$ $\sum_{I, J} d_{I} d_{J} \phi_{I, J}$. This shows the four properties stated in Theorem 26.4 characterize the tensor product uniquely.
8.

Proof. For any $x \in \mathbb{R}^{m}, T^{*} f(x)=f(T(x))=f(B \cdot x)=(A B) \cdot x$. So the matrix of the 1-tensor $T^{*} f$ on \mathbb{R}^{m} is $A B$.

27 Alternating Tensors

1.

Proof. Since h is not multilinear, h is not an alternating tensor. $f=\phi_{1,2}-\phi_{2,1}+\phi_{1,1}$ is a tensor. The only permutation of $\{1,2\}$ are the identity mapping $i d$ and $\sigma: \sigma(1)=2, \sigma(2)=1$. So f is alternating if and only if $f^{\sigma}(x, y)=-f(x, y)$. Since $f^{\sigma}(x, y)=f(y, x)=y_{1} x_{2}-y_{2} x_{1}+y_{1} x_{1} \neq-f(x, y)$, we conclude f is not alternating.

Similarly, $g=\phi_{1,3}-\phi_{3,2}$ is a tensor. And $g^{\sigma}=\phi_{2,1}-\phi_{2,3} \neq-g$. So g is not alternating.
3.

Proof. Suppose $I=\left(i_{1}, \cdots, i_{k}\right)$. If $\left\{i_{1}, \cdots, i_{k}\right\} \neq\left\{j_{1}, \cdots, j_{k}\right\}$ (set equality), then $\phi_{I}\left(a_{j_{1}}, \cdots, a_{j_{k}}\right)=0$. If $\left\{i_{1}, \cdots, i_{k}\right\}=\left\{j_{1}, \cdots, j_{k}\right\}$, there must exist a permutation σ of $\{1,2, \cdots, k\}$, such that $I=\left(i_{1}, \cdots, i_{k}\right)=$ $\left(j_{\sigma(1)}, \cdots, j_{\sigma(k)}\right)$. Then $\phi_{I}\left(a_{j_{1}}, \cdots, a_{j_{k}}\right)=(\operatorname{sgn} \sigma)\left(\phi_{I}\right)^{\sigma}\left(a_{j_{1}}, \cdots, a_{j_{k}}\right)=(\operatorname{sgn} \sigma) \phi_{I}\left(a_{j_{\sigma(1)}}, \cdots, a_{j_{\sigma(k)}}\right)=\operatorname{sgn} \sigma$. In summary, we have
$\phi_{I}\left(a_{j_{1}}, \cdots, a_{j_{k}}\right)= \begin{cases}\operatorname{sgn} \sigma & \text { if there is a permutation } \sigma \text { of }\{1,2, \cdots, k\} \text { such that } I=J_{\sigma}=\left(j_{\sigma(1)}, \cdots, j_{\sigma(k)}\right) \\ 0 & \text { otherwise. }\end{cases}$
4.

Proof. For any $v_{1}, \cdots, v_{k} \in V$ and a permutation σ of $\{1, \cdots, k\}$.

$$
\begin{aligned}
\left(T^{*} f\right)^{\sigma}\left(v_{1}, \cdots, v_{k}\right) & =T^{*} f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=f\left(T\left(v_{\sigma(1)}\right), \cdots, T\left(v_{\sigma(k)}\right)\right)=f^{\sigma}\left(T\left(v_{1}\right), \cdots, T\left(v_{k}\right)\right) \\
& =(\operatorname{sgn} \sigma) f\left(T\left(v_{1}\right), \cdots, T\left(v_{k}\right)\right)=(\operatorname{sgn} \sigma) T^{*} f\left(v_{1}, \cdots, v_{k}\right)
\end{aligned}
$$

So $\left(T^{*} f\right)^{\sigma}=(\operatorname{sgn} \sigma) T^{*} f$, which implies $T^{*} f \in \mathcal{A}^{k}(V)$.
5.

Proof. We follow the hint and prove $\phi_{I_{\sigma}}=\left(\phi_{I}\right)^{\sigma^{-1}}$. Indeed, suppose a_{1}, \cdots, a_{n} is a basis of the underlying vector space V, then

$$
\begin{aligned}
\left(\phi_{I}\right)^{\sigma^{-1}}\left(a_{j_{1}}, \cdots, a_{j_{k}}\right) & =\left(\phi_{I}\right)\left(a_{j_{\sigma^{-1}(1)}}, \cdots, a_{j_{\sigma^{-1}(k)}}\right)= \begin{cases}0 & \text { if } I \neq\left(j_{\sigma^{-1}(1)}, \cdots, j_{\sigma^{-1}(k)}\right) \\
1 & \text { if } I=\left(j_{\sigma^{-1}(1)}, \cdots, j_{\sigma^{-1}(k)}\right)\end{cases} \\
& = \begin{cases}0 & \text { if } I_{\sigma} \neq\left(j_{\sigma \circ \sigma^{-1}(1)}, \cdots, j_{\sigma \circ \sigma^{-1}(k)}\right)=J \\
1 & \text { if } I_{\sigma}=\left(j_{\sigma \circ \sigma^{-1}(1)}, \cdots, j_{\sigma \circ \sigma^{-1}(k)}\right)=J\end{cases} \\
& =\phi_{I_{\sigma}}\left(a_{j_{1}}, \cdots, a_{j_{k}}\right) .
\end{aligned}
$$

Thus, $\phi_{I}=\sum_{\sigma}(\operatorname{sgn} \sigma)\left(\phi_{I}\right)^{\sigma}=\sum_{\sigma^{-1}}\left(\operatorname{sgn} \sigma^{-1}\right)\left(\phi_{I}\right)^{\sigma^{-1}}=\sum_{\sigma^{-1}}(\operatorname{sgn} \sigma) \phi_{I_{\sigma}}=\sum_{\sigma}(\operatorname{sgn} \sigma) \phi_{I_{\sigma}}$.

28 The Wedge Product

1. (a)

Proof. $F=2 \phi_{2} \otimes \phi_{2} \otimes \phi_{1}+\phi_{1} \otimes \phi_{5} \otimes \phi_{4}, G=\phi_{1} \otimes \phi_{3}+\phi_{3} \otimes \phi_{1}$. So $A F=2 \phi_{2} \wedge \phi_{2} \wedge \phi_{1}+\phi_{1} \wedge \phi_{5} \wedge \phi_{4}=-\phi_{1} \wedge \phi_{4} \wedge \phi_{5}$ and $A G=\phi_{1} \wedge \phi_{3}-\phi_{1} \wedge \phi_{3}=0$, by Step 9 of the proof of Theorem 28.1.
(b)

Proof. $(A F) \wedge h=-\phi_{1} \wedge \phi_{4} \wedge \phi_{5} \wedge\left(\phi_{1}-2 \phi_{3}\right)=2 \phi_{1} \wedge \phi_{4} \wedge \phi_{5} \wedge \phi_{3}=2 \phi_{1} \wedge \phi_{3} \wedge \phi_{4} \wedge \phi_{5}$.
(c)

Proof. $(A F)(x, y, z)=-\phi_{1} \wedge \phi_{4} \wedge \phi_{5}(x, y, z)=-\operatorname{det}\left[\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{4} & y_{4} & z_{4} \\ x_{5} & y_{5} & z_{5}\end{array}\right]=-x_{1} y_{4} z_{5}+x_{1} y_{5} z_{4}+x_{4} y_{1} z_{5}-x_{4} y_{5} z_{1}-$ $x_{5} y_{1} z_{4}+x_{5} y_{4} z_{1}$.
2.

Proof. Suppose G is a k-tensor, then $A G\left(v_{1}, \cdots, v_{k}\right)=\sum_{\sigma}(\operatorname{sgn} \sigma) G^{\sigma}\left(v_{1}, \cdots, v_{k}\right)=\sum_{\sigma}(\operatorname{sgn} \sigma) G\left(v_{1}, \cdots, v_{k}\right)=$ $\left[\sum_{\sigma}(\operatorname{sgn} \sigma)\right] G\left(v_{1}, \cdots, v_{k}\right)$. Let e be an elementary permutation. Then $e: \sigma \rightarrow e \circ \sigma$ is an isomorphism on the permutation group S_{k} of $\{1,2, \cdots, k\}$. So S_{k} can be divided into two disjoint subsets U_{1} and U_{2} so that e establishes a one-to-one correspondence between U_{1} and U_{2}. By the fact sgne $\circ \sigma=-\operatorname{sgn} \sigma$, we conclude $\sum_{\sigma}(\operatorname{sgn} \sigma)=0$. This implies $A G=0$.
3.

Proof. We work by induction. For $k=2, \frac{1}{l_{1}!l_{2}!} A\left(f_{1} \otimes f_{2}\right)=f_{1} \wedge f_{2}$ by the definition of \wedge. Assume for $k=n$, the claim is true. Then for $k=n+1$,
$\frac{1}{l_{1}!\cdots l_{n}!l_{n+1}!} A\left(f_{1} \otimes \cdots \otimes f_{n} \otimes f_{n+1}\right)=\frac{1}{l_{1}!\cdots l_{n}!} \frac{1}{l_{n+1}!} A\left(\left(f_{1} \otimes \cdots \times f_{n}\right) \otimes f_{n+1}\right)=\frac{1}{l_{1}!\cdots l_{n}!} A\left(f_{1} \otimes \cdots \otimes f_{n}\right) \wedge f_{n+1}$
by Step 6 of the proof of Theorem 28.1. By induction, $\frac{1}{l_{1}!\cdots l_{n}!} A\left(f_{1} \otimes \cdots \otimes f_{n}\right)=f_{1} \wedge \cdots \wedge f_{n}$. So $\frac{1}{l_{1}!\cdots l_{n}!l_{n+1}!} A\left(f_{1} \otimes \cdots \otimes f_{n} \otimes f_{n+1}\right)=f_{1} \wedge \cdots \wedge f_{n} \wedge f_{n+1}$. By the principle of mathematical induction,

$$
\frac{1}{l_{1}!\cdots l_{k}!} A\left(f_{1} \otimes \cdots \otimes f_{k}\right)=f_{1} \wedge \cdots \wedge f_{k}
$$

for any k.
4.

Proof. $\phi_{i_{1}} \wedge \cdots \phi_{i_{k}}\left(x_{1}, \cdots, x_{k}\right)=A\left(\phi_{i_{1}} \otimes \cdots \otimes \phi_{i_{k}}\right)\left(x_{1}, \cdots, x_{k}\right)=\sum_{\sigma}(\operatorname{sgn} \sigma)\left(\phi_{i_{1}} \otimes \cdots \otimes \phi_{i_{k}}\right)^{\sigma}\left(x_{1}, \cdots, x_{k}\right)=$ $\sum_{\sigma}(\operatorname{sgn} \sigma)\left(\phi_{i_{1}} \otimes \cdots \otimes \phi_{i_{k}}\right)\left(x_{\sigma(1)}, \cdots, x_{\sigma(k)}\right)=\sum_{\sigma}(\operatorname{sgn} \sigma) x_{i_{1}, \sigma(1)}, \cdots, x_{i_{k}, \sigma(k)}=\operatorname{det} X_{I}$.
5.

Proof. Suppose F is a k-tensor. Then

$$
\begin{aligned}
T^{*}\left(F^{\sigma}\right)\left(v_{1}, \cdots, v_{k}\right) & =F^{\sigma}\left(T\left(v_{1}\right), \cdots, T\left(v_{k}\right)\right) \\
& =F\left(T\left(v_{\sigma(1)}\right), \cdots, T\left(v_{\sigma(k)}\right)\right) \\
& =T^{*} F\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) \\
& =\left(T^{*} F\right)^{\sigma}\left(v_{1}, \cdots, v_{k}\right)
\end{aligned}
$$

6. (a)

Proof. $T^{*} \psi_{I}\left(v_{1}, \cdots, v_{k}\right)=\psi_{I}\left(T\left(v_{1}\right), \cdots, T\left(v_{k}\right)\right)=\psi_{I}\left(B \cdot v_{1}, \cdots, B \cdot v_{k}\right)$. In particular, for $\bar{J}=\left(\bar{j}_{1}, \cdots, \bar{j}_{k}\right)$, $c_{\bar{J}}=\sum_{[J]} c_{J} \psi_{J}\left(e_{\bar{j}_{1}}, \cdots, e_{\bar{j}_{k}}\right)=T^{*} \psi_{I}\left(e_{\bar{j}_{1}}, \cdots, e_{\bar{j}_{k}}\right)=\psi_{I}\left(B \cdot e_{\bar{j}_{1}}, \cdots, B \cdot e_{\bar{j}_{k}}\right)=\psi_{I}\left(\beta_{\bar{j}_{1}}, \cdots, \beta_{\bar{j}_{k}}\right)$ where β_{i} is the i-th column of B. So $c_{\bar{J}}=\operatorname{det}\left[\beta_{\bar{j}_{1}}, \cdots, \beta_{\bar{j}_{k}}\right]_{I}$. Therefore, c_{J} is the determinant of the matrix consisting of the i_{1}, \cdots, i_{k} rows and the j_{1}, \cdots, j_{k} columns of B, where $I=\left(i_{1}, \cdots, i_{k}\right)$ and $J=\left(j_{1}, \cdots, j_{k}\right)$.
(b)

Proof. $T^{*} f=\sum_{[I]} d_{I} T^{*}\left(\psi_{I}\right)=\sum_{[I]} d_{I} \sum_{[I]} \operatorname{det} B_{I, J} \psi_{J}=\sum_{[J]}\left(\sum_{[I]} d_{I} \operatorname{det} B_{I, J}\right) \psi_{J}$ where $B_{I, J}$ is the matrix consisting of the i_{1}, \cdots, i_{k} rows and the j_{1}, \cdots, j_{k} columns of $B\left(I=\left(i_{1}, \cdots, i_{k}\right)\right.$ and $\left.J=\left(j_{1}, \cdots, j_{k}\right)\right)$.

29 Tangent Vectors and Differential Forms

1.

Proof. $\gamma_{*}\left(t ; e_{1}\right)=\left(\gamma(t) ; D \gamma(t) \cdot e_{1}\right)=\left(\gamma(t) ;\left[\begin{array}{c}\gamma_{1}^{\prime}(t) \\ \cdots \\ \gamma_{n}^{\prime}(t)\end{array}\right]\right)$, which is the velocity vector of γ corresponding to the parameter value t.
2.

Proof. The velocity vector of the curve $\gamma(t)=\alpha(x+t v)$ corresponding to parameter value $t=0$ is calculated by $\left.\frac{d}{d t} \gamma(t)\right|_{t=0}=\lim _{t \rightarrow 0} \frac{\alpha(x+t v)-\alpha(x)}{t}=D \alpha(x) \cdot v$. So $\alpha_{*}(x ; v)=(\alpha(x) ; D \alpha(x) \cdot v)=\left(\alpha(x) ;\left.\frac{d}{d t} \gamma(t)\right|_{t=0}\right)$.
3.

Proof. Suppose $\alpha: U_{\alpha} \rightarrow V_{\alpha}$ and $\beta: U_{\beta} \rightarrow V_{\beta}$ are two coordinate patches about p, with $\alpha(x)=\beta(y)=p$. Because \mathbb{R}^{k} is spanned by the vectors e_{1}, \cdots, e_{k}, the space $\mathcal{T}_{p}^{\alpha}(M)$ obtained by using α is spanned by the vectors $\left(p ; \frac{\partial \alpha(x)}{\partial x_{j}}\right)_{j=1}^{k}$ and the space $\mathcal{T}_{p}^{\beta}(M)$ obtained by using β is spanned by the vectors $\left(p ; \frac{\partial \beta(y)}{\partial y_{i}}\right)_{i=1}^{k}$. Let $W=V_{\alpha} \cap V_{\beta}, U_{\alpha}^{\prime}=\alpha^{-1}(W)$, and $U_{\beta}^{\prime}=\beta^{-1}(W)$. Then $\beta^{-1} \circ \alpha: U_{\alpha}^{\prime} \rightarrow U_{\beta}^{\prime}$ is a C^{r}-diffeomorphism by Theorem 24.1. By chain rule,

$$
D \alpha(x)=D\left(\beta \circ \beta^{-1} \circ \alpha\right)(x)=D \beta(y) \cdot D\left(\beta^{-1} \circ \alpha\right)(x)
$$

Since $D\left(\beta^{-1} \circ \alpha\right)(x)$ is of rank k, the linear space spanned by $\left(\partial \alpha(x) / \partial x_{j}\right)_{j=1}^{k}$ agrees with the linear space spanned by $\left(\partial \beta(y) / \partial y_{i}\right)_{i=1}^{k}$.
4. (a)

Proof. Suppose $\alpha: U \rightarrow V$ is a coordinate patch about p, with $\alpha(x)=p$. Since $p \in M-\partial M$, we can without loss of generality assume U is an open subset of \mathbb{R}^{k}. By the definition of tangent vector, there exists $u \in \mathbb{R}^{k}$ such that $v=D \alpha(x) \cdot u$. For ε sufficiently small, $\{x+t u:|t| \leq \varepsilon\} \subset U$ and $\gamma(t):=\alpha(x+t u)(|t| \leq \varepsilon)$ has its image in M. Clearly $\left.\frac{d}{d t} \gamma(t)\right|_{t=0}=D \alpha(x) \cdot u=v$.
(b)

Proof. Suppose $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n}$ is a parametrized-curve whose image set lies in M. Denote $\gamma(0)$ by p and assume $\alpha: U \rightarrow V$ is a coordinate patch about p. For $v:=\left.\frac{d}{d t} \gamma(t)\right|_{t=0}$, we define $u=D \alpha^{-1}(p) \cdot v$. Then

$$
\alpha_{*}(x ; u)=(p ; D \alpha(x) \cdot u)=\left(p ; D \alpha(x) \cdot D \alpha^{-1}(p) \cdot v\right)=\left(p ; D\left(\alpha \circ \alpha^{-1}\right)(p) \cdot v\right)=(p ; v)
$$

So the velocity vector of γ corresponding to parameter value $t=0$ is a tangent vector.
5.

Proof. Similar to the proof of Problem 4, with $(-\varepsilon, \varepsilon)$ changed to $[0, \varepsilon)$ or $(-\varepsilon, 0]$. We omit the details.

30 The Differential Operator

2.

Proof. $d \omega=-x d x \wedge d y-z d y \wedge d z$. So $d(d \omega)=-d x \wedge d x \wedge d y-d z \wedge d y \wedge d z=0$. Meanwhile,

$$
d \eta=-2 y z d z \wedge d y+2 d x \wedge d z=2 y z d y \wedge d z+2 d x \wedge d z
$$

and

$$
\omega \wedge \eta=\left(-x y^{2} z^{2}-3 x\right) d x \wedge d y+\left(2 x^{2} y+x y z\right) d x \wedge d z+\left(6 x-y^{2} z^{3}\right) d y \wedge d z
$$

So

$$
\begin{gathered}
d(\omega \wedge \eta)=\left(-2 x y^{2} z-2 x^{2}-x z+6\right) d x \wedge d y \wedge d z \\
(d \omega) \wedge \eta=-2 x^{2} d x \wedge d y \wedge d z-x z d x \wedge d y \wedge d z
\end{gathered}
$$

and

$$
\omega \wedge d \eta=2 x y^{2} z d x \wedge d y \wedge d z-6 d x \wedge d y \wedge d z
$$

Therefore, $(d \omega) \wedge \eta-\omega \wedge d \eta=\left(-2 x y^{2} z-2 x^{2}-x z+6\right) d x \wedge d y \wedge d z=d(\omega \wedge \eta)$.
3.

Proof. In $\mathbb{R}^{2}, \omega=y d x-x d y$ vanishes at $x_{0}=(0,0)$, but $d \omega=-2 d x \wedge d y$ does not vanish at x_{0}. In general, suppose ω is a k-form defined in an open set A of \mathbb{R}^{n}, and it has the general form $\omega=\sum_{[I]} f_{I} d x_{I}$. If it vanishes at each x in a neighborhood of x_{0}, we must have $f_{I}=0$ in a neighborhood of x_{0} for each I. By continuity, we conclude $f_{I} \equiv 0$ in a neighborhood of x_{0}, including x_{0}. So $d \omega=\sum_{[I]} d f_{I} \wedge d x_{I}=\sum_{[I]}\left(\sum_{i} D_{i} f d x_{i}\right) \wedge d x_{I}$ vanishes at x_{0}.
4.

Proof. $d \omega=d\left(\frac{x}{x^{2}+y^{2}} d x\right)+d\left(\frac{y}{x^{2}+y^{2}} d y\right)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} d x \wedge d y+\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} d x \wedge d y=0$. So ω is closed. Define $\theta=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$, then $d \theta=\omega$. So ω is exact on A.
5. (a)

Proof. $d \omega=\frac{-\left(x^{2}+y^{2}\right)+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y \wedge d x+\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x \wedge d y=0$. So ω is closed.
(c)

Proof. We consider the following transformation from $(0, \infty) \times(0,2 \pi)$ to B :

$$
\left\{\begin{array}{l}
x=r \cos t \\
y=r \sin t
\end{array}\right.
$$

Then

$$
\operatorname{det} \frac{\partial(x, y)}{\partial(r, t)}=\operatorname{det}\left[\begin{array}{cc}
\cos t & -r \sin t \\
\sin t & r \cos t
\end{array}\right]=r \neq 0
$$

By part (b) and the inverse function theorem (Theorem 8.2, the global version), we conclude ϕ is of class C^{∞}.
(d)

Proof. Using the transformation given in part (c), we have $d x=\cos t d r-r \sin t d t$ and $d y=\sin t d r+r \cos t d t$. So $\omega=[-r \sin t(\cos t d r-r \sin t d t)+r \cos t(\sin t d r+r \cos t d t)] / r^{2}=d t=d \phi$.
(e)

Proof. We follow the hint. Suppose g is a closed 0 -form in B. Denote by a the point $(-1,0)$ of \mathbb{R}^{2}. For any $x \in B$, let $\gamma(t):[0,1] \rightarrow B$ be the segment connecting a and x, with $\gamma(0)=a$ and $\gamma(1)=x$. Then by mean-value theorem (Theorem 7.3), there exists $t_{0} \in(0,1)$, such that $g(a)-g(x)=D g\left(a+t_{0}(x-a)\right) \cdot(a-x)$. Since g is closed in $B, D g=0$ in B. This implies $g(x)=g(a)$ for any $x \in B$.

Proof. First, we note ϕ is not well-defined in all of A, so part (d) can not be used to prove ω is exact in A. Assume $\omega=d f$ in A for some 0 -form f. Then $d(f-\phi)=d f-d \phi=\omega-\omega=0$ in B. By part (e), $f-\phi$ is a constant in B. Since $\lim _{y \downarrow 0} \phi(1, y)=0$ and $\lim _{y \uparrow 0} \phi(1, y)=2 \pi, f(1, y)$ has different limits when y approaches 0 through positive and negative values. This is a contradiction since f is C^{1} function defined everywhere in A.
6.

Proof. $d \eta=\sum_{i=1}^{n}(-1)^{i-1} D_{i} f_{i} d x_{i} \wedge d x_{1} \wedge \cdots \widehat{d x}_{i} \wedge \cdots \wedge d x_{n}=\sum_{i=1}^{n} D_{i} f_{i} d x_{1} \wedge \cdots \wedge d x_{n}$. So $d \eta=0$ if and only if $\sum_{i=1}^{n} D_{i} f_{i}=0$. Since $D_{i} f_{i}(x)=\frac{\|x\|^{2}-m x_{i}^{2}}{\|x\|^{m+2}}, \sum_{i=1}^{n} D_{i} f_{i}(x)=\frac{n-m}{\|x\|^{m}}$. So $d \eta=0$ if and only if $m=n$.
7.

Proof. By linearity, it suffices to prove the theorem for $\omega=f d x_{I}$, where $I=\left(i_{1}, \cdots, i_{k-1}\right)$ is a k tuple from $\{1, \cdots, n\}$ in ascending order. Indeed, in this case, $h(x)=d\left(f d x_{I}\right)(x)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{k}\right)\right)=$ $\left(\sum_{i=1}^{n} D_{i} f(x) d x_{i} \wedge d x_{I}\right)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{k}\right)\right)$. Let $X=\left[v_{1} \cdots v_{k}\right]$. For each $j \in\{1, \cdots, k\}$, let $Y_{j}=$ $\left[v_{1} \cdots \widehat{v}_{j} \cdots v_{k}\right]$. Then by Theorem 2.15 and Problem 4 of $\S 28$,

$$
\operatorname{det} X\left(i, i_{1}, \cdots, i_{k-1}\right)=\sum_{j=1}^{k}(-1)^{j-1} v_{i j} \operatorname{det} Y_{j}\left(i_{1}, \cdots, i_{k-1}\right) .
$$

Therefore

$$
\begin{aligned}
h(x) & =\sum_{i=1}^{n} D_{i} f(x) \operatorname{det} X\left(i, i_{1}, \cdots, i_{k-1}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{k} D_{i} f(x)(-1)^{j-1} v_{i j} \operatorname{det} Y_{j}\left(i_{1}, \cdots, i_{k-1}\right) \\
& =\sum_{j=1}^{k}(-1)^{j-1} D f(x) \cdot v_{j} \operatorname{det} Y_{j}\left(i_{1}, \cdots, i_{k-1}\right) .
\end{aligned}
$$

Meanwhile, $g_{j}(x)=\omega(x)\left(\left(x ; v_{1}\right), \cdots, \widehat{\left(x ; v_{j}\right)}, \cdots,\left(x ; v_{k}\right)\right)=f(x) \operatorname{det} Y_{j}\left(i_{1}, \cdots, i_{k-1}\right)$. So

$$
D g_{j}(x)=D f(x) \operatorname{det} Y_{j}\left(i_{1}, \cdots, i_{k-1}\right)
$$

and consequently, $h(x)=\sum_{j=1}^{k}(-1)^{j-1} D g_{j}(x) \cdot v_{j}$. In particular, for $k=1, h(x)=D f(x) \cdot v$, which is a directional derivative.

31 Application to Vector and Scalar Fields

1.

Proof. (Proof of Theorem 31.1) It is straightforward to check that α_{i} and β_{j} are isomorphisms. Moreover, $d \circ \alpha_{0}(f)=d f=\sum_{i=1}^{n} D_{i} f d x_{i}$ and $\alpha_{1} \circ \operatorname{grad}(f)=\alpha_{1}\left(\left(x ; \sum_{i=1}^{n} D_{i} f(x) e_{i}\right)\right)=\sum_{i=1}^{n} D_{i} f(x) d x_{i}$. So $d \circ \alpha_{0}=$ $\alpha_{1} \circ$ grad.

Also, $d \circ \beta_{n-1}(G)=d\left(\sum_{i=1}^{n}(-1)^{i-1} g_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}\right)=\sum_{i=1}^{n}(-1)^{i-1} D_{i} g_{i} d x_{i} \wedge d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge$ $\cdots \wedge d x_{n}=\left(\sum_{i=1}^{n} D_{i} g_{i}\right) d x_{1} \wedge \cdots \wedge d x_{n}$, and $\beta_{n} \circ \operatorname{div}(G)=\beta_{n}\left(\sum_{i=1}^{n} D_{i} g_{i}\right)=\left(\sum_{i=1}^{n} D_{i} g_{i}\right) d x_{1} \wedge \cdots \wedge d x_{n}$. So $d \circ \beta_{n-1}=\beta_{n} \circ$ div.
(Proof of Theorem 31.2) We only need to check $d \circ \alpha_{1}=\beta_{2} \circ$ curl. Indeed, $d \circ \alpha_{1}(F)=d\left(\sum_{i=1}^{3} f_{i} d x_{i}\right)=$ $\left(D_{2} f_{1} d x_{2}+D_{3} f_{1} d x_{3}\right) \wedge d x_{1}+\left(D_{1} f_{2} d x_{1}+D_{3} f_{2} d x_{3}\right) \wedge d x_{2}+\left(D_{1} f_{3} d x_{1}+D_{2} f_{3} d x_{2}\right) \wedge d x_{3}=\left(D_{2} f_{3}-D_{3} f_{2}\right) d x_{2} \wedge$ $d x_{3}+\left(D_{3} f_{1}-D_{1} f_{3}\right) d x_{3} \wedge d x_{1}+\left(D_{1} f_{2}-D_{2} f_{1}\right) d x_{1} \wedge d x_{2}$, and $\beta_{2} \circ \operatorname{curl}(F)=\beta_{2}\left(\left(x ;\left(D_{2} f_{3}-D_{3} f_{2}\right) e_{1}+\left(D_{3} f_{1}-\right.\right.\right.$ $\left.\left.\left.D_{1} f_{3}\right) e_{2}+\left(D_{1} f_{2}-D_{2} f_{1}\right) e_{3}\right)\right)=\left(D_{2} f_{3}-D_{3} f_{2}\right) d x_{2} \wedge d x_{3}-\left(D_{3} f_{1}-D_{1} f_{3}\right) d x_{1} \wedge d x_{3}+\left(D_{1} f_{2}-D_{2} f_{1}\right) d x_{1} \wedge d x_{2}$. So $d \circ \alpha_{1}=\beta_{2} \circ$ curl.
2.

Proof. $\alpha_{1} F=f_{1} d x_{1}+f_{2} d x_{2}$ and $\beta_{1} F=f_{1} d x_{2}-f_{2} d x_{1}$.
3. (a)

Proof. Let f be a scalar field in A and $F(x)=\left(x ;\left[f_{1}(x), f_{2}(x), f_{3}(x)\right]\right)$ be a vector field in A. Define $\omega_{F}^{1}=f_{1} d x_{1}+f_{2} d x_{2}+f_{3} d x_{3}$ and $\omega_{F}^{2}=f_{1} d x_{2} \wedge d x_{3}+f_{2} d x_{3} \wedge d x_{1}+f_{3} d x_{1} \wedge d x_{2}$. Then it is straightforward to check that $d \omega_{F}^{1}=w_{\operatorname{curl}}^{F}$ and $d \omega_{F}^{2}=(\operatorname{div} F) d x_{1} \wedge d x_{2} \wedge d x_{3}$. So by the general principle $d(d \omega)=0$, we have

$$
0=d(d f)=d\left(\omega_{\operatorname{grad} f}^{1}\right)=\omega_{\operatorname{curl} \operatorname{grad} f}^{2}
$$

and

$$
0=d\left(d \omega_{F}^{1}\right)=d\left(\omega_{\text {curl } F}^{2}\right)=(\operatorname{div} \operatorname{curl} F) d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

These two equations imply that curl $\operatorname{grad} f=0$ and $\operatorname{div} \operatorname{curl} F=0$.
4. (a)

Proof. $\gamma_{2}(\alpha H+\beta G)=\sum_{i<j}\left[\alpha h_{i j}(x)+\beta g_{i j}(x)\right] d x_{i} \wedge d x_{j}=\alpha \sum_{i<j} h_{i j}(x) d x_{i} \wedge d x_{j}+\beta \sum_{i<j} g_{i j}(x) d x_{i} \wedge d x_{j}=$ $\alpha \gamma_{2}(H)+\beta \gamma_{2}(G)$. So γ_{2} is a linear mapping. It is also easy to see γ_{2} is one-to-one and onto as the skewsymmetry of H implies $h_{i i}=0$ and $h_{i j}+h_{j i}=0$.
(b)

Proof. Suppose F is a vector field in A and $H \in \mathcal{S}(A)$. We define twist : \{vector fields in $A\} \rightarrow \mathcal{S}(A)$ by $\operatorname{twist}(F)_{i j}=D_{i} f_{j}-D_{j} f_{i}$, and spin : $\mathcal{S}(A) \rightarrow\{$ vector fields in $A\}$ by $\operatorname{spin}(H)=\left(x ;\left(D_{4} h_{23}-D_{3} h_{24}+\right.\right.$ $\left.\left.D_{2} h_{34},-D_{4} h_{13}+D_{3} h_{14}-D_{1} h_{34}, D_{4} h_{12}-D_{2} h_{14}+D_{1} h_{24},-D_{3} h_{12}+D_{2} h_{13}-D_{1} h_{23}\right)\right)$.
5. (a)

Proof. Suppose $\omega=\sum_{i=1}^{n} a_{i} d x_{i}$ is a 1-form such that $\omega(x)(x ; v)=\langle f(x), v\rangle$. Then $\sum_{i=1}^{n} a_{i}(x) v_{i}=$ $\sum_{i=1}^{n} f_{i}(x) v_{i}$. Choose $v=e_{i}$, we conclude $a_{i}=f_{i}$. So $\omega=\alpha_{1} F$.
(b)

Proof. Suppose ω is an $(n-1)$ form such that $\omega(x)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{n-1}\right)\right)=\varepsilon V\left(g(x), v_{1}, \cdots, v_{n-1}\right)$. Assume ω has the representation $\sum_{i=1}^{n} a_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}$, then

$$
\begin{aligned}
\omega(x)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{n-1}\right)\right) & =\sum_{i=1}^{n} a_{i}(x) \operatorname{det}\left[v_{1}, \cdots, v_{n-1}\right]_{(1, \cdots, \hat{i}, \cdots, n)} \\
& =\sum_{i=1}^{n}(-1)^{i-1}\left[(-1)^{i-1} a_{i}(x)\right] \operatorname{det}\left[v_{1}, \cdots, v_{n-1}\right]_{(1, \cdots, \widehat{i}, \cdots, n)} \\
& =\operatorname{det}\left[a(x), v_{1}, \cdots, v_{n-1}\right]
\end{aligned}
$$

where $a(x)=\left[a_{1}(x), \cdots,(-1)^{i-1} a_{i}(x), \cdots,(-1)^{n-1} a_{n}(x)\right]^{T r}$. Since

$$
\varepsilon V\left(g(x), v_{1}, \cdots, v_{n-1}\right)=\operatorname{det}\left[g(x), v_{1}, \cdots, v_{n-1}\right]
$$

we can conclude $\operatorname{det}\left[a(x), v_{1}, \cdots, v_{n-1}\right]=\operatorname{det}\left[g(x), v_{1}, \cdots, v_{n-1}\right]$, or equivalently,

$$
\operatorname{det}\left[a(x)-g(x), v_{1}, \cdots, v_{n-1}\right]=0
$$

Since v_{1}, \cdots, v_{n-1} can be arbitrary, we must have $g(x)=a(x)$, i.e. $\omega=\sum_{i=1}^{n}(-1)^{i-1} g_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge$ $d x_{n}=\beta_{n-1} G$.
(c)

Proof. Suppose $\omega=f d x_{1} \wedge \cdots \wedge d x_{n}$ is an n-form such that $\omega(x)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{n}\right)\right)=\varepsilon \cdot h(x) \cdot V\left(v_{1}, \cdots, v_{n}\right)$. This is equivalent to $f(x) \operatorname{det}\left[v_{1}, \cdots, v_{n}\right]=h(x) \operatorname{det}\left[v_{1}, \cdots, v_{n}\right]$. So $f=h$ and $\omega=\beta_{n} h$.

32 The Action of a Differentiable Map

1.

Proof. Let ω, η and θ be 0 -forms. Then
(1) $\beta^{*}(a \omega+b \eta)=a \omega \circ \beta+b \eta \circ \beta=a \beta^{*}(\omega)+b \beta^{*}(\eta)$.
(2) $\beta^{*}(\omega \wedge \theta)=\beta^{*}(\omega \cdot \theta)=\omega \circ \beta \cdot \theta \circ \beta=\beta^{*}(\omega) \cdot \beta^{*}(\theta)=\beta^{*}(\omega) \wedge \beta^{*}(\theta)$.
(3) $(\beta \circ \alpha)^{*} \omega=\omega \circ \beta \circ \alpha=\alpha^{*}(\omega \circ \beta)=\alpha^{*}\left(\beta^{*} \omega\right)$.
2.

Proof.

$$
\begin{aligned}
& d \alpha_{1} \wedge d \alpha_{3} \wedge d \alpha_{5} \\
= & \left(D_{1} \alpha_{1} d x_{1}+D_{2} \alpha_{1} d x_{2}+D_{3} \alpha_{1} d x_{3}\right) \wedge\left(D_{1} \alpha_{3} d x_{1}+D_{2} \alpha_{3} d x_{2}+D_{3} \alpha_{3} d x_{3}\right) \\
& \wedge\left(D_{1} \alpha_{5} d x_{1}+D_{2} \alpha_{5} d x_{2}+D_{3} \alpha_{5} d x_{3}\right) \\
= & \left(D_{1} \alpha_{1} D_{2} \alpha_{3} d x_{1} \wedge d x_{2}+D_{1} \alpha_{1} D_{3} \alpha_{3} d x_{1} \wedge d x_{3}+D_{2} \alpha_{1} D_{1} \alpha_{3} d x_{2} \wedge d x_{1}+D_{2} \alpha_{1} D_{3} \alpha_{3} d x_{2} \wedge d x_{3}\right. \\
& \left.+D_{3} \alpha_{1} D_{1} \alpha_{3} d x_{3} \wedge d x_{1}+D_{3} \alpha_{1} D_{2} \alpha_{3} d x_{3} \wedge d x_{2}\right) \wedge\left(D_{1} \alpha_{5} d x_{1}+D_{2} \alpha_{5} d x_{2}+D_{3} \alpha_{5} d x_{3}\right) \\
= & D_{2} \alpha_{1} D_{3} \alpha_{3} D_{1} \alpha_{5} d x_{2} \wedge d x_{3} \wedge d x_{1}+D_{3} \alpha_{1} D_{2} \alpha_{3} D_{1} \alpha_{5} d x_{3} \wedge d x_{2} \wedge d x_{1}+D_{1} \alpha_{1} D_{3} \alpha_{3} D_{2} \alpha_{5} d x_{1} \wedge d x_{3} \wedge d x_{2} \\
& +D_{3} \alpha_{1} D_{1} \alpha_{3} D_{2} \alpha_{5} d x_{3} \wedge d x_{1} \wedge d x_{2}+D_{1} \alpha_{1} D_{2} \alpha_{3} D_{3} \alpha_{5} d x_{1} \wedge d x_{2} \wedge d x_{3}+D_{2} \alpha_{1} D_{1} \alpha_{3} D_{3} \alpha_{5} d x_{2} \wedge d x_{1} \wedge d x_{3} \\
= & \left(D_{2} \alpha_{1} D_{3} \alpha_{3} D_{1} \alpha_{5}-D_{3} \alpha_{1} D_{2} \alpha_{3} D_{1} \alpha_{5}-D_{1} \alpha_{1} D_{3} \alpha_{3} D_{2} \alpha_{5}+D_{3} \alpha_{1} D_{1} \alpha_{3} D_{2} \alpha_{5}+D_{1} \alpha_{1} D_{2} \alpha_{3} D_{3} \alpha_{5}\right. \\
& \left.-D_{2} \alpha_{1} D_{1} \alpha_{3} D_{3} \alpha_{5}\right) d x_{1} \wedge d x_{2} \wedge d x_{3} \\
= & \operatorname{det}\left[\begin{array}{lll}
D_{1} \alpha_{1} & D_{2} \alpha_{1} & D_{3} \alpha_{1} \\
D_{1} \alpha_{3} & D_{2} \alpha_{3} & D_{3} \alpha_{3} \\
D_{1} \alpha_{5} & D_{2} \alpha_{5} & D_{3} \alpha_{5}
\end{array}\right] d x_{1} \wedge d x_{2} \wedge d x_{3} \\
= & \operatorname{det} D \alpha(1,3,5) d x_{1} \wedge d x_{2} \wedge d x_{3} .
\end{aligned}
$$

So $\alpha^{*}\left(d y_{(1,3,5)}=\alpha^{*}\left(d y_{1} \wedge d y_{3} \wedge d y_{5}\right)=\alpha^{*}\left(d y_{1}\right) \wedge \alpha^{*}\left(d y_{3}\right) \wedge \alpha^{*}\left(d y_{5}\right)=d \alpha_{1} \wedge d \alpha_{3} \wedge d \alpha_{5}=\operatorname{det} \frac{\partial \alpha_{(1,3,5)}}{\partial x} d x_{1} \wedge\right.$ $d x_{2} \wedge d x_{3}$. This confirms Theorem 32.2.
3.

Proof. $d \omega=-x d x \wedge d y-3 d y \wedge d z, \alpha^{*}(\omega)=x \circ \alpha \cdot y \circ \alpha d \alpha_{1}+2 z \circ \alpha d \alpha_{2}-y \circ \alpha d \alpha_{3}=u^{3} v(u d v+v d u)+$ $2(3 u+v) \cdot(2 u d u)-u^{2}(3 d u+d v)=\left(u^{3} v^{2}+9 u^{2}+4 u v\right) d u+\left(u^{4} v-u^{2}\right) d v$. Therefore

$$
\begin{aligned}
\alpha^{*}(d \omega) & =-x \circ \alpha d \alpha_{1} \wedge d \alpha_{2}-3 d \alpha_{2} \wedge d \alpha_{3} \\
& =-u v(u d v+v d u) \wedge(2 u d u)-2(2 u d u) \wedge(3 d u+d v)-(2 u d u) \wedge(3 d u+d v) \\
& =\left(2 u^{3} v-6 u\right) d u \wedge d v
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(\alpha^{*} \omega\right) & =\left(2 u^{3} v d v+4 u d v\right) \wedge d u+\left(4 u^{3} v d u-2 u d u\right) \wedge d v \\
& =\left(-2 u^{3} v-4 u+4 u^{3} v-2 u\right) d u \wedge d v \\
& =\left(2 u^{3} v-6 u\right) d u \wedge d v
\end{aligned}
$$

So $\alpha^{*}(d \omega)=d\left(\alpha^{*} \omega\right)$.
4.

Proof. Note $\alpha^{*} y_{i}=y_{i} \circ \alpha=\alpha_{i}$.
5.

Proof. $\alpha^{*}\left(d y_{I}\right)$ is an l-form in A, so we can write it as $\alpha^{*}\left(d y_{I}\right)=\sum_{[J]} h_{J} d x_{J}$, where J is an ascending l-tuple form the set $\{1, \cdots, k\}$. Fix $J=\left(j_{1}, \cdots, j_{l}\right)$, we have

$$
\begin{aligned}
h_{J}(x) & =\alpha^{*}\left(d y_{I}\right)(x)\left(\left(x ; e_{j_{1}}\right), \cdots,\left(x ; e_{j_{l}}\right)\right) \\
& =\left(d y_{I}\right)(x)\left(\alpha_{*}\left(x ; e_{j_{1}}\right), \cdots, \alpha_{*}\left(x ; e_{j_{l}}\right)\right) \\
& =\left(d y_{I}\right)(x)\left(\left(\alpha(x) ; D_{j_{1}} \alpha(x)\right), \cdots,\left(\alpha(x) ; D_{j_{l}} \alpha(x)\right)\right) \\
& =\operatorname{det}\left[D_{j_{1}} \alpha(x), \cdots, D_{j_{l}} \alpha(x)\right]_{I} \\
& =\operatorname{det} \frac{\partial \alpha_{I}}{\partial x_{J}}(x)
\end{aligned}
$$

Therefore $\alpha^{*}\left(d y_{I}\right)=\sum_{[J]}\left(\operatorname{det} \frac{\partial \alpha_{I}}{\partial x_{J}}\right) d x_{J}$.
6. (a)

Proof. We fix $x \in A$ and denote $\alpha(x)$ by y. Then $G(y)=\alpha_{*}(F(x))=(y ; D \alpha(x) \cdot f(x))$. Define $g(y)=$ $D \alpha(x) \cdot f(x)=(D \alpha \cdot f)\left(\alpha^{-1}(y)\right)$. Then $g_{i}(y)=\left(\sum_{j=1}^{n} D_{j} \alpha_{i} f_{j}\right)\left(\alpha^{-1}(y)\right)$ and we have

$$
\alpha^{*}\left(\alpha_{1} G\right)=\alpha^{*}\left(\sum_{i=1}^{n} g_{i} d y_{i}\right)=\sum_{i=1}^{n} g_{i} \circ \alpha d \alpha_{i}=\sum_{i=1}^{n} g_{i} \circ \alpha \sum_{j=1}^{n} D_{j} \alpha_{j} d x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} D_{j} \alpha_{i} g_{i} \circ \alpha\right) d x_{j}
$$

Therefore $\alpha^{*}\left(\alpha_{1} G\right)=\alpha_{1} F$ if and only if

$$
f_{j}=\sum_{i=1}^{n} D_{j} \alpha_{i} g_{i} \circ \alpha=\sum_{i=1}^{n} D_{j} \alpha_{i} \sum_{k=1}^{n} D_{k} \alpha_{i} f_{k}=\left[D_{j} \alpha_{1} D_{j} \alpha_{2} \cdots D_{j} \alpha_{n}\right] \cdot D \alpha \cdot f
$$

that is, $D \alpha(x)^{t r} \cdot D \alpha(x) \cdot f(x)=f(x)$. So $\alpha^{*}\left(\alpha_{1} G\right)=\alpha_{1} F$ if and only if $D \alpha(x)$ is an orthogonal matrix for each x.
(b)

Proof. $\beta_{n-1} F=\sum_{i=1}^{n}(-1)^{i-1} f_{i} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n}$ and

$$
\begin{aligned}
\alpha^{*}\left(\beta_{n-1} G\right) & =\alpha^{*}\left(\sum_{i=1}^{n}(-1)^{i-1} g_{i} d y_{1} \wedge \cdots \wedge \widehat{d y_{i}} \wedge \cdots \wedge d y_{n}\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1}\left(g_{i} \circ \alpha\right) \alpha^{*}\left(d y_{1} \wedge \cdots \wedge \widehat{d y_{i}} \wedge \cdots \wedge d y_{n}\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1}\left(\sum_{j=1}^{n} D_{j} \alpha_{i} f_{j}\right)\left(\sum_{k=1}^{n} \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{k}}, \cdots, x_{n}\right)} d x_{1} \wedge \cdots \wedge \widehat{d x_{k}} \wedge \cdots \wedge d x_{n}\right)
\end{aligned}
$$

So $\alpha^{*}\left(\beta_{n-1} F\right)=\beta_{n-1} F$ if and only if for any $k \in\{1, \cdots, n\}$,

$$
\begin{aligned}
f_{k} & =\sum_{i, j=1}^{n}(-1)^{k+i} D_{j} \alpha_{i} f_{j} \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{k}}, \cdots, x_{n}\right)} \\
& =\sum_{j=1}^{n} f_{j} \sum_{i=1}^{n}(-1)^{k+i} D_{j} \alpha_{i} \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{k}}, \cdots, x_{n}\right)} \\
& =\sum_{j=1}^{n} f_{j} \delta_{k j} \operatorname{det} D \alpha \\
& =f_{k} \operatorname{det} D \alpha
\end{aligned}
$$

Since F can be arbitrary, $\alpha^{*}\left(\beta_{n-1} F\right)=\beta_{n-1} F$ if and only if $\operatorname{det} D \alpha=1$.
(c)

Proof. $\alpha^{*}\left(\beta_{n} k\right)=\alpha^{*}\left(k d y_{1} \wedge \cdots \wedge d y_{n}\right)=k \circ \alpha \cdot \alpha^{*}\left(d y_{1} \wedge \cdots \wedge d y_{n}\right)=h \cdot \operatorname{det} D \alpha \cdot d x_{1} \wedge \cdots \wedge d x_{n}$ and $\beta_{n} h=h d x_{1} \wedge \cdots \wedge d x_{n}$. So $\alpha^{*}\left(\beta_{n} k\right)=\beta_{n} h$ for all h if and only if $\operatorname{det} D \alpha=1$.
7.

Proof. If α is an orientation-preserving isometry of \mathbb{R}^{n}, Exercise 6 implies $\alpha^{*}\left(\alpha_{1} G\right)=\alpha_{1} F, \alpha^{*}\left(\beta_{n-1} G\right)=$ $\beta_{n-1} F$, and $\alpha^{*}\left(\beta_{n} k\right)=\beta_{n} h$, where F, G, h and k are as defined in Exercise 6. Fix $x \in A$ and let $y=\alpha(x)$. We need to show
(1) $\widetilde{\alpha}_{*}(\operatorname{div} F)(y)=\operatorname{div}\left(\widetilde{\alpha}_{*}(F)\right)(y)$. Indeed, $\operatorname{div}\left(\widetilde{\alpha}_{*}(F)\right)(y)=\operatorname{div} G(y)$, and

$$
\begin{aligned}
\widetilde{\alpha}_{*}(\operatorname{div} F)(y) & =\operatorname{div} F(x)=\beta_{n}^{-1} \circ \beta(\operatorname{div} F)(x)=\beta_{n}^{-1} \circ d\left(\beta_{n-1} F\right)(x)=\beta_{n}^{-1} \circ d\left(\alpha^{*}\left(\beta_{n-1} G\right)\right)(x) \\
& =\beta_{n}^{-1} \circ \alpha^{*} \circ d\left(\beta_{n-1} G\right)(x)=\beta_{n}^{-1} \circ \alpha^{*} \circ \beta_{n}(\operatorname{div} G)(x)
\end{aligned}
$$

For any function $g \in C^{\infty}(B)$,

$$
\beta_{n}^{-1} \circ \alpha^{*} \circ \beta_{n}(g)=\beta_{n}^{-1} \circ \alpha^{*}\left(g d y_{1} \wedge \cdots \wedge d y_{n}\right)=\beta_{n}^{-1}\left(g \circ \alpha \cdot \operatorname{det} D \alpha \cdot d x_{1} \wedge \cdots \wedge d x_{n}\right)=g \circ \alpha
$$

So

$$
\widetilde{\alpha}_{*}(\operatorname{div} F)(y)=\beta_{n}^{-1} \circ \alpha^{*} \circ \beta_{n}(\operatorname{div} G)(x)=\operatorname{div} G(\alpha(x))=\operatorname{div} G(y)=\operatorname{div}\left(\widetilde{\alpha}_{*}(F)\right)(y)
$$

(2) $\widetilde{\alpha}_{*}(\operatorname{grad} h)=\operatorname{grad} \circ \widetilde{\alpha}_{*}(h)$. Indeed,

$$
\widetilde{\alpha}_{*}(\operatorname{grad} h)(y)=\alpha_{*}\left(\operatorname{grad} h \circ \alpha^{-1}(y)\right)=\alpha_{*}(\operatorname{grad} h(x))=\left(y ; D \alpha(x) \cdot\left[\begin{array}{c}
D_{1} h(x) \\
\cdots \\
D_{n} h(x)
\end{array}\right]\right)=\left(y ; D \alpha(x) \cdot(D h(x))^{t r}\right),
$$

and

$$
\begin{aligned}
\operatorname{grad} \circ \widetilde{\alpha}_{*}(h)(y) & =\operatorname{grad}\left(h \circ \alpha^{-1}\right)(y) \\
& =\left(y ;\left[D\left(h \circ \alpha^{-1}\right)(y)\right]^{t r}\right) \\
& =\left(y ;\left[D h\left(\alpha^{-1}(y)\right) \cdot D \alpha^{-1}(y)\right]^{t r}\right) \\
& =\left(y ;\left[D h(x) \cdot(D \alpha(x))^{-1}\right]^{t r}\right)
\end{aligned}
$$

Since $D \alpha$ is orthogonal, we have

$$
\operatorname{grad} \circ \widetilde{\alpha}_{*}(h)(y)=\left(y ;\left[D h(x) \cdot(D \alpha(x))^{t r}\right]^{t r}\right)=\left(y ; D \alpha(x) \cdot(D h(x))^{t r}\right)=\widetilde{\alpha}_{*}(\operatorname{grad} h)(y)
$$

(3) For $n=3, \widetilde{\alpha}_{*}(\operatorname{curl} F)=\operatorname{curl}\left(\widetilde{\alpha}_{*} F\right)$. Indeed, $\operatorname{curl}\left(\widetilde{\alpha}_{*} F\right)(y)=\operatorname{curl} G(y)$, and

$$
\begin{aligned}
\widetilde{\alpha}_{*}(\operatorname{curl} F)(y) & =\alpha_{*}\left(\operatorname{curl} F\left(\alpha^{-1}(y)\right)\right) \\
& =\alpha_{*}\left(\beta_{2}^{-1} \circ \beta_{2} \circ \operatorname{curl} F(x)\right) \\
& =\alpha_{*}\left(\beta_{2}^{-1} \circ d \circ \alpha_{1} F(x)\right) \\
& =\alpha_{*}\left(\beta_{2}^{-1} \circ d \circ \alpha^{*} \circ \alpha_{1} G(x)\right) \\
& =\alpha_{*}\left(\beta_{2}^{-1} \circ \alpha^{*} \circ d \circ \alpha_{1} G(x)\right) \\
& =\alpha_{*}\left(\beta_{2}^{-1} \circ \alpha^{*} \circ \beta_{2} \circ \operatorname{curl} G(x)\right)
\end{aligned}
$$

Let H be a vector field in B, we show $\alpha_{*}\left(\beta_{2}^{-1} \circ \alpha^{*} \circ \beta_{2}(H)(x)\right)=H(\alpha(x))=H(y)$. Indeed,

$$
\begin{aligned}
& \alpha_{*}\left(\beta_{2}^{-1} \circ \alpha^{*} \circ \beta_{2}(H)(x)\right) \\
= & \alpha_{*}\left(\beta_{2}^{-1} \circ \alpha^{*}\left(\sum_{i=1}^{n}(-1)^{i-1} h_{i} d y_{1} \wedge \cdots \wedge \widehat{d y_{i}} \wedge \cdots \wedge d y_{n}\right)\right) \\
= & \alpha_{*} \circ \beta_{2}^{-1}\left(\sum_{i=1}^{n}(-1)^{i-1} h_{i} \circ \alpha \sum_{j=1}^{n} \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha}_{i}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x}_{j}, \cdots, x_{n}\right)} d x_{1} \wedge \cdots \wedge \widehat{d x_{j}} \wedge \cdots \wedge d x_{n}\right) \\
= & \alpha_{*} \circ \beta_{2}^{-1}\left(\sum_{j=1}^{n}\left(\sum_{i=1}^{n}(-1)^{i-1} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n}\right)}\right) d x_{1} \wedge \cdots \wedge \widehat{d x_{j}} \wedge \cdots \wedge d x_{n}\right) \\
= & \alpha_{*}\left(\sum_{j=1}^{n}\left(\sum_{i=1}^{n}(-1)^{i+j} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n}\right)}\right) e_{j}\right)
\end{aligned}
$$

Using the definition of α_{*} and the fact that $\operatorname{det} D \alpha=1$, we have

$$
\begin{gathered}
\alpha_{*}\left(\sum_{j=1}^{n}\left(\sum_{i=1}^{n}(-1)^{i+j} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n}\right)}\right) e_{j}\right) \\
=D \alpha(x) \cdot\left[\begin{array}{c}
\sum_{i=1}^{n}(-1)^{i+1} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(\widehat{x_{1}}, \cdots, x_{n}\right)} \\
\cdots \\
\sum_{i=1}^{n}(-1)^{i+j} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n}\right)} \\
\cdots \\
\sum_{i=1}^{n}(-1)^{i+n} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{n}}\right)}
\end{array}\right] .
\end{gathered}
$$

So the k-th component of the above column vector is

$$
\begin{aligned}
& \sum_{j=1}^{n} D_{j} \alpha_{k} \sum_{i=1}^{n}(-1)^{i+j} h_{i} \circ \alpha \cdot \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n}\right)} \\
= & \sum_{i=1}^{n} h_{i} \circ \alpha \sum_{j=1}^{n}(-1)^{i+j} D_{j} \alpha_{k} \operatorname{det} \frac{\partial\left(\alpha_{1}, \cdots, \widehat{\alpha_{i}}, \cdots, \alpha_{n}\right)}{\partial\left(x_{1}, \cdots, \widehat{x_{j}}, \cdots, x_{n}\right)} \\
= & h_{k} \circ \alpha \operatorname{det} D \alpha \\
= & h_{k} \circ \alpha .
\end{aligned}
$$

Thus, we have proved $\alpha_{*}\left(\beta_{2}^{-1} \circ \alpha^{*} \circ \beta_{2}(H)(x)\right)=H(y)$. Replace H with curl G, we have

$$
\widetilde{\alpha}_{*}(\operatorname{curl} F)(y)=\operatorname{curl} G(y)=\operatorname{curl}\left(\widetilde{\alpha}_{*} F\right)(y)
$$

33 Integrating Forms over Parametrized-Manifolds

1.

Proof. $\int_{Y_{\alpha}}\left(x_{2} d x_{2} \wedge d x_{3}+x_{1} x_{3} d x_{1} \wedge d x_{3}\right)=\int_{A} v \operatorname{det}\left[\begin{array}{cc}0 & 1 \\ 2 u & 2 v\end{array}\right]+u\left(u^{2}+v^{2}+1\right) \operatorname{det}\left[\begin{array}{cc}1 & 0 \\ 2 u & 2 v\end{array}\right]=\int_{A}-2 u v+$ $2 u v\left(u^{2}+v^{2}+1\right)=1$.
2.

Proof.

$$
\begin{aligned}
& \int_{Y_{\alpha}} x_{1} d x_{1} \wedge d x_{4} \wedge d x_{3}+2 x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3} \\
= & \int_{A} \alpha^{*}\left(-x_{1} d x_{1} \wedge d x_{3} \wedge d x_{4}+2 x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right) \\
= & \int_{A}\left[-s \operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 4(2 u-t) & 2(t-2 u)
\end{array}\right]+2 u t \operatorname{det}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right] d s \wedge d u \wedge d t \\
= & \int_{A} 4 s(2 u-t)+2 u t \\
= & 6
\end{aligned}
$$

3. (a)

Proof.

$$
\begin{aligned}
& \int_{Y_{\alpha}} \frac{1}{\|x\|^{m}}\left(x_{1} d x_{2} \wedge d x_{3}-x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}\right) \\
= & \int_{A} \frac{1}{\left\|\left(u, v,\left(1-u^{2}-v^{2}\right)^{1 / 2}\right)\right\|^{m}}\left[u \operatorname{det} \frac{\partial\left(x_{2}, x_{3}\right)}{\partial(u, v)}-v \operatorname{det} \frac{\partial\left(x_{1}, x_{3}\right)}{\partial(u, v)}+\left(1-u^{2}-v^{2}\right)^{1 / 2} \operatorname{det} \frac{\partial\left(x_{1}, x_{2}\right)}{\partial(u, v)}\right] \\
= & \int_{A} u \operatorname{det}\left[\begin{array}{cc}
0 & \frac{u}{-\frac{v}{1-u^{2}-v^{2}}} \\
= & -\frac{v}{\sqrt{1-u^{2}-v^{2}}}
\end{array}\right]-v \operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
-\frac{u}{1-u^{2}-v^{2}} & \left.-\frac{v}{\sqrt{1-u^{2}-v^{2}}}\right]+\left(1-u^{2}-v^{2}\right)^{1 / 2} \operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
= & \int_{A} \frac{u^{2}}{\sqrt{1-u^{2}-v^{2}}}+\frac{v^{2}}{\sqrt{1-u^{2}-v^{2}}}+\sqrt{1-u^{2}-v^{2}} \\
= & \int_{A} \frac{1}{\sqrt{1-u^{2}-v^{2}}} .
\end{array} .\right.
\end{aligned}
$$

Apply change-of-variable, $\left\{\begin{array}{l}u=r \cos \theta \\ v=r \sin \theta\end{array} \quad(0 \leq r \leq 1,0 \leq \theta<2 \pi)\right.$, we have

$$
\int_{A} \frac{1}{\sqrt{1-u^{2}-v^{2}}}=\int_{[0,1]^{2}} \frac{1}{\sqrt{1-r^{2}}} \operatorname{det}\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]=2 \pi
$$

(b)

Proof. -2π.
4.

Proof. Suppose η has the representation $\eta=f d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{k}$, where $d x_{i}$ is the standard elementary 1 -form depending on the standard basis e_{1}, \cdots, e_{k} in \mathbb{R}^{k}. Let a_{1}, \cdots, a_{k} be another basis for \mathbb{R}^{k} and define $A=\left[a_{1}, \cdots, a_{k}\right]$. Then

$$
\eta(x)\left(\left(x ; a_{1}\right), \cdots,\left(x ; a_{k}\right)\right)=f(x) \operatorname{det} A
$$

If the frame $\left(a_{1}, \cdots, a_{k}\right)$ is orthonormal and right-handed, $\operatorname{det} A=1$. We consequently have

$$
\int_{A} \eta=\int_{A} f=\int_{x \in A} \eta(x)\left(\left(x ; a_{1}\right), \cdots,\left(x ; a_{k}\right)\right)
$$

34 Orientable Manifolds

1.

Proof. Let $\alpha: U_{\alpha} \rightarrow V_{\alpha}$ and $\beta: U_{\beta} \rightarrow V_{\beta}$ be two coordinate patches and suppose $W_{:} V_{\alpha} \cap V_{\beta}$ is non-empty. $\forall p \in W$, denote by x and y the points in $\alpha^{-1}(W)$ and $\beta^{-1}(W)$ such that $\alpha(x)=p=\beta(y)$, respectively. Then

$$
D \alpha^{-1} \circ \beta(y)=D \alpha^{-1}(p) \cdot D \beta(y)=[D \alpha(x)]^{-1} \cdot D \beta(y)
$$

So $\operatorname{det} D \alpha^{-1} \circ \beta(y)=[\operatorname{det} D \alpha(x)]^{-1} \operatorname{det} D \beta(y)>0$. Since p is arbitrarily chosen, we conclude α and β overlap positively.
2.

Proof. Let $\alpha: U_{\alpha} \rightarrow V_{\alpha}$ and $\beta: U_{\beta} \rightarrow V_{\beta}$ be two coordinate patches and suppose $W:=V_{\alpha} \cap V_{\beta}$ is non-empty. $\forall p \in W$, denote by x and y the points in $\alpha^{-1}(W)$ and $\beta^{-1}(W)$ such that $\alpha(x)=p=\beta(y)$, respectively. Then

$$
\begin{aligned}
D(\alpha \circ r)^{-1} \circ(\beta \circ r)\left(r^{-1}(y)\right) & =D(\alpha \circ r)^{-1}(p) \cdot D(\beta \circ r)\left(r^{-1}(y)\right) \\
& =D\left(r^{-1} \circ \alpha^{-1}\right)(p) \cdot D(\beta \circ r)\left(r^{-1}(y)\right) \\
& =D r^{-1}(x) D \alpha^{-1}(p) \cdot D \beta(y) \cdot \operatorname{Dr}\left(r^{-1}(y)\right) .
\end{aligned}
$$

Note $r^{-1}=r$ and $\operatorname{det} D r=\operatorname{det} D r^{-1}=-1$, we have

$$
\operatorname{det}\left(D(\alpha \circ r)^{-1} \circ(\beta \circ r)\left(r^{-1}(y)\right)\right)=[\operatorname{det} D \alpha(x)]^{-1} \operatorname{det} D \beta(y)
$$

So if α and β overlap positively, so do $\alpha \circ r$ and $\beta \circ r$.
3.

Proof. Denote by n the unit normal field corresponding to the orientation of M. Then $[n, T]$ is right-handed, i.e. $\operatorname{det}[n, T]>0$.
4.

Proof. $\frac{\partial \alpha}{\partial u}=\left[\begin{array}{c}-2 \pi \sin (2 \pi u) \\ 2 \pi \cos (2 \pi u) \\ 0\end{array}\right], \frac{\partial \alpha}{\partial v}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. We need to find $n=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$, such that $\operatorname{det}\left[n, \frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial v}\right]>0,\|n\|=1$, and $n \perp \operatorname{span}\left\{\frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial v}\right\}$. Indeed, $\left\langle n, \frac{\partial \alpha}{\partial v}\right\rangle=0$ implies $n_{3}=0,\left\langle n, \frac{\partial \alpha}{\partial u}\right\rangle=0$ implies $-n_{1} \sin (2 \pi u)+n_{2} \cos (2 \pi u)=$ 0. Combined with the condition $n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=n_{1}^{2}+n_{2}^{2}=1$ and det $\left[\begin{array}{ccc}n_{1} & -2 \pi \sin (2 \pi u) & 0 \\ n_{2} & 2 \pi \cos (2 \pi u) & 0 \\ 0 & 0 & 1\end{array}\right]=\left(n_{1} \cos (2 \pi u)+\right.$ $\left.n_{2} \sin (2 \pi u)\right) \cdot 2 \pi>0$, we can solve for n_{1} and $n_{2}:\left\{\begin{array}{l}n_{1}=\cos (2 \pi u) \\ n_{2}=\sin (2 \pi u)\end{array}\right.$. So the unit normal field corresponding
to this orientation of C is given by $n=\left[\begin{array}{c}\cos (2 \pi u) \\ \sin (2 \pi u) \\ 0\end{array}\right]$. In particular, for $u=0, \alpha(0, v)=(1,0, v)$ and $n=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. So n points outwards.

By Example 5, the orientation of $\left\{(x, y, z): x^{2}+y^{2}=1, z=0\right\}$ is counter-clockwise and the orientation of $\left\{(x, y, z): x^{2}+y^{2}=1, z=0\right\}$ is clockwise.
5.

Proof. We can regard M as a 2 -manifold in \mathbb{R}^{3} and apply Example 5. The unit normal vector of M as a 2-manifold is perpendicular to the plane where M lies on and points towards us. Example 5 then gives the unit tangent vector field corresponding to the induced orientation of ∂M. Denote by n the unit normal field corresponding to ∂M. If α is a coordinate patch of $M,\left[n, \frac{\partial \alpha}{\partial x_{1}}\right]$ is right-handed. Since $\left[\frac{\partial \alpha}{\partial x_{1}}, \frac{\partial \alpha}{\partial x_{2}}\right]$ is right-handed and $\frac{\partial \alpha}{\partial x_{2}}$ points into M, n points outwards from M.

Alternatively, we can apply Lemma 38.7.
6. (a)

Proof. The meaning of "well-defined" is that if x is covered by more than one coordinate patch of the same coordinate system, the definition of $\lambda(x)$ is unchanged. More precisely, assume x is both covered by $\alpha_{i_{1}}$ and $\alpha_{i_{2}}$, as well as $\beta_{j_{1}}$ and $\beta_{j_{2}}$, $\operatorname{det} D\left(\alpha_{i_{1}}^{-1} \circ \beta_{j_{1}}\right)\left(\beta_{j_{1}}^{-1}(x)\right)$ and $\operatorname{det} D\left(\alpha_{i_{2}}^{-1} \circ \beta_{j_{2}}\right)\left(\beta_{j_{2}}^{-1}(x)\right)$ have the same sign. Indeed,

$$
\begin{aligned}
& \operatorname{det} D\left(\alpha_{i_{1}}^{-1} \circ \beta_{j_{1}}\right)\left(\beta_{j_{1}}^{-1}(x)\right) \\
= & \operatorname{det} D\left(\alpha_{i_{1}}^{-1} \circ \alpha_{i_{2}} \circ \alpha_{i_{2}}^{-1} \circ \beta_{j_{2}} \circ \beta_{j_{2}}^{-1} \circ \beta_{j_{1}}\right)\left(\beta_{j_{1}}^{-1}(x)\right) \\
= & \operatorname{det} D\left(\alpha_{i_{1}}^{-1} \circ \alpha_{i_{2}}\right)\left(\alpha_{i_{2}}^{-1}(x)\right) \cdot \operatorname{det} D\left(\alpha_{i_{2}}^{-1} \circ \beta_{j_{2}}\right)\left(\beta_{j_{2}}^{-1}(x)\right) \cdot \operatorname{det} D\left(\beta_{j_{2}}^{-1} \circ \beta_{j_{1}}\right)\left(\beta_{j_{1}}^{-1}(x)\right) .
\end{aligned}
$$

Since $\operatorname{det} D\left(\alpha_{i_{1}}^{-1} \circ \alpha_{i_{2}}\right)>0$ and $\operatorname{det} D\left(\beta_{j_{2}}^{-1} \circ \beta_{j_{1}}\right)>0$, we can conclude $\operatorname{det} D\left(\alpha_{i_{1}}^{-1} \circ \beta_{j_{1}}\right)\left(\beta_{j_{1}}^{-1}(x)\right)$ and $\operatorname{det} D\left(\alpha_{i_{2}}^{-1} \circ\right.$ $\left.\beta_{j_{2}}\right)\left(\beta_{j_{2}}^{-1}(x)\right)$ have the same sign.
(b)

Proof. $\forall x, y \in M$. When x and y are sufficiently close, they can be covered by the same coordinate patch α_{i} and β_{j}. Since $\operatorname{det} D \alpha_{i}^{-1} \circ \beta_{j}$ does not change sign in the place where α_{i} and β_{j} overlap (recall $\alpha_{i}^{-1} \circ \beta_{j}$ is a diffeomorphism from an open subset of \mathbb{R}^{k} to an open subset of \mathbb{R}^{k}), we conclude λ is a constant, in the place where α_{i} and β_{j} overlap. In particular, λ is continuous.
(c)

Proof. Since λ is continuous and λ is either 1 or -1 , by the connectedness of M, λ must be a constant. More precisely, as the proof of part (b) has shown, $\{x \in M: \lambda(x)=1\}$ and $\{x \in M: \lambda(x)=-1\}$ are both open sets. Since M is connected, exactly one of them is empty.
(d)

Proof. This is straightforward from part (a)-(c).

7.

Proof. By Example 4, the unit normal vector corresponding to the induced orientation of ∂M points outwards from M. This is a special case of Lemma 38.7.
8.

Proof. We consider a general problem similar to that of Example 4: Let M be an n-manifold in \mathbb{R}^{n}, oriented naturally, what is the induced orientation of ∂M ?

Suppose $h: U \rightarrow V$ is a coordinate patch on M belonging to the natural orientation of M, about the point p of ∂M. Then the map

$$
h \circ b(x)=h\left(x_{1}, \cdots, x_{n-1}, 0\right)
$$

gives the restricted coordinate patch on ∂M about p. The normal field $N=(p ; T)$ to ∂M corresponding to the induced orientation satisfies the condition that the frame

$$
\left[(-1)^{n} T(p), \frac{\partial h\left(h^{-1}(p)\right)}{\partial x_{1}}, \cdots, \frac{\partial h\left(h^{-1}(p)\right)}{\partial x_{n-1}}\right]
$$

is right-handed. Since $D h$ is right-handed, $(-1)^{n} T$ and $(-1)^{n-1} \frac{\partial h}{\partial x_{n}}$ lie on the same side of the tangent plane of M at p. Since $\frac{\partial h}{\partial x_{n}}$ points into M, T points outwards from M. Thus, the induced orientation of ∂M is characterized by the normal vector field to M pointing outwards from M. This is essentially Lemma 38.7.

To determine whether or not a coordinate patch on ∂M belongs to the induced orientation of ∂M, we suppose α is a coordinate patch on ∂M about p. Define $A(p)=D\left(h^{-1} \circ \alpha\right)\left(\alpha^{-1}(p)\right)$. Then α belongs to the induced orientation if and only if $\operatorname{sgn}(\operatorname{det} A(p))=(-1)^{n}$. Since $D \alpha\left(\alpha^{-1}(p)\right)=D h\left(\left(h^{-1}(p)\right) \cdot A(p)\right.$, we have

$$
\left[(-1)^{n} T(p), D \alpha\left(\alpha^{-1}(p)\right)\right]=\left[(-1)^{n} T(p), \frac{\partial h\left(h^{-1}(p)\right)}{\partial x_{1}}, \cdots, \frac{\partial h\left(h^{-1}(p)\right)}{\partial x_{n-1}}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & A(p)
\end{array}\right]
$$

Therefore, α belongs to the induced orientation if and only if $\left[T(p), D \alpha\left(\alpha^{-1}(p)\right)\right]$ is right-handed.
Back to our particular problem, the unit normal vector to S^{n-1} at p is $\frac{p}{\|p\|}$. So α belongs to the orientation of S^{n-1} if and only if $\left[p, D \alpha\left(\alpha^{-1}(p)\right)\right]$ is right-handed. If $\alpha(u)=p$, we have

$$
\left[p, D \alpha\left(\alpha^{-1}(p)\right)\right]=\left[\begin{array}{cccccc}
u_{1} & 1 & 0 & \cdots & 0 & 0 \\
u_{2} & 0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
u_{n-1} & 0 & 0 & \cdots & 0 & 1 \\
\sqrt{1-\|u\|^{2}} & \frac{-u_{1}}{\sqrt{1-\|u\|^{2}}} & \frac{-u_{2}}{\sqrt{1-\|u\|^{2}}} & \cdots & \frac{-u_{n-2}}{\sqrt{1-\|u\|^{2}}} & \frac{-u_{n-1}}{\sqrt{1-\|u\|^{2}}}
\end{array}\right]
$$

Plain calculation yields $\operatorname{det}\left[p, D \alpha\left(\alpha^{-1}(p)\right)\right]=(-1)^{n+1} / \sqrt{1-\|u\|^{2}}$. So α belongs to the orientation of S^{n-1} if and only if n is odd. Similarly, we can show β belongs to the orientation of S^{n-1} if and only if n is even.

35 Integrating Forms over Oriented Manifolds

Notes. We view Theorem 17.1 (Substitution rule) in the light of integration of a form over an oriented manifold. The theorem states that, under certain conditions, $\int_{g((a, b))} f=\int_{(a, b)}(f \circ g)\left|g^{\prime}\right|$. Throughout this note, we assume $a<b$. We also assume that when $d x$ or $d y$ appears in the integration formula, the formula means integration of a differential form over a manifold; when $d x$ or $d y$ is missing, the formula means Riemann integration over a domain.

First, as a general principle, $\int_{a}^{b} f(x) d x$ is regarded as the integration of the 1-form $f(x) d x$ over the naturally oriented manifold (a, b), and is therefore equal to $\int_{(a, b)} f$ by definition. Similarly, $\int_{b}^{a} f(x) d x$ is regarded as the integration of $f(x) d x$ over the manifold (a, b) whose orientation is reverse to the natural orientation, and is therefore equal to $-\int_{a}^{b} f(x) d x=-\int_{(a, b)} f$.

Second, if $g^{\prime}>0$, then $g(a)<g(b)$ and $\int_{g(a)}^{g(b)} f(y) d y$ is the integration of the 1-form $f(y) d y$ over the naturally oriented manifold $(g(a), g(b))$ with g a coordinate patch. So $\int_{g((a, b))} f=\int_{g(a)}^{g(b)} f(y) d y=$ $\int_{(a, b)} g^{*}(f(y) d y)=\int_{(a, b)} f(g(x)) g^{\prime}(x) d x=\int_{(a, b)} f(g) g^{\prime}$. If $g^{\prime}<0$, then $g(a)>g(b)$ and $\int_{g(a)}^{g(b)} f(y) d y$ is the integration of the 1-form $f(y) d y$ over the manifold $(g(b), g(a))$ whose orientation is reverse to the natural orientation. So $\int_{g((a, b))} f=-\int_{g(a)}^{g(b)} f(y) d y=-\int_{(a, b)} g^{*}(f(y) d y)=-\int_{(a, b)} f(g(x)) g^{\prime}(x) d x=\int_{(a, b)} f(g)\left(-g^{\prime}\right)$. Combined, we can conclude $\int_{g((a, b))} f=\int_{(a, b)}(f \circ g)\left|g^{\prime}\right|$.
3. (a)

Proof. By Exercise 8 of $\S 34, \alpha$ and β always belong to different orientations of S^{n-1}. By Exercise 6 of $\S 34$, α and β belong to opposite orientations of S^{n-1}.
(b)

Proof. Assume $\beta^{*} \eta=-\alpha^{*} \eta$, then by Theorem 35.2 and part (a)

$$
\int_{S^{n-1}} \eta=\int_{S^{n-1} \cap\left\{x \in \mathbb{R}^{n}: x_{n}>0\right\}} \eta+\int_{S^{n-1} \cap\left\{x \in \mathbb{R}^{n}: x_{n}<0\right\}} \eta=\int_{A} \alpha^{*} \eta+(-1) \int_{A} \beta^{*} \eta=2 \int_{A} \alpha^{*} \eta .
$$

Now we show $\beta^{*} \eta=-\alpha^{*} \eta$. Indeed, using our calculation in Exercise 8 of $\S 34$, we have

$$
D \alpha(u)=\left[\begin{array}{cccccc}
1 & 0 & \cdots & 0 & 0 & \\
0 & 1 & \cdots & 0 & 0 & \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & 1 & \\
\frac{-u_{1}}{\sqrt{1-\|u\|^{2}}} & \frac{-u_{2}}{\sqrt{1-\|u\|^{2}}} & \cdots & \frac{-u_{n-2}}{\sqrt{1-\|u\|^{2}}} & \frac{-u_{n-1}}{\sqrt{1-\|u\|^{2}}} &
\end{array}\right]
$$

and

$$
D \beta(u)=\left[\begin{array}{cccccc}
1 & 0 & \cdots & 0 & 0 & \\
0 & 1 & \cdots & 0 & 0 & \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & 1 & \\
\frac{u_{1}}{\sqrt{1-\|u\|^{2}}} & \frac{u_{2}}{\sqrt{1-\|u\|^{2}}} & \cdots & \frac{u_{n-2}}{\sqrt{1-\|u\|^{2}}} & \frac{u_{n-1}}{\sqrt{1-\|u\|^{2}}} &
\end{array}\right] .
$$

So for any $x \in A$,

$$
\begin{aligned}
\alpha^{*} \eta(x) & =\sum_{i=1}^{n}(-1)^{i-1} f_{i} \circ \alpha(u) \operatorname{det} D \alpha(1, \cdots, \widehat{i}, \cdots, n) d u_{1} \wedge \cdots \wedge d u_{n-1} \\
& =\left\{\sum_{i=1}^{n-1} u_{i}(-1)^{n-1-i} \frac{-u_{i}}{\sqrt{1-\|u\|^{2}}}+(-1)^{n-1} \sqrt{1-\|u\|^{2}}\right\} d u_{1} \wedge \cdots \wedge d u_{n-1} \\
& =-\left\{\sum_{i=1}^{n-1} u_{i}(-1)^{n-1-i} \frac{u_{i}}{\sqrt{1-\|u\|^{2}}}+(-1)^{n-1}(-1) \sqrt{1-\|u\|^{2}}\right\} d u_{1} \wedge \cdots \wedge d u_{n-1} \\
& =-\sum_{i=1}^{n}(-1)^{i-1} f_{i} \circ \beta(u) \operatorname{det} D \beta(1, \cdots, \widehat{i}, \cdots, n) d u_{1} \wedge \cdots \wedge d u_{n-1} \\
& =-\beta^{*} \eta(x) .
\end{aligned}
$$

(c)

Proof. By our calculation in part (b), we have

$$
\begin{aligned}
\int_{A} \alpha^{*} \eta & =\int_{A} \sum_{i=1}^{n-1}(-1)^{i-1} u_{i}(-1)^{n-i} \frac{u_{i}}{\sqrt{1-\|u\|^{2}}}+(-1)^{n-1} \sqrt{1-\|u\|^{2}} \\
& =(-1)^{n-1} \int_{A} \frac{\sum_{i=1}^{n-1} u_{i}^{2}}{\sqrt{1-\|u\|^{2}}}+\sqrt{1-\|u\|^{2}} \\
& = \pm \int_{A} \frac{1}{\sqrt{1-\|u\|^{2}}} \neq 0 .
\end{aligned}
$$

36 A Geometric Interpretation of Forms and Integrals

1.

Proof. Define $b_{i}=\left[D\left(\alpha^{-1} \circ \beta\right)(y)\right]^{-1} a_{i}=D\left(\beta^{-1} \circ \alpha\right)(x) a_{i}$. Then

$$
\begin{aligned}
\beta_{*}\left(y ; b_{i}\right) & =\left(p ; D \beta(y) b_{i}\right) \\
& =\left(p ; D \beta(y)\left[D\left(\alpha^{-1} \circ \beta\right)(y)\right]^{-1} a_{i}\right) \\
& =\left(p ; D \beta(y) D\left(\beta^{-1} \circ \alpha\right)(x) a_{i}\right) \\
& =\left(p ; D \alpha(x) a_{i}\right) \\
& =\alpha_{*}\left(x ; a_{i}\right) .
\end{aligned}
$$

Moreover, $\left[b_{1}, \cdots, b_{k}\right]=D\left(\beta^{-1} \circ \alpha\right)(x)\left[a_{1}, \cdots, a_{k}\right]$. Since $\operatorname{det} D\left(\beta^{-1} \circ \alpha\right)(x)>0,\left[b_{1}, \cdots, b_{k}\right]$ is right-handed if and only if $\left[a_{1}, \cdots, a_{k}\right]$ is right-handed.

37 The Generalized Stokes' Theorem

2.

Proof. Assume $\eta=d \omega$ for some form. Since $\partial S^{n-1}=\emptyset$, Stokes' Theorem implies $\int_{S^{n-1}} \eta=\int_{S^{n-1}} d \omega=$ $\int_{\partial S^{n-1}} \omega=0$. Contradiction.
3.

Proof. Apply Stokes' Theorem to $\omega=P d x+Q d y$.
4. (a)

Proof. $D \alpha(u, v)=\left[\begin{array}{cc}1 & 0 \\ -\frac{2 u}{\sqrt{1-u^{2}-v^{2}}} & -\frac{2 v}{\sqrt{1-u^{2}-v^{2}}} \\ 0 & 1\end{array}\right]$. By Lemma 38.3, the normal vector n corresponding to the orientation of M satisfies $n=\frac{c}{\|c\|}$, where

$$
c=\left[\begin{array}{c}
\operatorname{det} D \alpha(u, v)(2,3) \\
-\operatorname{det} D \alpha(u, v)(1,3) \\
\operatorname{det} D \alpha(u, v)(1,2)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 u}{\sqrt{1-u^{2}-v^{2}}} \\
-1 \\
-\frac{2 v}{\sqrt{1-u^{2}-v^{2}}}
\end{array}\right]
$$

Plain calculation shows $\|c\|=\sqrt{\frac{1+3 u^{2}+3 v^{2}}{1-u^{2}-v^{2}}}$, so

$$
n=\left[\begin{array}{l}
-\frac{2 u}{\sqrt{1+3 u^{2}+3 v^{2}}} \\
-\frac{\sqrt{1-u^{2}-v^{2}}}{\sqrt{1+3 u^{2}+3 v^{2}}} \\
-\frac{2 v}{\sqrt{1+3 u^{2}+3 v^{2}}}
\end{array}\right] .
$$

In particular, at the point $\alpha(0,0)=(0,2,0), n=\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]$, which points inwards into $\left\{\left(x_{1}, x_{2}, x_{3}\right): 4\left(x_{1}\right)^{2}+\right.$ $\left.\left(x_{2}\right)^{2}+4\left(x_{3}\right)^{2} \leq 4, x_{2} \geq 0\right\}$. By Example 5 of $\S 34$, the tangent vector corresponding to the induced orientation of ∂M is easy to determine.
(b)

Proof. According to the result of part (a), we can choose the following coordinate patch which belongs to the induced orientation of $\partial M: \beta(\theta)=(\cos \theta, 0, \sin \theta)(0 \leq \theta 2 \pi)$. By Theorem 35.2, we have

$$
\int_{\partial M} x_{2} d x_{1}+3 x_{1} d x_{3}=\int_{[0,2 \pi)} 3 \cos \theta \cdot \cos \theta=3 \pi
$$

(c)

Proof. $d \omega=-d x_{1} \wedge d x_{2}+3 d x_{1} \wedge d x_{3}$. So

$$
\begin{aligned}
\int_{M} d \omega & =\int_{M}-d x_{1} \wedge d x_{2}+3 d x_{1} \wedge d x_{3} \\
& =\int_{\left\{(u, v): u^{2}+v^{2}<1\right\}}-\operatorname{det} D \alpha(u, v)(1,2)+3 \operatorname{det} D \alpha(u, v)(1,3) \\
& =\int_{\left\{(u, v): u^{2}+v^{2}<1\right\}}\left[\frac{2 v}{\sqrt{1-u^{2}-v^{2}}}+3\right] \\
& =\int_{\{(\theta, r): 0 \leq r<1,0 \leq \theta<2 \pi\}}\left[\frac{2 r \sin \theta}{\sqrt{1-r^{2}}}+3\right] r \\
& =3 \pi
\end{aligned}
$$

5. (a)

Proof. By Stokes' Theorem, we have

$$
\int_{M} d \omega=\int_{\partial M} \omega=\int_{S^{2}(d)} \omega+\int_{-S^{2}(c)} \omega=\int_{S^{2}(d)} \omega-\int_{S^{2}(c)} \omega=\frac{b}{d}-\frac{b}{c}
$$

(b)

Proof. If $d \omega=0$, we conclude from part (a) that $b=0$. This implies $\int_{S^{2}(r)} \omega=a$. To be continued \ldots
(c)

Proof. If $\omega=d \eta$, by part (b) we conclude $b=0$. Moreover, Stokes' Theorem implies $a=\int_{S^{2}(r)} \omega=$ $\int_{S^{2}(r)} d \eta=0$.
6.

Proof. $\int_{M} d(\omega \wedge \eta)=\int_{\partial M} \omega \wedge \eta=0$. Since $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$, we conclude $\int_{M} \omega \wedge d \eta=$ $(-1)^{k+1} \int_{M} d \omega \wedge \eta$. So $a=(-1)^{k+1}$.

38 Applications to Vector Analysis

1.

Proof. Let $M=\left\{x \in \mathbb{R}^{3}: c \leq\|x\| \leq d\right\}$ oriented with the natural orientation. By the divergence theorem,

$$
\int_{M}(\operatorname{div} G) d V=\int_{\partial M}\langle G, N\rangle d V
$$

where N is the unit normal vector field to ∂M that points outwards from M. For the coordinate patch for M:

$$
\left\{\begin{array}{l}
x_{1}=r \sin \theta \cos \phi \\
x_{2}=r \sin \theta \sin \phi \quad(c \leq r \leq d, 0 \leq \theta<\pi, 0 \leq \phi<2 \pi) \\
x_{3}=r \cos \theta
\end{array}\right.
$$

we have

$$
\operatorname{det} \frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{(r, \theta, \phi)}=\operatorname{det}\left[\begin{array}{ccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right]=r^{2} \sin \theta
$$

So $\int_{M}(\operatorname{div} G) d V=\int \frac{1}{r}\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{(r, \theta, \phi)}\right|=0$. Meanwhile $\int_{\partial M}\langle G, N\rangle d V=\int_{S^{2}(d)}\left\langle G, N_{r}\right\rangle d V-\int_{S^{2}(c)}\left\langle G, N_{r}\right\rangle d V$. So we conclude $\int_{S^{2}(d)}\left\langle G, N_{r}\right\rangle d V=\int_{S^{2}(c)}\left\langle G, N_{r}\right\rangle d V$.
2. (a)

Proof. We let $M_{3}=B^{n}(\varepsilon)$. Then for ε small enough, M_{3} is contained by both $M_{1}-\partial M_{1}$ and $M_{2}-\partial M_{2}$. Applying the divergence theorem, we have $(i=1,2)$

$$
0=\int_{M_{i}-\operatorname{Int} M_{3}}(\operatorname{div} G) d V=\int_{\partial M_{i}}\left\langle G, N_{i}\right\rangle d V-\int_{\partial M_{3}}\left\langle G, N_{3}\right\rangle d V
$$

where N_{3} is the unit outward normal vector field to ∂M_{3}. This shows that regardless $i=1$ or $i=2$, $\int_{\partial M_{i}}\left\langle G, N_{i}\right\rangle d V$ is a constant $\int_{\partial M_{3}}\left\langle G, N_{3}\right\rangle d V$.
(b)

Proof. We have shown that if the origin is contained in $M-\partial M$, the integral $\int_{\partial M}\langle G, N\rangle d V$ is a constant. If the origin is not contained in $M-\partial M$, by the compactness of M, we conclude the origin is in the exterior of M. Applying the divergence theorem implies $\int_{\partial M}\langle G, N\rangle d V=0$. So this integral has only two possible values.
3.

Proof. Four possible values. Apply the divergence theorem (like in Exercise 3) and carry out the computation in the following four cases: 1) both p and q are contained by $M-\partial M ; 2) p$ is contained by $M-\partial M$ but q is not; 3) q is contained by $M-\partial M$ but p is not; 4) neither p nor q is contained by $M-\partial M$.
4.

Proof. Follow the hint and apply Lemma 38.5.

39 The Poincaré Lemma

2. (a)

Proof. Let $\omega \in \Omega^{k}(B)$ with $d \omega=0$. Then $g^{*} \omega \in \Omega^{k}(A)$ and $d\left(g^{*} \omega\right)=g^{*}(d \omega)=0$. Since A is homologically trivial in dimension k, there exists $\omega_{1} \in \Omega^{k}(A)$ such that $d \omega_{1}=g^{*} \omega$. Then $\omega_{2}=\left(g^{-1}\right)^{*}\left(\omega_{1}\right) \in \Omega^{k}(B)$ and $d \omega_{2}=d\left(g^{-1}\right)^{*}\left(\omega_{1}\right)=\left(g^{-1}\right)^{*}\left(d \omega_{1}\right)=\left(g^{-1}\right)^{*} g^{*} \omega=\left(g \circ g^{-1}\right)^{*} \omega=\omega$. Since ω is arbitrary, we conclude B is homologically trivial in dimension k.
(b)

Proof. Let $A=\left[\frac{1}{2}, 1\right] \times[0, \pi]$ and $B=\left\{(x, y): \frac{1}{2} \leq \sqrt{x^{2}+y^{2}} \leq 1, x, y \geq 0\right\}$. Define $g: A \rightarrow B$ as $g(r, \theta)=(r \cos \theta, r \sin \theta)$. By the Poincaré lemma, A is homologically trivial in every dimension. By part (a) of this exercise problem, B is homologically trivial in every dimension. But B is clearly not star-convex.
3.

Proof. Let $p \in A$ and define $X=\{x \in A: x$ can be joined by a broken-line path in $A\}$. Since \mathbb{R}^{n} is locally convex, it is easy to see X is an open subset of A.
(Sufficiency) Assume A is connected. Then $X=A$. For any closed 0 -form $f, \forall x \in A$, denote by γ a broken-line path that joins x and p. We have by virtue of Newton-Leibnitz formula $0=\int_{\gamma} d f=f(x)-f(p)$. So f is a constant, i.e. an exact 0 -form, on A. Hence A is homologically trivial in dimension 0 .
(Necessity) Assume A is not connected. Then A can be decomposed into the joint union of at least two open subsets, say, A_{1} and A_{2}. Define

$$
f= \begin{cases}1, & \text { on } A_{1} \\ 0, & \text { on } A_{2}\end{cases}
$$

Then f is a closed 0 -form, but not exact. So A is not homologically trivial in dimension 0 .
4.

Proof. Let $\eta=\sum_{[I]} f_{I} d x_{I}+\sum_{[J]} g_{J} d x_{J} \wedge d t$, where I denotes an ascending $(k+1)$-tuple and J denotes an ascending k-tuple, both from the set $\{1, \cdots, n\}$. Then $P \eta=\sum_{[J]} g_{J} d x_{J}$ and

$$
(P \eta)(x)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{k}\right)\right)=\sum_{[J]}(-1)^{k}\left(\mathcal{L} g_{J}\right) \operatorname{det}\left[v_{1} \cdots v_{k}\right]_{J}
$$

On the other hand,

$$
w_{i}=D \alpha_{t} v_{i}=\left[\begin{array}{c}
I_{n \times n} \\
0
\end{array}\right] v_{i}=\left[\begin{array}{c}
v_{i} \\
0
\end{array}\right]
$$

So

$$
\begin{aligned}
& \eta(y)\left(\left(y ; w_{1}\right), \cdots,\left(y ; w_{k}\right),\left(y ; e_{n+1}\right)\right) \\
= & \sum_{[I]} f_{I} d x_{I}\left(\left(y ;\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]\right), \cdots,\left(y ;\left[\begin{array}{c}
v_{k} \\
0
\end{array}\right]\right),\left(y ;\left[\begin{array}{c}
0_{n \times 1} \\
1
\end{array}\right]\right)\right) \\
& +\sum_{[J]} g_{I} d x_{J} \wedge d t\left(\left(y ;\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]\right), \cdots,\left(y ;\left[\begin{array}{c}
v_{k} \\
0
\end{array}\right]\right),\left(y ;\left[\begin{array}{c}
0_{n \times 1} \\
1
\end{array}\right]\right)\right) \\
= & 0+\sum_{[J]} g_{J} \operatorname{det}\left[v_{1} \cdots v_{k}\right]_{J} \\
= & \sum_{[J]} g_{J} \operatorname{det}\left[v_{1} \cdots v_{k}\right]_{J} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& (-1)^{k} \int_{t=0}^{t=1} \eta(y)\left(\left(y ; w_{1}\right), \cdots,\left(y ; w_{k}\right),\left(y ; e_{n+1}\right)\right) \\
= & (-1)^{k} \sum_{[J]} \int_{t=0}^{t=1} g_{J} \operatorname{det}\left[v_{1} \cdots v_{k}\right]_{J} \\
= & \sum_{[J]}(-1)^{k}\left(\mathcal{L} g_{J}\right) \operatorname{det}\left[v_{1} \cdots v_{k}\right]_{J} \\
= & (P \eta)(x)\left(\left(x ; v_{1}\right), \cdots,\left(x ; v_{k}\right)\right) .
\end{aligned}
$$

40 The deRham Groups of Punctured Euclidean Space

1. (a)

Proof. This is already proved on page 334 of the book, esp. in the last paragraph.
(b)

Proof. To see \widetilde{T} is well-defined, suppose $v+W=v^{\prime}+W$. Then $v-v^{\prime} \in W$ and $T(v)-T\left(v^{\prime}\right)=T\left(v-v^{\prime}\right) \in W^{\prime}$ by the linearity of T and the fact that T carries W into W^{\prime}. Therefore $T(v)+W^{\prime}=T\left(v^{\prime}\right)+W^{\prime}$, which shows \widetilde{T} is well-defined. The linearity of \widetilde{T} follows easily from that of T.
2.

Proof. $\forall v \in V$, we can uniquely write v as $v=\sum_{i=1}^{n} c_{i} a_{i}$ for some coefficients c_{1}, \cdots, c_{n}. By the fact that a_{1}, $\cdots, a_{k} \in W$, we conclude $v+W=\sum_{i=k+1}^{n} c_{i}\left(a_{i}+W\right)$. So the cosets $a_{k+1}+W, \cdots, a_{n}+W$ spans V / W. To see $a_{k+1}+W, \cdots, a_{n}+W$ are linearly independent, let us assume $\sum_{i=k+1}^{n} c_{i}\left(a_{i}+W\right)=0$ for some coefficients c_{k+1}, \cdots, c_{n}. Then $\sum_{i=k+1}^{n} c_{i} a_{i} \in W$ and there exist d_{1}, \cdots, d_{k} such that $\sum_{i=k+1}^{n} c_{i} a_{i}=\sum_{j=1}^{k} d_{j} a_{j}$. By the linear independence of a_{1}, \cdots, a_{n}, we conclude $c_{k+1}=\cdots=c_{n}=0$, i.e. the cosets $a_{k+1}+W, \cdots, a_{n}+W$ are linearly independent.
4. (a)

Proof. $\operatorname{dim} H^{i}(U)=\operatorname{dim} H^{i}(V)=0$, for all i.
(b)

Proof. $\operatorname{dim} H^{i}(U)=\operatorname{dim} H^{i}(V)=0$, for all i.
(c)

Proof. $\operatorname{dim} H^{0}(U)=\operatorname{dim} H^{0}(V)=0$.
5.

Proof. Step 1. We prove the theorem for $n=1$. Without loss of generality, we assume $p<q$. Let $A=\mathbb{R}^{1}-p-q$; write $A=A_{0} \cup A_{1} \cup A_{2}$, where $A_{0}=(-\infty, p), A_{1}=(p, q)$, and $A_{2}=(q, \infty)$. If ω is a closed k -form in A, with $k>0$, then $\omega\left|A_{0}, \omega\right| A_{1}$ and $\omega \mid A_{2}$ are closed. Since A_{0}, A_{1}, A_{2} are all star-convex, there are $k-1$ forms η_{0}, η_{1} and η_{2} on A_{0}, A_{1} and A_{2}, respectively, such that $d \eta_{i}=\omega \mid A_{i}$ for $i=0,1,2$. Define $\eta=\eta_{i}$ on $A_{i}, i=0,1,2$. Then η is well-defined and of class C^{∞}, and $d \eta=\omega$.

Now let f_{0} be the 0 -form in A defined by setting $f_{0}(x)=0$ for $x \in A_{1} \cup A_{2}$ and $f_{0}(x)=1$ for $x \in A_{0}$; let f_{1} be the 0 -form in A defined by setting $f_{1}(x)=0$ for $x \in A_{0} \cup A_{2}$ and $f_{1}(x)=1$ for $x \in A_{1}$. Then f_{0} and f_{1} are closed forms, and they are not exact. We show the cosets $\left\{f_{0}\right\}$ and $\left\{f_{1}\right\}$ form a basis for $H^{0}(A)$.

Given a closed 0 -form f in A, the forms $f\left|A_{0}, f\right| A_{1}$, and $f \mid A_{2}$ are closed and hence exact. Then there are constants c_{0}, c_{1}, and c_{2} such that $f \mid A_{i}=c_{i}, i=0,1,2$. It follows that

$$
f(x)=\left(c_{0}-c_{2}\right) f_{0}(x)+\left(c_{1}-c_{2}\right) f_{1}(x)+c_{2}
$$

for $x \in A$. Then $\{f\}=\left(c_{0}-c_{2}\right)\left\{f_{0}\right\}+\left(c_{1}-c_{2}\right)\left\{f_{1}\right\}$, as desired.
Step 2. Similar to the proof of Theorem 40.4, step 2 , we can show the following: if B is open in \mathbb{R}^{n}, then $B \times \mathbb{R}$ is open in \mathbb{R}^{n+1}, and for all $k, \operatorname{dim} H^{k}(B)=\operatorname{dim} H^{k}(B \times \mathbb{R})$.

Step 3. Let $n \geq 1$. We assume the theorem true for n and prove it for $n+1$. We first prove the following
Lemma 40.1. $\mathbb{R}^{n+1}-S \times \mathbb{H}^{1}$ and $\mathbb{R}^{n+1}-S \times \mathbb{L}^{1}$ are homologically trivial.
Proof. Let $U_{1}=\mathbb{R}^{n+1}-\{p\} \times \mathbb{H}^{1}, V_{1}=\mathbb{R}^{n+1}-\{q\} \times \mathbb{H}^{1}, A_{1}=U_{1} \cap V_{1}=\mathbb{R}^{n+1}-S \times \mathbb{H}^{1}$, and $X_{1}=U_{1} \cup V_{1}=$ \mathbb{R}^{n+1}. Since U_{1} and V_{1} are star-convex, U_{1} and V_{1} are homologically trivial in all dimensions. By Theorem 40.3, for $k \geq 0, H^{k}\left(A_{1}\right)=H^{k+1}\left(X_{1}\right)=H^{k+1}\left(\mathbb{R}^{n+1}\right)=0$. So $\mathbb{R}^{n+1}-S \times \mathbb{H}^{1}$ is homologically trivial in all dimensions. Similarly, $\mathbb{R}^{n+1}-S \times \mathbb{L}^{1}$ is homologically trivial in all dimensions.

Now, we define $U=\mathbb{R}^{n+1}-S \times \mathbb{H}^{1}, V=\mathbb{R}^{n+1}-S \times \mathbb{L}^{1}$, and $A=U \cap V=\mathbb{R}^{n+1}-S \times \mathbb{R}^{1}$. Then $X:=\mathbb{R}^{n+1}-p-q=U \cup V$. We have shown U and V are homologically trivial. It follows from Theorem 40.3 that $H^{0}(X)$ is trivial, and that

$$
\operatorname{dim} H^{k+1}(X)=\operatorname{dim} H^{k}(A) \text { for } k \geq 0
$$

Now Step 2 tells us that $H^{k}(A)$ has the same dimension as the deRham group of \mathbb{R}^{n} deleting two points, and the induction hypothesis implies that the latter has dimension 0 if $k \neq n-1$, and dimension 2 if $k=n-1$. The theorem follows.
6.

Proof. The theorem of Exercise 5 can be restated in terms of forms as follows: Let $A=\mathbb{R}^{n}-p-q$ with $n \geq 1$.
(a) If $k \neq n-1$, then every closed k-form on A is exact on A.
(b) There are two closed $(n-1)$ forms, η_{1} and η_{2}, such that η_{1}, η_{2}, and $\eta_{1}-\eta_{2}$ are not exact. And if η is any closed $(n-1)$ form on A, then there exist unique scalars c_{1} and c_{2} such that $\eta-c_{1} \eta_{1}-c_{2} \eta_{2}$ is exact.

41 Differentiable Manifolds and Riemannian Manifolds

References

[1] J. Munkres. Analysis on manifolds, Westview Press, 1997. (document)
[2] P. Lax. Linear algebra and its applications, 2nd Edition, Wiley-Interscience, 2007.

