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1 Introduction

This master thesis deals with the theoretical investigation and analytical calculation of
source counts in different cosmological models. Therefore it is dedicated to the question
in how far number counts can be calculated analytically and to what extent they might
be used in order to investigate cosmological features, for example the cosmic expansion
described by the Hubble law, acceleration or deceleration, spatial curvature and the
energy content of the universe which can be composed of various components such as
matter, radiation or some kind of dark energy represented by a cosmological constant
term in the Friedmann equations.

Number counts of cosmological objects, i.e. galaxies or clusters of galaxies which are
gravitationally unbound and thus obeying the Hubble law, are the simplest statistics
that can be derived from any survey. Differential number counts correspond to the
number of objects in a given flux or redshift interval and solid angle of the sky. Integral
source counts are obtained even easier by counting all objects in a given sky area above
some minimal flux level or up to the sensitivity reached by the observational instrument.
Although integral number counts have been commonly used in the past they have the
great disadvantage that rapid changes of the differential number counts are concealed
[1]. Furthermore, integral number counts are not statistical independent for different
flux densities and estimating errors is difficult (see e.g. [2], [3]).

Contrary to integral counts, differential number counts can be easily applied to test
different cosmological models, especially those modelling cosmic evolution of galaxies.
For simple models such as the Einstein model, de Sitter model, Einstein-de Sitter and
Milne model, number counts can be calculated completely analytical in the case of
frequency independent (bolometric) counts. These models also have the great advan-
tage that the number counts can be expressed analytically as a function of flux density
instead of redshift. Thus, they could be easily compared to surveys with a vast number
of cosmological objects, for no redshift information is necessary which is often unknown
for many objects. In the case of frequency dependent source counts, i.e. differential
number counts in a given frequency interval, there are still analytic solutions for the
number counts expressed redshift dependently, but for the flux dependent counts an-
alytic solutions only exist for some special values of the spectral index α, otherwise
approximations have to be made for the low and high redshift regime, respectively.

If combinations of these simple models are considered, e.g. the Λ-Cold-Dark-Matter
(ΛCDM) model with flat spatial geometry and an energy density consisting of cold
dark matter and dark energy (k=0, Ω = Ωm + ΩΛ) analytic solutions no longer exist,
so again approximations are needed or numerical calculations have to be done.
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Figure 1.1: Differential source counts at 150, 325, 408, 610 MHz normalised to cS−2.5
ν ,

with c = 1000, 100, 10 and 1, respectively (Figure taken from [4])

The basis for all calculations in this thesis are the Friedmann equations, which are ob-
tained from Einstein’s field equations and the Friedmann-Lemaitre-Robertson-Walker
(FLRW)-metric, which will be layed out in the second chapter. Sources will be as-
sumed to be point-like with equal luminosities and distributed uniformly throughout
space. For the calculation of the differential number counts, first the number of object
per solid angle and distance interval is given and then expressed for a redshift interval
in the case of expanding models. Then the number counts per solid angle and flux
interval are calculated and the result is expressed in terms of the flux. Traditionally,
the result is normalised to the source counts expected in a static Euclidean universe
for comparison. Comparing the results with data, one would see immediately that evo-
lutionary effects result in a different behaviour than the calculated one, where objects
are assumed to be point sources with the same luminosity over all times (e.g. [4]).

Figure 1.1 shows an example of differential number counts data at different frequan-
cies together with fits obtained by an evolutionary model from Massardi et al. [4], [5].
As for this example, number counts are commonly shown in double logarithmic plots
as a function of flux density and normalised to cS

−5/2
ν .

In the second chapter, a short introduction to the theoretical basis needed for the
calculation and interpretation of galaxy number counts is given. This chapter includes
the FLRW-metric, the Friedmann equations and cosmological distance measures which
have to be applied carefully to avoid ambiguities. Then the general procedure of calcu-
lating differential and integral number counts is introduced and carried out in general.
Finally, the second chapter concludes with a brief outline of the cosmological models
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that will be considered throughout this thesis and some others which are interesting
or of historical significance.

In the third chapter, the differential and intergral number counts for the static Eu-
clidean model, static Einstein model, de Sitter, Einstein-de Sitter and Milne model are
calculated and compared to each other regarding their special properties such as the
limits for the high and low flux regime. Furthermore, the integral number counts will
be calculated and the effects of model parameters on the sorce counts will be discussed.

After that, in chapter four, the specific number counts for the expanding models,
i.e. the de Sitter model, Einstein-de Sitter and Milne model will be calculated, as
the frequency bands are redshifted according to the steepness of the spectrum of the
source. Analytic solutions for the frequency dependent case, assuming a spectrum
with a constant spectral index α, can only be found for some special values of α, often
yielding quite complicated solutions. Therefore a simple but nevertheless accurate
approximation for a wide range of fluxes will be given as well and compared to the
exact solutions.

Then in the fifth chapter, the number counts for the ΛCDM-model will be considered
and calculated analytically as far as possible. There is an analytic solution to the
redshift dependent differential number counts, but this cannot be expressed in terms
of elementary functions. In order to find a result for the number counts in a flux
interval, approximations will be made.

Finally, we will summarise the results and give an outlook on the issues that require
further investigation or seem interesting for a better understanding of the way in which
features like curvature, energy density and a cosmological constant leave an imprint on
cosmology that can be observed via galaxy number counts.
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2 Theoretical foundation and
cosmological models

2.1 Theoretical foundation

2.1.1 FLRW-metric

The basis for all the following calculations is the Friedmann-Lemaitre-Robertson-Walker-
metric (FLRW-metric) which follows from the assumptions of spatial homogeneity and
isotropy, i.e. the cosmological principle, which is always assumed throughout this thesis.
In its most general form the FLRW-metric reads

ds2 = −dt2 + a(t)2dΣ2 (2.1)

(where the speed of light is set equal to 1). For simplicity in the calculations for dΣ2

the following convention

dΣ2 = dχ2 + f 2(χ)dΩ2 (2.2)

is used and thus the FLRW-metric is given by

ds2 = −dt2 + a2(t)
(
dχ2 + f 2(χ)dΩ2

)
, (2.3)

where

f(χ) =


1√
k

sin(
√

k · χ) : k = +1

χ : k = 0
1√
|k|

sinh(
√
|k| · χ) : k = −1

(2.4)

with dΩ2 = dθ2+sin2(θ)dφ2 and χ = f−1(r) and the curvature parameter k = +1, 0 and
-1 standing for positive spatial curvature (spherically, closed universe), zero curvature
(open, flat space) and negatively curved space (hyperbolic, open universe), respectively.
The FLRW-metric can also be expressed in terms of the radial distance r as

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(2.5)

[2]. There are two different conventions regarding the FLRW-metric. On one hand,
the curvature can be taken to be dimensionless with the discrete values k = 0,±1.
Then the distance χ is also dimensionless and the scale factor must have dimensions
of length. On the other hand, the curvature can be taken to have the dimension of
1/[length]2, then the scale factor is dimensionless. Throughout this thesis the first
convention will be applied.
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2.1.2 Friedmann equations

All cosmological models considered in this thesis are based on the Friedmann equations
which are obtained by applying the FLRW-metric to Einstein’s field equation of general
relativity (see e.g. [6]). The first Friedmann equation

H2 +
k

a2
=

8πG

3
ρ +

Λ

3
(2.6)

is derived from the 00-component of Einstein’s equation. Here H(t) is the Hubble
parameter

H(t) =
ȧ(t)

a(t)
, (2.7)

k the curvature parameter, G the gravitational constant, Λ the cosmological constant
and ρ = ρ(t) denotes the total energy density of the universe at cosmic time t. From
the first Friedmann equation together with the trace of Einstein’s field equation follows
the second Friedmann equation, often also referred to as the Friedmann acceleration
equation

Ḣ + H2 =
ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
, (2.8)

where p denotes the pressure. For the energy density and the pressure it holds the
cosmological equation of state of a perfect fluid

w =
p

ρ
(2.9)

where w is assumed dimensionless. When applied to the FLRW-metric, the equa-
tion of state describes the cosmic evolution of a perfect fluid in an isotropic universe.
Regarding the covariant energy-momentum conservation equation

ρ̇ = −3(ρ + p)
ȧ

a
(2.10)

and assuming that w is a constant, the equation of state can be related with the scale
factor via

ρ ∝ a−3(1+w). (2.11)

These equations will be used in order to derive the properties of the various cos-
mological models for different curvature and energy contents. Once the main features
of a cosmological model like curvature, cosmological constant and energy density are
specified, the Friedmann equations can be used to calculate the other properties such
as the Hubble parameter and scale factor.

2.1.3 Distance measures

In cosmology there exist different distance measures according to the way in which the
issue is considered. Because of the curvature of space-time there is no unambiguous
distance that can always be applied, but these distance measures become equal to
the Euclidean notion of distance for redshifts close to one. Regarding cosmological
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distances the central assumption which is made is that all observers have the same
cosmic age.

One of the most important distance measures in cosmology is the redshift z for which
holds

1 + z =
a0

a
, (2.12)

where a0 denotes the present value of the scale factor [7].
A useful distance measure for the calculation of the differential number counts in

flat models is the Hubble distance

dH =
1

H(z)
, (2.13)

which corresponds to the age the universe would have if the expansion had been linear
in the past.

The distance which corresponds to the ’real’ distance between objects is the so called
proper distance, which is the coordinate distance times the scale factor, i.e.

dp(t) = a

χ∫
0

dχ′ = aχ. (2.14)

For an observed light ray (ds2 = 0) it follows from the FLRW-metric

− dt

a(t)
= dχ (2.15)

and the redshift changes with time like

dz

dt
=

d(1 + z)

dt
=

d(a0/a)

dt
= −(1 + z)H(z). (2.16)

Therefore the coordinate distance is given by

χ =

t0∫
t

dt

a
= − 1

a0

0∫
z

1 + z′

(1 + z′)H(z′)
dz′ (2.17)

and thus the comoving distance becomes

dc(z) = a0χ =

z∫
0

dz′

H(z′)
. (2.18)

Then the proper distance becomes equal to

dp(z) =
a

a0

dc(z) =
dc(z)

1 + z
. (2.19)

Another important distance measure is the luminosity distance dL which is given by

dL =

√
L

4πS
=

√
P

S
. (2.20)
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The luminosity distance is relevant for obtaining the flux of an object depending on its
redshift and will be used for the calculation of the number counts expressed in terms
of the flux. The flux is given by

S =
L

4πa2
0(1 + z)2f 2(χ)

=
P

(1 + z)2a2
0f

2(χ)
(2.21)

and therefore the luminosity distance for arbitrary curvature becomes

dL(z) = (1 + z)a0f(χ) = (1 + z)a0f

(
dc

a0

)
(2.22)

with

f(χ) =
1√
k

sin
(√

kχ
)

. (2.23)

Thus the luminosity distance can be expressed as

dL(z) = (1 + z)

√
a2

0

k
sin

(√
k

a2
0

dc(z)

)
. (2.24)

In flat space, the luminosity distance becomes

dL = (1 + z)dc. (2.25)

Furthermore, another distance measure is the angular diameter distance

da(z) =
Rp(z)

θ
= a(t)f(χ) = a0

1

1 + z
f(χ) = a0

1

1 + z
f

(
dc

a0

)
(2.26)

which relates the actual diameter of an object Rp(z) to its angular diameter θ. With
the luminosity distance the angular diameter distance can be expressed as

da(z) =
1

(1 + z)2
dL(z). (2.27)

This distance measure is not needed for the calculations of differential number counts
in this thesis but nonetheless stated here for the sake of completeness.

2.1.4 Differential number counts

Like already mentioned in the previous chapter, differential or integral number counts
are a very simple and practical means for validating cosmological models and screening
the history of the universe. In order to calculate the number counts, the properties of
the different cosmological models are applied to the Friedmann equations to derive the
unknown parameters which then can be used to obtain the Hubble distance and the
comoving distance. Differential number counts are defined as the number of objects
(meaning galaxies or galaxy clusters) in a solid angle dΩ and a distance interval dr or
more general dχ, i.e.

dN

dΩdχ
.
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Since the coordinate distance χ is not an observable quantity and radial distances
are hard to obtain especially for very distant objects, it is more convenient to write the
number counts for a redshift interval dz

dN

dΩdz
=

dN

dΩdχ

dχ

dz
. (2.28)

As redshift information is also not available for many objects, it is often more practical
to rewrite the differential number counts for a flux interval rather than redshift as
fluxes can be “easily” measured. Therefore the quantity

dN

dΩdS
=

dN

dΩdz

dz

dS
(2.29)

should be established.
The calculation of differential number counts begins with the FLRW-metric (see sec.

2.1.1), from which the volume in the solid angle dΩ and coordinate distance interval
dχ can be derived as

dV

dΩdχ
= a3f 2(χ) =

a3
0f

2(χ)

(1 + z)2
. (2.30)

With equation (2.12) for the redshift, equation (2.18) and

n(z) = n0(1 + z)3, (2.31)

the differential number counts in a solid angle dΩ and coordinate distance interval dχ
become

dN

dΩdχ
= n0a

3
0f

2

(
dc(z)

a0

)
. (2.32)

The change of the redshift with the coordinate distance is given by

dz

dχ
=

dz

dt

dt

dχ
= (1 + z)H(z)

a0

1 + z
= a0H(z). (2.33)

As the quantity χ cannot be measured it is more convenient to calculate either the
differential number counts for a redshift or for a flux interval. The differential number
counts in a redshift interval dz are given by

dN

dΩdz
= n0a

2
0f

2

(
dc(z)

a0

)
1

H(z)
. (2.34)

Then the differential number counts can be expressed as a function of redshift by

dN

dΩdz
= n0

a2
0

k
sin2

(√
k

a2
0

dc(z)

)
1

H(z)
. (2.35)

Accordingly, the differential number counts for a flux interval dS can be calculated
using equation (2.29). Together with equation (2.22) and equation (2.34) the general
solution for the differential number counts in a frequency interval dS is given by

dN

dΩdS
= − n0

2P

f 5
(

dc

a0

)
(1 + z)3

f
(

dc

a0

)
+

df
“

dc
a0

”
dz

(1 + z)

1

H(z)
. (2.36)
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As the calculation of this expression is much simpler using the model dependent solu-
tions of the differential number counts in the redshift interval dN

dΩdz
and the changing

rate of the flux with redshift dS
dz

, the quantity dN
dΩdS

will be calculated for each model
separately in the third chapter via equation (2.29).

Differential number counts probe the evolution of the comoving volume and a possible
evolution of the sources, i.e. n0 = n0(z). Unfortunately, for distant objects there is a
strong correlation of the number counts to evolution of the sources, i.e. the evolution
of galaxies both in number (galaxies have merged in the past) and their luminosity
(galaxies have been more luminous in the past) (e.g. [4]]. Therefore catalogues of very
distant galaxies cannot be directly applied to the calculated differential number count
without evolutionary models being taken into account.

2.1.5 Integral number counts

Another cosmological probe is provided by integral number counts, that is the total
number of galaxies above a given flux limit

dN

dΩ
(> Smin) =

∞∫
Smin

dN

dΩdS
dS, (2.37)

or up to a given value of redshift

dN

dΩ
(< zmax) =

zmax∫
0

dN

dΩdz
dz. (2.38)

Integral number counts have the disadvantage of concealing changes in the number
density with the flux. Furthermore the numbers of sources in two neighbouring flux
intervals are not statistically independent from each other. Although integral number
counts are impractical as a cosmological probe for a comparison of models with data,
they can be quite useful for a comparison of different models and their properties,
assuming all objects are identical.

2.2 Cosmological models

All cosmological models considered thoughout this thesis are Friedmann models, which
means based on the Friedmann equations and thus on general relativity. As the Fried-
mann equations are derived from Einstein’s field equation together with the FLRW-
metric (see section 2.1), Friedmann models also include the cosmological principle, that
is the assumption of homogeneity and isotropy (e.g. [6]).

The first necessary step for deriving a simple model of the universe and its possible
evolution in time, is the cosmological principle, for this gives the simple FLRW-metric.
Accordingly, the Hubble law must be valid, because it is the unique expansion law
which conserves homogeneity and isotropy (e.g. [12]). Historically, the first attempt in
finding a reasonable model for the universe, was to assume that everything was static,
for this would simplify the matter enourmously as distances and objects never changed.
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Therefore the simplest cosmological model that can be considered is the static Eu-
clidean universe. This universe is flat and neither expanding nor contracting and thus
space just corresponds to the three-dimensional Euclidean space. That leads to the
differential number counts being proportional to (S/S0)

5/2. This model traditionally
serves as a reference for all other models. Moreover, the Euclidean part can be iso-
lated from the flux dependent differential number counts in all models considered in
the third chapter and therefore the remaining factor can be examined seperately. Un-
fortunately, a static Euclidean universe can only be realized in a spatially infinite and
empty universe.

Furthermore, a reaonable cosmological model should be compatible with general
relativity and therefore Einstein’s field equations. This is how the static Einstein model
and with it the cosmological constant came about. Einstein wanted to install a model
of the universe which was both static (temporally infinite) and spatially finite, but
to counteract the gravitational attraction of matter he had to propose a cosmological
constant keeping a spatially finite universe from collapsing or expanding. Moreover,
this model is closed, hence having a spherical spatial geometry with k=+1. The energy
density only consists of pressureless “dust” and the cosmological constant, the Hubble
rate and redshift are of course zero in a static universe and thus the scale factor is
constant (a = a0). Unfortunately, this model is highly unstable because even very
slight deviations from the right energy density and cosmological constant or spatial
curvature lead to an expanding or contracting universe (see e.g. [8], [9]).

At that time, also another static model was proposed which would also be static with
a Euclidean geometry. This model is spatially as well as temporally infinite, thus not
needing a cosmological constant to counteract gravity, and also spatially flat. As this
universe is of infinite age and size the light of infinitely many stars had time to reach
the earth and therefore would lead to a bright night sky in contradiction to observation,
known as Olbers’ paradox.

Another stationary cosmology which was quite popular before the discovery of the
cosmic microwave background is the steady state model proposed by Hoyle, Bondi and
Gold in 1948 [10], [11]. In this model the universe actually is expanding to account for
the observed redshift behaviour described by the Hubble law, but the so called ’perfect
cosmological principle’ holds which states that besides being isotropic and homogeneous
the universe also never changes its appearance throughout time. Therefore this model
requires a continuous production of matter in order to maintain a constant matter
density and thus constant star formation rates. Furthermore, in the steady state model
there has to be a mechanism to transform or destroy the material of burned-out stars or
supernova remnants etc. keeping the number density of these objects constant as well.
This model resembles a de Sitter universe with its constant Hubble rate and constant
energy density instead of a cosmological constant. As this model has been ruled out
in favor of the big bang model, it will not be considered any further in this thesis.

The de Sitter model is a flat model with a constant Hubble rate and constant energy
density which is represented only by the cosmological constant term in the Friedmann
equations. A constant Hubble rate leads to an exponentially accelerated expansion. As
the universe at its current age seems to be at a transition between a matter dominated
and a cosmological constant dominated era, the de Sitter universe is an interesting
model to be considered. Actually, the two other cases with positive and negative
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spatial curvature, i.e. k = ±1 are also referred to as de Sitter models, but will not be
considered in this thesis, as the Hubble rate is not constant any more and given by a
more complicated expression than for the simpler models (see e.g. [12]).

An example of a simple matter dominated cosmological model is the Einstein-de
Sitter model (e.g. [13]). Like the de Sitter model considered before it is spatially flat
(k = 0) without a cosmological constant (Λ = 0) and therefore the first Friedmann
equation simplifies to H2 = 8πG

3
ρ. For a matter dominated universe the expansion

rate is given by the Hubble law H = H0(1 + z)3/2 and the energy density is equal to
the critical energy density which is needed to have an expansion big enough to avoid a
gravitational collapse. This means that the expansion of the Einstein-De Sitter model is
slowed down more and more due to gravity but will never cease. The Einstein-de Sitter
model is a very practical model to describe the expansion history of the universe since
radiation pressure became irrelevant for cosmic evolution and before the accelerated
expansion due to some unknown (dark) energy began.

To account for a universe with hyperbolic space, the Milne model is also considered
in this thesis. The Milne model is an empty universe, i.e. with zero energy density
and hyperbolic spatial geometry (k = −1). As there is no space-time curvature due
to either matter or a cosmological constant it holds the flat Minkowski space-time for
the Milne model and therefore special relativity. Thus it is the only simple Friedmann
model with a constant, i.e. linear expansion with H = H0(1+z). Because of its missing
energy density the Milne model clearly is no reasonable cosmological model but still
worth to consider for investigating the effects of hyperbolic space on a cosmological
model (see e.g. [12], [14]).

The most interesting of the models considered throughout this thesis is the cold dark
matter model with dark energy or cosmological constant, the ΛCDM model, as it is
the standard cosmological model. For simplicity the radiation component is left out
to enable a slightly simpler calculation of the differential number counts. This ΛCDM
model is spatially flat and the Hubble rate is given by H = H0

√
Ωm(1 + z)3 + ΩΛ

with Ωm + ΩΛ = 1 if radiation is neglected, where Ωm and ΩΛ denote the ratios of the
energy density of matter and dark energy to the total energy density of the universe,
respectively see e.g. [6]. The calculation of differential number counts for this model
already is quite difficult, as the comoving distance which corresponds to the integral
of the inverse Hubble rate has no solution that can be expressed in terms of eleman-
tary functions but contains hypergeometric functions. An analytic solution can still
be found for differential number counts given redshift dependently, but the flux de-
pendent differential number counts cannot be solved analytically any more. Therefore
approximations become necessary for the calculation of the differential number counts
in the ΛCDM model.

For the sake of completeness it must be stated that there are still other interesting
cosmological models but most of these are no Friedmann models, i.e. models which
are not isotropic or without constant curvature everywhere. Additionally, there are
cosmologies for which other models of gravity than the theory of general relativity
are assumed, such as modified Newtonian gravity or a gravitational constand which is
changing with time.
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3 Bolometric differential number
counts

3.1 Calculation of the differential number counts

In the following section the differential number counts will be calculated under the
assumptions that all objects are point-like, have the same luminosity and are uniformly
distributed throughout the universe. Furthermore, it is assumed for simplicity that the
total flux can be measured over all frequencies (bolometric). Another assumption that
will be made for all calculations throughout this thesis is of course that features like
spatial curvature and physical laws are the same everywhere and for every time.

3.1.1 Static Euclidean universe

The by far simplest model for which differential number counts can be calculated is the
static Euclidean universe. For the calculation, a flat space without any evolution and
a uniformly distributed number of luminous objects being stars or galaxies is assumed.
As the model is assumed to be static, no dynamics due to gravitational attraction must
be taken into account. This model could clearly only be realised when the universe is
both spatially and temporally infinite.

Because there is no curvature at all and also no expansion or contraction of space,
everything can be desribed in terms of Euclidean distances. Therefore the number of
objects inside a shell of a sphere around the observer in the distance r and solid angle
of the sky Ω is given by

dN

dΩdr
= n0a

3
0r

2. (3.1)

Then for the flux an observer on the earth would measure from a point like source in
the radial distance a0r it holds

S =
P

a2
0r

2
. (3.2)

Therefore the differential number counts in a flux interval become

dN

dΩdS
=

dN

dΩdr

dr

dS
= −n0a

5
0

2P
r5. (3.3)

With the substitution

r =
1

a0

√
P

S
(3.4)

the Euclidean flux dependent differential number counts become

dN

dΩdS
= − n0

2P

(
P

S

)5/2

. (3.5)
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Finally, in order to enable a comparison with the other models considered in the fol-
lowing sections the differential number counts can be expressed for the flux normalized
to S0 as

dN

dΩd(S/S0)
= −N0

2

(
S

S0

)−5/2

, (3.6)

by setting S0 = P/a2
0 and N0 = n0a

3
0.

3.1.2 Static Einstein model

As already mentioned in the previous chapter, Einstein’s cosmological model is static
(H = 0, z = 0, a = a0), spherically closed (k = +1) and the energy density consists
of pressureless matter and the cosmological constant. According to equation (2.32) in
the previous chapter and f = sin(χ) for k = +1, the differential number counts in the
solid angle dΩ and coordinate distance interval dχ for the Einstein model are given by

dN

dΩdχ
= n0a

3
0 sin2(χ). (3.7)

With equation (2.22) and z = 0 for static models it holds for the flux

S =
P

a2
0 sin2(χ)

. (3.8)

The changing rate of the flux with coordinate distance is calculated as

dS

dχ
= − 2P

a2
0 sin3(χ)

cos(χ) (3.9)

and thus according to equation (2.29) the differential number counts in a solid angle
dΩ and flux interval dS yield

dN

dΩdS
= −n0a

5
0

2P

sin5(χ)

cos(χ)
. (3.10)

From equation (3.8) it follows

sin(χ) =
1

a0

√
P

S
=

√
S0

S
(3.11)

and for χ ∈ [0, π] it holds

cos(χ) =

√
1− S0

S
. (3.12)

Thus the differential number counts can be written as

dN

dΩdS
= −n0a

5
0

2P

(
S

S0

)−5/2
1√

1− S0

S

. (3.13)

For a better comparison with the expanding models and cancelling out the power
this can be expressed in terms of the dimensionless parameter S/S0 as will be done for
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the other models below. Setting S0 = P/a2
0 and N0 = n0a

3
0 as for the Euclidean model

it holds
dN

dΩd(S/S0)
= −N0

2

(
S

S0

)−5/2
1√

1− 1
S/S0

. (3.14)

This result yields the same formula as for the number counts in a static Euclidean
universe with an additional factor of 1/

√
1− S0/S resulting from the positive curvature

of the static Einstein model. From equation (3.12) it folllows that 0 ≤
√

1− S0

S
≥ 1

and thus S ≥ S0.

According to this result, the differential number counts in the static Einstein model
agree with the Euclidean number density for high flux densities and grow like 1/

√
1− S0/S

for decreasing flux. There is a singular point at S = S0, which corresponds to the
“equator” of the 3- sphere. However, this is not problematic if dN/dΩ is finite.

3.1.3 De Sitter model

The de Sitter universe is a cosmological model whose evolution is only determined by
a constant energy density, i.e. a cosmological constant which drives an exponential
expansion. Additionally it is spatially flat and has a constant Hubble rate (k = 0,

H = H0, ρ = ρΛ =
H2

0

4πG
from the Friedmann equations). This model has got some

relevance for the future evolution of the universe, since it is known that a transition
between a matter dominated and cosmological constant dominated universe is taking
place.

Because the de Sitter model is spatially flat we have f(χ) = χ [see.eq. (2.4) and eq.
(2.18)] and therefore the differential number counts in a distance interval dχ become

dN

dΩdχ
= a3

0χ
2n0. (3.15)

With the general result from equation (2.34) the differential number counts in a solid
angle dΩ and redshift interval dz can be directly given as

dN

dΩdz
=

n0a
2
0χ

2

H(z)
=

n0a
2
0χ

2

H0

. (3.16)

According to equation (2.18) and equation (2.22) for the flux in the de Sitter model it
holds

S =
P

d2
L

=
P

d2
c(1 + z)2

=
PH2

0

z2(1 + z)2
. (3.17)

In order to obtain the differential number counts in the solid angle dΩ and flux interval
dS via equation (2.29) the changing rate of the flux with redshift has to be calculated
which yields

dS

dz
= −2PH2

0 (1 + 2z)

(z + z2)3
. (3.18)
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Therefore the differential number counts for the de Sitter model become

dN

dΩdS
= − n0

2PH5
0

z5(1 + z)3

1 + 2z
. (3.19)

To eliminate the redshift from this formula the equation for the flux is solved for the
redshift yielding

z = −1

2
+

√
1

4
+ H0

√
P

S
(3.20)

and then inserted in dN
dΩdS

which becomes

dN

dΩdS
= − n0

4PH5
0

(
H0

√
P
S

)3
(√

1
4

+ H0

√
P
S
− 1

2

)2

√
1
4

+ H0

√
P
S

. (3.21)

As for the other models we express this equation in terms of S/S0 in order to obtain
an equation containing a constant prefactor with the parameters which are not speci-
fied by the model, i.e. the number density and current Hubble rate, times a constant
and a power law part with the argument S/S0 and some constants depending on the
model. Then the formula for the differential number counts be rearranged yielding an
expression containing the Euclidean factor (S/S0)

−5/2

dN

dΩd(S/S0)
= −2N0

(
S
S0

)−5/2

√
1 + 4

(
S
S0

)−1/2
(√

1 + 4
(

S
S0

)−1/2

+ 1

)2 , (3.22)

with S0 = PH2
0 and N0 = n0/H

3
0 . Considering the limits for the high and low flux

regime i.e. for low and high values of redshift, respectively, yields the same power law
for low redshifts as for Einstein’s static universe (and a static Euclidean model); for
large redshifts (low fluxes), S/S0 goes with the power of -7/4 (for a comparison of the
limits see section 3.2).

3.1.4 Einstein-de Sitter model

The Einstein-de Sitter universe is a matter dominated model with flat spatial geometry
and no cosmological constant (k = 0, Λ = 0, ρ = 3H2

8πG
). Contrary to the static Euclidean

universe, static Einstein model and the de Sitter universe, this model has no constant
energy density because there is a certain amount of matter which dilutes with the
expansion of the universe depending on the Hubble rate. In this special case of a matter
dominated universe in flat space, the energy density of the universe corresponds to the
critical density that has just the right value to counteract gravitational attraction.
Thus, the universe will expand forever but at an ever decreasing rate.

17



Regarding the Friedmann equations and properties of the Einstein-de Sitter model,
the Hubble rate is given by

H(z) = H0(1 + z)3/2 (3.23)

and therefore with equation (2.18) the comoving distance becomes

dc =
2

H0

(
1− 1√

1 + z

)
. (3.24)

According to these results together with equation (2.34), the differential number counts
in the solid angle dΩ and redshift interval dz for the Einstein-de Sitter model yield

dN

dΩdz
=

4n0

H3
0

(
1− 1√

1+z

)2

(1 + z)3/2
. (3.25)

With the comoving distance calculated above and equation (2.22) for the flux in the
Einstein-de Sitter model it holds

S =
H2

0P

4
(
1 + z −

√
1 + z

)2 . (3.26)

As a next step again the derivative dS/dz is calculated which gives

dS

dz
= −H2

0P

4

2
√

1 + z − 1

(1 + z)2(
√

1 + z − 1)3
. (3.27)

Thus dN
dΩdS

becomes

dN

dΩdz

dz

dS
= −16n0

H5
0P

(
√

1 + z − 1)5

(2
√

1 + z − 1)
√

1 + z
. (3.28)

Like for the de Sitter model the equation for the flux is solved for 1+z to be inserted
in the above formula. This yields the following expression for the redshift

√
1 + z =

1

2
+

1

2

√
1 + 2H0

√
P

S
. (3.29)

Inserting this result for 1 + z in the formula for the differential number counts it holds

dN

dΩdS
= −16n0

H5
0P

(
1
2

√
1 + 2H0

√
P
S
− 1

2

)5

(√
1 + 2H0

√
P
S

)(
1
2

√
1 + 2H0

√
P
S

+ 1
2

) . (3.30)

Again, as for the de Sitter model, H2
0P is substituted with S0 to obtain an equation

whose power law part depends on S/S0

dN

dΩd(S/S0)
= −32N0

(
S
S0

)−5/2

√
1 + 2

(
S
S0

)−1/2
(√

1 + 2
(

S
S0

)−1/2

+ 1

)6 , (3.31)
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where N0 = n0/H
3
0 . Considering the limit for S/S0 � 1 (z � 1), the differential

number counts match the result dN
dΩd(S/S0)

= − n0

2H3
0
(S/S0)

−5/2 of the static Euclidean

universe, while the limit for S/S0 � 1 (z � 1) evolves like (S/S0)
−3/4. This means

that the Einstein-de Sitter model must have expanded faster than the de Sitter model
to counteract the gravitational attraction of matter and reach the current Hubble
parameter.

3.1.5 Milne model

Another interesting case is the Milne model, which is an empty universe, i.e. with no
energy density or cosmological constant but in hyperbolic space (k = −1, Λ = 0, ρ = 0
and H = − k

a2 = 1
a2 ). Therefore this cosmology can be used to study the properties of

a hyperbolic spatial geometry. Furthermore, it is the only model which grows linear
with time (i.e. the scale factor a(t) is linear in t), which means that the deceleration
parameter is zero. Because of ρ = 0 and Λ = 0, the first Friedmann equation for the
Milne model reads

H2 = − k

a2
. (3.32)

and with H = ȧ
a

this becomes

H2 = H2
0

a2
0

a2
= − k

a2
(3.33)

and thus k = −H2
0a

2
0 = −1. The Hubble rate in the Milne model is given by

H(z) = H0(1 + z) (3.34)

in the Milne model and therefore

dc =
ln(1 + z)

H0

(3.35)

and
χ = H0dc = ln(1 + z). (3.36)

With equation (2.23), χ = ln(1 + z) and using a2
0 = 1/H2

0 , the differential number
counts in solid angle dΩ and redshift interval dz in the Milne model are given by

dN

dΩdz
=

n0

H3
0

sinh2(ln(1 + z))

1 + z
=

n0

4H3
0

((1 + z)2 − 1)
2

(1 + z)3
. (3.37)

As a next step, the differential number counts for a flux interval dS are calculated
via equation (2.29) by inserting the inverse of dS/dz. According to equation (2.22) and
using a2

0 = 1/H2
0 again, the flux in the Milne model is given by

S =
PH2

0

sinh2(ln(1 + z))(1 + z)2
(3.38)

so the derivative becomes

dS

dz
= −16PH2

0

1 + z

((1 + z)2 − 1)3
. (3.39)
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Regarding these results for the flux dependent differential number counts it holds

dN

dΩdS
= − n0

64PH5
0

((1 + z)2 − 1)5

(1 + z)4
. (3.40)

For the purpose of eliminating the redshift from the differential number counts for-
mula, again the equation for the flux is solved for 1 + z yielding

1 + z =

√
2

√
PH2

0

S
+ 1 (3.41)

and the result inserted in the differential number counts

dN

dΩdS
= − n0

2PH5
0

(
PH2

0

S

)5/2

(
2

√
PH2

0

S
+ 1

)2 . (3.42)

Finally this is expressed for S/S0 by inserting S0 = PH2
0 in this formula and using

N0 = n0/H
3
0 . Therefore the differential number counts in the solid angle dΩ and

d(S/S0) are given by

dN

dΩd(S/S0)
= −N0

2

(
S
S0

)−5/2

(
2
(

S
S0

)−1/2

+ 1

)2 . (3.43)

Hyperbolic space, i.e. negatively curved space, is responsible for a constant expansion
without any acceleration or deceleration. For high fluxes (low redshifts), the differential
number counts have the Euclidean limit which is proportional to (S/S0)

−5/2 as for
the other models before. The limit for low fluxes (high redshifts) is proportional to
(S/S0)

−3/2. Therefore the differential number counts in the Molne model are closer to
that of the de Sitter model than the Einstein-de Sitter model. Obviously, models with
no energy density contributed by matter had slower expansion rates in the past than
the matter dominated Einstein-de Sitter universe.

As the the cosmic expansion is only driven by a hyperbolically curved space, Milne
originally suggested, that the starting point of the universe could be modelled like
a ’real’ initial explosion of matter in an empty space being described in a special
relativistic manner only (see e.g. [12], [14]). This is of course problematic because that
matter would also contribute to a further space-time curvature making such a modelling
valid only for very small matter contents where the effects of general relativity can be
neglected.
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Bolometric differential number counts
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Figure 3.1: Differential bolometric number counts normalised to 1 for S/S0 � 1. Black,
dashed: static Euclidean universe, red,dashed: Einstein model , black: flat de
Sitter model, blue: Milne model, red: Einstein-de Sitter model.

3.2 Comparison of the models

3.2.1 Comparison of the the differential number counts

In this section, we will investigate, which properties of cosmological models can be
actually seen regarding number counts. This leads to the question to what extent
number counts provide a useful and meaningful cosmological test which can be applied
for validating cosmological models or deriving their parameters.

The most obvious feature is that number counts model the volume of the universe.
Therefore they are a probe of cosmic expansion and can be used to track the history
of the universe. Furthermore we will investigate in this section if and how the other
parameters of the different models such as curvature, energy density and a cosmological
constant leave an imprint on differential number counts and thus might be used in order
to validate the standard ΛCDM model or contrary to this for deriving the current values
of the Hubble rate and other parameters.

The differential number counts are usually normalized to the static Euclidean counts
and weighted, i.e. multiplied by c · (S/S0)

5/2, giving the current number density of
galaxies in the universe for S/S0 � 1. Here, the differential number counts have been
normalised to one for high flux densities using c = −2/N0. Then the number counts
are displayed in a double logarithmic plot so that the graphs of the various models
show “linear” behaviour for large redshifts and then tilt to today’s value for large flux
densities. In figure 3.1, the Euclidean normalised bolometric differential number counts
for the five models calculated above are shown.
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Table 3.2: Limits for S/S0 � 1 and S/S0 � 1

Model S/S0 � 1 S/S0 � 1

Euclidean −N0

2

(
S
S0

)−5/2

−N0

2

(
S
S0

)−5/2

De Sitter −N0

4

(
S
S0

)−7/4

−N0

2

(
S
S0

)−5/2

Einstein-de Sitter −
√

8N0

(
S
S0

)−3/4

−N0

2

(
S
S0

)−5/2

Milne −N0

8

(
S
S0

)−3/2

−N0

2

(
S
S0

)−5/2

Table 3.1: Bolometric differential number counts dN
dΩd(S/S0)

Model dN

dΩd
“

S
S0

”

Euclidean −N0

2

(
S
S0

)−5/2

Einstein −N0

2

(
S
S0

)−5/2
1q

1− 1
S/S0

, S > S0

De Sitter −N0

4

(
S
S0

)−5/2
1r

1+4
“

S
S0

”−1/2
 r

1+4
“

S
S0

”−1/2
+1

!2

Einstein-de Sitter −32N0

(
S
S0

)−5/2
1r

1+2
“

S
S0

”−1/2
 r

1+2
“

S
S0

”−1/2
+1

!6

Milne −N0

2

(
S
S0

)−5/2
1„

2
“

S
S0

”−1/2
+1

«2

For a better comparison of the models considered before, the results for the differ-
ential number counts and limits for S/S0 � 1 and S/S0 � 1 are given in tables 3.1
and 3.2.

As already mentioned previously, these graphs show in the first place how the differ-
ential number counts and therefore the proper volume must have behaved in the past
for the different cosmological models to lead to the number density observed today in
the nearby universe for high fluxes i.e. low redshifts. Figure 3.1 shows that the flat de
Sitter model is the one with the slowest expansion of the non static models. In order
to reach the current value of the number density of galaxies in the universe, the de
Sitter model needed more time than the matter dominated Einstein-de Sitter universe
and must therefore be older. The Einstein-de Sitter model must have expanded much
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faster than the de Sitter model at early times, because it only consists of pressureless
matter, thus the fast expansion is needed to avoid a contraction due to gravity. In the
Milne model, there is no energy density present, so the only source of ’expansion’ would
be the negative curvature of space. This shows that negative curvature resembles an
expansion which has been somewhat faster than for a cosmological constant dominated
universe, which is not surprising regarding the Hubble rates being H = H0 for the de
Sitter universe and H = H0(1+z) for the Milne model. The fact that the graph for the
Einstein-de Sitter model is much steeper than for the other expanding models indicates
that the behaviour of the differntial number counts in d(S/S0) is not just dominated by
the expansion of space which is characterised by the Hubble law as H = H0(1 + z)3/2

only has an additional factor of
√

1 + z compared to the Milne model.

3.2.2 Effects of model parameters on number counts

In this section the effects that other combinations of the parameters in the Friedmann
equations i.e. curvature, a cosmological constant and matter would have on the cosmic
expansion and therefore on differential number counts will be discussed. As the differ-
ential number counts model the expansion of the proper volume with redshift or flux,
the expansion rate, i.e. the Hubble rate has the a greatest effect on the number counts.
Therefore it can be used to investigate the behaviour of such models qualitatively.

Regarding the first Friedmann equation (2.6), it becomes obvious that the only case
for a contracting universe is a positively curved space together with the combination of
matter and cosmological constant being smaller than k

a2 . Of the flat models, the slowest
expanding model would be the de Sitter model because the cosmological constant must
be very small to lead to the current value of the Hubble parameter, whereas the matter
dominated case would have expanded fastest in the past to overcome gravity. The
combination of matter and a cosmological constant must be between the two other
cases to meet the observed value of the number density of sources today. A combination
of negative curvature, matter and a cosmological constant would lead to the fastest
expansion which can be described by a Friedmann model, because 1/a2 is added to the
Hubble rate and the scale factor is positive.

Furthermore, a consideration of equation (2.36) shows that besides the Hubble rate
via the function f(χ) the curvature affects the differential number counts in dΩd(S/S0)
as well. Moreover, it follows from the Friedmann equations that the curvature also has
an effect on the Hubble rate. The effect of curvature on the differential number counts
in a flux interval dS is quite complicated because it is contained in equation (2.36) as
a function of the coordinate distance χ which could be expressed as χ = dc/a0 and
therefore contains the integral over the Hubble rate (see eq. (2.18)).

3.2.3 Integral number counts

Although integral number counts have several disadvantages compared to differential
counts as mentioned in the introduction, they can still be useful for constraining the
parameters. The integral number counts are defined as the total number of objects
above a given flux density (see sec 2.1.4). Because calculations become rather compli-
cated for some of the models, we will calculate the the number of objects for S > S0,
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Table 3.3: Bolometric integral number counts

Model
∞∫

S0

dN
dΩd(S/S0)

d(S/S0)

De Sitter
√

5−2
3

N0 ≈ 0, 079N0

Einstein-de Sitter 8(26−15
√

3)
3

N0 ≈ 0, 051N0

Milne
(

ln(27)−4
12

)
N0 ≈ 0, 059N0

i.e. the integral over the differential number counts from the reference flux S0 to infinity

∞∫
S0

dN

dΩd
(

S
S0

)dS. (3.44)

Then by inserting the upper limit one term becomes zero thus giving simple expressions
only consisting of the lower limit of the integration S0 multiplied by a constant factor.
This gives the expressions for the integral number counts in the models calculated
above as displayed in table 3.3.

These values show how the total numbers of objects above a given flux limit deviate
from each other in the different models. This shows that the integral number counts in
the three expanding models is of the same order of magnitude. Furthermore, the values
of integral number counts for the Einstein-de Sitter model and the Milne model are
closer together than the de Sitter model and the Milne model, although these are more
similar in the differential number counts plotted in the previous section. Inserting the
current number density of objects for negligible redshifts and the current value of the
Hubble parameter H0, the total numbers of objects above a given flux could be directly
compared with the observed values. Anyway, this would certainly not be reasonable
as these are the results for bolometric number counts and we have assumed that all
sources have the same luminosity.
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4 Frequency dependent number
counts

In the previous chapter, bolometric differential number counts have been calculated
analytically for several cosmological models. As observations can only be made in a
certain frequency band due to instrumental restrictions it is more convenient to cal-
culate the differential number counts as a function of frequency, i.e. for a “straight”
spectrum characterised by its spectral index α. The frequency of light is then red-
shifted by cosmic expansion and therefore shifted into another frequency interval by an
additional factor of (1 + z)−α. Accordingly, this correction must be taken into account
for the calculations when the redshift dependent number counts shall be expressed in
terms of a frequency interval dS.

There exist special values of the spectral index besides the bolometric case, for
which the differential number counts dN

dΩd(S/S0)
have analytic solutions and thus can

be compared to the approximations that become necessary for arbitrary values of α.
Evidently, the correction for the flux is only needed for non-stationary cosmological
models and therefore the static Euclidean universe and static Einstein universe are
excluded here.

For the calculation of frequency dependent number counts the results for the redshift
dependent differential number counts dN

dΩdz
can be taken from the third chapter, as the

total number of objects in a redshift interval dz remains unchanged. The shifting of the
spectra to lower energies due to the expansion of space must be taken into account for
the determination of the flux that reaches the earth in a certain frequency and redshift
interval dS/dz. As typical radio sources have very “straight” spectra the luminosity in
proportional to

P (ν) ∝ ν−α (4.1)

leading to the following equation for the flux

Sν =
P

a2
0f

2(χ)(1 + z)1+α
. (4.2)

In order to obtain the differential number counts in a flux interval dN
dΩdS

, first the
derivative dS/dz must be calculated which can be done analytically for arbitrary values
of α and inserted in equation (2.29). Then, like for the bolometric calculations in the
previous chapter, the equation for the flux must be solved for the redshift z which can
now only be carried out analytically for certain values of the spectral index.

As in the third chapter, the differential number counts are shown S/S0-dependently
in a double logarithmic plot, where the number counts are normalised to the Euclidean
case, i.e. multiplied with a constant and S5/2 such that dN

dΩd(S/S0)
is one for S/S0 � 1.
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4.1 Exact solutions

4.1.1 De Sitter model

In the de Sitter model the luminosity distance is equal to the comoving distance because
of spatial flatness, therefore

For flat models we have a0f(χ) = dc and therefore the flux for the de Sitter model
is given by

Sν =
P

d2
c(1 + z)1+α

(4.3)

and with dc = z
H0

this becomes

Sν =
PH2

0

z2(1 + z)1+α
. (4.4)

In the limit S � S0 the redshift is approximately z ≈ 1/
√

S/S0 for arbitrary α, which
is in agreement with the Euclidean result. The changing rate of the flux with redshift
is given by

dSν

dz
= −PH2

0

(
z(3 + α) + 2

z3(1 + z)2+α

)
. (4.5)

For the differential number counts in the de Sitter model in a solid angle dΩ and
redshift interval dz we had

dN

dΩdz
= n0dHd2

c =
n0z

2

H3
0

(4.6)

and thus the differential number counts in dΩdSν become

dN

dΩdSν

= − n0

PH5
0

z5(1 + z)2+α

z(3 + α) + 2
. (4.7)

There exist quite simple solutions for some integer values of α and furthermore there
are solutions for other values of the spectral index like for 1/2 which yield very compli-
cated expressions and therefore will not be given here. Quite simple solutions can be
found for α = 0 and α = 3; for α = 2 there is no analytic solution for the redshift z.
Other simple expressions can be found for negative spectral indices α = −1,−2,−3.
These solutions are

α = 0:

z =
21/3

3

(
3
√

3

√
27
(

S0

Sν

)2

− 4S0

Sν
+ 27S0

Sν
− 2

)1/3

+

(
3
√

3

√
27
(

S0

Sν

)2

− 4S0

Sν
+ 27S0

Sν
− 2

)1/3

3 · 21/3
− 1

3
(4.8)
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α = 1 (bolometric case):

z =

√√
S0

Sν

+
1

4
− 1

2
(4.9)

and α = 3:

z =
21/3

3

(
3
√

3

√
27S0

Sν
− 4
√

S0

Sν
− 27S0

Sν
+ 2

)1/3

+

(
3
√

3

√
27S0

Sν
− 4
√

S0

Sν
− 27S0

Sν
+ 2

)1/3

3 · 21/3
− 2

3
. (4.10)

There also exist exact solutions for negative values of the spectral index; the solu-
tions for α = −1,−2 and −3 are given below. According to the Rayleigh-Jeans law we
have for flux density in the regime of low frequencies S ∝ Tν2, i.e. the case α = −2
corresponds to thermal sources.

α = −1:

z =

√
S0

Sν

(4.11)

α = −2:

z =
1

2

(
S0

Sν

+

√
S0

Sν

(
S0

Sν

+ 4

))
(4.12)

α = −3

z =

√
S0

Sν
− S0

Sν

S0

Sν
− 1

(4.13)
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Exact solutions for the de Sitter model
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Figure 4.1: Exact solutions of the specific differential number counts for the de Sitter model.
Dashed: α = −2, black: α = 0, blue: α = 1 (bolometric solution), red: α = 3.

Figure 4.1 shows the differential number counts for the values of α = −2, 0, 1, 3
normalised to one for S/S0 � 1. Obviously, a steeper spectrum of the source leads to a
steeper slope of the differential number counts for small flux densities. This behaviour
is not surprising as one might expect a greater change in the luminosity from one
frequency interval to the next to result in a larger difference of the redshifting of these
frequencies. As we will see in the case of the Einstein-de Sitter model, this assumption
must be wrong because there the steepest of the graphs at low flux densities is the one
which corresponds to the smallest spectral index. This must be due to the fact that
there are two opposing mechanisms: on the one hand, we have an increasing number
density for decreasing flux density, but on the other hand the frequencies are redshifted
to ever lower values leading to a higher number of objects in this regime. Therefore it
depends on the sign of the spectral index wether the differential number counts increase
or decrease for small flux densities.

4.1.2 Einstein-de Sitter model

Like the de Sitter model, the Einstein-de Sitter model is flat and therefore it holds
a0χ = dc. The comoving distance in the Einstein-de Sitter model was given in equation
(3.24). Then the equation for the flux becomes

Sν =
PH2

0

4
(√

1 + z − 1
)2

(1 + z)α
. (4.14)
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The changing rate of the flux with redshift is given by

dSν

dz
= −PH2

0

4

(1 + α)
√

1 + z − α

(1 + z)1+α
(√

1 + z − 1
)3 (4.15)

and therefore it holds for the flux dependent differential number counts expressed z-
dependently

dN

dΩdSν

= −16n0

PH5
0

(√
1 + z − 1

)5
(1 + z)−3/2+α

√
1 + z(1 + α)− α

. (4.16)

As for the flat de Sitter model considered in the previous section there are some special
values of the spectral index α for which the flux can be solved analytically for the
redshift. The results for these values of α which yield rather simple expressions for the
redshift depending on the flux are given in the following (where S0 = PH2

0 ):

α = 0:

1 + z =

(√
S0

4Sν

+ 1

)2

(4.17)

α = 1/2:

1 + z =
1

2

(
1 + 2

S0

4Sν

+

√
4

S0

3Sν

+ 1

)
(4.18)

α = 1 (bolometric):
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2
+

√
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4
+

√
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(4.19)

α = 2:
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(4.20)
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Exact solutions for the Einstein-de Sitter model
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Figure 4.2: Exact solutions of the specific differential number counts for the Einstein-de
Sitter model. Black: α = 0, blue: α = 1 (bolometric solution), red: α = 2.

α = −1/2:

1 + z =
1

2

(
S0

4Sν

(
S0

4Sν

+ 4

)
+

√
S0

4Sν

(
S0

4Sν

+ 2

)√
S0

4Sν

+ 4

)
. (4.21)

and α = −2:

1 + z =
Sν

S0

(
1 +

√
1− 2√

Sν/S0

)2

. (4.22)

Figure 4.2 shows the frequency dependent differential number counts for the Einstein-
de Sitter model for α = 0, 1, 2. In comparison to the de Sitter model, the order of
the graphs is inverted. This contradicts the naive assumption that steeper spectra
lead to steeper number counts as stated in the previous section. This is of course
right for the redshift dependent number counts in a flux interval dS, but it is the
redshift-dependence on the flux which leads to this inversion of the graphs. Like it was
said in the previous section, the number of objects grows for decreasing flux densities
but simultaneously the frequencies are redshifted more and more as the flux density
decreases. Furthermore, the Einstein-de Sitter model has a decelerated expansion and
therefore the expansion rate must have been very high at low frequencies. Accordingly,
in the case of the Einstein-de Sitter model a steeper spectrum of sources results in a
flatter graph for the flux dependent differential number counts.
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4.1.3 Milne model

The frequency dependent flux in the Milne model is given by

Sν =
PH2

0

sinh2 (ln(1 + z)) (1 + z)1+α
=

4PH2
0

(1 + z)−1+α ((1 + z)2 − 1)2 (4.23)

and therefore
dSν

dz
= 4PH2

0 (1− α)(1 + z)2−α
1− 1

(1+z)2
− 4

1−α

((1 + z)2 − 1)3 . (4.24)

Thus, the differential number counts become

dN

dΩdSν

=
n0

16PH5
0

((1 + z)2 − 1)
5

(1 + z)5−α
(
1− α− 1−α

(1+z)2
− 4
) . (4.25)

Then the exact solutions that exist for certain values of the spectral index α are given
below.

There is a solution for α = 0 but it is a very complicated expression and therefore
not given here explicitly but the result for the differential number counts for a zero
spectral index is shown in figure 4.3.

α = 1 (bolometric):

1 + z =

√
4S0

Sν

+ 1. (4.26)

The equation for the flux can be solved analytically for α = 2 as well but this yields
a very complicated expression which is also not given here explicitly for that reason.

α = 3:

1 + z =

√
1 +

√
1 + 44S0

Sν

√
2

(4.27)

α = −1:

1 + z =

√
4S0

Sν
+ 4
√

S0

Sν
+ 1
√

S0

Sν
+ 2

√
2

(4.28)

There are also a few other values for which the flux can be solved for the redshift
analytically, e.g. α = −2, but the results are quite complicated and therefore excluded
here. Still, the frequency dependent results can be used to investigate in which way
the spectral index influences the behaviour of differential number counts for different
cosmological models.

The flux dependent differential number counts show a similiar correlation to the
spectral index α as for the de Sitter model which means that a greater value of α leads
to a steeper graph in the Euclidean normalised double logarithmic plot.
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Exact solutions for the Milne model
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Figure 4.3: Exact solutions of the specific differential number counts for the Milne model.
Black: α = 0, blue: α = 1 (bolometric solution), red: α = 3.

4.2 Approximations

After investigating for which values of the sprectral index α the differential number
counts can be calculated analytically in the previous section, this section serves the
purpose of finding general solutions for arbitrary values of α for the number counts of
the models considered before. The main problem regarding the calculation of number
counts is expressing the equation for the flux as a function of redshift in order to insert
the result in dN

dΩdS
(z). As the flux cannot be solved for the redhift analytically for

arbitrary values of the spectral index α, approximations have to be made. Obviously,
the simplest way of finding approximations is to consider the limits of high and low
redshifts, i.e. low and high fluxes which will be done in this section.

4.2.1 De Sitter model

The differential number counts per solid angle dΩ and flux interval dSν expressed in
terms of the redshift have been calculated analytically in section 4.1.1 yielding equation
(4.31). Now the flux equation must be solved for z or 1 + z and inserted in equation
(4.3) in order to obtain the specific differential number counts for a spectral index α.

For high redshifts, i.e. low flux, it holds

lim
z→∞

z2(1 + z)1+α = z3+α, (4.29)

which yields
PH2

0

Sν

≈ z3+α. (4.30)
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Approximations for the de Sitter model for Sν/S0 � 1
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Figure 4.4: Exact solutions and approximations of the specific differential number counts for
the de Sitter model for Sν/S0 � 1. Solid lines are the exact solutions, dashed
lines the approximations.
Black: α = 0 , blue: α = 1 (bolometric solution), red: α = 3.

Therefore in the limit z � 1 the redshift depends on the flux as

z ≈
(

PH2
0

Sν

) 1
3+α

. (4.31)

Inserting this result in equation (4.6) and expressing it in terms of the non redshifted
flux S0, the approximated specific differential number counts for low fluxes become

dN

dΩd(Sν/S0)
≈ − n0

H3
0

(
Sν

S0

)− 5
3+α

((
Sν

S0

)− 1
3+α

+ 1

)2+α

(3 + α)
(

Sν

S0

)− 1
3+α

+ 2

. (4.32)

For low redshifts, that is in the limit z � 1, the redshift dependence of the flux can
be approximated as

lim
z→0

z2(1 + z)1+α = z2 (4.33)

and thus the approximation for the redshift in this regime is given by

z ≈

√
PH2

0

Sν

. (4.34)
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Approximations for the de Sitter model for Sν/S0 � 1
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Figure 4.5: Exact solutions and approximations of the specific differential number counts for
the de Sitter model for Sν/S0 � 1. Solid lines are the exact solutions, dashed
lines the approximations.
Black: α = 0 , blue: α = 1 (bolometric solution), red: α = 3.

Then the flux dependent differential number counts in the limit of low redshifts, i.e.
fluxes close to S0 become

dN

dΩd(Sν/S0)
≈ − n0

H3
0

(
Sν

S0

)−5/2
((

Sν

S0

)−1/2

+ 1

)2+α

(3 + α)
(

Sν

S0

)−1/2

+ 2

. (4.35)

Figure 4.4 shows the approximations for Sν/S0 � 1 and figure 4.5 for Sν/S0 � 1
together with the exact solutions from section 4.1.1 corresponding to the same values
of the spectral index α for low and high fluxes, respectively. As in the previous plots,
the differential number counts are normalised to the Euclidean number counts by mul-
tiplication with S

5/2
ν . For low fluxes, the approximations for α = 1 and α = 3 are quite

good, only the approximation for α = 0 gives a slightly higher value for the differential
number counts than the exact solution. If the approximation of the differential number
counts for α = 0 was normalised such that it yields the right number counts for low
fluxes, one would see that the approximations hold up to higher fluxes the smaller the
value of the spectral index is. In the range of large Sν/S0 the approximations only
work for values greater than one. Therefore these approximations only hold for fluxes
up to about Sν/S0 ≈ 10−5 and above one.
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4.2.2 Einstein-de Sitter model

As for the de Sitter model before the redshift is approximated for the limits of high
and low redshifts seperately. For the limit z � 1, the redshift dependence of the flux
is given by

lim
z→∞

(√
1 + z − 1

)2

(1 + z)α = (1 + z)1+α, (4.36)

therefore it follows from the equation for the flux, which was given in equation (2.13),

PH2
0

4Sν

≈ (1 + z)1+α, (4.37)

and thus

1 + z ≈
(

S0

4Sν

) 1
1+α

(4.38)

with PH2
0 = S0. Then after inserting this result in equation (4.15) and replacing dSν

by d(Sν/S0) the specific differential number counts yield

dN

dΩd(Sν/S0)
≈ −16n0

H3
0

α +
1

1−
(
2
√

Sν

S0

)− 1
1+α


(

1

2

√
Sν

S0

) 7+2α
1+α

. (4.39)

For small redshifts, the limit for the flux becomes

lim
z→0

(√
1 + z − 1

)2

(1 + z)α =
(√

1 + z − 1
)2

, (4.40)

i.e. from equation (2.13) it holds

PH2
0

4Sν

≈
(√

1 + z − 1
)2

, (4.41)

and therfore the redshift dependends on the flux as

1 + z ≈

√PH2
0

4Sν

+ 1

2

. (4.42)

Then for the specific differential number counts in the limit z � 1 it holds

dN

dΩd(Sν/S0)
≈ −16n0

H3
0

α + 1

1−
“

1
2

q
Sν
S0

+1
”−1(

1
2

√
Sν

S0
+ 1
)7+2α . (4.43)
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Approximations for the Einstein-de Sitter model for Sν/S0 � 1
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Figure 4.6: Exact solutions and approximations of the specific differential number counts for
the Einstein-de Sitter model for Sν/S0 � 1. Solid lines are the exact solutions,
dashed lines the approximations.
Black: α = 0 , blue: α = 1 (bolometric solution), red: α = 2.

Figure 4.6 shows the approximations for Sν/S0 � 1 for the Einstein-de Sitter model
together with the exact solutions. As for the de Sitter model before, the number
counts are normalised to the Euclidean value. The approximation for the bolometric
differential number counts (α = 1) is identical with the exact solution because the
redshift expressed as a function of the flux is the same. For other values of the spectral
index the approximations only work up to a maximal flux and then deviate from the
exact differential number counts for the corresponding value of α. It seems that this
deviation occurs at lower flux levels the higher the value of the spectral index is.
Compared to the approximations for the de Sitter model, the approximations for the
Einstein-de Sitter model are even better and work out up to higher fluxes of at least
around Sν/S0 = 10−4.

In the case of the approximations for Sν/S0 � 1 shown in figure 4.7, it is that with
the spectral index α = 0 for which the approximation is identical for all values of
the flux. For increasing values of α the slopes of the approximate differential number
counts become flatter in the double logarithmic plot and the solution for α = 2 evens
equals the static Euclidean behaviour. Therefore the approximations for Sν/S0 � 1
and α > 0 coincide with the exact number counts at slightly higher flux levels the
greater the spectral index becomes. Contrary to the approximation for high fluxes for
the de Sitter model, the approximations for the Einstein-de Sitter model are already
close to the exact solutions for Sν/S0 = 1.
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Approximations for the Einstein-de Sitter model for Sν/S0 � 1
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Figure 4.7: Exact solutions and approximations of the specific differential number counts for
the Einstein-de Sitter model for Sν/S0 � 1. Solid lines are the exact solutions,
dashed lines the approximations.
Black: α = 0 , blue: α = 1 (bolometric solution), red: α = 2.

Thus, the approximations for the Einstein-de Sitter model are better than for the
de Sitter model because they are in good agreement to the exact differential number
counts for fluxes below Sν/S0 ≈ 10−4 and above Sν/S0 ≈ 1.

4.2.3 Milne model

Now the approximated differential number counts will be calculated for the Milne
model. Again, the equation for the flux is is approximated for z � 1 and z � 1,
respectively. In the limit z � 1 it holds

lim
z→∞

(1 + z)−1+α
(
(1 + z)2 − 1

)2
= (1 + z)3+α, (4.44)

that is with the equation for the flux eq.(4.21) it follows

4PH2
0

Sν

≈ (1 + z)3+α (4.45)

and therefore the redshift is given by

1 + z ≈
(

4
PH2

0

Sν

) 1
3+α

. (4.46)
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Approximations for the Milne model for Sν/S0 � 1
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Figure 4.8: Exact solutions and approximations of the frequency dependent differential num-
ber counts for the Milne model for Sν/S0 � 1. Solid lines are the exact solutions,
dashed lines the approximations.
Black: α = 0 , blue: α = 1 (bolometric solution), red: α = 3.

Regarding these results the flux dependent differential number counts for high red-
shifts, i.e. low flux become

dN

dΩd(Sν/S0)
≈ n0

16H3
0

((
Sν

4S0

)− 2
3+α − 1

)5

(1− α)
(

Sν

4S0

)− 5−α
3+α

(
1− 1“

Sν
4S0

”− 2
3+α

− 4
1−α

) . (4.47)

For the limit z � 1 we have

lim
z→0

(1 + z)−1+α
(
(1 + z)2 − 1

)2 ≈ 4z2 (4.48)

which is obtained by a series expansion around zero, thus

PH2
0

Sν

≈ z2 (4.49)

from eq.(4.21) and then for the redshift it holds

z ≈
√

S0

Sν

. (4.50)
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Approximations for the Milne model for Sν/S0 � 1
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Figure 4.9: Exact solutions and approximations of the frequency dependent differential num-
ber counts for the Milne model for Sν/S0 � 1. Solid lines are the exact solutions,
dashed lines the approximations.
Black: α = 0 , blue: α = 1 (bolometric solution), red: α = 3.

Therefore the flux dependent differential number counts in the limit of low redshifts,
i.e. high fluxes are given by

dN

dΩd(Sν/S0)
≈ n0

16H3
0

((
1 + 1q

Sν
S0

)2

− 1

)5

(1− α)

(
1 + 1q

Sν
S0

)5−α
1− 1„

1+
“

Sν
S0

”−1/2
«2 − 4

1−α

 . (4.51)

Figure 4.8 shows the approximations for low fluxes for the Milne model together
with the exact solutions calculated in section 4.1. The approximations are in good
agreement with the exact differential number counts up to quite high fluxes of about
Sν/S0 ≈ 10−2 or even more. Like for the other models before, the approximations hold
up to higher values for the flux for smaller spectral indices.

The approximations for high flux levels are shown in figure 4.9. Here the approxima-
tions are also valid for lower fluxes than the approximated differential number counts
of the models considered before. Again, the approximations with a small spectral index
α fit the number counts best, i.e. work already for lower values of the flux.

Therefore the approximations for the differential number counts for the Milne model
are quite good compared to the other two models considered in the previous sections,
i.e. they work for a broad flux range.
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These results show that the simple approximations are in good agreement with the
exact solutions for a broad flux range. Problematic is only the region where Sν/S0 lies
between about Sν/S0 ≈ 10−5 and Sν/S0 ≈ 100 in the case of the de Sitter model. For
the Einstein-de Sitter model the approximations are much better and work best for
the Milne model except for a flux range of about 10−3 < Sν/S0 < 1. In general, the
approximations are better the smaller the spectral index α becomes.
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5 Number counts for the Lambda
Cold Dark Matter model

One of the most interesting cases for a cosmological model is the Cold Dark Matter
model with dark energy (ΛCDM-model) as this corresponds to the current cosmological
standard model. The ΛCDM model is a flat model which is dominated by pressureless,
non-relativistic matter and a cosmological constant which drives accelerated expan-
sion. Because of its spatial flatness, the following expression for redshift dependent
differential number counts can be adapted from equation (2.34) in the third chapter as

dN

dΩdz
= n0dHd2

c . (5.1)

With the Hubble parameter

H = H0

√
Ωm(1 + z)3 + ΩΛ, (5.2)

and ΩΛ = 1−Ωm for the flat ΛCDM model, the Hubble distance from equation (2.13)
and the comoving distance from equation (2.18) this becomes

dN

dΩdz
=

n0

H3
0

√
Ωm(1 + z)3 + 1− Ωm

 z∫
0

dz′√
Ωm(1 + z′)3 + 1− Ωm

2

. (5.3)

This equation leads to the problem of evaluating the integral which has no analytic
solution that can be expressed by elementary functions. Solutions to this integral
always contain elliptical or hypergeometric functions and therefore exacerbate further
calculations leading to quite complicated formulae. With the substitution 1 + z = x
and the restrictions that ztarget = ”1” > 0 and 0 ≤ Ωm < 1, the integral has a solution
with hypergeometric functions, namely

z∫
0

dz′√
Ωm(1 + z′)3 + 1− Ωm

=
2√
Ωm


2F1

[
1

6
,
1

2
,
7

6
;
Ωm − 1

Ωm
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2F1

[
1
6
, 1

2
, 7

6
; Ωm−1

Ωm(1+z)3

]
√

1 + z

 , (5.4)

where

2F1 [a, b, c; x] =
∞∑

k=0

akbk

ck

xk

k!
, (5.5)
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with

(q)n =

{
1 : n = 0

q(q + 1) · · · (q + n− 1) : n > 0
(5.6)

Regarding this result, the differential number counts as a function of redshift become

dN

dΩdz
= − 4n0

H3
0Ωm

√
Ωm(1 + z)3 + 1− Ωm

·
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6
;
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6
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2
, 7

6
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]
√

1 + z

2

. (5.7)

For obtaining dN
dΩdS

= dN
dΩdz

dz
dS

, the derivative dS
dz

must be calculated as for the other
models before, where the flux is given by equation (2.22). With the above result for
the integral, the changing rate of the flux with redshift is given by
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. (5.8)

Inserting the inverse dz/dS in dN
dΩdS

= dN
dΩdz

dz
dS

yields the differential number counts in
the frequency interval dS

dN
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= − 8n0
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0Ω2
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.

(5.9)

Figure 5.1 shows the differential number counts for the ΛCDM-model as a function
of flux calculated above (eq. (5.9)) together with the differential number counts for the
de Sitter and Einstein-de Sitter model from the third chapter, where n0, P and H0 were
set one. The graph for Ωm = 1 correctly reproduces the differential number counts for
the Einstein-de Sitter model. Increasing values of Ωm lead to a further approximation
to the de Sitter model up to higher redshifts. Because of the ever increasing effect of
the factor (1+z)3 for higher redshifts there is still a strong deviation from the de Sitter
model even for small values of Ωm when z becomes large enough.
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Differential number counts for the ΛCDM-model
as a function of z
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Figure 5.1: Differential number counts for the ΛCDM-model as the function of redshift given
in equation (5.9) together with the number counts for the de-Sitter and Einstein-
de Sitter model for comparison.
Dashed lines are the differential number counts for the de Sitter model (upper
graph) and Einstein-de Sitter model, solid lines are the number counts for the
ΛCDM-model.
Black: Ωm = 0.001, blue: Ωm = 0.3, red: Ωm = 1.

The next problem arises when trying to eliminate 1 + z from dN
dΩdS

by solving the
formula for the flux for 1+z as for the other models before. As this is impossible to solve
analytically due to the hypergeometric functions, an approximation becomes necessary.
The easiest way to overcome this problem might seem to solve the comoving distance
for z � 1 and z � 1, which gives the solutions for the de Sitter and Einstein-de Sitter
models, respectively. Unfortunately, the value of Ωm = 0 which corresponds to the de
Sitter model whose behaviour is only determined by a cosmological constant, cannot be
inserted in the differential number counts as this would give zero for the denominator
in the argument of the hypergeometric functions. Nevertheless, the differential number
counts from equation (5.9) with the redshift as a function of flux of the Einstein-de
Sitter model given in equation (3.20) reproduce the bolometric differential number
counts of the Einstein-de Sitter model for Ωm = 1 which is shown in figure 5.3.

In the double logarithmic plot the Euclidean normalised differential number counts
always have the same slope for different values of Ωm and only tilt to the Euclidean
value at different flux levels. Obviously, this approach is not a good approximation to
the redshift formula in the ΛCDM model. Nevertheless, approximations for the limit
Ωm → 0 will always be problematic, for the reason stated above that Ωm = 0 cannot
be inserted in the differential number counts for the ΛCDM model. Even an ever so

43



small Ωm will have a large contribution at high redshifts as it is muliplied with (1+ z)3

in the Hubble rate.

Other approximations than inserting the 1+z-dependence of the limiting cases which
correspond to the de Sitter and Einstein-de Sitter models, are obtained by expanding
the hypergeometric functions in series around zero and infinity for high and low red-
shifts, respectively.

The series expansion of the solution for the comoving distance around infinity to the
first order is given by

dc =
2
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Therefore it holds√
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and the redshift as a function of flux is approximately given by

√
1 + z =

1

2 · 2F1

[
1
6
, 1

2
, 7

6
; Ωm−1

Ωm

]
+

√√√√√
 1

2 · 2F1

[
1
6
, 1

2
, 7

6
; Ωm−1

Ωm

]
2

+

√
Ωm

√
S0

S

2 · 2F1

[
1
6
, 1

2
, 7

6
; Ωm−1

Ωm

] .
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This leads to a general formula for the differential number counts without a specified
Ωm for the ΛCDM model in the limit of high redshifts or low fluxes. This equation is
not given here explicitly as it is a very complicated expression which is obtained by just
inserting the 1 + z-dependence into equation (5.9). The resulting differential number
counts are shown in figure 5.4.

For the case of low redshifts the series expansion to the first order around z = 0
yields the comoving distance
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z

H0 · 7Ω
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+ O[z]2. (5.13)

The first term simplifies to z/H0 [15] and thus the comoving distance for S/S0 � 1
equals that of the de Sitter model leading to the same redshift as a function of flux
which was given in equation (3.20). Thus this approximations corresponds to the
differential number counts shown in figure 5.2.
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ΛCDM-model with the redshift-flux relation of de Sitter
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Figure 5.2: Approximations for the differential number counts for the ΛCDM-model for

z = −1
2 +

√
1
4 +

√
S0/S together with the number counts for the de-Sitter and

Einstein-de Sitter model for comparison.
Dashed lines are the differential number counts for the de Sitter model (upper
graph) and Einstein-de Sitter model, solid lines are the approximations.
Black: Ωm = 0.001, blue: Ωm = 0.3, red: Ωm = 1.

Figure 5.2 shows the differential number counts as a function of flux, i.e. the graphs
of equation (5.9) with the redshift obtained for the de Sitter model (equation (3.20))
for the values of the ratio of mass energy to total energy Ωm = 0.001, 0.3 and 1.
Additionally, the bolometric differential number counts of the de Sitter and Einstein-
de Sitter models are shown for comparison as these correspond to the limiting cases
of Ωm = 0 and Ωm = 1, respectively. This approximation leads to graphs which are
somewhat steeper than that of the differential number counts for the Einstein-de Sitter
model. Higher values of Ωm yield graphs with the same slope and tilt to the Euclidean
slope for S/S0 close to one. This behaviour is due to the increasing effect of Ωm for
decreasing flux densities as stated above. The approximation of the differential number
counts for the ΛCDM model shown in figure 5.3 are obtained by inserting the redshift
as a function of flux for the Einstein-de Sitter model into equation (5.7). For Ωm = 1
this approximation reproduces the differential number counts of the Einstein-de Sitter
model as this is identical to a ΛCDM-model with no cosmological constant. It is not
surprising that the graphs for Ωm = 0.3 and Ωm = 0.001 show the same slope for low
flux levels and are shifted to higher numbers as the redshift as a function of flux is
simialar to that for the de Sitter model which is shown in figure (5.1). Furthermore,
the inserted redshifts leading to figure 5.1 and figure 5.2 do not depend on the value
of Ωm.
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ΛCDM-model for the redshift-flux relation of Einstein-de Sitter
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Figure 5.3: Approximations for the differential number counts for the ΛCDM-model for 1 +

z =
(

1
2 + 1

2

√
1 + 2

√
S0/S

)2

together with the number counts for the de-Sitter

and Einstein-de Sitter model for comparison.
Dashed lines are the differential number counts for the de Sitter model (upper
graph) and Einstein-de Sitter model, solid lines are the approximations.
Black: Ωm = 0.001, blue: Ωm = 0.3, red: Ωm = 1.

Figure 5.4 shows the approximations of the bolometric differential number counts
in the ΛCDM-model in the limit S/S0 � 1 for values of Ωm = 1, 0.3 and 0.001. The
solutions for Ωm = 1 and Ωm = 0.3 are very similar to each other and the approxi-
mated differential number counts for Ωm = 1 coincide with the number counts of the
Einstein-de Sitter model. Although the redshift is in this case a function of flux as
well as the energy density contributed by matter (or dark energy as Ωm = 1 − ΩΛ)
the graphs for Ωm = 0.3 and Ωm = 0.001 still have the same slope as for the Einstein-
de Sitter model. Thus this approximation can only reproduce the differential number
counts for the Einstein-de Sitter model and does not approximate the number counts
for arbitrary contributions of matter and dark energy. This is again due to the fact that
the influence of even a very tiny value of Ωm has a great contribution to the differential
number counts when the flux becomes low enough.
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Approximations for the ΛCDM-model for S/S0 � 1
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Figure 5.4: Approximations for the differential number counts for the ΛCDM-model for
S/S0 � 1 together with the number counts for the de-Sitter and Einstein-de
Sitter model for comparison.
Dashed lines are the differential number counts for the de Sitter model (upper
graph) and Einstein-de Sitter model, solid lines are the approximations.
Black: Ωm = 0.001, blue: Ωm = 0.3, red: Ωm = 1.

These results show that the differential number counts for the ΛCDM-model for non-
vanishing values of Ωm all have the same slope as the Einstein-de Sitter model for low
flux densities, i.e. high redshifts. For decreasing contributions of matter to the energy
density the differential number counts approach the value for the de Sitter model at
higher redshifts or lower flux densities and have the same slope as the number counts
for the Einstein-de Sitter model when Ωm becomes dominant which happens at earlier
times the greater the contribution of dark energy becomes. Therefore even very small
matter contents lead to the same slope for the differential number counts as in the
Einstein-de Sitter model at high redshifts or low flux densities.
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6 Conclusion and outlook

The aim of this thesis was to invesigate in how far differential number counts can
be calculated analytically for different cosmological models and where approximations
become necessary. Furthermore, we wanted to find out which cosmological properties
can be actually seen regarding number counts and to which differential number counts
are insensitive as a cosmological probe.

All the simple models considered in the third chapter, i.e. the Euclidean and Einstein
model as examples for static models, the flat de Sitter model, the Einstein-de Sitter
model and the Milne model, can be calculated completely analytical if the differential
number counts are not taken to be in a certain frequency band, but bolometric.

Expressing the differential number counts for those models as functions of bolometric
flux density could also be done analytical. For the static Einstein model the reference
flux density is S0, corresponding to sources at the ”equator” of the 3-sphere. For all
other models the reference flux is that of a souce seen at Hubble distance. These
calculations can be probably carried out analytical for some other simple models as
well, e.g. de Sitter models with k = ±1. Although these analytic solutions for the
differential number counts cannot be applied to surveys as they are bolometric, they
are still practical for the investigation of the way in which model properties influence
number counts. The main result of this investigation is that number counts model the
evolution of the proper volume and hence the Hubble law. Moreover, curvature also
leaves an imprint on number counts. At large flux densities, all models agree local
Euclidean number counts.

In the fourth chapter the specific differential number counts have been taken into
account. The stationary cosmologies have been excluded as flux densities are only red-
shifted into another frequency band in an expanding (or contracting) universe. Specific
number counts in a flux interval dS can be calculated analytically as a function of red-
shift for the models considered in the third chapter. Expressing the specific differential
number counts as a function of flux density is problematic as the flux equation has to
be solved for the redshift. This can only be done analytical for specific values of the
spectral index α, otherwise approximations become necessary. Simple approximations
of the redshift for the limits of S/S0 � 1 and S/S0 � 1 yield solutions for the specific
differential number counts which are in good agreement with the exact solutions that
can be obtained for certain values of α for flux densities S/S0 � 1 and above one.
These approximations improve the smaller the value of the spectral index becomes. It
should be possible to find better approximations for the redshift as a function of flux
and spectral index that are valid for the range of flux densities between 10−5 and one,
which could be an issue for further investigation.

Finally, in the fifth chapter the (bolometric) differential number counts have been
calculated for the ΛCDM-model, which is spatially flat and its energy density is com-
posed of matter and dark energy (no radiation taken into account). For this model
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the differential number counts cannot be expressed in terms of elementary functions.
Nevertheless, there is a solution for the flux dependent differential number counts as a
function of redshift which contains hypergeometric functions. Approximations similar
to those for the specific differential number counts work for low flux densities; the num-
ber counts for high flux densities can be approximated best by inserting the redshift as
a function of flux for the de Sitter model into the equation for the differential number
counts per solid angle dΩ and flux density interval dS as a function of redshift. These
considerations show that even an ever so small amount of energy density contributed
by matter results in a slope of the differential number counts equal to that of the
Einstein-de Sitter model at early times.

Interesting issues for investigation beyond might be a comparison to numerical cal-
culations. Furthermore, it would be worth to consider the specific differential number
counts for the ΛCDM-model. In this work we assumed that all sources have the same
isotropic luminosity. An obvious next step would be to include a luminosity distribution
and different populations, e.g. two populations with different spectral index. Beyond
that, modelling evolution of sources both in density and luminosity and a comparison
to data would be worth investigating.
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