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ABSTRACT
This paper investigates analytically the advantage of the em-

bedded propulsion compared to a state of the art propulsion of an
aircraft. Hereby, we are applying the integral method of bound-
ary layer theory and potential theory to analyse the boundary
layer thickness and the impact of the flow acceleration due to
the embedded propulsion. The aircraft body is treated as a flat
plate. The engine is treated as a momentum disc but there is a
trade off, since the engine efficiency is effected by the boundary
layer. The outcome of the energetic assessment is the following:
the propulsion efficiency is increased by the embedded propul-
sion and the drag of the aircraft body is reduced. The optimized
aircraft engine size depending on Reynolds number is given.

NOMENCLATURE
a Induction factor.
A Area.
c Absolute velocity.
c f Friction coefficient.
c′f Local friction coefficient.
C Constant.
~ex Unit vector in x-direction.
f+ Friction coefficient.
H Stream tube height.
L Aircraft body length.

∗Address all correspondence to this author.

n Exponent of the velocity power law.
p Pressure.
Ps Shaft power.
R Gas constant.
Re Reynolds number.
S Thrust.
~t Stress vector.
T Temperature.
u Flow velocity within the boundary layer.
u∗ Friction velocity.
U Flow velocity outside the boundary layer.
v Flying speed.
W0 Body drag force.
Wf Friction force.
x Axial coordinate.
y Wall coordinate.
αp Shaft power ratio.
αw Friction force ratio.
γ Isentropic exponent.
δ Boundary layer thickness.
δ1 Displacement boundary layer thickness.
δ2 Momentum boundary layer thickness.
ζ Dimensionless constant.
η Efficiency.
ηFr Propulsion efficiency (Froud).
κ Slenderness ratio.
κ1 Dimensionless constant.
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κ2 Dimensionless constant.
λ Dimensionless constant.
ν Kinematic viscosity.
ρ Air density.
τw Wall shear stress.
φ Flow potential.

INTRODUCTION
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FIGURE 1. EMBEDDED PROPULSION OF AN AIRCRAFT.

Figure 1 shows an aircraft engine embedded in the aircraft
body. This set-up is one possibility among others of an embed-
ded propulsion. For this topology there are two contradicting
influences: first, the friction resistance Wf of the hull will be
reduced due to the boundary layer acceleration. Second, the en-
gine efficiency will be negative effected due to the non-uniform
velocity profile at the engine inlet. Both effects are contradict-
ing and can be traced back to the boundary layer thickness δ .
For the first effect, the ratio of δ to hull length L will be im-
portant. For the second effect, the ratio of δ to the engine size
H is relevant. Hence, we expect an optimal slenderness ratio
κ := H/L as a function of the Reynolds number for the mini-
mal power consumption. This paper discusses the aerodynamic
advantage of the embedded propulsion compared to an conven-
tional propulsion by propulsion efficiency analysis. The influ-
ence of the propulsion interacting with the boundary layer is in-
vestigated by Tillman, Hardin et al. [1, 2]. For different aircraft
configurations the power balance method for performance esti-
mation is applied by Sato [3] and Drela [4].

The aircraft body is treated as a flat plate. Following the idea
of Rankine 1865 [5] and Betz [6] the aircraft engine is modelled
as a disc actuator. This approach is only valid for propeller en-
gines. Thus, this analysis neglects the fuel mass flow and the flow
is assumed to be incompressible. An extension to a compressible

flow of the present theory is possible. Thus, the principle ap-
proach does not change for a compressible flow. By doing so, we
yield two configurations; see Fig. 2. For the conventional propul-
sion representing the reference case, a pylon connects the aircraft
engine with the aircraft body. For the embedded propulsion the
aircraft engine is embedded in the aircraft body.
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FIGURE 2. SCHEMATICAL DESCRIPTION OF THE BOUND-
ARY LAYER AND STREAM TUBE FOR a) THE CONVENTIONAL
AND b) THE EMBEDDED PROPULSION.

This paper is organized as follows: first, we discuss the axial
momentum balance and we introduce the axial induction factors
a := c/v and a := c/v. Second, the outer flow will be discussed
by potential theory. By the third step, we calculate the boundary
layer thickness, e.g. the friction drag, with the results from the
previous sections and compare the embedded propulsion with the
conventional propulsion. At last, the first law of thermodynamics
is applied to define the efficiency. By doing so, the optimal en-
gine size is given by the shaft power ratio of the two topologies.
In the closure of this paper, we summarize our investigation by
three major findings.

AXIAL MOMENTUM BALANCE
For the embedded propulsion the axial momentum balance

reads

H∫
0

ρu2dy−ρU1UH =Wf − p1H, (1)

with the pressure p1 in front of the disc, the velocities u and U ,
the height H and the air density ρ . The friction force is

Wf =~ex ·
∫
Ak

~t dA, (2)
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with Ak the wetted area of the whole aircraft body. Using the
displacement thickness δ1, defined as usual as

δ1 :=
∞∫

0

(
1− u

U

)
dy (3)

and the momentum thickness

δ2 :=
∞∫

0

(
1− u

U

)
u
U

dy, (4)

the left side of Eqn. 1 yields

H∫
0

ρu2dy−ρU1UH = ρU2 (H−δ1−δ2)−ρU1UH, (5)

evaluated in front of the disc at x = L.
The continuity equation reads

UH−
H∫

0

u dy =UH− (H−δ1)U = 0 (6)

at the disc and with the Bernoulli equation

p1 =−
ρ

2
(
U2−U2

1
)

(7)

for the pressure in front of the disc, the axial momentum balance
yields

U2
λ −2vU + v2 =

2Wf

ρ
(8)

with

λ :=
H2−2H(δ1 +δ2)

(H−δ1)
2 = 1−2δ2+. (9)

δ2+ is approximately the dimensionless momentum thickness ne-
glecting terms higher order, thus

δ2+ ≈
δ2

H
. (10)

Following the nomenclature of Glauert [7], the ratio of the
total jet velocity and the velocity of transport, e.g. flying speed,
is

a :=
c
v
=

U2

v
−1, (11)

the so called axial induction factor of the disc. Close to the disc,
the induction factor is definded as

a :=
c
v
=

U
v
−1. (12)

With the induction factors, the friction coefficients

c f :=
2Wf

ρv2L
, (13)

f+ :=
c f

κ
, (14)

and the slenderness ratio

κ :=
H
L
, (15)

we obtain

(a+1)2
λ −2a = f++1. (16)

The axial momentum balance for the stream tube from the
beginning of the aircraft body behind the disc for the induction
factors a and a, reads

ρHU
(
U−U1

)
= S− p2H, (17)

with the pressure p2 behind the disc. The thrust S equals the sum
of the friction force Wf and body drag W0 at constant flying speed
v

S =Wf +W0. (18)

The body drag is given by

W0 = ρHU (U2−U1) . (19)
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Using Bernoulli’s equation behind the disc to the free jet
stream, the pressure behind the disc is

p2 =
ρ

2

(
U2

2 −U2
)
. (20)

Following the nomenclature of Glauert, Eqn. 17 yields

(a−a)2 = f+, (21)

thus, the induction factor a is given by

a =
√

f++a. (22)

With Eqn. 16 and 22 the induction factors a(δ+, f+) and
a(δ+, f+) are given. A reference case without a boundary layer,
e.g. δ+ = 0 and λ = 1, the well known Betz solution a = 1/2a
is included. For the general case, the induction factors a(δ+, f+)
and a(δ+, f+) are given by Fig. 3 and 4, respectively.
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FIGURE 3. INDUCTION FACTOR a DEPENDENT ON BOUND-
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Figure 5 shows the ratio a/a of the induction factors. The
solid line indicates the Betz solution for δ+ = 0 and the dashed
line indicates 2δ+ = f+; the solution for a constant pressure
boundary layer as we will show in the following sections.

For a compressible flow Eqn. 20 has to be replaced by
u/2+ γ/(γ − 1) p/ρ = const.. As usual the equation of state
p = ρRT is as well needed as well as the energy equation in in-
tegral form [8, 9].
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FIGURE 5. INDUCTION FACTORS RATIO a/a DEPENDENT ON
BOUNDARY LAYER THICKNESS AND FRICTION COEFFICIENT.
THICK SOLID LINE INDICATES δ+ = 0, DASHED LINE 2δ+ = f+.

OUTER FLOW
Outside the boundary layer, e.g. the outer flow, the flow

is irrotational. There, the velocity field is given by ~U = ∇φ .
The flow upstream of the disc is described by a superposition
of the following three sections: first, the potential of undis-
turbed approaching flow U1x. Second, the line sink at x = L,
−H < y′ < H with the sink strength −4cH. Third, the combi-
nation of sinks and sources to consider the boundary layer at the
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flat plate. Thus, we obtain

φ =U1x− c
π

H∫
−H

ln
√

(x−L)2 +(y− y′)2 dy+ . . .

+

L∫
0

U (x′)
π

dδ1 (x′)
dx′

ln
√
(x− x′)2 + y2 dx.

(23)

The velocity of the outer flow is given by

U(x) =
∂φ

∂x

∣∣∣∣
y=δ (x)

. (24)

The displacement of the boundary layer influences the velocity
less than the propulsion does. Thus, the second term on the ride
side of Eqn. 23 for the velocity profile within the boundary layer
is negligible. The velocity of the outer flow

U(x)
U1
≈ 1− a

π

H∫
−H

x−L

(x−L)2 + y′2
dy′ (25)

depends on the induction factor.

BOUNDARY LAYER AND DRAG
Figure 2 illustrates the boundary layer at the flat plate, e.g.

the aircraft body. The drag force is the sum of friction force and
body drag; see Eqn. 18. The friction force is the integral of the
wall shear stress

Wf =

L∫
0

τw dx. (26)

The wall shear stress is τw := ρu2
∗ with the friction velocity u∗

and yielding the local friction coefficient

c′f :=
2τw

ρU2 = 2
u2
∗

U2 . (27)

Hence, the friction force is

c f :=
2Wf

ρU2
1 L

=
1
L

L∫
0

(
U
U1

)2

c′f dx. (28)

With the integral method of the boundary layer theory and Eqn. 3
and 4, the axial momentum balance is

dδ2

dx
+

1
U

dU
dx

(2δ2 +δ1) =
τw

ρU2 =
u2
∗

U2 =
c′f
2
, (29)

the so called van Kármán momemtum equation and is valid for
laminar and turbulent flow.

Reference Case
The reference case, e.g. the conventional propul-

sion Fig. 2, has a constant pressure boundary layer, thus,
U =U1 = const.. Applying Eqn. 29 to the reference case, yields
2dδ2/dx = c′f . With an ansatz function for the axial velocity pro-
file within the boundary layer, for example Prandtl’s power law

u(x,y) =U(x)
(

y
δ (x)

)n

, (30)

the friction coefficient is

c f 0 = 0.072
(

U1L
ν

)−1/5

= 0.072Re−1/5. (31)

Equation 31 is the well known Blasius power law [10]. The so-
lution of the integral method for boundary layer theory is very
robust against assumed ansatz functions [10–12], in our case
Eqn 30. Hence, to verify the ansatz function is not necessary.

Boundary Layer of the Embedded Propulsion
For the boundary layer of the embedded propulsion, we con-

sider the outer flow solution U(x), see Eqn. 25, to solve the von
Kármán momentum equation (Eqn. 29). Using Eqn. 30 for the
velocity profile within the boundary layer, we obtain

δ1

δ
:=

1∫
0

(
1− u

U

)
d
( y

δ

)
=

n
n+1

, (32)

for the displacement thickness and

δ2

δ
:=

1∫
0

u
U

(
1− u

U

)
d
( y

δ

)
=

n
(n+1)(2n+1)

, (33)

for the momentum thickness. Thus, δ1 = (2n+1)δ2 = hδ2 with
h := 2n+ 1. The choosen power law has to be calibrated to the
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viscous sublayer [10]

u
u∗

=C
(yu∗

ν

)n
, (34)

with the constant C. For n = 1/7, the empirical constant C is
8.74 [10]. Hence, the wall shear stress is

τw = ρ

(
Uνn

Cδ n

) 2
n+1

. (35)

With these deviations and

δ := ζ δ1, (36)

ζ :=
(2n+1)(n+1)

n
, (37)

κ1 :=
2n

n+1
+1 (38)

and

κ2 :=
2

n+1
, (39)

we obtain the von Kármán momentum equation for the embed-
ded propulsion

δ
κ1
2

dδ2

dx
+

1
U

dU
dx

(2+h)δ
κ1+1
2 =

[
1

CU

(
ν

ζ

)n]κ2

. (40)

Hence, the momentum thickness for the embedded propulsion is

δ2(x) = 0.036

ν
1
4 U−

115
28

x∫
0

U
108
28 dx

4/5

. (41)

FRIST LAW OF THERMODYNAMICS AND FROUD
PROPULSION EFFICIENCY

The shaft power is

Ps =
1
η

UH ∆p, (42)

with the mean velocity U and the aerodynamic, e.g. isotropic,
efficiency η of the embedded propulsion and η0 of the reference
case.

Propulsion Efficiency of the Reference Case
For a constant flying speed v = U , the shaft power for the

reference case is Ps0 = S0U0/η0 and the Froud efficiency is given
by

ηFr,0 :=
S0U1

Ps0
= η0

U1

U
= η0

U1

U1 +
c
2
. (43)

This is the well known definition of the propulsion effi-
ciency [13].

Propulsion Efficiency of the Embedded Propulsion
For the embedded propulsion we calculate the propulsion

efficiency to

ηFr :=
SU1

Ps
= η

SU1

UH∆p
, (44)

with the thrust

S = H
ρ

2

(
U2−2UU1 +U2

2

)
, (45)

the pressure difference

∆p = p2− p1 =
ρ

2

(
U2

2 −U2
1 +2δ1+U2

)
(46)

and the dimensionless displacement thickness

δ1+ :=
δ1

H
1−δ1/(2H)

(1−δ1/H)2 ≈
δ1

H
. (47)

Thus, the propulsion efficiency is

ηFr

η
=

U1

U
U2−UU1 +U2

2

U2
2 −U2

1 +2δ1+U2 . (48)

Figure 6 shows the propulsion efficiency.
Comparing both cases, one has to noe that the friction force

as well as the shaft power differ but the body drag W0 is assumed
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FIGURE 6. PROPULSION EFFICIENCY DEPENDENT ON
SLENDERNESS RATIO κ FOR VARIOUS REYNOLDS NUMBER
Re =U1L/ν .

to be approximately constant for both cases. The friction force
ratio is

αw :=
Wf

Wf 0
=

c f

c f 0
(49)

and is illustrated in Fig. 7. The flying speed is constant for both
cases, thus the shaft power ratio is to analyse and not the propul-
sion efficiency. The shaft power ratio is

αp :=
Ps

Ps0
=

η0

η

U
U0

∆pH
W0 +Wf 0

(50)

and is shown in Fig. 8. Applying Eqn. 19, Eqn. 50 yields

αp =
1
2

η0

η

U
U1 +

c
2

U2
2 −U2

1 +2δ1+U
U (U2−U1)+U2

1 c f 0
L

2H

. (51)

Conclusion
This paper analyses the energetic assessment of two differ-

ent aircraft propulsion topologies. For the first case, e.g. the ref-
erence case, the propulsion system is connect by a pylon to the
aircraft body. For the second case, the propulsion system is em-
bedded in the aircraft body. We derive the axial momentum bal-
ance for both cases including a solution for the boundary layer,
e.g. the friction drag, and the outer flow. Hereby, we applied
the integral method of boundary layer theory and the potential
theory, respectively. The outcome of this assessment are the fol-
lowing three major findings:

SLENDERNESS RATIO κFR
IC

TI
O

N
 C

O
EF

FI
C
IE

N
T 

 R
AT

IO
 𝛼𝛼

𝑤𝑤
=

c f 𝑐𝑐 𝑓𝑓
𝑓

10-2 10-1 100
0.6

0.7

0.8

0.9

1

 

 

Re=109

Re=108

Re=107

Re=106

FIGURE 7. FRICTION COEFFICIENTS RATIO DEPENDENT ON
SLENDERNESS RATIO FOR VARIOUS REYNOLDS NUMBER
Re =U1L/ν .

S
H

A
FT

 P
O

W
ER

 R
AT

IO
 𝛼𝛼

𝑃𝑃
=

P s P s
0

10-2 10-1 100
0.6

0.7

0.8

0.9

1

 

 

Re=109

Re=108

Re=107

Re=106

𝜂𝜂
𝜂𝜂0

= 1

SLENDERNESS RATIO κ

𝜅𝜅opt(𝑅𝑅𝑅𝑅)

FIGURE 8. SHAFT POWER RATIO DEPENDENT ON SLENDER-
NESS RATIO FOR VARIOUS REYNOLDS NUMBER Re =U1L/ν .

1. For increasing aircraft engine and increasing Reynolds num-
ber Re, the propulsion efficiency increases as well; see
Fig. 6.

2. The optimized aircraft engine is given by Fig. 7. The fric-
tion force is decreased depending on Reynolds number and
aircraft engine size κ := H/L.

3. The energetic improvement of the embedded propulsion is
in relation to the reference case about 10 %; see Fig. 8.
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