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Throughout this unit, the Standards for Mathematical Practice 
are used.

MP1: Making sense of problems & persevere in solving them.
MP2: Reason abstractly & quantitatively.
MP3: Construct viable arguments and critique the reasoning of 
others. 
MP4: Model with mathematics.
MP5: Use appropriate tools strategically.
MP6: Attend to precision.
MP7: Look for & make use of structure.
MP8: Look for & express regularity in repeated reasoning.

Additional questions are included on the slides using the "Math 
Practice" Pull-tabs (e.g. a blank one is shown to the right on 
this slide) with a reference to the standards used.  

If questions already exist on a slide, then the specific MPs that 
the questions address are listed in the Pull-tab.
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Origin of Analytic 
Geometry
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Analytic Geometry is a powerful combination of 
geometry and algebra.

Many jobs that are looking for employees now, and will 
be in the future, rely on the process or results of 
analytic geometry.

This includes jobs in medicine, veterinary science, 
biology, chemistry, physics, mathematics, engineering, 
financial analysis, economics, technology, 
biotechnology, etc.

The Origin of Analytic Geometry
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The Origin of Analytic Geometry

Euclidean Geometry 

· Was developed in Greece about 
2500 years ago.

· Was lost to Europe for more than a 
thousand years.

· Was maintained and refined during 
that time in the Islamic world.

· Its rediscovery was a critical part 
of the European Renaissance.

http://www.christies.com/lotfinder/
books-manuscripts/euclid-milliet-
dechales-claude-francois-
milliet-5541389-details.aspx
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Algebra

· Started by Diophantus in Alexandria 
about 1700 years ago. 

· Ongoing contributions from 
Babylon, Syria, Greece and Indians.  

· Named from the Arabic word al-jabr 
which was used by al-Khwarizmi in 
the title of his 7th century book.

The Origin of Analytic Geometry

http://en.wikipedia.org/wiki/
Mathematics_in_medieval_Islam
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Analytic Geometry

· A powerful combination of 
algebra and geometry.

· Independently developed, and 
published in 1637, by Rene 
Descartes and Pierre de 
Fermat in France.

· The Cartesian Plane is named 
for Descartes.

The Origin of Analytic Geometry
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How would you 
describe to someone 
the location of these 
five points so they 
could draw them on 
another piece of 
paper without seeing 
your drawing?

Discuss.

The Origin of Analytic Geometry
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Adding this 
Cartesian 
coordinate plane 
makes that task 
simple since the 
location of each 
point can be given 
by just two 
numbers: an x- 
and y-coordinate, 
written as the 
ordered pair (x,y).

The Origin of 
Analytic Geometry

  

Slide 11 / 202

  

  

  

  

  

  

  

10

5

50

-10

-5

-5

With the Cartesian 
Plane providing a 
numerical description 
of locations on the 
plane, geometric 
figures can be 
analyzed using 
algebra.

The Origin of 
Analytic Geometry
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Lab: Derivation of the 
Distance Formula

The Distance Formula

Return to Table
of Contents
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The Distance 
Formula

Let's derive the formula 
to find the distance 
between any two 
points: call the points 
(x1, y1) and (x2, y2).

10

5

50

-10

-5
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(x1, y1)

(x2, y2)

First, let's zoom in so 
we have more room to 
work.

x

y
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The Distance Formula

Now, we'll construct two paths 
between the points.

The first path will be directly 
between them.

  

Slide 15 / 202

  

  

  

  

  

  

  

http://njctl.org/courses/math/geometry-2015-16/analytic-geometry/distance-formula-lab/
page56svg


10

5

5
0

(x1, y1)

(x2, y2)

x

y

The Distance Formula

The second path will have a 
segment parallel the x-axis 
and a segment parallel to the 
y-axis.

That will be a big help since 
it's easy to read the length of 
each of those from the axis.
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The Distance Formula
We now have a right triangle.

For convenience, let's label 
the two legs "a" and "b" and 
the hypotenuse "c."

Let's also label the point 
where the two legs meet by 
its coordinates: (x2, y1). 

Take a moment to see that 
those are the coordinates of 
that vertex of the triangle.

Which formula relates the 
lengths of the sides of a right 
triangle?

(x2, y1)
a

c b
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(x2, y1)
a

c b

The Distance Formula
Did you get this?

c2 = a2 + b2

The next step is to write 
expressions for the lengths of sides 
a and b based on the x and y 
subscript coordinates.

Use the distance along each axis 
to find those. 

The coordinates that we just added 
for the third vertex should help. 
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(x2, y1)
a

c b

The Distance Formula
Did you get these?

a = lx2
 - x1l      AND      b = ly2 - y1l

We could equally well write

a = lx1 - x2l      AND      b = ly1 - y2l

We use absolute values since we 
are just concerned with lengths, 
which are always positive. That's 
why the order doesn't matter and 
all of the above are OK.

Substitute one pair of these into 

c2 = a2 + b2
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The Distance Formula
We'll use the first pair: 

c2 = (lx2
 - x1l)2 + (ly2 - y1l)2

Since the quantities are squared, 
we don't need to indicate 
absolute value, the result will 
always be positive anyway.

c2 = (x2
 - x1)2 + (y2 - y1)2

Since "c" is the distance 
between the points, we can use 
"d" for distance and say that 

d2 = (x2
 - x1)2 + (y2 - y1)2

If we solve this equation for d, 
what will be the final formula?
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a
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The Distance Formula

d = 

d = ((x2 - x1)2 + (y2-y1)2)1/2 

OR
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1 What is the distance between the points: (4, 8) and (7, 3)?  
Round your answer to the nearest hundredth.
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2 What is the distance between the points: (-4, 8) and 
(7, -3)?  Round your answer to the nearest hundredth.
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3 What is the distance between the points: (-2, -5) and 
(-7, 3)?  Round your answer to the nearest hundredth.

  

Slide 24 / 202

  

  

  

  

  

  

  



4 What is the distance 
between the indicated 
points?  Round your 
answer to the nearest 
hundredth.
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5
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-5

-5
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5 What is the distance 
between the indicated 
points?  Round your 
answer to the nearest 
hundredth.

10

5

50

-10

-5

-5

  

Slide 26 / 202

  

  

  

  

  

  

  

6 What is the distance 
between the indicated 
points?  Round your 
answer to the nearest 
hundredth.
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The Midpoint Formula

Return to Table
of Contents

Lab - Midpoint Formula
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The Midpoint Formula

Another question which is easily 
solved using analytic geometry 
is to find the midpoint of a line.

Once again, we make use of the 
fact that it's easy to determine 
distance parallel to an axis, so 
let's add those lines.
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The Midpoint Formula

The x-coordinate for the 
midpoint between (x1, y1) and 
(x2, y2) is halfway between x1 
and x2.

Similarly, the y-coordinate of 
that midpoint will be halfway 
between y1 and y2. 

If you're provided a graph of a 
line, and asked to mark the 
midpoint, you can often do that 
without much calculating.
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The Midpoint Formula

10

5

5
0 x

y In this graph, x1 = 1 and x2 = 9. 

They are 8 units apart, so just 
go 4 units along the x-axis and 
go up until you intersect the line.

That will give you the midpoint.

In this case, that is at (5,7), 
which can be read from the 
graph.

We would get the same answer 
if we had done this along the y-
axis, as we do on the next slide.
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The Midpoint Formula
The y-coordinates of the two 
points are 11 and 3, so they are 
also 8 units apart.

So, just go up 4 from the lower 
y-coordinate and then across to 
the line to also get (5,7) to be 
the midpoint.

So, the order doesn't matter and 
if you have the graph and the 
numbers are easy to read, you 
may as well use it.

If you are not given a graph or 
the lines don't fall so that the 
values are easy to read, you 
can do a quick calculation to get 
the same result.
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5

5
0 x

y
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The Midpoint Formula
We can calculate the x-coordinate 
midway between that of the two 
given points by finding their 
average.  

The same for the y-coordinate. 

Just add the two values and 
divide by two.

The x-coordinate of the midpoint 
is (1+9)/2 = 5

The y-coordinate of the midpoint 
is (3+11)/2 = 7

That's the same answer: (5,7)

10

5

5
0 x

y

(1,3)

(9,11)
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The Midpoint Formula
The more general solution is 
given below for any points:   
(x1, y1) and (x2, y2).   

The x-coordinate of the 
midpoint is given by 
xM = (x1 + x2) / 2 

The y-coordinate of the 
midpoint is given by
yM = (y1 + y2) / 2

So, the coordinates of the 
midpoint are:

10

5

5
0

(x1, y1)

(x2, y2)

x

y
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7 What is the 
midpoint between 
the indicated 
points?

A (4, 9)

B (-5, -4)

C (5, 6)

D (5, 7)
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8 What is the 
midpoint between 
the indicated 
points?

A (0, 0)

B (5, 10)

C (5, 5)

D (10, 10)
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9 What is the 
midpoint between 
the indicated 
points?

A (3, 3)

B (3, 4)

C (4, 3)

D (5, 3)
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10 What is the midpoint between the points: (4, 8) 
and (7, 3)?

A (8, 2)

B (4, 7)

C (5.5, 5.5)

D (6, 5)
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11 What is the midpoint between the points: (-4, 8) 
and (4, -8)?

A (8, 2)

B (0, 0)

C (12, 12)

D (4, 4)
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12 What is the midpoint between the points: (-4, -8) 
and (-6, -4)?

A (-5, -6)

B (-10, -12)

C (2, 4)

D (5, 6)
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Finding the Coordinates of an E ndpoint 
of a Segment

You can use the midpoint 
formula to write equations 
using x and y.  Then, set up 
2 equations and solve each 
one.

The midpoint of AB is M(1, 2).  
One endpoint is A(4, 6).  Find 
the coordinates of the other 
endpoint B(x, y).

A(4, 6)

M(1, 2) = 

B(x, y)

4 + x, 6 + y
   2        2(         )
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M(1, 2) = 4 + x, 6 + y
   2        2(         )

4 + x
   2

1 = 

2 = 4 + x
-2 = x

6 + y
   2

2 = 

4 = 6 + y
-2 = y

A(4, 6)

M(1, 2) = 

B(x, y)

4 + x, 6 + y
   2        2(         )

Therefore, the coordinates 
of B(-2, -2).

Finding the Coordinates of an E ndpoint 
of a Segment

Can you find a shortcut to solve this problem?  How would your 
shortcut make the problem easier?
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A(4, 6)

M(1, 2) 

B(x, y)

Another way of approaching this 
problem is to look for the pattern that 
occurs between the endpoint 
A (4, 6) and midpoint M (1, 2).

Looking only at our points, we can 
determine that we traveled left 3 units 
and down 4 units to get from A to M.  
If we travel the same units in the 
same direction starting at M, we will 
get to B(-2, -2). 

Finding the Coordinates of an E ndpoint 
of a Segment

left 3

down
4

left 3

down
4
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Finding the Coordinates of an E ndpoint 
of a Segment

Similarly, if we line up the points vertically and determine the pattern of 
the numbers, without a graph, we can calculate the coordinates for our 
missing endpoint.

A   (4, 6)
 

M   (1, 2)

B   (-2, -2)

-3

-3

-4

-4

If you use this method, always determine 
the operation required to get from the given 
endpoint to the midpoint.  The reverse will 
not work.
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13 Find the other endpoint of the segment with 
the endpoint (7, 2) and midpoint (3, 0)

A (-1, -2) 
B (-2, -1)
C (4, 2) 
D (2, 4)
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14 Find the other endpoint of the segment with 
the endpoint (1, 4) and midpoint (5, -2)

A (11, -8) 
B (9, 0) 
C (9, -8) 
D (3, 1)
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15 Find the other endpoint of the segment with 
the endpoint (-4, -1) and midpoint (-2, 3).

A (-6, -5) 
B (-3, -2)
C (0, 7) 
D (1, 9)
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16 Find the other endpoint of the segment with 
the endpoint (-2, 5) and midpoint (0, 2).

A (-1, -3.5) 
B (-4, 8)
C (1, 0.5) 
D (2, -1)
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Partitions of a Line 
Segment

Return to Table
of Contents
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Partitions of a Line Segment

Partitioning a line segment 
simply means to divide the 
segment into 2 or more parts, 
based on a given ratio.  

The midpoint partitions a 
segment into 2 congruent 
segments, forming a ratio of 1:1.

But if you need to partition a 
segment so that its ratio is 
something different, for example 
3:1, how can it be done?

A

B
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In order to divide the segment in 
the ratio of 3:1, think of dividing 
the segment into 3 + 1, or 4 
congruent pieces.

Plot the points that would divide 
AB into 4 congruent pieces.
 - Click on one of the points in 
 the grid to show them all.  

Partitions of a Line Segment

A

B
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If we add a coordinate plane to 
our segment, could we also 
determine the coordinates of 
our points?

Yes, we can.  We can also 
eliminate one of our points that 
does not divide our segment 
into the ratio 3:1.  In our case, 
the midpoint.
 - Click on midpoint to hide it

Let's say that the ratio of the two 
segments that we're looking for 
from left to right is 3:1.  Which 
other point should be 
eliminated?
 - Click on that point to hide it

10

5

5
0 x

y

Partitions of a Line Segment

B

A
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Could we also determine the 
coordinates of our point if the 
ratio was reversed (1:3 instead 
of 3:1)?

Yes, we can.  Again, our 
midpoint can be eliminated.
 - Click on midpoint to hide it

Now, the ratio of the two 
segments that we're looking for 
from left to right is 1:3.  Which 
other point should be 
eliminated?
 - Click on that point to hide it
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5
0 x

y

Partitions of a Line Segment

B

A
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We can also calculate both the x 
and y coordinates between the 
two given points by using a 
formula that is similar to the 
midpoint formula.  

But instead of having a common 
ratio (1:1) and dividing by 2, what 
the midpoint formula has us do, 
we need to multiply the one set of 
coordinates by the first number in 
the ratio and the other set of 
coordinates by the second 
number in the ratio and divide by 
the number of segments that are 
required for our ratio 3:1, or 
3 + 1 = 4.  
  3(9) + 1(1)     3(11) + 1(3)
      3 + 1    3 + 1
 27 + 1      33 + 3
  4    4
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5
0 x

y

A(1,3)

B (9,11)

Partitions of a Line 
Segment

(         ,          )
(      ,      )= (7, 9)
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If we use the same formula, but 
switch to the other ratio 1:3, we 
will get the other point that 
partitions AB.  

  1(9) + 3(1)     1(11) + 3(3)
      3 + 1    3 + 1
 9 + 3      11 + 9
    4      4
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5
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y

A (1,3)

B (9,11)

Partitions of a Line Segment

(         ,          )
(     ,      ) = (3, 5)
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The more general solution is 
given below for any points:   
(x1, y1) and (x2, y2).   

If a point P partitions a 
segment in a ratio of m:n, then 
the coordinates of P are   

10

5

5
0

(x1, y1)

(x2, y2)

x

y

Partitions of a Line Segment

Remember to also use the 
formula twice switching the m:n 
ratio to n:m.  

P = mx2 + nx1    my2 + ny1

   m + n    m + n(        ,        )
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Partitions of a Line Segment
Example with a graph:

Line segment CD in the coordinate 
plane has endpoints with 
coordinates (-2, 10) and (8, -5).  

Graph CD and find two possible 
locations for a point P that divides 
CD into two parts with lengths in a 
ratio of 2:3.

10

5

50 x

y

-5

  

Slide 57 / 202

  

  

  

  

  

  

  



Partitions of a Line Segment
Step #1: Graph the points. C(-2, 10) 
and D(8, -5)
 -  Click on the points to show.

Step #2: Connect them w/ the 
segment CD.
 - Click on the segment to show.

Step #3: Determine the total 
number of ways required to divide 
the segment using the ratio 2:3.
  2 + 3 = 5

Step #4: Plot the points on the 
graph that divide CD into the 
desired number of sections.
 - Click on the points to show.

Click

10

5

50 x

y

-5

C (-2, 10)

D (8, -5)

(0, 7)

(2, 4)

(4, 1)

(6, -2)
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Partitions of a Line Segment
Step #5: Since the ratio is 2:3, 
determine which points to eliminate 
(3 of them) leaving only 1 point 
remaining so that, from left to right, 
the ratio is 2:3.
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50 x

y

-5

C (-2, 10)

(4, 1)

D (8, -5)

(0, 7)

(2, 4)

(6, -2)
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Partitions of a Line Segment
Step #6: Because the question asks 
for 2 points, we also need to 
consider the ratio 3:2.  Similar to 
Step #5, determine which points to 
eliminate (3 of them) leaving only 1 
point remaining so that, from left to 
right, the ratio is 3:2.

10

5

50 x

y

-5

C (-2, 10)

(4, 1)

D (8, -5)

(0, 7)

(2, 4)

(6, -2)
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Partitions of a Line Segment
Example without a graph:

Line segment EF in the coordinate plane has endpoints with 
coordinates (10, -11) and (-4, 10).  

Find two possible locations for a point P that divides EF into two 
parts with lengths in a ratio of 5:2.
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Partitions of a Line Segment

Step #1: Determine the total number of ways required to divide the 
segment using the ratio 5:2.
  5 + 2 = 7

Step #2: Use the formula to determine the coordinates of our first 
point P.

P = mx2 + nx1    my2 + ny1

   m + n    m + n(        ,        )
P = 5(-4) + 2(10)    5(10) + 2(-11)

 5 + 2      5 + 2(           ,           )

(10, -11) and (-4, 10)

-20 + 20    50 + (-22)
 7    7

P = (0, 4)

P = 

Click

click
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Partitions of a Line Segment

Step #3: Reverse the ratio 2:5 and reuse the formula to determine the 
coordinates of our second point P.

P = mx2 + nx1    my2 + ny1

   m + n    m + n(        ,        )
P = 2(-4) + 5(10)    2(10) + 5(-11)

 2 + 5      2 + 5
(           ,           )

(10, -11) and (-4, 10)

-8 + 50    20 + (-55)
 7    7

P = (6, 5)

P = 

click
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17 Line segment GH in 
the coordinate plane 
has endpoints with 
coordinates (-7, -9) & 
(8, 3), shown in the 
graph below.  Find 2 
possible locations for 
a point P that divides 
GH into two parts 
with lengths in a ratio 
of 2:1.  
A (0.5, -3)
B (3, -1)
C (6, 1)
D (-2, -5)
E (-5, -7)

10

5

50

-10

-5

-5

G (-7, -9)

H(8, 3)
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18 Line segment JK in 
the coordinate plane 
has endpoints with 
coordinates (10, 12) 
& (-10, -13), shown 
in the graph below.  
Find 2 possible 
locations for a point 
P that divides JK into 
two parts with 
lengths in a ratio of 
4:1.  
A (-6, -8)
B (-2, -3)
C (0, -0.5)
D (2, 2)
E (6, 7)

10

5

50

-10

-5

-5

K(-10, -13)

J(10, 12)
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19 Line segment LM in 
the coordinate plane 
has endpoints with 
coordinates (-8, 13) 
& (6, -8), shown in 
the graph below.  
Find 2 possible 
locations for a point 
P that divides LM 
into two parts with 
lengths in a ratio of 
3:4.  

A (-6, 10)
B (-4, 7)
C (-2, 4)
D (0, 1)
E (2, -3)

10

5

50

-10

-5

-5

L(-8, 13)

M(6, -8)
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20 Line segment LM in the coordinate plane has endpoints 
with coordinates (-8, 13) & (6, -8), shown in the graph 
below.  Find 2 possible locations for a point P that divides 
LM into two parts with lengths in a ratio of 6:1.  

A (-6, 10)

B (-4, 7)

C (-2, 4)

D (0, 1)

E (4, -6)
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21 Line segment NO in the coordinate plane has endpoints 
with coordinates (10, 12) & (-10, -13), shown in the graph 
below.  Find 2 possible locations for a point P that divides 
NO into two parts with lengths in a ratio of 3:2.  

A (-6, -8)

B (-2, -3)

C (0, -0.5)

D (2, 2)

E (6, 7)

  

Slide 68 / 202

  

  

  

  

  

  

  

22 Line segment QR in the coordinate plane has endpoints 
with coordinates (-12, 11) & (12, -13), shown in the graph 
below.  Find 2 possible locations for a point P that divides 
QR into two parts with lengths in a ratio of 5:3.

A (3, -4)

B (0, -1)

C (-3, 2)

D (-6, 5)

E (-9, 8)
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Line segment JK in the coordinate plane has endpoints with coordinates 
(-4, 11) & (8, -1).  Graph JK and find two possible locations for point M
so that M divides JK 
into two parts with 
lengths in a ratio of 1:3.

To graph a line 
segment, click the 
locations for the two 
points.  Then click in 
between the two points 
to make the segment.

J(-4, 11)

K(8, -1)
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23 Find two possible locations for point M so that M divides 
JK into two parts with lengths in a ratio of 1:3.
A (-2, 9) 

B (-1, 8) 

C (0, 7) 

D (4, 3) 

E (5, 2) 

J (-4, 11)

K (8, -1)

PARCC Released Question (EOY) - Part 2 - Response Format

F (6, 1) 

  

Slide 71 / 202

  

  

  

  

  

  

  

24 Point Q lie on ST, where point S is located at (-2, -6) and 
point T is located at (5, 8).  If SQ:QT = 5:2, where is point 
Q on ST?

A (-1, -4)

B (0, -2)

C (1, 0)

D (2, 2)

E (3, 4)

F (4, 6)

PARCC Released Question (PBA)
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Return to Table
of Contents

Slopes of Parallel & 
Perpendicular Lines
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Slope

The slope of a line indicates the 
angle it makes with the x-axis. 

The symbol for slope is "m".10

5

5
0 x

y
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Slope

A horizontal line has a slope of 
zero.

A vertical line has an undefined 
slope.

A line which rises as you move 
from left to right has a positive 
slope.

A line which falls as you move 
from left to right has a negative 
slope.

10

5

5
0 x

y
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25 The slope of the indicated line is:

A negative

B positive

C zero

D undefined

x

y
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26 The slope of the indicated line is:

A negative

B positive

C zero

D undefined

x

y
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27 The slope of the indicated line is:

A negative

B positive

C zero

D undefined

x

y
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28 The slope of the indicated line is:

A negative

B positive

C zero

D undefined

x

y
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29 The slope of the indicated line is:

A negative

B positive

C zero

D undefined

x

y
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30 The slope of the indicated line is:

A negative

B positive

C zero

D undefined

x

y
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Slope
The slope of a line is not 
given in degrees. 

Rather, it is given as the 
ratio of "rise" over "run".

The slope of a line is the 
same anywhere along the 
line, so any two points on 
the line can be used to 
calculate the slope.  

10

5

5
0 x

y
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Slope
The "rise" is the change in the 
value of the  y-coordinate 
while the "run" is the change in 
the value of the x-coordinate.

The symbol for change is the 
Greek letter delta, "∆", which 
just means "change in".

So the slope is equal to the 
change in y divided by the 
change in x, or ∆y divided by 
∆x...delta y over delta x.

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0

(x1, y1)

(x2, y2)

x

y
(x1, y2)

∆x
"run"

∆y

"r
is

e"
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Slope

In this case:
 
The rise is from 4 to 11

∆y = 11 - 4 = 7

And the run is from 2 to 8, 

∆x = 8 - 2 = 6

So the slope is 

m = ∆y      7

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0

(2,4)

(8,11)

x

y
(2, 11)

∆x
"run"

∆y

"r
is

e"

∆x      6
=
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Slope
Any points on the line can 
be used to calculate its 
slope, since the slope of a 
line is the same 
everywhere. 

The values of ∆y and ∆x 
may be different for other 
points, but their ratio will be 
the same.  

You can check that with the 
red and green triangles 
shown here.

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0

(x1, y1)

(x2, y2)

x

y ∆x

∆y
∆x

∆y
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Using Slope to Draw a Line
The slope also allows us to 
quickly graph a line, given 
one point on the line. 

For instance, if I know one 
point on a line is (1, 1) and 
that the slope of the line is 
2, I can find a second point, 
and then draw the line.

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0 x

y
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Using Slope to Draw a Line
I do this by recognizing that 
the slope of 2 means that if 
I go up 2 units on the y-axis 
I have to go 1 unit to the 
right on the x-axis .

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0 x

y

∆x

∆y
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Using Slope to Draw a Line
I do this by recognizing that 
the slope of 2 means that if 
I go up 2 units on the y-axis 
I have to go 1 unit to the 
right on the x-axis .

Or if I go up 10, I have to 
go over 5 units, etc.

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0 x

y

∆x

∆y
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Using Slope to Draw a Line
Then I draw the line 
through any two of those 
points.

This method is the easiest 
to use if you just have to 
draw a line given a point 
and slope.

The same approach works 
for writing the equation of a 
line.

m = Δy     y2-y1 
Δx     x2-x1

=

10

5

5
0 x

y

∆x

∆y
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Slopes of Parallel Lines

Parallel lines have the same slope.

With what we've 
learned about parallel 
lines this is easy to 
understand.

The slope of a line is 
related to the angle it 
makes with the x-axis.

Now, think of the x-axis 
as a transversal.
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1 2

31 What is the name of this pair of angles, formed by a 
transversal intersecting two lines.

A Alternate Interior Angles
B Corresponding Angles

C Alternate Exterior Angles
D Same Side Interior Angles
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1 2

32 We know those angles must then be:

A Supplementary
B Complementary

C Equal
D Adjacent
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33 That means that the slopes of parallel lines must be:

A Reciprocals
B Inverses

C Equal
D Nothing special

1 2
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34 If one line has a slope of 4, what must be the slope of 
any line parallel to it?
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35 If one line passes through the points (0, 0) and (2, 2) 
what must be the slope of any line parallel to that first 
line?
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36 If one line passes through the points (-5, 9) and (5, 8) 
what must be the slope of any line parallel to that first 
line?
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37 If one line passes through the points (2, 2) and (5, 5) and 
a parallel line passes through the point (1, 5) which of 
these points could lie on that second line?

A (2, 2)

B (4, 4)

C (5, 6)

D (-1, 3)
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38 If one line passes through the points (-3, 4) and (0, 10) 
and a parallel line passes through the point (-1, -4) which 
of these points could lie on that second line?

A (0, -2)

B (2, -5)

C (3, 1)

D (-1, 3)
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39 If one line passes through the points (3, 5) and (5, -1) 
and a parallel line passes through the point (-1, -1) which 
of these points could lie on that second line?

A (0, 1)

B (-2, 2)

C (4, 8)

D (-4, -4)
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Slopes of Perpendicular Lines
The slopes of perpendicular lines are negative 

(or opposite) reciprocals. 

There are three ways of 
expressing this 
symbolically:

m1m2 = -1

m1 =          

m2 =         

These all have the same 
meaning.

-1 
m2

-1 
m1 
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Slopes of Perpendicular Lines
The slopes of perpendicular lines are negative (or 

opposite) reciprocals. 

This will be useful in cases 
where you need to prove 
lines perpendicular, 
including proving that 
triangles are right triangles.

First, let's prove this is true.
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10

5

50

-10

-5

-5

Slopes of 
Perpendicular Lines

First, let's move our lines to 
the origin so our work gets 
easier and we can focus on 
the important parts. 

We can move them since we 
can just think of drawing new 
parallel lines through the 
origin that have the same 
slopes as these lines.

We earlier showed that 
parallel lines have the same 
slope, so the slopes of these 
new lines will be the same as 
that of the original lines.

  

Slide 102 / 202

  

  

  

  

  

  

  



1

1

-1

(1,m1)

(1,m2)

0

Slopes of Perpendicular Lines

Now, let's zoom in and focus 
on the lines between x = 0 and 
x = 1.

When the lines are at x = 1, 
their y-coordinates are m1 for 
the first line and m2 for the 
second line.

That's because if the slope of 
the first line is m1, then when 
we move +1 along the x-axis, 
the y-value must increase by 
the amount of the slope, m1.

The same for the second line, 
whose slope is m2. 
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Slopes of Perpendicular Lines

Perpendicular lines obey the 
Pythagorean Theorem:

c2 =  a2 + b2 

Let's find expressions for those 
three terms so we can substitute 
them in.

Side "c" is hypotenuse and is the 
distance between the points 
along the vertical line x=1. It has 
length m1-m2 (in this case, that 
effectively adds their magnitudes 
since m2 is negative). 

We can use the distance formula 
to find the length of each leg.

1

1

-1

(1,m1)

(1,m2)

0

a

b

c
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Slopes of Perpendicular Lines

The lengths of legs "a" and "b" 
can be found using the 
distance formula. 

d2 = (x2-x1)2 + (y2-y1)2 

a2 = (1-0)2 + (m1-0)2 
    = 1 + m1

2

b2 = (1-0)2 + (m2-0)2 
    = 1 + m2

2

And, we get c2 by squaring our 
result for c from the prior slide.

c2 = (m1-m2)2   
    = m1

2 - 2m1m2
 + m2

2

1

1

-1

(1,m1)

(1,m2)

0

a

b

c
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Slopes of Perpendicular Lines

We're going to substitute the 
expressions from the prior slide into 
the Pythagorean Theorem.

We'll color code them so we can 
keep track.

c2 = m1
2 - 2m1m1

 + m2
2

a2 = 1 + m1
2

b2 = 1 + m2
2

c2 =  a2 + b2 

m1
2 - 2m1m2

 + m2
2 = 1 + m1

2 + 1 + m2
2 

1

1

-1

(1,m1)

(1,m2)

0

a

b

c
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Slopes of Perpendicular Lines
m1

2 - 2m1m2
 + m2

2 = 1 + m1
2 + 1 + m2

2 

Now, let's identify like terms 

m1
2 - 2m1m2

 + m2
2 = 1 + m1

2 + 1 + m2
2 

Notice that we have m1
2 and m2

2 on 
both sides so they can be canceled, 
and that 1 + 1 = 2.  So, 

-2m1m2
 = 2 

m1m2
 = -1

which is what we set out to prove
Notice that this also be written as:

m1 =  

m2 = 

1

1

-1

(1,m1)

(1,m2)

0

a

b

c

-1 
m2

-1 
m1 
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40 If one line has a slope of 4, what must be the slope of 
any line perpendicular to it?
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41 If one line has a slope of -1/2, what must be the slope of 
any line perpendicular to it?
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42 If one line passes through the points (0, 0) and (4, 2) 
what must be the slope of any line perpendicular to that 
first line?
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43 If one line passes through the points (-5, 9) and (5, 8) 
what must be the slope of any line perpendicular to that 
first line?
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44 If one line passes through the points (1, 2) and (5, 6) and 
a perpendicular line passes through the point (1, 5) 
which of these points could lie on that second line?

A (2, 2)

B (4, 4)

C (2, 4)

D (-1, 3)
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45 If one line passes through the points (-3, 4) and (0, 10) 
and a perpendicular line passes through the point (-1, -4) 
which of these points could lie on that second line?

A (0, -2)

B (2, -5)

C (3, 1)

D (-3, -5)
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46 If one line passes through the points (3, 5) and (5, -1) 
and a perpendicular line passes through the point (-1, -1) 
which of these points could lie on that second line?

A (5, 0)

B (2, 0)

C (4, 8)

D (-4, -4)
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Return to Table
of Contents

Equations of Parallel & 
Perpendicular Lines
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Writing the Equation of a Line

Let's start with the above 
definition of slope, multiply 
both sides by (x2-x1), and 
rearrange to get:

(y2-y1) = m(x2-x1)

Now, if I enter one point (x1,y1) 
this defines the infinite locus 
of other points on the line.

y-y1 = m(x-x1)

Then, I can add y1 to both 
sides to isolate the variable y. 

y = m(x-x1)+y1 

m = y2-y1 
x2-x1

10

5

5
0 x

y

∆x

∆y

Point-slope 
form
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Writing the Equation of a Line
y = m(x-x1)+y1 

The term in red is just your steps 
to the right along the x-axis, your 
"run".

Multiplying by slope tells you 
how many steps up you must 
take along the y-axis, your "rise".

Those steps are added to the 
term in green, your original 
position on the y-axis to find your 
final y-coordinate.

That tells you the y-coordinate 
on the line for the given x-
coordinate.

10

5

5
0 x

y

∆x

∆y
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Slope Intercept Equation of a Line
y = m(x-x1)+y1 

A common simplification of this 
is to use the y-intercept for 
(x1,y1).

The y-intercept is the point 
where the line crosses the y-
axis. Its symbol is "b" so the 
coordinates of that point are 
(0,b), since x = 0 on the y-axis.

Just substitute (0,b) in the 
above equation for (x1,y1).

10

5

5
0 x

y
∆x

∆y
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Slope Intercept Equation of a Line
y = m(x-x1)+y1 

y = m(x-0) + b

y = mx + b

This is very useful since both 
the slope and the y-intercepts 
often have important meaning 
when we are solving real 
problems.

In the graph to the left, b= 0, so 
the equation is y = 2x.

10

5

5
0 x

y

∆x

∆y
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1.  Find an equation of the line passing through the point (-4, 5) 
and parallel to the line whose equation is  -3x + 2y = -1.

 -3x + 2y = -1

2y = 3x - 1

y = 3/2 x - 1/2

Contains the point (-4, 5) & is parallel to the line -3x + 2y = -1

Step 1:  Identify the information given in the problem.

Step 2:  Identify what information you still need to create the       
equation and choose the method to obtain it.

The slope: Use the equation of the parallel line to determine the 
 slope

Therefore m = 3/2 

Writing Equations of Parallel Lines

Click

Click click
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Step 3:  Create the equation.

y - y1= m(x - x1)

y - 5 = 3/2 (x +4)

y - 5 = 3/2 x + 6

y = 3/2 x + 11

Point-Slope Form

Slope-Intercept Form

The correct solution to the original problem is either form of the 
equation.  Point-Slope Form and Slope-Intercept Form are two 
ways to write the same linear equations.

Click

Click

Click

Writing Equations of Parallel Lines
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2.  Write the equation of the line passing through the point (-2, 5) 
and perpendicular to the line y = 1/2 x + 3

Step 2:  Use the given point and the point-slope formula to write 
the equation of the perpendicular line.

Step 1:  Identify the slope according to the given equation.

Given equation:  m = 1/2   

Perpendicular Line:  m = -2 

Point-Slope Form

Slope-Intercept Form

y - 5 = -2 (x + 2)

y - 5 = -2x - 4

y = -2x + 1

Writing Equations of Perpendicular Lines

click

click

Click

Click

Click
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3.  Write the equation of the line passing through the point 

(4, 7) and perpendicular to the line x - 5y = 50

Writing Equations of Perpendicular Lines
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47 What is the equation of the line passing through (6, -2) 
and parallel to the line whose equation is y = 2x - 3?

A y = 2x + 2
B y = -2x + 10
C y = 1/2 x - 5
D y = 2x - 14
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48 Which is the equation of a line parallel to the line 
represented by:   y = -x - 22 ?

A x - y = 22
B y - x = 22
C y + x = -17
D 2y + x = -22
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49 Two lines are represented by the equation:  

-3y = 12x - 14 and y = kx + 14

For which value of k will the lines be parallel?

A 12
B -14
C 3
D -4
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50 Which equation represents a line parallel to the 
line whose equation is:   3y + 4x = 21

A 12y + 16x = 12
B 3y - 4x = 22
C 3y = 4x + 21
D 4y  + 3x = 21
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51 What is the equation of a line that passes through 
(9, 3) and is perpendicular to the line whose equation 
is 4x - 5y = 20?

A y - 3 = -5/4(x - 9)

B y - 3 = 4/5(x - 9)

C y - 3 = 4(x - 9)
D y - 3 = -5(x - 9)
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B y =     x + 2

52 What is an equation of the line that passes through 
point (6, -2) and is parallel to the line whose equation is 

y =        x + 5 ?

A y =     x + 5

C y = -   x + 2

D y = -2x + 2

E y = x
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53 What is an equation of the line that passes through 
the point (5, -2) and is parallel to the line:

9x - 3y = 12

A y = 3x - 17
B y =   x

C y = - x + 17
D y = -3x + 15
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54 What is an equation of the line that contains the 
point (-4, 1) and is perpendicular to the line whose 
equation is y = -2x - 3?

A y = 2x + 1
B y = 1/2x + 3
C y = -2x - 1
D y = - 1/2x + 3
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55 Two lines are represented by the given equations. 
What would be the best statement to describe 
these two lines?
                                

   2x + 5y =15                   5(x + 1) = -2y + 20   

A The lines are parallel.
B The lines are the same line.
C The lines are perpendicular.
D The lines intersect at an angle other than 90 .
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Triangle Coordinate 
Proofs

Return to Table
of Contents
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Triangle Coordinate Proof

Coordinate Proofs place figures on the Cartesian Plane to 
make use of the coordinates of key features of the figure, 
combined with formulae (e.g. distance formula, midpoint 
formula and slope formula) to help prove something.

The use of the coordinates is an extra first step in conducting 
the proof. 

We'll provide a few examples and then have you do some 
proofs.  
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Triangle Coordinate Proof

Given: The coordinates A(0, 4); B(3, 0); C(-3, 0) and 
Q(0, 0) are the vertices of △ ABC and △ AQB
Prove: QA bisects ∠CAB 

Sketch the triangles on some graph paper and then 
discuss a strategy to accomplish the proof.
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Example

A(0,4)

B(3,0)C(-3,0) Q(0,0) 

Does this sketch look like yours?
If not, take a moment to see if this is 
correct.
Looking at this, our strategy becomes 
clear. 
If we can prove that △ AQC ≅ 
△ AQB, then we could prove ∠CAQ ≅ 
∠BAQ which would mean that 
segment QA bisects ∠CAB: our goal.
If that makes sense, let's get to work.   

Given: The coordinates A(0, 4); B(3, 0); C(-3, 0) and 
Q(0, 0) are the vertices of △ ABC and △ AQB
Prove: QA bisects ∠CAB 
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Example

A(0,4)

B(3,0)C(-3,0) Q(0,0) 

We don't need to use the distance 
formula to find these lengths since 
they can be read off the graph:
CQ = BQ = 3      &      AQ = 4

We can use the distance formula to 
find these lengths:

AB = ((3-0)2 + (0-4)2)1/2 = (25)1/2 = 5
AC = ((0-(-3))2 + (4-0)2)1/2 = (25)1/2 = 5

Given: The coordinates A(0, 4); B(3, 0); C(-3, 0) and 
Q(0, 0) are the vertices of △ ABC and △ AQB
Prove: QA bisects ∠CAB 
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Example

 5

BQ3

4
5

C

A

3

You should be able to see that 
these are two right triangles 
with identical length sides, so 
they must be congruent.

But, let's work out the proof as 
good practice.

Given: The coordinates A(0, 4); B(3, 0); C(-3, 0) and 
Q(0, 0) are the vertices of △ ABC and △ AQB
Prove: QA bisects ∠CAB 
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Statements Reasons

Given: Coordinates of vertices of △ ABC

   Coordinates of vertices △ AQB
Prove: QA bisects ∠CAB  

1. CQ = 3 and BQ = 3
2. AC = 5 and AB = 5

3. QC ≅ QB

4. AQ ≅ QA

5. AC ≅ AB

6. ΔAQC ≅ ΔAQB

7. ∠CAQ ≅ ∠BAQ

8. QA bisects ∠CAB

1. Given in graph
2. Distance Formula

3. ≅ segments have equal measure

4. Reflexive Property of ≅ 

5. ≅ segments have equal measure 

6. SSS triangle congruence

7. CPCTC

8. Definition of angle bisector 

 5

BQ3

4
5

C

A

3
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Make a sketch and think of a strategy for this proof. 

Triangle Coordinate Proof

Given: The points A(4, -1), B(5, 6), and C(1, 3)

Prove:  △ ABC is an isosceles right triangle
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Triangle Coordinate Proof
Given: The points A(4, -1), B(5, 6), 
and C(1, 3)

Prove: △ ABC is an isosceles right 
triangle5

50

A

C

x

y
B

If we just had to prove this a right 
triangle, we could just show that the 
slope of BC and AC are negative (or 
opposite) reciprocals. 
But, we also have to show this is an 
isosceles triangle, so we'd still have 
to determine the lengths of the sides. 
Once we do two sides we may as 
well do three and then use 
Pythagorean Theorem to prove it 
both isosceles and right.
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Triangle Coordinate Proof

5

50

A

C

x

y
B

Let's use the distance formula 
to find the lengths:

d = ((x2-x1)2 + (y2-y1)2)1/2

AC = ((4-1)2+(-1-3)2)1/2 
      = (9+16)1/2 = (25)1/2 = 5

BC = ((5-1)2 + (6-3)2)1/2 
      = (16+9)1/2 = (25)1/2 = 5 

AB = ((4-5)2 + (-1-6)2)1/2 
      = (1+49)1/2 + (50)1/2 = 5#2
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Triangle Coordinate Proof
Given: The points A(4, -1), B(5, 6), 
and C(1, 3)

Prove: △ ABC is an isosceles right 
triangle5

50

A

C

x

y
B

The lengths are
AC = 5; BC = 5; AB = 5#2

Since AC = BC this is an 
isosceles triangle.

Since (5#2)2 = 52 + 52 = 50 
this is a right triangle

So, we have proven this to be 
a right isosceles triangle
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Make a sketch and think of a strategy. 

Triangle Coordinate Proof

Given: The points A(1, 1), B(4, 4), and C(6, 2)

Prove:  △ ABC is a right triangle
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50

A
C

x

y

B

Triangle Coordinate Proof

5 Now we just have to prove that 
two sides of this triangle are 
perpendicular. 
At a glance, it'd seem like AB and 
BC are the likely ones, so let's 
check them first. 
If that failed, we'd have to check 
the other possibilities, but we let's 
check the obvious ones first.
We do this by finding if their 
slopes are negative (or opposite) 
reciprocals.

Given: Points A(1, 1), B(4, 4) & 
    C(6, 2)
Prove:  △ ABC is a right triangle
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50

A
C

x

y

B

Triangle Coordinate Proof

5
m = Δy     y2-y1 

Δx     x2-x1
=

mAB = y2-y1     4-1     3 
x2-x1     4-1     3= =      = 1

mBC = y2-y1     2-4     -2 
x2-x1     6-4      2= =      = -1

Since -1 is the negative (or 
opposite) reciprocal of 1, AB is 
perpendicular to BC and △ ABC 
is a right triangle 

Given: Points A(1, 1), B(4, 4) & 
    C(6, 2)
Prove:  △ ABC is a right triangle
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Equation of a Circle &
Completing the Square

Return to Table
of Contents
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The Circle as a Locus of Points

A Circle is a set of 
points that are all the 
same distance from 
the center of the circle.

The distance from the 
center to the 
circumference is the 
radius, "r."

r
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The Circle as a 
Locus of Points

Placing the circle on a 
coordinate plane we can see 
that if the center of the circle 
is at (0,0) this particular point 
is located at about (4,8).

r

(4, 8)

(0, 0) Let's use the distance formula 
to find the lengths:

d = ((x2-x1)2 + (y2-y1)2)1/2

r = ((4-0)2 + (8-0)2)1/2 
      = (16+64)1/2 = (80)1/2 = 4#5click

click
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d = 

The Circle as a 
Locus of Points

We can also solve in general for 
any point (x,y) which lies on the 
circumference of the circle whose 
center is located at the origin (0,0).

This will give us the equation of a 
circle with its center at the origin, 
since every point on the 
circumference must satisfy this 
equation. 

If we start with the distance 
formula

and square both sides, what will  
be the resulting equation?

 d2 = (x2-x1)2 + (y2-y1)2

r

(x,y)

(0,0)

click
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The Circle as a 
Locus of Points

d2 = (x2-x1)2 + (y2-y1)2

Substituting 
· r2 for d2

· (x, y) for (x2, y2)
· (0, 0) for (x1, y1)
What will be resulting equation 
after the substitution?

r2 = ((x-0)2 + (y-0)2) = x2+y2

The sides are usually swapped 
to yield:

x2 + y2 = r2 

The equation of a circle whose 
center is at the origin.

r

(x,y)

(0,0)

click

click
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56 What is the radius of the circle whose equation is 
x2 + y2 = 25?
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57 If the y coordinate of a point on the circle x2 + y2 = 25 
is 5, what is the x coordinate?
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58 How many points on the circle x2 + y2 = 25 have an 
x-coordinate of 3?
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59 How many points on the circle x2 + y2 = 25 have an 
y-coordinate of 6?
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The Circle as a 
Locus of Points
In general, any circle 
centered on the origin will 
have an equation 

x2 + y2 = r2 

If a point is on the circle, it 
must satisfy this equation.

How about circles whose 
center is not on the origin 
(0, 0).

r

(0,0)
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The Circle as a 
Locus of Points

r

(0,0)

(4,8) If a circle is not centered on 
the origin, the equation has 
to be shifted by the amount 
it is away from the origin. 

For example, let's shift the 
center of this circle to (2, 3).
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The Circle as a 
Locus of Points

r

(2,3)

(6,11)

Shifting the center of this 
circle from (0, 0) to (2, 3):

You can see that the point 
on the circle that was at 
(4, 8) is now at (6, 11)

Moving the center of the 
circle right 2 and up 3 will 
add that amount to each x 
and y coordinate.
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The Circle as a 
Locus of Points

r

(2,3)

(6,11)
But the distance from the 
center to each point on the 
circle has not changed.

So, our equation for this 
circle has to reflect that.

The new equation will be 

(x - 2)2 + (y - 3)2 = r2 

We can check to see if we 
still get the same radius.
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The Circle as a 
Locus of Points

r

(2,3)

(6,11)
r2 = (6 - 2)2 + (11 - 3)2
r2 = (4)2 + (8)2

r2 = 16 + 64 = 80

These are the same values 
we had before when the 
circle was centered on (0, 0) 
and that point was located 
at (4, 8).

So, this translation of the 
center did not change the 
circle or its radius.
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The Circle as a 
Locus of Points

r

(h,k)

In general, if the center of a 
circle is located at (h, k) and 
its radius is r, the equation 
for the circle is

(x - h)2 + (y - k)2 = r2 

Keep in mind that you are 
subtracting the x or y 
coordinate of the center of 
the circle.

So, if the center is at (3, 5) 
and the radius is 4, the 
equation becomes 

(x - 3)2 + (y - 5)2 = 16 
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Example
Write the equation of a circle with center (-2, 3) & radius 3.8.
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60 What is the radius of the circle whose equation is 

(x - 5)2 + (y - 3)2 = 36?
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61 What is the radius of the circle whose equation is 

(x + 3)2 + (y - 4)2 = 67?
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62 What is the x-coordinate of the center of the circle whose 
equation is (x - 5)2 + (y - 3)2 = 47?
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63 What is the center and radius of the circle whose 
equation is (x + 3)2 + (y - 4)2 = 30?
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64 What is the center and the radius of the circle whose 
equation is (x - 5)2 + (y - 3)2 = 57?
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65 What is the center and the radius of the circle whose 
equation is (x + 3)2 + (y - 4)2 = 65.36?
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Example

The point (-5, 6) is on a circle with center (-1, 3).
  
Write the standard equation of the circle.
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Example

The equation of a circle is 
(x - 4)2 + (y + 2)2 = 36.  

Graph the circle.

Center: (4, -2)

Radius = √36 = 6

Click to reveal

Click to reveal

(4, -2)

Click on the center of the circle 
to reveal it in the graph.
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66 Which is the standard 
equation of the circle 
below?

A

B

C

D

x2 + y2 = 400

(x - 10)2 + (y - 10)2 = 400

(x + 10)2 + (y - 10)2 = 400

(x - 10)2 + (y + 10)2 = 400
5 10 15 20
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67 Which is the standard 
equation of the circle?

A

B

C

D

(x - 4)2 + (y - 3)2 = 9

(x + 4)2 + (y + 3)2 = 9

(x + 4)2 + (y + 3)2 = 81

(x - 4)2 + (y - 3)2 = 81

2 4 6 8
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68 What is the center of (x - 4)2 + (y - 2)2 = 64?

A (0, 0)

B (4, 2)

C (-4, -2)

D (4, -2)
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69 What is the radius of (x - 4)2 + (y - 2)2 = 89?
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70 What is the diameter of a circle whose equation is
 
(x - 2)2 + (y + 1)2 = 16?

A 2
B 4

C 8
D 16
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71 Which point does not lie on the circle described by the 
equation (x + 2)2 + (y - 4)2 = 25?

A (-2, -1)

B (1, 8)

C (3, 4)

D (0, 5)
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Completing the Square 

You're sometimes going to be given the equation of a circle 
which is not in standard form.

You need to be able to transform the equation to standard form 
in order to find the location of the center and the radius.

For instance, it's not clear what the radius and center are of the 
circle described by this equation.

x2 - 4x + y2 -12 = 0
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Completing the Square 
x2 - 4x + y2 -12 = 0

To find the radius and the coordinates of the center, we need to 
transform this into the form 

(x - h)2 + (y - k)2 = r2

The first step is to separate groups of terms which have x, 
which have y, and are constants.

Just moving those around makes this equation:

[x2 - 4x] + y2 = 12

Take a moment to confirm that this is true.
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Completing the Square 
x2 - 4x + y2 -12 = 0

[x2 - 4x] + y2 = 12

We already see that the y-coordinate of the center is 0 (k = 0), 
since y2 is by itself.

But what to do with the expression (x2 - 4x)? 

We have to convert that into the form (x - h)2 to find the x-
coordinate of the center...and then the radius.
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Completing the Square 

If you recall, when you square a binomial, you get a trinomial.

(x-h)2 = x2 - 2hx + h2   

Our problem starts with an expression in the form of  x2 - 2hx, so 
let's solve for that so we can see what can replace it:

x2 - 2hx = (x-h)2 - h2 
So
The coefficient (-2h) of x is -2h. 

The constant of the trinomial (-h2) is -(h)2.

So, to get h, divide the coefficient of x by -2

To make the expressions equivalent, subtract h2 from the binomial
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Completing the Square 
[x2 - 4x] + y2 = 12

Dividing the coefficient -4 by -2 yields 2, so h = 2

Then -h2 = -4
  
[x2 - 4x] + y2 = 12

[(x - 2)2 - 4] + y2 = 12

(x - 2)2 + y2 = 16

The center is at (2, 0) and the radius is 4.

The same steps are used to find k, when needed, as in the next 
example.
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Determine the radius and center of this circle.

x2 + y2 - 2x + 6y + 6 = 0

[x2 - 2x] + [y2 + 6y] = -6

[x2 - 2x]             [y2 + 6y] 

h = -2/(-2) = 1           k = +6/(-2) = -3   

x2 - 2x = (x - h)2 - 12         [y2 + 6y] = (y -(-3))2 - (3)2

x2 - 2x = (x - 1)2 - 1                      [y2 + 6y] = (y + 3)2 - 9

(x - 1)2 - 1 + (y + 3)2 - 9 = -6

(x - 1)2 + (y + 3)2 = 4

The center is (1,-3) and the radius is 2

Example of Completing the Square
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72 What is the radius of the circle described by this 
equation?

 x2 + y2 - 2x + 6y + 6 = 0
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73 What is the x-coordinate of the center of the circle 
described by this equation?

 x2 + y2 - 2x + 6y + 6 = 0
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74 What is the x-coordinate of the center of the circle 
described by this equation?

 x2 + y2 - 8x + 4y - 5 = 0
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75 What is the radius of the circle described by this 
equation?

 x2 + y2 - 8x + 4y - 5 = 0
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76 What is the radius of the circle described by this 
equation?

 x2 + y2 + 16x - 22y + 174 = 0
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77 What is the y-coordinate of the center of the circle 
described by this equation?

 x2 + y2 + 16x - 22y + 174 = 0
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78 Part A

The equation x2 + y2 - 4x + 2y = b describes a circle.

Determine the y-coordinate of the center of the circle.

PARCC Released Question (EOY)
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79 Part B

The equation x2 + y2 - 4x + 2y = b describes a circle.

The radius of the circle is 7 units.  What is the value of b 
in the equation?

PARCC Released Question (EOY)
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80 The equation x2 - 8x + y2 = 9 defines a circle in the xy-
coordinate plane. To find the radius of the circle, the 
equation can be rewritten as (________)2 + y2 = ___.

(Select two answers.) 
A x + 4

B x - 4

C x + 16

D x - 16

E 25 

F 13 

G 9 

H 5 

PARCC Released Question (EOY)
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PARCC Sample Questions

Return to Table
of Contents
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Question 5/7

PARCC Released Question (EOY)

Topic: Partitions of a Line Segment
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Question 6/7 Topic: Equation of a Circle

PARCC Released Question (EOY)
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Question 7/25

a. x + 4

b. x - 4

c. x + 16 

d. x - 16 

e. 25

f. 13

g. 9

h. 5

Topic: Equation of a Circle

PARCC Released Question (EOY)
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Question 2/7 Topic: Partitions of a Line Segment

PARCC Released Question (PBA)

  

Slide 196 / 202

  

  

  

  

  

  

  

General Problems

Return to Table
of Contents
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Write the equation of a line, in slope-intercept form, 
which has a point of tangency at (3,6) with a circle whose 
center is at the origin.
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Write the equation of a line, in slope-intercept form, 
which has a point of tangency at (3,6) with a circle whose 
center is at the origin.

Strategy 

The slope of the radius of that circle to that point can be 
determined. 

Then the slope of the line tangent at that point will be the 
negative reciprocal of the slope of the radius since they 
are perpendicular.

Given a point and the slope, the equation of the line can 
be written.
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Write an equation of a line which has a point of tangency 
at (3,6) with a circle whose center is at the origin.

Solution

mradius = (6-0)/(3-0) = 2
mtangent = -1/2

(y-y1) = m(x-x1)
(y-6) = (1/2)(x-3)
y = 0.5x - 1.5 + 6
y = 0.5x + 4.5

b = 0.5(0) + 4.5
b = 4.5
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81 What is the slope of a line tangent at (7,2) to a circle 
whose center is at (2,3)?
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82 What is the y-intercept of the line in the prior problem 
which was tangent at (7,2) to a circle whose center is at 
(2,3)?

  

Slide 202 / 202

  

  

  

  

  

  

  


