

NEW JERSEY CENTER	
FOR TEACHING \& LEARNING	
Geometry	
Analytic Geometry	
2015-10-02	
www.njctl.org	

Table of Contents

Origin of Analytic Geometry
Slide 3 / 202

The Distance Formula
The Midpoint Formula
Partitions of a Line Segment
Slopes of Parallel \& Perpendicular Lines
Equations of Parallel \& Perpendicular Lines
Triangle Coordinate Proofs
Equation of a Circle \& Completing the Square
PARCC Sample Questions

General Problems

Throughout this unit, the Standards for Mathematical Practice are used.
MP1: Making sense of problems \& persevere in solving them. MP2: Reason abstractly \& quantitatively.
MP3: Construct viable arguments and critique the reasoning of others.
MP4: Model with mathematics.
MP5: Use appropriate tools strategically.
MP6: Attend to precision.
MP7: Look for \& make use of structure.
MP8: Look for \& express regularity in repeated reasoning.
Additional questions are included on the slides using the "Math Practice" Pull-tabs (e.g. a blank one is shown to the right on this slide) with a reference to the standards used.
If questions already exist on a slide, then the specific MPs that the questions address are listed in the Pull-tab.
\qquad
\qquad

Origin of Analytic Geometry

Return to Table of Contents

The Origin of Analytic Geometry

Analytic Geometry is a powerful combination of geometry and algebra.
Many jobs that are looking for employees now, and will be in the future, rely on the process or results of analytic geometry.
This includes jobs in medicine, veterinary science, biology, chemistry, physics, mathematics, engineering, financial analysis, economics, technology,
biotechnology, etc.

The Origin of Analytic Geometry

Euclidean Geometry

Was developed in Greece about 2500 years ago.

Was lost to Europe for more than a thousand years.
Was maintained and refined during that time in the Islamic world.

Its rediscovery was a critical part of the European Renaissance.

The Origin of Analytic Geometry

Algebra

Started by Diophantus in Alexandria about 1700 years ago.

Ongoing contributions from Babylon, Syria, Greece and Indians.

Named from the Arabic word al-jabr which was used by al-Khwarizmi in the title of his 7th century book.

Mathematics_in_medieval_Islam
Slide 8 / 202

The Origin of Analytic Geometry

The Origin of Analytic Geometry

How would you
describe to someone
the location of these
five points so they could draw them on another piece of paper without seeing your drawing?

Discuss.
-
-

-
-
-

Slide 11 / 202

Adding this

Cartesian coordinate plane makes that task simple since the location of each point can be given by just two numbers: an xand y-coordinate, written as the ordered pair (x, y).

The Origin of Analytic Geometry

The Distance

Formula

Let's derive the formula to find the distance between any two points: call the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$).

First, let's zoom in so we have more room to work.

Slide 21 / 202

1 What is the distance between the points: $(4,8)$ and $(7,3)$? Round your answer to the nearest hundredth.

Slide 23 / 202
2 What is the distance between the points: $(-4,8)$ and $(7,-3)$? Round your answer to the nearest hundredth.

3 What is the distance between the points: $(-2,-5)$ and $(-7,3)$? Round your answer to the nearest hundredth.

Slide 24 / 202

4 What is the distance between the indicated points? Round your answer to the nearest hundredth.

5 What is the distance between the indicated points? Round your answer to the nearest hundredth.

6 What is the distance between the indicated points? Round your answer to the nearest hundredth.

Slide 27 / 202
\square

The Midpoint Formula

Lab - Midpoint Formula

Return to Table of Contents

The Midpoint Formula

The \mathbf{x}-coordinate for the midpoint between (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ is halfway between x_{1} and x_{2}.

Similarly, the y-coordinate of that midpoint will be halfway between y_{1} and y_{2}.

If you're provided a graph of a line, and asked to mark the midpoint, you can often do that without much calculating.

The Midpoint Formula

We can calculate the x-coordinate midway between that of the two given points by finding their average.

The same for the y-coordinate.
Just add the two values and divide by two.

The x-coordinate of the midpoint is $(1+9) / 2=5$

The y-coordinate of the midpoint is $(3+11) / 2=7$

That's the same answer: $(5,7)$

7 What is the midpoint between the indicated points?

OA $(4,9)$
○ $\quad(-5,-4)$
OC $(5,6)$
OD $(5,7)$

8 What is the midpoint between the indicated points?
$\mathrm{OA}(0,0)$
OB($(5,10)$
OC $(5,5)$
OD (10, 10)

Slide 35 / 202
\qquad
\qquad
\qquad
\square
\qquad
\qquad
五

Slide 36 / 202

9 What is the midpoint between the indicated points?

O $(3,3)$
OB $(3,4)$
OC (4, 3)
OD $(5,3)$

\qquad

Slide 38 / 202
10 What is the midpoint between the points: $(4,8)$ and $(7,3)$?

OA (8, 2)
OB $(4,7)$
○C (5.5, 5.5)
OD (6,5)

11 What is the midpoint between the points: $(-4,8)$ and ($4,-8$)?

OA $(8,2)$
OB $(0,0)$
OC $(12,12)$
OD (4, 4)
Slide 39 / 202

12 What is the midpoint between the points: $(-4,-8)$ and (-6, -4)?

OA (-5, -6)
OB $(-10,-12)$
OC $(2,4)$
OD $(5,6)$

Finding the Coordinates of an E ndpoint
of a Segment
Slide 42 / 202

Can you find a shortcut to solve this problem? How would your shortcut make the problem easier?

Finding the Coordinates of an E ndpoint of a Segment

Another way of approaching this problem is to look for the pattern that occurs between the endpoint $A(4,6)$ and midpoint $M(1,2)$.

Looking only at our points, we can determine that we traveled left 3 units and down 4 units to get from A to M . If we travel the same units in the same direction starting at M, we will get to $B(-2,-2)$.

Finding the Coordinates of an E ndpoint of a Segment

Similarly, if we line up the points vertically and determine the pattern of the numbers, without a graph, we can calculate the coordinates for our missing endpoint.

If you use this method, always determine the operation required to get from the given endpoint to the midpoint. The reverse will not work.

13 Find the other endpoint of the segment with the endpoint $(7,2)$ and midpoint $(3,0)$

OA $(-1,-2)$
OB $(-2,-1)$
○C $(4,2)$
OD $(2,4)$

14 Find the other endpoint of the segment with the endpoint $(1,4)$ and midpoint $(5,-2)$

OA $(11,-8)$
OB $(9,0)$
OC $(9,-8)$
OD $(3,1)$
(3)

Slide 47 / 202
15 Find the other endpoint of the segment with the endpoint $(-4,-1)$ and midpoint $(-2,3)$.

○ A $(-6,-5)$
OB $(-3,-2)$
○C $(0,7)$
OD $(1,9)$

16 Find the other endpoint of the segment with the endpoint $(-2,5)$ and midpoint $(0,2)$.

OA (-1, -3.5)
OB $(-4,8)$
OC $(1,0.5)$
OD (2, -1)
\square

Partitions of a Line Segment

Return to Table of Contents

Partitions of a Line Segment

In order to divide the segment in the ratio of $3: 1$, think of dividing the segment into $3+1$, or 4 congruent pieces.

Plot the points that would divide $\overline{\mathrm{AB}}$ into 4 congruent pieces.

- Click on one of the points in the grid to show them all.

Partitions of a Line Segment

If we add a coordinate plane to our segment, could we also determine the coordinates of our points?
Yes, we can. We can also eliminate one of our points that does not divide our segment into the ratio 3:1. In our case, the midpoint.

- Click on midpoint to hide it

Let's say that the ratio of the two segments that we're looking for from left to right is $3: 1$. Which other point should be eliminated?

- Click on that point to hide it

Partitions of a Line
 Segment

We can also calculate both the x and y coordinates between the two given points by using a formula that is similar to the midpoint formula.

But instead of having a common ratio (1:1) and dividing by 2 , what the midpoint formula has us do, we need to multiply the one set of coordinates by the first number in the ratio and the other set of coordinates by the second number in the ratio and divide by the number of segments that are required for our ratio $3: 1$, or
$3+1=4$.
$\left(\frac{3(9)+1(1)}{3+1}, \frac{3(11)+1(3)}{3+1}\right)$
$\left(\frac{27+1}{4}, \frac{33+3}{4}\right)=(7,9)$

Partitions of a Line Segment

Example without a graph:
Line segment EF in the coordinate plane has endpoints with coordinates (10, -11) and (-4, 10).

Find two possible locations for a point P that divides $\overline{\mathrm{EF}}$ into two parts with lengths in a ratio of 5:2.

Partitions of a Line Segment

$$
(10,-11) \text { and }(-4,10)
$$

Step \#1: Determine the total number of ways required to divide the segment using the ratio 5:2.

Click
Step \#2: Use the formula to determine the coordinates of our first point P.
click

Partitions of a Line Segment

$(10,-11)$ and $(-4,10)$

Step \#3: Reverse the ratio 2:5 and reuse the formula to determine the coordinates of our second point P.
click

17 Line segment GH in the coordinate plane has endpoints with coordinates (-7, -9) \& $(8,3)$, shown in the graph below. Find 2 possible locations for a point P that divides GH into two parts with lengths in a ratio of $2: 1$.
(0.5, -3)
$\square(3,-1)$$(6,1)$$(-2,-5)$
$\square(-5,-7)$

18 Line segment JK in the coordinate plane has endpoints with coordinates $(10,12)$ \& (-10, -13), shown in the graph below. Find 2 possible locations for a point P that divides JK into two parts with lengths in a ratio of 4:1.
$\square(-6,-8)$$(-2,-3)$(0, -0.5)$(2,2)$$(6,7)$

Slide 65 / 202

19 Line segment LM in the coordinate plane has endpoints with coordinates $(-8,13)$ \& $(6,-8)$, shown in the graph below. Find 2 possible locations for a point P that divides LM into two parts with lengths in a ratio of 3:4.$(-6,10)$$(-4,7)$$(-2,4)$$(0,1)$$(2,-3)$

Slide 66 / 202

20 Line segment LM in the coordinate plane has endpoints with coordinates $(-8,13) \&(6,-8)$, shown in the graph below. Find 2 possible locations for a point P that divides $\overline{L M}$ into two parts with lengths in a ratio of 6:1.$(-6,10)$$(-4,7)$$(-2,4)$$(0,1)$
$\square(4,-6)$

21 Line segment NO in the coordinate plane has endpoints with coordinates $(10,12) \&(-10,-13)$, shown in the graph below. Find 2 possible locations for a point P that divides $\overline{\mathrm{NO}}$ into two parts with lengths in a ratio of 3:2.$(-6,-8)$$(-2,-3)$(0, -0.5)$(2,2)$$(6,7)$

22 Line segment QR in the coordinate plane has endpoints with coordinates $(-12,11) \&(12,-13)$, shown in the graph below. Find 2 possible locations for a point P that divides QR into two parts with lengths in a ratio of 5:3.$(3,-4)$$(0,-1)$$(-3,2)$$(-6,5)$$(-9,8)$
Slide 68 / 202
\qquad
\qquad \square \square \longrightarrow \square Slide 69 / 202

23 Find two possible locations for point M so that M divides JK into two parts with lengths in a ratio of 1:3.
$\square(-2,9)$
$\square(-1,8)$
$\square(0,7)$
$\square(4,3)$
$\square(5,2)$
$\square(6,1)$

PARCC Released Question (EOY) - Part 2 - Response Format

24 Point Q lie on $S T$, where point S is located at $(-2,-6)$ and point T is located at $(5,8)$. If $S Q: Q T=5: 2$, where is point Q on ST?

Slide 71 / 202
\qquad

Slide 72 / 202

PARCC Released Question (PBA)

Slopes of Parallel \& Perpendicular Lines

Return to Table of Contents

Slide 74 / 202

The slope of a line indicates the angle it makes with the x-axis.

The symbol for slope is "m".

Slope				

Slide 75 / 202

25 The slope of the indicated line is:

OA negative
OB positive
OC zero
OD undefined

\qquad

26 The slope of the indicated line is:

OA negative
OB positive
Oc zero
OD undefined

27 The slope of the indicated line is:
OA negative
OB positive
Oc zero
OD undefined

Slide 78 / 202

28 The slope of the indicated line is:

\qquad

Slide 80 / 202
29 The slope of the indicated line is:

A negative
OB positive
Oc zero
OD undefined

\qquad

30 The slope of the indicated line is:
OA negative
OB positive
Oc zero
OD undefined

Slide 81 / 202

| Slope |
| :--- | | The slope of a line is not |
| :--- |
| given in degrees. |
| Rather, it is given as the |
| ratio of "rise" over "run". |
| The slope of a line is the |
| same anywhere along the |
| line, so any two points on |
| the line can be used to |
| calculate the slope. |

Slide 83 / 202
\qquad \square \square
\qquad
\qquad \square \square

Slope

The slope also allows us to quickly graph a line, given point on the line.

For instance, if I know one point on a line is $(1,1)$ and that the slope of the line is 2, I can find a second point,

$$
\mathrm{m}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{X}_{2}-\mathrm{x}_{1}}
$$

Using Slope to Draw a Line

I do this by recognizing that the slope of 2 means that if I go up 2 units on the y-axis I have to go 1 unit to the right on the x -axis .

$$
\mathrm{m}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

Using Slope to Draw a Line

I do this by recognizing that the slope of 2 means that if I go up 2 units on the y-axis I have to go 1 unit to the right on the x -axis .

Or if I go up 10, I have to go over 5 units, etc.
$m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slopes of Parallel Lines

Parallel lines have the same slope.

With what we've learned about parallel lines this is easy to understand

The slope of a line is related to the angle it makes with the x-axis.

Now, think of the x-axis as a transversal.

31 What is the name of this pair of angles, formed by a transversal intersecting two lines.
OA Alternate Interior Angles O Alternate Exterior Angles
OB Corresponding Angles Same Side Interior Angles

32 We know those angles must then be:
$\begin{array}{ll}\text { OA Supplementary } & \text { O Equal } \\ \text { OB Complementary } & \text { O Adjacent }\end{array}$

Slide 92 / 202

33 That means that the slopes of parallel lines must be:
$\begin{array}{ll}\text { OA Reciprocals } & \text { O Equal } \\ \text { OB Inverses } & \text { O Nothing special }\end{array}$
Slide 93 / 202

34 If one line has a slope of 4, what must be the slope of any line parallel to it?

35 If one line passes through the points $(0,0)$ and $(2,2)$ what must be the slope of any line parallel to that first line?

36 If one line passes through the points $(-5,9)$ and $(5,8)$ what must be the slope of any line parallel to that first line?

37 If one line passes through the points $(2,2)$ and $(5,5)$ and a parallel line passes through the point $(1,5)$ which of these points could lie on that second line?

OA $(2,2)$
OB $(4,4)$
OC $(5,6)$
OD (-1, 3)

Slide 98 / 202
38 If one line passes through the points $(-3,4)$ and $(0,10)$ and a parallel line passes through the point $(-1,-4)$ which of these points could lie on that second line?

OA (0, -2)
OB $(2,-5)$
OC $(3,1)$
OD $(-1,3)$

Slide 99 / 202
39 If one line passes through the points $(3,5)$ and $(5,-1)$ and a parallel line passes through the point $(-1,-1)$ which of these points could lie on that second line?

OA $(0,1)$
B $(-2,2)$
○C(4, 8)
OD (-4, -4)
The slopes of perpendicular lines are negative (or opposite) reciprocals.

There are three ways of expressing this symbolically.

$$
m_{1} m_{2}=-1
$$

$m_{1}=\frac{-1}{m_{2}}$
$m_{2}=\frac{-1}{m_{1}}$
These all have the same meaning.

Slide 101 / 202

Slopes of Perpendicular Lines

First, let's move our lines to the origin so our work gets easier and we can focus on the important parts.

We can move them since we can just think of drawing new parallel lines through the origin that have the same slopes as these lines.

We earlier showed that parallel lines have the same slope, so the slopes of these new lines will be the same as that of the original lines.

Slopes of Perpendicular Lines

Now, let's zoom in and focus on the lines between $x=0$ and $x=1$.

When the lines are at $x=1$, their y-coordinates are m_{1} for the first line and m_{2} for the second line.

That's because if the slope of the first line is m_{1}, then when we move +1 along the x-axis, the y-value must increase by the amount of the slope, m_{1}.

The same for the second line, whose slope is m_{2}.

Slide 104 / 202

Slopes of Perpendicular Lines

The lengths of legs "a" and "b" can be found using the distance formula.
$d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$a^{2}=(1-0)^{2}+\left(m_{1}-0\right)^{2}$
$=1+\mathrm{m}_{1}{ }^{2}$
$b^{2}=(1-0)^{2}+\left(m_{2}-0\right)^{2}$
$=1+\mathrm{m}_{2}{ }^{2}$
And, we get c^{2} by squaring our result for c from the prior slide.

$$
\begin{aligned}
c^{2} & =\left(m_{1}-m_{2}\right)^{2} \\
& =m_{1}^{2}-2 m_{1} m_{2}+m_{2}^{2}
\end{aligned}
$$

Slide 105 / 202

We're going to substitute the expressions from the prior slide into the Pythagorean Theorem.
We'll color code them so we can keep track.
$c^{2}=m_{1}{ }^{2}-2 m_{1} m_{1}+m_{2}{ }^{2}$
$a^{2}=1+m_{1}{ }^{2}$
$b^{2}=1+m_{2}{ }^{2}$

$$
c^{2}=a^{2}+b^{2}
$$

$m_{1}{ }^{2}-2 m_{1} m_{2}+m_{2}{ }^{2}=1+m_{1}{ }^{2}+1+m_{2}{ }^{2}$

Slide 107 / 202

40 If one line has a slope of 4 , what must be the slope of any line perpendicular to it?

41 If one line has a slope of $-1 / 2$, what must be the slope of any line perpendicular to it?

42 If one line passes through the points $(0,0)$ and $(4,2)$ what must be the slope of any line perpendicular to that first line?

43 If one line passes through the points $(-5,9)$ and $(5,8)$ what must be the slope of any line perpendicular to that first line?

44 If one line passes through the points $(1,2)$ and $(5,6)$ and a perpendicular line passes through the point $(1,5)$ which of these points could lie on that second line?

OA (2, 2)
OB $(4,4)$
Oc $(2,4)$
OD (-1, 3)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

45 If one line passes through the points $(-3,4)$ and $(0,10)$ and a perpendicular line passes through the point ($-1,-4$) which of these points could lie on that second line?

OA (0, -2)
OB(2,-5)
OC $(3,1)$
OD (-3, -5)
Slide 113 / 202

Slide 114 / 202
46 If one line passes through the points $(3,5)$ and $(5,-1)$ and a perpendicular line passes through the point $(-1,-1)$ which of these points could lie on that second line?

OA $(5,0)$
$O_{B}(2,0)$
OC $(4,8)$
OD (-4, -4)

Return to Table

Let's start with the above definition of slope, multiply both sides by ($\mathrm{x}_{2}-\mathrm{x}_{1}$), and rearrange to get:
$\left(y_{2}-y_{1}\right)=m\left(x_{2}-x_{1}\right)$
Now, if I enter one point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) this defines the infinite locus of other points on the line.

Then, I can add y_{1} to both sides to isolate the variable y.
$y=m\left(x-x_{1}\right)+y_{1}$

$y=m\left(x-x_{1}\right)+y_{1}$
A common simplification of this is to use the y-intercept for ($\mathrm{x}_{1}, \mathrm{y}_{1}$).

The y-intercept is the point where the line crosses the y axis. Its symbol is "b" so the coordinates of that point are $(0, b)$, since $x=0$ on the y-axis.

Just substitute $(0, b)$ in the above equation for ($\mathrm{x}_{1}, \mathrm{y}_{1}$).

Slope Intercept Equation of a Line

Writing Equations of Parallel Lines

1. Find an equation of the line passing through the point $(-4,5)$ and parallel to the line whose equation is $-3 x+2 y=-1$.
Step 1: Identify the information given in the problem.

Contains the point $(-4,5) \&$ is parallel to the line $-3 x+2 y=-1$

Step 2: Identify what information you still need to create the equation and choose the method to obtain it.

The slope: Use the equation of the parallel line to determine the slope

$$
-3 x+2 y=-1
$$

Writing Equations of Parallel Lines

Step 3: Create the equation.

$y-y_{1}=m\left(x-x_{1}\right)$	Point-Slope Form
$\overline{\text { click }}$	
$\overline{\text { click }}$	Slope-Intercept Form

The correct solution to the original problem is either form of the equation. Point-Slope Form and Slope-Intercept Form are two ways to write the same linear equations.

Writing Equations of Perpendicular Lines

Slide 122 / 202
2. Write the equation of the line passing through the point $(-2,5)$ and perpendicular to the line $y=1 / 2 x+3$

Step 1: Identify the slope according to the given equation.
Given equation: $m=\frac{}{c l i c k}$
Perpendicular Line: $m=\frac{\text { click }}{}$
Step 2: Use the given point and the point-slope formula to write the equation of the perpendicular line.
Sep \qquad
\qquad

Writing Equations of Perpendicular Lines

3. Write the equation of the line passing through the point
$(4,7)$ and perpendicular to the line $x-5 y=50$

47 What is the equation of the line passing through $(6,-2)$
and parallel to the line whose equation is $y=2 x-3$?
A $y=2 x+2$
OB $y=-2 x+10$
OC $y=1 / 2 x-5$
$O D y=2 x-14$

48 Which is the equation of a line parallel to the line represented by: $y=-x-22$?
OA $x-y=22$
B $y-x=22$
OC $y+x=-17$
OD $2 y+x=-22$

49 Two lines are represented by the equation:
$-3 y=12 x-14$ and $y=k x+14$
For which value of k will the lines be parallel?
○A 12
OB -14
OC 3
OD -4

50 Which equation represents a line parallel to the line whose equation is: $3 y+4 x=21$

A $12 y+16 x=12$
OB $3 y-4 x=22$
C $3 y=4 x+21$
OD $4 y+3 x=21$

Slide 128 / 202
51 What is the equation of a line that passes through $(9,3)$ and is perpendicular to the line whose equation is $4 x-5 y=20 ?$
OA $y-3=-5 / 4(x-9)$
OB $y-3=4 / 5(x-9)$
OC $y-3=4(x-9)$
OD $y-3=-5(x-9)$
\qquad \square \square五 \square
\qquad

Slide 129 / 202
52 What is an equation of the line that passes through point $(6,-2)$ and is parallel to the line whose equation is

$$
y=-\frac{2}{3} x+5 ?
$$

A $\quad y=-\frac{3}{2} x+5$
OB $y=-\frac{2}{3} x+2$
OC $y=-\frac{3}{2} x+2$
OD $y=-2 x+2$
OE $y=x$

53 What is an equation of the line that passes through the point $(5,-2)$ and is parallel to the line:

$$
9 x-3 y=12
$$

OA $y=3 x-17$
OB $y=x$
OC $y=-x+17$
OD $y=-3 x+15$

54 What is an equation of the line that contains the point $(-4,1)$ and is perpendicular to the line whose equation is $y=-2 x-3$?

A $\quad y=2 x+1$
OB $y=1 / 2 x+3$
OC $y=-2 x-1$
OD $y=-1 / 2 x+3$

55 Two lines are represented by the given equations.
What would be the best statement to describe these two lines?

$$
2 x+5 y=15 \quad 5(x+1)=-2 y+20
$$

O A The lines are parallel.
OB The lines are the same line.
$O C$ The lines are perpendicular.
OD The lines intersect at an angle other than 90 .

Triangle Coordinate Proofs

Return to Table of Contents

Triangle Coordinate Proof

Coordinate Proofs place figures on the Cartesian Plane to make use of the coordinates of key features of the figure, combined with formulae (e.g. distance formula, midpoint formula and slope formula) to help prove something.

The use of the coordinates is an extra first step in conducting the proof.

We'll provide a few examples and then have you do some proofs.

Triangle Coordinate Proof

Given: The coordinates $\mathrm{A}(0,4)$; $\mathrm{B}(3,0)$; $\mathrm{C}(-3,0)$ and $Q(0,0)$ are the vertices of $\triangle A B C$ and $\triangle A Q B$
Prove: $\overline{Q A}$ bisects $\angle C A B$

Sketch the triangles on some graph paper and then discuss a strategy to accomplish the proof.

Example

Given: The coordinates $\mathrm{A}(0,4)$; $\mathrm{B}(3,0) ; \mathrm{C}(-3,0)$ and
$Q(0,0)$ are the vertices of $\triangle A B C$ and $\triangle A Q B$
Prove: QA bisects $\angle \mathrm{CAB}$
Does this sketch look like yours?

If not, take a moment to see if this is correct.
Looking at this, our strategy becomes clear.

If we can prove that $\triangle A Q C \cong$ $\triangle A Q B$, then we could prove $\angle \mathrm{CAQ} \cong$ $\angle B A Q$ which would mean that segment QA bisects $\angle \mathrm{CAB}$: our goal. If that makes sense, let's get to work.

Example

Given: The coordinates $A(0,4) ; B(3,0) ; C(-3,0)$ and
$Q(0,0)$ are the vertices of $\triangle A B C$ and $\triangle A Q B$
Prove: $\overline{Q A}$ bisects $\angle C A B$
We don't need to use the distance formula to find these lengths since they can be read off the graph:
$C Q=B Q=3 \quad \& \quad A Q=4$

We can use the distance formula to find these lengths:
$A B=\left((3-0)^{2}+(0-4)^{2}\right)^{1 / 2}=(25)^{1 / 2}=5$
$A C=\left((0-(-3))^{2}+(4-0)^{2}\right)^{1 / 2}=(25)^{1 / 2}=5$

Example

Given: The coordinates $\mathrm{A}(0,4)$; $\mathrm{B}(3,0) ; \mathrm{C}(-3,0)$ and
$Q(0,0)$ are the vertices of $\triangle A B C$ and $\triangle A Q B$
Prove: $\overline{\text { QA }}$ bisects $\angle \mathrm{CAB}$

You should be able to see that these are two right triangles with identical length sides, so they must be congruent.

But, let's work out the proof as good practice.

Slide 137 / 202
\qquad \square \square \square
\qquad \square \square
\qquad Slide 138 / 202

Statements	Reasons $C \quad 3 \quad \mathbf{Q}$
1. $\mathrm{CQ}=3$ and $\mathrm{BQ}=3$	1. Given in graph
2. $\mathrm{AC}=5$ and $\mathrm{AB}=5$	2. Distance Formula
3. $\overline{\mathrm{QC}} \cong \overline{\mathrm{QB}}$	3. \cong segments have equal measure
4. $\overline{\mathrm{AQ}} \cong \overline{\mathrm{QA}}$	4. Reflexive Property of \cong
5. $\overline{\mathrm{AC}} \cong \overline{\mathrm{AB}}$	5. \cong segments have equal measure
6. $\triangle \mathrm{AQC} \cong \triangle \mathrm{AQB}$	6. SSS triangle congruence
7. $\angle \mathrm{CAQ} \cong \angle \mathrm{BAQ}$	7. CPCTC
8. $\overline{\mathrm{QA}}$ bisects $\angle \mathrm{CAB}$	8. Definition of angle bisector

Triangle Coordinate Proof

Given: The points $A(4,-1), B(5,6)$, and $C(1,3)$
Prove: $\triangle A B C$ is an isosceles right triangle

Make a sketch and think of a strategy for this proof.

Triangle Coordinate Proof

Slide 141 / 202

Given: The points $A(4,-1), B(5,6)$, and $C(1,3)$
Prove: $\triangle A B C$ is an isosceles right triangle

If we just had to prove this a right triangle, we could just show that the slope of $\overline{B C}$ and $\overline{A C}$ are negative (or opposite) reciprocals.

But, we also have to show this is an isosceles triangle, so we'd still have to determine the lengths of the sides.

Once we do two sides we may as well do three and then use Pythagorean Theorem to prove it both isosceles and right.

Triangle Coordinate Proof

Given: The points $A(1,1), B(4,4)$, and $C(6,2)$
Prove: $\triangle A B C$ is a right triangle

Make a sketch and think of a strategy.

Slide 143 / 202
\qquad
\qquad
\longrightarrow
\qquad
\qquad (1) \square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(20)
\qquad
\qquad
The Circle as a Locus of Points

The Circle as a Locus of Points

We can also solve in general for any point (x, y) which lies on the circumference of the circle whose center is located at the origin $(0,0)$.

This will give us the equation of a circle with its center at the origin, since every point on the circumference must satisfy this equation.

If we start with the distance formula $=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$
and square both sides, what will be the resulting equation?
click

The Circle as a Locus of Points

$d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

Substituting

- r^{2} for d^{2}
- (x, y) for $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$(0,0)$ for $\left(x_{1}, y_{1}\right)$
What will be resulting equation after the substitution?
click
The sides are usually swapped to yield:
click
The equation of a circle whose center is at the origin.

56 What is the radius of the circle whose equation is $x^{2}+y^{2}=25 ?$

$$
\text { Slide } 152 \text { / } 202
$$

57 If the y coordinate of a point on the circle $x^{2}+y^{2}=25$ is 5 , what is the x coordinate?

58 How many points on the circle $x^{2}+y^{2}=25$ have an x-coordinate of 3 ?

59 How many points on the circle $x^{2}+y^{2}=25$ have an y-coordinate of 6 ?

The Circle as a Locus of Points

In general, any circle centered on the origin will have an equation
$x^{2}+y^{2}=r^{2}$
If a point is on the circle, it must satisfy this equation.

How about circles whose center is not on the origin $(0,0)$.

The Circle as a Locus of Points

If a circle is not centered on the origin, the equation has to be shifted by the amount it is away from the origin.

For example, let's shift the center of this circle to $(2,3)$.

The Circle as a Locus of Points

Shifting the center of this circle from $(0,0)$ to $(2,3)$:

You can see that the point on the circle that was at $(4,8)$ is now at $(6,11)$

Moving the center of the circle right 2 and up 3 will add that amount to each x and y coordinate.

The Circle as a Locus of Points

But the distance from the center to each point on the circle has not changed.

So, our equation for this circle has to reflect that.

The new equation will be
$(x-2)^{2}+(y-3)^{2}=r^{2}$
We can check to see if we still get the same radius.

The Circle as a Locus of Points

$\mathrm{r}^{2}=(6-2)^{2}+(11-3)^{2}$
$\mathrm{r}^{2}=(4)^{2}+(8)^{2}$
$r^{2}=16+64=80$
These are the same values we had before when the circle was centered on (0,0) and that point was located at $(4,8)$.

So, this translation of the center did not change the circle or its radius.

The Circle as a Locus of Points

In general, if the center of a circle is located at (h, k) and its radius is r, the equation for the circle is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Keep in mind that you are subtracting the x or y coordinate of the center of the circle.

So, if the center is at $(3,5)$ and the radius is 4 , the equation becomes
$(x-3)^{2}+(y-5)^{2}=16$

Example

Write the equation of a circle with center $(-2,3) \&$ radius 3.8.
Slide 162 / 202

60 What is the radius of the circle whose equation is $(x-5)^{2}+(y-3)^{2}=36 ?$

61 What is the radius of the circle whose equation is $(x+3)^{2}+(y-4)^{2}=67 ?$

62 What is the x-coordinate of the center of the circle whose equation is $(x-5)^{2}+(y-3)^{2}=47$?

63 What is the center and radius of the circle whose equation is $(x+3)^{2}+(y-4)^{2}=30$?

64 What is the center and the radius of the circle whose equation is $(x-5)^{2}+(y-3)^{2}=57 ?$

65 What is the center and the radius of the circle whose equation is $(x+3)^{2}+(y-4)^{2}=65.36 ?$

The point $(-5,6)$ is on a circle with center $(-1,3)$.
Write the standard equation of the circle.

Slide 170 / 202

66 Which is the standard equation of the circle below?
) A $x^{2}+y^{2}=400$
) $B(x-10)^{2}+(y-10)^{2}=400$
C $(x+10)^{2}+(y-10)^{2}=400$
) $(x-10)^{2}+(y+10)^{2}=400$

Slide 171 / 202

67 Which is the standard equation of the circle?
) $A(x-4)^{2}+(y-3)^{2}=81$
$B(x-4)^{2}+(y-3)^{2}=9$
) $(x+4)^{2}+(y+3)^{2}=81$
D $(x+4)^{2}+(y+3)^{2}=9$

\qquad

68 What is the center of $(x-4)^{2}+(y-2)^{2}=64$?
OA (0,0)
○B $(4,2)$
OC $(-4,-2)$
OD $(4,-2)$
\qquad
\qquad \square
\qquad
\qquad
\qquad L

70 What is the diameter of a circle whose equation is

$$
(x-2)^{2}+(y+1)^{2}=16 ?
$$

OA 2
OB 4
OC 8
OD 16

71 Which point does not lie on the circle described by the equation $(x+2)^{2}+(y-4)^{2}=25$?

OA $(-2,-1)$
OB $(1,8)$
○C $(3,4)$
OD $(0,5)$

Completing the Square

You're sometimes going to be given the equation of a circle which is not in standard form.

You need to be able to transform the equation to standard form in order to find the location of the center and the radius.

For instance, it's not clear what the radius and center are of the circle described by this equation.
$x^{2}-4 x+y^{2}-12=0$

Completing the Square

$$
x^{2}-4 x+y^{2}-12=0
$$

To find the radius and the coordinates of the center, we need to transform this into the form
$(x-h)^{2}+(y-k)^{2}=r^{2}$
The first step is to separate groups of terms which have x , which have y, and are constants.

Just moving those around makes this equation:
$\left[x^{2}-4 x\right]+y^{2}=12$
Take a moment to confirm that this is true.

Completing the Square

$$
x^{2}-4 x+y^{2}-12=0
$$

$\left[x^{2}-4 x\right]+y^{2}=12$
We already see that the y-coordinate of the center is $0(k=0)$, since y^{2} is by itself.

But what to do with the expression $\left(\mathbf{x}^{2}-\mathbf{4 x}\right)$?
We have to convert that into the form $(\mathbf{x}-\mathbf{h})^{2}$ to find the \mathbf{x} coordinate of the center...and then the radius.

Completing the Square

If you recall, when you square a binomial, you get a trinomial.
$(x-h)^{2}=x^{2}-2 h x+h^{2}$
Our problem starts with an expression in the form of $x^{2}-2 h x$, so let's solve for that so we can see what can replace it:
$x^{2}-2 h x=(x-h)^{2}-h^{2}$
So
The coefficient $(-2 h)$ of x is $-2 h$.
The constant of the trinomial $\left(-\mathrm{h}^{2}\right)$ is $-(\mathrm{h})^{2}$.
So, to get h, divide the coefficient of x by -2
To make the expressions equivalent, subtract h^{2} from the binomial

Completing the Square

$$
\left[x^{2}-4 x\right]+y^{2}=12
$$

Dividing the coefficient -4 by -2 yields 2 , so $h=2$
Then $-h^{2}=-4$
$\left[x^{2}-4 x\right]+y^{2}=12$
$\left[(x-2)^{2}-4\right]+y^{2}=12$
$(x-2)^{2}+y^{2}=16$
The center is at $(2,0)$ and the radius is 4 .

The same steps are used to find k, when needed, as in the next example.

Example of Completing the Square

Determine the radius and center of this circle.

$$
\begin{aligned}
& x^{2}+y^{2}-2 x+6 y+6=0 \\
& {\left[x^{2}-2 x\right]+\left[y^{2}+6 y\right]=-6}
\end{aligned}
$$

```
[ \(\left.x^{2}-2 x\right]\)
\(h=-2 /(-2)=1\)
\(x^{2}-2 x=(x-h)^{2}-1^{2}\)
\(x^{2}-2 x=(x-1)^{2}-1\)
```

$\left[y^{2}+6 y\right]$
$\mathrm{k}=+6 /(-2)=-3$
$\left[y^{2}+6 y\right]=(y-(-3))^{2}-(3)^{2}$
$\left[y^{2}+6 y\right]=(y+3)^{2}-9$

$$
\begin{gathered}
(x-1)^{2}-1+(y+3)^{2}-9=-6 \\
(x-1)^{2}+(y+3)^{2}=4
\end{gathered}
$$

The center is $(1,-3)$ and the radius is 2

72 What is the radius of the circle described by this equation?

$$
x^{2}+y^{2}-2 x+6 y+6=0
$$

73 What is the x-coordinate of the center of the circle described by this equation?
$x^{2}+y^{2}-2 x+6 y+6=0$

74 What is the x-coordinate of the center of the circle described by this equation?
$x^{2}+y^{2}-8 x+4 y-5=0$

75 What is the radius of the circle described by this equation?
$x^{2}+y^{2}-8 x+4 y-5=0$
Slide 185 / 202
\qquad

\qquad

Slide 186 / 202
\qquad
\qquad
\qquad
\qquad
\qquad

76 What is the radius of the circle described by this equation?
$x^{2}+y^{2}+16 x-22 y+174=0$

77 What is the y-coordinate of the center of the circle described by this equation?

$$
x^{2}+y^{2}+16 x-22 y+174=0
$$

78 Part A

The equation $x^{2}+y^{2}-4 x+2 y=b$ describes a circle.
Determine the y-coordinate of the center of the circle.

PARCC Released Question (EOY)

79 Part B

The equation $x^{2}+y^{2}-4 x+2 y=b$ describes a circle.
The radius of the circle is 7 units. What is the value of b in the equation?

PARCC Released Question (EOY)

80 The equation $x^{2}-8 x+y^{2}=9$ defines a circle in the $x y-$ coordinate plane. To find the radius of the circle, the equation can be rewritten as (\qquad $)^{2}+y^{2}=$ \qquad
$\square \mathrm{x}+4$
(Select two answers.)x-4
$\square x+16$
$\square \mathrm{x}-16$5

(Select two answers.)	$\square \mathrm{x}+4$	$\square 25$
	$\square \mathrm{x}-4$	$\square 13$
	$\square \mathrm{x}+16$	$\square 9$
	$\square \mathrm{x}-16$	$\square 5$

Topic: Partitions of a Line Segment
Line segment. JK in the coordinate plane has endpoints with coordinates ($-4,11$) and ($8,-1$). Graph $\overline{J K}$ and find two possible locations for point M so that M divides $\overline{J K}$ into two parts with lengths in a ratio of $1: 3$.
To graph a line segment, select segment $J K$ and then plot two points on the coordinate plane. A segment will connect the points. Select Point M and then plot the two points.

PARCC Released Question (EOY)

Question 6/7

Topic: Equation of a Circle

The equation $x^{2}+y^{2}-4 x+2 y=b$ describes a circle.

Part A
Determine the y-coordinate of the center of the circle.
Enter your answer in the box.

Part B
The radius of the circle is 7 units. What is the value of b in the equation?
Enter your answer in the box.
\square

PARCC Released Question (EOY)

Question 7/25

Topic: Equation of a Circle

The equation $x^{2}-8 x+y^{2}=9$ defines a circle in the $x y$-coordinate plane.
Select from the drop-down menus to correctly complete the sentence.
To find the center of the circle and the length of the radius, the equation can be rewritten as
($)^{2}+y^{2}=$
a. $x+4$
b. $x-4$
c. $x+16$
d. $x-16$

e. 25
f. 13
g. 9
h. 5

PARCC Released Question (EOY)

Point Q lies on $\overline{S T}$, where point S is located at $(-2,-6)$ and point T is located at $(5,8)$. If $S Q: Q T=5: 2$, where is point Q on $\overline{S T}$? Select a place on the coordinate grid to plot point Q.

PARCC Released Question (PBA)

		Slide $197 / 202$
General Problems		

Write the equation of a line, in slope-intercept form, which has a point of tangency at $(3,6)$ with a circle whose

Strategy

The slope of the radius of that circle to that point can be determined.

Then the slope of the line tangent at that point will be the negative reciprocal of the slope of the radius since they are perpendicular.

Given a point and the slope, the equation of the line can be written.

Write an equation of a line which has a point of tangency at $(3,6)$ with a circle whose center is at the origin.

Slide 200 / 202

Solution

$m_{\text {radius }}=(6-0) /(3-0)=2$
$m_{\text {tangent }}=-1 / 2$
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
$(y-6)=(1 / 2)(x-3)$
$y=0.5 x-1.5+6$
$y=0.5 x+4.5$
$b=0.5(0)+4.5$
b $=4.5$

81 What is the slope of a line tangent at $(7,2)$ to a circle whose center is at $(2,3)$?

82 What is the y-intercept of the line in the prior problem which was tangent at $(7,2)$ to a circle whose center is at $(2,3)$?

