1) What are the solutions to the equation $12x^2 = -300$?

A.
$$x = \pm 5$$

- **B.** $x = \pm 5i$
- **C.** $x = 5 \pm i$
- **D.** $x = -5 \pm i$

[Key: B]

2) What are the solutions to the equation $2x^2 + 3x + 9 = 0$?

A.
$$x = \frac{3}{4} \pm \frac{21}{4}i$$

B. $x = -\frac{3}{4} \pm \frac{21}{4}i$
C. $x = \frac{3}{4} \pm \frac{3i\sqrt{7}}{4}$
D. $x = -\frac{3}{4} \pm \frac{3i\sqrt{7}}{4}$

- 1) In which expression is the coefficient of the n term -1?
 - **A.** $3n^2 + 4n 1$ **B.** $-n^2 + 5n + 4$ **C.** $-2n^2 - n + 5$ **D.** $4n^2 + n - 5$

[Key: C]

- 2) Which expression is equivalent to $121x^4 64y^6$?
 - A. $(11x^2 16y^2)(11x^2 + 16y^2)$ B. $(11x^2 - 16y^3)(11x^2 - 16y^3)$ C. $(11x^2 + 8y^2)(11x^2 + 8y^2)$ D. $(11x^2 + 8y^3)(11x^2 - 8y^3)$

[Key: D]

- 3) The expression s^2 is used to calculate the area of a square, where s is the side length of the square. What does the expression $(8x)^2$ represent?
 - A. the area of a square with a side length of 8
 - **B.** the area of a square with a side length of 16
 - C. the area of a square with a side length of 4x
 - **D.** the area of a square with a side length of 8x

1) What are the zeros of the function represented by the quadratic expression $2x^2 + x - 3$?

A.
$$x = -\frac{3}{2}$$
 and $x = 1$
B. $x = -\frac{2}{3}$ and $x = 1$
C. $x = -1$ and $x = \frac{2}{3}$
D. $x = -1$ and $x = -\frac{3}{2}$

[Key: A]

- 2) What is the vertex of the graph of $f(x) = x^2 + 10x 9$?
 - **A.** (5, 66)
 - **B.** (5, −9)
 - **C.** (-5, -9)
 - **D.** (-5, -34)

[Key: D]

- 3) Which of the following is the result of completing the square for the expression $x^2 + 8x 30$?
 - **A.** $(x+4)^2 30$ **B.** $(x+4)^2 - 46$
 - **C.** $(x+8)^2 30$
 - **D.** $(x+8)^2 94$

- 4) The expression $-x^2 + 70x 600$ represents a company's profit for selling x items. For which number(s) of items sold is the company's profit equal to \$0?
 - **A.** 0 items
 - **B.** 35 items
 - C. 10 items and 60 items
 - D. 20 items and 30 items

- 1) A garden measuring 8 feet by 12 feet will have a walkway around it. The walkway has a uniform width, and the area covered by the garden and the walkway is 192 square feet. What is the width of the walkway?
 - A. 2 feet
 - **B.** 3.5 feet
 - C. 4 feet
 - **D.** 6 feet

[Key: A]

2) The formula for the surface area of a cone is $SA = \pi r^2 + \pi rs$. Which equation shows the formula in terms of s?

A.
$$s = \frac{SA}{\pi r} - \pi r^2$$

B. $s = \frac{SA}{\pi r} + \pi r^2$
C. $s = \frac{SA - \pi r^2}{\pi r}$
D. $s = \frac{SA + \pi r^2}{\pi r}$

3) Solve the equation $x^2 - 100 = 0$ by using square roots.

Solution:

Solve the equation using square roots.

$x^2 = 100$	Add 100 to both sides of the equation.
$x = \pm \sqrt{100}$	Take the square root of both sides of the equation.
$x = \pm 10$	Evaluate.

EOCT Practice Items

- 1) What are the solutions to the equation $2x^2 2x 12 = 0$?
 - A. x = -4, x = 3B. x = -3, x = 4C. x = -2, x = 3
 - **D.** x = -6, x = 2

[Key: C]

- 2) What are the solutions to the equation $4x^2 + 8x + 20 = 0$?
 - A. $x = 1 \pm 2i$ B. $x = -1 \pm 2i$ C. $x = 1 \pm i$ D. $x = -1 \pm i$

[Key: B]

3) What are the solutions to the equation $6x^2 - x - 40 = 0$?

A.
$$x = -\frac{8}{3}, x = -\frac{5}{2}$$

B. $x = -\frac{8}{3}, x = \frac{5}{2}$
C. $x = \frac{5}{2}, x = \frac{8}{3}$
D. $x = -\frac{5}{2}, x = \frac{8}{3}$

- 4) What are the solutions to the equation $x^2 5x = 14$?
 - A. x = -7, x = -2B. x = -14, x = -1C. x = -2, x = 7D. x = -1, x = 14

[Key: C]

5) An object is thrown in the air with an initial velocity of 5 m/s from a height of 9 m. The equation $h(t) = -4.9t^2 + 5t + 9$ models the height of the object in meters after t seconds.

How many seconds does it take for the object to hit the ground?

- A. 0.94 seconds
- **B.** 1.77 seconds
- C. 1.96 seconds
- **D.** 9.0 seconds

1) What are the solutions of this system of equations?

$$y = 5x^{2} + 7x - 6$$

 $y = 12x - 6$
A. (0, 6) and (1, -6)
B. (0, -6) and (1, -6)

- **C.** (0, -6) and (1, 6)
- **D.** (-6, 0) and (6, 1)

[Key: C]

2) What appear to be the solutions of the system of equations shown in the graph?

- A. (4, 6) and (3, 13)
- **B.** (-4, 6) and (3, 13)
- **C.** (-4, 13) and (3, 6)
- **D.** (-3, 13) and (4, 6)

$$\frac{f(b) - f(a)}{b - a} = \frac{627 - 18}{24 - 3} = \frac{609}{21} = 29$$

The average rate of change between 3 and 24 months is 29 thousand dollars (\$29,000) per month.

EOCT Practice Items

- 1) A flying disk is thrown into the air from a height of 25 feet at time t = 0. The function that models this situation is $h(t) = -16t^2 + 75t + 25$, where t is measured in seconds and h is the height in feet. What values of t best describe the times when the disk is flying in the air?
 - **A.** 0 < t < 5
 - **B.** 0 < t < 25
 - C. all real numbers
 - **D.** all positive integers

[Key: A]

2) Use this table to answer the question.

x	f(x)
-2	15
-1	9
0	5
1	3
2	3

What is the average rate of change of f(x) over the interval $-2 \le f(x) \le 0$?

- **A.** -10
- **B.** −5
- **C.** 5
- **D.** 10

3) What is the end behavior of the graph of $f(x) = -0.25x^2 - 2x + 1$?

- A. As x increases, f(x) increases. As x decreases, f(x) decreases.
- **B.** As x increases, f(x) decreases. As x decreases, f(x) decreases.
- C. As x increases, f(x) increases. As x decreases, f(x) increases.
- **D.** As x increases, f(x) decreases. As x decreases, f(x) increases.

Solution:

The minimum value of a quadratic function is the *y*-value of the vertex. The vertex of the graph of f(x) appears to be (2, -18). So, the minimum value is -18.

Find the vertex of the function $g(x) = 4x^2 + 6x - 18$.

To find the vertex of
$$g(x)$$
, use $\left(\frac{-b}{2a}, g\left(\frac{-b}{2a}\right)\right)$ with $a = 4$ and $b = 6$.

$$x = \frac{-b}{2a} = \frac{-(6)}{2(4)} = \frac{-6}{8} = -0.75$$

Substitute -0.75 for x in the original function g(x) to find g(-0.75): $g(x) = 4x^2 + 6x - 18$

$$g(x) = 4x + 6x - 18$$

$$g(-0.75) = 4(-0.75)^{2} + 6(-0.75) - 18$$

$$= 2.25 - 4.5 - 18$$

$$= -20.25$$

The minimum value of g(x) is -20.25. -20.25 < -18, so the function g(x) has the lesser minimum value.

EOCT Practice Items

1) Use this graph to answer the question.

Which function is shown in the graph?

A.
$$f(x) = x^2 - 3x - 10$$

B. $f(x) = x^2 + 3x - 10$

- **C.** $f(x) = x^2 + x 12$
- **D.** $f(x) = x^2 5x 8$

[Key: A]

2) The function $f(t) = -16t^2 + 64t + 5$ models the height of a ball that was hit into the air, where t is measured in seconds and h is the height in feet.

This table represents the height, g(t), of a second ball that was thrown into the air.

Time, <i>t</i> (in seconds)	Height, g(t) (in feet)
0	4
1	36
2	36
3	4

Which statement BEST compares the length of time each ball is in the air?

- A. The ball represented by f(t) is in the air for about 5 seconds, and the ball represented by g(t) is in the air for about 3 seconds.
- **B.** The ball represented by f(t) is in the air for about 3 seconds, and the ball represented by g(t) is in the air for about 5 seconds.
- C. The ball represented by f(t) is in the air for about 3 seconds, and the ball represented by g(t) is in the air for about 4 seconds.
- **D.** The ball represented by f(t) is in the air for about 4 seconds, and the ball represented by g(t) is in the air for about 3 seconds.

1) What explicit expression can be used to find the next term in this sequence?

```
2, 8, 18, 32, 50, ...
```

- **A.** 2*n* **B.** 2*n* + 6
- **C.** $2n^2$
- **D.** $2n^2 + 1$

[Key: C]

2) The function $s(t) = vt + h - 0.5at^2$ represents the height of an object, *s*, from the ground after time, *t*, when the object is thrown with an initial velocity of *v*, at an initial height of *h*, and where *a* is the acceleration due to gravity (32 feet per second squared).

A baseball player hits a baseball 4 feet above the ground with an initial velocity of 80 feet per second. About how long will it take the baseball to hit the ground?

- A. 2 seconds
- **B.** 3 seconds
- C. 4 seconds
- **D.** 5 seconds

[Key: D]

3) A café's annual income depends on x, the number of customers. The function $I(x) = 4x^2 - 20x$ describes the café's total annual income. The function $C(x) = 2x^2 + 5$ describes the total amount the café spends in a year. The café's annual profit, P(x), is the difference between the annual income and the amount spent in a year.

Which function describes P(x)?

A.
$$P(x) = 2x^2 - 20x - 5$$

B.
$$P(x) = 4x^3 - 20x^2$$

C.
$$P(x) = 6x^2 - 20x + 5$$

D. $P(x) = 8x^4 - 40x^3 - 20x^2 - 100x$

[Key: A]

1) Which statement BEST describes the graph of f(x + 6)?

- A. The graph of f(x) is shifted up 6 units.
- **B.** The graph of f(x) is shifted left 6 units.
- C. The graph of f(x) is shifted right 6 units.
- **D.** The graph of f(x) is shifted down 6 units.

[Key: B]

2) Which of these is an even function?

A.
$$f(x) = 5x^2 - x$$

B. $f(x) = 3x^3 + x$
C. $f(x) = 6x^2 - 8$
D. $f(x) = 4x^3 + 2x^2$

[Key: C]

- 3) Which statement BEST describes how the graph of $g(x) = -3x^2$ compares to the graph of $f(x) = x^2$?
 - A. The graph of g(x) is a vertical stretch of f(x) by a factor of 3.
 - **B.** The graph of g(x) is a reflection of f(x) across the *x*-axis.
 - C. The graph of g(x) is a vertical shrink of f(x) by a factor of $\frac{1}{3}$ and a reflection across the *x*-axis.
 - **D.** The graph of g(x) is a vertical stretch of f(x) by a factor of 3 and a reflection across the *x*-axis.

1) A table of values is shown for f(x) and g(x).

x	f(x)
0	0
1	1
2	4
3	9
4	16
5	25

x	g(x)
0	-2
1	-1
2	1
3	5
4	13
5	29

Which statement compares the graphs of f(x) and g(x) over the interval [0, 5]?

- A. The graph of f(x) always exceeds the graph of g(x) over the interval [0, 5].
- **B.** The graph of g(x) always exceeds the graph of f(x) over the interval [0, 5].
- C. The graph of g(x) exceeds the graph of f(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of f(x) exceeds the graph of g(x).
- **D.** The graph of f(x) exceeds the graph of g(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of g(x) exceeds the graph of f(x).

[Key: D]

2) Which statement is true about the graphs of exponential functions?

- **A.** The graphs of exponential functions never exceed the graphs of linear and quadratic functions.
- **B.** The graphs of exponential functions always exceed the graphs of linear and quadratic functions.
- **C.** The graphs of exponential functions eventually exceed the graphs of linear and quadratic functions.
- **D.** The graphs of exponential functions eventually exceed the graphs of linear functions, but not quadratic functions.

3) Which statement BEST describes the comparison of the function values for *f*(*x*) and *g*(*x*)?

x	f(x)	g(x)
0	0	-10
1	2	-9
2	4	-6
3	6	-1
4	8	6

- A. The values of f(x) will always exceed the values of g(x).
- **B.** The values of g(x) will always exceed the values of f(x).
- C. The values of f(x) exceed the values of g(x) over the interval [0, 5].
- **D.** The values of g(x) begin to exceed the values of f(x) within the interval [4, 5].

1) This scatter plot shows the height, in feet, of a ball launched in the air from an initial height of 3 feet, and the time the ball traveled in seconds.

Based on an estimated quadratic regression curve, which is the BEST estimate for the maximum height of the ball?

- A. 75 feet
- **B.** 85 feet
- **C.** 100 feet
- **D.** 120 feet

[Key: C]

- 2) The quadratic function $f(x) = -45x^2 + 350x + 1,590$ models the population of a city, where x is the number of years after 2005 and f(x) is the population of the city in thousands of people. What is the estimated population of the city in 2015?
 - A. 45,000
 - **B.** 77,000
 - **C.** 590,000
 - **D.** 670,000