1) Figure A'B'C'D'F' is a dilation of figure *ABCDF* by a scale factor of $\frac{1}{2}$. The dilation is centered at (-4, -1).

Which statement is true?

A.
$$\frac{AB}{A'B'} = \frac{B'C'}{BC}$$
B.
$$\frac{AB}{A'B'} = \frac{BC}{B'C'}$$
C.
$$\frac{AB}{A'B'} = \frac{BC}{D'F'}$$
D.
$$\frac{AB}{A'B'} = \frac{D'F'}{BC}$$

[Key: B]

2) Which transformation results in a figure that is similar to the original figure but has a greater area?

- A. a dilation of $\triangle QRS$ by a scale factor of 0.25
- **B.** a dilation of $\triangle QRS$ by a scale factor of 0.5
- **C.** a dilation of $\triangle QRS$ by a scale factor of 1
- **D.** a dilation of $\triangle QRS$ by a scale factor of 2

[Key: D]

3) In the coordinate plane, segment \overline{PQ} is the result of a dilation of segment \overline{XY} by a scale factor of $\frac{1}{2}$.

Which point is the center of dilation?

- **A.** (-4, 0)
- **B.** (0, -4)
- **C.** (0, 4)
- **D.** (4, 0)

[Key: A]

1) In the triangles shown, $\triangle ABC$ is dilated by a factor of $\frac{2}{3}$ to form $\triangle XYZ$.

Given that $m \angle A = 50^{\circ}$ and $m \angle B = 100^{\circ}$, what is $m \angle Z$?

- **A.** 15°
- **B.** 25°
- **C.** 30°
- **D.** 50°

[Key: C]

2) In the triangle shown, $\overleftarrow{GH} \parallel \overrightarrow{DF}$.

What is the length of \overline{GE} ?

- **A.** 2.0
- **B.** 4.5
- **C.** 7.5
- **D.** 8.0

[Key: B]

3) Use this triangle to answer the question.

This is a proof of the statement "If a line is parallel to one side of a triangle and intersects the other two sides at distinct points, then it separates these sides into segments of proportional lengths."

	Step	Justification
1	\overline{GK} is parallel to \overline{HJ}	Given
2	$\angle HGK \cong \angle IHJ$ $\angle IKG \cong \angle IJH$?
3	$\triangle GIK \sim \triangle HIJ$	AA similarity postulate
4	$\frac{IG}{IH} = \frac{IK}{IJ}$	Corresponding sides of similar triangles are proportional
5	$\frac{HG + IH}{IH} = \frac{JK + IJ}{IJ}$	Segment addition postulate
6	$\frac{HG}{IH} = \frac{JK}{IJ}$	Subtraction property

Which reason justifies Step 2?

- A. Alternate interior angles are congruent.
- **B.** Alternate exterior angles are congruent.
- C. Corresponding angles are congruent.
- **D.** Vertical angles are congruent.

[Key: C]

1) Parallelogram FGHJ was translated 3 units down to form parallelogram F'G'H'J'. Parallelogram F'G'H'J' was then rotated 90° counterclockwise about point G' to obtain parallelogram F''G''H''J''.

Which statement is true about parallelogram FGHJ and parallelogram F''G''H''J''?

- A. The figures are both similar and congruent.
- **B.** The figures are neither similar nor congruent.
- C. The figures are similar but not congruent.
- **D.** The figures are congruent but not similar.

[Key: A]

2) Consider the triangles shown.

Which can be used to prove the triangles are congruent?

- A. SSS
- **B.** ASA
- C. SAS
- **D.** AAS

[Key: D]

3) In this diagram, $\overline{DE} \cong \overline{JI}$ and $\angle D \cong \angle J$.

Which additional information is sufficient to prove that $\triangle DEF$ is congruent to $\triangle JIH$?

- **A.** $\overline{EF} \cong \overline{IH}$
- **B.** $\overline{DH} \cong \overline{JF}$
- **C.** $\overline{HG} \cong \overline{GI}$
- **D.** $\overline{HF} \cong \overline{JF}$

[Key: B]

1) In this diagram, \overline{CD} is the perpendicular bisector of \overline{AB} . The two-column proof shows that \overline{AC} is congruent to \overline{BC} .

Step	Statement	Justification
1	\overline{CD} is the perpendicular bisector of \overline{AB}	Given
2	$\overline{AD} \cong \overline{BD}$	Definition of bisector
3	$\overline{CD} \cong \overline{CD}$	Reflexive Property of Congruence
4	$\angle ADC$ and $\angle BDC$ are right angles	Definition of perpendicular lines
5	$\angle ADC \cong \angle BDC$	All right angles are congruent
6	$\triangle ADC \cong \triangle BDC$?
7	$\overline{AC} \cong \overline{BC}$	СРСТС

Which theorem would justify Step 6?

- A. AAS
- **B.** ASA
- C. SAS
- **D.** SSS

[Key: C]

2) In this diagram, STU is an isosceles triangle where \overline{ST} is congruent to \overline{UT} . The paragraph proof shows that $\angle S$ is congruent to $\angle U$.

It is given that \overline{ST} is congruent to \overline{UT} . Draw \overline{TV} that bisects $\angle T$. By the definition of an angle bisector, $\angle STV$ is congruent to $\angle UTV$. By the Reflexive Property, \overline{TV} is congruent to \overline{TV} . Triangle STV is congruent to triangle UTV by SAS. $\angle S$ is congruent to $\angle U$ by _____?

Which step is missing in the proof?

- A. CPCTC
- **B.** Reflexive Property of Congruence
- **C.** Definition of right angles
- **D.** Angle Congruence Postulate

[Key: A]

1) Consider the construction of the angle bisector shown.

Which could have been the first step in creating this construction?

- A. Place the compass point on point A and draw an arc inside $\angle Y$.
- **B.** Place the compass point on point *B* and draw an arc inside $\angle Y$.
- C. Place the compass point on vertex Y and draw an arc that intersects \overline{YX} and \overline{YZ} .
- **D.** Place the compass point on vertex *Y* and draw an arc that intersects point *C*.

[Key: C]

2) Consider the beginning of a construction of a square inscribed in circle *Q*.

Step 1: Label point *R* on circle *Q*.

Step 2: Draw a diameter through *R* and *Q*.

Step 3: Label the intersection on the circle point *T*.

What is the next step in this construction?

- **A.** Draw radius \overline{SQ} .
- **B.** Label point S on circle Q.
- **C.** Construct a line segment parallel to \overline{RT} .
- **D.** Construct the perpendicular bisector of \overline{RT} .

[Key: D]