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Analytic Geometry in Two
and Three Dimensions

8.1 Conic Sections and
Parabolas

8.2 Ellipses

8.3 Hyperbolas

8.4 Translation and
Rotation of Axes

8.5 Polar Equations of
Conics

8.6 Three-Dimensional
Cartesian
Coordinate System

C H A P T E R 8

The oval-shaped lawn behind the White House in
Washington, D.C. is called the Ellipse. It has views of the
Washington Monument, the Jefferson Memorial, the
Department of Commerce, and the Old Post Office Building.
The Ellipse is 616 ft long, 528 ft wide, and is in the shape of
a conic section. Its shape can be modeled using the methods
of this chapter. See page 652.
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Chapter 8 Overview
Analytic geometry combines number and form. It is the marriage of algebra and geom-
etry that grew from the works of Frenchmen René Descartes (1596–1650) and Pierre
de Fermat (1601–1665). Their achievements allowed geometry problems to be solved
algebraically and algebra problems to be solved geometrically—two major themes of
this book. Analytic geometry opened the door for Newton and Leibniz to develop cal-
culus.

In Sections 8.1–8.4, we will learn that parabolas, ellipses, and hyperbolas are all conic
sections and can all be expressed as second-degree equations. We will investigate their
uses, including the reflective properties of parabolas and ellipses and how hyperbolas
are used in long-range navigation. In Section 8.5, we will see how parabolas, ellipses,
and hyperbolas are unified in the polar-coordinate setting. In Section 8.6, we will move
from the two-dimensional plane to revisit the concepts of point, line, midpoint, dis-
tance, and vector in three-dimensional space.
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8.1
Conic Sections and Parabolas
What you’ll learn about
■ Conic Sections

■ Geometry of a Parabola

■ Translations of Parabolas

■ Reflective Property of a
Parabola

. . . and why
Conic sections are the paths of
nature: Any free-moving object
in a gravitational field follows
the path of a conic section.

Conic Sections
Imagine two nonperpendicular lines intersecting at a point V. If we fix one of the
lines as an axis and rotate the other line (the generator) around the axis, then the
generator sweeps out a with V, as illustrated in Figure 8.1.
Notice that V divides the cone into two parts called , with each nappe of the
cone resembling a pointed ice-cream cone.

FIGURE 8.1  A right circular cone (of two nappes).

A (or ) is a cross section of a cone, in other words, the intersection
of a plane with a right circular cone. The three basic conic sections are the parabola, the
ellipse, and the hyperbola (Figure 8.2a).

Some atypical conics, known as , are shown in Figure 8.2b.
Because it is atypical and lacks some of the features usually associated with an ellipse,

degenerate conic sections

conicconic section

Axis
Generator

Upper
nappe

Lower
nappe

V

nappes
vertexright circular cone

HISTORY OF CONIC SECTIONS

Parabolas, ellipses, and hyperbolas had
been studied for many years when
Apollonius (c. 262–190 B.C.) wrote his
eight-volume Conic Sections.
Apollonius, born in northwestern Asia
Minor, was the first to unify these
three curves as cross sections of a cone
and to view the hyperbola as having
two branches. Interest in conic sec-
tions was renewed in the 17th century
when Galileo proved that projectiles
follow parabolic paths and Johannes
Kepler (1571–1630) discovered that
planets travel in elliptical orbits.
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a circle is considered to be a degenerate ellipse. Other degenerate conic sections can be
obtained from cross sections of a degenerate cone; such cones occur when the genera-
tor and axis of the cone are parallel or perpendicular. (See Exercise 73.)
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Ellipse

(a)

(b)

Parabola Hyberbola

Point: plane through
cone's vertex only

Single line: plane
tangent to cone

Intersecting lines

FIGURE 8.2 (a) The three standard types of conic sections and (b) three degenerate conic
sections.

The conic sections can be defined algebraically as the graphs of 
, that is, equations of the form

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0,

where A, B, and C are not all zero.

(quadratic) equations in two variables
second-degree

OBJECTIVE

Students will be able to find the equation,
focus, and directrix of a parabola.

MOTIVATE

Ask students if all parabolas are similar
(in the geometric sense). (Yes)

LESSON GUIDE

Day 1: Conic Sections; Geometry of a
Parabola
Day 2: Translations of Parabolas;
Reflective Property of a Parabola

BIBLIOGRAPHY

For students: Practical Conic Sections,
J. W. Downs. Dale Seymour Publications,
1993.

Comet, Carl Sagan and Ann Druyan.
Ballentine Books, 1997.

For teachers: Astronomy: From the Earth
to the Universe (5th ed.),
J. M. Pasachoff. Saunders College
Publishing, 1998.

Multicultural and Gender Equity in the
Mathematics Classroom: The Gift of
Diversity (1997 Yearbook), Janet
Trentacosta (Ed.) National Council of
Teachers of Mathematics, 1997.

Posters:

Conic Sections. Dale Seymour
Publications

Locating Satellites in Elliptical Orbits,
National Council of Teachers of
Mathematics

TEACHING NOTES

You may wish to construct the nappe of a
cone by rolling up a piece of paper in
order to illustrate various conic sections
as cross sections of a cone.

Note that a circle is a special case of an
ellipse and thus considered a degenerate
conic.
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Geometry of a Parabola
In Section 2.1 we learned that the graph of a quadratic function is an upward or down-
ward opening parabola. We have seen the role of the parabola in free-fall and projec-
tile motion. We now investigate the geometric properties of parabolas.
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DEFINITION Parabola

A is the set of all points in a plane equidistant from a particular line (the
) and a particular point (the ) in the plane. (See Figure 8.3.)focusdirectrix

parabola

The line passing through the focus and perpendicular to the directrix is the (focal)
of the parabola. The axis is the line of symmetry for the parabola. The point where the
parabola intersects its axis is the of the parabola. The vertex is located midway
between the focus and the directrix and is the point of the parabola that is closest to
both the focus and the directrix. See Figure 8.3.   

vertex

axis

FIGURE 8.3 Structure of a Parabola. The distance from each point on the parabola to both
the focus and the directrix is the same.

Point on the parabola

Dist. to focus
Axis

Focus

Vertex

Directrix

Dist. to directrix

EXPLORATION 1 Understanding the Definition of Parabola

1. Prove that the vertex of the parabola with focus �0, 1� and directrix
y � �1 is �0, 0�. (See Figure 8.4.)

2. Find an equation for the parabola shown in Figure 8.4. x2 = 4y

3. Find the coordinates of the points of the parabola that are highlighted in
Figure 8.4.

A DEGENERATE PARABOLA

If the focus F lies on the directrix l, the
parabola “degenerates” to the line
through F perpendicular to l.
Henceforth, we will assume F does not
lie on l.

LOCUS OF A POINT

Before the word set was used in math-
ematics, the Latin word locus, meaning
“place,” was often used in geometric
definitions. The locus of a point was
the set of possible places a point could
be and still fit the conditions of the
definition. Sometimes, conics are still
defined in terms of loci.

TEACHING NOTE

Exercise 71 explains how Figure 8.3 was
created, and this exercise can be used
instead of (or in addition to) Exploration 1.

EXPLORATION EXTENSIONS

Find the y-coordinate for a point on the
parabola that is a distance of 25 units
from the focus. Ans. 24

y

x

(0, 1)

FIGURE 8.4 The geometry of a parabola.
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We can generalize the situation in Exploration 1 to show that an equation for the parab-
ola with focus �0, p� and directrix y � �p is x2 � 4py. (See Figure 8.5.)
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y

x

x2 = 4py

Directrix:  y = –p

Focus

(a)

F(0, p)

D(x, –p)
l

P(x, y)p

p

The vertex lies
halfway between

directrix and focus.

y

x

x2 = 4py

Directrix:  y = –p

Vertex at origin

(b)

F(0, p)

Focus

We must show first that a point P(x, y) that is equidistant from F(0, p) and the line
y � �p satisfies the equation x2 � 4py, and then that a point satisfying the equation
x2 � 4py is equidistant from F(0, p) and the line y � �p:

Let P(x, y) be equidistant from F(0, p) and the line y � �p. Notice that

��x� �� 0��2� �� ��y��� p��2� � distance from P�x, y� to F�0, p�, and

��x� �� x��2� �� ��y��� ����p����2� � distance from P�x, y� to y � �p.

Equating these distances and squaring yields:

�x � 0�2 � �y � p�2 � �x � x�2 � �y � ��p��2

x2 � �y � p�2 � 0 � �y � p�2 Simplify.

x2 � y2 � 2py � p2 � y2 � 2py � p2 Expand.

x2 � 4py Combine like terms.

By reversing the above steps, we see that a solution �x, y� of x2 � 4py is equidistant
from F�0, p� and the line y � �p.

The equation x2 � 4py is the of the equation of an upward or down-
ward opening parabola with vertex at the origin. If p � 0, the parabola opens upward; if
p � 0, it opens downward. An alternative algebraic form for such a parabola is y � ax2,
where a � 1��4p�. So the graph of x2 � 4py is also the graph of the quadratic function
f �x� � ax2.

When the equation of an upward or downward opening parabola is written as x2 � 4py,
the value p is interpreted as the of the parabola—the directed distance
from the vertex to the focus of the parabola. A line segment with endpoints on a parabola
is a of the parabola. The value �4p � is the of the parabola—the
length of the chord through the focus and perpendicular to the axis.

focal widthchord

focal length

standard form

FIGURE 8.5 Graphs of x2 � 4py with (a) p � 0 and (b) p � 0.

ALERT

Note that the standard form of the equa-
tion of an upward or downward opening
parabola is not the same as the standard
form of a quadratic function.

NAME GAME

Additional features of a parabola are
defined in Exercises 74–76. The focal
width is the length of the latus rectum.

5144_Demana_Ch08pp631-698  1/13/06  6:49 AM  Page 635



Parabolas that open to the right or to the left are inverse relations of upward or down-
ward opening parabolas. So equations of parabolas with vertex �0, 0� that open to the
right or to the left have the standard form y2 � 4px. If p � 0, the parabola opens to the
right, and if p � 0, to the left. (See Figure 8.6.)
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Parabolas with Vertex (0, 0)

• Standard equation x2 � 4py y2 � 4px

• Opens Upward or To the right or
downward to the left

• Focus �0, p� �p, 0�

• Directrix y � �p x � �p

• Axis y-axis x-axis

• Focal length p p

• Focal width �4p � �4p �

See Figures 8.5 and 8.6.

EXAMPLE 1 Finding the Focus, Directrix,
and Focal Width

Find the focus, the directrix, and the focal width of the parabola y � ��1�2�x2.

SOLUTION Multiplying both sides of the equation by �2 yields the standard form
x2 � �2y. The coefficient of y is 4p � �2, and p � �1�2. So the focus is �0, p� �
�0, �1�2�. Because �p � ���1�2� � 1�2, the directrix is the line y � 1�2. The
focal width is �4p � � ��2 � � 2.

Now try Exercise 1.

EXAMPLE 2 Finding an Equation of a Parabola
Find an equation in standard form for the parabola whose directrix is the line x � 2
and whose focus is the point ��2, 0�.

SOLUTION Because the directrix is x � 2 and the focus is ��2, 0�, the focal length
is p � �2 and the parabola opens to the left. The equation of the parabola in standard
form is y2 � 4px, or more specifically, y2 � �8x.

Now try Exercise 15.

Translations of Parabolas
When a parabola with the equation x2 � 4py or y2 � 4px is translated horizontally by
h units and vertically by k units, the vertex of the parabola moves from �0, 0� to �h, k�.
(See Figure 8.7.) Such a translation does not change the focal length, the focal width,
or the direction the parabola opens.  

y

x

y2 = 4px
Directrix:

x = –p

Vertex

(a)

Focus

F(p, 0)O

y

x

y2 = 4px
Directrix:

x = –p

Vertex

(b)

Focus

F(p, 0) O

FIGURE 8.6 Graph of y2 � 4px
with (a) p � 0 and (b) p � 0.

NOTES ON EXAMPLES

When solving a problem such as Example
2, students should be strongly encouraged
to draw a sketch of the given information.
You  may wish to draw a sketch for the
students to model this behavior.
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EXAMPLE 3 Finding an Equation of a Parabola
Find the standard form of the equation for the parabola with vertex (3, 4) and focus
(5, 4).

SOLUTION The axis of the parabola is the line passing through the vertex �3, 4�
and the focus �5, 4�. This is the line y � 4. So the equation has the form

�y � k�2 � 4p�x � h�.

Because the vertex �h, k� � �3, 4�, h � 3 and k � 4. The directed distance from the
vertex �3, 4� to the focus �5, 4� is p � 5 � 3 � 2, so 4p � 8. Thus the equation we
seek is

�y � 4�2 � 8�x � 3�.

Now try Exercise 21.
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y

x

(a)

(h, k + p)

(h, k)

y

x

(b)

(h + p, k)

(h, k)

FIGURE 8.7 Parabolas with vertex �h, k� and focus on (a) x � h and (b) y � k.

Parabolas with Vertex (h, k)

• Standard equation �x � h�2 � 4p�y � k� �y � k�2 � 4p�x � h�

• Opens Upward or To the right or 
downward to the left

• Focus �h, k � p� �h � p, k�

• Directrix y � k � p x � h � p

• Axis x � h y � k

• Focal length p p

• Focal width �4p � �4p �

See Figure 8.7.

TEACHING NOTE

Students should be able to relate the trans-
formations of parabolas (and other conic
sections) to the transformations that were
studied beginning in Section 1.5.
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When solving a problem like Example 3, it is a good idea to sketch the vertex, the
focus, and other features of the parabola as we solve the problem. This makes it easy
to see whether the axis of the parabola is horizontal or vertical and the relative posi-
tions of its features. Exploration 2 “walks us through” this process.
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EXPLORATION 2 Building a Parabola

Carry out the following steps using a sheet of rectangular graph paper.

1. Let the focus F of a parabola be �2, �2� and its directrix be y � 4. Draw
the x- and y-axes on the graph paper. Then sketch and label the focus and
directrix of the parabola.

2. Locate, sketch, and label the axis of the parabola. What is the equation of
the axis?

3. Locate and plot the vertex V of the parabola. Label it by name and coordi-
nates.

4. What are the focal length and focal width of the parabola?

5. Use the focal width to locate, plot, and label the endpoints of a chord of
the parabola that parallels the directrix.

6. Sketch the parabola.

7. Which direction does it open? downward

8. What is its equation in standard form? (x � 2)2 � �12(y � 1)

Sometimes it is best to sketch a parabola by hand, as in Exploration 2; this helps us see
the structure and relationships of the parabola and its features. At other times, we may
want or need an accurate, active graph. If we wish to graph a parabola using a function
grapher, we need to solve the equation of the parabola for y, as illustrated in Example 4.

EXAMPLE 4 Graphing a Parabola
Use a function grapher to graph the parabola �y � 4�2 � 8�x � 3� of Example 3.

SOLUTION

�y � 4�2 � 8�x � 3�

y � 4 � ��8��x� �� 3��� Extract square roots.

y � 4 � �8��x� �� 3��� Add 4.

Let Y1 � 4 � �8��x� �� 3��� and Y2 � 4 � �8��x� �� 3���, and graph the two equations in
a window centered at the vertex, as shown in Figure 8.8.

Now try Exercise 45.

EXPLORATION EXTENSIONS

Check your work by using a grapher to
graph the equation you found in step 8.
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FIGURE 8.8 The graphs of Y1 � 4 � �8 (x �� 3)� and Y2 � 4 � �8 (x �� 3)�
together form the graph of �y � 4�2 � 8�x � 3�. (Example 4)

EXAMPLE 5 Using Standard Forms with a Parabola
Prove that the graph of y2 � 6x � 2y � 13 � 0 is a parabola, and find its vertex,
focus, and directrix.

SOLUTION Because this equation is quadratic in the variable y, we complete the
square with respect to y to obtain a standard form.

y2 � 6x � 2y � 13 � 0

y2 � 2y � 6x � 13              Isolate the y-terms.

y2 � 2y � 1 � 6x � 13 � 1       Complete the square.

�y � 1�2 � 6x � 12

�y � 1�2 � 6�x � 2�

This equation is in the standard form �y � k�2 � 4p�x � h�, where h � 2, k � �1,
and p � 6�4 � 3�2 � 1.5. It follows that

• the vertex �h, k� is �2, �1�;

• the focus �h � p, k� is �3.5, �1�, or �7�2, �1�;

• the directrix x � h � p is x � 0.5, or x � 1�2.

Now try Exercise 49.

Reflective Property of a Parabola
The main applications of parabolas involve their use as reflectors of sound, light, radio
waves, and other electromagnetic waves. If we rotate a parabola in three-dimensional
space about its axis, the parabola sweeps out a . If we place
a signal source at the focus of a reflective paraboloid, the signal reflects off the surface
in lines parallel to the axis of symmetry, as illustrated in Figure 8.9a. This property is
used by flashlights, headlights, searchlights, microwave relays, and satellite up-links.

The principle works for signals traveling in the reverse direction as well; signals arriving
parallel to a parabolic reflector’s axis are directed toward the reflector’s focus. This prop-
erty is used to intensify signals picked up by radio telescopes and television satellite dish-
es, to focus arriving light in reflecting telescopes, to concentrate heat in solar ovens, and
to magnify sound for sideline microphones at football games. See Figure 8.9b.

paraboloid of revolution

[–1, 7] by [–2, 10]

SECTION 8.1 Conic Sections and Parabolas 639

CLOSING THE GAP

In Figure 8.8, we centered the graph-
ing window at the vertex (3, 4) of the
parabola to ensure that this point
would be plotted. This avoids the com-
mon grapher error of a gap between
the two upper and lower parts of the
conic section being plotted.

SEARCHLIGHT

Outgoing

rays of lig
ht

 Filament
(light source)
 at focus

(a)

RADIO TELESCOPE

Incoming radio signals

concentrate at focus

Parabolic radio
wave reflector

(b)

FIGURE 8.9 Examples of parabolic
reflectors.
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EXAMPLE 6 Studying a Parabolic Microphone
On the sidelines of each of its televised football games, the FBTV network uses a par-
abolic reflector with a microphone at the reflector’s focus to capture the conversations
among players on the field. If the parabolic reflector is 3 ft across and 1 ft deep, where
should the microphone be placed?

SOLUTION

We draw a cross section of the reflector as an upward opening parabola in the
Cartesian plane, placing its vertex V at the origin (see Figure 8.10). We let the focus
F have coordinates �0, p� to yield the equation

x2 � 4py.

Because the reflector is 3 ft across and 1 ft deep, the points ��1.5, 1� must lie on the
parabola. The microphone should be placed at the focus, so we need to find the value
of p. We do this by substituting the values we found into the equation:

x � 4py

(�1.5)2 � 4p(1)

2.25 � 4p

p � 2.25�4 � 0.5625

Because p � 0.5625 ft, or 6.75 inches, the microphone should be placed inside the
reflector along its axis and 6.75 inches from its vertex.

Now try Exercise 59.
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FOLLOW-UP

Ask students to explain why parabolic
mirrors are used in flashlights.

ASSIGNMENT GUIDE

Day 1: Ex. 1, 5–19 odds, 31–32, 37, 40, 57
Day 2: Ex. 3, 21–54 multiples of 3, 59, 61

COOPERATIVE LEARNING

Group Activity: Ex. 63–64

NOTES ON EXERCISES

Ex. 59–64 are applications of parabolas.
Ex. 65–70 provide practice for standard-
ized tests.
Ex. 74–76 are quite challenging and could
be used for a group project.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 15, 21, 45, 49, 59
Embedded Assessment: Ex. 57–58

y

x
V(0, 0)

F(0, p)
(–1.5, 1) (1.5, 1)

FIGURE 8.10 Cross section of
parabolic reflector in Example 6.

QUICK REVIEW 8.1 (For help, go to Sections P.2, P.5, and 2.1.)

In Exercises 1 and 2, find the distance between the given points.

1. ��1, 3� and �2, 5� �1�3� 2. �2, �3� and �a, b�

In Exercises 3 and 4, solve for y in terms of x.

3. 2y2 � 8x y � �2�x� 4. 3y2 � 15x y � ��5�x�

In Exercises 5 and 6, complete the square to rewrite the equation in
vertex form.

5. y � �x2 � 2x � 7 6. y � 2x2 � 6x � 5

In Exercises 7 and 8, find the vertex and axis of the graph of f.
Describe how the graph of f can be obtained from the graph of
g(x) � x2, and graph f.

7. f �x� � 3�x � 1�2 � 5 8. f �x� � �2x2 � 12x � 1

In Exercises 9 and 10, write an equation for the quadratic function
whose graph contains the given vertex and point.

9. Vertex ��1, 3�, point �0, 1�   f(x) � �2(x � 1)2 � 3

10. Vertex �2, �5�, point �5, 13�   f(x) � 2(x � 2)2 � 5
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SECTION 8.1 EXERCISES

In Exercises 1–6, find the vertex, focus, directrix, and focal width of
the parabola.

1. x2 � 6y 2. y2 � �8x

3. �y � 2�2 � 4�x � 3� 4. �x � 4�2 � �6�y � 1�
5. 3x2 � �4y 6. 5y2 � 16x

In Exercises 7–10, match the graph with its equation.

7. x2 � 3y (c) 8. x2 � �4y (b)

9. y2 � �5x (a) 10. y2 � 10x (d)

In Exercises 11–30, find an equation in standard form for the parabola
that satisfies the given conditions.

11. Vertex (0, 0), focus (�3, 0)  y2 � �12x

12. Vertex (0, 0), focus (0, 2)  x2 � 8y

13. Vertex (0, 0), directrix y � 4  x2 � �16y

14. Vertex (0, 0), directrix x � �2  y2 � 8x

15. Focus (0, 5), directrix y � �5  x2 � 20y

16. Focus (�4, 0), directrix x � 4  y2 � �16x

17. Vertex (0, 0), opens to the right, focal width � 8  y2 � 8x

18. Vertex (0, 0), opens to the left, focal width �12  y2 � �12x

19. Vertex (0, 0), opens downward, focal width � 6  x2 � �6y

20. Vertex (0, 0), opens upward, focal width � 3  x2 � 3y

21. Focus (�2, �4), vertex (�4, �4) (y � 4)2 � 8(x � 4)

22. Focus (�5, 3), vertex (�5, 6)  (x � 5)2 � �12(y � 6)

23. Focus (3, 4), directrix y � 1  (x � 3)2 � 6(y � 5/2)

24. Focus (2, �3), directrix x � 5(y � 3)2 � �6(x � 7/2)

25. Vertex (4, 3), directrix x � 6  (y � 3)2 � �8(x � 4)

y

x

(d)

y

x

(c)

y

x

(b)

y

x

(a)

26. Vertex (3, 5), directrix y � 7  (x � 3)2 � �8(y � 5)

27. Vertex (2, �1), opens upward, focal width � 16

28. Vertex (�3, 3), opens downward, focal width � 20

29. Vertex (�1, �4), opens to the left, focal width � 10

30. Vertex (2, 3), opens to the right, focal width � 5

In Exercises 31–36, sketch the graph of the parabola by hand.

31. y2 � �4x 32. x2 � 8y

33. �x � 4�2 � �12�y � 1� 34. �y � 2�2 � �16�x � 3�
35. �y � 1�2 � 8�x � 3� 36. �x � 5�2 � 20�y � 2�

In Exercises 37–48, graph the parabola using a function grapher.

37. y � 4x2 38. y � � 	
1
6

	 x2

39. x � �8y2 40. x � 2y2

41. 12�y � 1� � �x � 3�2 42. 6�y � 3� � �x � 1�2

43. 2 � y � 16�x � 3�2 44. �x � 4�2 � �6�y � 1�
45. (y � 3)2 � 12(x � 2) 46. (y � 1)2 � �4(x � 5)

47. (y � 2)2 � �8(x � 1) 48. (y � 6)2 � 16(x � 4)

In Exercises 49–52, prove that the graph of the equation is a parabola,
and find its vertex, focus, and directrix.

49. x2 � 2x � y � 3 � 0 50. 3x2 � 6x � 6y � 10 � 0

51. y2 � 4y � 8x � 20 � 0 52. y2 � 2y � 4x � 12 � 0

In Exercises 53–56, write an equation for the parabola.

53. 54.

55. 56.

57. Writing to Learn Explain why the derivation of x2 � 4py is
valid regardless of whether p � 0 or p � 0.

58. Writing to Learn Prove that an equation for the parabola with
focus (p, 0) and directrix x � �p is y2 � 4px.

y

(–1, 3)
(3, 5)

y

x

(0, –2)
(2, –1)

y

x
(1, –3)

(5.5, 0)

y

x
(–6, –4)

(0, 2)
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59. Designing a Flashlight Mirror The mirror of a flashlight is a
paraboloid of revolution. Its diameter is 6 cm and its depth is 2 cm.
How far from the vertex should the filament of the light bulb be
placed for the flashlight to have its beam run parallel to the axis
of its mirror?

60. Designing a Satellite Dish The reflector of a television
satellite dish is a paraboloid of revolution with diameter 5 ft and a
depth of 2 ft. How far from the vertex should the receiving
antenna be placed?

61. Parabolic Microphones The
Sports Channel uses a parabolic
microphone to capture all the
sounds from golf tournaments
throughout a season. If one of its
microphones has a parabolic sur-
face generated by the parabola 
x2 � 10y, locate the focus (the
electronic receiver) of the
parabola.

62. Parabolic Headlights Stein Glass, Inc., makes parabolic
headlights for a variety of automobiles. If one of its headlights
has a parabolic surface generated by the parabola x2 � 12y, where
should its light bulb be placed?

63. Group Activity Designing a Suspension Bridge The
main cables of a suspension bridge uniformly distribute the
weight of the bridge when in the form of a parabola. The main
cables of a particular bridge are attached to towers that are 600 ft
apart. The cables are attached to the towers at a height of 110 ft
above the roadway and are 10 ft above the roadway at their lowest
points. If vertical support cables are at 50-ft intervals along the
level roadway, what are the lengths of these vertical cables?

600 ft

110 ft
50 ft

5 ft

2 ft

6 cm

2 cm

64. Group Activity Designing a Bridge Arch Parabolic arches
are known to have greater strength than other arches. A bridge
with a supporting parabolic arch spans 60 ft with a 30-ft wide
road passing underneath the bridge. In order to have a minimum
clearance of 16 ft, what is the maximum clearance?

The maximum clearance is about 21.33 feet.

Standardized Test Questions
65. True or False Every point on a parabola is the same distance

from its focus and its axis. Justify your answer.

66. True or False The directrix of a parabola is parallel to the
parabola’s axis. Justify your answer.

In Exercises 67–70, solve the problem without using a calculator.

67. Multiple Choice Which of the following curves is not a conic
section? D

(A) circle

(B) ellipse

(C) hyperbola

(D) oval

(E) parabola

68. Multiple Choice Which point do all conics of the form
x2 � 4py have in common? D

(A) (1, 1)

(B) (1, 0)

(C) (0, 1)

(D) (0, 0)

(E) (�1, �1)

69. Multiple Choice The focus of y2 � 12x is B

(A) (3, 3).

(B) (3, 0).

(C) (0, 3).

(D) (0, 0).

(E) (�3, �3).

60 ft

30 ft

642 CHAPTER 8 Analytic Geometry in Two and Three Dimensions
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70. Multiple Choice The vertex of (y � 3)2 � �8(x � 2) is D

(A) (3, �2).

(B) (�3, �2).

(C) (�3, 2).

(D) (�2, 3).

(E) (�2, �3).

Explorations
71. Dynamically Constructing a Parabola Use a geometry

software package, such as Cabri Geometry II ™, The Geometer’s
Sketchpad®, or similar application on a handheld device to
construct a parabola geometrically from its definition. (See
Figure 8.3.)

(a) Start by placing a line l (directrix) and a point F (focus) not on
the line in the construction window.

(b) Construct a point A on the directrix, and then the 
segment AF.

(c) Construct a point P where the perpendicular bisector of AAF
meets the line perpendicular to l through A. 

(d) What curve does P trace out as A moves? parabola

(e) Prove your answer to part (d) is correct.

72. Constructing Points of a Parabola Use a geometry soft-
ware package, such as Cabri Geometry II ™, The Geometer’s
Sketchpad®, or similar application on a handheld device, to con-
struct Figure 8.4, associated with Exploration 1.

(a) Start by placing the coordinate axes in the construction
window.

(b) Construct the line y � �1 as the directrix and the point �0, 1�
as the focus.

(c) Construct the horizontal lines and concentric circles shown in
Figure 8.4. 

(d) Construct the points where these horizontal lines and concen-
tric circles meet.

(e) Prove these points lie on the parabola with directrix y � �1
and focus �0, 1�.

73. Degenerate Cones and Degenerate Conics Degenerate
cones occur when the generator and axis of the cone are parallel
or perpendicular.

(a) Draw a sketch and describe the “cone” obtained when the gen-
erator and axis of the cone are parallel.

(b) Draw sketches and name the types of degenerate conics
obtained by intersecting the degenerate cone in part (a) with a
plane.

(c) Draw a sketch and describe the “cone” obtained when the gen-
erator and axis of the cone are perpendicular.

(d) Draw sketches and name the types of degenerate conics
obtained by intersecting the degenerate cone in part (c) with a
plane.

Extending the Ideas
74. Tangent Lines A of a parabola is a line that

intersects but does not cross the parabola. Prove that a line tangent
to the parabola x2 � 4py at the point �a, b� crosses the y-axis at
�0, �b�.

75. Focal Chords A of a parabola is a chord of the
parabola that passes through the focus. 

(a) Prove that the x-coordinates of the endpoints of a focal chord
of x2 � 4py are x � 2p�m � �m�2��� 1��, where m is the slope
of the focal chord.

(b) Using part (a), prove the minimum length of a focal chord is
the focal width �4p �.

76. Latus Rectum The focal chord of a parabola perpendicular to
the axis of the parabola is the , which is Latin for
“right chord.” Using the results from Exercises 74 and 75, prove:

(a) For a parabola the two endpoints of the latus rectum and the
point of intersection of the axis and directrix are the vertices
of an isosceles right triangle.

(b) The legs of this isosceles right triangle are tangent to the
parabola.

latus rectum

focal chord

tangent line

SECTION 8.1 Conic Sections and Parabolas 643
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644 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

8.2
Ellipses
What you’ll learn about
■ Geometry of an Ellipse

■ Translations of Ellipses

■ Orbits and Eccentricity

■ Reflective Property of an
Ellipse

. . . and why
Ellipses are the paths of plan-
ets and comets around the Sun,
or of moons around planets.

Geometry of an Ellipse
When a plane intersects one nappe of a right circular cylinder and forms a simple
closed curve, the curve is an ellipse.

Figure 8.12 shows a point P�x, y� of an ellipse. The fixed points F1 and F2 are the foci
of the ellipse, and the distances whose sum is constant are d1 and d2. We can construct
an ellipse using a pencil, a loop of string, and two pushpins. Put the loop around the
two pins placed at F1 and F2, pull the string taut with a pencil point P, and move the
pencil around to trace out the ellipse (Figure 8.13).

We now use the definition to derive an equation for an ellipse. For some constants a
and c with a � c 
 0, let F1��c, 0� and F2�c, 0� be the foci (Figure 8.14). Then an
ellipse is defined by the set of points P�x, y� such that

PF1 � PF2 � 2a.

Using the distance formula, the equation becomes

��x� �� c��2� �� ��y��� 0��2� � ��x� �� c��2� �� ��y��� 0��2� � 2a.

��x� �� c��2� �� y�2� � 2a � ��x� �� c��2� �� y�2�

x2 � 2cx � c2 � y2 � 4a2 � 4a��x� �� c��2� �� y�2� � x2 � 2cx � c2 � y2

a��x� �� c��2� �� y�2� � a2 � cx   Simplify.

a2�x2 � 2cx � c2 � y2� � a4 � 2a2cx � c2x2 Square.

�a2 � c2�x2 � a2y2 � a2�a2 � c2� Simplify.

Letting b2 � a2 � c2, we have

b2x2 � a2y2 � a2b2,

which is usually written as

	
a
x2

2	 � 	
b
y2

2	 � 1.

DEFINITION Ellipse

An is the set of all points in a plane whose distances from two fixed points
in the plane have a constant sum. The fixed points are the (plural of focus) of
the ellipse. The line through the foci is the . The point on the focal axis
midway between the foci is the . The points where the ellipse intersects its
axis are the of the ellipse. (See Figure 8.11.)vertices

center
focal axis

foci
ellipse

FIGURE 8.11  Key points on the focal
axis of an ellipse.

Vertex Focus Center

Focal axis

Focus Vertex

OBJECTIVE

Students will be able to find the equation,
vertices, and foci of an ellipse.

y

x
F1 F2

d2

d1

P

d1 + d2 = constant

FIGURE 8.12  Structure of an Ellipse. The
sum of the distances from the foci to each point
on the ellipse is a constant.

Square.
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MOTIVATE

Ask students how the graph of 
x2 � (y/2)2 � 1 is related to the graph of
x2 � y2 � 1.

Because these steps can be reversed, a point P�x, y� satisfies this last equation if
and only if the point lies on the ellipse defined by PF1 � PF2 � 2a, provided that
a � c 
 0 and b2 � a2 � c2. The Pythagorean relation b2 � a2 � c2 can be written
many ways, including c2 � a2 � b2 and a2 � b2 � c2.

The equation x2�a2 � y2�b2 � 1 is the of the equation of an ellipse
centered at the origin with the x-axis as its focal axis. An ellipse centered at the ori-
gin with the y-axis as its focal axis is the inverse of x2�a2 � y2�b2 � 1, and thus has
an equation of the form

	
a
y2

2	 � 	
x
b2

2

	 � 1.

As with circles and parabolas, a line segment with endpoints on an ellipse 
is a of the ellipse. The chord lying on the focal axis is the of the
ellipse. The chord through the center perpendicular to the focal axis is the 
of the ellipse. The length of the major axis is 2a, and of the minor axis is 2b. The num-
ber a is the , and b is the .semiminor axissemimajor axis

minor axis
major axischord

standard form

FIGURE 8.13  How to draw an ellipse.

F1 F2

P(x, y)

FIGURE 8.14  The ellipse defined by
PF1 � PF2 � 2a is the graph of the
equation x2�a2 � y2�b2 � 1, where
b2 � a2 � c2.

y

x
Center

Focus Focus
F1(–c, 0) F2(c, 0)O

b

a

P(x, y)

AXIS ALERT

For an ellipse, the word axis is used
in several ways. The focal axis is a
line. The major and minor axes are
line segments. The semimajor and
semiminor axes are numbers.

Ellipses with Center (0, 0)

• Standard equation 	
a
x2

2	 � 	
b
y2

2	 � 1 	
a
y2

2	 � 	
b
x2

2	 � 1

• Focal axis x-axis y-axis

• Foci ��c, 0� �0, �c�

• Vertices ��a, 0� �0, �a�

• Semimajor axis a a

• Semiminor axis b b

• Pythagorean relation a2 � b2 � c2 a2 � b2 � c2

See Figure 8.15.

FIGURE 8.15  Ellipses centered at the origin with foci on (a) the x-axis and (b) the y-axis. 
In each case, a right triangle illustrating the Pythagorean relation is shown.

y

x
b

c
a

(b)

(b, 0)(–b, 0)

(0, c)

(0, a)

(0, –c)

(0, –a)

y

x

b

c

a

(a)

(c, 0) (a, 0)(–c, 0)(–a, 0)

(0, b)

(0, –b)
LESSON GUIDE

Day 1: Geometry of an Ellipse;
Translations of Ellipses
Day 2: Orbits and Eccentricity; Reflective
Property of an Ellipse
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646 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 1 Finding the Vertices and Foci of an Ellipse
Find the vertices and the foci of the ellipse 4x2 � 9y2 � 36.

SOLUTION Dividing both sides of the equation by 36 yields the standard form
x2�9 � y2�4 � 1. Because the larger number is the denominator of x2, the focal axis
is the x-axis. So a2 � 9, b2 � 4, and c2 � a2 � b2 � 9 � 4 � 5. Thus the vertices are
��3, 0�, and the foci are ���5�, 0�. Now try Exercise 1.

An ellipse centered at the origin with its focal axis on a coordinate axis is symmetric
with respect to the origin and both coordinate axes. Such an ellipse can be sketched
by first drawing a guiding rectangle centered at the origin with sides parallel to the
coordinate axes and then sketching the ellipse inside the rectangle, as shown in the
Drawing Lesson.

Drawing Lesson

How to Sketch the Ellipse x2/a2 � y2/b2 � 1 

1. Sketch line segments at
x � �a and y � �b and 
complete the rectangle 
they determine.

2. Inscribe an ellipse that is 
tangent to the rectangle at 
(�a, 0) and (0, �b).

y

x

b

–b

a–a

y

x

b

–b

a–a

NOTES ON EXAMPLES

Notice that we chose square viewing win-
dows in Figure 8.16. A nonsquare window
would give a distorted view of an ellipse.

If we wish to graph an ellipse using a function grapher, we need to solve the equation
of the ellipse for y, as illustrated in Example 2.

EXAMPLE 2 Finding an Equation and Graphing 
an Ellipse

Find an equation of the ellipse with foci (0, �3) and (0, 3) whose minor axis has
length 4. Sketch the ellipse and support your sketch with a grapher.

SOLUTION The center is �0, 0�. The foci are on the y-axis with c � 3. The semi-
minor axis is b � 4 �2 � 2. Using a2 � b2 � c2, we have a2 � 22 � 32 � 13. So the
standard form of the equation for the ellipse is

	
1
y
3

2

	 � 	
x
4

2

	 � 1.

Using a � �1�3� � 3.61 and b � 2, we can sketch a guiding rectangle and then the
ellipse itself, as explained in the Drawing Lesson. (Try doing this.) To graph the
ellipse using a function grapher, we solve for y in terms of x.

	
1
y
3

2

	 � 1 � 	
x
4

2

	

y2 � 13�1 � x2�4�

y � ��1�3��1� �� x�2��4��� continued
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Figure 8.16 shows three views of the graphs of

Y1 � �1�3��1� �� x�2��4��� and Y2 � ��1�3��1� �� x�2��4���.

We must select the viewing window carefully to avoid grapher failure.

Now try Exercise 17.

FIGURE 8.16  Three views of the ellipse y2�13 � x2�4 � 1. All of the windows are square or approximately square viewing win-
dows so we can see the true shape. Notice that the gaps between the upper and lower function branches do not show when the grapher
window includes columns of pixels whose x-coordinates are � 2 as in (b) and (c). (Example 2)

[–9.4, 9.4] by [–6.2, 6.2]

(c)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–6, 6] by [–4, 4]

(a)

Translations of Ellipses
When an ellipse with center �0, 0� is translated horizontally by h units and vertically by
k units, the center of the ellipse moves from �0, 0� to �h, k�, as shown in Figure 8.17.
Such a translation does not change the length of the major or minor axis or the
Pythagorean relation.

Ellipses with Center (h, k)

• Standard
equation

	
�x �

a2
h�2

	 � 	
�y �

b2
k�2
	 � 1 	

�y �

a2
k�2

	 � 	
�x �

b2
h�2

	 � 1

• Focal axis y � k x � h

• Foci �h � c, k� �h, k � c�

• Vertices �h � a, k� �h, k � a�

• Semimajor a a
axis

• Semiminor b b
axis

• Pythagorean a2 � b2 � c2 a2 � b2 � c2

relation

See Figure 8.17.
FIGURE 8.17  Ellipses with center �h, k�
and foci on (a) y � k and (b) x � h.

y

x

(b)

(h, k)

(h, k + a)

(h, k – c)

(h, k + c)

(h, k – a)

y

x

(a)

(h – a, k)

(h – c, k)

(h, k)

(h + c, k)

(h + a, k)
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648 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 3 Finding an Equation of an Ellipse
Find the standard form of the equation for the ellipse whose major axis has endpoints
��2, �1� and �8, �1�, and whose minor axis has length 8.

SOLUTION Figure 8.18 shows the major-axis endpoints, the minor axis, and the
center of the ellipse. The standard equation of this ellipse has the form

�
(x �

a2

h)2
� � �

(y �

b2

k)2
� � 1,

where the center �h, k� is the midpoint �3, �1� of the major axis. The semimajor axis
and semiminor axis are

a � �
8 �

2
��2�
� � 5 and b � �

8
2

� � 4.

So the equation we seek is

�
(x �

52

3)2
� � �

(y �

4
(�

2

1))2
� � 1,

�
�x �

25
3�2

� � �
�y �

16
1�2

� � 1.

Now try Exercise 31.

EXAMPLE 4 Locating Key Points of an Ellipse
Find the center, vertices, and foci of the ellipse

�
�x �

9
2�2

� � �
�y �

49
5�2

� � 1.

SOLUTION The standard equation of this ellipse has the form

�
�y �

49
5�2

� � �
�x �

9
2�2

� � 1.

The center �h, k� is ��2, 5�. Because the semimajor axis a � �4�9� � 7, the vertices
�h, k � a� are

�h, k � a� � ��2, 5 � 7� � ��2, 12� and

�h, k � a� � ��2, 5 � 7� � ��2, �2�.
Because 

c � �a2 � b�2� � �49 � 9� � �40�

the foci �h, k � c� are ��2, 5 � �4�0��, or approximately ��2, 11.32� and 
��2, �1.32�. Now try Exercise 37.

With the information found about the ellipse in Example 4 and knowing that its semi-
minor axis b � �9� � 3, we could easily sketch the ellipse. Obtaining an accurate
graph of the ellipse using a function grapher is another matter. Generally, the best way
to graph an ellipse using a graphing utility is to use parametric equations.

FIGURE 8.18  Given information for
Example 3.

y

x

(–2, –1) (8, –1)8

6

10

NOTES ON EXAMPLES

When solving a problem such as Example
3, students should be strongly encouraged
to draw a sketch of the given information.
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Orbits and Eccentricity
Kepler’s first law of planetary motion, published in 1609, states that the path of a
planet’s orbit is an ellipse with the Sun at one of the foci. Asteroids, comets, and other
bodies that orbit the Sun follow elliptical paths. The closest point to the Sun in such an
orbit is the perihelion, and the farthest point is the aphelion (Figure 8.19). The shape of
an ellipse is related to its eccentricity.

EXPLORATION EXTENSIONS

Give an equation in standard form for the
ellipse defined by the parametric equa-
tions x � �3 � cos t, y � 4 � 5 sin t,
0 � t � 2�.

EXPLORATION 1 Graphing an Ellipse Using Its 
Parametric Equations

1. Use the Pythagorean trigonometry identity cos2 t � sin2 t � 1 to prove that
the parameterization x � �2 � 3 cos t, y � 5 � 7 sin t, 0 � t � 2� will
produce a graph of the ellipse �x � 2�2�9 � �y � 5�2�49 � 1.

2. Graph x � �2 � 3 cos t, y � 5 � 7 sin t, 0 � t � 2� in a square viewing
window to support part 1 graphically.

3. Create parameterizations for the ellipses in Examples 1, 2, and 3.

4. Graph each of your parameterizations in part 3 and check the features of the
obtained graph to see whether they match the expected geometric features of
the ellipse. Revise your parameterization and regraph until all features match.

5. Prove that each of your parameterizations is valid.

Center

Sun at
focus

Semimajor axis a

Orbiting
object

a – c a + c

Perihelion

Aphelion

FIGURE 8.19  Many celestial objects have elliptical orbits around the Sun.
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650 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

The noun eccentricity comes from the adjective eccentric, which means off-center.
Mathematically, the eccentricity is the ratio of c to a. The larger c is, compared to a,
the more off-center the foci are. 

In any ellipse, a � c 
 0. Dividing this inequality by a shows that 0 � e � 1. So the
eccentricity of an ellipse is between 0 and 1.

Ellipses with highly off-center foci are elongated and have eccentricities close to 1; for
example, the orbit of Halley’s comet has eccentricity e � 0.97. Ellipses with foci near
the center are almost circular and have eccentricities close to 0; for instance, Venus’s
orbit has an eccentricity of 0.0068.

What happens when the eccentricity e � 0? In an ellipse, because a is positive, e �
c�a � 0 implies that c � 0 and thus a � b. In this case, the ellipse degenerates into a
circle. Because the ellipse is a circle when a � b, it is customary to denote this com-
mon value as r and call it the radius of the circle.

Surprising things happen when an ellipse is nearly but not quite a circle, as in the orbit
of our planet, Earth.

EXAMPLE 5 Analyzing Earth’s Orbit
Earth’s orbit has a semimajor axis a � 149.598 Gm (gigameters) and an eccentrici-
ty of e � 0.0167. Calculate and interpret b and c.

SOLUTION Because e � c�a, c � ea � 0.0167 � 149.598 � 2.4982866 and

b � �a�2��� c�2� � �1�4�9�.5�9�8�2��� 2�.4�9�8�2�8�6�6�2� � 149.577.

The semiminor axis b � 149.577 Gm is only 0.014% shorter than the semimajor axis
a � 149.598 Gm. The aphelion distance of Earth from the Sun is a � c � 149.598 �

2.498 � 152.096 Gm, and the perihelion distance is a � c � 149.598 � 2.498 �

147.100 Gm.

Thus Earth’s orbit is nearly a perfect circle, but the distance between the center of the
Sun at one focus and the center of Earth’s orbit is c � 2.498 Gm, more than 2 orders
of magnitude greater than a � b. The eccentricity as a percentage is 1.67%; this 
measures how far off-center the Sun is.

Now try Exercise 53.

A NEW e

Try not to confuse the eccentricity e
with the natural base e used in expo-
nential and logarithmic functions. The
context should clarify which meaning
is intended.

FOLLOW-UP

Ask your students if they agree or dis-
agree with the following statement: “The
sound you hear in a whispering gallery
should be muddy, because the sound
waves will take varying lengths of time to
travel from one focus to the other,
depending on where they reflect off the
wall.” (Disagree)

ASSIGNMENT GUIDE

Day 1: Ex. 3–42, multiples of 3
Day 2: Ex. 19, 31, 37, 41, 47, 52, 53,
55, 58

COOPERATIVE LEARNING

Group Activity: Ex. 61–63

NOTES ON EXERCISES

Ex. 21–36 and 49–50 require students to
find equations of ellipses.
Ex. 52–60 are application problems
involving astronomy or lithotripters.
Ex. 65–70 provide practice for standard-
ized tests.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 17, 31, 37, 53, 59
Embedded Assessment: Ex. 51, 52, 60

DEFINITION Eccentricity of an Ellipse

The of an ellipse is

e � 	
a
c

	 � 	
�a�2

a
��� b�2�
	,

where a is the semimajor axis, b is the semiminor axis, and c is the distance from
the center of the ellipse to either focus.

eccentricity
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EXPLORATION 2 Constructing Ellipses to Understand Eccentricity

Each group will need a pencil, a centimeter ruler, scissors, some string, several
sheets of unlined paper, two pushpins, and a foam board or other appropriate
backing material.

1. Make a closed loop of string that is 20 cm in circumference.

2. Place a sheet of unlined paper on the backing material, and carefully place
the two pushpins 2 cm apart near the center of the paper. Construct an
ellipse using the loop of string and a pencil as shown in Figure 8.13.
Measure and record the resulting values of a, b, and c for the ellipse, and
compute the ratios e � c�a and b�a for the ellipse.

3. On separate sheets of paper repeat step 2 three more times, placing the
pushpins 4, 6, and 8 cm apart. Record the values of a, b, c and the ratios e
and b�a for each ellipse.

4. Write your observations about the ratio b�a as the eccentricity ratio e
increases. Which of these two ratios measures the shape of the ellipse?
Which measures how off-center the foci are?

5. Plot the ordered pairs (e, b�a), determine a formula for the ratio b�a as a
function of the eccentricity e, and overlay this function’s graph on the
scatter plot.

EXPLORATION EXTENSIONS

Determine how far apart the pushpins
would need to be for the ellipse to have a
b/a ratio of 1/2. Draw this ellipse.

NOTE ON EXPLORATION

Have students work in groups on
Exploration 2. To save time and trouble,
make a 20-cm closed loop of string for
each group in advance. Results will vary
from group to group.

Reflective Property of an Ellipse
Because of their shape, ellipses are used to make reflectors of sound, light, and other
waves. If we rotate an ellipse in three-dimensional space about its focal axis, the
ellipse sweeps out an . If we place a signal source at one focus
of a reflective ellipsoid, the signal reflects off the elliptical surface to the other focus,
as illustrated in Figure 8.20. This property is used to make mirrors for optical equip-
ment and to study aircraft noise in wind tunnels.

ellipsoid of revolution

FIGURE 8.20 The reflective property of an ellipse.

F2F1

WHISPERING GALLERIES

In architecture, ceilings in the shape of
an ellipsoid are used to create whis-
pering galleries. A person whispering
at one focus can be heard across the
room by a person at the other focus.
An ellipsoid is part of the design of the
Texas state capitol; a hand clap made
in the center of the main vestibule (at
one focus of the ellipsoid) bounces off
the inner elliptical dome, passes
through the other focus, bounces off
the dome a second time, and returns
to the person as a distinct echo.
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Ellipsoids are used in health care to avoid surgery in the treatment of kidney stones.
An elliptical lithotripter emits underwater ultrahigh-frequency (UHF) shock waves
from one focus, with the patient’s kidney carefully positioned at the other focus
(Figure 8.21).

EXAMPLE 6 Focusing a Lithotripter
The ellipse used to generate the ellipsoid of a lithotripter has a major axis of 12 ft
and a minor axis of 5 ft. How far from the center are the foci?

SOLUTION From the given information, we know a � 12�2 � 6 and 
b � 5�2 � 2.5. So 

c � �a�2��� b�2� � �6�2��� 2�.5�2� � 5.4544.

So the foci are about 5 ft 5.5 inches from the center of the lithotripter.

Now try Exercise 59.

FIGURE 8.21  How a lithotripter breaks up kidney stones.

y

(0, 0)

F2

F1

Kidney
Stone

Source

Patient’s
kidney
stone

Source of
UHF shock
waves

CHAPTER OPENER PROBLEM
(from page 631)

PROBLEM: If the Ellipse at the White House is 616 ft long and 528 ft wide,
what is its equation?
SOLUTION: For simplicity’s sake, we model the Ellipse as centered at �0, 0� with
the x-axis as its focal axis. Because the Ellipse is 616 ft long, a � 616�2 � 308,
and because the Ellipse is 528 ft wide, b � 528�2 � 264. Using x2�a2 � y2�b2 � 1,
we obtain

	
30

x2

82	 � 	
2
y
6

2

42	 � 1,

	
94

x
,8

2

64
	 � 	

69
y
,6

2

96
	 � 1.

Other models are possible.

The Ellipse
616 ft

528 ft

White House
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QUICK REVIEW 8.2 (For help, go to Sections P.2 and P.5.)

In Exercises 1 and 2, find the distance between the given points.

1. ��3, �2� and �2, 4� �61�

2. ��3, �4� and �a, b� �(a � 3�)2 � (b� � 4)2�

In Exercises 3 and 4, solve for y in terms of x.

3. 	
y
9

2
	 � 	

x
4

2
	 � 1 4. 	

3
x
6

2

	 � 	
2
y
5

2
	 � 1

In Exercises 5–8, solve for x algebraically.

5. �3�x��� 1�2� � �3�x��� 8� � 10 x � 8

6. �6�x��� 1�2� � �4�x��� 9� � 1 x � 4

7. �6�x�2��� 1�2� � �6�x�2��� 1� � 11 x � 2, x � �2

8. �2x2 ��8� � �3x2 ��4� � 8    x � 2, x � �2

In Exercises 9 and 10, find exact solutions by completing 
the square.

9. 2x2 � 6x � 3 � 0 10. 2x2 � 4x � 5 � 0

SECTION 8.2 EXERCISES

In Exercises 1–6, find the vertices and foci of the ellipse.

1. 	
1
x
6

2
	 � 	

y
7

2

	 � 1 2. 	
2
y
5

2

	 � 	
2
x
1

2

	 � 1

3. 	
3
y
6

2

	 � 	
2
x
7

2

	 � 1 4. 	
1
x
1

2

	 � 	
y
7

2

	 = 1

5. 3x2 � 4y2 � 12 6. 9x2 � 4y2 � 36

In Exercises 7–10, match the graph with its equation, given that the
ticks on all axes are 1 unit apart.

7. 	
2
x
5

2

	 � 	
1
y
6

2

	 � 1 (d) 8. 	
3
y
6

2

	 � 	
x
9

2

	 � 1 (c)

9. 	
�y �

16
2�2

	 � 	
�x �

4
3�2

	 � 1 10. 	
�x �

11
1�2

	 � �y � 2�2 � 1

y

x

(d)

y

x

(c)

y

x

(b)

y

x

(a)

In Exercises 11–16, sketch the graph of the ellipse by hand.

11. 	
6
x
4

2

	 � 	
3
y
6

2

	 � 1 12. 	
8
x
1

2

	 � 	
2
y
5

2

	 � 1

13. 	
y
9

2

	 � 	
x
4

2

	 � 1 14. 	
4
y
9

2

	 � 	
2
x
5

2

	 � 1

15. 	
�x �

16
3�2

	 � 	
�y �

4
1�2

	 � 1 16. 	
�x �

2
1�2

	 � 	
�y �

4
3�2

	 � 1

In Exercises 17–20, graph the ellipse using a function grapher.

17. 	
3
x2

6
	 � 	

1
y2

6
	 � 1 18. 	

6
y
4

2

	 � 	
1
x
6

2

	 � 1

19. 	
�x �

5
2�2

	 � 2�y � 1�2 � 1 20. 	
�x �

16
4�2

	 � 16�y � 4�2 � 8

In Exercises 21–36, find an equation in standard form for the ellipse
that satisfies the given conditions.

21. Major axis length 6 on y-axis, minor axis length 4

22. Major axis length 14 on x-axis, minor axis length 10

23. Foci ��2, 0�, major axis length 10 x2/25 � y2/21 � 1

24. Foci �0, �3�, major axis length 10 y2/25 � x2/16 � 1

25. Endpoints of axes are ��4, 0� and �0, �5�
26. Endpoints of axes are ��7, 0� and �0, �4�
27. Major axis endpoints �0, �6�, minor axis length 8

28. Major axis endpoints ��5, 0�, minor axis length 4

29. Minor axis endpoints �0, �4�, major axis length 10

30. Minor axis endpoints ��12, 0�, major axis length 26

31. Major axis endpoints �1, �4� and �1, 8�, minor axis length 8
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32. Major axis endpoints are ��2, �3� and ��2, 7�, minor axis 
length 4 (y � 2)2/25 � (x � 2)2/4 � 1

33. The foci are �1, �4� and �5, �4�; the major axis endpoints are
�0, �4� and �6, �4�. (x � 3)2/9 � (y � 4)2/5 � 1

34. The foci are ��2, 1� and ��2, 5�; the major axis endpoints are
��2, �1� and ��2, 7�. (y � 3)2/16 � (x � 2)2/12 � 1

35. The major axis endpoints are �3, �7� and �3, 3�; the minor axis
length is 6. (y � 2)2/25 � (x � 3)2/9 � 1

36. The major axis endpoints are ��5, 2� and �3, 2�; the minor axis
length is 6. (x � 1)2/16 � (y � 2)2/9 � 1

In Exercises 37–40, find the center, vertices, and foci of the ellipse.

37. � � 1 38. 	
(x �

11
3)2

	 � 	
(y �

7
5)2

	 � 1

39. 	
(y �

81
3)2

	 � 	
(x

6
�

4
7)2

	 � 1 40. 	
(y �

25
1)2

	 � 	
(x �

16
2)2

	 � 1

In Exercises 41–44, graph the ellipse using a parametric grapher.

41. 	
2
y
5

2

	 � � 1 42. � � 1

43. 	
�x �

12
3�2

	 � 	
�y �

5
6�2

	 � 1 44. 	
�y �

15
1�2

	 � 	
�x �

6
2�2

	 � 1

In Exercises 45–48, prove that the graph of the equation is an ellipse,
and find its vertices, foci, and eccentricity.

45. 9x2 � 4y2 � 18x � 8y � 23 � 0

46. 3x2 � 5y2 � 12x � 30y � 42 � 0

47. 9x2 � 16y2 � 54x � 32y � 47 � 0

48. 4x2 � y2 � 32x � 16y � 124 � 0

In Exercises 49 and 50, write an equation for the ellipse.

49. 50.

51. Writing to Learn Prove that an equation for the ellipse with
center �0, 0�, foci �0, �c�, and semimajor axis a � c 
 0 is
y2�a2 � x2�b2 � 1, where b2 � a2 � c2. 
[Hint: Refer to derivation at the beginning of the section.]

52. Writing to Learn Dancing Planets Using the data in
Table 8.1, prove that the planet with the most eccentric orbit
sometimes is closer to the Sun than the planet with the least
eccentric orbit.

y

(0, 2)
(�4, 2)

(�4, 5)

x

y

(2, 6)

(2, 3)
(6, 3)

x

y2

	
20

x2

	
30

x2

	
4

(y � 2)2

	
16

(x � 1)2

	
25

53. The Moon’s Orbit The Moon’s apogee (farthest distance from
Earth) is 252,710 miles, and perigee (closest distance to Earth) is
221,463 miles. Assuming the Moon’s orbit of Earth is elliptical
with Earth at one focus, calculate and interpret a, b, c, and e.

54. Hot Mercury Given that the diameter of the Sun is 
about 1.392 Gm, how close does Mercury get to the Sun’s 
surface? � 45.3 Gm

55. Saturn Find the perihelion and aphelion distances of 
Saturn.  � 1347 Gm, � 1507 Gm

56. Venus and Mars Write equations for the orbits of Venus and
Mars in the form x2�a2 � y2�b2 � 1.

57. Sungrazers One comet group, known as the sungrazers, passes
within a Sun’s diameter (1.392 Gm) of the solar surface. What can
you conclude about a � c for orbits of the sungrazers? a � c �

1.5(1.392) � 2.088

58. Halley’s Comet The orbit of Halley’s comet is 36.18 AU long
and 9.12 AU wide. What is its eccentricity? � 0.97

59. Lithotripter For an ellipse that generates the ellipsoid of a
lithotripter, the major axis has endpoints (�8, 0) and (8, 0). One
endpoint of the minor axis is (0, 3.5). Find the coordinates of the
foci. (��51.75�, 0) � (�7.19, 0)

60. Lithotripter (Refer to Figure 8.21.) A lithotripter’s shape is
formed by rotating the portion of an ellipse below its minor axis
about its major axis. If the length of the major axis is 26 in. and
the length of the minor axis is 10 in., where should the shock-
wave source and the patient be placed for maximum effect?

Group Activities In Exercises 61 and 62, solve the system of equa-
tions algebraically and support your answer graphically.

61. 	
x

4

2

	 � 	
y

9

2

	 � 1 62. 	
x

9

2

	 � y2 � 1

x2 � y2 � 4 x � 3y � �3 
(�2, 0), (2, 0) (�3, 0), (0, 1)

Table 8.1 Semimajor Axes and 
Eccentricities of the Planets

Planet Semimajor Axis (Gm) Eccentricity

Mercury 57.9 0.2056
Venus 108.2 0.0068
Earth 149.6 0.0167
Mars 227.9 0.0934
Jupiter 778.3 0.0485
Saturn 1427 0.0560
Uranus 2869 0.0461
Neptune 4497 0.0050
Pluto 5900 0.2484

Source:  Shupe, et al., National Geographic Atlas of the
World (rev. 6th ed.). Washington, DC: National
Geographic Society, 1992, plate 116, and other sources.
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63. Group Activity Consider the system of equations

x2 � 4y2 � 4

y � 2x2 � 3

(a) Solve the system graphically.

(b) If you have access to a grapher that also does symbolic alge-
bra, use it to find the exact solutions to the system.

64. Writing to Learn Look up the adjective eccentric in a diction-
ary and read its various definitions. Notice that the word is
derived from ex-centric, meaning “out-of-center” or “off-center.”
Explain how this is related to the word’s everyday meanings as
well as its mathematical meaning for ellipses.

Standardized Test Questions
65. True or False The distance from a focus of an ellipse to the

closer vertex is a(1�e), where a is the semimajor axis and e is the
eccentricity. Justify your answer.

66. True or False The distance from a focus of an ellipse to either
endpoint of the minor axis is half the length of the major axis.
Justify your answer.

In Exercises 67–70, you may use a graphing calculator to solve the
problem.

67. Multiple Choice One focus of x2 � 4y2 � 4 is C

(A) (4, 0). (B) (2, 0).

(C) (�3�, 0). (D) (�2�, 0).

(E) (1, 0).

68. Multiple Choice The focal axis of � � 1 
is C

(A) y � 1. (B) y � 2.

(C) y � 3. (D) y � 4.

(E) y � 5.

69. Multiple Choice The center of 
9x2 � 4y2 � 72x � 24y � 144 � 0 is B

(A) (4, 2). (B) (4, 3).

(C) (4, 4). (D) (4, 5).

(E) (4, 6).

70. Multiple Choice The perimeter of a triangle with one vertex on
the ellipse x2�a2 � y2�b2 � 1 and the other two vertices at the foci
of the ellipse would be C

(A) a �b. (B) 2a � 2b.

(C) 2a � 2c. (D) 2b � 2c.

(E) a � b � c.

(y � 3)2

	
16

(x � 2)2

	
25

Explorations
71. Area and Perimeter The area of an ellipse is A � �ab, but 

the perimeter cannot be expressed so simply:

P � ��a � b� (3 � )
(a) Prove that, when a � b � r, these become the familiar formu-

las for the area and perimeter (circumference) of a circle.
(b) Find a pair of ellipses such that the one with greater area has

smaller perimeter.  Answers will vary.

72. Writing to Learn Kepler’s Laws We have encountered 
Kepler’s First and Third Laws (p. 193). Using a library 
or the Internet,

(a) Read about Kepler’s life, and write in your own words how he
came to discover his three laws of planetary motion.  Answers
will vary.

(b) What is Kepler’s Second Law? Explain it with both pictures
and words. Explanations and drawings will vary.

73. Pendulum Velocity vs. Position As a pendulum swings
toward and away from a motion detector, its distance (in meters)
from the detector is given by the position function x(t) � 3 �
cos(2t � 5), where t represents time (in seconds). The velocity (in
m/sec) of the pendulum is given by y(t) � �2 sin (2t � 5),

(a) Using parametric mode on your grapher, plot the (x, y) relation
for velocity versus position for 0 � t � 2�

(b) Write the equation of the resulting conic in standard form, in
terms of x and y, and eliminating the parameter t.

74. Pendulum Velocity vs. Position A pendulum that swings
toward and away from a motion detector has a distance (in feet)
from the detector of x(t) � 5 � 3 sin(�t � ��2) and a velocity
(in ft/sec) of y(t) � 3� cos(�t � ��2), where t represents time
(in seconds). 

(a) Prove that the plot of velocity versus position (distance) is an
ellipse.

(b) Writing to Learn Describe the motion of the pendulum.

Extending the Ideas
75. Prove that a nondegenerate graph of the equation

Ax2 � Cy2 � Dx � Ey � F � 0

is an ellipse if AC � 0.

76. Writing to Learn The graph of the equation

	
(x �

a2
h)2

	 � 	
(y �

b2
k)2

	 � 0

is considered to be a degenerate ellipse. Describe the graph.
How is it like a full-fledged ellipse, and how is it different?

��3�a� �� b����a� �� 3�b���
			

a � b

SECTION 8.2 Ellipses 655
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656 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

8.3
Hyperbolas
What you’ll learn about
■ Geometry of a Hyperbola

■ Translations of Hyperbolas

■ Eccentricity and Orbits

■ Reflective Property of a
Hyperbola

■ Long-Range Navigation

. . . and why
The hyperbola is the least
known conic section, yet it is
used in astronomy, optics, and
navigation.

Geometry of a Hyperbola
When a plane intersects both nappes of a right circular cylinder, the intersection is a
hyperbola. The definition, features, and derivation for a hyperbola closely resemble
those for an ellipse. As you read on, you may find it helpful to compare the nature of
the hyperbola with the nature of the ellipse.

Figure 8.23 shows a hyperbola centered at the origin with its focal axis on the x-axis.
The vertices are at (�a, 0) and (a, 0), where a is some positive constant. The fixed
points F1(�c, 0) and F2(c, 0) are the foci of the hyperbola, with c � a.

Notice that the hyperbola has two branches. For a point P(x, y) on the right-hand
branch, PF1 � PF2 � 2a. On the left-hand branch, PF2 � PF1 � 2a. Combining these
two equations gives us

PF1 � PF2 � �2a.

Using the distance formula, the equation becomes

��x� �� c��2� �� ��y��� 0��2� � ��x� �� c��2� �� ��y��� 0��2� � �2a.

��x� �� c��2� �� y�2� � �2a � ��x� �� c��2� �� y�2�

x2 � 2cx � c2 � y2 � 4a2 � 4a�(x � c�)2 � y2� � x2 � 2cx � c2 � y2

a��x� �� c�)2� �� y�2� � a2 � cx Simplify.

a2�x2 � 2cx � c2 � y2� � a4 � 2a2cx � c2x2 Square.

�c2 � a2)x2 � a2y2 � a2�c2 � a2� Simplify.

Letting b2 � c2 � a2, we have

b2x2 � a2y2 � a2b2,

which is usually written as

	
a
x2

2	 � 	
b
y2

2	 � 1.

DEFINITION Hyperbola

A hyperbola is the set of all points in a plane whose distances from two fixed
points in the plane have a constant difference. The fixed points are the of the
hyperbola. The line through the foci is the . The point on the focal axis
midway between the foci is the . The points where the hyperbola intersects
its focal axis are the of the hyperbola. (See Figure 8.22.)vertices

center
focal axis

foci

FIGURE 8.23  Structure of a Hyperbola.
The difference of the distances from the
foci to each point on the hyperbola is a
constant.

FIGURE 8.22  Key points on the
focal axis of a hyperbola.

VertexFocus

Center

Focal axis

FocusVertex

y

x
F1(–c, 0) F2(c, 0)O

P(x, y)

x = ax = –a Square.
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Because these steps can be reversed, a point P�x, y� satisfies this last equation if and
only if the point lies on the hyperbola defined by PF1 � PF2 � �2a, provided that
c � a � 0 and b2 � c2 � a2. The Pythagorean relation b2 � c2 � a2 can be written
many ways, including a2 � c2 � b2 and c2 � a2 � b2.

The equation x2�a2 � y2�b2 � 1 is the of the equation of a hyperbola
centered at the origin with the x-axis as its focal axis. A hyperbola centered at the ori-
gin with the y-axis as its focal axis is the inverse relation of x2�a2 � y2�b2 � 1, and
thus has an equation of the form

	
a
y2

2	 � 	
b
x2

2	 � 1.

As with other conics, a line segment with endpoints on a hyperbola is a of the
hyperbola. The chord lying on the focal axis connecting the vertices is the 
of the hyperbola. The length of the transverse axis is 2a. The line segment of length 2b that
is perpendicular to the focal axis and that has the center of the hyperbola as its midpoint is
the of the hyperbola. The number a is the , and b is
the .

The hyperbola

	
a
x2

2	 � 	
b
y2

2	 � 1

has two asymptotes. These asymptotes are slant lines that can be found by replacing the
1 on the right-hand side of the hyperbola’s equation by a 0:

	
a
x2

2	 � 	
b
y2

2	 � 1 y 	
a
x2

2	 � 	
b
y2

2	 � 0 y y � �	
b
a

	 x

hyperbola Replace 1 by 0. asymptotes

A hyperbola centered at the origin with its focal axis one of the coordinate axes is sym-
metric with respect to the origin and both coordinate axes. Such a hyperbola can be
sketched by drawing a rectangle centered at the origin with sides parallel to the coordi-
nate axes, followed by drawing the asymptotes through opposite corners of the rectangle,
and finally sketching the hyperbola using the central rectangle and asymptotes as guides,
as shown in the Drawing Lesson.

semiconjugate axis
semitransverse axisconjugate axis

transverse axis
chord

standard form

OBJECTIVE
Students will be able to find the equation,
vertices, and foci of a hyperbola.

MOTIVATE

Have students use a graphing utility to
graph y � �2�x2 � 1� and describe the
graph.

LESSON GUIDE

Day 1: Geometry of a Hyperbola;
Translations of Hyperbolas
Day 2: Eccentricity and Orbits; Reflective
Property of a Hyperbola; Long-Range
Navigation

NAMING AXES

The word “transverse” comes from the
Latin trans vertere: to go across. The
transverse axis “goes across” from one
vertex to the other. The conjugate axis
is the transverse axis for the conjugate
hyperbola, defined in Exercise 73. � � �

Drawing Lesson 

How to Sketch the Hyperbola x2/a2 � y2/b2 � 1

1. Sketch line segments at x � �a    
and y � �b, and complete the 
rectangle they determine. 

2. Sketch the asymptotes by 
extending the rectangle’s 
diagonals.

3. Use the rectangle and asymptotes 
to guide your drawing.

y

x–a a

–b

b

y

x–a a

–b

b
y = – xb

a
y = xb

a

y

x–a a

–b

b = 1–x2

a2
y2

b2
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EXAMPLE 1 Finding the Vertices and Foci
of a Hyperbola

Find the vertices and the foci of the hyperbola 4x2 � 9y2 � 36.

SOLUTION Dividing both sides of the equation by 36 yields the standard form
x2�9 � y2�4 � 1. So a2 � 9, b2 � 4, and c2 � a2 � b2 � 9 � 4 � 13. Thus the ver-
tices are ��3, 0�, and the foci are ���1�3�, 0�. Now try Exercise 1.

If we wish to graph a hyperbola using a function grapher, we need to solve the equation
of the hyperbola for y, as illustrated in Example 2.

EXAMPLE 2 Finding an Equation and Graphing 
a Hyperbola

Find an equation of the hyperbola with foci �0, �3� and �0, 3� whose conjugate axis has
length 4. Sketch the hyperbola and its asymptotes, and support your sketch with a grapher.

SOLUTION The center is �0, 0�. The foci are on the y-axis with c � 3. The semi-
conjugate axis is b � 4�2 � 2. Thus a2 � c2 � b2 � 32 � 22 � 5. So the standard
form of the equation for the hyperbola is

	
y
5

2

	 � 	
x
4

2

	 � 1.

Using a � �5� � 2.24 and b � 2, we can sketch the central rectangle, the asymptotes,
and the hyperbola itself. Try doing this. To graph the hyperbola using a function gra-
pher, we solve for y in terms of x.

	
y
5

2

	 � 1 � 	
x
4

2

	 Add 	
x
4

2
	.

y2 � 5�1 � x2�4� Multiply by 5.

y � ��5��1� �� x�2��4��� Extract square roots.

Figure 8.25 shows the graphs of

y1 � �5��1� �� x�2��4��� and y2 � ��5��1� �� x�2��4���,
together with the asymptotes of the hyperbola

y3 � 	
�

2
5�

	 x and y4 � �	
�

2
5�

	 x. Now try Exercise 17.

Hyperbolas with Center (0, 0)

• Standard equation 	
a
x2

2	 � 	
b
y2

2	 � 1 	
a
y2

2	 � 	
b
x2

2	 � 1

• Focal axis x-axis y-axis

• Foci ��c, 0� �0, �c�
• Vertices ��a, 0� �0, �a�
• Semitransverse axis a a

• Semiconjugate axis b b

• Pythagorean relation c2 � a2 � b2 c2 � a2 � b2

• Asymptotes y � �	
b
a

	 x y � �	
a
b

	 x

See Figure 8.24.

FIGURE 8.24 Hyperbolas centered at the 
origin with foci on (a) the x-axis and (b) the 
y-axis.

y

x

(a)

(a, 0)(–a, 0)(–c, 0) (c, 0)

y = xb
a

y = – xb
a

= 1–x2

a2
y2

b2

y

x

(b)

y = xa
b

y = – xa
b

= 1–y2

a2
x2

b2

(0, c)

(0, a)

(0, –a)

(0, –c)

FIGURE 8.25  The hyperbola 
y2�5 � x2�4 � 1, shown with its
asymptotes. (Example 2)

[–9.4, 9.4] by [–6.2, 6.2]
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SECTION 8.3 Hyperbolas 659

In Example 2, because the hyperbola had a vertical focal axis, selecting a viewing rec-
tangle was easy. When a hyperbola has a horizontal focal axis, we try to select a view-
ing window to include the two vertices in the plot and thus avoid gaps in the graph of
the hyperbola.

Translations of Hyperbolas
When a hyperbola with center �0, 0� is translated horizontally by h units and verti-
cally by k units, the center of the hyperbola moves from �0, 0� to �h, k�, as shown in
Figure 8.26. Such a translation does not change the length of the transverse or conju-
gate axis or the Pythagorean relation.

EXAMPLE 3 Finding an Equation of a Hyperbola
Find the standard form of the equation for the hyperbola whose transverse axis has
endpoints ��2, �1� and �8, �1�, and whose conjugate axis has length 8.

SOLUTION Figure 8.27 shows the transverse-axis endpoints, the conjugate axis,
and the center of the hyperbola. The standard equation of this hyperbola has the form

	
�x �

a2
h�2

	 � 	
�y �

b2
k�2

	 � 1,

where the center �h, k� is the midpoint �3, �1� of the transverse axis. The semitrans-
verse axis and semiconjugate axis are

a � 	
8 �

2
��2�
	 � 5 and b � 	

8
2

	 � 4.

So the equation we seek is

	
�x �

52
3�2

	 � 	
�y �

4
�
2
�1��2

	 � 1,

	
�x �

25
3�2

	 � 	
�y �

16
1�2

	 � 1. Now try Exercise 31.

Hyperbolas with Center (h, k)

• Standard 	
�x �

a2
h�2

	 � 	
�y �

b2
k�2

	 � 1 	
�y �

a2
k�2

	 � 	
�x �

b2
h�2

	 � 1
equation

• Focal axis y � k x � h

• Foci �h � c, k� �h, k � c�
• Vertices �h � a, k� �h, k � a�
• Semitransverse a a

axis

• Semiconjugate b b
axis

• Pythagorean c2 � a2 � b2 c2 � a2 � b2

relation

• Asymptotes y � �	
b
a

	 �x � h� � k y � �	
a
b

	 �x � h� � k

See Figure 8.26.
FIGURE 8.26  Hyperbolas with center 
�h, k� and foci on (a) y � k and (b) x � h.

y

x

(a)

(h + c, k)
(h + a, k)(h, k)

y = k

(h – c, k)
(h – a, k)

(x – h) + ky = b
a

(x – h) + ky = – b
a

y

x

(b)

(h, k)

x = h

(x – h) + ky = a
b

(x – h) + ky = – a
b

(h, k + c)
(h, k + a)
(h, k – a)
(h, k – c)

y

x

(–2, –1) (8, –1)8

6

10

FIGURE 8.27  Given information for
Example 3.
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EXAMPLE 4 Locating Key Points of a Hyperbola
Find the center, vertices, and foci of the hyperbola

� � 1.

SOLUTION The center �h, k� is ��2, 5�. Because the semitransverse axis
a � �9� � 3, the vertices are

�h � a, k� � ��2 � 3, 5� � �1, 5� and

(h � a, k� � ��2 � 3, 5� � ��5, 5�.

Because c � �a�2��� b�2� � �9� �� 4�9� � �5�8�, the foci �h � c, k� are ��2 � �5�8�,
5�, or approximately �5.62, 5� and ��9.62, 5�. Now try Exercise 39.

With the information found about the hyperbola in Example 4 and knowing that its
semiconjugate axis b � �4�9� � 7, we could easily sketch the hyperbola. Obtaining an
accurate graph of the hyperbola using a function grapher is another matter. Often, the
best way to graph a hyperbola using a graphing utility is to use parametric equations.

�y � 5�2

	
49

�x � 2�2

	
9

EXPLORATION 1 Graphing a Hyperbola Using
Its Parametric Equations

1. Use the Pythagorean trigonometry identity sec2 t � tan2 t � 1 to prove that
the parameterization x � �1 � 3�cos t, y � 1 � 2 tan t �0 � t � 2�� will
produce a graph of the hyperbola (x � 1�2�9 � �y � 1�2�4 � 1.

2. Using Dot graphing mode, graph x � �1 � 3�cos t, y � 1 � 2 tan t �0 � t � 2��
in a square viewing window to support part 1 graphically. Switch to Connected
graphing mode, and regraph the equation. What do you observe? Explain.

3. Create parameterizations for the hyperbolas in Examples 1, 2, 3, and 4.

4. Graph each of your parameterizations in part 3 and check the features of the
obtained graph to see whether they match the expected geometric features of
the hyperbola. If necessary, revise your parameterization and regraph until all
features match.

5. Prove that each of your parameterizations is valid.

Eccentricity and Orbits

DEFINITION Eccentricity of a Hyperbola

The of a hyperbola is

e � 	
a
c

	 � 	
�a�2

a
��� b�2�
	,

where a is the semitransverse axis, b is the semiconjugate axis, and c is the dis-
tance from the center to either focus.

eccentricity

EXPLORATION EXTENSIONS

Create a parameterization for the general
hyperbola

	
(x �

a2

h)2

	 � 	
(y �

b2

k)2

	 � 1.

FOLLOW-UP

Ask why it would not be convenient to
use the hyperbola with foci at Q and R in
Example 6.

ASSIGNMENT GUIDE

Day 1: Ex. 3–52, multiples of 3
Day 2: Ex. 17, 23, 37, 49, 55, 57, 58

COOPERATIVE LEARNING

Group Activity: Ex. 59–61

NOTES ON EXERCISES

Ex. 23–38 and 51–52 require students to
write equations of hyperbolas.
Ex. 63–68 provide practice for standard-
ized tests.
Ex. 73–74 introduce the topics of conju-
gate hyperbolas and the focal width of a
hyperbola.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 17, 31, 39, 55, 57
Embedded Assessment: Ex. 53, 69, 72
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For a hyperbola, because c � a, the eccentricity e � 1. In Section 8.2 we learned that
the eccentricity of an ellipse satisfies the inequality 0 � e � 1 and that, for e � 0, the
ellipse is a circle. In Section 8.5 we will generalize the concept of eccentricity to all
types of conics and learn that the eccentricity of a parabola is e � 1.

Kepler’s first law of planetary motion says that a planet’s orbit is elliptical with the Sun
at one focus. Since 1609, astronomers have generalized Kepler’s law; the current theory
states: A celestial body that travels within the gravitational field of a much more massive
body follows a path that closely approximates a conic section that has the more mas-
sive body as a focus. Two bodies that do not differ greatly in mass (such as Earth and
the Moon, or Pluto and its moon Charon) actually revolve around their balance point,
or barycenter. In theory, a comet can approach the Sun from interstellar space, make a
partial loop about the Sun, and then leave the solar system returning to deep space; such
a comet follows a path that is one branch of a hyperbola.

EXAMPLE 5 Analyzing a Comet’s Orbit
A comet following a hyperbolic path about the Sun has a perihelion distance of 90 Gm.
When the line from the comet to the Sun is perpendicular to the focal axis of the orbit,
the comet is 281.25 Gm from the Sun. Calculate a, b, c, and e. What are the coordi-
nates of the center of the Sun if we coordinatize space so that the hyperbola is given by 

	
a
x2

2	 � 	
b
y2

2	 � 1?

SOLUTION The perihelion distance is c � a � 90. When x � c, y � �b2�a (see
Exercise 74). So b2�a � 281.25, or b2 � 281.25a. Because b2 � c2 � a2, we have
the system

c � a � 90 and c2 � a2 � 281.25a,

which yields the equation:

�a � 90�2 � a2 � 281.25a

a2 � 180a � 8100 � a2 � 281.25a

8100 � 101.25a

a � 80

So a � 80 Gm, b � 150 Gm, c � 170 Gm, and e � 17�8 � 2.125. If the comet’s path
is the branch of the hyperbola with positive x-coordinates, then the Sun is at the focus
�c, 0� � �170, 0�. See Figure 8.28. Now try Exercise 55.

Reflective Property of a Hyperbola
Like other conics, a hyperbola can be used to make a reflector of sound, light, and other
waves. If we rotate a hyperbola in three-dimensional space about its focal axis, the
hyperbola sweeps out a . If a signal is directed toward a
focus of a reflective hyperboloid, the signal reflects off the hyperbolic surface to the
other focus. In Figure 8.29 light reflects off a primary parabolic mirror toward the mir-
ror’s focus FP � FH, which is also the focus of a small hyperbolic mirror. The light is
then reflected off the hyperbolic mirror, toward the hyperboloid’s other focus FH � FE,
which is also the focus of an elliptical mirror. Finally the light is reflect into the observ-
er’s eye, which is at the second focus of the ellipsoid FE.

hyperboloid of revolution

FIGURE 8.28  The graph of one
branch of x2/6400 � y2/22,500 � 1.
(Example 5)

y

400 Gm

x
Sun (170, 0)

90 Gm
281.25 Gm

Path of
comet

FIGURE 8.29 Cross section of a reflect-
ing telescope.

Primary mirror

Parabola

Ellipse

Hyperbola

FP = FH

FH = FE

FE
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Reflecting telescopes date back to the 1600s when Isaac Newton used a primary parabol-
ic mirror in combination with a flat secondary mirror, slanted to reflect the light out the
side to the eyepiece. French optician G. Cassegrain was the first to use a hyperbolic sec-
ondary mirror, which directed the light through a hole at the vertex of the primary mirror
(see Exercise 70). Today, reflecting telescopes such as the Hubble Space Telescope have
become quite sophisticated and must have nearly perfect mirrors to focus properly.

Long-Range Navigation
Hyperbolas and radio signals are the basis of the LORAN (long-range navigation) sys-
tem. Example 6 illustrates this system using the definition of hyperbola and the fact that
radio signals travel 980 ft per microsecond �1 microsecond � 1 �sec � 10�6 sec�.

EXAMPLE 6 Using the LORAN System
Radio signals are sent simultaneously from transmitters located at points O, Q, and R
(Figure 8.30). R is 100 mi due north of O, and Q is 80 mi due east of O. The LORAN
receiver on sloop Gloria receives the signal from O 323.27 �sec after the signal from
R, and 258.61 �sec after the signal from Q. What is the sloop’s bearing and distance
from O?

SOLUTION The Gloria is at a point of intersection between two hyperbolas: one
with foci O and R, the other with foci O and Q.

The hyperbola with foci O�0, 0� and R�0, 100� has center �0, 50� and transverse axis

2a � �323.27 �sec��980 ft��sec��1 mi�5280 ft� � 60 mi.

Thus a � 30 and b � �c2 � a�2� � �502 ��302� � 40, yielding the equation

	
(y �

30
5
2
0�2

	 � 	
4
x
0

2

2	 � 1.

The hyperbola with foci O�0, 0� and Q�80, 0� has center �40, 0� and transverse axis

2a � �258.61 �sec��980 ft��sec��1 mi�5280 ft� � 48 mi.

Thus a � 24 and b � �c2 � a�2� � �402 ��242� � 32, yielding the equation

	
�x �

24
4
2
0�2

	 � 	
3
y
2

2

2	 � 1.

The Gloria is at point P where upper and right-hand branches of the hyperbolas meet
(see Figure 8.31). Using a grapher we find that P � �187.09, 193.49�. So the bearing
from point O is

� � 90° � tan�1(	118
9
7
3
.
.
0
4
9
9

	) � 44.04°,

and the distance from point O is

d � �1�8�7�.0�9�2��� 1�9�3�.4�9�2� � 269.15.

So the Gloria is about 187.1 mi east and 193.5 mi north of point O on a bearing of
roughly 44°, and the sloop is about 269 mi from point O.

Now try Exercise 57.

FIGURE 8.30 Strategically located
LORAN transmitters O, Q, and R.
(Example 6)

FIGURE 8.31 Graphs for Example 6.

100 mi

80 mi

R

QO

[–200, 400] by [–200, 400]
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QUICK REVIEW 8.3 (For help, go to Sections P.2, P.5, and 7.1.)

In Exercises 1 and 2, find the distance between the given points.

1. �4, �3� and ��7, �8� �1�4�6�

2. �a, �3� and �b, c� �(b � a� )2 � (c� � 3)2�

In Exercises 3 and 4, solve for y in terms of x.

3. � � 1 4. 	
3
x
6

2

	 � 	
y
4

2

	 � 1

In Exercises 5–8, solve for x algebraically.

5. �3�x��� 1�2� � �3�x��� 8� � 10 no solution

x2

	
9

y2

	
16

6. �4�x��� 1�2� � �x��� 8� � 1 x � 1

7. �6�x�2��� 1�2� � �6�x�2��� 1� � 1 x � 2, x � �2

8. �2�x�2��� 1�2� � �3�x�2��� 4� � �8 x � 25.55, x � �25.55

In Exercises 9 and 10, solve the system of equations.

9. c � a � 2 and c2 � a2 � 16a�3 a � 3, c � 5

10. c � a � 1 and c2 � a2 � 25a�12 a � 12, c � 13

In Exercises 1–6, find the vertices and foci of the hyperbola.

1. � � 1 2. � � 1

3. 	
3
y
6

2

	 � 	
1
x
3

2

	 � 1 4. 		
x
9

2

	 � 	
1
y
6

2

	 � 1

5. 3x2 � 4y2 � 12 6. 9x2 � 4y2 � 36

In Exercises 7–10, match the graph with its equation.

7. � � 1 (c) 8. � � 1 (b)

9. � � 1 (a) 10. � �y � 1�2 � 1 (d)

In Exercises 11–16, sketch the graph of the hyperbola by hand.

11. � � 1 12. � � 1

13. � � 1 14. � � 1
y2

	
144

x2

	
169

x2

	
16

y2

	
25

x2

	
25

y2

	
64

y2

	
25

x2

	
49

�x � 2�2

	
9

�x � 3�2

	
16

�y � 2�2

	
4

x2

	
9

y2

	
4

y2

	
16

x2

	
25

x2

	
21

y2

	
25

y2

	
7

x2

	
16

15. � � 1 16. � � 1

In Exercises 17–22, graph the hyperbola using a function grapher.

17. � � 1 18. � � 1

19. � � 1 20. � � 1

21. � � 1 22. � � 1

In Exercises 23–38, find an equation in standard form for the hyperbo-
la that satisfies the given conditions.

23. Foci (�3, 0), transverse axis length 4 x2/4 � y2/5 � 1

24. Foci �0, �3�, transverse axis length 4 y2/4 � x2/5 � 1

25. Foci �0, �15�, transverse axis length 8 y2/16 � x2/209 � 1

26. Foci ��5, 0�, transverse axis length 3

27. Center at �0, 0�, a � 5, e � 2, horizontal focal axis

28. Center at �0, 0�, a � 4, e � 3�2, vertical focal axis

29. Center at �0, 0�, b � 5, e � 13�12, vertical focal axis

30. Center at �0, 0�, c � 6, e � 2, horizontal focal axis

31. Transverse axis endpoints (2, 3) and (2, �1), conjugate axis
length 6

32. Transverse axis endpoints (5, 3) and (�7, 3), conjugate axis length 10

33. Transverse axis endpoints ��1, 3� and �5, 3�, slope of one
asymptote 4�3

34. Transverse axis endpoints ��2, �2� and ��2, 7�, slope of one
asymptote 4�3

35. Foci ��4, 2� and �2, 2�, transverse axis endpoints ��3, 2� and �1, 2�
36. Foci ��3, �11� and ��3, 0�, transverse axis endpoints 

��3, �9� and ��3, �2�
37. Center at ��3, 6�, a � 5, e � 2, vertical focal axis

38. Center at �1, �4�, c � 6, e � 2, horizontal focal axis

�x � 2�2

	
4

�y � 3�2

	
9

�y � 3�2

	
5

x2

	
4

x2

	
9

y2

	
16

y2

	
9

x2

	
4

x2

	
16

y2

	
64

y2

	
16

x2

	
36

�y � 3�2

	
4

�x � 1�2

	
2

�y � 1�2

	
4

�x � 3�2

	
16

SECTION 8.3 EXERCISES

y

x

(a)

y

x

(b)

y

x

(c)

y

x

(d)
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In Exercises 39–42, find the center, vertices, and the foci of the
hyperbola.

39. � = 1 40. 	
(x �

12
4)2

	 � 	
(y �

13
6)2

	 � 1

41. 	
(y �

64
3)2

	 � 	
(x �

81
2)2

	 � 1 42. 	
(y �

25
1)2

	 � 	
(x �

11
5)2

	 � 1

In Exercises 43–46, graph the hyperbola using a parametric grapher in
Dot graphing mode.

43. � � 1 44. � � 1

45. � � 1 46. � � 1

In Exercises 47–50, graph the hyperbola, and find its vertices, foci,
and eccentricity.

47. 4�y � 1�2 � 9�x � 3�2 � 36

48. 4�x � 2�2 � 9�y � 4�2 � 1

49. 9x2 � 4y2 � 36x � 8y � 4 � 0

50. 25y2 � 9x2 � 50y � 54x � 281 � 0

In Exercises 51 and 52, write an equation for the hyperbola.

51. 52.

53. Writing to Learn Prove that an equation for the hyperbola with
center �0, 0�, foci �0, �c�, and semitransverse axis a is y2�a2 �
x2�b2 � 1, where c � a � 0 and b2 � c2 � a2. [Hint: Refer to
derivation at the beginning of the section.]

54. Degenerate Hyperbolas Graph the degenerate hyperbola.

(a) 	
x

4

2

	 � y2 � 0 (b) 	
y

9

2

	 � 	
1
x

6

2

	 � 0

55. Rogue Comet A comet following a hyperbolic path about the
Sun has a perihelion of 120 Gm. When the line from the comet to
the Sun is perpendicular to the focal axis of the orbit, the comet is
250 Gm from the Sun. Calculate a, b, c, and e. What are the coor-
dinates of the center of the Sun if the center of the hyperbolic orbit
is �0, 0� and the Sun lies on the positive x-axis?

56. Rogue Comet A comet following a hyperbolic path about the
Sun has a perihelion of 140 Gm. When the line from the comet to
the Sun is perpendicular to the focal axis of the orbit, the comet is
405 Gm from the Sun. Calculate a, b, c, and e. What are the coor-
dinates of the center of the Sun if the center of the hyperbolic orbit
is �0, 0� and the Sun lies on the positive x-axis?

57. Long-Range Navigation Three LORAN radio transmitters are
positioned as shown in the figure, with R due north of O and Q due
east of O. The cruise ship Princess Ann receives simultaneous

y

x
(2, –2)

ba0, 2

ba0, – 2

y

x
(–2, 0) (2, 0)

(3, 2)

�x � 2�2

	
6

�y � 1�2

	
15

�y � 6�2

	
5

�x � 3�2

	
12

y2

	
20

x2

	
30

x2

	
4

y2

	
25

(y � 2)2

	
25

(x � 1)2

	
144

signals from the three transmitters. The signal from O arrives 323.27
�sec after the signal from R, and 646.53 �sec after the signal from
Q. Determine the ship’s bearing and distance from point O.

58. Gun Location Observers are located at positions A, B, and C
with A due north of B. A cannon is located somewhere in the first
quadrant as illustrated in the figure. A hears the sound of the can-
non 2 sec before B, and C hears the sound 4 sec before B.
Determine the bearing and distance of the cannon from point B.
(Assume that sound travels at 1100 ft�sec.)

Group Activities In Exercises 59 and 60, solve the system of equa-
tions algebraically and support your answer graphically.

59. 	
x

4

2

	 � 	
y

9

2

	 � 1 60. 	
x

4

2

	 � y2 � 1

x � 	
2�

3
3�

	y � �2 x2 � y2 � 9

61. Group Activity Consider the system of equations

� � 1

� � 1

(a) Solve the system graphically.

(b) If you have access to a grapher that also does symbolic alge-
bra, use it to find the the exact solutions to the system.

y2

	
4

x2

	
25

y2

	
25

x2

	
4

CB 7000 ft

4000 ft

A

y

x

80 mi

200 mi

R

QO
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SECTION 8.3 Hyperbolas 665

62. Writing to Learn Escape of the Unbound When NASA
launches a space probe, the probe reaches a speed sufficient for it to
become unbound from Earth and escape along a hyperbolic trajecto-
ry. Look up escape speed in an astronomy textbook or on the Internet,
and write a paragraph in your own words about what you find.

Standardized Test Questions
63. True or False The distance from a focus of a hyperbola to the

closer vertex is a(e � 1), where a is the semitransverse axis and e
is the eccentricity. Justify your answer.

64. True or False Unlike that of an ellipse, the Pythagorean relation
for a hyperbola is the usual a2 � b2 � c2. Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice One focus of x2 � 4y2 � 4 is B

(A) (4, 0).

(B) (�5�, 0).

(C) (2, 0).

(D) (�3� 0).

(E) (1, 0).

66. Multiple Choice The focal axis of 	
(x �

9
5)2

	 � 	
(y �

16
6)2

	 � 1 is E

(A) y � 2.

(B) y � 3.

(C) y � 4.

(D) y � 5.

(E) y � 6.

67. Multiple Choice The center of 
4x2 � 12y2 � 16x � 72y � 44 � 0 is B

(A) (2, �2).

(B) (2, �3).

(C) (2, �4).

(D) (2, �5).

(E) (2, �6).

68. Multiple Choice The slopes of the asymptotes of the 

hyperbola 	
x
4

2

	 � 	
y
3

2

	 � 1 are C

(A) �1.

(B) �3�2.

(C) ��3��2.

(D) �2�3.

(E) �4�3.

Explorations
69. Constructing Points of a Hyperbola Use a geometry soft-

ware package, such as Cabri Geometry II ™, The Geometer’s
Sketchpad®, or a similar application on a hand-held device, to
carry out the following construction.

(a) Start by placing the coordinate axes in the construction
window.

(b) Construct two points on the x-axis at ��5, 0� as the foci.

(c) Construct concentric circles of radii r � 1, 2, 3,…, 12 centered
at these two foci.

(d) Construct the points where these concentric circles meet and
have a difference of radii of 2a � 6, and overlay the conic that
passes through these points if the software has a conic tool.

(e) Find the equation whose graph includes all of these 
points. x2/9 � y2/16 � 1

70. Cassegrain Telescope A Cassegrain telescope as described in
the section has the dimensions shown in the figure. Find the stan-
dard form for the equation of the hyperbola centered at the origin
with the focal axis the x-axis.

Extending the Ideas
71. Prove that a nondegenerate graph of the equation

Ax2 � Cy2 � Dx � Ey � F � 0

is a hyperbola if AC � 0.

72. Writing to Learn The graph of the equation

� � 0

is considered to be a degenerate hyperbola. Describe the graph.
How is it like a full-fledged hyperbola, and how is it different?

73. Conjugate Hyperbolas The hyperbolas 

� � 1  and � � 1

obtained by switching the order of subtraction in their standard
equations are . Prove that these hyperbolas
have the same asymptotes and that the conjugate axis of each of
these hyperbolas is the transverse axis of the other hyperbola.

74. Focal Width of a Hyperbola Prove that, for the hyperbola

� � 1,

if x � c, then y � �b2�a. Why is it reasonable to define the
of such hyperbolas to be 2b2�a?

75. Writing to Learn Explain how the standard form equations for
the conics are related to

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0.

focal width

y2

	
b2

x2

	
a2

conjugate hyperbolas

�x � h�2

	
a2

�y � k�2

	
b2

�y � k�2

	
b2

�x � h�2

	
a2

�y � k�2

	
b2

�x � h�2

	
a2

Primary Parabolic Mirror

Eyepiece

Secondary Hyperbolic Mirror

120 cm

100 cm

80 cm

FH
FP � FH
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666 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 1 Graphing a Second-Degree Equation
Solve for y, and use a function grapher to graph

9x2 � 16y2 � 18x � 64y � 71 � 0.

SOLUTION Rearranging terms yields the equation:

16y2 � 64y � �9x2 � 18x � 71� � 0.

The quadratic formula gives us

y �

�

� �2 � 	
3
4

	 ��x2 �� 2x ��15�

Let 

Y1 � �2 � 0.75���x2� �� 2�x��� 1�5� and Y2 � �2 � 0.75���x2� �� 2�x��� 1�5�,

and graph the two equations in the same viewing window, as shown in Figure 8.32.
The combined figure appears to be an ellipse.

Now try Exercise 1.

�8 � 3���x2� �� 2�x��� 1�5�
			

4

�64 � �6�4�2��� 4��1�6����9�x2� �� 1�8�x��� 7�1���
					

2�16�

8.4
Translation and Rotation of Axes
What you’ll learn about
■ Second-Degree Equations in

Two Variables

■ Translating Axes versus
Translating Graphs

■ Rotation of Axes

■ Discriminant Test

. . . and why
You will see ellipses, hyperbo-
las, and parabolas as members
of the family of conic sections
rather than as separate types of
curves.

Second-Degree Equations in Two Variables
In Section 8.1, we began with a unified approach to conic sections, learning that
parabolas, ellipses, and hyperbolas are all cross sections of a right circular cone. In
Sections 8.1–8.3, we gave separate plane-geometry definitions for parabolas,
ellipses, and hyperbolas that led to separate kinds of equations for each type of curve.
In this section and the next, we once again consider parabolas, ellipses, and hyperbo-
las as a unified family of interrelated curves.

In Section 8.1, we claimed that the conic sections can be defined algebraically in the
Cartesian plane as the graphs of second-degree equations in two variables, that is,
equations of the form

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0,

where A, B, and C are not all zero. In this section, we investigate equations of this type,
which are really just quadratic equations in x and y. Because they are quadratic equa-
tions, we can adapt familiar methods to this unfamiliar setting. That is exactly what we
do in Examples 1–3.

OBJECTIVE

Students will be able to determine equa-
tions for translated and rotated axes for
conic sections.

MOTIVATE

Have students solve y2 � 2xy � 2x2 � 4
for y and graph the result using a function
grapher. Describe the graph.

LESSON GUIDE

Day 1: Second-Degree Equations in Two
Variables; Translating Axes versus
Translating Graphs
Day 2: Rotation of Axes; Discriminant
Test

[–9.4, 9.4] by [–6.2, 6.2]

FIGURE 8.32 The graph of 
9x2 � 16y2 � 18x � 64y � 71 � 0.
(Example 1)
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SECTION 8.4 Translation and Rotation of Axes 667

EXAMPLE 2 Graphing a Second-Degree Equation

Solve for y, and use a function grapher to graph

2xy � 9 � 0.

SOLUTION This equation can be rewritten as 2xy � 9 or as y � 9��2x�. The graph
of this equation is shown in Figure 8.33. It appears to be a hyperbola with a slant focal
axis. Now try Exercise 5.

EXAMPLE 3 Graphing a Second-Degree Equation
Solve for y, and use a function grapher to graph

x2 � 4xy � 4y2 � 30x � 90y � 450 � 0.

SOLUTION We rearrange the terms as a quadratic equation in y:

4y2 � �4x � 90�y � �x2 � 30x � 450� � 0.

The quadratic formula gives us

y �

�

Let

y1 � and y2 � ,

and graph the two equations in the same viewing window, as shown in Figure 8.34a.
The combined figure appears to be a parabola, with a slight gap due to grapher failure.
The combined graph should connect at a point for which the radicand 225 � 60x � 0,
that is, when x � 225�60 � 15�4 � 3.75. Figure 8.34b supports this analysis.

Now try Exercise 9.

45 � 2x � �2�2�5� �� 6�0�x�
			

4
45 � 2x � �2�2�5� �� 6�0�x�
			

4

45 � 2x � �2�2�5� �� 6�0�x�
			

4

�(4x � 90) � �(4x ��90)2 �� 4(4)(x�2 � 30�x � 45�0)�
					

2(4)

The graphs obtained in Examples 1–3 all appear to be conic sections, but how can we
be sure? If they are conics, then we probably have classified Examples 1 and 2 cor-
rectly, but couldn’t the graph in Example 3 (Figure 8.34) be part of an ellipse or one
branch of a hyperbola? We now set out to answer these questions and to develop meth-
ods for simplifying and classifying second-degree equations in two variables.

Translating Axes versus Translating Graphs
The coordinate axes are often viewed as a permanent fixture of the plane, but this just
isn’t so. We can shift the position of axes just as we have been shifting the position of
graphs since Chapter 1. Such a produces a new set of axes paral-
lel to the original axes, as shown in Figure 8.35 on the next page.

translation of axes

In the equation in Example 1, there was no Bxy term. None of the examples in Sections
8.1–8.3 included such a cross-product term. A cross-product term in the equation causes
the graph to tilt relative to the coordinate axes, as illustrated in Examples 2 and 3.

[–9.4, 9.4] by [–6.2, 6.2]

FIGURE 8.33 The graph of 2xy � 9 � 0.
(Example 2)

[–23, 23] by [–5, 25]

(b)

X=3.75  Y=9.375

[–23, 23] by [–5, 25]

(a)

FIGURE 8.34 The graph of 
x2 � 4xy � 4y2 � 30x � 90y � 450 � 0
(a) with a gap and (b) with the trace feature
activated at the connecting point. (Example 3)
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668 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

FIGURE 8.35 A translation of Cartesian coordinate axes.

Figure 8.35 shows a plane containing a point P that is named in two ways: using the
coordinates �x, y� and the coordinates �x�, y��. The coordinates �x, y� are based on the
original x- and y-axes and the original origin O, while �x�, y�� are based on the trans-
lated x�- and y�-axes and the corresponding origin O�.

y y′

y′

x

x′x′

O

O′(h, k)

h

k

P(x, y) = P(x′, y′)

We use the second pair of translation formulas in Example 4.

EXAMPLE 4 Revisiting Example 1
Prove that 9x2 � 16y2 � 18x � 64y � 71 � 0 is the equation of an ellipse. Translate
the coordinate axes so that the origin is at the center of this ellipse.

SOLUTION We complete the square of both x and y:

9x2 � 18x � 16y2 � 64y � 71

9�x2 � 2x � 1� � 16�y2 � 4y � 4� � 71 � 9�1� � 16�4�
9�x � 1�2 � 16�y � 2�2 � 144

	
�x �

16
1�2

	 � 	
�y �

9
2�2

	 � 1

This is a standard equation of an ellipse. If we let x� � x � 1 and y� � y � 2, then the
equation of the ellipse becomes

	
�x
1
�

6
�2

	 � 	
�y

9
��2

	 � 1.

Figure 8.36 shows the graph of this final equation in the new x�y� coordinate system,
with the original xy-axes overlaid. Compare Figures 8.32 and 8.36.

Now try Exercise 21.

Translation-of-Axes Formulas

The coordinates �x, y� and �x�, y�� based on parallel sets of axes are related by

either of the following :

x � x� � h and y � y� � k

or

x� � x � h and y� � y � k.

translation formulas

y
y′

x
x′

8

12

FIGURE 8.36 The graph of 
�x��2�16 � �y��2�9 � 1. (Example 4)
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Rotation of Axes
To show that the equation in Example 2 or 3 is the equation of a conic section, we need
to rotate the coordinate axes so that one axis aligns with the (focal) axis of the conic.
In such a , the origin stays fixed, and we rotate the x- and y-axes
through an angle � to obtain the x�- and y�-axes. (See Figure 8.37.)

Figure 8.37 shows a plane containing a point P named in two ways: as �x, y� and as
�x�, y��. The coordinates �x, y� are based on the original x- and y-axes, while (x�, y�) are
based on the rotated x�- and y�-axes.

rotation of axes

Rotation-of-Axes Formulas

The coordinates �x, y� and �x�, y�� based on rotated sets of axes are related by

either of the following :

x� � x cos � � y sin � and y� � �x sin � � y cos �,

or

x � x� cos � � y� sin � and y � x� sin � � y� cos �.

where �, 0 � � � ��2, is the angle of rotation.

rotation formulas

The first pair of equations was established in Example 10 of Section 7.2. The second
pair can be derived directly from the geometry of Figure 8.37 (see Exercise 55) and is
used in Example 5.

EXAMPLE 5 Revisiting Example 2
Prove that 2xy � 9 � 0 is the equation of a hyperbola by rotating the coordinate axes
through an angle � � ��4.

SOLUTION Because cos �� �4) � sin �� �4� � 1��2�, the rotation equations
become

x � 	
x�

�
�

2�
y�

	 and y � 	
x�

�
�

2�
y�

	.

So by rotating the axes, the equation 2xy � 9 � 0 becomes

2		x�

�

�

2�

y�
	
		x�

�

�

2�

y�
	
 � 9 � 0

�x��2 � �y��2 � 9 � 0

To see that this is the equation of a hyperbola, we put it in standard form:

�x��2 � �y��2 � 9

	
�x

9
��2
	 � 	

�y
9
��2
	 � 1

Figure 8.38 shows the graph of the original equation in the original xy system with the
x�y�-axes overlaid. Now try Exercise 37.

α

α

α

y

x

x′

x′

y′

y′

x

P(x, y) = P(x′, y′)

O

y

FIGURE 8.37 A rotation of Cartesian
coordinate axes.

y

x

x'y'

3

3

FIGURE 8.38 The graph of 2xy � 9 � 0.
(Example 5)
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670 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

In Example 5 we converted a second-degree equation in x and y into a second-degree
equation in x� and y� using the rotation formulas. By choosing the angle of rotation
appropriately, there was no x�y� cross-product term in the final equation, which allowed
us to put it in standard form. We now generalize this process.

Coefficients for a Conic in a Rotated System

If we apply the rotation formulas to the general second-degree equation in x and y,
we obtain a second-degree equation in x� and y� of the form

A�x�2 � B�x�y� � C�y�2 � D�x� � E�y� � F� � 0,

where the coefficients are

A� � A cos2 � � B cos � sin � � C sin2 �

B� � B cos 2� � �C � A� sin 2�

C� � C cos2 � � B cos � sin � � A sin2 �

D� � D cos � � E sin �

E� � E cos � � D sin �

F� � F

Angle of Rotation to Eliminate the Cross-Product Term

If B � 0, an angle of rotation � such that

cot 2� � 	
A �

B
C

	 and 0 < � < 	
�

2
	

will eliminate the term B�x�y� from the second-degree equation in the rotated x�y�
coordinate system.

In order to eliminate the cross-product term and thus align the coordinate axes with the
focal axis of the conic, we rotate the coordinate axes through an angle � that causes B�
to equal 0. Setting B� � B cos 2� � �C � A� sin 2� � 0 leads to the following useful
result.

EXAMPLE 6 Revisiting Example 3
Prove that x2 � 4xy � 4y2 � 30x � 90y � 450 � 0 is the equation of a parabola by
rotating the coordinate axes through a suitable angle �.

SOLUTION The angle of rotation � must satisfy the equation

cot 2� � 	
A �

B
C

	 � 	
1 �

4
4

	 � �	
3
4

	.

So
cos 2� � �	

3
5

	,
continued
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and thus

cos � � �	
1� �� c

2�o�s�2��
	� ��	

1� �� ��2
��3��5��
	� � 	

�
1
5�

	,

sin � � �	
1� �� c

2�o�s�2��
	� � �	1� �� ��

2
��3��5��
	� � 	

�
2
5�

	.

Therefore the coefficients of the transformed equation are

A� � 1 • 	
1
5

	 � 4 • 	
2
5

	 � 4 • 	
4
5

	 � 	
2
5
5
	 � 5

B� � 0

C� � 4 • 	
1
5

	 � 4 • 	
2
5

	 � 1 • 	
4
5

	 � 0

D� � �30 • 	
�

1

5�
	 � 90 • 	

�

2

5�
	 � �	

�

21

5�

0
	 � �42�5�

E� � �90 • 	
�

1

5�
	 � 30 • 	

�

2

5�
	 � �	

�

30

5�
	 � �6�5�

F� � 450

So the equation x2 � 4xy � 4y2 � 30x � 90y � 450 � 0 becomes

5x�2 � 42�5�x� � 6�5�y� � 450 � 0.

After completing the square of the x-terms, the equation becomes

	x� � 	
�

21

5�
	


2
� 	

�
6

5�
	 	y� � 	

3�
10

5�
	
.

If we translate using h � 21��5� and k � 3�5��10, then the equation becomes

�x��2 � 	
�

6

5�
	 �y��,

a standard equation of a parabola.

Figure 8.39 shows the graph of the original equation in the original xy coordinate sys-
tem, with the x�y�-axes overlaid. Now try Exercise 39.

Discriminant Test
Example 6 demonstrates that the algebra of rotation can get ugly. Fortunately, we can
determine which type of conic a second-degree equation represents by looking at the
sign of the B2 � 4AC.discriminant

Discriminant Test

The second-degree equation Ax2 � Bxy � Cy2 � Dx � Ey � F � 0 graphs as

• a hyperbola if B2 � 4AC � 0,

• a parabola if B2 � 4AC � 0,

• an ellipse if B2 � 4AC � 0,

except for degenerate cases.

FOLLOW-UP

Ask students to explain why it was okay
to assume cos � � 0 and sin � � 0 in
Example 6.

x ′′
y′′

x

20

20

10

10–20 –10

y

FIGURE 8.39 The graph of x2 � 4xy �

4y2 � 30x � 90y � 450 � 0. (Example 6)
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This test hinges on the fact that the discriminant B2 � 4AC is 
; in other words, even though A, B, and C do change when we rotate the coor-

dinate axes, the combination B2 � 4AC maintains its value.

EXAMPLE 7 Revisiting Examples 5 and 6
(a) In Example 5, before the rotation B2 � 4AC � �2�2 � 4�0��0� � 4, and after the

rotation B�2 � 4A�C� � �0�2 � 4�1���1� � 4. The positive discriminant tells us
the conic is a hyperbola.

(b) In Example 6, before the rotation B2 � 4AC � �4�2 � 4�1��4� � 0, and after the
rotation B�2 � 4 A�C� � �0�2 � 4�5��0� � 0. The zero discriminant tells us the
conic is a parabola. Now try Exercise 43.

Not only is the discriminant B2 � 4AC invariant under rotation, but also its sign is
invariant under translation and under algebraic manipulations that preserve the equiv-
alence of the equation, such as multiplying both sides of the equation by a nonzero
constant.

The discriminant test can be applied to degenerate conics. Table 8.2 displays the three
basic types of conic sections grouped with their associated degenerate conics. Each
conic or degenerate conic is shown with a sample equation and the sign of its discrim-
inant.

rotation
invariant under

Table 8.2 Conics and the Equation Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Sample Sign of
Conic Equation A B C D E F Discriminant

Hyperbola x2 � 2y2 � 1 1 �2 �1 Positive
Intersecting lines x2 � xy � 0 1 1 Positive
Parabola x2 � 2y 1 �2 Zero
Parallel lines x2 � 4 1 �4 Zero
One line y2 � 0 1 Zero
No graph x2 � �1 1 1 Zero
Ellipse x2 � 2y2 � 1 1 2 �1 Negative
Circle x2 � y2 � 9 1 1 �9 Negative
Point x2 � y2 � 0 1 1 Negative
No graph x2 � y2 � �1 1 1 1 Negative

QUICK REVIEW 8.4 (For help, go to Sections 4.7 and 5.4.)

In Exercises 1–10, assume 0 � � � ��2.

1. Given that cot 2� � 5�12, find cos 2�. cos 2� � 5/13

2. Given that cot 2� � 8�15, find cos 2�. cos 2� � 8/17

3. Given that cot 2� � 1��3�, find cos 2�. cos 2� � 1/2

4. Given that cot 2� � 2��5�, find cos 2�. cos 2� � 2/3

5. Given that cot 2� � 0, find �. � � �/4

6. Given that cot 2� � �3�, find �. � � �/12

7. Given that cot 2� � 3�4, find cos �. cos � � 2/�5�

8. Given that cot 2� � 3��7�, find cos �. cos � � �14�/4

9. Given that cot 2� � 5/�1�1�, find sin �. sin � � 1/�12�

10. Given that cot 2� � 45�28, find sin �. sin � � 2/�53�

ASSIGNMENT GUIDE

Day 1: Ex. 3–30, multiples of 3
Day 2: Ex. 33–54, multiples of 3

COOPERATIVE LEARNING

Group Activity: Ex. 65

NOTES ON EXERCISES

Ex. 31–32 ask students to prove the trans-
lation formulas.
Ex. 33–52 are basic problems involving
rotation of axes.
Ex. 55–56 ask students to prove the rota-
tion formulas.
Ex. 57–62 provide practice for standard-
ized tests.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 5, 9, 21, 37, 39,
43
Embedded Assessment: Ex. 31
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SECTION 8.4 EXERCISES

In Exercises 1–12, solve for y, and use a function grapher to graph the
conic.

1. x2 � y2 � 6x � 10y � 18 � 0

2. 4x2 � y2 � 24x � 2y � 21 � 0

3. y2 � 8x � 8y � 8 � 0

4. x2 � 4y2 � 6x � 40y � 91 � 0

5. �4xy � 16 � 0

6. 2xy � 6 � 0

7. xy � y � 8 � 0

8. 2x2 � 5xy � y � 0

9. 2x2 � xy � 3y2 � 3x � 4y � 6 � 0

10. �x2 � 3xy � 4y2 � 5x � 10y � 20 � 0

11. 2x2 � 4xy � 8y2 � 10x � 4y � 13 � 0

12. 2x2 � 4xy � 2y2 � 5x � 6y � 15 � 0

In Exercises 13–16, write an equation in standard form for the conic
shown.

13. 14.

15. 16.

In Exercises 17–20, using the point P�x, y� and the translation infor-
mation, find the coordinates of P in the translated x�y� coordinate
system.

17. P�x, y� � �2, 3�, h � �2, k � 4 (x�, y�) � (4, �1)

18. P�x, y� � ��2, 5�, h � �4, k � �7 (x�, y�) � (2, 12)

19. P�x, y� � �6, �3�, h � 1, k � �5� (x�, y�) � (5, �3 � �5�)

20. P�x, y� � ��5, �4�, h � �2�, k � �3 (x�, y�) � (�5 � �2�, �1)

y

x

3

4

y

x

4

3

y

x
(2, 4)

y

x
(2, –1)

In Exercises 21–30, identify the type of conic, write the equation in
standard form, translate the conic to the origin, and sketch it in the
translated coordinate system.

21. 4y2 � 9x2 � 18x � 8y � 41 � 0

22. 2x2 � 3y2 � 12x � 24y � 60 � 0

23. x2 � 2x � y � 3 � 0 24. 3x2 � 6x � 6y � 10 � 0

25. 9x2 � 4y2 � 18x � 16y � 11 � 0

26. 16x2 � y2 � 32x � 6y � 57 � 0

27. y2 � 4y � 8x � 20 � 0 28. 2x2 � 4x � y2 � 6y � 9

29. 2x2 � y2 � 4x � 6 � 0 30. y2 � 2y � 4x � 12 � 0

31. Writing to Learn Translation Formulas Use the
geometric relationships illustrated in Figure 8.35 to explain the
translation formulas x � x� � h and y � y� � k.

32. Translation Formulas Prove that if x � x� � h and 
y � y� � k, then x� � x � h and y� � y � k.

In Exercises 33–36, using the point P�x, y� and the rotation informa-
tion, find the coordinates of P in the rotated x�y� coordinate system.

33. P�x, y� � ��2, 5�, � � ��4 (3�2�/2, 7�2�/2)

34. P�x, y� � �6, �3�, � � ��3

35. P�x, y� � ��5, �4�, cot 2� � �3�5 � (�5.94, 2.38)

36. P�x, y� � �2, 3�, cot 2� � 0 (5�2�/2, �2�/2)

In Exercises 37–40, identify the type of conic, and rotate the coordi-
nate axes to eliminate the xy term. Write and graph the transformed
equation.

37. xy � 8

38. 3xy � 15 � 0

39. 2x2 � �3�xy � y2 � 10 � 0

40. 3x2 � 2�3�xy � y2 � 14 � 0

In Exercises 41 and 42, identify the type of conic, solve for y, and
graph the conic. Approximate the angle of rotation needed to eliminate
the xy term.

41. 16x2 � 20xy � 9y2 � 40 � 0

42. 4x2 � 6xy � 2y2 � 3x � 10y � 6 � 0

In Exercises 43–52, use the discriminant B2 � 4AC to decide whether
the equation represents a parabola, an ellipse, or a hyperbola.

43. x2 � 4xy � 10y2 � 2y � 5 � 0 �24 � 0; ellipse

44. x2 � 4xy � 3x � 25y � 6 � 0 16 � 0; hyperbola

45. 9x2 � 6xy � y2 � 7x � 5y � 0 0; parabola

46. �xy � 3y2 � 4x � 2y � 8 � 0 1 � 0; hyperbola

47. 8x2 � 4xy � 2y2 � 6 � 0 �48 � 0; ellipse

48. 3x2 � 12xy � 4y2 � x � 5y � 4 � 0 96 � 0; hyperbola
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49. x2 � 3y2 � y � 22 � 0 12 � 0; hyperbola

50. 5x2 � 4xy � 3y2 � 2x � y � 0 �44 � 0; ellipse

51. 4x2 � 2xy � y2 � 5x � 18 � 0 �12 � 0; ellipse

52. 6x2 � 4xy � 9y2 � 40x � 20y � 56 � 0 �200 � 0; ellipse

53. Revisiting Example 5 Using the results of Example 5, find 
the center, vertices, and foci of the hyperbola 2xy � 9 � 0 in
the original coordinate system.

54. Revisiting Examples 3 and 6 Use information from 
Examples 3 and 6

(a) to prove that the point P�x, y� � �3.75, 9.375� where the
graphs of Y1 � �45 � 2x � �2�2�5� �� 6�0�x���4 and
Y2 � �45 � 2x � �2�2�5� �� 6�0�x���4 meet is not the vertex of
the parabola,

(b) to prove that the point V�x, y� � �3.6, 8.7� is the vertex of the
parabola.

55. Rotation Formulas Prove x � x� cos � � y� sin � and 
y � x� sin � � y� cos � using the geometric relationships illustrat-
ed in Figure 8.37.

56. Rotation Formulas Prove that if x� � x cos � � y sin � and
y� � �x sin � � y cos � , then x � x� cos � � y� sin � and y � x�
sin � � y� cos �.

Standardized Test Questions
57. True or False The graph of the equation Ax2 � Cy2 �

Dx �Ey � F � 0 (A and C not both zero) has a focal axis
aligned with the coordinate axes. Justify your answer.

58. True or False The graph of the equation x2 � y2 � Dx �
Ey � F � 0 is a circle or a degenerate circle. Justify your answer.

In Exercises 59–62, solve the problem without using a calculator.

59. Multiple Choice Which of the following is not a reason to
translate the axes of a conic? B

(A) to simplify its equation

(B) to eliminate the cross-product term

(C) to place its center or vertex at the origin

(D) to make it easier to identify its type

(E) to make it easier to sketch by hand

60. Multiple Choice Which of the following is not a reason to
rotate the axes of a conic? C

(A) to simplify its equation

(B) to eliminate the cross-product term

(C) to place its center or vertex at the origin

(D) to make it easier to identify its type

(E) to make it easier to sketch by hand

61. Multiple Choice The vertices of 
9x2 � 16y2 � 18x � 64y � 71 � 0 are A

(A) (1�4, �2) (B) (1�3, �2)

(C) (4�1, 3) (D) (4�2, 3)

(E) (1, �2 � 3)

62. Multiple Choice The asymptotes of the hyperbola xy � 4 are E

(A) y � x, y � �x. (B) y � 2x, y � �	
2
x

	.

(C) y � �2x, y � 	
2
x

	. (D) y � 4x, y � �	
4
x

	.

(E) the coordinate axes

Explorations
63. Axes of Oblique Conics The axes of conics that are not

aligned with the coordinate axes are often included in the graphs
of conics.

(a) Recreate the graph shown in Figure 8.38 using a function 
grapher including the x�- and y�-axes. What are the equations
of these rotated axes?     y � �x

(b) Recreate the graph shown in Figure 8.39 using a function 
grapher including the x�- and y�-axes. What are the equations of
these rotated and translated axes?  y � 2x � 3/2, y � (�1/2)x � 21/2

64. The Discriminant Determine what happens to the sign of
B2 � 4AC within the equation 

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0 
when

(a) the axes are translated h units horizontally and k units verti-
cally, no sign change

(b) both sides of the equation are multiplied by the same nonzero
constant k. no sign change

Extending the Ideas
65. Group Activity Working together prove that the formulas for

the coefficients A�, B�, C�, D�, E�, and F� in a rotated system given
on page 670 are correct.

66. Identifying a Conic Develop a way to decide whether Ax2 �
Cy2 � Dx � Ey � F � 0, with A and C not both 0, represents a
parabola, an ellipse, or a hyperbola. Write an example to illustrate
each of the three cases.

67. Rotational Invariant Prove that B�2 � 4A�C� � B2 � 4AC
when the xy coordinate system is rotated through an angle �.

68. Other Rotational Invariants Prove each of the following are
invariants under rotation:

(a) F, (b) A � C, (c) D2 � E2.

69. Degenerate Conics Graph all of the degenerate conics listed in
Table 8.2. Recall that degenerate cones occur when the generator
and axis of the cone are parallel or perpendicular. (See Figure 8.2.)
Explain the occurrence of all of the degenerate conics listed on the
basis of cross sections of typical or degenerate right circular cones.
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8.5
Polar Equations of Conics
What you’ll learn about
■ Eccentricity Revisited

■ Writing Polar Equations for
Conics

■ Analyzing Polar Equations of
Conics

■ Orbits Revisited

. . . and why
You will learn the approach to
conics used by astronomers.

Eccentricity Revisited
Eccentricity and polar coordinates provide ways to see once again that parabolas,
ellipses, and hyperbolas are a unified family of interrelated curves. We can define
these three curves simultaneously by generalizing the focus-directrix definition of
parabola given in Section 8.1.

The line passing through the focus and perpendicular to the directrix is the
of the conic section. The axis is a line of symmetry for the conic. The point where the
conic intersects its axis is a of the conic. If P is a point of the conic, F
is the focus, and D is the point of the directrix closest to P, then the constant ratio
PF�PD is the of the conic (see Figure 8.40). A parabola has one focus
and one directrix. Ellipses and hyperbolas have two focus-directrix pairs, and either
focus-directrix pair can be used with the eccentricity to generate the entire conic
section.

eccentricity e

vertex

(focal) axis

In this approach to conic sections, the eccentricity e is a strictly positive constant, and
there are no circles or other degenerate conics.

Conic
section

Focus
Directrix

Vertex

Focal
axis

D

P

F

FIGURE 8.40 The geometric structure of
a conic section.

OBJECTIVE

Students will understand the general
focus-directrix definition of a conic sec-
tion and will be able to write equations of
conic sections in polar form.

MOTIVATE

Have students use a grapher to graph the
polar equation 

r � 	
1 �

5
cos �
	.

Ask what they observe. (The graph is a
parabola.)

Focus-Directrix Definition Conic Section

A is the set of all points in a plane whose distances from a particu-
lar point (the ) and a particular line (the ) in the plane have a 
constant ratio. (We assume that the focus does not lie on the directrix.)

directrixfocus
conic section

Focus-Directrix-Eccentricity Relationship

If P is a point of a conic section, F is the conic’s focus, and D is the point of the
directrix closest to P, then 

e � 	
P
P

D
F
	 and PF � e • PD,

where e is a constant and the eccentricity of the conic. Moreover, the conic is

• a hyperbola if e � 1,

• a parabola if e � 1,

• an ellipse if e � 1.
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Writing Polar Equations for Conics
Our focus-directrix definition of conics works best in combination with polar coordi-
nates. Recall that in polar coordinates the origin is the pole and the x-axis is the polar
axis. To obtain a polar equation for a conic section, we position the pole at the conic’s
focus and the polar axis along the focal axis with the directrix to the right of the pole
(Figure 8.41). If the distance from the focus to the directrix is k, the Cartesian equation
of the directrix is x � k. From Figure 8.41, we see that

PF � r and PD � k � r cos �.

So the equation PF � e • PD becomes

r � e�k � r cos ��,

which when solved for r is

r � 	
1 � e

ke
cos �
	.

In Exercise 53, you are asked to show that this equation is still valid if r � 0 or
r cos � � k. This one equation can produce all sizes and shapes of nondegenerate conic
sections. Figure 8.42 shows three typical graphs for this equation. In Exploration 1, you
will investigate how changing the value of e affects the graph of r � ke��1 � e cos ��.

REMARKS

• To be consistent with our work on
parabolas, we could use 2p for the
distance from the focus to the 
directrix, but following George B.
Thomas, Jr. we use k for this dis-
tance. This simplifies our polar 
equations of conics.

• Rather than religiously using polar
coordinates and equations, we use a
mixture of the polar and Cartesian
systems. So, for example, we use
x � k for the directrix rather than
r cos � � k or r � k sec �.

Conic
section

Focus at
the pole

Directrix

D

r

F
x

x = k

r cos  θ

k – r cos  θ

θ

P(r, )θ

FIGURE 8.41 A conic section in the
polar plane.

x

y

Directrix

e = < 1
PD
PF

(a)

Ellipse

x = k

F(0, 0)

P D

x

Directrix

e = = 1
PD
PF

(b)

Parabola

x = k

F(0, 0)

P D

y

x

Directrix

e = > 1
PD
PF

(c)

Hyperbola

x = k

F(0, 0)

P D

y

FIGURE 8.42 The three types of conics possible for r � ke��1 � e cos ��.
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EXPLORATION 1 Graphing Polar Equations of Conics

Set your grapher to Polar and Dot graphing modes, and to Radian mode.
Using k � 3, an xy window of �12, 24� by �12, 12�, �min � 0, �max �
2�, and �step � ��48, graph

r � 	
1 � e

ke
cos �
	

for e � 0.7, 0.8, 1, 1.5, 3. Identify the type of conic section obtained for
each e value. Overlay the five graphs, and explain how changing the value
of e affects the graph of r � ke��1 � e cos ��. Explain how the five graphs
are similar and how they are different.

EXPLORATION EXTENSIONS

How would the graphs change if you used
the equation

r � ?

Simplify this equation.

ke
			
1 � e cos (� � �/2)

NOTES ON EXAMPLES

If possible, work with students through all
of the examples in this section, allowing
time for exploration. Consider having
some students present a few of the exam-
ples in class.

TEACHING NOTE

This section provides a good opportunity
to observe students’ selection of viewing
window settings in the polar mode on the
grapher. Students should have a good idea
of how the graphs of conics should appear
and can now be in a position to refine
their ideas about viewing windows.

Polar Equations for Conics

The four standard orientations of a conic in the polar plane are as follows.

(a) r � 	
1 � e

ke
cos �
	 (b) r � 	

1 � e
ke

cos �
	

(c) r � 	
1 �

k
e
e
sin �
	 (d) r � 	

1 �

k
e
e
sin �
	

Focus
at pole

y

Directrix y = –k

(d)

xFocus
at pole

y

Directrix y = k

(c)

x

Focus at pole
x

Directrix x = –k

(b)

y

Focus at pole
x

Directrix x = k

(a)

y
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EXAMPLE 1 Writing and Graphing Polar
Equations of Conics

Given that the focus is at the pole, write a polar equation for the specified conic, and
graph it.

(a) Eccentricity e � 3�5, directrix x � 2.

(b) Eccentricity e � 1, directrix x � �2.

(c) Eccentricity e � 3�2, directrix y � 4.

SOLUTION

(a) Setting e � 3�5 and k � 2 in r � 	
1 � e

ke
cos �
	 yields

r �	
1 � �

2
3
�3
�5
�
�
5�

cos �
	

� 	
5 � 3

6
cos �
	.

Figure 8.43a shows this ellipse and the given directrix.

(b) Setting e � 1 and k � 2 in r � 	
1 � e

ke
cos �
	 yields

r � 	
1 �

2
cos �
	.

Figure 8.43b shows this parabola and its directrix.

(c) Setting e � 3�2 and k � 4 in r � 	
1 �

k
e
e
sin �
	 yields

r �	
1 �

4
�3
�3
�2
�2
�
�
sin �

	

� 	
2 �

1
3
2
sin �
	.

Figure 8.43c shows this hyperbola and the given directrix.

Now try Exercise 1.

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)
[–15,15] by [–5, 15]

(c)

FIGURE 8.43 Graphs for Example 1.
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Analyzing Polar Equations of Conics
The first step in analyzing the polar equations of a conic section is to use the eccen-
tricity to identify which type of conic the equation represents. Then we  determine the
equation of the directrix.

EXAMPLE 2 Identifying Conics from Their
Polar Equations

Determine the eccentricity, the type of conic, and the directrix.

(a) r � 	
2 � 3

6
cos �
	 (b) r � 	

4 � 3
6

sin �
	

SOLUTION

(a) Dividing numerator and denominator by 2 yields r � 3��1 � 1.5 cos ��. So the
eccentricity e � 1.5, and thus the conic is a hyperbola. The numerator ke � 3, so
k � 2, and thus the equation of the directrix is x � 2.

(b) Dividing numerator and denominator by 4 yields r � 1.5��1 � 0.75 sin ��. So the
eccentricity e � 0.75, and thus the conic is an ellipse. The numerator ke � 1.5, so
k � 2, and thus the equation of the directrix is y � �2.

Now try Exercise 7.

All of the geometric properties and features of parabolas, ellipses, and hyperbolas
developed in Sections 8.1–8.3 still apply in the polar coordinate setting. In Example 3
we use this prior knowledge.

EXAMPLE 3 Analyzing a Conic
Analyze the conic section given by the equation r � 16��5 � 3 cos ��. Include in the
analysis the values of e, a, b, and c.

SOLUTION Dividing numerator and denominator by 5 yields 

r � 	
1 � 0

3
.6
.2

cos �
	.

So the eccentricity e � 0.6, and thus the conic is an ellipse. Figure 8.44 shows this
ellipse. The vertices (endpoints of the major axis) have polar coordinates �8, 0� and
�2, ��. So 2a � 8 � 2 � 10, and thus a � 5.

The vertex �2, �� is 2 units to the left of the pole, and the pole is a focus of the ellipse.
So a � c � 2, and thus c � 3. An alternative way to find c is to use the fact that the
eccentricity of an ellipse is e � c�a, and thus c � ae � 5 • 0.6 � 3.

To find b we use the Pythagorean relation of an ellipse:

b � �a�2��� c�2� � �2�5� �� 9� � 4.

With all of this information, we can write the Cartesian equation of the ellipse:

	
�x �

25
3�2

	 � 	
1
y
6

2

	 � 1.

Now try Exercise 31.

[–5, 10] by [–5, 5]

FIGURE 8.44 Graph of the ellipse
r � 16��5 � 3 cos ��. (Example 3)
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Orbits Revisited
Polar equations for conics are used extensively in celestial mechanics, the branch of
astronomy based on the work of Kepler and others who have studied the motion of
celestial bodies. The polar equations of conic sections are well suited to the two-body
problem of celestial mechanics for several reasons. First, the same equations are used
for ellipses, parabolas, and hyperbolas—the paths of one body traveling about an-
other. Second, a focus of the conic is always at the pole. This arrangement has two
immediate advantages:

• The pole can be thought of as the center of the larger body, such as the Sun, with
the smaller body, such as Earth, following a conic path about the larger body.

• The coordinates given by a polar equation are the distance r between the two bod-
ies and the direction � from the larger body to the smaller body relative to the axis
of the conic path of motion.

For these reasons, polar coordinates are preferred over Cartesian coordinates for study-
ing orbital motion.

To use the data in Table 8.3 to create polar equations for the elliptical orbits of the plan-
ets, we need to express the equation r � ke��1 � e cos �� in terms of a and e. We apply
the formula PF � e • PD to the ellipse shown in Figure 8.45:

e • PD � PF

e�c � k � a� � a � c From Figure 8.45

e�ae � k � a� � a � ae Use e � c/a.

ae2 � ke � ae � a � ae Distribute the e.

ae2 � ke � a Add ae.

ke � a � ae2 Subtract ae2.

ke � a�1 � e2� Factor.

Table 8.3  Semimajor Axes and Eccentricities of the Planets

Planet Semimajor Axis (Gm) Eccentricity

Mercury 57.9 0.2056
Venus 108.2 0.0068
Earth 149.6 0.0167
Mars 227.9 0.0934
Jupiter 778.3 0.0485
Saturn 1427 0.0560
Uranus 2869 0.0461
Neptune 4497 0.0050
Pluto 5900 0.2484

Source: Shupe, et al., National Geographic Atlas of the World (rev. 6th ed.).
Washington, DC: National Geographic Society, 1992, plate 116, and other sources.

Focus
at poleCenter

Vertex

x

Directrix
x = k

C F P D

c
a
c + k

FIGURE 8.45 Geometric relationships
within an ellipse.
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In this form of the equation, when e � 0, the equation reduces to r � a, the equation
of a circle with radius a.

EXAMPLE 4 Analyzing a Planetary Orbit
Find a polar equation for the orbit of Mercury, and use it to approximate its aphelion
(farthest distance from the Sun) and perihelion (closest distance to the Sun).

SOLUTION Setting e � 0.2056 and a � 57.9 in

r � 	
1
a
�

�1
e
�

co
e
s

2�
�

	 yields r �	
5
1
7
�

.9�
0
1
.2
�

05
0
6
.2

c
0
o
5
s
6
�

2�
	.

Mercury’s aphelion is

r �	
57.9

1
�1
�

�

0.
0
2
.
0
2
5
0
6
562�

	 � 69.8 Gm.

Mercury’s perihelion is

r �	
57.9

1
�1
�

�

0.
0
2
.
0
2
5
0
6
562�

	 � 46.0 Gm.

Now try Exercise 41.

So the equation r � ke�(1 � e cos �) can be rewritten as follows:

QUICK REVIEW 8.5 (For help, go to Section 6.4.)

In Exercises 1 and 2, solve for r.

1. �3, �� � �r, � � �� r � �3

2. ��2, �� � �r, � � �� r � 2 

In Exercises 3 and 4, solve for �.

3. �1.5, ��6� � ��1.5, ��, �2� � � � 2�

4. ��3, 4��3� � �3, ��, �2� � � � 2� � � �/3, � � �5�/3

In Exercises 5 and 6, find the focus and directrix of the parabola.

5. x2 � 16y 6. y2 � �12x

In Exercises 7–10, find the foci and vertices of the conic.

7. 	
x
9

2

	 � 	
y
4

2

	 � 1 8. 	
2
y
5

2

	 � 	
x
9

2

	 � 1

9. 	
1
x
6

2

	 � 	
y
9

2

	 � 1 10. 	
3
y
6

2

	 � 	
x
4

2

	 � 1

FOLLOW-UP

Ask students how to determine what type
of conic is represented by an equation of
the form 

r � 	
b � c

a

cos �
	.

ASSIGNMENT GUIDE

Ex. 3–42, multiples of 3, 43, 54

COOPERATIVE LEARNING

Group Activity: Ex. 43–44

NOTES ON EXERCISES

These exercises require students to com-
bine their knowledge of polar-coordinate
graphing and conic sections. 
Ex. 43–44 deal with circular orbits.
Ex. 45–50 provide practice for standard-
ized tests.
Ex. 58 and 59 require students to work
with the directrix of an ellipse and hyper-
bola in rectangular coordinates.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 7, 31, 41
Embedded Assessment: Ex. 53–59

Ellipse with Eccentricity e and Semimajor Axis a

r � 	
1
a
�

�1
e
�

co
e
s

2�
�

	

3. � � 	
7
6
�
	 , � � �	

5

6

�
	 5. The focus is (0, 4), and the directrix is y � �4. 6. The focus is (�3, 0), and the directrix is x � 3.

7. Foci: (��5�, 0); Vertices: (�3, 0) 8. Foci: (0, �4); Vertices: (0, �5) 9. Foci: (�5, 0); Vertices: (�4, 0)

10. Foci: (0, �4�2�); Vertices: (0, �6)

5144_Demana_Ch08pp631-698  1/13/06  6:50 AM  Page 681
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SECTION 8.5 EXERCISES

In Exercises 1–6, find a polar equation for the conic with a focus at
the pole and the given eccentricity and directrix. Identify the conic,
and graph it.

1. e � 1, x � �2 2. e � 5�4, x � 4

3. e � 3�5, y � 4 4. e � 1, y � 2

5. e � 7�3, y � �1 6. e � 2�3, x � �5

In Exercises 7–14, determine the eccentricity, type of conic, and
directrix.

7. r � 	
1 �

2
cos �
	 8. r � 	

1 � 2
6
cos �
	

9. r � 	
2 � 2

5
sin �
	 10. r � 	

4 �

2
cos �
	

11. r � 	
6 �

2
5
0
sin �
	 12. r � 	

2 �

4
7
2
sin �
	

13. r � 	
5 � 2

6
cos �
	 14. r � 	

2 �

2
5
0
sin �
	

In Exercises 15–20, match the polar equation with its graph, and iden-
tify the viewing window.

15. r � 	
3 � 4

8
cos �
	 16. r � 	

3 � 2
4
cos �
	

17. r � 	
2 � 2

5
sin �
	 18. r � 	

5 � 3
9

sin �
	

19. r � 	
2 �

1
5
5
sin �
	 20. r � 	

4 � 4
15

cos �
	

(f)(e)

(d)(c)

(b)(a)

In Exercises 21–24, find a polar equation for the ellipse with a focus
at the pole and the given polar coordinates as the endpoints of its
major axis.

21. �1.5, 0� and �6, � � 22. �1.5, 0� and �1, � �
23. �1, ��2� and �3, 3��2� 24. �3, ��2� and �0.75, ���2�

In Exercises 25–28, find a polar equation for the hyperbola 
with a focus at the pole and the given polar coordinates as the end-
points of its transverse axis.

25. �3, 0� and ��15, � � 26. ��3, 0� and �1.5, � �

27. (2.4, 	
�

2
	 ) and (�12, 	

3
2
�
	 ) 28. (�6, 	

�

2
	 ) and (2, 	

3
2
�
	 )

In Exercises 29 and 30, find a polar equation for the conic with a
focus at the pole.

29. 30.

In Exercises 31–36, graph the conic, and find the values of e, a, b,
and c.

31. r � 	
5 � 2

21
cos �
	 32. r � 	

6 �

1
5
1
sin �
	

33. r � 	
4 �

2
2
4
sin �
	 34. r � 	

5 � 3
16

cos �
	

35. r � 	
3 � 5

16
cos �
	 36. r � 	

1 �

1
5
2
sin �
	

In Exercises 37 and 38, determine a Cartesian equation for the given
polar equation.

37. r � 	
2 �

4
sin �
	 38. r � 	

1 � 2
6
cos �
	

In Exercises 39 and 40, use the fact that k � 2p is twice the focal
length and half the focal width, to determine a Cartesian equation of
the parabola whose polar equation is given.

39. r � 	
2 � 2

4
cos �
	 40. r � 	

3 � 3
12

cos �
	

41. Halley’s Comet The orbit of
Halley’s comet has a semimajor axis
of 18.09 AU and an orbital eccentricity
of 0.97. Compute its perihelion and
aphelion distances.

y

x

π b1, 
2

a

y

x
)(3, π (0.75, 0)
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SECTION 8.5 Polar Equations of Conics 683

42. Uranus The orbit of the planet Uranus has a semimajor axis of
19.18 AU and an orbital eccentricity of 0.0461. Compute its peri-
helion and aphelion distances.

In Exercises 43 and 44, the velocity of an object traveling in a circular
orbit of radius r (distance from center of planet in meters) around a
planet is given by

v � �	3�.9�9� ��r�1�0�14� k
	� m�sec,

where k is a constant related to the mass of the planet and the orbiting
object.

43. Group Activity Lunar Module A lunar excursion module is
in a circular orbit 250 km above the surface of the Moon. Assume
that the Moon’s radius is 1740 km and that k � 0.012. Find the
following.

(a) the velocity of the lunar module v � 1551 m�sec � 1.551 km�sec

(b) the length of time required for the lunar module to circle the
moon once about 2 hr 14 min

44. Group Activity Mars Satellite A satellite is in a circular
orbit 1000 mi above Mars. Assume that the radius of Mars is
2100 mi and that k � 0.11. Find the velocity of the 
satellite. � 2965 m�sec � 2.965 km�sec � 1.843 mi�sec

Standardized Test Questions
45. True or False The equation r � ke�(1 � e cos �) yields no true

circles. Justify your answer.

46. True or False The equation r � a(1 � e2)�(1 � e cos �) yields
no true parabolas. Justify your answer.

In Exercises 47–50, solve the problem without using a calculator.

47. Multiple Choice Which ratio of distances is constant for a
point on a nondegenerate conic? D

(A) distance to center : distance to directrix

(B) distance to focus : distance to vertex

(C) distance to vertex : distance to directrix

(D) distance to focus : distance to directrix

(E) distance to center : distance to vertex

48. Multiple Choice Which type of conic section has an eccentric-
ity greater than one? C

(A) an ellipse

(B) a parabola

(C) a hyperbola

(D) two parallel lines

(E) a circle

49. Multiple Choice For a conic expressed by 
r � ke�(1 � e sin �), which point is located at the pole? B

(A) the center

(B) a focus

(C) a vertex

(D) an endpoint of the minor axis

(E) an endpoint of the conjugate axis

50. Multiple Choice Which of the following is not a polar equa-
tion of a conic? A

(A) r � 1 � 2 cos �

(B) r � 1�(1 � sin �)

(C) r � 3

(D) r � 1�(2 � cos �)

(E) r � 1�(1�2 cos �)

Explorations
51. Planetary Orbits Use the polar equation

r � a(1 � e2)�(1 � e cos �) in completing the following activities.

(a) Use the fact that �1 � cos � � 1 to prove that the 
perihelion distance of any planet is a(1 � e) and the 
aphelion distance is a(1 � e).

(b) Use e � c�a to confirm that a(1 � e) � a � c and 
a(1 � e) � a � c.

(c) Use the formulas a(1 � e) and a(1 � e) to compute the perihe-
lion and aphelion distances of each planet listed in Table 8.4.

(d) For which of these planets is the difference between the peri-
helion and aphelion distance the greatest?

52. Using the Astronomer’s Equation for Conics Using Dot
mode, a � 2, an xy window of [�13, 5] by [�6, 6], �min � 0,
�max � 2�, and �step � ��48, graph r � a (1 � e2)�(1 � e cos �)
for e � 0, 0.3, 0.7, 1.5, 3. Identify the type of conic section
obtained for each e value. What happens when e � 1?

Table 8.4 Semimajor Axes and
Eccentricities of the Six Innermost Planets

Planet Semimajor Axis (AU) Eccentricity

Mercury 0.3871 0.206
Venus 0.7233 0.007
Earth 1.0000 0.017
Mars 1.5237 0.093
Jupiter 5.2026 0.048
Saturn 9.5547 0.056

Source: Encrenaz & Bibring. The Solar System (2nd ed.). New
York: Springer, p. 5.
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Extending the Ideas
53. Revisiting Figure 8.41 In Figure 8.41, if r � 0 or 

r cos � � k, then we must use PD � �k � r cos � � and PF � �r �.
Prove that, even in these cases, the resulting equation is still
r � ke��1 � e cos ��.

54. Deriving Other Polar Forms for Conics Using Figure 8.41
as a guide, draw an appropriate diagram for and derive the
equation.

(a) r � 	
1 � e

ke
cos �
	

(b) r � 	
1 �

k
e
e
sin �
	

(c) r � 	
1 �

k
e
e
sin �
	

55. Revisiting Example 3 Use the formulas x � r cos � and

x2 � y2 � r2 to transform the polar equation r � 	
5 �

1
3
6
cos �
	

into the Cartesian equation 	
(x �

25
3)2

	 � 	
1
y
6

2

	 � 1.

56. Focal Widths Using polar equations, derive formulas for the
focal width of an ellipse and the focal width of a hyperbola. Begin
by defining focal width for these conics in a manner analogous to
the definition of the focal width of a parabola given in Section 8.1.

57. Prove that for a hyperbola the formula r � ke��1 � e cos �� is
equivalent to r � a�e2 � 1���1 � e cos ��, where a is the semi-
transverse axis of the hyperbola.

58. Connecting Polar to Rectangular Consider the ellipse

	
a
x2

2	 � 	
b
y2

2	 � 1,

where half the length of the major axis is a, and the foci are
��c, 0� such that c2 � a2 � b2. Let L be the vertical line
x � a2�c.

(a) Prove that L is a directrix for the ellipse. [Hint: Prove that
PF�PD is the constant c�a, where P is a point on the ellipse,
and D is the point on L such that PD is perpendicular to L.]

(b) Prove that the eccentricity is e � c�a.

(c) Prove that the distance from F to L is a�e � ea.

59. Connecting Polar to Rectangular Consider the hyperbola

	
a
x2

2	 � 	
b
y2

2	 � 1,

where half the length of the transverse axis is a, and the foci are
��c, 0� such that c2 � a2 � b2. Let L be the vertical line
x � a2�c.

(a) Prove that L is a directrix for the hyperbola. [Hint: Prove that
PF�PD is the constant c�a, where P is a point on the hyperbo-
la, and D is the point on L such that PD is perpendicular to L.]

(b) Prove that the eccentricity is e � c�a.

(c) Prove that the distance from F to L is ea � a/e

y

x

(a, 0)
(–c, 0)

(–a, 0)

F(c, 0)

x = a2

c

D

DP

P

L

D

L

y

x

(a, 0)

(–a, 0)

F(c, 0)

(–c, 0)

P(x, y)

x = a2

c

55. 5r � 3r cos � � 16 ⇒ 5r � 3x � 16. So, 25r2 � 25(x2 � y2) � (3x � 16)2. 25x2 � 25y2 � 9x2 � 96x � 256 ⇒ 16x2 � 96x � 25y2 � 256. Completing the

square yields 	
(x �

25
3)2

	 � 	
1
y
6

2
	 � 1, the desired result.
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8.6
Three-Dimensional Cartesian Coordinate System
What you’ll learn about
■ Three-Dimensional Cartesian

Coordinates

■ Distance and Midpoint
Formulas

■ Equation of a Sphere

■ Planes and Other Surfaces

■ Vectors in Space

■ Lines in Space

. . . and why
This is the analytic geometry of
our physical world.

Three-Dimensional Cartesian Coordinates
In Sections P.2 and P.4, we studied Cartesian coordinates and the associated basic
formulas and equations for the two-dimensional plane; we now extend these ideas
to three-dimensional space. In the plane, we used two axes and ordered pairs to
name points; in space, we use three mutually perpendicular axes and ordered triples
of real numbers to name points. See Figure 8.46.

FIGURE 8.46  The point P�x, y, z� in Cartesian space.

Notice that Figure 8.46 exhibits several important features of the three-dimensional
Cartesian coordinate system:

• The axes are labeled x, y, and z, and these three form a
: When you hold your right hand with fingers

curving from the positive x-axis toward the positive y-axis, your thumb points in
the direction of the positive z-axis.

• A point P in space uniquely corresponds to an ordered triple �x, y, z� of real numbers.
The numbers x, y, and z are the .

• Points on the axes have the form �x, 0, 0�, �0, y, 0�, or �0, 0, z�, with �x, 0, 0� on
the x-axis, �0, y, 0� on the y-axis, and �0, 0, z� on the z-axis.

In Figure 8.47, the axes are paired to determine the :

• The coordinate planes are the , the , and the , and
have equations z � 0, y � 0, and x � 0, respectively.

• Points on the coordinate planes have the form �x, y, 0�, �x, 0, z�, or �0, y, z�, with
�x, y, 0� on the xy-plane, �x, 0, z� on the xz-plane, and �0, y, z� on the yz-plane.

• The coordinate planes meet at the , �0, 0, 0�.

• The coordinate planes divide space into eight regions called , with the
containing all points in space with three positive coordinates.first octant

octants

origin

yz-planexz-planexy-plane

coordinate planes

Cartesian coordinates of P

right-handed coordinate frame
coordinate axes

z

x
x � constant

y � constant

z � constant

(x, y, 0)

(0, y, z)

(0, y, 0)

P(x, y, z)

(0, 0, z)

(x, 0, z)

(x, 0, 0)
y

FIGURE 8.47 The coordinate planes divide
space into eight octants.

z � 0

y � 0

x � 0

y

Origin

(0, 0, 0)

z

x

OBJECTIVE

Students will be able to draw three-
dimensional figures and analyze vectors
in space.

MOTIVATE

Ask students why it might be desirable to
create a coordinate system representing
three-dimensional space.

LESSON GUIDE

Day 1: Three-Dimensional Cartesian
Coordinates; Distance and Midpoint
Formulas; Equation of a Sphere 
Day 2: Planes and Other Surfaces; Vectors
in Space; Lines in Space
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EXAMPLE 1 Locating a Point in Cartesian Space
Draw a sketch that shows the point (2, 3, 5).

SOLUTION To locate the point �2, 3, 5�, we first sketch a right-handed three-
dimensional coordinate frame. We then draw the planes x � 2, y � 3, and z � 5,
which parallel the coordinate planes x � 0, y � 0, and z � 0, respectively. The point
�2, 3, 5� lies at the intersection of the planes x � 2, y � 3, and z � 5, as shown in
Figure 8.48. Now try Exercise 1.

FIGURE 8.48 The planes x � 2, y � 3, and z � 5 determine the point �2, 3, 5�. (Example 1)

Distance and Midpoint Formulas
The distance and midpoint formulas for space are natural generalizations of the corre-
sponding formulas for the plane.

y

(2, 0, 0) (0, 3, 0)
0

(0, 0, 5)

Line x � 2, y � 3

Line x � 2, z � 5

Line y � 3, z � 5

Plane y � 3

Plane z � 5

Plane x � 2

z

x

(2, 3, 5)

Distance Formula (Cartesian Space)

The distance d�P, Q� between the points P�x1, y1, z1� and Q�x2, y2, z2� in space is

d�P, Q� � ��x�1��� x�2��2��� ��y1� �� y�2��2��� ��z1� �� z�2��2�.

5144_Demana_Ch08pp631-698  1/13/06  6:50 AM  Page 686
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Just as in the plane, the coordinates of the midpoint of a line segment are the averages
for the coordinates of the endpoints of the segment.

EXAMPLE 2 Calculating a Distance and Finding
a Midpoint

Find the distance between the points P��2, 3, 1� and Q�4, �1, 5�, and find the mid-
point of line segment PQ.

SOLUTION The distance is given by

d�P, Q� � ����2� �� 4��2� �� ��3� �� 1��2� �� ��1� �� 5��2�

� �3�6� �� 1�6� �� 1�6�

� �6�8� � 8.25

The midpoint is 

M � (	�2
2
� 4
	, 	

3 �

2
1

	, 	
1 �

2
5

	 ) � �1, 1, 3�.

Now try Exercises 5 and 9.

Midpoint Formula (Cartesian Space)

The midpoint M of the line segment PQ with endpoints P�x1, y1, z1� and 
Q�x2, y2, z2� is

M � (	x1 �

2
x2	, 	

y1 �

2
y2	, 	

z1 �

2
z2	 ).

Equation of a Sphere
A sphere is the three-dimensional analogue of a circle: In space, the set of points that
lie a fixed distance from a fixed point is a sphere. The fixed distance is the ,
and the fixed point is the center of the sphere. The point P�x, y, z� is a point of the
sphere with center �h, k, l� and radius r if and only if

��x� �� h��2� �� ��y��� k��2� �� ��z��� l��2� � r.

Squaring both sides gives the standard equation shown below.

radius

TEACHING NOTE

Many of the results discussed in this sec-
tion are fairly intuitive extensions of previ-
ously studied two-dimensional results. You
may wish to present a comparison
between the two-dimensional results and
their three-dimensional counterparts.

Standard Equation of a Sphere

A point P�x, y, z� is on the sphere with center �h, k, l� and radius r if and only if

�x � h�2 � �y � k�2 � �z � l�2 � r2.
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688 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Drawing Lesson

How to Draw Three-Dimensional Objects to Look Three-Dimensional

1. Make the angle between the
positive x-axis and the
positive y-axis large enough.

2. Break lines. When one line
passes behind another, break 
it to show that it doesn’t
touch and that part of it is 
hidden.

3. Dash or omit hidden portions
of lines. Don’t let the line
touch the boundary of the 
parallelogram that represents
the plane, unless the line lies 
in the plane.

4. Spheres: Draw the sphere
first (outline and equator); 
draw axes, if any, later. 
Use line breaks and dashed 
lines.

Hidden part
dashed

Sphere first Axes later

Break

A contact dot
sometimes helps

z

x

y

Break

Line below plane Line above plane Line in plane

A

C

B

D
A

C

B

D
A

C

B

D

Intersecting CD behind AB AB behind CD

z

x

y

z

x

y

This Not this
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EXAMPLE 3 Finding the Standard Equation of a Sphere

The standard equation of the sphere with center �2, 0, �3� and radius 7 is

�x � 2�2 � y2 � �z � 3�2 � 49.

Now try Exercise 13.

Planes and Other Surfaces
In Section P.4, we learned that every line in the Cartesian plane can be written as a first-
degree (linear) equation in two variables; that is, every line can be written as

Ax � By � C � 0,

where A and B are not both zero. Conversely, every first-degree equation in two vari-
ables represents a line in the Cartesian plane.

In an analogous way, every in Cartesian space can be written as a 
:equation in three variables

first-degreeplane

Equation for a Plane in Cartesian Space

Every plane can be written as

Ax � By � Cz � D � 0,

where A, B, and C are not all zero. Conversely, every first-degree equation in three
variables represents a plane in Cartesian space.

EXAMPLE 4 Sketching a Plane in Space
Sketch the graph of 12x � 15y � 20z � 60.

SOLUTION Because this is a first-degree equation, its graph is a plane. Three
points determine a plane. To find three points, we first divide both sides of
12x � 15y � 20z � 60 by 60:

	
5
x

	 � 	
4
y

	 � 	
3
z

	 � 1.

In this form, it is easy to see that the points �5, 0, 0�, �0, 4, 0�, and �0, 0, 3� satisfy the
equation. These are the points where the graph crosses the coordinate axes. Figure
8.49 shows the completed sketch.

Now try Exercise 17.

FIGURE 8.49 The intercepts �5, 0, 0�,
�0, 4, 0�, and �0, 0, 3� determine the plane
12x � 15y � 20z � 60. (Example 4)

z

x

y

(5, 0, 0)

(0, 4, 0)

(0, 0, 3)

12x + 15y + 20z = 60
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Equations in the three variables x, y, and z generally graph as surfaces in three-dimen-
sional space. Just as in the plane, second-degree equations are of particular interest.
Recall that second-degree equations in two variables yield conic sections in the
Cartesian plane. In space, second-degree equations in three variables yield

: The paraboloids, ellipsoids, and hyperboloids of revolution that
have special reflective properties are all quadric surfaces, as are such exotic-sounding
surfaces as hyperbolic paraboloids and elliptic hyperboloids.

Other surfaces of interest include graphs of , whose
equations have the form z � f �x, y�. Some examples are z � x ln y, z � sin�xy�, and
z � �1� �� x�2��� y�2�. The last equation graphs as a hemisphere (see Exercise 63).
Equations of the form z � f �x, y� can be graphed using some graphing calculators and
most computer algebra software. Quadric surfaces and functions of two variables are
studied in most university-level calculus course sequences.

Vectors in Space
In space, just as in the plane, the sets of equivalent directed line segments (or arrows)
are vectors. They are used to represent forces, displacements, and velocities in three
dimensions. In space, we use ordered triples to denote vectors:

v � �v1, v2, v3�.

The is 0 � �0, 0, 0�, and the are i � �1, 0, 0�,
j � �0, 1, 0�, and k � �0, 0, 1�. As shown in Figure 8.50, the vector v can be expressed
in terms of these standard unit vectors:

v � �v1, v2, v3� � v1i � v2 j � v3k.

The vector v that is represented by the arrow from P�a, b, c� to Q�x, y, z� is

v � PQ�� � �x � a, y � b, z � c� � �x � a�i � �y � b�j � �z � c�k.

A vector v � �v1, v2, v3� can be multiplied by a scalar (real number) c as follows:

cv � c�v1, v2, v3� � �cv1, cv2, cv3�.

Many other properties of vectors generalize in a natural way when we move from two
to three dimensions:

standard unit vectorszero vector

functions of two variables

quadric surfaces

FIGURE 8.50 The vector v � �v1, v2, v3�.

z

x

y
�0, 1, 0�

�1, 0, 0�

�0, 0, 1�
�v1, v2, v3�

i

v

j

k

v1

v2

v3

Vector Relationships in Space

For vectors v � �v1, v2, v3� and w � �w1, w2, w3�,

• Equality: v � w if and only if v1 � w1, v2 � w2, and v3 � w3

• Addition: v � w � �v1 � w1, v2 � w2, v3 � w3�

• Subtraction: v � w � �v1 � w1, v2 � w2, v3 � w3�

• Magnitude: �v � � �v2
1� �� v�2

2��� v�2
3�

• Dot product: v • w � v1w1 � v2w2 � v3w3

• Unit vector: u � v��v�, v � 0, is the unit vector in the direction of v.
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EXAMPLE 5 Computing with Vectors
(a) 3��2, 1, 4� � �3 • �2, 3 • 1, 3 • 4� � ��6, 3, 12�

(b) �0, 6, �7� � ��5, 5, 8� � �0 � 5, 6 � 5, �7 � 8� � ��5, 11, 1�

(c) �1, �3, 4� � ��2, �4, 5� � �1 � 2, �3 � 4, 4 � 5� � �3, 1, �1�

(d) ��2, 0, �6�� � �2�2��� 0�2��� 6�2� � �4�0� � 6.32

(e) �5, 3, �1� • ��6, 2, 3� � 5 • ��6� � 3 • 2 � ��1� • 3

� �30 � 6 � 3 � �27

Now try Exercises 23–26.

EXAMPLE 6 Using Vectors in Space
A jet airplane just after takeoff is pointed due east. Its air velocity vector makes an
angle of 30° with flat ground with an airspeed of 250 mph. If the wind is out of the
southeast at 32 mph, calculate a vector that represents the plane’s velocity relative to
the point of takeoff.

SOLUTION Let i point east, j point north, and k point up. The plane’s air velocity is

a � �250 cos 30°, 0, 250 sin 30°� � �216.506, 0, 125�,

and the wind velocity, which is pointing northwest, is

w � �32 cos 135°, 32 sin 135°, 0� � ��22.627, 22.627, 0�.

The velocity relative to the ground is v � a � w, so

v � �216.506, 0, 125� � ��22.627, 22.627, 0�

� �193.88, 22.63, 125�

� 193.88i � 22.63j � 125k
Now try Exercise 33.

In Exercise 64, you will be asked to interpret the meaning of the velocity vector
obtained in Example 6.

Lines in Space
We have seen that first-degree equations in three variables graph as planes in space.
So how do we get lines? There are several ways. First notice that to specify the x -axis,
which is a line, we could use the pair of first-degree equations y � 0 and z � 0. As
alternatives to using a pair of Cartesian equations, we can specify any line in space
using

• one vector equation, or

• a set of three parametric equations.
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Suppose / is a line through the point P0�x0, y0, z0� and in the direction of a nonzero
vector v � �a, b, c� (Figure 8.51). Then for any point P�x, y, z� on /,

P0P�� � tv

for some real number t. The vector v is a for line /. If r � OP�� �
�x, y, z� and r0 � OP0

�� � �x0, y0, z0�, then r � r0 � tv. So an equation of the line /
is r � r0 � tv.

direction vector

Equations for a Line in Space

If / is a line through the point P0�x0, y0, z0� in the direction of a nonzero vector
v � �a, b, c�, then a point P�x, y, z) is on / if and only if

• Vector form: r � r0 � tv, where r � �x, y, z� and r0 � �x0, y0, z0�; or

• Parametric form: x � x0 � at, y � y0 � bt, and z � z0 � ct,

where t is a real number.

EXAMPLE 7 Finding Equations for a Line
The line through P0�4, 3, �1� with direction vector v � ��2, 2, 7� can be written

• in vector form as r � �4, 3, �1� � t��2, 2, 7�; or

• in parametric form as x � 4 � 2t, y � 3 � 2t, and z � �1 � 7t.

Now try Exercise 35.

EXAMPLE 8 Finding Equations for a Line
Using the standard unit vectors i, j, and k, write a vector equation for the line con-
taining the points A�3, 0, �2) and B��1, 2, �5�, and compare it to the parametric
equations for the line.

SOLUTION The line is in the direction of 

v � AB�� � ��1 � 3, 2 � 0, �5 � 2� � ��4, 2, �3�. 

So using r0 � OA��, the vector equation of the line becomes:

r � r0 � tv

�x, y, z� � �3, 0, �2� � t��4, 2, �3�

�x, y, z� � �3 � 4t, 2t, � 2 � 3t�

xi � yj � zk � �3 � 4t�i � 2tj � ��2 � 3t�k

The parametric equations are the three component equations

x � 3 � 4t, y � 2t, and z � �2 � 3t.

Now try Exercise 41.

FIGURE 8.51 The line / is parallel to
the direction vector v � �a, b, c�.

z

x

y

v = �a, b, c�

P0(x0, y0, z0)

P(x, y, z)

�

FOLLOW-UP

Ask students to give alternate vector and
parametric forms for the line in Example 7.

ASSIGNMENT GUIDE

Day 1: Ex. 1–15, odds
Day 2: Ex. 18–54, multiples of 3

COOPERATIVE LEARNING

Group Activity: Ex. 63

NOTES ON EXERCISES

Ex. 55 and 56 are proof exercises.
Ex. 65–68 introduce the cross product of
two vectors.

ONGOING ASSESSMENT

Self-Assessment: Ex. 1, 5, 9, 13, 17,
23–26, 33, 41
Embedded Assessment: Ex. 43–48, 53
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QUICK REVIEW 8.6 (For help, go to Sections 6.1 and 6.3.)

In Exercises 1– 3, let P�x, y� and Q�2, �3� be points in the
xy-plane.

1. Compute the distance between P and Q.

2. Find the midpoint of the line segment PQ.

3. If P is 5 units from Q, describe the position of P.

In Exercises 4–6, let v � ��4, 5� � �4i � 5j be a vector in the
xy-plane.

4. Find the magnitude of v. �4�1�
5. Find a unit vector in the direction of v.

6. Find a vector 7 units long in the direction of �v.

7. Give a geometric description of the graph of 
�x � 1�2 � �y � 5�2 � 25 in the xy-plane.

8. Give a geometric description of the graph of x � 2 � t,
y � �4 � 2t in the xy-plane.

9. Find the center and radius of the circle 
x2 � y2 � 2x � 6y � 6 � 0 in the xy-plane.

10. Find a vector from P�2, 5� to Q��1, �4� in the xy-plane.

SECTION 8.6 EXERCISES

In Exercises 1–4, draw a sketch that shows the point.

1. �3, 4, 2� 2. �2, �3, 6�
3. �1, �2, �4� 4. ��2, 3, �5�

In Exercises 5–8, compute the distance between the points.

5. ��1, 2, 5�, �3, �4, 6� �5�3�

6. �2, �1, �8�, �6, �3, 4� 2�4�1�

7. �a, b, c�, �1, �3, 2� �(a� �� 1�)2� �� (�b� �� 3�)2� �� (�c� �� 2�)2�

8. �x, y, z�, �p, q, r� �(x� �� p�)2� �� (�y� �� q�)2� �� (�z� �� r�)2�

In Exercises 9–12, find the midpoint of the segment PQ.

9. P��1, 2, 5�, Q�3, �4, 6� (1, �1, 11/2)

10. P�2, �1, �8 �, Q�6, �3, 4� (4, �2, �2)

11. P�2x, 2y, 2z�, Q��2, 8, 6 � (x � 1, y � 4, z � 3)

12. P��a, �b, �c�, Q�3a, 3b, 3c� (a, b, c)

In Exercises 13–16, write an equation for the sphere with the given
point as its center and the given number as its radius.

13. �5, �1, �2�, 8 14. ��1, 5, 8�, �5�

15. �1, �3, 2�, �a�, a � 0 16. � p, q, r�, 6

In Exercises 17–22, sketch a graph of the equation.  Label all intercepts.

17. x � y � 3z � 9 18. x � y � 2z � 8

19. x � z � 3 20. 2y � z � 6

21. x � 3y � 6 22. x � 3

In Exercises 23–32, evaluate the expression using r � �1, 0, �3�,
v � ��3, 4, �5�, and w � �4, �3, 12�.

23. r � v ��2, 4, �8� 24. r � w ��3, 3, �15�

25. v • w �84 26. �w� 13

27. r • �v � w� �20 28. �r • v� � �r • w� �20

29. w��w� 30. i • r 1

31. �i • v, j • v, k • v� 32. �r • v�w �48, �36, 144�

In Exercises 33 and 34, let i point east, j point north, and k point up.

33. Three-Dimensional Velocity An airplane just after takeoff is
headed west and is climbing at a 20� angle relative to flat ground
with an airspeed of 200 mph. If the wind is out of the northeast at
10 mph, calculate a vector v that represents the plane’s velocity
relative to the point of takeoff. v � �195.01i � 7.07j � 68.40k

34. Three-Dimensional Velocity A rocket soon after takeoff is
headed east and is climbing at a 80� angle relative to flat ground
with an airspeed of 12,000 mph. If the wind is out of the south-
west at 8 mph, calculate a vector v that represents the rocket’s
velocity relative to the point of takeoff.

In Exercises 35–38, write the vector and parametric forms of the line
through the point P0 in the direction of v.

35. P0(2, �1, 5), v � �3, 2, �7� 
36. P0(�3, 8, �1), v � ��3, 5, 2� 
37. P0(6, �9, 0), v � �1, 0,�4� 
38. P0(0, �1, 4), v � �0, 0, 1�
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In Exercises 39–48, use the points A��1, 2, 4�, B�0, 6, �3�, and
C�2, �4, 1�.

39. Find the distance from A to the midpoint of BC. �3�0�
40. Find the vector from A to the midpoint of BC.  �2, �1, �5�

41. Write a vector equation of the line through A and B.

42. Write a vector equation of the line through A and the midpoint of
BC. r � ��1, 2, 4� � t�2, �1, �5�

43. Write parametric equations for the line through A and C.

44. Write parametric equations for the line through B and C.

45. Write parametric equations for the line through B and the mid-
point of AC.

46. Write parametric equations for the line through C and the mid-
point of AB.

47. Is �ABC equilateral, isosceles, or scalene? scalene

48. If M is the midpoint of BC, what is the midpoint of AM?

In Exercises 49–52, (a) sketch the line defined by the pair of equations,
and (b) Writing to Learn give a geometric description of the line,
including its direction and its position relative to the coordinate frame.

49. x � 0, y � 0

50. x � 0, z � 2

51. x � �3, y � 0

52. y � 1, z � 3

53. Write a vector equation for the line through the distinct points
P�x1, y1, z1� and Q�x2, y2, z2�.

54. Write parametric equations for the line through the distinct points
P�x1, y1, z1� and Q�x2, y2, z2�.

55. Generalizing the Distance Formula Prove that the distance
d(P, Q) between the points P(x1, y1, z1) and Q(x2, y2, z2) in space is 
�(x1 � x�2)2 � (�y1 � y�2)2 � (�z1 � z2�)2� by using the point R(x2, y2, z1),
the two-dimensional distance formula within the plane z � z1, the
one-dimensional distance formula within the line r = �x2, y2, t�,
and the Pythagorean theorem. [Hint: A sketch may help you visu-
alize the situation.]

56. Generalizing a Property of the Dot Product Prove 
u • u � �u�2 where u is a vector in three-dimensional space.

Standardized Test Questions
57. True or False x2 � 4y2 � 1 represents a surface in space.

Justify your answer.

58. True or False The parametric equation x � 1 � 0t, y � 2 � 0t,
z � �5 � 0t represent a line in space. Justify your answer.

In Exercises 59–62, solve the problem without using a calculator.

59. Multiple Choice A first-degree equation in three variables
graphs as B

(A) a line.

(B) a plane.

(C) a sphere.

(D) a paraboloid.

(E) an ellipsoid.

60. Multiple Choice Which of the following is not a quadric 
surface? A

(A) a plane

(B) a sphere

(C) an ellipsoid

(D) an elliptic paraboloid

(E) a hyperbolic paraboloid

61. Multiple Choice If v and w are vectors and c is a scalar, which
of these is a scalar? C

(A) v � w

(B) v � w

(C) v • w

(D) cv

(E) �v�w

62. Multiple Choice The parametric form of the line 
r � �2, �3, 0� � t �1, 0, �1� is E

(A) x � 2 � 3t, y � 0 � 1t, z � 0 � 1t.

(B) x � 2t, y � �3 � 0t, z � 0 � 1t.

(C) x � 1 � 2t, y � 0 � 3t, z � �1 � 0t.

(D) x � 1 � 2t, y � �3, z � �1t.

(E) x � 2 � t, y � �3, z � �t.

Explorations
63. Group Activity Writing to Learn The figure shows a graph

of the ellipsoid x2�9 � y2�4 � z2�16 � 1 drawn in a box using
Mathematica computer software.

(a) Describe its cross sections in each of the three coordinate
planes, that is, for z � 0, y � 0, and x � 0. In your descrip-
tion, include the name of each cross section and its position
relative to the coordinate frame.

(b) Explain algebraically why the graph of z � �1� �� x�2��� y�2� is
half of a sphere. What is the equation of the related whole
sphere?
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(c) By hand, sketch the graph of the hemisphere z � �1� �� x�2��� y�2�. 
Check your sketch using a 3D grapher if you have access to one.

(d) Explain how the graph of an ellipsoid is related to the graph of
a sphere and why a sphere is a degenerate ellipsoid.

–2
–1

0
1

2

–2

0

2

–4

–2

0

2

4

64. Revisiting Example 6 Read Example 6. Then using
v � 193.88i � 22.63j � 125k, establish the following:

(a) The plane’s compass bearing is 83.34°.

(b) Its speed downrange (that is, ignoring the vertical component)
is 195.2 mph.

(c) The plane is climbing at an angle of 32.63°.

(d) The plane’s overall speed is 231.8 mph.

Extending the Ideas
The of the vectors u � u1i � u2 j � u3k and v �
v1i � v2 j � v3k is

u � v � � �
� �u2v3 � u3v2�i � �u3v1 � u1v3�j � �u1v2 � u2v1�k.

Use this definition in Exercises 65–68.

65. �1, �2, 3� � ��2, 1, �1� ��1, �5, �3�

66. �4, �1, 2� � �1, �3, 2� �4, �6, �11�

67. Prove that i � j � k.

68. Assuming the theorem about angles between vectors (Section 6.2)
holds for three-dimensional vectors, prove that u � v is perpen-
dicular to both u and v if they are nonzero.

i j k

u1 u2 u3

v1 v2 v3

cross product u � v
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Midpoint Formula (Cartesian Space)  687
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2	 � 	
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CHAPTER 8 Review Exercises

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1–4, find the vertex, focus, directrix, and focal width of
the parabola, and sketch the graph.

1. y2 � 12x 2. x2 � �8y

3. �x � 2�2 � �4�y � 1� 4. �y � 2�2 � 16x

In Exercises 5–12, identify the type of conic. Find the center, vertices,
and foci of the conic, and sketch its graph.

5. 	
y
8

2

	 � 	
x
5

2

	 � 1 6. 	
1
y
6

2

	 � 	
4
x
9

2

	 � 1

7. 	
2
x
5

2

	 � 	
3
y
6

2

	 � 1 8. 	
4
x
9

2

	 � 	
y
9

2

	 � 1

9. 	
�x �

18
3�2

	 � 	
�y �

28
5�2

	 � 1 10. 	
�y �

9
3�2

	 � 	
�x �

12
7�2

	 � 1

11. 	
�x �

16
2�2

	 � 	
�y �

7
1�2

	 � 1 12. � 	
�x �

20
6�2

	 � 1

In Exercises 13–20, match the equation with its graph.

y

x

(f)

y

x

(e)

y

x

(d)

y

x

(c)

y

x

(b)

y

x

(a)

y2

	
36

13. y2 � �3x (b) 14. 	
�x �

4
2�2

	 � y2 � 1  (g)

15. � x2 � 1 (h) 16. � � 1 (e)

17. � x2 � 1 (f) 18. x2 � y (d)

19. x2 � �4y (c) 20. y2 � 6x (a)

In Exercises 21–28, identify the conic. Then complete the square to
write the conic in standard form, and sketch the graph.

21. x2 � 6x � y � 3 � 0

22. x2 � 4x � 3y2 � 5 � 0

23. x2 � y2 � 2x � 4y � 6 � 0

24. x2 � 2x � 4y � 7 � 0

25. y2 � 6x � 4y � 13 � 0

26. 3x2 � 6x � 4y � 9 � 0

27. 2x2 � 3y2 � 12x � 24y � 60 � 0

28. 12x2 � 4y2 � 72x � 16y � 44 � 0

29. Prove that the parabola with focus �0, p� and directrix 
y � �p has the equation x2 � 4py.

30. Prove that the equation y2 � 4px represents a parabola with focus
� p, 0� and directrix x � �p.

In Exercises 31–36, identify the conic. Solve the equation for y and
graph it.

31. 3x2 � 8xy � 6y2 � 5x � 5y � 20 � 0

32. 10x2 � 8xy � 6y2 � 8x � 5y � 30 � 0

33. 3x2 � 2xy � 5x � 6y � 10 � 0

34. 5xy � 6y2 � 10x � 17y � 20 � 0

35. �3x2 � 7xy � 2y2 � x � 20y � 15 � 0

36. �3x2 � 7xy � 2y2 � 2x � 3y � 10 � 0

In Exercises 37–48, find the equation for the conic in standard form.

37. Parabola: vertex �0, 0�, focus �2, 0� y2 � 8x

38. Parabola: vertex �0, 0�, opens downward, focal width � 12

39. Parabola: vertex ��3, 3�, directrix y � 0

40. Parabola: vertex �1, �2�, opens to the left, focal length � 2

y2

	
3

y2

	
25

x2

	
9

y2

	
5

y

x

(h)

y

x

(g)
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41. Ellipse: center �0, 0�, foci ��12, 0�, vertices ��13, 0�
42. Ellipse: center �0, 0�, foci �0, �2�, vertices �0, �6�
43. Ellipse: center �0, 2�, semimajor axis � 3, one focus is 

�2, 2�. x2/9 � (y � 2)2/5 � 1

44. Ellipse: center ��3, �4�, semimajor axis � 4, one focus is
�0, �4�. (x � 3)2/16 � (y � 4)2/7 � 1

45. Hyperbola: center �0, 0�, foci �0, �6�, vertices �0, �5�
46. Hyperbola: center �0, 0�, vertices ��2, 0�, asymptotes

y � �2x x2/4 � y2/16 � 1

47. Hyperbola: center �2, 1�, vertices �2 � 3, 1�, one asymptote is
y � �4 �3��x � 2� � 1

48. Hyperbola: center ��5, 0�, one focus is ��5, 3�, one vertex is
��5, 2�. y2/4 � (x � 5)2/5 � 1

In Exercises 49–54, find the equation for the conic in standard form.

49. x � 5 cos t, y � 2 sin t, 0 � t � 2�    x2/25 � y2/4 � 1

50. x � 4 sin t, y � 6 cos t, 0 � t � 4�  y2/36 � x2/16 � 1

51. x � �2 � cos t, y � 4 � sin t, 2� � t � 4�

52. x � 5 � 3 cos t, y � �3 � 3 sin t, �2� � t � 0

53. x � 3 sec t, y � 5 tan t, 0 � t � 2�   x2/9 � y2/25 � 1

54. x � 4 sec t, y � 3 tan t, 0 � t � 2�   x2/16 � y2/9 � 1

In Exercises 55–62, identify and graph the conic, and rewrite the
equation in Cartesian coordinates.

55. r � 	
1 �

4
cos �
	 56. r � 	

1 �

5
sin �
	

57. r � 	
3 �

4
cos �
	 58. r � 	

4 �

3
sin �
	

59. r � 	
2 �

3
7
5
sin �
	 60. r � 	

2 � 5
15

cos �
	

61. r � 	
1 �

2
cos �
	 62. r � 	

4 � 4
4
cos �
	

In Exercises 63–74, use the points P��1, 0, 3� and Q�3, �2, �4� and
the vectors v � ��3, 1, �2� and w � �3, �4, 0�.

63. Compute the distance from P to Q. �6�9�

64. Find the midpoint of segment PQ. (1, �1, �1/2)

65. Compute v � w. �0, �3, �2�

66. Compute v � w. ��6, 5, �2�

67. Compute v • w. �13

68. Compute the magnitude of v. �1�4�

69. Write the unit vector in the direction of w. �3/5, �4/5, 0�

70. Compute �v • w��v � w�. �0, 39, 26�

71. Write an equation for the sphere centered at P with radius 4.

72. Write parametric equations for the line through P and Q.

73. Write a vector equation for the line through P in the direction of
v. r � ��1, 0, 3� � t��3, 1, �2�

74. Write parametric equations for the line in the direction of w
through the midpoint of PQ.

75. Parabolic Microphones B-Ball Network uses a parabolic
microphone to capture all the sounds from the basketball players
and coaches during each regular season game. If one of its micro-
phones has a parabolic surface generated by the parabola 18y � x2,
locate the focus (the electronic receiver) of the parabola. (0, 4.5)

76. Parabolic Headlights Specific Electric makes parabolic head-
lights for a variety of automobiles. If one of its headlights has a
parabolic surface generated by the parabola y2 � 15x (see figure),
where should its lightbulb be placed? (3.75, 0)

77. Writing to Learn Elliptical
Billiard Table Elliptical billiard
tables have been constructed with
spots marking the foci. Suppose such
a table has a major axis of 6 ft and
minor axis of 4 ft.

(a) Explain the strategy that a “pool
shark” who knows conic geometry would use to hit a blocked
spot on this table.

(b) If the table surface is coordinatized so that (0, 0) represents
the center of the table and the x-axis is along the focal axis of
the ellipse, at which point(s) should the ball be aimed?

78. Weather Satellite The Nimbus weather satellite travels in a
north-south circular orbit 500 meters above Earth. Find the follow-
ing. (Assume Earth’s radius is 6380 km.)

(a) The velocity of the satellite using the formula for velocity v given
for Exercises 43 and 44 in Section 8.5 with k � 1 7.908 km/sec

(b) The time required for Nimbus to circle Earth once 1 hr 25 min

79. Elliptical Orbits The velocity of a body in an elliptical Earth
orbit at a distance r (in meters) from the focus (the center of Earth) is

v � �3�.9�9� �� 1�0�14� (� 	
2
r

	� �� 	
1
a�	 )� m�sec,

where a is the semimajor axis of the ellipse. An Earth satellite has
a maximum altitude (at apogee) of 18,000 km and has a minimum
altitude (at perigee) of 170 km. Assuming Earth’s radius is 6380
km, find the velocity of the satellite at its apogee and perigee.

80. Icarus The asteroid Icarus is about 1 mi wide. It revolves around
the Sun once every 409 Earth days and has an orbital eccentricity
of 0.83. Use Kepler’s first and third laws to determine Icarus’s
semimajor axis, perihelion distance, and aphelion distance.

Focus Light
rays
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CHAPTER 8 Project

Ellipses as Models of Pendulum Motion

As a simple pendulum swings back and forth, a plot of its
velocity versus its position is elliptical in nature and can be
modeled using a standard form of the equation of an ellipse,

	
(x �

a2
h)2

	 � 	
(y �

b2
k)2

	 � 1 or 	
(y �

a2
k)2

	 � 	
(x �

b2
h)2

	 � 1,

where x represents the pendulum’s position relative to a fixed
point and y represents the pendulum’s velocity. In this project,
you will use a motion detection device to collect position (dis-
tance) and velocity data for a swinging pendulum, then find a
mathematical model that describes the pendulum’s velocity
with respect to position.

COLLECTING THE DATA

Construct a simple pendulum by fastening about 0.5 meter of
string to a ball. Set up a Calculator-Based Ranger (CBR) sys-
tem to collect distance and velocity readings for 4 seconds
(enough time to capture at least one complete swing of the pen-
dulum). See the printed or online CBR guidebook for specific
setup instructions. Start the pendulum swinging toward and
away from the detector, then activate the CBR system. The
table below is a sample set of data collected in the manner just
described.

EXPLORATIONS

1. If you collected data using a CBR, a plot of distance versus
time may be shown on your grapher screen. Go to the plot
setup screen and create a scatter plot of velocity versus dis-
tance. If you do not have access to a CBR, use the distance
and velocity data from the table below to create a scatter plot.

2. Find values for a, b, h, and k so that the equation

	
(x �

a2
h)2

	 � 	
(y �

b2
k)2

	 � 1 or 	
(y �

a2
k)2

	 � 	
(x �

b2
h)2

	 � 1

fits the velocity versus position data plot. To graph this
model you will have to solve the appropriate equation for y
and enter it into the calculator in Y1 and Y2.

3. With respect to the ellipse modeled above, what do the
variables a, b, h, and k represent?

4. What are the physical meanings of a, b, h, and k with
respect to the motion of the pendulum?

5. Set up plots of distance versus time and velocity versus
time. Find models for both of these plots and use them to
graph the plot of the ellipse using parametric equations.

Time Distance from Velocity Time Distance from Velocity
(sec) the CBR (m) (m�sec) (sec) the CBR (m) (m�sec)

0 0.682 �0.3 0.647 0.454 0.279
0.059 0.659 �0.445 0.706 0.476 0.429
0.118 0.629 �0.555 0.765 0.505 0.544
0.176 0.594 �0.621 0.824 0.54 0.616
0.235 0.557 �0.638 0.882 0.576 0.639
0.294 0.521 �0.605 0.941 0.612 0.612
0.353 0.489 �0.523 1 0.645 0.536
0.412 0.463 �0.4 1.059 0.672 0.418
0.471 0.446 �0.246 1.118 0.69 0.266
0.529 0.438 �0.071 1.176 0.699 0.094
0.588 0.442 0.106 1.235 0.698 �0.086
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