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Foreword

The main purpose of these notes is to describe analytic techniques which are useful to
study questions such as linear series, multiplier ideals and vanishing theorems for al-
gebraic vector bundles. One century after the ground-breaking work of Riemann on
geometric aspects of function theory, the general progress achieved in differential ge-
ometry and global analysis on manifolds resulted into major advances in the theory of
algebraic and analytic varieties of arbitrary dimension. One central unifying concept
is positivity, which can be viewed either in algebraic terms (positivity of divisors and
algebraic cycles), or in more analytic terms (plurisubharmonicity, Hermitian connections
with positive curvature). In this direction, one of the most basic results is Kodaira’s
vanishing theorem for positive vector bundles (1953—1954), which is a deep consequence
of the Bochner technique and the theory of harmonic forms initiated by Hodge during
the 1940’s. This method quickly led Kodaira to the well-known embedding theorem for
projective varieties, a far reaching extension of Riemann’s characterization of abelian
varieties. Further refinements of the Bochner technique led ten years later to the theory
of L2 estimates for the Cauchy-Riemann operator, in the hands of Kohn, Andreotti-
Vesentini and Hörmander among others. Not only can vanishing theorems be proved or
reproved in that manner, but perhaps more importantly, extremely precise information
of a quantitative nature can be obtained about solutions of ∂-equations, their zeroes,
poles and growth at infinity.

We try to present here a condensed exposition of these techniques, assuming that
the reader is already somewhat acquainted with the basic concepts pertaining to sheaf
theory, cohomology and complex differential geometry. In the final sections, we address
very recent questions and open problems, e.g. results related to the finiteness of the
canonical ring and the abundance conjecture, as well as results describing the geometric
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structure of Kähler varieties and their positive cones.

These notes are a patchwork of lectures given by the author in many places (CIME
in 1994, ICTP Trieste in 2000, Mahdia in 2004, Park City in 2008, CIME in 2011,
Gael-XX-Plus at Grenoble in 2012 ...)

0. Introduction

This introduction will serve as a general guide for reading the various parts of this text.
The first three sections briefly introduce basic materials concerning complex differential
geometry, Dolbeault cohomology, plurisubharmonic functions, positive currents and holo-
morphic vector bundles. They are mainly intended to fix notation. Although the most
important concepts are redefined, readers will probably need to already possess some
related background in complex analysis and complex differential geometry – whereas the
expert readers should be able to quickly proceed further.

The heart of the subject starts with the Bochner technique in Section 4, leading to
fundamental L2 existence theorems for solutions of ∂-equations in Section 5. What makes
the theory extremely flexible is the possibility to formulate existence theorems with a
wide assortment of different L2 norms, namely norms of the form

∫
X
|f |2e−2ϕ where

ϕ is a plurisubharmonic or strictly plurisubharmonic function on the given manifold or
variety X . Here, the weight ϕ need not be smooth, and on the contrary, it is extremely
important to allow weights which have logarithmic poles of the form ϕ(z) = c log

∑ |gj|2,
where c > 0 and (gj) is a collection of holomorphic functions possessing a common zero
set Z ⊂ X . Following Nadel [Nad89], one defines the multiplier ideal sheaf I(ϕ) to be
the sheaf of germs of holomorphic functions f such that |f |2e−2ϕ is locally summable.
Then I(ϕ) is a coherent algebraic sheaf over X and Hq(X,KX ⊗ L ⊗ I(ϕ)) = 0 for all
q > 1 if the curvature of L is positive as a current. This important result can be seen as
a generalization of the Kawamata-Viehweg vanishing theorem [Kaw82, Vie82], which is
one of the cornerstones of higher dimensional algebraic geometry, especially in relation
with Mori’s minimal model program.

In the dictionary between analytic geometry and algebraic geometry, the ideal I(ϕ)
plays a very important role, since it directly converts an analytic object into an algebraic
one, and, simultaneously, takes care of the singularities in a very efficient way. Another
analytic tool used to deal with singularities is the theory of positive currents introduced
by Lelong [Lel57]. Currents can be seen as generalizations of algebraic cycles, and many
classical results of intersection theory still apply to currents. The concept of Lelong
number of a current is the analytic analogue of the concept of multiplicity of a germ
of algebraic variety. Intersections of cycles correspond to wedge products of currents
(whenever these products are defined).

Besides the Kodaira-Nakano vanishing theorem, one of the most basic “effective re-
sult” expected to hold in algebraic geometry is expressed in the following conjecture of
Fujita [Fuj87]: if L is an ample (i.e. positive) line bundle on a projective n-dimensional
algebraic variety X , then KX + (n+ 1)L is generated by sections and KX + (n+ 2)L is
very ample. In the last two decades, a lot of efforts have been brought for the solution
of this conjecture — but reaching the expected optimal bounds will probably require
new ideas. The first major results are the proof of the Fujita conjecture in the case
of surfaces by Reider [Rei88] (the case of curves is easy and has been known since a
very long time), and the numerical criterion for the very ampleness of 2KX +L given in
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[Dem93b], obtained by means of analytic techniques and Monge-Ampère equations with
isolated singularities. Alternative algebraic techniques were developed slightly later by
Kollár [Kol92], Ein-Lazarsfeld [EL93], Fujita [Fuj93], Siu [Siu95, 96], Kawamata [Kaw97]
and Helmke [Hel97]. We will explain here Siu’s method because it is technically the
simplest method; one of the results obtained by this method is the following effective
result: 2KX + mL is very ample for m > 2 +

(
3n+1
n

)
. The basic idea is to apply the

Kawamata-Viehweg vanishing theorem, and to combine this with the Riemann-Roch for-
mula in order to produce sections through a clever induction procedure on the dimension
of the base loci of the linear systems involved.

Although Siu’s result is certainly not optimal, it is sufficient to obtain a nice con-
structive proof of Matsusaka’s big theorem [Siu93, Dem96]. The result states that there
is an effective value m0 depending only on the intersection numbers Ln and Ln−1 ·KX ,
such that mL is very ample for m > m0. The basic idea is to combine results on the
very ampleness of 2KX+mL together with the theory of holomorphic Morse inequalities
[Dem85b]. The Morse inequalities are used to construct sections of m′L − KX for m′

large. Again this step can be made algebraic (following suggestions by F. Catanese and
R. Lazarsfeld), but the analytic formulation apparently has a wider range of applicability.

In the subsequent sections, we pursue the study of L2 estimates, in relation with
the Nullstellenstatz and with the extension problem. Skoda [Sko72b, 78] showed that
the division problem f =

∑
gjhj can be solved holomorphically with very precise L2

estimates, provided that the L2 norm of |f | |g|−p is finite for some sufficiently large
exponent p (p > n = dimX is enough). Skoda’s estimates have a nice interpretation in
terms of local algebra, and they lead to precise qualitative and quantitative estimates in
connection with the Bézout problem. Another very important result is the L2 extension
theorem by Ohsawa-Takegoshi [OT87, Ohs88], which has also been generalized later by
Manivel [Man93]. The main statement is that every L2 section f of a suitably positive
line bundle defined on a subavariety Y ⊂ X can be extended to a L2 section f̃ defined
over the whole ofX . The positivity condition can be understood in terms of the canonical
sheaf and normal bundle to the subvariety. The extension theorem turns out to have an
incredible amount of important consequences: among them, let us mention for instance
Siu’s theorem [Siu74] on the analyticity of Lelong numbers, the basic approximation
theorem of closed positive (1, 1)-currents by divisors, the subadditivity property I(ϕ +
ψ) ⊂ I(ϕ)I(ψ) of multiplier ideals [DEL00], the restriction formula I(ϕ|Y ) ⊂ I(ϕ)|Y ,
. . . A suitable combination of these results yields another important result of Fujita
[Fuj94] on approximate Zariski decomposition, as we show in Section 15.

In Section 16, we show how subadditivity can be used to derive an “equisingular”
approximation theorem for (almost) plurisubharmonic functions: any such function can
be approximated by a sequence of (almost) plurisubharmonic functions which are smooth
outside an analytic set, and which define the same multiplier ideal sheaves. From this, we
derive a generalized version of the hard Lefschetz theorem for cohomology with values in a
pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology
groups are twisted by the relevant multiplier ideal sheaves.

Section 17 explains the proof of Siu’s theorem on the invariance of plurigenera, accor-
ding to a beautiful approach developped by Mihai Păun [Pău07]. The proofs consists of
an iterative process based on the Ohsawa-Takegoshi theorem, and a very clever limiting
argument for currents.

Sections 18 and 19 are devoted to the study of positive cones in Kähler or projective
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geometry. Recent “algebro-analytic” characterizations of the Kähler cone [DP04] and
the pseudo-effective cone of divisors [BDPP04] are explained in detail. This leads to a
discussion of the important concepts of volume and mobile intersections, following S.
Boucksom’s PhD work [Bou02]. As a consequence, we show that a projective algebraic
manifold has a pseudo-effective canonical line bundle if and only if it is not uniruled.

Section 20 presents further important ideas of H. Tsuji, later refined by Berndtsson
and Păun, concerning the so-called “super-canonical metrics”, and their interpretation in
terms of the invariance of plurigenera and of the abundance conjecture. In the concluding
Section 21, we state Păun’s version of the Shokurov-Hacon-McKernan-Siu non vanishing
theorem and give an account of the very recent approach of the proof of the finiteness of
the canonical ring by Birkar-Păun [BiP09], based on the ideas of Hacon-McKernan and
Siu.

1. Preliminary Material: Cohomology, Currents

§ 1.A. Dolbeault Cohomology and Sheaf Cohomology

Let X be a C-analytic manifold of dimension n. We denote by Λp,qT ∗
X the bundle of

differential forms of bidegree (p, q) on X , i.e., differential forms which can be written as

u =
∑

|I|=p, |J|=q
uI,JdzI ∧ dzJ .

Here (z1, . . . , zn) denote arbitrary local holomorphic coordinates on X , I = (i1, . . . , ip),
J = (j1, . . . , jq) are multi-indices (increasing sequences of integers in the range [1, . . . , n],
of lengths |I| = p, |J | = q), and

dzI := dzi1 ∧ · · · ∧ dzip , dzJ := dzj1 ∧ · · · ∧ dzjq .

Let Ep,q be the sheaf of germs of complex valued differential (p, q)-forms with C∞ coef-
ficients. Recall that the exterior derivative d splits as d = d′ + d′′ where

d′u =
∑

|I|=p, |J|=q,16k6n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ ,

d′′u =
∑

|I|=p, |J|=q,16k6n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ

are of type (p + 1, q), (p, q + 1) respectively. The well-known Dolbeault-Grothendieck
lemma asserts that any d′′-closed form of type (p, q) with q > 0 is locally d′′-exact (this is
the analogue for d′′ of the usual Poincaré lemma for d, see e.g. [Hör66]). In other words,
the complex of sheaves (Ep,•, d′′) is exact in degree q > 0; in degree q = 0, Ker d′′ is the
sheaf ΩpX of germs of holomorphic forms of degree p on X .

More generally, if F is a holomorphic vector bundle of rank r over X , there is a natural
d′′ operator acting on the space C∞(X,Λp,qT ∗

X ⊗ F ) of smooth (p, q)-forms with values
in F ; if s =

∑
16λ6r sλeλ is a (p, q)-form expressed in terms of a local holomorphic frame

of F , we simply define d′′s :=
∑
d′′sλ ⊗ eλ, observing that the holomorphic transition

matrices involved in changes of holomorphic frames do not affect the computation of d′′.
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It is then clear that the Dolbeault-Grothendieck lemma still holds for F -valued forms. For
every integer p = 0, 1, . . . , n, the Dolbeault Cohomology groups Hp,q(X,F ) are defined
to be the cohomology groups of the complex of global (p, q) forms (graded by q):

(1.1) Hp,q(X,F ) = Hq
(
C

∞(X,Λp,•T ∗
X ⊗ F )

)
.

Now, let us recall the following fundamental result from sheaf theory (De Rham-Weil
isomorphism theorem): let (L•, d) be a resolution of a sheaf A by acyclic sheaves, i.e. a
complex of sheaves (L•, δ) such that there is an exact sequence of sheaves

0 −→ A

j−→L

0 δ0−→L

1 −→ · · · −→L

q δq−→L

q+1 −→ · · · ,

and Hs(X,Lq) = 0 for all q > 0 and s > 1. Then there is a functorial isomorphism

(1.2) Hq
(
Γ(X,L•)

)
−→ Hq(X,A).

We apply this to the following situation: let E(F )p,q be the sheaf of germs ofC∞ sections
of Λp,qT ∗

X⊗F . Then (E(F )p,•, d′′) is a resolution of the locally free OX -module ΩpX⊗O(F )
(Dolbeault-Grothendieck lemma), and the sheaves E(F )p,q are acyclic as modules over
the soft sheaf of rings C∞. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle
F on X, there is a canonical isomorphism:

Hp,q(X,F ) ≃ Hq(X,ΩpX ⊗ O(F )).

If X is projective algebraic and F is an algebraic vector bundle, Serre’s GAGA theo-
rem [Ser56] shows that the algebraic sheaf cohomology group Hq(X, ΩpX ⊗ O(F )) com-
puted with algebraic sections over Zariski open sets is actually isomorphic to the analytic
cohomology group. These results are the most basic tools to attack algebraic problems via
analytic methods. Another important tool is the theory of plurisubharmonic functions
and positive currents originated by K. Oka and P. Lelong in the decades 1940–1960.

§ 1.B. Plurisubharmonic Functions

Plurisubharmonic functions have been introduced independently by Lelong and Oka in
the study of holomorphic convexity. We refer to [Lel67, 69] for more details.

(1.4) Definition. A function u : Ω −→ [−∞,+∞[ defined on an open subset Ω ⊂ Cn is
said to be plurisubharmonic (psh for short) if

(a) u is upper semicontinuous ;

(b) for every complex line L ⊂ Cn, u↾Ω∩L is subharmonic on Ω∩L, that is, for all a ∈ Ω
and ξ ∈ Cn with |ξ| < d(a, ∁Ω), the function u satisfies the mean value inequality:

u(a) 6
1

2π

∫ 2π

0

u(a+ eiθ ξ) dθ.

The set of psh functions on Ω is denoted by Psh(Ω).
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We list below the most basic properties of psh functions. They all follow easily from
the definition.

(1.5) Basic Properties.

(a) Every function u ∈ Psh(Ω) is subharmonic, namely it satisfies the mean value in-
equality on Euclidean balls or spheres:

u(a) 6
1

πnr2n/n!

∫

B(a,r)

u(z) dλ(z)

for every a ∈ Ω and r < d(a, ∁Ω). Either u ≡ −∞ or u ∈ L1
loc on every connected

component of Ω.

(b) For any decreasing sequence of psh functions uk ∈ Psh(Ω), the limit u = limuk is
psh on Ω.

(c) Let u ∈ Psh(Ω) be such that u 6≡ −∞ on every connected component of Ω. If (ρε)
is a family of smoothing kernels, then u ∗ ρε is C∞ and psh on

Ωε =
{
x ∈ Ω ; d(x, ∁Ω) > ε

}
,

the family (u ∗ ρε) is increasing in ε and limε→0 u ∗ ρε = u.

(d) Let u1, . . . , up ∈ Psh(Ω) and χ : Rp −→ R be a convex function such that
χ(t1, . . . , tp) is increasing in each tj . Then χ(u1, . . . , up) is psh on Ω. In par-
ticular u1 + · · ·+ up, max{u1, . . . , up}, log(eu1 + · · ·+ eup) are psh on Ω. �

(1.6) Lemma. A function u ∈ C2(Ω,R) is psh on Ω if and only if the Hermitian form:

Hu(a)(ξ) =
∑

16j,k6n

∂2u/∂zj∂zk(a) ξjξk

is semi-positive at every point a ∈ Ω.

Proof. This is an easy consequence of the following standard formula:

1

2π

∫ 2π

0

u(a+ eiθ ξ) dθ − u(a) =
2

π

∫ 1

0

dt

t

∫

|ζ|<t
Hu(a+ ζξ)(ξ) dλ(ζ),

where dλ is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that plurisub-
harmonicity is the natural complex analogue of linear convexity. �

For non smooth functions, a similar characterization of plurisubharmonicity can be
obtained by means of a regularization process.

(1.7) Theorem. If u ∈ Psh(Ω), u 6≡ −∞ on every connected component of Ω, then for
all ξ ∈ Cn

Hu(ξ) =
∑

16j,k6n

∂2u

∂zj∂zk
ξjξk ∈D′(Ω)
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is a positive measure. Conversely, if v ∈D′(Ω) is such that Hv(ξ) is a positive measure
for every ξ ∈ Cn, there exists a unique function u ∈ Psh(Ω) which is locally integrable
on Ω and such that v is the distribution associated to u.

In order to get a better geometric insight of this notion, we assume more generally that
u is a function on a complex n-dimensional manifold X . If Φ : X → Y is a holomorphic
mapping and if v ∈ C2(Y,R), we have d′d′′(v ◦ Φ) = Φ∗d′d′′v, hence

H(v ◦ Φ)(a, ξ) = Hv
(
Φ(a),Φ′(a)ξ

)
.

In particular Hu, viewed as a Hermitian form on TX , does not depend on the choice
of coordinates (z1, . . . , zn). Therefore, the notion of psh function makes sense on any
complex manifold. More generally, we have

(1.8) Proposition. If Φ : X −→ Y is a holomorphic map and v ∈ Psh(Y ), then
v ◦ Φ ∈ Psh(X).

(1.9) Example. It is a standard fact that log |z| is psh (i.e. subharmonic) on C. Thus
log |f | ∈ Psh(X) for every holomorphic function f ∈ H0(X,OX). More generally

log
(
|f1|α1 + · · ·+ |fq|αq

)
∈ Psh(X)

for every fj ∈ H0(X,OX) and αj > 0 (apply Property 1.5 (d) with uj=αj log |fj|). We
will be especially interested in the singularities obtained at points of the zero variety
f1 = · · · = fq = 0, when the αj are rational numbers. �

(1.10) Definition. A psh function u ∈ Psh(X) will be said to have analytic singularities
if u can be written locally as

u =
α

2
log

(
|f1|2 + · · ·+ |fN |2

)
+ v,

where α ∈ R+, v is a locally bounded function and the fj are holomorphic functions. If
X is algebraic, we say that u has algebraic singularities if u can be written as above on
sufficiently small Zariski open sets, with α ∈ Q+ and fj algebraic.

We then introduce the ideal J = J(u/α) of germs of holomorphic functions h such
that |h| 6 Ceu/α for some constant C, i.e.

|h| 6 C
(
|f1|+ · · ·+ |fN |

)
.

This is a globally defined ideal sheaf on X , locally equal to the integral closure I of
the ideal sheaf I = (f1, . . . , fN ), thus J is coherent on X . If (g1, . . . , gN ′) are local
generators of J, we still have

u =
α

2
log

(
|g1|2 + · · ·+ |gN ′ |2

)
+O(1).

If X is projective algebraic and u has analytic singularities with α ∈ Q+, then u auto-
matically has algebraic singularities. From an algebraic point of view, the singularities
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of u are in 1:1 correspondence with the “algebraic data” (J, α). Later on, we will see
another important method for associating an ideal sheaf to a psh function.

(1.11) Exercise. Show that the above definition of the integral closure of an ideal I is
equivalent to the following more algebraic definition: I consists of all germs h satisfying
an integral equation:

hd + a1h
d−1 + · · ·+ ad−1h+ ad = 0, ak ∈ Ik.

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization of
the blow-up of X along the (non necessarily reduced) zero variety V (I). �

§ 1.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory. Let
us first recall a few basic definitions. A current of degree q on an oriented differentiable
manifold M is simply a differential q-form Θ with distribution coefficients. The space
of currents of degree q over M will be denoted by D′q(M). Alternatively, a current of

degree q can be seen as an element Θ in the dual spaceD′
p(M) :=

(
D

p(M)
)′
of the space

D

p(M) of smooth differential forms of degree p = dimM − q with compact support; the
duality pairing is given by

(1.12) 〈Θ, α〉 =
∫

M

Θ ∧ α, α ∈Dp(M).

A basic example is the current of integration [S] over a compact oriented submanifold S
of M :

(1.13) 〈[S], α〉 =
∫

S

α, degα = p = dimR S.

Then [S] is a current with measure coefficients, and Stokes’ formula shows that d[S] =
(−1)q−1[∂S], in particular d[S] = 0 if S has no boundary. Because of this example, the
integer p is said to be the dimension of Θ when Θ ∈ D′

p(M). The current Θ is said to
be closed if dΘ = 0.

On a complex manifold X , we have similar notions of bidegree and bidimension; as
in the real case, we denote by

D

′p,q(X) =D′
n−p,n−q(X), n = dimX,

the space of currents of bidegree (p, q) and bidimension (n − p, n − q) on X . According
to [Lel57], a current Θ of bidimension (p, p) is said to be (weakly) positive if for every
choice of smooth (1, 0)-forms α1, . . . , αp on X the distribution

(1.14) Θ ∧ iα1 ∧ α1 ∧ · · · ∧ iαp ∧ αp is a positive measure.

(1.15) Exercise. If Θ is positive, show that the coefficients ΘI,J of Θ are complex
measures, and that, up to constants, they are dominated by the trace measure:

σΘ = Θ ∧ 1

p!
βp = 2−p

∑
ΘI,I , β =

i

2
d′d′′|z|2 =

i

2

∑

16j6n

dzj ∧ dzj ,
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which is a positive measure.
Hint. Observe that

∑
ΘI,I is invariant by unitary changes of coordinates and that the

(p, p)-forms iα1 ∧ α1 ∧ · · · ∧ iαp ∧ αp generate Λp,pT ∗
Cn as a C-vector space. �

A current Θ = i
∑

16j,k6nΘjkdzj ∧ dzk of bidegree (1, 1) is easily seen to be positive

if and only if the complex measure
∑
λjλkΘjk is a positive measure for every n-tuple

(λ1, . . . , λn) ∈ Cn.

(1.16) Example. If u is a (not identically −∞) psh function on X , we can associate
with u a (closed) positive current Θ = i∂∂u of bidegree (1, 1). Conversely, each closed
positive current of bidegree (1, 1) can be written under this form on any open subset
Ω ⊂ X such that H2

DR(Ω,R) = H1(Ω,O) = 0, e.g. on small coordinate balls (exercise to
the reader). �

It is not difficult to show that a product Θ1 ∧ · · · ∧Θq of positive currents of bidegree
(1, 1) is positive whenever the product is well defined (this is certainly the case if all Θj
but one at most are smooth; much finer conditions will be discussed in Section 2).

We now discuss another very important example of closed positive current. In fact,
with every closed analytic set A ⊂ X of pure dimension p is associated a current of
integration [A] such that:

(1.17) 〈[A], α〉 =
∫

Areg

α, α ∈Dp,p(X),

obtained by integrating over the regular points of A. In order to show that (1.17) is a
correct definition of a current on X , one must show that Areg has locally finite area in a
neighborhood of Asing. This result, due to [Lel57] is shown as follows. Suppose that 0 is
a singular point of A. By the local parametrization theorem for analytic sets, there is a
linear change of coordinates on Cn such that all projections

πI : (z1, . . . , zn) 7→ (zi1 , . . . , zip)

define a finite ramified covering of the intersection A ∩∆ with a small polydisk ∆ in Cn

onto a small polydisk ∆I in Cp. Let nI be the sheet number. Then the p-dimensional
area of A ∩∆ is bounded above by the sum of the areas of its projections counted with
multiplicities, i.e.

Area(A ∩∆) 6
∑

nIVol(∆I).

The fact that [A] is positive is also easy. In fact

iα1 ∧ α1 ∧ · · · ∧ iαp ∧ αp = | det(αjk)|2 iw1 ∧ w1 ∧ · · · ∧ iwp ∧ wp

if αj =
∑
αjkdwk in terms of local coordinates (w1, . . . , wp) on Areg. This shows that

all such forms are > 0 in the canonical orientation defined by iw1 ∧ w1 ∧ · · · ∧ iwp ∧ wp.
More importantly, Lelong [Lel57] has shown that [A] is d-closed in X , even at points of
Asing. This last result can be seen today as a consequence of the Skoda-El Mir extension
theorem. For this we need the following definition: a complete pluripolar set is a set
E such that there is an open covering (Ωj) of X and psh functions uj on Ωj with
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E ∩ Ωj = u−1
j (−∞). Any (closed) analytic set is of course complete pluripolar (take uj

as in Example 1.9).

(1.18) Theorem (Skoda [Sko82], El Mir [EM84], Sibony [Sib85]). Let E be a closed
complete pluripolar set in X, and let Θ be a closed positive current on X r E such that
the coefficients ΘI,J of Θ are measures with locally finite mass near E. Then the trivial

extension Θ̃ obtained by extending the measures ΘI,J by 0 on E is still closed on X.

Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to Θ =
[Areg] on X r Asing.

Proof of Theorem 1.18. The statement is local on X , so we may work on a small open
set Ω such that E ∩ Ω = v−1(−∞), v ∈ Psh(Ω). Let χ : R → R be a convex increasing
function such that χ(t) = 0 for t 6 −1 and χ(0) = 1. By shrinking Ω and putting
vk = χ(k−1v∗ρεk) with εk → 0 fast, we get a sequence of functions vk ∈ Psh(Ω)∩C∞(Ω)
such that 0 6 vk 6 1, vk = 0 in a neighborhood of E ∩ Ω and lim vk(x) = 1 at every
point of Ω r E. Let θ ∈ C∞([0, 1]) be a function such that θ = 0 on [0, 1/3], θ = 1 on
[2/3, 1] and 0 6 θ 6 1. Then θ ◦ vk = 0 near E ∩ Ω and θ ◦ vk → 1 on Ωr E. Therefore
Θ̃ = limk→+∞(θ ◦ vk)Θ and

d′Θ̃ = lim
k→+∞

Θ ∧ d′(θ ◦ vk)

in the weak topology of currents. It is therefore sufficient to verify that Θ ∧ d′(θ ◦ vk)
converges weakly to 0 (note that d′′Θ̃ is conjugate to d′Θ̃, thus d′′Θ̃ will also vanish).

Assume first that Θ ∈D′n−1,n−1(X). Then Θ∧d′(θ ◦vk) ∈D′n,n−1(Ω), and we have
to show that

〈Θ ∧ d′(θ ◦ vk), α〉 = 〈Θ, θ′(vk)d′vk ∧ α〉 −→
k→+∞

0, ∀α ∈D1,0(Ω).

As γ 7→ 〈Θ, iγ ∧ γ〉 is a non-negative Hermitian form on D1,0(Ω), the Cauchy-Schwarz
inequality yields

∣∣〈Θ, iβ ∧ γ〉
∣∣2 6 〈Θ, iβ ∧ β〉 〈Θ, iγ ∧ γ〉, ∀β, γ ∈D1,0(Ω).

Let ψ ∈D(Ω), 0 6 ψ 6 1, be equal to 1 in a neighborhood of Suppα. We find

∣∣〈Θ, θ′(vk)d′vk ∧ α〉
∣∣2 6 〈Θ, ψid′vk ∧ d′′vk〉 〈Θ, θ′(vk)2iα ∧ α〉.

By hypothesis
∫
ΩrE

Θ ∧ iα ∧ α < +∞ and θ′(vk) converges everywhere to 0 on Ω, thus

〈Θ, θ′(vk)2iα∧α〉 converges to 0 by Lebesgue’s dominated convergence theorem. On the
other hand,

id′d′′v2k = 2vk id
′d′′vk + 2id′vk ∧ d′′vk > 2id′vk ∧ d′′vk,

2〈Θ, ψid′vk ∧ d′′vk〉 6 〈Θ, ψid′d′′v2k〉.
As ψ ∈D(Ω), vk = 0 near E and dΘ = 0 on Ωr E, an integration by parts yields

〈Θ, ψid′d′′v2k〉 = 〈Θ, v2kid′d′′ψ〉 6 C

∫

ΩrE

‖Θ‖ < +∞,
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where C is a bound for the coefficients of id′d′′ψ. Thus 〈Θ, ψid′vk ∧ d′′vk〉 is bounded,
and the proof is complete when Θ ∈D′n−1,n−1.

In the general case Θ ∈ D′p,p, p < n, we simply apply the result already proved to
all positive currents Θ ∧ γ ∈ D′n−1,n−1 where γ = iγ1 ∧ γ1 ∧ · · · ∧ iγn−p−1 ∧ γn−p−1

runs over a basis of forms of Λn−p−1,n−p−1T ∗
Ω with constant coefficients. Then we get

d(Θ̃ ∧ γ) = dΘ̃ ∧ γ = 0 for all such γ, hence dΘ̃ = 0. �

(1.19) Corollary. Let Θ be a closed positive current on X and let E be a complete

pluripolar set. Then 1lEΘ and 1lXrEΘ are closed positive currents. In fact, Θ̃ = 1lXrEΘ

is the trivial extension of Θ↾XrE to X, and 1lEΘ = Θ− Θ̃.

As mentioned above, any current Θ = id′d′′u associated with a psh function u is a
closed positive (1, 1)-current. In the special case u = log |f | where f ∈ H0(X,OX) is a
non zero holomorphic function, we have the important

(1.20) Lelong-Poincaré Equation. Let f ∈ H0(X,OX) be a non zero holomorphic
function, Zf =

∑
mjZj, mj ∈ N, the zero divisor of f and [Zf ] =

∑
mj [Zj ] the associ-

ated current of integration. Then

i

π
∂∂ log |f | = [Zf ].

Proof (sketch). It is clear that id′d′′ log |f | = 0 in a neighborhood of every point x /∈
Supp(Zf ) =

⋃
Zj , so it is enough to check the equation in a neighborhood of every

point of Supp(Zf ). Let A be the set of singular points of Supp(Zf ), i.e. the union of the
pairwise intersections Zj∩Zk and of the singular loci Zj,sing; we thus have dimA 6 n−2.
In a neighborhood of any point x ∈ Supp(Zf )rA there are local coordinates (z1, . . . , zn)
such that f(z) = z

mj

1 where mj is the multiplicity of f along the component Zj which
contains x and z1 = 0 is an equation for Zj near x. Hence

i

π
d′d′′ log |f | = mj

i

π
d′d′′ log |z1| = mj [Zj ]

in a neighborhood of x, as desired (the identity comes from the standard formula
i
πd

′d′′ log |z| = Dirac measure δ0 in C). This shows that the equation holds on X r A.

Hence the difference i
πd

′d′′ log |f | − [Zf ] is a closed current of degree 2 with measure
coefficients, whose support is contained in A. By Exercise 1.21, this current must be 0,
for A has too small dimension to carry its support (A is stratified by submanifolds of
real codimension > 4). �

(1.21) Exercise. Let Θ be a current of degree q on a real manifoldM , such that both Θ
and dΘ have measure coefficients (“normal current”). Suppose that SuppΘ is contained
in a real submanifold A with codimRA > q. Show that Θ = 0.
Hint: Let m = dimRM and let (x1, · · · , xm) be a coordinate system in a neighborhood
Ω of a point a ∈ A such that A ∩ Ω = {x1 = . . . = xk = 0}, k > q. Observe that
xjΘ = xjdΘ = 0 for 1 6 j 6 k, thanks to the hypothesis on supports and on the
normality of Θ, hence dxj ∧Θ = d(xjΘ)− xjdΘ = 0, 1 6 j 6 k. Infer from this that all
coefficients in Θ =

∑
|I|=q ΘIdxI vanish. �
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We now recall a few basic facts of slicing theory (the reader will profitably consult
[Fed69] and [Siu74] for further developments). Let σ :M →M ′ be a submersion of
smooth differentiable manifolds and let Θ be a locally flat current on M , that is, a
current which can be written locally as Θ = U + dV where U , V have L1

loc coefficients.
It is a standard fact (see Federer) that every current Θ such that both Θ and dΘ have
measure coefficients is locally flat; in particular, closed positive currents are locally flat.
Then, for almost every x′ ∈M ′, there is a well defined slice Θx′ , which is the current on
the fiber σ−1(x′) defined by

Θx′ = U↾σ−1(x′) + dV↾σ−1(x′).

The restrictions of U , V to the fibers exist for almost all x′ by the Fubini theorem.
The slices Θx′ are currents on the fibers with the same degree as Θ (thus of dimension
dimΘ−dim (fibers)). Of course, every slice Θx′ coincides with the usual restriction of Θ
to the fiber if Θ has smooth coefficients. By using a regularization Θε = Θ∗ρε, it is easy
to show that the slices of a closed positive current are again closed and positive: in fact
Uε,x′ and Vε,x′ converge to Ux′ and Vx′ in L1

loc(σ
−1(x′)), thus Θε,x′ converges weakly to

Θx′ for almost every x′. Now, the basic slicing formula is

(1.22)

∫

M

Θ ∧ α ∧ σ∗β =

∫

x′∈M ′

(∫

x′′∈σ−1(x′)

Θx′(x′′) ∧ α↾σ−1(x′)(x
′′)
)
β(x′)

for every smooth form α on M and β on M ′, such that α has compact support and
degα = dimM − dimM ′ − degΘ, deg β = dimM ′. This is an easy consequence of the
usual Fubini theorem applied to U and V in the decomposition Θ = U+dV , if we identify
locally σ with a projection map:

M =M ′ ×M ′′ →M ′, x = (x′, x′′) 7→ x′,

and use a partition of unity on the support of α.

To conclude this section, we discuss De Rham and Dolbeault cohomology theory in the
context of currents. A basic observation is that the Poincaré and Dolbeault-Grothendieck
lemmas still hold for currents. Namely, if (D′q, d) and (D′(F )p,q, d′′) denote the complex
of sheaves of degree q currents (resp. of (p, q)-currents with values in a holomorphic vector
bundle F ), we still have De Rham and Dolbeault sheaf resolutions:

0 → R →D

′•, 0 → ΩpX ⊗ O(F ) →D

′(F )p,•.

Hence we get canonical isomorphisms

Hq
DR(M,R) = Hq

(
(Γ(M,D′•), d)

)
,

Hp,q(X,F ) = Hq
(
(Γ(X,D′(F )p,•), d′′)

)
.(1.23)

In other words, we can attach a cohomology class {Θ} ∈ Hq
DR(M,R) to any closed current

Θ of degree q, resp. a cohomology class {Θ} ∈ Hp,q(X,F ) to any d′′-closed current of
bidegree (p, q). Replacing if necessary every current by a smooth representative in the
same cohomology class, we see that there is a well defined cup product given by the
wedge product of differential forms:

Hq1(M,R)× · · · ×Hqm(M,R) −→ Hq1+···+qm(M,R),

({Θ1}, . . . , {Θ1}) 7−→ {Θ1} ∧ · · · ∧ {Θm}.
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In particular, if M is a compact oriented variety and q1 + · · ·+ qm = dimM , there is a
well defined intersection number:

{Θ1} · {Θ2} · · · · · {Θm} =

∫

M

{Θ1} ∧ · · · ∧ {Θm}.

However, as we will see in the next section, the pointwise product Θ1 ∧ · · · ∧Θm need
not exist in general.

2. Lelong numbers and Intersection Theory

Lelong numbers were historically defined around 1960 as density numbers of positive
currents, and were quickly realized to be natural generalizations of the concept of multi-
plicity in algebraic geometric. As emphasized e.g. in [Dem82a, 85a, 87], they then started
to be viewed rather as a special case of a general intersection theory for closed positive
currents. We will adopt here this viewpoint.

§ 2.A. Multiplication of Currents and Monge-Ampère Operators

Let X be a n-dimensional complex manifold. We set

dc =
1

2iπ
(d′ − d′′).

It follows in particular that dc is a real operator, i.e. dcu = dcu, and that ddc =
i
π
d′d′′. Although not quite standard, the 1/2iπ normalization is very convenient for

many purposes, since we may then forget the factor π or 2π almost everywhere (e.g. in
the Lelong-Poincaré Equation (1.20)).

Let u be a psh function and let Θ be a closed positive current on X . Our desire is to
define the wedge product ddcu ∧ Θ even when neither u nor Θ are smooth. In general,
this product does not make sense because ddcu and Θ have measure coefficients and
measures cannot be multiplied; see Kiselman [Kis84] for interesting counterexamples.
Even in the algebraic setting considered here, multiplication of currents is not always
possible: suppose e.g. that Θ = [D] is the exceptional divisor of a blow-up in a surface;
thenD·D = −1 cannot be the cohomology class of a closed positive current [D]2. Assume
however that u is a locally bounded psh function. Then the current uΘ is well defined
since u is a locally bounded Borel function and Θ has measure coefficients. According to
Bedford-Taylor [BT82] we define

ddcu ∧Θ = ddc(uΘ)

where ddc( ) is taken in the sense of distribution theory.

(2.1) Proposition. If u is a locally bounded psh function, the wedge product ddcu ∧Θ
is again a closed positive current.

Proof. The result is local. Use a convolution uν = u ∗ ρ1/ν to get a decreasing sequence
of smooth psh functions converging to u. Then write

ddc(uΘ) = lim
ν→+∞

ddc(uνΘ) = lim
ν→+∞

ddcuν ∧Θ
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as a weak limit of closed positive currents. Observe that uνΘ converges weakly to uΘ
by Lebesgue’s monotone convergence theorem. �

More generally, if u1, . . . , um are locally bounded psh functions, we can define

ddcu1 ∧ ddcu1 · · · ∧ ddcum ∧Θ = ddc
(
u1dd

cu2 ∧ · · · ∧ ddcum ∧Θ
)

by induction on m. Chern, Levine and Nirenberg [CLN69] noticed the following useful
inequality. Define the mass of a current Θ on a compact set K to be

||Θ||K =

∫

K

∑

I,J

|ΘI,J |

whenever K is contained in a coordinate patch and Θ =
∑

ΘI,JdzI ∧ dzJ . Up to
seminorm equivalence, this does not depend on the choice of coordinates. If K is not
contained in a coordinate patch, we use a partition of unity to define a suitable seminorm
||Θ||K . If Θ > 0, Exercise 1.15 shows that the mass is controlled by the trace measure,
i.e. ||Θ||K 6 C

∫
K
Θ ∧ βp.

(2.2) Chern-Levine-Nirenberg Inequality. For all compact subsets K,L of X with
L ⊂ K◦, there exists a constant CK,L > 0 such that

||ddcu1 ∧ · · · ∧ ddcum ∧Θ||L 6 CK,L ||u1||L∞(K) · · · ||um||L∞(K) ||Θ||K

Proof. By induction, it is sufficient to prove the result for m = 1 and u1 = u. There is a
covering of L by a family of open balls B′

j ⊂⊂ Bj ⊂ K contained in coordinate patches

of X . Let (p, p) be the bidimension of Θ, let β = i
2d

′d′′|z|2, and let χ ∈D(Bj) be equal
to 1 on B

′
j . Then

||ddcu ∧Θ||
L∩B′

j
6 C

∫

B
′

j

ddcu ∧Θ ∧ βp−1 6 C

∫

Bj

χddcu ∧Θ ∧ βp−1.

As Θ and β are closed, an integration by parts yields

||ddcu ∧Θ||
L∩B′

j
6 C

∫

Bj

uΘ ∧ ddcχ ∧ βp−1 6 C′||u||L∞(K)||Θ||K

where C′ is equal to C multiplied by a bound for the coefficients of the smooth form
ddcχ ∧ βp−1. �

Various examples (cf. [Kis84]) show however that products of (1, 1)-currents ddcuj
cannot be defined in a reasonable way for arbitrary psh functions uj . However, functions
uj with −∞ poles can be admitted if the polar sets are sufficiently small.

(2.3) Proposition. Let u be a psh function on X, and let Θ be a closed positive current
of bidimension (p, p). Suppose that u is locally bounded on XrA, where A is an analytic
subset of X of dimension < p at each point. Then ddcu∧Θ can be defined in such a way
that ddcu∧Θ = limν→+∞ ddcuν ∧Θ in the weak topology of currents, for any decreasing
sequence (uν)ν>0 of psh functions converging to u.
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Proof. When u is locally bounded everywhere, we have limuν Θ = uΘ by the monotone
convergence theorem and the result follows from the continuity of ddc with respect to
the weak topology.

First assume that A is discrete. Since our results are local, we may suppose that X
is a ball B(0, R) ⊂ Cn and that A = {0}. For every s 6 0, the function u>s = max(u, s)
is locally bounded on X , so the product Θ ∧ ddcu>s is well defined. For |s| large, the
function u>s differs from u only in a small neighborhood of the origin, at which u may
have a −∞ pole. Let γ be a (p − 1, p − 1)-form with constant coefficients and set
s(r) = lim inf|z|→r−0 u(z). By Stokes’ formula, we see that the integral

(2.4) I(s) :=

∫

B(0,r)

ddcu>s ∧Θ ∧ γ

does not depend on s when s < s(r), for the difference I(s)− I(s′) of two such integrals
involves the ddc of a current (u>s−u>s′)∧Θ∧γ with compact support in B(0, r). Taking
γ = (ddc|z|2)p−1, we see that the current ddcu ∧Θ has finite mass on B(0, r)r {0} and
we can define 〈1l{0}(ddcu ∧Θ), γ〉 to be the limit of the integrals (2.4) as r tends to zero
and s < s(r). In this case, the weak convergence statement is easily deduced from the
locally bounded case discussed above.

In the case where 0 < dimA < p, we use a slicing technique to reduce the situation
to the discrete case. Set q = p − 1. There are linear coordinates (z1, . . . , zn) centered
at any point of A, such that 0 is an isolated point of A ∩

(
{0} × Cn−q

)
. Then there are

small balls B′ = B(0, r′) in Cq, B′′ = B(0, r′′) in Cn−q such that A ∩ (B′ × ∂B′′) = ∅,
and the projection map

π : Cn → Cq, z = (z1, . . . , zn) 7→ z′ = (z1, . . . , zq)

defines a finite proper mapping A ∩ (B′ × B′′) → B′. These properties are preserved
if we slightly change the direction of projection. Take sufficiently many projections πm
associated to coordinate systems (zm1 , . . . , z

m
n ), 1 6 m 6 N , in such a way that the family

of (q, q)-forms
i dzm1 ∧ dzm1 ∧ · · · ∧ i dzmq ∧ dzmq

defines a basis of the space of (q, q)-forms. Expressing any compactly supported smooth
(q, q)-form in such a basis, we see that we need only define

∫

B′×B′′

ddcu ∧Θ ∧ f(z′, z′′) i dz1 ∧ dz1 ∧ · · · ∧ i dzq ∧ dzq(2.5)

=

∫

B′

{∫

B′′

f(z′, •) ddcu(z′, •) ∧Θ(z′, •)
}
i dz1 ∧ dz1 ∧ · · · ∧ i dzq ∧ dzq

where f is a test function with compact support in B′ × B′′, and Θ(z′, •) denotes
the slice of Θ on the fiber {z′} × B′′ of the projection π : Cn → Cq. Each integral

∫
B′′

in the right hand side of (2.5) makes sense since the slices ({z′} × B′′) ∩ A are discrete.
Moreover, the double integral

∫
B′

∫
B′′ is convergent. Indeed, observe that u is bounded

on any compact cylinder:

Kδ,ε = B
(
(1− δ)r′

)
×

(
B(r′′)rB

(
(1− ε)r′′

))
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disjoint from A. Take ε≪ δ ≪ 1 so small that

Supp f ⊂ B
(
(1− δ)r′

)
×B

(
(1− ε)r′′

)
.

For all z′ ∈ B((1− δ)r′), the proof of the Chern-Levine-Nirenberg inequality (2.2) with
a cut-off function χ(z′′) equal to 1 on B((1− ε)r′′) and with support in B((1− ε/2)r′′)
shows that

∫

B((1−ε)r′′)
ddcu(z′, •) ∧Θ(z′, •)

6 Cε||u||L∞(Kδ,ε)

∫

z′′∈B((1−ε/2)r′′)
Θ(z′, z′′) ∧ ddc|z′′|2.

This implies that the double integral is convergent. Now replace u everywhere by uν
and observe that limν→+∞

∫
B′′ is the expected integral for every z′ such that Θ(z′, •)

exists (apply the discrete case already proven). Moreover, the Chern-Levine-Nirenberg
inequality yields uniform bounds for all functions uν , hence Lebesgue’s dominated con-
vergence theorem can be applied to

∫
B′ . We conclude from this that the sequence of

integrals (2.5) converges when uν ↓ u, as expected. �

(2.6) Remark. In the above proof, the fact that A is an analytic set does not play an
essential role. The main point is just that the slices ({z′} × B′′) ∩ A consist of isolated
points for generic choices of coordinates (z′, z′′). In fact, the proof even works if the
slices are totally discontinuous, in particular if they are of zero Hausdorff measure H1. It
follows that Proposition 2.3 still holds whenever A is a closed set such thatH2p−1(A) = 0.

�

§ 2.B. Lelong Numbers

The concept of Lelong number is an analytic analogue of the algebraic notion of mul-
tiplicity. It is a very useful technique to extend results of the intersection theory of
algebraic cycles to currents. Lelong numbers have been introduced for the first time by
Lelong in [Lel57]. See also [Lel69; Siu74; Dem82a, 85a, 87] for further developments.

Let us first recall a few definitions. Let Θ be a closed positive current of bidimension
(p, p) on a coordinate open set Ω ⊂ Cn of a complex manifold X . The Lelong number of
Θ at a point x ∈ Ω is defined to be the limit

ν(Θ, x) = lim
r→0+

ν(Θ, x, r), where ν(Θ, x, r) =
σΘ(B(x, r))

πpr2p/p!

measures the ratio of the area of Θ in the ball B(x, r) to the area of the ball of radius r
in Cp. As σΘ = Θ ∧ 1

p!
(πddc|z|2)p by Excercise 1.15, we also get

(2.7) ν(Θ, x, r) =
1

r2p

∫

B(x,r)

Θ(z) ∧ (ddc|z|2)p.

The main results concerning Lelong numbers are summarized in the following theorems,
due respectively to Lelong, Thie and Siu.
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(2.8) Theorem ([Lel57]).

(a) For every positive current Θ, the ratio ν(Θ, x, r) is a nonnegative increasing function
of r, in particular the limit ν(Θ, x) as r → 0+ always exists.

(b) If Θ = ddcu is the bidegree (1, 1)-current associated with a psh function u, then

ν(Θ, x) = sup
{
γ > 0 ; u(z) 6 γ log |z − x|+O(1) at x

}
.

In particular, if u = log |f | with f ∈ H0(X,OX) and Θ = ddcu = [Zf ], we have

ν([Zf ], x) = ordx(f) = max{m ∈ N ; Dαf(x) = 0, |α| < m}.

(2.9) Theorem ([Thi67]). In the case where Θ is a current of integration [A] over an
analytic subvariety A, the Lelong number ν([A], x) coincides with the multiplicity of A at
x (defined e.g. as the sheet number in the ramified covering obtained by taking a generic
linear projection of the germ (A, x) onto a p-dimensional linear subspace through x in
any coordinate patch Ω).

(2.10) Theorem ([Siu74]). Let Θ be a closed positive current of bidimension (p, p) on
the complex manifold X.

(a) The Lelong number ν(Θ, x) is invariant by holomorphic changes of local coordinates.

(b) For every c > 0, the set Ec(Θ) =
{
x ∈ X ; ν(Θ, x) > c

}
is a closed analytic subset

of X of dimension 6 p.

The most important result is Theorem 2.10 (b), which was initially proved as a (very
deep) consequence of Hörmander’s L2 estimates (Section 5); Kiselman [Kis78] later found
a much simpler proof based on his Legendre transformation for plurisubharmonic func-
tions; however, there is now an even more direct route relying on the Ohsawa-Takegoshi
L2 extension theorem (cf. Corollary 14.3 below). The early proofs of the other results
were also rather intricate in spite of their rather simple nature. We reproduce below a
sketch of elementary arguments based on the use of a more general and more flexible
notion of Lelong number introduced in [Dem87]. Let ϕ be a continuous psh function
with an isolated −∞ pole at x, e.g. a function of the form ϕ(z) = log

∑
16j6N |gj(z)|γj ,

γj > 0, where (g1, . . . , gN) is an ideal of germs of holomorphic functions in Ox with
g−1(0) = {x}. The generalized Lelong number ν(Θ, ϕ) of Θ with respect to the weight ϕ
is simply defined to be the mass of the measure Θ ∧ (ddcϕ)p carried by the point x (the
measure Θ∧ (ddcϕ)p is always well defined thanks to Proposition 2.3). This number can
also be seen as the limit ν(Θ, ϕ) = limt→−∞ ν(Θ, ϕ, t), where

(2.11) ν(Θ, ϕ, t) =

∫

ϕ(z)<t

Θ ∧ (ddcϕ)p.

The relation with our earlier definition of Lelong numbers (as well as part (a) of Theo-
rem 2.8) comes from the identity

(2.12) ν(Θ, x, r) = ν(Θ, ϕ, log r), ϕ(z) = log |z − x|,
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in particular ν(Θ, x) = ν(Θ, log | • −x|). This equality is in turn a consequence of the
following general formula, applied to χ(t) = e2t and t = log r :

(2.13)

∫

ϕ(z)<t

Θ ∧ (ddcχ ◦ ϕ)p = χ′(t− 0)p
∫

ϕ(z)<t

Θ ∧ (ddcϕ)p,

where χ is an arbitrary convex increasing function. To prove the formula, we use a
regularization and thus suppose that Θ, ϕ and χ are smooth, and that t is a non critical
value of ϕ. Then Stokes’ formula shows that the integrals on the left and right hand side
of (2.13) are equal respectively to

∫

ϕ(z)=t

Θ ∧ (ddcχ ◦ ϕ
)p−1 ∧ dc(χ ◦ ϕ),

∫

ϕ(z)=t

Θ ∧
(
ddcϕ

)p−1 ∧ dcϕ,

and the differential form of bidegree (p − 1, p) appearing in the integrand of the first
integral is equal to (χ′ ◦ ϕ)p (ddcϕ)p−1 ∧ dcϕ. The expected formula follows. Part (b)
of Theorem 2.8 is a consequence of the Jensen-Lelong formula, whose proof is left as an
exercise to the reader.

(2.14) Jensen-Lelong Formula. Let u be any psh function on X. Then u is inte-
grable with respect to the measure µr = (ddcϕ)n−1 ∧ dcϕ supported by the pseudo-sphere
{ϕ(z) = r} and

µr(u) =

∫

{ϕ<r}
u(ddcϕ)n +

∫ r

−∞
ν(ddcu, ϕ, t) dt.

In our case, we set ϕ(z) = log |z − x|. Then (ddcϕ)n = δx and µr is just the unitary
invariant mean value measure on the sphere S(x, er). For r < r0, Formula 2.14 implies

µr(u)− µr0(u) =

∫ r

r0

ν(ddcu, x, t) ∼ (r − r0)ν(dd
cu, x) as r → −∞.

From this, using the Harnack inequality for subharmonic functions, we get

lim inf
z→x

u(z)

log |z − x| = lim
r→−∞

µr(u)

r
= ν(ddcu, x).

These equalities imply statement 2.8 (b).

Next, we show that the Lelong numbers ν(T, ϕ) only depend on the asymptotic be-
havior of ϕ near the polar set ϕ−1(−∞). In a precise way:

(2.15) Comparison Theorem. Let Θ be a closed positive current on X, and let
ϕ, ψ : X → [−∞,+∞[ be continuous psh functions with isolated poles at some point
x ∈ X. Assume

ℓ := lim sup
z→x

ψ(z)

ϕ(z)
< +∞.

Then ν(Θ, ψ) 6 ℓpν(Θ, ϕ), and the equality holds if ℓ = limψ/ϕ.

Proof. (2.12) shows that ν(Θ, λϕ) = λpν(Θ, ϕ) for every positive constant λ. It is thus
sufficient to verify the inequality ν(Θ, ψ) 6 ν(Θ, ϕ) under the hypothesis lim supψ/ϕ < 1.
For any c > 0, consider the psh function

uc = max(ψ − c, ϕ).
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Fix r ≪ 0. For c > 0 large enough, we have uc = ϕ on a neighborhood of ϕ−1(r) and
Stokes’ formula gives

ν(Θ, ϕ, r) = ν(Θ, uc, r) > ν(Θ, uc).

On the other hand, the hypothesis lim supψ/ϕ < 1 implies that there exists t0 < 0 such
that uc = ψ − c on {uc < t0}. We thus get

ν(Θ, uc) = ν(Θ, ψ − c) = ν(Θ, ψ),

hence ν(Θ, ψ) 6 ν(Θ, ϕ). The equality case is obtained by reversing the roles of ϕ and
ψ and observing that limϕ/ψ = 1/l. �

Part (a) of Theorem 2.10 follows immediately from Theorem 2.15 by considering the
weights ϕ(z) = log |τ(z) − τ(x)|, ψ(z) = log |τ ′(z) − τ ′(x)| associated to coordinates
systems τ(z) = (z1, . . . , zn), τ

′(z) = (z′1, . . . , z
′
n) in a neighborhood of x. Another

application is a direct simple proof of Thie’s Theorem 2.9 when Θ = [A] is the current of
integration over an analytic set A ⊂ X of pure dimension p. For this, we have to observe
that Theorem 2.15 still holds provided that x is an isolated point in Supp(Θ)∩ϕ−1(−∞)
and Supp(Θ) ∩ ψ−1(−∞) (even though x is not isolated in ϕ−1(−∞) or ψ−1(−∞)),
under the weaker assumption that lim supSupp(Θ)∋z→x ψ(z)/ϕ(z) = ℓ. The reason for
this is that all integrals involve currents supported on Supp(Θ). Now, by a generic
choice of local coordinates z′ = (z1, . . . , zp) and z

′′ = (zp+1, . . . , zn) on (X, x), the germ
(A, x) is contained in a cone |z′′| 6 C|z′|. If B′ ⊂ Cp is a ball of center 0 and radius r′

small, and B′′ ⊂ Cn−p is the ball of center 0 and radius r′′ = Cr′, the projection

pr : A ∩ (B′ ×B′′) −→ B′

is a ramified covering with finite sheet number m. When z ∈ A tends to x = 0, the
functions

ϕ(z) = log |z| = log(|z′|2 + |z′′|2)1/2, ψ(z) = log |z′|.
satisfy limz→x ψ(z)/ϕ(z) = 1. Hence Theorem 2.15 implies

ν([A], x) = ν([A], ϕ) = ν([A], ψ).

Now, Formula 2.13 with χ(t) = e2t yields

ν([A], ψ, log t) = t−2p

∫

{ψ<log t}
[A] ∧

(1
2
ddce2ψ

)p

= t−2p

∫

A∩{|z′|<t}

(1
2
pr∗ddc|z′|2

)p

= mt−2p

∫

Cp∩{|z′|<t}

(1
2
ddc|z′|2

)p
= m,

hence ν([A], ψ) = m. Here, we have used the fact that pr is an étale covering with m
sheets over the complement of the ramification locus S ⊂ B′, and the fact that S is of
zero Lebesgue measure in B′.

(2.16) Proposition. Under the assumptions of Proposition 2.3, we have

ν(ddcu ∧Θ, x) > ν(u, x) ν(Θ, x)
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at every point x ∈ X.

Proof. Assume that X = B(0, r) and x = 0. By definition

ν(ddcu ∧Θ, x) = lim
r→0

∫

|z|6r
ddcu ∧Θ ∧ (ddc log |z|)p−1.

Set γ = ν(u, x) and
uν(z) = max

(
u(z), (γ − ε) log |z| − ν

)

with 0 < ε < γ (if γ = 0, there is nothing to prove). Then uν decreases to u and

∫

|z|6r
ddcu ∧Θ ∧ (ddc log |z|)p−1 > lim sup

ν→+∞

∫

|z|6r
ddcuν ∧Θ ∧ (ddc log |z|)p−1

by the weak convergence of ddcuν ∧ Θ; here (ddc log |z|)p−1 is not smooth on B(0, r),
but the integrals remain unchanged if we replace log |z| by χ(log |z|/r) with a smooth
convex function χ such that χ(t) = t for t > −1 and χ(t) = 0 for t 6 −2. Now, we have
u(z) 6 γ log |z| + C near 0, so uν(z) coincides with (γ − ε) log |z| − ν on a small ball
B(0, rν) ⊂ B(0, r) and we infer

∫

|z|6r
ddcuν ∧Θ ∧ (ddc log |z|)p−1 > (γ − ε)

∫

|z|6rν
Θ ∧ (ddc log |z|)p

> (γ − ε)ν(Θ, x).

As r ∈ ]0, R[ and ε ∈ ]0, γ[ were arbitrary, the desired inequality follows. �

We will later need an important decomposition formula of [Siu74]. We start with the
following lemma.

(2.17) Lemma. If Θ is a closed positive current of bidimension (p, p) and Z is an
irreducible analytic set in X, we set

mZ = inf{x ∈ Z ; ν(Θ, x)}.

(a) There is a countable family of proper analytic subsets (Z ′
j) of Z such that

ν(Θ, x) = mZ for all x ∈ Z r
⋃
Z ′
j. We say that mZ is the generic Lelong number

of Θ along Z.

(b) If dimZ = p, then Θ > mZ [Z] and 1lZΘ = mZ [Z].

Proof. (a) By definition of mZ and Ec(Θ), we have ν(Θ, x) > mZ for every x ∈ Z and

ν(Θ, x) = mZ on Z r
⋃

c∈Q, c>mZ

Z ∩Ec(Θ).

However, for c > mZ , the intersection Z ∩ Ec(Θ) is a proper analytic subset of A.

(b) Left as an exercise to the reader. It is enough to prove that Θ > mZ [Zreg] at
regular points of Z, so one may assume that Z is a p-dimensional linear subspace in Cn.
Show that the measure (Θ − mZ [Z]) ∧ (ddc|z|2)p has nonnegative mass on every ball
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|z − a| < r with center a ∈ Z. Conclude by using arbitrary affine changes of coordinates
that Θ−mZ [Z] > 0. �

(2.18) Decomposition Formula ([Siu74]). Let Θ be a closed positive current of bidi-
mension (p, p). Then Θ can be written as a convergent series of closed positive currents

Θ =

+∞∑

k=1

λk [Zk] +R,

where [Zk] is a current of integration over an irreducible analytic set of dimension p,
and R is a residual current with the property that dimEc(R) < p for every c > 0. This
decomposition is locally and globally unique: the sets Zk are precisely the p-dimensional
components occurring in the upperlevel sets Ec(Θ), and λk = minx∈Zk

ν(Θ, x) is the
generic Lelong number of Θ along Zk.

Proof of uniqueness. If Θ has such a decomposition, the p-dimensional components of
Ec(Θ) are (Zj)λj>c, for ν(Θ, x) =

∑
λjν([Zj], x) + ν(R, x) is non zero only on

⋃
Zj ∪⋃

Ec(R), and is equal to λj generically on Zj
(
more precisely, ν(Θ, x) = λj at every

regular point of Zj which does not belong to any intersection Zj ∪ Zk, k 6= j or to⋃
Ec(R)

)
. In particular Zj and λj are unique.

Proof of existence. Let (Zj)j>1 be the countable collection of p-dimensional components
occurring in one of the sets Ec(Θ), c ∈ Q∗

+, and let λj > 0 be the generic Lelong number of
Θ along Zj . Then Lemma 2.17 shows by induction on N that RN = Θ−∑

16j6N λj [Zj ]
is positive. As RN is a decreasing sequence, there must be a limit R = limN→+∞ RN in
the weak topology. Thus we have the asserted decomposition. By construction, R has
zero generic Lelong number along Zj , so dimEc(R) < p for every c > 0. �

It is very important to note that some components of lower dimension can actually
occur in Ec(R), but they cannot be subtracted because R has bidimension (p, p). A typi-
cal case is the case of a bidimension (n− 1, n− 1) current Θ = ddcu with
u = log(|f1|γ1 + · · ·+ |fN |γN ) and fj ∈ H0(X,OX). In general

⋃
Ec(Θ) =

⋂
f−1
j (0)

has dimension < n− 1.

(2.19) Corollary. Let Θj = ddcuj, 1 6 j 6 p, be closed positive (1, 1)-currents on
a complex manifold X. Suppose that there are analytic sets A2 ⊃ · · · ⊃ Ap in X with
codimAj > j at every point such that each uj, j > 2, is locally bounded on X rAj. Let
{Ap,k}k>1 be the irreducible components of Ap of codimension p exactly and let νj,k =
minx∈Ap,k

ν(Θj , x) be the generic Lelong number of Θj along Ap,k. Then Θ1 ∧ · · · ∧ Θp
is well-defined and

Θ1 ∧ · · · ∧Θp >
+∞∑

k=1

ν1,k · . . . · νp,k [Ap,k].

Proof. By induction on p, Proposition 2.3 shows that Θ1 ∧ · · · ∧ Θp is well defined.
Moreover, Proposition 2.16 implies

ν(Θ1 ∧ · · · ∧Θp, x) > ν(Θ1, x) · · · · · ν(Θp, x) > ν1,k · . . . · νp,k
at every point x ∈ Ap,k. The desired inequality is then a consequence of Siu’s decompo-
sition theorem. �
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3. Hermitian Vector Bundles, Connections and Curvature

The goal of this section is to recall the most basic definitions of Hermitian differential
geometry related to the concepts of connection, curvature and first Chern class of a line
bundle.

Let F be a complex vector bundle of rank r over a smooth differentiable manifold M .
A connection D on F is a linear differential operator of order 1:

D : C∞(M,ΛqT ∗
M ⊗ F ) → C

∞(M,Λq+1T ∗
M ⊗ F )

such that

(3.1) D(f ∧ u) = df ∧ u+ (−1)deg ff ∧Du

for all forms f ∈ C∞(M,ΛpT ∗
M ), u ∈ C∞(X,ΛqT ∗

M ⊗F ). On an open set Ω ⊂M where

F admits a trivialization θ : F|Ω
≃−→ Ω× Cr, a connection D can be written

Du ≃θ du+ Γ ∧ u

where Γ ∈ C∞(Ω,Λ1T ∗
M ⊗ Hom(Cr,Cr)) is an arbitrary matrix of 1-forms and d acts

componentwise (the coefficients of Γ are called the Christoffel symbols of the connection).
It is then easy to check that

D2u ≃θ (dΓ + Γ ∧ Γ) ∧ u on Ω.

Since D2 is a globally defined operator, there is a global 2-form

(3.2) ΘD ∈ C∞(M,Λ2T ∗
M ⊗Hom(F, F ))

such that D2u = ΘD ∧ u for every form u with values in F .

Assume now that F is endowed with a C∞ Hermitian metric h along the fibers and
that the isomorphism F|Ω ≃ Ω × Cr is given by a C∞ frame (eλ). We then have a
canonical sesquilinear pairing

C

∞(M,ΛpT ∗
M ⊗ F )×C∞(M,ΛqT ∗

M ⊗ F ) −→ C

∞(M,Λp+qT ∗
M ⊗ C)(3.3)

(u, v) 7−→ {u, v}h

given by

{u, v}h =
∑

λ,µ

uλ ∧ vµ〈eλ, eµ〉h, u =
∑

uλ ⊗ eλ, v =
∑

vµ ⊗ eµ.

The connection D is said to be Hermitian (with respect to h) if it satisfies the additional
property

d{u, v}h = {Du, v}h + (−1)deg u{u,Dv}h.
Assuming that (eλ) is orthonormal, one easily checks that D is Hermitian if and only if
Γ∗ = −Γ. In this case Θ∗

D = −ΘD, thus

iΘD ∈ C∞(M,Λ2T ∗
M ⊗ Herm(F, F )).
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(3.4) Special Case. For a bundle F of rank 1, the connection form Γ of a Hermitian
connection D can be seen as a 1-form with purely imaginary coefficients Γ = iA (A real).
Then we have ΘD = dΓ = idA. In particular iΘF is a closed 2-form. The first Chern
class of F is defined to be the cohomology class

c1(F )R =
{ i

2π
ΘF

}
∈ H2

DR(M,R).

The cohomology class is actually independent of the connection, since any other connec-
tion D1 differs by a global 1-form, D1u = Du + B ∧ u, so that ΘD1

= ΘD + dB. It is
well-known that c1(F )R is the image in H2(M,R) of an integral class c1(F ) ∈ H2(M,Z) ;
by using the exponential exact sequence

0 → Z → E→ E

∗ → 0,

c1(F ) can be defined in Čech cohomology theory as the image by the coboundary map
H1(M,E∗) → H2(M,Z) of the cocycle {gjk} ∈ H1(M,E∗) defining F ; see e.g. [GrH78]
for details. �

We now concentrate ourselves on the complex analytic case. If M = X is a complex
manifold X , every connection D on a complex C∞ vector bundle F can be splitted in
a unique way as a sum of a (1, 0) and of a (0, 1)-connection, D = D′ + D′′. In a local
trivialization θ given by a C∞ frame, one can write

D′u ≃θ d′u+ Γ′ ∧ u,(3.5′)

D′′u ≃θ d′′u+ Γ′′ ∧ u,(3.5′′)

with Γ = Γ′ + Γ′′. The connection is Hermitian if and only if Γ′ = −(Γ′′)∗ in any
orthonormal frame. Thus there exists a unique Hermitian connection D corresponding
to a prescribed (0, 1) part D′′.

Assume now that the bundle F itself has a holomorphic structure, and is equipped
with a Hermitian metric h. The unique Hermitian connection for which D′′ is the d′′

operator defined in Section 1 is called the Chern connection of F . In a local holomorphic
frame (eλ) of E|Ω, the metric is given by the Hermitian matrixH = (hλµ), hλµ = 〈eλ, eµ〉.
We have

{u, v}h =
∑

λ,µ

hλµuλ ∧ vµ = u† ∧Hv,

where u† is the transposed matrix of u, and easy computations yield

d{u, v}h = (du)† ∧Hv + (−1)deg uu† ∧ (dH ∧ v +Hdv)

=
(
du+H

−1
d′H ∧ u

)† ∧Hv + (−1)deg uu† ∧ (dv +H
−1
d′H ∧ v)

using the fact that dH = d′H + d′H and H
†
= H. Therefore the Chern connection D

coincides with the Hermitian connection defined by

(3.6)

{
Du ≃θ du+H

−1
d′H ∧ u,

D′ ≃θ d′ +H
−1
d′H ∧ • = H

−1
d′(H•), D′′ = d′′.
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It is clear from this relations that D′2 = D′′2 = 0. Consequently D2 is given by to
D2 = D′D′′+D′′D′, and the curvature tensor ΘD is of type (1, 1). Since d′d′′+d′′d′ = 0,
we get

(D′D′′ +D′′D′)u ≃θ H
−1
d′H ∧ d′′u+ d′′(H

−1
d′H ∧ u)

= d′′(H
−1
d′H) ∧ u.

(3.7) Proposition. The Chern curvature tensor ΘF,h := ΘD of (F, h) is such that

i ΘF,h ∈ C∞(X,Λ1,1T ∗
X ⊗ Herm(F, F )).

If θ : F↾Ω → Ω × Cr is a holomorphic trivialization and if H is the Hermitian matrix
representing the metric along the fibers of F↾Ω, then

i ΘF,h ≃θ i d′′(H
−1
d′H) on Ω.

In case there cannot be any confusion on which Hermitian metric h is used, we also
sometimes simply write ΘF,h = ΘF .

Let (z1, . . . , zn) be holomorphic coordinates on X and let (eλ)16λ6r be an orthonor-
mal frame of F . Writing

iΘF,h =
∑

16j,k6n, 16λ,µ6r

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ,

we can identify the curvature tensor to a Hermitian form

(3.8) Θ̃F,h(ξ ⊗ v) =
∑

16j,k6n, 16λ,µ6r

cjkλµξjξkvλvµ

on TX ⊗ F . This leads in a natural way to positivity concepts, following definitions
introduced by Kodaira [Kod53], Nakano [Nak55] and Griffiths [Gri69].

(3.9) Definition. The Hermitian vector bundle (F, h) is said to be

(a) positive in the sense of Nakano if we have Θ̃F,h(τ) > 0 for all non zero tensors
τ =

∑
τjλ ∂/∂zj ⊗ eλ ∈ TX ⊗ F .

(b) positive in the sense of Griffiths if Θ̃F,h(ξ ⊗ v) > 0 for all non zero decomposable
tensors ξ ⊗ v ∈ TX ⊗ F ,

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.

(3.10) Special Case of Rank 1 Bundles. Assume that F is a line bundle. The
Hermitian matrix H = (h11) associated to a trivialization θ : F↾Ω ≃ Ω × C is simply a
positive function. It is often convenient to denote it as an exponential, namely e−2ϕ (and
also sometimes e−ϕ simply, if we do not want to stress that H is a quadratic form), with
ϕ ∈ C∞(Ω,R). In this case the curvature form ΘF,h can be identified to the (1, 1)-form
d′d′′ϕ, and

i

2π
ΘF,h =

i

π
d′d′′ϕ = ddcϕ
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is a real (1, 1)-form. Hence F is semi-positive (in either the Nakano or Griffiths sense)
if and only if ϕ is psh, resp. positive if and only if ϕ is strictly psh. In this setting, the
Lelong-Poincaré equation can be generalized as follows: let σ ∈ H0(X,F ) be a non zero
holomorphic section. Then

(3.11) ddc log ‖σ‖h = [Zσ]−
i

2π
ΘF,h.

Formula (3.11) is immediate if we write ‖σ‖ = |θ(σ)|e−ϕ and if we apply (1.20) to the
holomorphic function f = θ(σ). As we shall see later, it is very important for the
applications to consider also singular Hermitian metrics.

(3.12) Definition. A singular (Hermitian) metric h on a line bundle F is a metric

which is given in any trivialization θ : F↾Ω
≃−→ Ω× C by

‖ξ‖h = |θ(ξ)| e−ϕ(x), x ∈ Ω, ξ ∈ Fx

where ϕ ∈ L1
loc(Ω) is an arbitrary function, called the weight of the metric with respect

to the trivialization θ.

If θ′ : F↾Ω′ −→ Ω′ × C is another trivialization, ϕ′ the associated weight and g ∈
O

∗(Ω∩Ω′) the transition function, then θ′(ξ) = g(x) θ(ξ) for ξ ∈ Fx, and so ϕ′ = ϕ+log |g|
on Ω ∩ Ω′. The curvature form of F is then given formally by the closed (1, 1)-current
i
2πΘF,h = ddcϕ on Ω ; our assumption ϕ ∈ L1

loc(Ω) guarantees that ΘF,h exists in the

sense of distribution theory. As in the smooth case, i
2π

ΘF,h is globally defined on X and
independent of the choice of trivializations, and its De Rham cohomology class is the
image of the first Chern class c1(F ) ∈ H2(X,Z) in H2

DR(X,R). Before going further, we
discuss two basic examples.

(3.13) Example. Let D =
∑
αjDj be a divisor with coefficients αj ∈ Z and let

F = O(D) be the associated invertible sheaf of meromorphic functions u such that
div(u)+D > 0 ; the corresponding line bundle can be equipped with the singular metric
defined by ‖u‖ = |u|. If gj is a generator of the ideal of Dj on an open set Ω ⊂ X
then θ(u) = u

∏
g
αj

j defines a trivialization of O(D) over Ω, thus our singular metric is
associated to the weight ϕ =

∑
αj log |gj|. By the Lelong-Poincaré equation, we find

i

2π
Θ
O(D) = ddcϕ = [D],

where [D] =
∑
αj [Dj ] denotes the current of integration over D. �

(3.14) Example. Assume that σ0, σ1, . . . , σN are non zero holomorphic sections of F .
Then we can define a natural (possibly singular) Hermitian metric h∗ on F ∗ by

‖ξ∗‖2h∗ =
∑

06j6N

∣∣ξ∗ · σj(x)
∣∣2 for ξ∗ ∈ F ∗

x .

The dual metric h on F is given by

‖ξ‖2h =
|θ(ξ)|2

|θ(σ0(x))|2 + |θ(σ1(x))|2 + · · ·+ |θ(σN (x))|2
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with respect to any trivialization θ. The associated weight function is thus given by

ϕ(x) = log
( ∑

06j6N

|θ(σj(x))|2
)
1/2.

In this case ϕ is a psh function, thus iΘF,h is a closed positive current. Let us denote
by Σ the linear system defined by σ0, . . . , σN and by BΣ =

⋂
σ−1
j (0) its base locus. We

have a meromorphic map

ΦΣ : X rBΣ → PN , x 7→ (σ0(x) : σ1(x) : σ2(x) : · · · : σN (x)).

Then i
2πΘF,h is equal to the pull-back over X r BΣ of the Fubini-Study metric ωFS =

i
2π

log(|z0|2 + |z1|2 + · · ·+ |zN |2) of PN by ΦΣ. �

(3.15) Ample and Very Ample Line Bundles. A holomorphic line bundle F over
a compact complex manifold X is said to be

(a) very ample if the map Φ|F | : X → PN associated to the complete linear system
|F | = P (H0(X,F )) is a regular embedding (by this we mean in particular that the
base locus is empty, i.e. B|F | = ∅).

(b) ample if some multiple mF , m > 0, is very ample.

Here we use an additive notation for Pic(X) = H1(X,O∗), hence the symbol mF
denotes the line bundle F⊗m. By Example 3.14, every ample line bundle F has a smooth
Hermitian metric with positive definite curvature form; indeed, if the linear system |mF |
gives an embedding in projective space, then we get a smooth Hermitian metric on F⊗m,
and the m-th root yields a metric h on F such that i

2πΘF,h = 1
mΦ∗

|mF |ωFS. Conversely,

the Kodaira embedding theorem [Kod54] tells us that every positive line bundle F is
ample (see Exercise 5.14 for a straightforward analytic proof of the Kodaira embedding
theorem).

4. Bochner Technique and Vanishing Theorems

§ 4.A. Laplace-Beltrami Operators and Hodge Theory

We start by recalling briefly a few basic facts of Hodge theory. Assume for the moment
thatM is a differentiable manifold equipped with a Riemannian metric g =

∑
gijdxi⊗dxj

and that (F, h) is a Hermitian vector bundle over M . Given a q-form u onM with values
in F , we consider the global L2 norm

‖u‖2 =

∫

M

|u(x)|2dVg(x)

where |u| is the pointwise Hermitian norm and dVg is the Riemannian volume form (we
omit the dependence on the metrics in the notation, but we should really put |u(x)|g,h
and ‖u‖g,h here). The Laplace-Beltrami operator associated to the connection D is by
definition

∆ = DD∗ +D∗D
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where

D∗ : C∞(M,ΛqT ∗
M ⊗ F ) → C

∞(M,Λq−1T ∗
M ⊗ F )

is the (formal) adjoint of D with respect to the L2 inner product. Assume that M is
compact. Since

∆ : C∞(M,ΛqT ∗
M ⊗ F ) → C

∞(M,ΛqT ∗
M ⊗ F )

is a self-adjoint elliptic operator in each degree, standard results of PDE theory show
that there is an orthogonal decomposition

C

∞(M,ΛqT ∗
M ⊗ F ) = Hq(M,F )⊕ Im∆

where Hq(M,F ) = Ker∆ is the space of harmonic forms of degree q; Hq(M,F ) is a
finite dimensional space. Assume moreover that the connection D is integrable, i.e. that
D2 = 0. It is then easy to check that there is an orthogonal direct sum

Im∆ = ImD ⊕ ImD∗,

indeed 〈Du,D∗v〉 = 〈D2u, v〉 = 0 for all u, v. Hence we get an orthogonal decomposition

C

∞(M,ΛqT ∗
M ⊗ F ) = Hq(M,F )⊕ ImD ⊕ ImD∗,

and Ker∆ is precisely equal to Hq(M,F )⊕ ImD. Especially, the q-th cohomology group
Ker∆/ Im∆ is isomorphic to Hq(M,F ). All this can be applied for example in the case
of the De Rham groups Hq

DR(M,C), taking F to be the trivial bundle F =M×C (notice,
however, that a nontrivial bundle F usually does not admit any integrable connection):

(4.1) Hodge Fundamental Theorem. If M is a compact Riemannian manifold, there
is an isomorphism

Hq
DR(M,C) ≃ Hq(M,C)

from De Rham cohomology groups onto spaces of harmonic forms.

A rather important consequence of the Hodge fundamental theorem is a proof of
the Poincaré duality theorem. Assume that the Riemannian manifold (M, g) is oriented.
Then there is a (conjugate linear) Hodge star operator

∗ : ΛqT ∗
M ⊗ C → Λm−qT ∗

M ⊗ C, m = dimRM

defined by u ∧ ∗v = 〈u, v〉dVg for any two complex valued q-forms u, v. A standard
computation shows that ∗ commutes with ∆, hence ∗u is harmonic if and only if u is.
This implies that the natural pairing

(4.2) Hq
DR(M,C)×Hm−q

DR (M,C), ({u}, {v}) 7→
∫

M

u ∧ v

is a nondegenerate duality, the dual of a class {u} represented by a harmonic form being
{∗u}.
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§ 4.B. Serre Duality Theorem

Let us now suppose that X is a compact complex manifold equipped with a Hermitian
metric ω =

∑
ωjkdzj ∧ dzk. Let F be a holomorphic vector bundle on X equipped with

a Hermitian metric, and let D = D′ +D′′ be its Chern curvature form. All that we said
above for the Laplace-Beltrami operator ∆ still applies to the complex Laplace operators

∆′ = D′D′∗ +D′∗D′, ∆′′ = D′′D′′∗ +D′′∗D′′,

with the great advantage that we always have D′2 = D′′2 = 0. Especially, if X is a
compact complex manifold, there are isomorphisms

(4.3) Hp,q(X,F ) ≃ Hp,q(X,F )

between Dolbeault cohomology groups Hp,q(X,F ) and spaces Hp,q(X,F ) of ∆′′-har-
monic forms of bidegree (p, q) with values in F . Now, there is a generalized Hodge star
operator

∗ : Λp,qT ∗
X ⊗ F → Λn−p,n−qT ∗

X ⊗ F ∗, n = dimCX,

such that u∧∗v = 〈u, v〉dVg, for any two F -valued (p, q)-forms, when the wedge product
u∧∗v is combined with the pairing F ×F ∗ → C. This leads to the Serre duality theorem
[Ser55]: the bilinear pairing

(4.4) Hp,q(X,F )×Hn−p,n−q(X,F ∗), ({u}, {v}) 7→
∫

X

u ∧ v

is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we may
restate the result in the form of the duality formula

(4.4′) Hq(X,ΩpX ⊗ O(F ))∗ ≃ Hn−q(X,Ωn−pX ⊗ O(F ∗)).

§ 4.C.Bochner-Kodaira-Nakano Identity on Kähler Manifolds

We now proceed to explain the basic ideas of the Bochner technique used to prove
vanishing theorems. Great simplifications occur in the computations if the Hermitian
metric on X is supposed to be Kähler, i.e. if the associated fundamental (1, 1)-form

ω = i
∑

ωjkdzj ∧ dzk

satisfies dω = 0. It can be easily shown that ω is Kähler if and only if there are holo-
morphic coordinates (z1, . . . , zn) centered at any point x0 ∈ X such that the matrix of
coefficients (ωjk) is tangent to identity at order 2, i.e.

ωjk(z) = δjk +O(|z|2) at x0.

It follows that all order 1 operators D, D′, D′′ and their adjoints D∗, D′∗, D′′∗ admit at
x0 the same expansion as the analogous operators obtained when all Hermitian metrics on
X or F are constant. From this, the basic commutation relations of Kähler geometry can
be checked. If A,B are differential operators acting on the algebra C∞(X,Λ•,•T ∗

X ⊗F ),
their graded commutator (or graded Lie bracket) is defined by

[A,B] = AB − (−1)abBA
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where a, b are the degrees of A and B respectively. If C is another endomorphism of
degree c, the following purely formal Jacobi identity holds:

(−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

(4.5) Basic Commutation Relations. Let (X,ω) be a Kähler manifold and let L be
the operators defined by Lu = ω ∧ u and Λ = L∗. Then

[D′′∗, L] = iD′,

[Λ, D′′] = −iD′∗,

[D′∗, L] = −iD′′,

[Λ, D′] = iD′′∗.

Proof (sketch). The first step is to check the identity [d′′∗, L] = id′ for constant metrics
on X = Cn and F = X × C, by a brute force calculation. All three other identities
follow by taking conjugates or adjoints. The case of variable metrics follows by looking
at Taylor expansions up to order 1. �

(4.6) Bochner-Kodaira-Nakano Identity. If (X,ω) is Kähler, the complex Laplace
operators ∆′ and ∆′′ acting on F -valued forms satisfy the identity

∆′′ = ∆′ + [iΘF,h,Λ].

Proof. The last equality in (4.5) yields D′′∗ = −i[Λ, D′], hence

∆′′ = [D′′, δ′′] = −i[D′′,
[
Λ, D′]

]
.

By the Jacobi identity we get

[
D′′, [Λ, D′]

]
=

[
Λ, [D′, D′′]] +

[
D′, [D′′,Λ]

]
= [Λ,ΘF,h] + i[D′, D′∗],

taking into account that [D′, D′′] = D2 = ΘF,h. The formula follows. �

§ 4.D. Vanishing Theorems

Assume that X is compact and that u ∈ C∞(X,Λp,qT ∗X⊗F ) is an arbitrary (p, q)-form.
An integration by parts yields

〈∆′u, u〉 = ‖D′u‖2 + ‖D′∗u‖2 > 0

and similarly for ∆′′, hence we get the basic a priori inequality

(4.7) ‖D′′u‖2 + ‖D′′∗u‖2 >

∫

X

〈[iΘF,h,Λ]u, u〉dVω.

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc48;
Kod53; Nak55]). When u is ∆′′-harmonic, we get

∫

X

(
〈[iΘF,h,Λ]u, u〉+ 〈Tωu, u〉

)
dV 6 0.
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If the Hermitian operator [iΘF,h,Λ] acting on Λp,qT ∗
X ⊗ F is positive on each fiber, we

infer that u must be zero, hence

Hp,q(X,F ) = Hp,q(X,F ) = 0

by Hodge theory. The main point is thus to compute the curvature form ΘF,h and find
sufficient conditions under which the operator [iΘF,h,Λ] is positive definite. Elementary
(but somewhat tedious) calculations yield the following formulae: if the curvature of F
is written as in (3.8) and u =

∑
uJ,K,λdzI ∧ dzJ ⊗ eλ, |J | = p, |K| = q, 1 6 λ 6 r is a

(p, q)-form with values in F , then

〈[iΘF,h,Λ]u, u〉 =
∑

j,k,λ,µ,J,S

cjkλµ uJ,jS,λ uJ,kS,µ(4.8)

+
∑

j,k,λ,µ,R,K

cjkλµ ukR,K,λ ujR,K,µ

−
∑

j,λ,µ,J,K

cjjλµ uJ,K,λ uJ,K,µ,

where the sum is extended to all indices 1 6 j, k 6 n, 1 6 λ, µ 6 r and multiindices
|R| = p−1, |S| = q−1 (here the notation uJKλ is extended to non necessarily increasing
multiindices by making it alternate with respect to permutations). It is usually hard to
decide the sign of the curvature term (4.8), except in some special cases.

The easiest case is when p = n. Then all terms in the second summation of (4.8)
must have j = k and R = {1, . . . , n}r {j}, therefore the second and third summations
are equal. It follows that [iΘF,h,Λ] is positive on (n, q)-forms under the assumption that
F is positive in the sense of Nakano. In this case X is automatically Kähler since

ω = TrF (iΘF,h) = i
∑

j,k,λ

cjkλλdzj ∧ dzk = iΘdetF,h

is a Kähler metric.

(4.9) Nakano Vanishing Theorem ([Nak55]). Let X be a compact complex manifold
and let F be a Nakano positive vector bundle on X. Then

Hn,q(X,F ) = Hq(X,KX ⊗ F ) = 0 for every q > 1.

Another tractable case is the case where F is a line bundle (r = 1). Indeed, at each
point x ∈ X , we may then choose a coordinate system which diagonalizes simultaneously
the Hermitians forms ω(x) and iΘF,h(x), in such a way that

ω(x) = i
∑

16j6n

dzj ∧ dzj , iΘF,h(x) = i
∑

16j6n

γjdzj ∧ dzj

with γ1 6 · · · 6 γn. The curvature eigenvalues γj = γj(x) are then uniquely defined and
depend continuously on x. With our previous notation, we have γj = cjj11 and all other
coefficients cjkλµ are zero. For any (p, q)-form u =

∑
uJKdzJ ∧ dzK ⊗ e1, this gives

(4.10) 〈[iΘF,h,Λ]u, u〉 =
∑

|J|=p, |K|=q

(∑

j∈J
γj +

∑

j∈K
γj −

∑

16j6n

γj

)
|uJK |2

> (γ1 + · · ·+ γq − γn−p+1 − · · · − γn)|u|2.



32 Analytic Methods in Algebraic Geometry

Assume that iΘF,h is positive. It is then natural to make the special choice ω = iΘF,h
for the Kähler metric. Then γj = 1 for j = 1, 2, . . . , n and we obtain 〈[iΘF,h,Λ]u, u〉 =
(p+ q − n)|u|2. As a consequence:

(4.11) Akizuki-Kodaira-Nakano Vanishing Theorem ([AN54]). If F is a positive
line bundle on a compact complex manifold X, then

Hp,q(X,F ) = Hq(X,ΩpX ⊗ F ) = 0 for p+ q > n+ 1.

More generally, if F is a Griffiths positive (or ample) vector bundle of rank r > 1,
Le Potier [LP75] proved that Hp,q(X,F ) = 0 for p + q > n + r. The proof is not a
direct consequence of the Bochner technique. A rather easy proof has been found by
M. Schneider [Sch74], using the Leray spectral sequence associated to the projectivized
bundle projection P(F ) → X , using the following more or less standard notation.

(4.12) Notation. If V is a complex vector space (resp. complex vector bundle), we let
P (V ) be the projective space (resp. bundle) of lines of V , and P(V ) = P (V ∗) be the
projective space (resp. bundle) of hyperplanes of V .

(4.13) Exercise. It is important for various applications to obtain vanishing theorems
which are also valid in the case of semi-positive line bundles. The easiest case is the
following result of Girbau [Gir76]: let (X,ω) be compact Kähler; assume that F is a line
bundle and that iΘF,h > 0 has at least n− k positive eigenvalues at each point, for some
integer k > 0; show that Hp,q(X,F ) = 0 for p+ q > n+ k + 1.
Hint: use the Kähler metric ωε = iΘF,h + εω with ε > 0 small.

A stronger and more natural “algebraic version” of this result has been obtained by
Sommese [Som78]: define F to be k-ample if some multiplemF is such that the canonical
map

Φ|mF | : X rB|mF | → PN−1

has at most k-dimensional fibers and dimB|mF | 6 k. If X is projective and F is k-ample,
show that Hp,q(X,F ) = 0 for p+ q > n+ k + 1.
Hint: prove the dual result Hp,q(X,F−1) = 0 for p + q 6 n − k − 1 by induction on k.
First show that F 0-ample ⇒ F positive; then use hyperplane sections Y ⊂ X to prove
the induction step, thanks to the exact sequences

0 −→ ΩpX ⊗ F−1 ⊗ O(−Y ) −→ ΩpX ⊗ F−1 −→
(
ΩpX ⊗ F−1

)
↾Y

−→ 0,

0 −→ Ωp−1
Y ⊗ F−1

↾Y ⊗ O(−Y )↾Y −→
(
ΩpX ⊗ F−1

)
↾Y

−→ ΩpY ⊗ F−1
↾Y −→ 0. �

5. L2 Estimates and Existence Theorems

§ 5.A. Basic L2 Existence Theorems

The starting point is the following L2 existence theorem, which is essentially due to
Hörmander [Hör65, 66], and Andreotti-Vesentini [AV65], following fundamental work by
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Kohn [Koh63, 64]. We will only present the strategy and the main ideas and tools, refer-
ring e.g. to [Dem82b] for a more detailed exposition of the technical situation considered
here.

(5.1) Theorem. Let (X,ω) be a Kähler manifold. Here X is not necessarily compact,
but we assume that the geodesic distance δω is complete on X. Let F be a Hermitian
vector bundle of rank r over X, and assume that the curvature operator A = Ap,qF,h,ω =
[iΘF,h,Λω] is positive definite everywhere on Λp,qT ∗

X ⊗ F , q > 1. Then for any form
g ∈ L2(X,Λp,qT ∗

X ⊗ F ) satisfying D′′g = 0 and
∫
X
〈A−1g, g〉 dVω < +∞, there exists

f ∈ L2(X,Λp,q−1T ∗
X ⊗ F ) such that D′′f = g and

∫

X

|f |2 dVω 6

∫

X

〈A−1g, g〉 dVω.

Proof. The assumption that δω is complete implies the existence of cut-off functions ψν
with arbitrarily large compact support such that |dψν | 6 1 (take ψν to be a function of the
distance x 7→ δω(x0, x), which is an almost everywhere differentiable 1-Lipschitz function,
and regularize if necessary). From this, it follows that very form u ∈ L2(X,Λp,qT ∗

X ⊗F )
such that D′′u ∈ L2 and D′′∗u ∈ L2 in the sense of distribution theory is a limit of
a sequence of smooth forms uν with compact support, in such a way that uν → u,
D′′uν → D′′u and D′′∗uν → D′′∗u in L2 (just take uν to be a regularization of ψνu). As
a consequence, the basic a priori inequality (4.7) extends to arbitrary forms u such that
u, D′′u,D′′∗u ∈ L2 . Now, consider the Hilbert space orthogonal decomposition:

L2(X,Λp,qT ∗
X ⊗ F ) = KerD′′ ⊕ (KerD′′)⊥,

observing that KerD′′ is weakly (hence strongly) closed. Let v = v1+v2 be the decompo-
sition of a smooth form v ∈Dp,q(X,F ) with compact support according to this decom-
position (v1, v2 do not have compact support in general !). Since (KerD′′)⊥ ⊂ KerD′′∗

by duality and g, v1 ∈ KerD′′ by hypothesis, we get D′′∗v2 = 0 and

|〈g, v〉|2 = |〈g, v1〉|2 6

∫

X

〈A−1g, g〉 dVω
∫

X

〈Av1, v1〉 dVω

thanks to the Cauchy-Schwarz inequality. The a priori inequality (4.7) applied to u = v1
yields ∫

X

〈Av1, v1〉 dVω 6 ‖D′′v1‖2 + ‖D′′∗v1‖2 = ‖D′′∗v1‖2 = ‖D′′∗v‖2.

Combining both inequalities, we find

|〈g, v〉|2 6
(∫

X

〈A−1g, g〉 dVω
)
‖D′′∗v‖2

for every smooth (p, q)-form v with compact support. This shows that we have a well
defined linear form:

w = D′′∗v 7−→ 〈v, g〉, L2(X,Λp,q−1T ∗
X ⊗ F ) ⊃ D′′∗(Dp,q(F )) −→ C
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on the range of D′′∗. This linear form is continuous in L2 norm and has norm 6 C with

C =
(∫

X

〈A−1g, g〉 dVω
)1/2

.

By the Hahn-Banach theorem, there is an element f ∈ L2(X,Λp,q−1T ∗
X ⊗ F ) with

||f || 6 C, such that 〈v, g〉 = 〈D′′∗v, f〉 for every v, hence D′′f = g in the sense of
distributions. The inequality ||f || 6 C is equivalent to the last estimate in the theorem.

�

The above L2 existence theorem can be applied in the fairly general context of weakly
pseudoconvex manifolds. By this, we mean a complex manifold X such that there exists
a smooth psh exhaustion function ψ on X (ψ is said to be an exhaustion if for every
c > 0 the upperlevel set Xc = ψ−1(c) is relatively compact, i.e. ψ(z) tends to +∞
when z is taken outside larger and larger compact subsets of X). In particular, every
compact complex manifold X is weakly pseudoconvex (take ψ = 0), as well as every
Stein manifold, e.g. affine algebraic submanifolds of CN (take ψ(z) = |z|2), open balls
X = B(z0, r)

(
take ψ(z) = 1/(r − |z − z0|2)

)
, convex open subsets, etc. Now, a basic

observation is that every weakly pseudoconvex Kähler manifold (X,ω) carries a complete
Kähler metric: let ψ > 0 be a psh exhaustion function and set

ωε = ω + ε id′d′′ψ2 = ω + 2ε(2iψd′d′′ψ + id′ψ ∧ d′′ψ).

Then |dψ|ωε
6 1/ε and |ψ(x)− ψ(y)| 6 ε−1δωε

(x, y). It follows easily from this estimate
that the geodesic balls are relatively compact, hence δωε

is complete for every ε > 0.
Therefore, the L2 existence theorem can be applied to each Kähler metric ωε, and by
passing to the limit it can even be applied to the non necessarily complete metric ω. An
important special case is the following

(5.2) Theorem. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is weakly
pseudoconvex. Let F be a Hermitian line bundle and let

γ1(x) 6 · · · 6 γn(x)

be the curvature eigenvalues (i.e. the eigenvalues of iΘF,h with respect to the metric ω) at
every point. Assume that the curvature is positive, i.e. γ1 > 0 everywhere. Then for any
form g ∈ L2(X,Λn,qT ∗

X⊗F ) satisfying D′′g = 0 and
∫
X
〈(γ1 + · · ·+ γq)

−1|g|2 dVω < +∞,
there exists f ∈ L2(X,Λp,q−1T ∗

X ⊗ F ) such that D′′f = g and

∫

X

|f |2 dVω 6

∫

X

(γ1 + · · ·+ γq)
−1|g|2 dVω.

Proof. Indeed, for p = n, Formula (4.10) shows that

〈Au, u〉 > (γ1 + · · ·+ γq)|u|2,

hence 〈A−1u, u〉 > (γ1 + · · ·+ γq)
−1|u|2. �

An important observation is that the above theorem still applies when the Hermi-
tian metric on F is a singular metric with positive curvature in the sense of currents.
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In fact, by standard regularization techniques (convolution of psh functions by smooth-
ing kernels), the metric can be made smooth and the solutions obtained by Theorem
5.1 or Theorem 5.2 for the smooth metrics have limits satisfying the desired estimates.
Especially, we get the following:

(5.3) Corollary. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is weakly
pseudoconvex. Let F be a holomorphic line bundle equipped with a singular metric whose
local weights are denoted ϕ ∈ L1

loc, i.e. H = E−ϕ. Suppose that

iΘF,h = id′d′′ϕ > εω

for some ε > 0. Then for any form g ∈ L2(X,Λn,qT ∗
X ⊗ F ) satisfying D′′g = 0, there

exists f ∈ L2(X,Λp,q−1T ∗
X ⊗ F ) such that D′′f = g and

∫

X

|f |2e−ϕ dVω 6
1

qε

∫

X

|g|2e−ϕ dVω.

Here we denoted somewhat incorrectly the metric by |f |2e−ϕ, as if the weight ϕ was
globally defined on X (of course, this is so only if F is globally trivial). We will use this
notation anyway, because it clearly describes the dependence of the L2 norm on the psh
weights.

§ 5.B. Multiplier Ideal Sheaves and Nadel Vanishing Theorem

We now introduce the concept of multiplier ideal sheaf, following A. Nadel [Nad89]. The
main idea actually goes back to the fundamental works of Bombieri [Bom70] and H. Skoda
[Sko72a].

(5.4) Definition. Let ϕ be a psh function on an open subset Ω ⊂ X ; to ϕ is associated
the ideal subsheaf I(ϕ) ⊂ OΩ of germs of holomorphic functions f ∈ OΩ,x such that
|f |2e−2ϕ is integrable with respect to the Lebesgue measure in some local coordinates
near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighborhood of which e−2ϕ

is non integrable. Of course, such points occur only if ϕ has logarithmic poles. This is
made precise as follows.

(5.5) Definition. A psh function ϕ is said to have a logarithmic pole of coefficient γ at
a point x ∈ X if the Lelong number

ν(ϕ, x) := lim inf
z→x

ϕ(z)

log |z − x|

is non zero and if ν(ϕ, x) = γ.

(5.6) Lemma (Skoda [Sko72a]). Let ϕ be a psh function on an open set Ω and let x ∈ Ω.

(a) If ν(ϕ, x) < 1, then e−2ϕ is integrable in a neighborhood of x, in particular I(ϕ)x =
OΩ,x.
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(b) If ν(ϕ, x) > n + s for some integer s > 0, then e−2ϕ > C|z − x|−2n−2s in a neigh-
borhood of x and I(ϕ)x ⊂ m

s+1
Ω,x , where mΩ,x is the maximal ideal of OΩ,x.

(c) The zero variety V (I(ϕ)) of I(ϕ) satisfies

En(ϕ) ⊂ V (I(ϕ)) ⊂ E1(ϕ)

where Ec(ϕ) = {x ∈ X ; ν(ϕ, x) > c} is the c-upperlevel set of Lelong numbers of ϕ.

Proof. (a) Set Θ = ddcϕ and γ = ν(Θ, x) = ν(ϕ, x). Let χ be a cut-off function with
support in a small ball B(x, r), equal to 1 in B(x, r/2). As (ddc log |z|)n = δ0, we get

ϕ(z) =

∫

B(x,r)

χ(ζ)ϕ(ζ)(ddc log |ζ − z|)n

=

∫

B(x,r)

ddc(χ(ζ)ϕ(ζ)) ∧ log |ζ − z|(ddc log |ζ − z|)n−1

for z ∈ B(x, r/2). Expanding ddc(χϕ) and observing that dχ = ddcχ = 0 on B(x, r/2),
we find

ϕ(z) =

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ log |ζ − z|(ddc log |ζ − z|)n−1 + smooth terms

on B(x, r/2). Fix r so small that

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − x|)n−1 6 ν(Θ, x, r) < 1.

By continuity, there exists δ, ε > 0 such that

I(z) :=

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1 6 1− δ

for all z ∈ B(x, ε). Applying Jensen’s convexity inequality to the probability measure

dµz(ζ) = I(z)−1χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1,

we find

−ϕ(z) =
∫

B(x,r)

I(z) log |ζ − z|−1 dµz(ζ) +O(1)

=⇒ e−2ϕ(z) 6 C

∫

B(x,r)

|ζ − z|−2I(z) dµz(ζ).

As
dµz(ζ) 6 C1|ζ − z|−(2n−2)Θ(ζ) ∧ (ddc|ζ|2)n−1 = C2|ζ − z|−(2n−2)dσΘ(ζ),

we get

e−2ϕ(z) 6 C3

∫

B(x,r)

|ζ − z|−2(1−δ)−(2n−2)dσΘ(ζ),

and the Fubini theorem implies that e−2ϕ(z) is integrable on a neighborhood of x.
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(b) If ν(ϕ, x) = γ, the convexity properties of psh functions, namely, the convexity of
log r 7→ sup|z−x|=r ϕ(z) implies that

ϕ(z) 6 γ log |z − x|/r0 +M,

where M is the supremum on B(x, r0). Hence there exists a constant C > 0 such that
e−2ϕ(z) > C|z − x|−2γ in a neighborhood of x. The desired result follows from the
estimate

∫

B(0,r0)

∣∣∑ aαz
α
∣∣2

|z|2γ dV (z) ∼ Const.

∫ r0

0

(∑
|aα|2r2|α|

)
r2n−1−2γ dr,

which holds modulo multiplicative constants and is an easy consequence of Parseval’s
formula. Now, if γ has integral part [γ] = n + s, the integral converges if and only if
aα = 0 for |α| 6 s.

(c) is just a simple formal consequence of (a) and (b). �

(5.7) Proposition ([Nad89]). For any psh function ϕ on Ω ⊂ X, the sheaf I(ϕ) is a
coherent sheaf of ideals over Ω. Moreover, if Ω is a bounded Stein open set, the sheaf
I(ϕ) is generated by any Hilbert basis of the L2 space H2(Ω, ϕ) of holomorphic functions
f on Ω such that

∫
Ω
|f |2e−2ϕ dλ < +∞.

Proof. Since the result is local, we may assume that Ω is a bounded pseudoconvex open
set in Cn. By the strong noetherian property of coherent sheaves, the family of sheaves
generated by finite subsets ofH2(Ω, ϕ) has a maximal element on each compact subset of
Ω, hence H2(Ω, ϕ) generates a coherent ideal sheaf J ⊂ OΩ. It is clear that J ⊂ I(ϕ); in
order to prove the equality, we need only check that Jx+I(ϕ)x∩m

s+1
Ω,x = I(ϕ)x for every

integer s, in view of the Krull lemma. Let f ∈ I(ϕ)x be defined in a neighborhood V of
x and let θ be a cut-off function with support in V such that θ = 1 in a neighborhood of
x. We solve the equation d′′u = g := d′′(θf) by means of Hörmander’s L2 estimates 5.3,
where F is the trivial line bundle Ω× C equipped with the strictly psh weight

ϕ̃(z) = ϕ(z) + (n+ s) log |z − x|+ |z|2.

We get a solution u such that
∫
Ω
|u|2e−2ϕ|z − x|−2(n+s)dλ < ∞, thus F = θf − u is

holomorphic, F ∈ H2(Ω, ϕ) and fx−Fx = ux ∈ I(ϕ)x∩ms+1
Ω,x . This proves the coherence.

Now, J is generated by any Hilbert basis of H2(Ω, ϕ), because it is well-known that the
space of sections of any coherent sheaf is a Fréchet space, therefore closed under local L2

convergence. �

The multiplier ideal sheaves satisfy the following basic functoriality property with
respect to direct images of sheaves by modifications.

(5.8) Proposition. Let µ : X ′ → X be a modification of non singular complex manifolds
(i.e. a proper generically 1:1 holomorphic map), and let ϕ be a psh function on X. Then

µ∗
(
O(KX′)⊗ I(ϕ ◦ µ)

)
= O(KX)⊗I(ϕ).

Proof. Let n = dimX = dimX ′ and let S ⊂ X be an analytic set such that µ : X ′rS′ →
XrS is a biholomorphism. By definition of multiplier ideal sheaves, O(KX)⊗I(ϕ) is just
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the sheaf of holomorphic n-forms f on open sets U ⊂ X such that in
2

f∧f e−2ϕ ∈ L1
loc(U).

Since ϕ is locally bounded from above, we may even consider forms f which are a priori
defined only on U r S, because f will be in L2

loc(U) and therefore will automatically
extend through S. The change of variable formula yields

∫

U

in
2

f ∧ f e−2ϕ =

∫

µ−1(U)

in
2

µ∗f ∧ µ∗f e−2ϕ◦µ,

hence f ∈ Γ(U,O(KX)⊗I(ϕ)) iff µ∗f ∈ Γ(µ−1(U),O(KX′)⊗I(ϕ ◦ µ)). Proposition 5.8
is proved. �

(5.9) Remark. If ϕ has analytic singularities (according to Definition 1.10), the com-
putation of I(ϕ) can be reduced to a purely algebraic problem.

The first observation is that I(ϕ) can be computed easily if ϕ has the form ϕ =∑
αj log |gj | where Dj = g−1

j (0) are nonsingular irreducible divisors with normal cross-
ings. Then I(ϕ) is the sheaf of functions h on open sets U ⊂ X such that

∫

U

|h|2
∏

|gj |−2αjdV < +∞.

Since locally the gj can be taken to be coordinate functions from a local coordinate
system (z1, . . . , zn), the condition is that h is divisible by

∏
g
mj

j where mj − αj > −1
for each j, i.e. mj > ⌊αj⌋ (integer part). Hence

I(ϕ) = O(−⌊D⌋) = O(−
∑

⌊αj⌋Dj)

where ⌊D⌋ denotes the integral part of the Q-divisor D =
∑
αjDj .

Now, consider the general case of analytic singularities and suppose that

ϕ ∼ α

2
log

(
|f1|2 + · · ·+ |fN |2

)

near the poles. By the explanations given after Definition 1.10, we may assume that the
(fj)

′s are generators of the integrally closed ideal sheaf J = J(ϕ/α), defined as the sheaf
of holomorphic functions h such that |h| 6 C exp(ϕ/α). In this case, the computation
is made as follows (see also L. Bonavero’s work [Bon93], where similar ideas are used in
connection with “singular” holomorphic Morse inequalities).

First, one computes a smooth modification µ : X̃ → X of X such that µ∗
J is an

invertible sheaf O(−D) associated with a normal crossing divisor D =
∑
λjDj , where

(Dj) are the components of the exceptional divisor of X̃ (take the blow-up X ′ of X
with respect to the ideal J so that the pull-back of J to X ′ becomes an invertible sheaf
O(−D′), then blow up again by Hironaka [Hir64] to make X ′ smooth and D′ have normal
crossings). Now, we have K

X̃
= µ∗KX +R where R =

∑
ρjDj is the zero divisor of the

Jacobi function Jµ of the blow-up map. By the direct image formula (5.8), we get

I(ϕ) = µ∗
(
O(K

X̃
− µ∗KX)⊗I(ϕ ◦ µ)

)
= µ∗

(
O(R)⊗ I(ϕ ◦ µ)

)
.

Now, {fj ◦ µ} are generators of the ideal O(−D), hence

ϕ ◦ µ ∼ α
∑

λj log |gj|
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where gj are local generators of O(−Dj). We are thus reduced to computing multiplier
ideal sheaves in the case where the poles are given by a Q-divisor with normal crossings∑
αλjDj . We obtain I(ϕ ◦ µ) = O(−∑⌊αλj⌋Dj), hence

I(ϕ) = µ∗OX̃
(∑

(ρj − ⌊αλj⌋)Dj
)
. �

(5.10) Exercise. Compute the multiplier ideal sheaf I(ϕ) associated with the function
ϕ = log(|z1|α1 + · · ·+ |zp|αp) for arbitrary real numbers αj > 0.

Hint: using Parseval’s formula and polar coordinates zj = rje
iθj , show that the problem

is equivalent to determining for which p-tuples (β1, . . . , βp) ∈ Np the integral

∫

[0,1]p

r2β1

1 · · · r2βp
p r1dr1 · · · rpdrp

r2α1
1 + · · ·+ r

2αp
p

=

∫

[0,1]p

t
(β1+1)/α1

1 · · · t(βp+1)/αp
p

t1 + · · ·+ tp

dt1
t1

. . .
dtp
tp

is convergent. Conclude from this that I(ϕ) is generated by the monomials zβ1

1 · · · zβp
p

such that
∑

(βp + 1)/αp > 1. (This exercise shows that the analytic definition of I(ϕ)
is sometimes also quite convenient for computations). �

Let F be a line bundle over X with a singular metric h of curvature current ΘF,h.
If ϕ is the weight representing the metric in an open set Ω ⊂ X , the ideal sheaf I(ϕ)
is independent of the choice of the trivialization and so it is the restriction to Ω of a
global coherent sheaf I(h) on X . We will sometimes still write I(h) = I(ϕ) by abuse of
notation. In this context, we have the following fundamental vanishing theorem, which
is probably one of the most central results of analytic and algebraic geometry (as we will
see later, it contains the Kawamata-Viehweg vanishing theorem as a special case).

(5.11) Nadel Vanishing Theorem ([Nad89; Dem93b]). Let (X,ω) be a Kähler weakly
pseudoconvex manifold, and let F be a holomorphic line bundle over X equipped with a
singular Hermitian metric h of weight ϕ. Assume that iΘF,h > εω for some continuous
positive function ε on X. Then

Hq
(
X,O(KX + F )⊗ I(h)

)
= 0 for all q > 1.

Proof. Let Lq be the sheaf of germs of (n, q)-forms u with values in F and with mea-
surable coefficients, such that both |u|2e−2ϕ and |d′′u|2e−2ϕ are locally integrable. The
d′′ operator defines a complex of sheaves (L•, d′′) which is a resolution of the sheaf
O(KX + F ) ⊗ I(ϕ): indeed, the kernel of d′′ in degree 0 consists of all germs of holo-
morphic n-forms with values in F which satisfy the integrability condition; hence the
coefficient function lies in I(ϕ); the exactness in degree q > 1 follows from Corollary 5.3
applied on arbitrary small balls. Each sheaf Lq is a C∞-module, so L• is a resolution by
acyclic sheaves. Let ψ be a smooth psh exhaustion function on X . Let us apply Corol-
lary 5.3 globally on X , with the original metric of F multiplied by the factor e−χ◦ψ,
where χ is a convex increasing function of arbitrary fast growth at infinity. This factor
can be used to ensure the convergence of integrals at infinity. By Corollary 5.3, we con-
clude that Hq

(
Γ(X,L•)

)
= 0 for q > 1. The theorem follows. �
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(5.12) Corollary. Let (X,ω), F and ϕ be as in Theorem 5.11 and let x1, . . . , xN be
isolated points in the zero variety V (I(ϕ)). Then there is a surjective map

H0(X,KX + F ) −→−→
⊕

16j6N

O(KX + L)xj
⊗

(
OX/I(ϕ)

)
xj
.

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 → I(ϕ) → OX → OX/I(ϕ) → 0 twisted by O(KX + F ), and apply Theo-
rem 5.11 to obtain the vanishing of the first H1 group. The asserted surjectivity property
follows. �

(5.13) Corollary. Let (X,ω), F and ϕ be as in Theorem 5.11 and suppose that the
weight function ϕ is such that ν(ϕ, x) > n+ s at some point x ∈ X which is an isolated
point of E1(ϕ). Then H0(X,KX + F ) generates all s-jets at x.

Proof. The assumption is that ν(ϕ, y) < 1 for y near x, y 6= x. By Skoda’s Lemma
5.6 (b), we conclude that e−2ϕ is integrable at all such points y, hence I(ϕ)y = OX,y,
whilst I(ϕ)x ⊂ m

s+1
X,x by Lemma 5.6 (a). Corollary 5.13 is thus a special case of 5.12. �

The philosophy of these results (which can be seen as generalizations of the Hör-
mander-Bombieri-Skoda theorem [Bom70; Sko72a, 75]) is that the problem of construct-
ing holomorphic sections of KX + F can be solved by constructing suitable Hermitian
metrics on F such that the weight ϕ has isolated poles at given points xj .

(5.14) Exercise. Assume that X is compact and that L is a positive line bundle on X .
Let {x1, . . . , xN} be a finite set. Show that there are constants a, b > 0 depending
only on L and N such that H0(X,mL) generates jets of any order s at all points xj for
m > as+ b.
Hint: Apply Corollary 5.12 to F = −KX +mL, with a singular metric on L of the form
h = h0e

−εψ , where h0 is smooth of positive curvature, ε > 0 small and ψ(z) ∼ log |z−xj |
in a neighborhood of xj . �

Derive the Kodaira embedding theorem from the above result:

(5.15) Theorem (Kodaira embedding theorem). If L is a line bundle on a compact
complex manifold, then L is ample if and only if L is positive. �

(5.16) Exercise (solution of the Levi problem). Show that the following two properties
are equivalent.

(a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

(b) X is Stein, i.e. the global holomorphic functions H0(X,OX) separate points and yield
local coordinates at any point, and X is holomorphically convex (this means that for
any discrete sequence zν there is a function f ∈ H0(X,OX) such that |f(zν)| → ∞).

�

(5.17) Remark. As long as forms of bidegree (n, q) are considered, the L2 estimates
can be extended to complex spaces with arbitrary singularities. In fact, if X is a complex
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space and ϕ is a psh weight function on X , we may still define a sheaf KX(ϕ) on X , such
that the sections on an open set U are the holomorphic n-forms f on the regular part
U ∩Xreg, satisfying the integrability condition in

2

f ∧ f e−2ϕ ∈ L1
loc(U). In this setting,

the functoriality Property 5.8 becomes

µ∗
(
KX′(ϕ ◦ µ)

)
= KX(ϕ)

for arbitrary complex spaces X , X ′ such that µ : X ′ → X is a modification. If X is
nonsingular we have KX(ϕ) = O(KX) ⊗ I(ϕ), however, if X is singular, the symbols
KX and I(ϕ) must not be dissociated. The statement of the Nadel vanishing theorem
becomes Hq(X,O(F )⊗KX(ϕ)) = 0 for q > 1, under the same assumptions (X Kähler
and weakly pseudoconvex, curvature > εω). The proof can be obtained by restricting
everything to Xreg. Although in general Xreg is not weakly pseudoconvex (e.g. in case
codimXsing > 2), Xreg is always Kähler complete (the complement of a proper analytic
subset in a Kähler weakly pseudoconvex space is complete Kähler, see e.g. [Dem82b]).
As a consequence, Nadel’s vanishing theorem is essentially insensitive to the presence of
singularities. �

6. Numerically Effective and Pseudo-effective Line Bundles

§ 6.A. Pseudo-effective Line Bundles and Metrics with Minimal Singularities

The concept of pseudo-effectivity is quite general and makes sense on an arbitrary com-
pact complex manifold X (no projective or Kähler assumption is needed). In this general
context, it is better to work with ∂∂-cohomology classes instead of De Rham cohomology
classes: we define the Bott-Chern cohomology of X to be

(6.1) Hp,q
BC(X) =

{
d-closed (p, q)-forms}/

{
∂∂-exact (p, q)-forms}.

By means of the Frölicher spectral sequence, it is easily shown that these cohomology
groups are finite dimensional and can be computed either with spaces of smooth forms or
with currents. In both cases, the quotient topology of Hp,q

BC(X) induced by the Fréchet
topology of smooth forms or by the weak topology of currents is Hausdorff. Clearly
H•

BC(X) is a bigraded algebra. This algebra can be shown to be isomorphic to the usual
De Rham cohomology algebra H•(X,C) if X is Kähler (or more generally if X is in the
Fujiki class C of manifolds bimeromorphic to Kähler manifolds).

(6.2) Definition. Let L be a holomorphic line bundle on a compact complex manifold
X. be say that L pseudo-effective if c1(L) ∈ H1,1

BC(X) is the cohomology class of some
closed positive current T , i.e. if L can be equipped with a singular Hermitian metric h
with T = i

2πΘL,h > 0 as a current.

The locus where h has singularities turns out to be extremely important. The follow-
ing definition was introduced in [DPS00].

(6.3) Definition. Let L be a pseudo-effective line bundle on a compact complex man-
ifold X. Consider two Hermitian metrics h1, h2 on L with curvature iΘL,hj

> 0 in the
sense of currents.
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(a) We will write h1 4 h2, and say that h1 is less singular than h2, if there exists a
constant C > 0 such that h1 6 Ch2.

(b) We will write h1 ∼ h2, and say that h1, h2 are equivalent with respect to singularities,
if there exists a constant C > 0 such that C−1h2 6 h1 6 Ch2.

Of course h1 4 h2 if and only if the associated weights in suitable trivializations
locally satisfy ϕ2 6 ϕ1 +C. This implies in particular ν(ϕ1, x) 6 ν(ϕ2, x) at each point.
The above definition is motivated by the following observation.

(6.4) Theorem. For every pseudo-effective line bundle L over a compact complex mani-
fold X, there exists up to equivalence of singularities a unique class of Hermitian metrics
h with minimal singularities such that iΘL,h > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric h∞ (whose
curvature is of random sign and signature), and we write singular metrics of L under
the form h = h∞e−ψ . The condition iΘL,h > 0 is equivalent to i

2π∂∂ψ > −u where

u = i
2πΘL,h∞

. This condition implies that ψ is plurisubharmonic up to the addition of
the weight ϕ∞ of h∞, and therefore locally bounded from above. Since we are concerned
with metrics only up to equivalence of singularities, it is always possible to adjust ψ by
a constant in such a way that supX ψ = 0. We now set

hmin = h∞e
−ψmin , ψmin(x) = sup

ψ
ψ(x)

where the supremum is extended to all functions ψ such that supX ψ = 0 and i
2π∂∂ψ >

−u. By standard results on plurisubharmonic functions (see Lelong [Lel69]), ψmin still
satisfies i

2π∂∂ψmin > −u (i.e. the weight ϕ∞+ψmin of hmin is plurisubharmonic), and hmin

is obviously the metric with minimal singularities that we were looking for. [In principle
one should take the upper semicontinuous regularization ψ∗

min of ψmin to really get a
plurisubharmonic weight, but since ψ∗

min also participates to the upper envelope, we
obtain here ψmin = ψ∗

min automatically]. �

(6.5) Remark. In general, the supremum ψ = supj∈I ψj of a locally dominated family
of plurisubharmonic functions ψj is not plurisubharmonic strictly speaking, but its “up-
per semi-continuous regularization” ψ∗(z) = lim supζ→z ψ(ζ) is plurisubharmonic and
coincides almost everywhere with ψ, with ψ∗ > ψ. However, in the context of (6.5), ψ∗

still satisfies ψ∗ 6 0 and i
2π∂∂ψ > −u, hence ψ∗ participates to the upper envelope. As

a consequence, we have ψ∗ 6 ψ and thus ψ = ψ∗ is indeed plurisubharmonic. Under a
strict positivity assumption, namely if L is a big line bundle (i.e. the curvature can be
taken to be strictly positive in the sense of currents, see Definition 6.12 and Theorem
(6.17 b), then hmin can be shown to possess some regularity properties. The reader may
consult [BmD09] for a rather general (but certainly non trivial) proof that ψmin pos-
sesses locally bounded second derivatives ∂2ψmin/∂zj∂zk outside an analytic set Z ⊂ X ;
in other words, iΘL,hmin

has locally bounded coefficients on X r Z. See also (18.32) for
further consequences. �

(6.6) Definition. Let L be a pseudo-effective line bundle. If h is a singular Hermitian
metric such that iΘL,h > 0 and

H0(X,mL⊗ I(h⊗m)) ≃ H0(X,mL) for all m > 0,
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we say that h is an analytic Zariski decomposition of L.

In other words, we require that h has singularities so mild that the vanishing condi-
tions prescribed by the multiplier ideal sheaves I(h⊗m) do not kill any sections of L and
its multiples.

(6.7) Exercise. A special case is when there is an isomorphism pL = A + E where A
and E are effective divisors such that H0(X,mpL) = H0(X,mA) for all m and O(A) is
generated by sections. Then A possesses a smooth Hermitian metric hA, and this metric
defines a singular Hermitian metric h on L with poles 1

pE and curvature 1
pΘA,hA

+ 1
p [E].

Show that this metric h is an analytic Zariski decomposition.
Note: when X projective and there is a decomposition pL = A + E with A nef (see
(6.9)), E effective and H0(X,mpL) = H0(X,mA) for all m, one says that the Q-divisor
equality L = 1

pA+ 1
pE is an algebraic Zariski decomposition of L. It can be shown that

Zariski decompositions exist in dimension 2, but in higher dimension it can be seen that
they do not exist in general. �

(6.8) Theorem. The metric hmin with minimal singularities provides an analytic Zariski
decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic de-
compositions do not exist in general, especially in dimension 3 and more).

Proof. Let σ ∈ H0(X,mL) be any section. Then we get a singular metric h on L by
putting |ξ|h = |ξ/σ(x)1/m| for ξ ∈ Lx, and it is clear that |σ|hm = 1 for this metric.
Hence σ ∈ H0(X,mL⊗I(h⊗m)), and a fortiori σ ∈ H0(X,mL⊗I(h⊗mmin)) since hmin is
less singular than h. �

§ 6.B. Nef Line Bundles

Many problems of algebraic geometry (e.g. problems of classification of algebraic surfaces
or higher dimensional varieties) lead in a natural way to the study of line bundles satis-
fying semipositivity conditions. It turns out that semipositivity in the sense of curvature
(at least, as far as smooth metrics are considered) is not a very satisfactory notion. A
more flexible notion perfectly suitable for algebraic purposes is the notion of numerical
effectivity. The goal of this section is to give a few fundamental algebraic definitions
and to discuss their differential geometric counterparts. We first suppose that X is a
projective algebraic manifold, dimX = n.

(6.9) Definition. A holomorphic line bundle L over a projective manifold X is said to
be numerically effective, nef for short, if L · C =

∫
C
c1(L) > 0 for every curve C ⊂ X.

If L is nef, it can be shown that Lp · Y =
∫
Y
c1(L)

p > 0 for any p-dimensional
subvariety Y ⊂ X (see e.g. [Har70]). In relation to this, let us recall the Nakai-Moishezon
ampleness criterion: a line bundle L is ample if and only if Lp · Y > 0 for every p-
dimensional subvariety Y (related stronger statements will be proved in Section 17).
From this, we easily infer
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(6.10) Proposition. Let L be a line bundle on a projective algebraic manifold X,
on which an ample line bundle A and a Hermitian metric ω are given. The following
properties are equivalent:

(a) L is nef ;

(b) for any integer k > 1, the line bundle kL+ A is ample ;

(c) for every ε > 0, there is a smooth metric hε on L such that iΘL,hε
> −εω.

Proof. (a) ⇒ (b). If L is nef and A is ample then clearly kL + A satisfies the Nakai-
Moishezon criterion, hence kL+A is ample.

(b) ⇒ (c). Condition (c) is independent of the choice of the Hermitian metric,
so we may select a metric hA on A with positive curvature and set ω = iΘA,hA

. If
kL+A is ample, this bundle has a metric hkL+A of positive curvature. Then the metric
hL = (hkL+A ⊗ h−1

A )1/k has curvature

iΘL,hL
=

1

k

(
iΘkL+A − iΘA

)
> −1

k
iΘA,hA

;

in this way the negative part can be made smaller than ε ω by taking k large enough.

(c) ⇒ (a). Under hypothesis (c), we get L · C =
∫
C

i
2πΘL,hε

> − ε
2π

∫
C
ω for every

curve C and every ε > 0, hence L · C > 0 and L is nef. �

Let now X be an arbitrary compact complex manifold. Since there need not exist
any curve in X , Property 6.10 (c) is simply taken as a definition of nefness ([DPS94]):

(6.11) Definition. A line bundle L on a compact complex manifold X is said to be nef
if for every ε > 0, there is a smooth Hermitian metric hε on L such that iΘL,hε

> −εω.

In general, it is not possible to extract a smooth limit h0 such that iΘL,h0
> 0.

The following simple example is given in [DPS94] (Example 1.7). Let E be a non trivial
extension 0 → O→ E → O→ 0 over an elliptic curve C and let X = P(E) (with notation
as in (4.12)) be the corresponding ruled surface over C. Then L = OP(E)(1) is nef but
does not admit any smooth metric of nonnegative curvature. In fact one can show that
up to a constant factor there is only one singular Hermitian metric with semi-positive
curvature current, associated with the section of L defined by the inclusion O → E; its
curvature current is the current of integration [C] on a curve C ⊂ X which is a section
of X → C. This example answers negatively a question raised by Fujita [Fuj83].

Let us now introduce the important concept of Kodaira-Iitaka dimension of a line
bundle.

(6.12) Definition. If L is a line bundle, the Kodaira-Iitaka dimension κ(L) is the
supremum of the rank of the canonical maps:

Φm : X rBm −→ P(Vm), x 7−→ Hx = {σ ∈ Vm ; σ(x) = 0}, m > 1

with Vm = H0(X,mL) and Bm =
⋂
σ∈Vm

σ−1(0) = base locus of Vm. In case Vm = {0}
for all m > 1, we set κ(L) = −∞. A line bundle is said to be big if κ(L) = dimX.
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The following lemma is well-known (the proof is a rather elementary consequence of
the Schwarz lemma).

(6.13) Serre-Siegel Lemma ([Ser54; Sie55]). Let L be a holomorphic line bundle on a
compact complex manifold. Then we have :

(a) h0(X,mL) 6 O(mκ(L)) for m > 1 ;

(b) κ(L) is the smallest constant for which this estimate holds ;

(c) the volume of L defined as

Vol(L) = lim sup
k→+∞

n!

kn
h0(X, kL)

is finite, and L is big if and only if Vol(L) > 0.

Notice that if L is ample, we have hq(X, kL) = 0 for q > 1 and k ≫ 1 by the
Kodaira-Serre vanishing theorem, hence

h0(X, kL) ∼ χ(X, kL) ∼ Ln

n!
kn

by the Riemann-Roch formula. Thus Vol(L) = Ln ( = c1(L)
n) if L is ample. This is still

true if X is Kähler and L is nef. In fact, in that case, we will show later (see Corollary
8.3) that hq(X, kL) = o(kn) for q > 1 (in the projective algebraic case, one can even
show that hq(X, kL) = O(kn−q), see Lemma 6.18).

§ 6.C. Description of the Positive Cones

Let us recall that an integral cohomology class in H2(X,Z) is the first Chern class of a
holomorphic (or algebraic) line bundle if and only if it lies in the Néron-Severi group

(6.14) NS(X) = Ker
(
H2(X,Z) → H2(X,OX)

)

(this fact is just an elementary consequence of the exponential exact sequence
0 → Z → O → O

∗ → 0). If X is compact Kähler, as we will suppose from now on
in this section, this is the same as saying that the class is of type (1, 1) with respect to
Hodge decomposition.

Let us consider the real vector space NSR(X) = NS(X)⊗Z R, which can be viewed
as a subspace of the space H1,1(X,R) of real (1, 1) cohomology classes. Its dimension is
by definition the Picard number

(6.15) ρ(X) = rankZ NS(X) = dimR NSR(X).

We thus have 0 6 ρ(X) 6 h1,1(X), and the example of complex tori shows that all
intermediate values can occur when n = dimX > 2.

The positivity concepts for line bundles considered in Sections 6.A and 6.B possess in
fact natural generalizations to (1, 1) classes which are not necessarily integral or rational
— and this works at least in the category of compact Kähler manifolds (in fact, by using
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Bott-Chern cohomology, one could even extend these concepts to arbitrary compact
complex manifolds).

(6.16) Definition. Let (X,ω) be a compact Kähler manifold.

(a) The Kähler cone is the set K ⊂ H1,1(X,R) of cohomology classes {ω} of Kähler
forms. This is an open convex cone.

(b) The closure K of the Kähler cone consists of classes {α} ∈ H1,1(X,R) such that for
every ε > 0 the sum {α+εω} is Kähler, or equivalently, for every ε > 0, there exists
a smooth function ϕε on X such that α+ i∂∂ϕε > −εω. We say that K is the cone
of nef (1, 1)-classes.

(c) The pseudo-effective cone is the set E ⊂ H1,1(X,R) of cohomology classes {T} of
closed positive currents of type (1, 1). This is a closed convex cone.

(d) The interior E◦ of E consists of classes which still contain a closed positive current
after one subtracts ε{ω} for ε > 0 small, in other words, they are classes of closed
(1, 1)-currents T such that T > εω. Such a current will be called a Kähler current,
and we say that {T} ∈ H1,1(X,R) is a big (1, 1)-class.

K

E

K = Kähler cone in H1,1(X,R) [open]

K = nef cone in H1,1(X,R) [closure of K]

E = pseudo-effective cone in H1,1(X,R) [closed]

E

◦ = big cone in H1,1(X,R) [interior of E]

The openness of K is clear by definition, and the closedness of E is a consequence of
the fact that bounded sets of currents are weakly compact (as follows from the similar
weak compactness property for bounded sets of positive measures). It is then clear that
K ⊂ E.

In spite of the fact that cohomology groups can be defined either in terms of forms
or currents, it turns out that the cones K and E are in general different. To see this, it
is enough to observe that a Kähler class {α} satisfies

∫
Y
αp > 0 for every p-dimensional

analytic set. On the other hand, if X is the surface obtained by blowing-up P2 in
one point, then the exceptional divisor E ≃ P1 has a cohomology class {α} such that∫
E
α = E2 = −1, hence {α} /∈ K, although {α} = {[E]} ∈ E.
In case X is projective, all Chern classes c1(L) of line bundles lie by definition in

NS(X), and likewise, all classes of real divisors D =
∑
cjDj , cj ∈ R, lie in NSR(X). In

order to deal with such algebraic classes, we therefore introduce the intersections

KNS = K ∩ NSR(X), ENS = E ∩ NSR(X),

and refer to classes of H1,1(X,R) not contained in NSR(X) as transcendental classes.
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KNS

ENS

NSR(X)

A very important fact is that all four cones KNS, ENS, KNS, E
◦
NS have simple alge-

braic interpretations.

(6.17) Theorem. Let X be a projective manifold. Then

(a) KNS is equal to the open cone Amp(X) generated by classes of ample (or very
ample) divisors A (Recall that a divisor A is said to be very ample if the linear
system H0(X,O(A)) provides an embedding of X in projective space).

(b) The interior E◦
NS is the cone Big(X) generated by classes of big divisors, namely

divisors D such that h0(X,O(kD)) > c kdimX for k large.

(c) ENS is the closure Eff(X) of the cone generated by classes of effective divisors, i.e.
divisors D =

∑
cjDj , cj ∈ R+.

(d) The closed cone KNS consists of the closure Nef(X) of the cone generated by nef
divisors D (or nef line bundles L), namely effective integral divisors D such that
D · C > 0 for every curve C, also equal to Amp(X).

In other words, the terminology “nef”, “big”, “pseudo-effective” used for classes of
the full transcendental cones appear to be a natural extrapolation of the algebraic case.

Proof. First notice that since all of our conesC have non empty interior in NSR(X) (which
is a rational vector space in terms of a basis of elements in H2(X,Q)), the rational points
CQ := C ∩ NSQ(X), NSQ(X) = NS(X)⊗Z Q, are dense in each of them.

(a) is therefore just Kodaira’s embedding theorem when we look at rational points, and
properties (b) and (d) are obtained easily by passing to the closure of the open cones.
We will now give details of the proof only for (b) which is possibly slightly more involved.

By looking at points of E◦
Q = E

◦ ∩ NSQ(X) and multiplying by a denominator, it
is enough to check that a line bundle L such that c1(L) ∈ E◦ is big. However, this
means that L possesses a singular Hermitian metric hL such that ΘL,hL

> εω for some
Kähler metric ω. For some integer p0 > 0, we can then produce a singular Hermitian
metric with positive curvature and with a given logarithmic pole hp0L e

−θ(z) log |z−x0|2 in
a neighborhood of every point x0 ∈ X (here θ is a smooth cut-off function supported on
a neighborhood of x0). Then Hörmander’s L2 existence theorem [Hör65] can be used to
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produce sections of Lk which generate all jets of order (k/p0)−n at points x0, so that L
is big.

Conversely, if L is big and A is a (smooth) very ample divisor, the exact sequence
0 → OX(kL−A) → OX(kL) → OA(kL↾A) → 0 and the estimates h0(X,OX(kL)) > ckn,
h0(A,OA(kL↾A)) = O(kn−1) imply that OX(kL − A) has a section for k large, thus
kL−A ≡ D for some effective divisor D. This means that there exists a singular metric
hL on L such that

i

2π
ΘL,hL

=
1

k

( i

2π
ΘA,hA

+ [D]
)
>

1

k
ω

where ω = i
2πΘA,hA

, hence c1(L) ∈ E◦. �

Before going further, we need a lemma.

(6.18) Lemma. Let X be a compact Kähler n-dimensional manifold, let L be a nef line
bundle on X, and let E be an arbitrary holomorphic vector bundle. Then hq(X,O(E)⊗
O(kL)) = o(kn) as k → +∞, for every q > 1. If X is projective algebraic, the following
more precise bound holds:

hq(X,O(E)⊗ O(kL)) = O(kn−q), ∀q > 0.

Proof. The Kähler case will be proved in Section 8, as a consequence of the holomorphic
Morse inequalities. In the projective algebraic case, we proceed by induction on n =
dimX . If n = 1 the result is clear, as well as if q = 0. Now let A be a nonsingular ample
divisor such that E⊗O(A−KX ) is Nakano positive. Then the Nakano vanishing theorem
applied to the vector bundle F = E ⊗ O(kL+ A−KX) shows that H

q(X,O(E)⊗O(kL+
A)) = 0 for all q > 1. The exact sequence

0 → O(kL) → O(kL+A) → O(kL+ A)↾A → 0

twisted by E implies

Hq(X,O(E)⊗ O(kL)) ≃ Hq−1(A,O(E↾A ⊗ O(kL+ A)↾A),

and we easily conclude by induction since dimA = n − 1. Observe that the argument
does not work any more if X is not algebraic. It seems to be unknown whether the
O(kn−q) bound still holds in that case. �

(6.19) Corollary. If L is nef, then L is big (i.e. κ(L) = n) if and only if Ln > 0.
Moreover, if L is nef and big, then for every δ > 0, L has a singular metric h = e−2ϕ

such that maxx∈X ν(ϕ, x) 6 δ and iΘL,h > ε ω for some ε > 0. The metric h can
be chosen to be smooth on the complement of a fixed divisor D, with logarithmic poles
along D.

Proof. By Lemma 6.18 and the Riemann-Roch formula, we have h0(X, kL) = χ(X, kL)+
o(kn) = knLn/n!+ o(kn), whence the first statement. By the proof of Theorem 6.17 (b),
there exists a singular metric h1 on L such that

i

2π
ΘL,h1

=
1

k

( i

2π
ΘA,hA

+ [D]
)
>

1

k
ω, ω =

i

2π
ΘA,hA

.
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Now, for every ε > 0, there is a smooth metric hε on L such that i
2πΘL,hε

> −εω. The
convex combination of metrics h′ε = hkε1 h

1−kε
ε is a singular metric with poles along D

which satisfies
i

2π
ΘL,h′

ε
> ε(ω + [D])− (1− kε)εω > kε2ω.

Its Lelong numbers are εν(D, x) and they can be made smaller than δ by choosing ε > 0
small. �

We still need a few elementary facts about the numerical dimension of nef line bundles.

(6.20) Definition. Let L be a nef line bundle on a compact Kähler manifold X. One
defines the numerical dimension of L to be

nd(L) = max
{
k = 0, . . . , n ; c1(L)

k 6= 0 in H2k(X,R)
}
.

By Corollary 6.19, we have κ(L) = n if and only if nd(L) = n. In general, we merely
have an inequality.

(6.21) Proposition. If L is a nef line bundle on a compact Kähler manifold, then
κ(L) 6 nd(L).

Proof. By induction on n = dimX . If nd(L) = n or κ(L) = n the result is true, so we
may assume r := κ(L) 6 n − 1 and k := nd(L) 6 n − 1. Fix m > 0 so that Φ = Φ|mL|
has generic rank r. Select a nonsingular ample divisor A in X such that the restriction
of Φ|mL| to A still has rank r (for this, just take A passing through a point x /∈ B|mL| at
which rank(dΦx) = r < n, in such a way that the tangent linear map dΦx↾TA,x

still has
rank r). Then κ(L↾A) > r = κ(L) (we just have an equality because there might exist
sections in H0(A,mL↾A) which do not extend to X). On the other hand, we claim that
nd(L↾A) = k = nd(L). The inequality nd(L↾A) > nd(L) is clear. Conversely, if we set
ω = i

2πΘA,hA
> 0, the cohomology class c1(L)

k can be represented by a closed positive
current of bidegree (k, k)

T = lim
ε→0

( i

2π
ΘL,hε

+ εω
)k

after passing to some subsequence (there is a uniform bound for the mass thanks to the
Kähler assumption, taking wedge products with ωn−k). The current T must be non zero
since c1(L)

k 6= 0 by definition of k = nd(L). Then {[A]} = {ω} as cohomology classes,
and ∫

A

c1(L↾A)
k ∧ ωn−1−k =

∫

X

c1(L)
k ∧ [A] ∧ ωn−1−k =

∫

X

T ∧ ωn−k > 0.

This implies nd(L↾A) > k, as desired. The induction hypothesis with X replaced by A
yields

κ(L) 6 κ(L↾A) 6 nd(L↾A) 6 nd(L). �

(6.22) Remark. It may happen that κ(L) < nd(L): take e.g.

L→ X = X1 ×X2
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equals to the total tensor product of an ample line bundle L1 on a projective manifold
X1 and of a unitary flat line bundle L2 on an elliptic curve X2 given by a representation
π1(X2) → U(1) such that no multiple kL2 with k 6= 0 is trivial. Then H0(X, kL) =
H0(X1, kL1) ⊗ H0(X2, kL2) = 0 for k > 0, and thus κ(L) = −∞. However c1(L) =
pr∗1c1(L1) has numerical dimension equal to dimX1. The same example shows that the
Kodaira dimension may increase by restriction to a subvariety (if Y = X1 × {point},
then κ(L↾Y ) = dimY ). �

§ 6.D. The Kawamata-Viehweg Vanishing Theorem

We derive here an algebraic version of the Nadel vanishing theorem in the context of
nef line bundles. This algebraic vanishing theorem has been obtained independently by
Kawamata [Kaw82] and Viehweg [Vie82], who both reduced it to the Akizuki-Kodaira-
Nakano vanishing theorem [AN54] by cyclic covering constructions. Since then, a number
of other proofs have been given, one based on connections with logarithmic singularities
[EV86], another on Hodge theory for twisted coefficient systems [Kol85], a third one on
the Bochner technique [Dem89] (see also [EV92] for a general survey). Since the result
is best expressed in terms of multiplier ideal sheaves (avoiding then any unnecessary
desingularization in the statement), we feel that the direct approach via Nadel’s vanishing
theorem is extremely natural.

If D =
∑
αjDj > 0 is an effective Q-divisor, we define the multiplier ideal sheaf I(D)

to be equal to I(ϕ) where ϕ =
∑
αj|gj| is the corresponding psh function defined by

generators gj of O(−Dj). If D is a divisor with normal crossings,we know that

(6.23) I(D) = O(−⌊D⌋), where ⌊D⌋ =
∑

⌊αj⌋Dj

is the integer part of D. In general, the computation of I(D) can be made algebraically

by using a desingularization µ : X̃ → X such that µ∗D becomes a divisor with normal
crossings (Hironaka [Hir64]), and the direct image formula proved in (5.8):

OX(KX)⊗ I(ϕ) = µ∗
(
O

X̃
(K

X̃
)⊗ I(ϕ ◦ µ)

)
,(6.24)

I(ϕ) = µ∗
(
O

X̃
(K

X̃/X
)⊗I(ϕ ◦ µ)

)
(6.24′)

in terms of the relative canonical sheaf K
X̃/X

= K
X̃
⊗ µ∗(K−1

X ).

(6.25) Kawamata-Viehweg Vanishing Theorem. Let X be a projective algebraic
manifold and let F be a line bundle over X such that some positive multiple mF can be
written mF = L+D where L is a nef line bundle and D an effective divisor. Then

Hq
(
X,O(KX + F )⊗ I(m−1D)

)
= 0 for q > n− nd(L).

(6.26) Special Case. If F is a nef line bundle, then

Hq
(
X,O(KX + F )

)
= 0 for q > n− nd(F ).

Proof of Theorem 6.25. First suppose that nd(L) = n, i.e. that L is big. By the proof
of Theorem 6.17 (b), there is a singular Hermitian metric h0 on L such that the corre-
sponding weight ϕ0 has algebraic singularities and

iΘL,h0
= 2id′d′′ϕ0 > ε0ω
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for some ε0 > 0. On the other hand, since L is nef, there are metrics given by weights
ϕε such that i

2π
ΘL,hε

> −εω for every ε > 0, ω being a Kähler metric. Let ϕD =∑
αj log |gj | be the weight of the singular metric on O(D). We define a singular metric

on F by

ϕF =
1

m

(
(1− δ)ϕL,ε + δϕL,0 + ϕD

)

with ε ≪ δ ≪ 1, δ rational. Then ϕF has algebraic singularities, and by taking δ small
enough we find I(ϕF ) = I(

1
mϕD) = I(

1
mD). In fact, I(ϕF ) can be computed by taking

integer parts of certain Q-divisors, and adding δϕL,0 does not change the integer part of
the rational numbers involved when δ is small. Now

ddcϕF =
1

m

(
(1− δ)ddcϕL,ε + δddcϕL,0 + ddcϕD

)

>
1

m

(
− (1− δ)εω + δε0ω + [D]) >

δε

m
ω,

if we choose ε 6 δε0. Nadel’s theorem 5.11 thus implies the desired vanishing result for
all q > 1.

Now, if nd(L) < n, we use hyperplane sections and argue by induction on n = dimX .
Since the sheaf O(KX) ⊗ I(m−1D) behaves functorially with respect to modifications
(and since the L2 cohomology complex is “the same” upstairs and downstairs), we may
assume after blowing-up that D is a divisor with normal crossings. Then the multiplier
ideal sheaf I(m−1D) = O(−⌊m−1D⌋) is locally free. By Serre duality, the expected
vanishing is equivalent to

Hq(X,O(−F )⊗ O(⌊m−1D⌋)) = 0 for q < nd(L).

Select a nonsingular ample divisor A such that A meets all components Dj transversally,
and take A positive enough so that O(A+ F − ⌊m−1D⌋) is ample. Then Hq(X,O(−A−
F ) ⊗ O(⌊m−1D⌋)) = 0 for q < n by Kodaira vanishing, and the exact sequence 0 →
OX(−A) → OX → (iA)∗OA → 0 twisted by O(−F )⊗ O(⌊m−1D⌋) yields an isomorphism

Hq(X,O(−F )⊗ O(⌊m−1D⌋)) ≃ Hq(A,O(−F↾A)⊗ O(⌊m−1D↾A⌋).

The proof of Proposition 6.21 showed that nd(L↾A) = nd(L), hence the induction hy-
pothesis implies that the cohomology group on A on the right hand side is zero for
q < nd(L). �

§ 6.E. A Uniform Global Generation Property due to Y.T. Siu

Let X be a projective manifold, and (L, h) a pseudo-effective line bundle. The “uniform
global generation property” states in some sense that the tensor product sheaf L⊗I(h)
has a uniform positivity property, for any singular Hermitian metric h with nonnegative
curvature on L.

(6.27) Theorem (Y.T. Siu, [Siu98]). Let X be a projective manifold. There exists an
ample line bundle G on X such that for every pseudo-effective line bundle (L, h), the
sheaf O(G + L) ⊗ I(h) is generated by its global sections. In fact, G can be chosen as
follows: pick any very ample line bundle A, and take G such that G − (KX + nA) is
ample, e.g. G = KX + (n+ 1)A.
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Proof. Let ϕ be the weight of the metric h on a small neighborhood of a point z0 ∈ X.
Assume that we have a local section u of O(G + L) ⊗ I(h) on a coordinate open ball
B = B(z0, δ), such that

∫

B

|u(z)|2e−2ϕ(z)|z − z0|−2(n+ε)dV (z) < +∞.

Then Skoda’s division theorem [Sko72b] (see also Corollary 12.13) implies u(z) =
∑

(zj−
zj,0)vj(z) with ∫

B

|vj(z)|2e−2ϕ(z)|z − z0|−2(n−1+ε)dV (z) < +∞,

in particular uz0 ∈ O(G+L)⊗I(h)⊗mX,z0 . Select a very ample line bundle A on X . We
take a basis σ = (σj) of sections of H

0(X,G⊗mX,z0) and multiply the metric h of G by
the factor |σ|−2(n+ε). The weight of the above metric has singularity (n+ ε) log |z− z0|2
at z0, and its curvature is

(6.28) iΘG + (n+ ε)i∂∂ log |σ|2 > iΘG − (n+ ε)ΘA.

Now, let f be a local section in H0(B,O(G+ L) ⊗ I(h)) on B = B(z0, δ), δ small. We
solve the global ∂ equation

∂u = ∂(θf) on X

with a cut-off function θ supported near z0 and with the weight associated with our
above choice of metric on G + L. Thanks to Nadel’s theorem, the solution exists if the
metric of G + L − KX has positive curvature. As iΘL,h > 0 in the sense of currents,
(6.28) shows that a sufficient condition is G − KX − nA > 0 (provided that ε is small
enough). We then find a smooth solution u such that uz0 ∈ O(G + L) ⊗ I(h) ⊗ mX,z0 ,
hence

F := θf − u ∈ H0(X,O(G+ L)⊗ I(h))
is a global section differing from f by a germ in O(G+ L) ⊗ I(h)⊗mX,z0 . Nakayama’s
lemma implies that H0(X,O(G+ L)⊗I(h)) generates the stalks of O(G+ L)⊗I(h).

7. A Simple Algebraic Approach to Fujita’s Conjecture

This section is devoted to a proof of various results related to the Fujita conjecture.
The main ideas occurring here are inspired by a recent work of Y.T. Siu [Siu96]. His
method, which is algebraic in nature and quite elementary, consists in a combination of
the Riemann-Roch formula together with Nadel’s vanishing theorem (in fact, only the
algebraic case is needed, thus the original Kawamata-Viehweg vanishing theorem would
be sufficient). Slightly later, Angehrn and Siu [AS95; Siu95] introduced other closely
related methods, producing better bounds for the global generation question; since their
method is rather delicate, we can only refer the reader to the above references. In the
sequel, X denotes a projective algebraic n-dimensional manifold. The first observation
is the following well-known consequence of the Riemann-Roch formula.

(7.1) Special Case of Riemann-Roch. Let J ⊂ OX be a coherent ideal sheaf on X
such that the subscheme Y = V (J) has dimension d (with possibly some lower dimen-
sional components). Let [Y ] =

∑
λj [Yj] be the effective algebraic cycle of dimension d
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associated to the d dimensional components of Y (taking into account multiplicities λj
given by the ideal J). Then for any line bundle F , the Euler characteristic

χ(Y,O(F +mL)↾Y ) = χ(X,O(F +mL)⊗ OX/J)

is a polynomial P (m) of degree d and leading coefficient Ld · [Y ]/d!

The second fact is an elementary lemma about numerical polynomials (polynomials
with rational coefficients, mapping Z into Z).

(7.2) Lemma. Let P (m) be a numerical polynomial of degree d > 0 and leading coeffi-
cient ad/d!, ad ∈ Z, ad > 0. Suppose that P (m) > 0 for m > m0. Then

(a) For every integer N > 0, there exists m ∈ [m0, m0 +Nd] such that P (m) > N .

(b) For every k ∈ N, there exists m ∈ [m0, m0 + kd] such that P (m) > adk
d/2d−1.

(c) For every integer N > 2d2, there exists m ∈ [m0, m0 +N ] such that P (m) > N .

Proof. (a) Each of the N equations P (m) = 0, P (m) = 1, . . ., P (m) = N −1 has at most
d roots, so there must be an integer m ∈ [m0, m0 + dN ] which is not a root of these.

(b) By Newton’s formula for iterated differences ∆P (m) = P (m+ 1)− P (m), we get

∆dP (m) =
∑

16j6d

(−1)j
(
d

j

)
P (m+ d− j) = ad, ∀m ∈ Z.

Hence if j ∈
{
0, 2, 4, . . . , 2⌊d/2⌋

}
⊂ [0, d] is the even integer achieving the maximum of

P (m0 + d− j) over this finite set, we find

2d−1P (m0 + d− j) =

((
d

0

)
+

(
d

2

)
+ . . .

)
P (m0 + d− j) > ad,

whence the existence of an integer m ∈ [m0, m0 + d] with P (m) > ad/2
d−1. The case

k = 1 is thus proved. In general, we apply the above case to the polynomial Q(m) =
P (km− (k − 1)m0), which has leading coefficient adk

d/d!

(c) If d = 1, part (a) already yields the result. If d = 2, a look at the parabola shows
that

max
m∈[m0,m0+N ]

P (m) >

{
a2N

2/8, if N is even,
a2(N

2 − 1)/8, if N is odd;

thus maxm∈[m0,m0+N ] P (m) > N whenever N > 8. If d > 3, we apply (b) with k equal

to the smallest integer such that kd/2d−1 > N , i.e. k = ⌈2(N/2)1/d⌉, where ⌈x⌉ ∈ Z

denotes the round-up of x ∈ R. Then kd 6 (2(N/2)1/d + 1)d 6 N whenever N > 2d2, as
a short computation shows. �

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu [Siu96],
but with substantial simplifications in the technique and improvements in the bounds.
Our method yields simultaneously a simple proof of the following basic result.
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(7.3) Theorem. If L is an ample line bundle over a projective n-fold X, then the adjoint
line bundle KX + (n+ 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82; Kaw84]), one can
even show that KX + (n+ 1)L is semiample, i.e., there exists a positive integer m such
that m(KX +(n+1)L) is generated by sections (see [Kaw85; Fuj87]). The proof rests on
the observation that n + 1 is the maximal length of extremal rays of smooth projective
n-folds. Our proof of (7.3) is different and will be given simultaneously with the proof of
Theorem 7.4 below.

(7.4) Theorem. Let L be an ample line bundle and let G be a nef line bundle on a
projective n-fold X. Then the following properties hold.

(a) 2KX + mL + G generates simultaneous jets of order s1, . . . , sp ∈ N at arbitrary
points x1, . . . , xp ∈ X, i.e., there is a surjective map

H0(X, 2KX +mL+G) −→−→
⊕

16j6p

O(2KX +mL+G)⊗ OX,xj
/m

sj+1
X,xj

,

provided that m > 2 +
∑

16j6p

(
3n+ 2sj − 1

n

)
.

In particular 2KX +mL+G is very ample for m > 2 +

(
3n+ 1

n

)
.

(b) 2KX + (n + 1)L + G generates simultaneous jets of order s1, . . . , sp at arbitrary
points x1, . . . , xp ∈ X provided that the intersection numbers Ld · Y of L over all
d-dimensional algebraic subsets Y of X satisfy

Ld · Y >
2d−1

⌊n/d⌋d
∑

16j6p

(
3n+ 2sj − 1

n

)
.

Proof. The proofs of Theorem 7.3 and Theorem 7.4 (a), (b) go along the same lines, so we
deal with them simultaneously (in the case of (7.3), we simply agree that {x1, . . . , xp} =
∅). The idea is to find an integer (or rational number) m0 and a singular Hermitian
metric h0 on KX +m0L with strictly positive curvature current iΘh0

> εω, such that
V (I(h0)) is 0-dimensional and the weight ϕ0 of h0 satisfies ν(ϕ0, xj) > n+sj for all j. As
L and G are nef, (m−m0)L+G has for all m > m0 a metric h′ whose curvature iΘh′ has
arbitrary small negative part (see [Dem90]), e.g., iΘh′ > − ε

2ω. Then iΘh0
+ iΘh′ > ε

2ω
is again positive definite. An application of Corollary 6.12 to F = KX + mL + G =
(KX +m0L) + ((m−m0)L+G) equipped with the metric h0 ⊗ h′ implies the existence
of the desired sections in KX + F = 2KX +mL +G for m > m0.

Fix an embedding Φ|µL| : X → PN , µ ≫ 0, given by sections λ0, . . . , λN of
H0(X, µL), and let hL be the associated metric on L of positive definite curvature form
ω = i

2π
ΘL,hL

. In order to obtain the desired metric h0 on KX +m0L, we fix a ∈ N∗ and
use a double induction process to construct singular metrics (hk,ν)ν>1 on aKX + bkL for
a non increasing sequence of positive integers b1 > b2 > · · · > bk > · · · . Such a sequence
much be stationary and m0 will just be the stationary limit m0 = lim bk/a. The metrics
hk,ν are taken to satisfy the following properties:
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(a) hk,ν is an algebraic metric of the form

‖ξ‖2hk,ν
=

|τk(ξ)|2(∑
16i6ν, 06j6N

∣∣τ (a+1)µ
k (σaµi · λ(a+1)bk−ami

j )
∣∣2)1/(a+1)µ

,

defined by sections σi ∈ H0(X, (a+1)KX+miL), mi <
a+1
a
bk, 1 6 i 6 ν, where ξ 7→

τk(ξ) is an arbitrary local trivialization of aKX + bkL ; note that σaµi · λ(a+1)bk−ami

j

is a section of

aµ((a+ 1)KX +miL) + ((a+ 1)bk − ami)µL = (a+ 1)µ(aKX + bkL).

(b) ordxj
(σi) > (a+ 1)(n+ sj) for all i, j ;

(c) I(hk,ν+1) ⊃ I(hk,ν) and I(hk,ν+1) 6= I(hk,ν) whenever the zero variety V (I(hk,ν))
has positive dimension.

The weight ϕk,ν = 1
2(a+1)µ log

∑∣∣τ (a+1)µ
k (σaµi · λ(a+1)bk−ami

j )
∣∣2 of hk,ν is plurisubhar-

monic and the condition mi <
a+1
a bk implies (a + 1)bk − ami > 1, thus the difference

ϕk,ν − 1
2(a+1)µ log

∑ |τ(λj)|2 is also plurisubharmonic. Hence i
2πΘhk,ν

(aKX + bkL) =
i
πd

′d′′ϕk,ν > 1
(a+1)ω. Moreover, condition b) clearly implies ν(ϕk,ν , xj) > a(n + sj).

Finally, condition c) combined with the strong Noetherian property of coherent sheaves
ensures that the sequence (hk,ν)ν>1 will finally produce a zero dimensional subscheme
V (I(hk,ν)). We agree that the sequence (hk,ν)ν>1 stops at this point, and we denote by
hk = hk,ν the final metric, such that dimV (I(hk)) = 0.

For k = 1, it is clear that the desired metrics (h1,ν)ν>1 exist if b1 is taken large enough
(so large, say, that (a+ 1)KX + (b1 − 1)L generates jets of order (a+ 1)(n+max sj) at
every point; then the sections σ1, . . . , σν can be chosen with m1 = · · · = mν = b1 − 1).
Suppose that the metrics (hk,ν)ν>1 and hk have been constructed and let us proceed
with the construction of (hk+1,ν)ν>1. We do this again by induction on ν, assuming
that hk+1,ν is already constructed and that dimV (I(hk+1,ν)) > 0. We start in fact the
induction with ν = 0, and agree in this case that I(hk+1,0) = 0 (this would correspond
to an infinite metric of weight identically equal to −∞). By Nadel’s vanishing theorem
applied to

Fm = aKX +mL = (aKX + bkL) + (m− bk)L

with the metric hk ⊗ (hL)
⊗m−bk , we get

Hq(X,O((a+ 1)KX +mL)⊗ I(hk)) = 0 for q > 1, m > bk.

As V (I(hk)) is 0-dimensional, the sheaf OX/I(hk) is a skyscraper sheaf, and the exact
sequence 0 → I(hk) → OX → OX/I(hk) → 0 twisted with the invertible sheaf O((a +
1)KX +mL) shows that

Hq(X,O((a+ 1)KX +mL)) = 0 for q > 1, m > bk.

Similarly, we find

Hq(X,O((a+ 1)KX +mL)⊗I(hk+1,ν)) = 0 for q > 1, m > bk+1
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(also true for ν = 0, since I(hk+1,0) = 0), and when m > max(bk, bk+1) = bk, the exact
sequence 0 → I(hk+1,ν) → OX → OX/I(hk+1, ν) → 0 implies

Hq(X,O((a+ 1)KX +mL) ⊗ OX/I(hk+1,ν)) = 0 for q > 1, m > bk.

In particular, since the H1 group vanishes, every section u′ of (a + 1)KX +mL on the
subscheme V (I(hk+1,ν)) has an extension u to X . Fix a basis u′1, . . . , u

′
N of the sections

on V (I(hk+1,ν)) and take arbitrary extensions u1, . . . , uN to X . Look at the linear map
assigning the collection of jets of order (a+ 1)(n+ sj)− 1 at all points xj

u =
∑

16j6N

ajuj 7−→
⊕

J (a+1)(n+sj)−1
xj

(u).

Since the rank of the bundle of s-jets is
(
n+s
n

)
, the target space has dimension

δ =
∑

16j6p

(
n+ (a+ 1)(n+ sj)− 1

n

)
.

In order to get a section σν+1 = u satisfying condition b) with non trivial restriction
σ′
ν+1 to V (I(hk+1,ν)), we need at least N = δ + 1 independent sections u′1, . . . , u

′
N .

This condition is achieved by applying Lemma 7.2 to the numerical polynomial

P (m) = χ(X,O((a+ 1)KX +mL)⊗ OX/I(hk+1,ν))

= h0(X,O((a+ 1)KX +mL)⊗ OX/I(hk+1,ν)) > 0, m > bk.

The polynomial P has degree d = dimV (I(hk+1,ν)) > 0. We get the existence of
an integer m ∈ [bk, bk + η] such that N = P (m) > δ + 1 with some explicit integer
η ∈ N (for instance η = n(δ + 1) always works by Lemma 7.2 (a), but we will also
use other possibilities to find an optimal choice in each case). Then we find a section
σν+1 ∈ H0(X, (a + 1)KX + mL) with non trivial restriction σ′

ν+1 to V (I(hk+1,ν)),
vanishing at order > (a + 1)(n + sj) at each point xj. We just set mν+1 = m, and
the condition mν+1 <

a+1
a bk+1 is satisfied if bk + η < a+1

a bk+1. This shows that we can
take inductively

bk+1 =

⌊
a

a+ 1
(bk + η)

⌋
+ 1.

By definition, hk+1,ν+1 6 hk+1,ν , hence I(hk+1,ν+1) ⊃ I(hk+1,ν). We necessarily have
I(hk+1,ν+1) 6= I(hk+1,ν), for I(hk+1,ν+1) contains the ideal sheaf associated with the
zero divisor of σν+1, whilst σν+1 does not vanish identically on V (I(hk+1,ν)). Now,
an easy computation shows that the iteration of bk+1 = ⌊ a

a+1 (bk + η)⌋ + 1 stops at
bk = a(η + 1) + 1 for any large initial value b1. In this way, we obtain a metric h∞
of positive definite curvature on aKX + (a(η + 1) + 1)L, with dimV (I(h∞)) = 0 and
ν(ϕ∞, xj) > a(n+ sj) at each point xj .

Proof of Theorem 7.3. In this case, the set {xj} is taken to be empty, thus δ = 0. By
Theorem 7.2 (a), the condition P (m) > 1 is achieved for some m ∈ [bk, bk+n] and we can
take η = n. As µL is very ample, there exists on µL a metric with an isolated logarithmic
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pole of Lelong number 1 at any given point x0 (e.g., the algebraic metric defined with
all sections of µL vanishing at x0). Hence

F ′
a = aKX + (a(n+ 1) + 1)L+ nµL

has a metric h′a such that V (I(h′a)) is zero dimensional and contains {x0}. By Corollary
6.12, we conclude that

KX + F ′
a = (a+ 1)KX + (a(n+ 1) + 1 + nµ)L

is generated by sections, in particular KX + a(n+1)+1+nµ
a+1 L is nef. As a tends to +∞, we

infer that KX + (n+ 1)L is nef. �

Proof of Theorem 7.4 (a). Here, the choice a = 1 is sufficient for our purposes. Then

δ =
∑

16j6p

(
3n+ 2sj − 1

n

)
.

If {xj} 6= ∅, we have δ + 1 >
(
3n−1
n

)
+ 1 > 2n2 for n > 2. Lemma 7.2 (c) shows that

P (m) > δ+1 for some m ∈ [bk, bk+η] with η = δ+1. We can start in fact the induction
procedure k 7→ k + 1 with b1 = η + 1 = δ + 2, because the only property needed for the
induction step is the vanishing property

H0(X, 2KX +mL) = 0 for q > 1, m > b1,

which is true by the Kodaira vanishing theorem and the ampleness of KX + b1L (here
we use Fujita’s result 7.3, observing that b1 > n + 1). Then the recursion formula
bk+1 = ⌊12(bk + η)⌋+ 1 yields bk = η + 1 = δ + 2 for all k, and Theorem 7.4 (a) follows.

�

Proof of Theorem 7.4 (b). Quite similar to Theorem 7.4 (a), except that we take η = n,
a = 1 and bk = n + 1 for all k. By Lemma 7.2 (b), we have P (m) > adk

d/2d−1 for
some integer m ∈ [m0, m0 + kd], where ad > 0 is the coefficient of highest degree in P .
By Lemma 7.2 we have ad > infdimY=d L

d · Y . We take k = ⌊n/d⌋. The condition
P (m) > δ+1 can thus be realized for some m ∈ [m0, m0 + kd] ⊂ [m0, m0 +n] as soon as

inf
dimY=d

Ld · Y ⌊n/d⌋d/2d−1 > δ,

which is equivalent to the condition given in Theorem 7.4 (b). �

(7.5) Corollary. Let X be a smooth projective n-fold, let L be an ample line bundle and
G a nef line bundle over X. Thenm(KX+(n+2)L)+G is very ample form >

(
3n+1
n

)
−2n.

Proof. Apply Theorem 7.4 (a) with G′ = a(KX + (n+ 1)L) +G, so that

2KX +mL +G′ = (a+ 2)(KX + (n+ 2)L) + (m− 2n− 4− a)L+G,

and take m = a+ 2n+ 4 > 2 +
(
3n+1
n

)
. �
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The main drawback of the above technique is that multiples of L at least equal to
(n + 1)L are required to avoid zeroes of the Hilbert polynomial. In particular, it is not
possible to obtain directly a very ampleness criterion for 2KX + L in the statement of
Theorem 7.4 (b). Nevertheless, using different ideas from Angehrn-Siu [AS95; Siu96]
has obtained such a criterion. We derive here a slightly weaker version, thanks to the
following elementary lemma.

(7.6) Lemma. Assume that for some integer µ ∈ N∗ the line bundle µF generates
simultaneously all jets of order µ(n + sj) + 1 at any point xj in a subset {x1, . . . , xp}
of X. Then KX + F generates simultaneously all jets of order sj at xj.

Proof. Take the algebraic metric on F defined by a basis of sections σ1, . . . , σN of µF
which vanish at order µ(n+ sj) + 1 at all points xj . Since we are still free to choose the
homogeneous term of degree µ(n + sj) + 1 in the Taylor expansion at xj , we find that
x1, . . . , xp are isolated zeroes of

⋂
σ−1
j (0). If ϕ is the weight of the metric of F near xj ,

we thus have ϕ(z) ∼ (n+ sj +
1
µ ) log |z − xj| in suitable coordinates. We replace ϕ in a

neighborhood of xj by

ϕ′(z) = max
(
ϕ(z) , |z|2 − C + (n+ sj) log |z − xj |

)

and leave ϕ elsewhere unchanged (this is possible by taking C > 0 very large). Then
ϕ′(z) = |z|2−C+(n+sj) log |z−xj | near xj , in particular ϕ′ is strictly plurisubharmonic
near xj . In this way, we get a metric h′ on F with semipositive curvature everywhere
on X , and with positive definite curvature on a neighborhood of {x1, . . . , xp}. The
conclusion then follows directly from Hörmander’s L2 estimates (5.1) and (5.2). �

(7.7) Theorem. Let X be a smooth projective n-fold, and let L be an ample line bundle
over X. Then 2KX+L generates simultaneous jets of order s1, . . . , sp at arbitrary points
x1, . . . , xp ∈ X provided that the intersection numbers Ld ·Y of L over all d-dimensional
algebraic subsets Y of X satisfy

Ld · Y >
2d−1

⌊n/d⌋d
∑

16j6p

(
(n+ 1)(4n+ 2sj + 1)− 2

n

)
, 1 6 d 6 n.

Proof. By Lemma 7.6 applied with F = KX+L and µ = n+1, the desired jet generation
of 2KX+L occurs if (n+1)(KX+L) generates jets of order (n+ 1)(n+ sj) + 1 at xj . By
Lemma 7.6 again with F = aKX + (n+ 1)L and µ = 1, we see by backward induction
on a that we need the simultaneous generation of jets of order

(n+ 1)(n+ sj) + 1 + (n+ 1− a)(n+ 1)

at xj . In particular, for 2KX + (n + 1)L we need the generation of jets of order
(n+ 1)(2n+ sj − 1) + 1. Theorem 7.4 (b) yields the desired condition. �

We now list a few immediate consequences of Theorem 7.4, in connection with some
classical questions of algebraic geometry.

(7.8) Corollary. Let X be a projective n-fold of general type with KX ample. Then
mKX is very ample for m > m0 =

(
3n+1
n

)
+ 4.
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(7.9) Corollary. Let X be a Fano n-fold, that is, a n-fold such that −KX is ample.
Then −mKX is very ample for m > m0 =

(
3n+1
n

)
.

Proof. Corollaries 7.8, 7.9 follow easily from Theorem 7.4 (a) applied to L = ±KX .
Hence we get pluricanonical embeddings Φ : X → PN such that Φ∗

O(1) = ±m0KX . The
image Y = Φ(X) has degree

deg(Y ) =

∫

Y

c1
(
O(1)

)n
=

∫

X

c1
(
±m0KX

)n
= mn

0 |Kn
X |.

It can be easily reproved from this that there are only finitely many deformation types
of Fano n-folds, as well as of n-folds of general type with KX ample, corresponding to
a given discriminant |Kn

X | (from a theoretical viewpoint, this result is a consequence
of Matsusaka’s big theorem [Mat72; KoM83], but the bounds which can be obtained
from it are probably extremely huge). In the Fano case, a fundamental result obtained
independently by Kollár-Miyaoka-Mori [KoMM92] and Campana [Cam92] shows that the
discriminant Kn

X is in fact bounded by a constant Cn depending only on n. Therefore,
one can find an explicit bound C′

n for the degree of the embedding Φ, and it follows that
there are only finitely many families of Fano manifolds in each dimension. �

In the case of surfaces, much more is known. We will content ourselves with a brief
account of recent results. If X is a surface, the failure of an adjoint bundle KX + L to
be globally generated or very ample is described in a very precise way by the following
result of I. Reider [Rei88].

(7.10) Reider’s Theorem. Let X be a smooth projective surface and let L be a nef
line bundle on X.

(a) Assume that L2 > 5 and let x ∈ X be a given point. Then KX + L has a section
which does not vanish at x, unless there is an effective divisor D ⊂ X passing through
x such that either

L ·D = 0 and D2 = −1 ; or

L ·D = 1 and D2 = 0.

(b) Assume that L2 > 10. Then any two points x, y ∈ X (possibly infinitely near) are
separated by sections of KX + L, unless there is an effective divisor D ⊂ X passing
through x and y such that either

L ·D = 0 and D2 = −1 or − 2 ; or

L ·D = 1 and D2 = 0 or − 1 ; or

L ·D = 2 and D2 = 0.

(7.11) Corollary. Let L be an ample line bundle on a smooth projective surface X.
Then KX+3L is globally generated and KX+4L is very ample. If L2 > 2 then KX+2L
is globally generated and KX + 3L is very ample.

The case of higher order jets can be treated similarly. The most general result in
this direction has been obtained by Beltrametti and Sommese [BeS93].
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(7.12) Theorem ([BeS93]). Let X be a smooth projective surface and let L be a nef line
bundle on X. Let p be a positive integer such that L2 > 4p. Then for every 0-dimensional
subscheme Z ⊂ X of length h0(Z,OZ) 6 p the restriction

ρZ : H0(X,OX(KX + L)) −→ H0(Z,OZ(KX + L))

is surjective, unless there is an effective divisor D ⊂ X intersecting the support |Z| such
that

L ·D − p 6 D2 <
1

2
L ·D. �

Proof (Sketch). The proof the above theorems rests in an essential way on the construc-
tion of rank 2 vector bundles sitting in an exact sequence

0 → OX → E → L⊗ IZ → 0.

Arguing by induction on the length of Z, we may assume that Z is a 0-dimensional
subscheme such that ρZ is not surjective, but such that ρZ′ is surjective for every proper
subscheme Z ′ ⊂ Z. The existence of E is obtained by a classical construction of Serre
(unfortunately, this construction only works in dimension 2). The numerical condition
on L2 in the hypotheses ensures that c1(E)2 − 4 c2(E) > 0, hence E is unstable in the
sense of Bogomolov. The existence of the effective divisor D asserted in Theorems 7.10 or
7.12 follows. We refer to [Rei88], [BeS93] and [Laz97] for details. The reader will find in
[FdB95] a proof of the Bogomolov inequality depending only on the Kawamata-Viehweg
vanishing theorem. �

(7.13) Exercise. Prove the Fujita conjecture in the case of dimension 1, according to
the following steps.

(a) By using Hodge theory, show that for every smooth function f on a compact Kähler
manifold (X,ω), the equation ∆u = f has a solution if and only if

∫
X
f dVω = 0.

(b) Derive from (a), by using the local solvability of elliptic operators, that one has a
similar result when f is a distribution.

(c) If X = C is a compact complex curve and L a positive line bundle, for every pos-
itive measure µ on X such that

∫
C
µ = deg(L) =

∫
C
c1(L), there exists a singular

Hermitian metric h on L such that i
2πΘh(L) = µ (with the obvious identification of

measures and currents of bidegree (1, 1)).

(d) Given a finite collection of points xj ∈ C and integers sj > 0, then KC+L generates
jets of order sj at all points xj as soon as deg(L) >

∑
j(sj + 1).

(e) If L is positive on C, then KC+2L is globally generated and KC+3L is very ample.

(7.14) Exercise. The goal of the exercise is to prove the following weaker form of
Theorems 7.10 and 7.12, by a simple direct method based on Nadel’s vanishing theorem:

Let L be a nef line bundle on a smooth projective surface X. Fix points x1, . . . , xN
and corresponding multiplicities s1, . . . , sN , and set p =

∑
(2 + sj)

2. Then
H0(X,KX + L) generates simultaneously jets of order sj at all points xj provided
that L2 > p and L · C > p for all curves C passing through one of the points xj.
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(a) Using the Riemann-Roch formula, show that the condition L2 > p implies the exis-
tence of a section of a large multiple mL vanishing at order > m(2 + sj) at each of
the points.

(b) Construct a sequence of singular Hermitian metrics on L with positive definite cur-
vature, such that the weights ϕν have algebraic singularities, ν(ϕν , xj) > 2 + sj at
each point, and such that for some integer m1 > 0 the multiplier ideal sheaves satisfy
I(m1ϕν+1) ) I(m1ϕν) if V (I(ϕν)) is not 0-dimensional near some xj.

Hint : (a) starts the procedure. Fix m0 > 0 such that m0L −KX is ample. Use Nadel’s
vanishing theorem to show that

Hq(X,O((m+m0)L)⊗I(λmϕν)) = 0 for all q > 1, m > 0, λ ∈ [0, 1].

Let Dν be the effective Q-divisor describing the 1-dimensional singularities of ϕν . Then
I(λmϕν) ⊂ O(−⌊λmDν⌋) and the quotient has 0-dimensional support, hence

Hq(X,O((m+m0)L)⊗ O(−⌊λmDν⌋)) = 0 for all q > 1, m > 0, λ ∈ [0, 1].

By the Riemann-Roch formule again prove that

(∗) h0(X,O((m+m0)L)⊗ O/O(−⌊λmDν⌋)) =
m2

2
(2λL ·Dν − λ2D2

ν) +O(m).

As the left hand side of (∗) is increasing with λ, one must have D2
ν 6 L ·Dν . If V (I(ϕν))

is not 0-dimensional at xj , then the coefficient of some component of Dν passing through
xj is at least 1, hence

2L ·Dν −D2
ν > L ·Dν > p+ 1.

Show the existence of an integer m1 > 0 independent of ν such that

h0(X,O((m+m0)L)⊗ O/O(−⌊mDν⌋)) >
∑

16j6N

(
(m+m0)(2 + sj) + 2

2

)

for m > m1, and infer the existence of a suitable section of (m1 + m0)L which is not
in H0(X,O((m1 + m0)L − ⌊m1Dν⌋)). Use this section to construct ϕν+1 such that
I(m1ϕν+1) ) I(m1ϕν).

8. Holomorphic Morse Inequalities

Holomorphic Morse inequalities were first introduced in [Dem85] to improve Siu’s solution
of the Grauert-Riemenschneider conjecture. They express asymptotic bounds on the
cohomology of tensor bundles of holomorphic line bundles, and appear to be a useful
complement to the Riemann-Roch formula. We present here the main results and several
important applications. The reader is referred to [Dem85b, 91] for the required analytic
details in the spectral theory of operators.
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§ 8.A. General Analytic Statement on Compact Complex Manifolds

Let X be a compact complex manifold, E a holomorphic vector bundle of rank r and L
a line bundle over X . If L is equipped with a smooth metric h of curvature form ΘL,h,
we define the q-index set of L to be the open subset

(8.1) X(L, h, q) =

{
x ∈ X ; iΘL,h(x) has

q

n− q

negative eigenvalues

positive eigenvalues

}

for 0 6 q 6 n. Hence X admits a partition X = ∆ ∪⋃
qX(L, h, q) where

∆ = {x ∈ X ; det(ΘL,h(x)) = 0}

is the degeneracy set. We also introduce

(8.1′) X(L, h,6 q) =
⋃

06j6q

X(L, h, j).

(8.2) Morse inequalities ([Dem85b]). For any Hermitian holomorphic line bundle
(L, h) and any holomorphic vector bundle E over a compact complex manifold X, the
cohomology groups Hq

(
X,E ⊗ O(kL)

)
satisfy the following asymptotic inequalities as

k → +∞ :

(a) Weak Morse inequalities

hq
(
X,O(E)⊗ O(kL)

)
6 r

kn

n!

∫

X(L,h,q)

(−1)q
( i

2π
ΘL,h

)n
+ o(kn).

(b) Strong Morse inequalities

∑

06j6q

(−1)q−jhj
(
X,O(E)⊗ O(kL)

)
6 r

kn

n!

∫

X(L,h,6q)

(−1)q
( i

2π
ΘL,h

)n
+ o(kn).

The proof is based on the spectral theory of the complex Laplace operator, using
either a localization procedure or, alternatively, a heat kernel technique. These inequa-
lities are a useful complement to the Riemann-Roch formula when information is needed
about individual cohomology groups, and not just about the Euler-Poincaré characteris-
tic. One of the typical consequences is a solution of the Grauert-Riemenschneider con-
jecture, which was first announced by [Siu84] in the case of a semi-positive line bundle L,
and by [Dem85b] in general.

(8.3) Corollary (solution of the Grauert-Riemenschneider conjecture, [Siu84],
[Dem85b]). Let X be a compact complex manifold carrying a holomorphic Hermitian
line bundle (L, h) such that

∫

X(L,h,61)

( i

2π
ΘL,h

)n
> 0.
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Then L is a big line bundle, and as a consequence, X is a Moishezon manifold, i.e. is
bimeromorphic to a projective manifold.

Proof. In the case q = 1, the strong Morse inequalities yield

h0(X,O(kL))− h1(X,O(kL)) >
kn

n!

∫

X(L,h,61)

( i

2π
ΘL,h

)n
− o(kn) > ckn, c > 0,

hence L is big. �

(8.4) Corollary. If X is compact Kähler and L is nef, then

hq(X,O(E)⊗ O(kL)) = o(kn) for all q > 1.

Proof. Let ω be a Kähler metric. The nefness of L implies that there exists a smooth
Hermitian metric hε on L such that i

2π
ΘL,hε

> −εω. On X(L, hε, 1) we have exactly
1 negative eigenvalue λ1 which is belongs to [−ε, 0[ and the other ones λj (j > 2) are
positive. The product λ1 · · ·λn satisfies |λ1 · · ·λn| 6 ε

∏
j>2(ε+ λj), hence

1

n!

∣∣∣
( i

2π
ΘL,hε

)n∣∣∣ 6 1

(n− 1)!
εω ∧

(
εω +

i

2π
ΘL,hε

)n−1

on X(L, hε, 1).

By integrating, we find

∫

X(L,hε,1)

( i

2π
ΘL,hε

)n
6 nε

∫

X

ω ∧ (c1(L) + ω)n−1

and the result follows. (Note: when X is non Kähler, D. Popovici [Pop08] has announced
bounds for the Monge-Ampère masses of ΘL,hε

which still imply the result, but the proof
is much harder in that case.) �

§ 8.B. Algebraic Counterparts of the Holomorphic Morse Inequalities

One difficulty in the application of the analytic form of the inequalities is that the cur-
vature integral is in general quite uneasy to compute, since it is neither a topological nor
an algebraic invariant. However, the Morse inequalities can be reformulated in a more
algebraic setting in which only algebraic invariants are involved. We give here two such
reformulations – after they were found via analysis in [Dem94], F. Angelini [Ang94] gave
a purely algebraic proof (see also [Siu93] and [Tra95] for related ideas).

(8.5) Theorem. Let L = F − G be a holomorphic line bundle over a compact Kähler
manifold X, where F and G are numerically effective line bundles. Then for every
q = 0, 1, . . . , n = dimX, there is an asymptotic strong Morse inequality

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj + o(kn).

Proof. By adding ε times a Kähler metric ω to the curvature forms of F and G, ε > 0
one can write i

2πΘL = θF,ε − θG,ε where θF,ε =
i
2πΘF + εω and θG,ε =

i
2πΘG + εω are
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positive definite. Let λ1 > · · · > λn > 0 be the eigenvalues of θG,ε with respect to θF,ε.
Then the eigenvalues of i

2π
ΘL with respect to θF,ε are the real numbers 1− λj and the

set X(L, h,6 q) is the set {λq+1 < 1} of points x ∈ X such that λq+1(x) < 1. The strong
Morse inequalities yield

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∫

{λq+1<1}
(−1)q

∏

16j6n

(1− λj)θ
n
F,ε + o(kn).

On the other hand we have (
n

j

)
θn−jF,ε ∧ θjG,ε = σjn(λ) θ

n
F,ε,

where σjn(λ) is the j-th elementary symmetric function in λ1, . . . , λn , hence

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj = lim

ε→0

∫

X

∑

06j6q

(−1)q−jσjn(λ) θ
n
F,ε.

Thus, to prove the lemma, we only have to check that
∑

06j6n

(−1)q−jσjn(λ)− 1l{λq+1<1}(−1)q
∏

16j6n

(1− λj) > 0

for all λ1 > · · · > λn > 0, where 1l{...} denotes the characteristic function of a set.
This is easily done by induction on n (just split apart the parameter λn and write
σjn(λ) = σjn−1(λ) + σj−1

n−1(λ)λn). �

In the case q = 1, we get an especially interesting lower bound (this bound has been
observed and used by S. Trapani [Tra95] in a similar context).

(8.6) Consequence. h0(X, kL)− h1(X, kL) > kn

n! (F
n − nFn−1 ·G)− o(kn).

Therefore some multiple kL has a section as soon as Fn − nFn−1 ·G > 0.

(8.7) Remark. The weaker inequality

h0(X, kL) >
kn

n!
(Fn − nFn−1 ·G) − o(kn)

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-divisor
to F and G, we may assume that F , G are ample. Let m0G be very ample and let k′

be the smallest integer > k/m0. Then h0(X, kL) > h0(X, kF − k′m0G). We select k′

smooth members Gj , 1 6 j 6 k′ in the linear system |m0G| and use the exact sequence

0 → H0(X, kF −
∑

Gj) → H0(X, kF ) →
⊕

H0(Gj , kF|Gj
).

Kodaira’s vanishing theorem yields Hq(X, kF ) = 0 and Hq(Gj , kF|Gj
) = 0 for q > 1 and

k > k0. By the exact sequence combined with Riemann-Roch, we get

h0(X, kL) > h0(X, kF −
∑

Gj)

>
kn

n!
Fn −O(kn−1)−

∑( kn−1

(n− 1)!
Fn−1 ·Gj −O(kn−2)

)

>
kn

n!

(
Fn − n

k′m0

k
Fn−1 ·G

)
−O(kn−1)

>
kn

n!

(
Fn − nFn−1 ·G

)
−O(kn−1).
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(This simple proof is due to F. Catanese.) �

(8.8) Corollary. Suppose that F and G are nef and that F is big. Some multiple of
mF −G has a section as soon as

m > n
Fn−1 ·G
Fn

.

In the last condition, the factor n is sharp: this is easily seen by taking X = Pn1 and
F = O(a, . . . , a) and G = O(b1, . . . , bn) over Pn1 ; the condition of the corollary is then
m >

∑
bj/a, whereas k(mF − G) has a section if and only if m > sup bj/a; this shows

that we cannot replace n by n(1− ε).

§ 8.C. Asymptotic Cohomology Groups

In order to estimate the growth of individual cohomology groups, it is interesting to
consider appropriate “asymptotic cohomology functions”. We mostly follow here notation
and concepts introduced by A. Küronya [Kur06; FKL07].

(8.9) Definition. Let X be a compact complex manifold and let L→ X be a holomorphic
line bundle.

(i) The q-th asymptotic cohomology functional is defined as

ĥq(X,L) := lim sup
k→+∞

n!

kn
hq(X,L⊗k).

(ii) The q-th asymptotic holomorphic Morse sum of L is

ĥ≤q(X,L) := lim sup
k→+∞

n!

kn

∑

06j6q

(−1)q−jhj(X,L⊗k).

When the lim sup’s are limits, we have the obvious relation

ĥ≤q(X,L) =
∑

06j6q

(−1)q−jĥj(X,L).

Clearly, Definition 8.9 can also be given for a Q-line bundle L or a Q-divisor D, and in
the case q = 0 one gets the volume of L, namely

(8.10) Vol(X,L) = ĥ0(X,L) = lim sup
k→+∞

n!

kn
h0(X,L⊗k).

(see also [DEL00], [Bou02], [Laz04]). We are going to show that the ĥq functional induces
a continuous map

DNSR(X) ∋ α 7→ ĥqDNS(X,α),

which is defined on the “divisorial Néron-Severi space” DNSR(X) ⊂ H1,1
BC(X,R), i.e. the

vector space spanned by real linear combinations of classes of divisors in the real Bott-
Chern cohomology group of bidegree (1, 1). If X is projective algebraic then DNSR(X)
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coincides with the usual Néron-Severi space NSR(X), but the inclusion can be strict
in general (e.g. on complex 2-tori which only have indefinite integral (1, 1)-classes, cf.
[BL04]); also, in that case (and more generally if X is Kähler), Hp,q

BC(X,C) coincides
with the usual Dolbeault cohomology group Hp,q(X,C). For α ∈ NSR(X) (resp. α ∈
DNSR(X)), we set

ĥqNS(X,α)
(
resp. ĥqDNS(X,α)

)
= lim sup
k→+∞, 1

k
c1(L)→α

n!

kn
hq(X,L)

= inf
ε>0, k0>0

sup
k>k0,‖ 1

k
c1(L)−α‖6ε

n!

kn
hq(X,L).(8.11)

when the pair (k, L) runs over N∗ × Pic(X), resp. over N∗ × PicD(X) where PicD(X) ⊂
Pic(X) is the subgroup generated by “divisorial line bundles”, i.e. line bundles of the

form OX(D). Similar definitions can be given for the Morse sum functionals ĥ6qNS(X,α)

and ĥ6qDNS(X,α). Clearly ĥ6qDNS(X,α) 6 ĥ6qNS(X,α) on DNSR(X), but we do not know
at this point whether this is always an equality. From the very definition, ĥqNS , ĥ6qNS

(and likewise ĥqDNS , ĥ6qDNS) are upper semi-continuous functions which are positively
homogeneous of degree n, namely

(8.12) ĥqNS(X, λα) = λnĥqNS(X,α)

for all α ∈ NSR(X) and all λ > 0. Notice that ĥqNS(X,α) and ĥ
6q
NS(X,α) are always finite

thanks to holomorphic Morse inequalities (see below).

(8.13) Proposition.

(a) For L ∈ PicD(X), one has ĥq(X,L)=ĥq(X, c1(L)) and ĥ6q(X,L)=ĥ6qDNS(X, c1(L)),
in particular asymptotic cohomology depends only on the numerical class of L.

(b) The map α 7→ ĥqDNS(X,α) is (locally) Lipschitz continuous on DNSR(X).

(c) When q = 0, ĥ0DNS(X,α) and ĥ
0
NS(X,α) coincide on DNSR(X) and the limsups are

limits.

The proof is derived from arguments quite similar to those already developed in
[Kur05] (see also [Dem10a] for the non projective situation). If D =

∑
pjDj is an

integral divisor, we define its norm to be ‖D‖ =
∑ |pj|Volω(Dj), where the volume of

an irreducible divisor is computed by means of a given Hermitian metric ω on X ; in
other words, this is precisely the mass of the current of integration [D] with respect to ω.
Clearly, since X is compact, we get equivalent norms for all choices of Hermitian metrics
ω on X . We can also use ω to fix a normalized metric on H1,1

BC(X,R). Elementary
properties of potential theory show that ‖c1(O(D))‖ 6 C‖D‖ for some constant C > 0
(but the converse inequality is of course wrong in most cases). Proposition 8.13 is a simple
consequence of the more precise cohomology estimates (8.17) which will be obtained

below. The special case q = 0 is easier, in fact, one can get non zero values for ĥ0(X,L)
only when L is big, i.e. when X is Moishezon (so that we are always reduced to the
divisorial situation); the fact that limsups are limits is well known – we postpone the
proof to section 19, which will provide stronger results based on approximate Zariski
decomposition.
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(8.14) Lemma. Let X be a compact complex n-fold. Then for every coherent sheaf F
on X, there is a constant C

F

> 0 such that for every holomorphic line bundle L on X
we have

hq(X,F⊗ OX(L)) 6 C
F

(‖c1(L)‖+ 1)p

where p = dimSuppF.

Proof. We prove the result by induction on p ; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H0(X,F ⊗ OX(L)) does
not depend on L when F has finite support. Let us consider the support Y of F and a
resolution of singularity µ : Ŷ → Y of the corresponding (reduced) analytic space. Then
F is an OY -module for some non necessarily reduced complex structure OY = OX/J on
J . We can look at the reduced structure OY,red = OX/I, I =

√
J, and filter F by IkF,

k > 0. Since IkF/Ik+1
F is a coherent OY,red-module, we can easily reduce the situation

to the case where Y is reduced and F is an OY -module. In that case the cohomology

Hq(X,F⊗ OX(L)) = Hq(Y,F⊗ OY (L|Y ))

just lives on the reduced space Y .

Now, we have an injective sheaf morphismF→ µ∗µ∗
F whose cokernel G has support

in dimension < p. By induction on p, we conclude from the exact sequence that

∣∣hq(X,F⊗ OX(L))− hq(X, µ∗µ
∗
F⊗ OX(L))

∣∣ 6 C1(‖c1(L)‖+ 1)p−1.

The functorial morphisms

µ∗ : Hq(Y,F⊗ OY (L|Y )) → Hq(Ŷ , µ∗
F⊗ O

Ŷ
(µ∗L)|Y ),

µ∗ : Hq(Ŷ , µ∗
F⊗ O

Ŷ
(µ∗L)|Y ) → Hq(Y, µ∗µ

∗
F⊗ OY (L|Y ))

yield a composition

µ∗ ◦ µ∗ : Hq(Y,F⊗ OY (L|Y )) → Hq(Y, µ∗µ
∗
F⊗ OY (L|Y ))

induced by the natural injection F→ µ∗µ∗
F. This implies

hq(Y,F⊗ OY (L|Y )) 6 hq(Ŷ , µ∗
F⊗ O

Ŷ
(µ∗L|Y )) + C1(‖c1(L)‖+ 1)p−1.

By taking a suitable modification µ′ : Y ′ → Y of the desingularization Ŷ , we can assume
that (µ′)∗F is locally free modulo torsion. Then we are reduced to the case where F′ =
(µ′)∗F is a locally free sheaf on a smooth manifold Y ′, and L′ = (µ′)∗L|Y . In this case,
we apply Morse inequalities to conclude that hq(Y ′,F′ ⊗ OY ′(L′)) 6 C2(‖c1(L′)‖+ 1)p.
Since ‖c1(L′)‖ 6 C3‖c1(L)‖ by pulling-back, the statement follows easily. �

(8.15) Corollary. For every irreducible divisor D on X, there exists a constant CD
such that

hq(D,OD(L|D)) 6 CD(‖c1(L)‖+ 1)n−1

Proof. It is enough to apply Lemma 8.14 with F = (iD)∗OD where iD : D → X is the
injection. �
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(8.16) Remark. It is very likely that one can get an “elementary” proof of Lemma 8.14
without invoking resolutions of singularities, e.g. by combining the Cartan-Serre finiteness
argument along with the standard Serre-Siegel proof based ultimately on the Schwarz
lemma. In this context, one would invoke L2 estimates to get explicit bounds for the
homotopy operators between Čech complexes relative to two coverings U = (B(xj, rj)),
U

′ = (B(xj, rj/2)) of X by concentric balls. By exercising enough care in the estimates,
it is likely that one could reach an explicit dependence CD 6 C′‖D‖ for the constant
CD of Corollary 8.15. The proof would of course become much more technical than the
rather naive brute force approach we have used.

(8.17) Theorem. Let X be a compact complex manifold. Fix a finitely generated
subgroup Γ of the group of Z-divisors on X. Then there are constants C, C′ depending
only on X, its Hermitian metric ω and the subgroup Γ, satisfying the following properties.

(a) Let L and L′ = L ⊗ O(D) be holomorphic line bundles on X, where D ∈ Γ is an
integral divisor. Then

∣∣hq(X,L′)− hq(X,L)
∣∣ 6 C(‖c1(L)‖+ ‖D‖)n−1‖D‖.

(b) On the subspace DNSR(X), the asymptotic q-cohomology function ĥqDNS satisfies a
global estimate

∣∣ĥqDNS(X, β)− ĥqDNS(X,α)
∣∣ 6 C′(‖α‖+ ‖β‖)n−1‖β − α‖.

In particular (without any further assumption on X), ĥqDNS is locally Lipschitz continuous
on DNSR(X).

Proof. (a) We want to compare the cohomology of L and L′ = L ⊗ O(D) on X . For
this we write D = D+ − D−, and compare the cohomology of the pairs L and L1 =
L⊗ O(−D−) one one hand, and of L′ and L1 = L′ ⊗ O(−D+) on the other hand. Since
‖c1(O(D))‖ 6 C‖D‖ by elementary potential theory, we see that is is enough to consider
the case of a negative divisor, i.e. L′ = L⊗O(−D), D > 0. If D is an irreducible divisor,
we use the exact sequence

0 → L⊗ O(−D) → L→ OD ⊗ L|D → 0

and conclude by Corollary 8.15 that

∣∣hq(X,L⊗ O(−D))− hq(X,L)
∣∣ 6 hq(D,OD ⊗ L|D) + hq−1(D,OD ⊗ L|D)

6 2CD(‖c1(L)‖+ 1)n−1.

For D =
∑
pjDj > 0, we easily get by induction

∣∣hq(X,L⊗ O(−D))− hq(X,L)
∣∣ 6 2

∑

j

pjCDj

(
‖c1(L)‖+

∑

k

pk‖∇k‖+ 1
)n−1

.

If we knew that CD 6 C′‖D‖ as expected in Remark 8.14, then the argument would be
complete without any restriction on D. The trouble disappears if we fix D in a finitely
generated subgroup Γ of divisors, because only finitely many irreducible components
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appear in that case, and so we have to deal with only finitely many constants CDj
.

Property 8.17 (a) is proved.

(b) Fix once for all a finite set of divisors (∆j)16j6t providing a basis of DNSR(X)⊂
H1,1

BC(X,R). Take two elements α and β in DNSR(X), and fix ε > 0. Then β − α can
be ε-approximated by a Q-divisor

∑
λjDj , λj ∈ Q, and we can find a pair (k, L) with k

arbitrary large such that 1
k
c1(L) is ε-close to α and n!/knhq(X,L) approaches ĥqDNS(X,α)

by ε. Then 1
kL+

∑
λj∆j approaches β as closely as we want. When approximating β−α,

we can arrange that kλj is an integer by taking k large enough. Then β is approximated
by 1

k c1(L
′) with L′ = L⊗ O(∑ kλj∆j). Property (a) implies

hq(X,L′)− hq(X,L) > −C
(
‖c1(L)‖+

∥∥∥
∑

kλj∆j

∥∥∥
)n−1∥∥∥

∑
kλj∆j

∥∥∥
> −Ckn

(
‖α‖+ ε+ ‖β − α‖+ ε)n−1(‖β − α‖+ ε).

We multiply the previous inequality by n!/kn and get in this way

n!

kn
hq(X,L′) > ĥqDNS(X,α)− ε− C′(‖α‖+ ‖β‖+ ε)n−1(‖β − α‖+ ε).

By taking the limsup and letting ε→ 0, we finally obtain

ĥqDNS(X, β)− ĥqDNS(X,α) > −C′(‖α‖+ ‖β‖)n−1‖β − α‖.

Property 8.17 (b) follows by exchanging the roles of α and β. �

§ 8.D. Transcendental Asymptotic Cohomology Functions

Our ambition is to extend the function ĥqNS in a natural way to the full cohomology group
H1,1

BC(X,R). The main trouble, already when X is projective algebraic, is that the Picard

number ρ(X) = dimR NSR(X) may be much smaller than dimRH
1,1
BC(X,R), namely, there

can be rather few integral classes of type (1, 1) on X . It is well known for instance that
ρ(X) = 0 for a generic complex torus a dimension n > 2, while dimRH

1,1
BC(X,R) = n2.

However, if we look at the natural morphism

H1,1
BC(X,R) → H2

DR(X,R) ≃ H2(X,R)

to de Rham cohomology, then H2(X,Q) is dense in H2(X,R). Therefore, given a class
α ∈ H1,1

BC(X,R) and a smooth d-closed (1, 1)-form u in α, we can find an infinite sequence
1
kLk (k ∈ S ⊂ N) of topological Q-line bundles, equipped with Hermitian metrics hk and
compatible connections ∇k such that the curvature forms 1

kΘ∇k
converge to u. By

using Kronecker’s approximation with respect to the integral lattice H2(X,Z)/torsion ⊂
H2(X,R), we can even achieve a fast diophantine approximation

(8.18) ‖Θ∇k
− ku‖ 6 Ck−1/b2

for a suitable infinite subset k ∈ S ⊂ N of multipliers. Then in particular

‖Θ0,2
∇k

‖ = ‖Θ0,2
∇k

− u0,2‖ 6 Ck−1/b2 ,



70 Analytic Methods in Algebraic Geometry

and we see that (Lk, hk,∇k) is a C
∞ Hermitian line bundle which is extremely close to

being holomorphic, since (∇0,1
k )2 = Θ0,2

∇k
is very small. We fix a hermitian metric ω on

X and introduce the complex Laplace-Beltrami operator

k,q = (∇0,1
k )(∇0,1

k )∗ + (∇0,1
k )∗(∇0,1

k ) acting on L2(X,Λ0,qT ∗X ⊗ Lk).

We look at its eigenspaces with respect to the L2 metric induced by ω on X and hk
on Lk. In the holomorphic case, Hodge theory tells us that the 0-eigenspace is isomor-
phic to Hq(X,O(Lk)), but in the “almost holomorphic case” the 0-eigenvalues deviate
from 0, essentially by a shift of the order of magnitude of ‖Θ0,2

∇k
‖ ∼ k−1/b2 (see [Lae02],

Chapter 4). It is thus natural to introduce in this case

(8.19) Definition. Let X be a compact complex manifold and α ∈ H1,1
BC(X,R) an arbi-

trary Bott-Chern (1, 1)-class. We define the “transcendental” asymptotic q-cohomology
functions to be

(a) ĥqtr(X,α) = inf
u∈α

lim sup
ε→0, k→+∞, Lk, hk,∇k,

1
k
Θ∇k

→u

n!

kn
N( k,q,6 kε)

(b) ĥ6qtr (X,α) = inf
u∈α

lim sup
ε→0, k→+∞, Lk, hk,∇k,

1
k
Θ∇k

→u

n!

kn

∑

06j6q

(−1)q−jN( k,j ,6 kε)

where the lim sup runs over all 5-tuples (ε, k, Lk, hk,∇k), and where N( k,q, kε) denotes
the sum of dimensions of all eigenspaces of eigenvalues at most equal to kε for the Laplace-
Beltrami operator k,q on L

2(X,Λ0,qT ∗X⊗Lk) associated with (Lk, hk,∇k) and the base
Hermitian metric ω.

The word “transcendental” refers here to the fact that we deal with classes α of
type (1, 1) which are not algebraic or even analytic. Of course, in the definition, we
could have restricted the limsup to families satisfying a better approximation property
‖ 1
k
Θ∇k

−u‖ 6 Ck−1−1/b2 for some large constant C (this would lead a priori to a smaller
limsup, but there is enough stability in the parameter dependence of the spectrum for
making such a change irrelevant). The minimax principle easily shows that Definition
8.18 does not depend on ω, as the eigenvalues are at most multiplied or divided by
constants under a change of base metric. When α ∈ NSR(X), by restricting our families
{(ε, k, Lk, hk,∇k)} to the case of holomorphic line bundles only, we get the obvious
inequalities

ĥqNS(X,α) 6 ĥqtr(X,α), ∀α ∈ NSR(X),(8.20a)

ĥ6qNS(X,α) 6 ĥ6qtr (X,α), ∀α ∈ NSR(X).(8.20b)

It is natural to raise the question whether these inequalities are always equalities. Hope-
fully, the calculation of the quantities limk→+∞

n!
kn
N( k,q,6 kε) is a problem of spectral

theory which is completely understood since a long time, and in fact, the above limit can
be evaluated explicitly for any value of ε ∈ R, except possibly for a countable number
of values for which jumps may occur. As a consequence of the techniques of [Dem85b],
[Dem91] and [Lae02], one shows
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(8.21) Theorem. With the above notations and assumptions, let us introduce at each
point x in X the “spectral density function”, defined as a finite sum

νu(λ) =
n! (4π)s−n

(n− s)!
|u1| . . . |us|

∑

(p1,...,ps)∈Ns

(
λ−

s∑

j=1

(2pj + 1)|uj|
)n−s
+

where s = s(x) is the rank of the real (1, 1)-form u at x, and uj, 1 6 j 6 s, its non
zero eigenvalues with respect to the base hermitian metric ω, and us+1 = . . . = un = 0.
For each multi-index J ⊂ {1, 2, . . . , n}, let us set uJ =

∑
j∈J uj. Then the asymptotic

spectrum of k,q admits the estimate

lim
k→+∞

n!

kn
N( k,q,6 kλ) =

∫

X

∑

|J|=q
νu(λ+ u∁J − uJ) dVω

except possibly for a countable number of values of λ which are discontinuities of the right
hand integral as an increasing integral of λ.

The core of the proof consists of making a change of coordinates yj =
√
k xj , so

that the leading terms − 1
k

∑
∂2/∂x2j of

1
k k,q take the form of a fixed Laplace operator

−∑
∂2/∂y2j . The effect of the curvature form is easily seen to be rescaled to an additional

constant potential v(y) as k → +∞. The zoom factor
√
k has the effect that the typical

“wavelength” of the eigenfunctions is 1/
√
k. At that scale, an error analysis shows

that the spectrum density becomes a local calculation involving just trivial bundle with
constant curvature (as the curvature can be considered constant within balls of radius
C/

√
k). One is led to an operator that splits into 2n copies of the harmonic oscillator

−d2/dy2+ay2 in one real variable; this is the reason why the integers 2p+1 occur in the
formula. Now, when λ ↓ 0, one easily checks that the only possibility to get a non zero
limit is when s = n, uj , j ∈ J are negative and uj , j ∈ ∁J are positive; hence only one
multi-index J can occur, and the sum involves only one non zero term corresponding to
p1 = . . . = pn = 0. Therefore

lim
λ→0+

∑

|J|=q
νu(λ+ u∁J − uJ ) dVω = 1lX(u,q)|u1| . . . |un| dVω = 1lX(u,q)(−1)qun

where X(u, q) is the open set of points x ∈ X where u(x) has signature (n− q, q).

(8.22) Corollary. We have (as a limit rather than just a lim sup ) the spectral estimate

lim
ε→0, k→+∞, Lk, hk,∇k,

1
k
Θ∇k

→u

n!

kn
N( k,q,6 kε) =

∫

X(u,q)

(−1)qun.

Coming back to the transcendental asymptotic cohomology functions, we get

(8.23) Theorem. The lim sup’s defining ĥqtr(X,α) and ĥ
6q
tr (X,α) are limits, and

(a) ĥqtr(X,α) = inf
u∈α

∫

X(u,q)

(−1)qun (u smooth).
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(b) ĥ6qtr (X,α) = inf
u∈α

∫

X(u,6q)
(−1)qun (u smooth).

The first equality follows mainly from Theorems 2.16 and 3.14 of [Dem85b], which
even yield explicitly the limit for any given ε outside a countable set (the limit as ε→ 0
is then obtained from the calculations of page 224 after Cor. 4.3). One has to observe,
in the case of sequences of “almost holomorphic line bundles” considered here, that the
perturbation indeed goes to 0, and also that all constants involved in the calculations of
[Dem85b] are uniformly bounded; see [Dem91] and [Lae02] for more details on this. If
we do not fear being too optimistic, all the above can be reformulated in terms of the
following conjecture.

(8.24) Conjecture. For every α ∈ NSR(X)

(a) ĥqNS(X,α) = ĥqtr(X,α)
(
= inf
u∈α

∫

X(u,q)

(−1)qun , u smooth
)
,

(b) ĥ6qNS(X,α) = ĥ6qtr (X,α)
(
= inf
u∈α

∫

X(u,6q)

(−1)qun , u smooth
)
,

(Note: it follows from the holomorphic Morse inequalities that the inequality 6 always
holds true in (a) and (b)).

In general, equalities 8.24 (a, b) seem rather hard to prove. In some sense, they
would stand as an asymptotic converse of the Andreotti-Grauert theorem [AG62] : under
a suitable q-convexity assumption, the latter asserts the vanishing of related cohomology
groups in degree q; here, conversely, assuming a known growth of these groups in degree q,
we expect to be able to say something about the q-index sets of suitable Hermitian metrics
on the line bundles under consideration. The only cases where we have a positive answer
to Question 8.24 are when X is projective and q = 0 or dimX 6 2 (see 19.31 and 19.37).
In the general setting of compact complex manifolds, we also hope for the following
“transcendental” case of holomorphic Morse inequalities.

(8.25) Conjecture. Let X be a compact complex n-fold and α an arbitrary cohomology
class in H1,1

BC(X,R). Then the volume, defined as the supremum

(8.26) Vol(α) := sup
0<T∈α

∫

XrSing(T )

Tn,

extended to all Kähler currents T ∈ α with analytic singularities (see Definition 14.15 in
Section 14 ), satisfies

(8.27) Vol(α) > sup
u∈α

∫

X(u,0)∪X(u,1)

un

where u runs over all smooth closed (1, 1) forms. In particular, if the right hand side is
positive, then α contains a Kähler current.

By the holomorphic Morse inequalities, Conjecture 8.25 holds true in case α is an
integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see [Lae02]
for a few hints on these issues.
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§ 8.E. Invariance by modification

We end this section by the observation that the asymptotic cohomology functions
are invariant by modification, namely that for every modification µ : X̃ → X and every
line bundle L we have e.g.

(8.28) ĥq(X,L) = ĥq(X̃, µ∗L).

In fact the Leray spectral sequence provides an E2 term

Ep,q2 = Hp(X,Rqµ∗OX̃(µ∗L⊗k)) = Hp(X,OX(L
⊗k)⊗Rqµ∗OX̃).

Since Rqµ∗OX̃ is equal to OX for q = 0 and is supported on a proper analytic subset of

X for q > 1, one infers that hp(X,OX(L
⊗k ⊗ Rqµ∗OX̃) = O(kn−1) for all q > 1. The

spectral sequence implies that

hq(X,L⊗k)− ĥq(X̃, µ∗L⊗k) = O(kn−1).

We claim that the Morse integral infimums are also invariant by modification.

(8.29) Proposition. Let (X,ω) be a compact Kähler manifold, α ∈ H1,1(X,R) a real

cohomology class and µ : X̃ → X a modification. Then

inf
u∈α

∫

X(u,q)

(−1)qun = inf
v∈µ∗α

∫

X(v,q)

(−1)qvn,(a)

inf
u∈α

∫

X(u,6q)

(−1)qun = inf
v∈µ∗α

∫

X(v,6q)

(−1)qvn.(b)

Proof. Given u ∈ α on X , we obtain Morse integrals with the same values by taking
v = µ∗u on X̃, hence the infimum on X̃ is smaller or equal to what is on X . Conversely,
we have to show that given a smooth representative v ∈ µ∗α on X̃, one can find a
smooth representative u ∈ X such that the Morse integrals do not differ much. We can
always assume that X̃ itself is Kähler, since by Hironaka [Hir64] any modification X̃ is
dominated by a composition of blow-ups of X . Let us fix some u0 ∈ α and write

v = µ∗u0 + ddcϕ

where ϕ is a smooth function on X̃ . We adjust ϕ by a constant in such a way that ϕ > 1
on X̃ . There exists an analytic set S ⊂ X such that µ : X̃ r µ−1(S) → X r S is a
biholomorphism, and a quasi-psh function ψS which is smooth on X r S and has −∞
logarithmic poles on S (see e.g. [Dem82]). We define

(8.30) ũ = µ∗u0 + ddcmaxε0(ϕ+ δ ψS ◦ µ , 0) = v + ddcmaxε0(δ ψS ◦ µ , −ϕ)

where maxε0 , 0 < ε0 < 1, is a regularized max function and δ > 0 is very small. By
construction ũ coincides with µ∗u0 in a neighborhood of µ−1(S) and therefore ũ descends
to a smooth closed (1, 1)-form u on X which coincides with u0 near S, so that ũ = µ∗u.

Clearly ũ converges uniformly to v on every compact subset of X̃ r µ−1(S) as δ → 0, so
we only have to show that the Morse integrals are small (uniformly in δ) when restricted
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to a suitable small neighborhood of the exceptional set E = µ−1(S). Take a sufficiently

large Kähler metric ω̃ on X̃ such that

−1

2
ω̃ 6 v 6

1

2
ω̃, −1

2
ω̃ 6 ddcϕ 6

1

2
ω̃, −ω̃ 6 ddcψS ◦ µ.

Then ũ > −ω̃ and ũ 6 ω̃ + δ ddcψS ◦ µ everywhere on X̃. As a consequence

|ũn| 6
(
ω̃ + δ(ω̃ + ddcψS ◦ µ)

)n
6 ω̃n + nδ(ω̃ + ddcψS ◦ µ) ∧

(
ω̃ + δ(ω̃ + ddcψS ◦ µ)

)n−1

thanks to the inequality (a+b)n 6 an+nb(a+b)n−1. For any neighborhood V of µ−1(S)
this implies ∫

V

|ũn| 6
∫

V

ω̃n + nδ(1 + δ)n−1

∫

X̃

ω̃n

by Stokes formula. We thus see that the integrals are small if V and δ are small. The
reader may be concerned that Monge-Ampère integrals were used with an unbounded
potential ψS, but in fact, for any given δ, all the above formulas and estimates are still
valid when we replace ψS by maxε0(ψS,−(M + 2)/δ) with M = max

X̃
ϕ, especially

formula (8.30) shows that the form ũ is unchanged. Therefore our calculations can be
handled by using merely smooth potentials. �

(8.31) Remark. It is interesting to put these results in perspective with the algebraic
version 8.5 of holomorphic Morse inequalities. When X is projective, the algebraic Morse
inequalities used in combination with the birational invariance of the Morse integrals
imply the inequalities

(a) inf
u∈c1(L)

∫

X(u,q)

(−1)qun ≤ inf
µ∗(L)≃O(F−G)

(
n

q

)
Fn−qGq ,

(b) inf
u∈c1(L)

∫

X(u,6q)

(−1)qun ≤ inf
µ∗(L)≃O(F−G)

∑

06j6q

(−1)q−j
(
n

j

)
Fn−jGj ,

where the infimums on the right hand side are taken over all modifications µ : X̃ → X
and all decompositions µ∗L = O(F −G) of µ∗L as a difference of two nef Q-divisors F, G
on X̃ . In case F and G are ample, the proof simply consists of taking positive curvature
forms Θ

O(F ),hF
, Θ

O(G),hG
on O(F ) and O(G), and evaluating the Morse integrals with

u = Θ
O(F ),hF

− Θ
O(G),hG

; the general case follows by approximating the nef divisors F
and G by ample divisors F + εH and G + εH with H ample and ε > 0, see [Dem94].
Again, a natural question is to know whether these infimums derived from algebraic
intersection numbers are equal to the asymptotic cohomology functionals ĥqNS(X,L) and

ĥ≤q
NS (X,L). A positive answer would of course automatically yield a positive answer to

the equality cases in 8.24 (a) and (b). However, the Zariski decompositions involved in
our proofs of the “analytic equality case” produces certain effective exceptional divisors
which are not nef. It is unclear how to write those effective divisors as a difference of nef
divisors. This fact raises a lot of doubts upon the sufficiency of taking merely differences
of nef divisors in the infimums 8.31 (a) and 8.31 (b). �
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9. On the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f : C → X drawn in a complex irreducible n-dimensional varietyX , and more specifically
to show that they must satisfy certain global algebraic or differential equations as soon
as X is projective of general type. By means of holomorphic Morse inequalities and a
probabilistic analysis of the cohomology of jet spaces, we are able to prove a significant
step of a generalized version of the Green-Griffiths-Lang conjecture on the algebraic
degeneracy of entire curves.

§ 9.A. Introduction

Let X be a complex n-dimensional manifold ; most of the time we will assume that
X is compact and even projective algebraic. By an “entire curve” we always mean a non
constant holomorphic map defined on the whole complex line C, and we say that it is
algebraically degenerate if its image is contained in a proper algebraic subvariety of the
ambient variety. If µ : X̃ → X is a modification and f : C → X is an entire curve whose
image f(C) is not contained in the image µ(E) of the exceptional locus, then f admits
a unique lifting f̃ : C → X̃ . For this reason, the study of the algebraic degeneration of
f is a birationally invariant problem, and singularities do not play an essential role at
this stage. We will therefore assume that X is non singular, possibly after performing
a suitable composition of blow-ups. We are interested more generally in the situation
where the tangent bundle TX is equipped with a linear subspace V ⊂ TX , that is, an
irreducible complex analytic subset of the total space of TX such that

(9.1) all fibers Vx := V ∩ TX,x are vector subspaces of TX,x.

Then the problem is to study entire curves f : C → X which are tangent to V , i.e. such
that f∗TC ⊂ V . We will refer to a pair (X, V ) as being a directed variety (or directed
manifold). A morphism of directed varieties Φ : (X, V ) → (Y,W ) is a holomorphic map
Φ : X → Y such that Φ∗V ⊂ W ; by the irreducibility, it is enough to check this condition
over the dense open subset X r Sing(V ) where V is actually a subbundle. Here Sing(V )
denotes the indeterminacy set of the associated meromorphic map α : X > Gr(TX) to
the Grassmannian bbundle of r-planes in TX , r = rankV ; we thus have V|XrSing(V ) =
α∗S where S → Gr(TX) is the tautological subbundle of Gr(TX). In that way, we get a
category, and we will be mostly interested in the subcategory whose objects (X, V ) are
projective algebraic manifolds equipped with algebraic linear subspaces. Notice that an
entire curve f : C → X tangent to V is just a morphism f : (C, TC) → (X, V ).

The case where V = TX/S is the relative tangent space of some fibration X → S is of
special interest, and so is the case of a foliated variety (this is the situation where the sheaf
of sections O(V ) satisfies the Frobenius integrability condition [O(V ),O(V )] ⊂ O(V ));
however, it is very useful to allow as well non integrable linear subspaces V . We refer
to V = TX as being the absolute case. Our main target is the following deep conjecture
concerning the algebraic degeneracy of entire curves, which generalizes similar statements
made in [GG79] (see also [Lang86, Lang87]).

(9.2) Generalized Green-Griffiths-Lang conjecture. Let (X, V ) be a projective
directed manifold such that the canonical sheaf KV is big (in the absolute case V = TX ,
this means that X is a variety of general type, and in the relative case we will say that
(X, V ) is of general type). Then there should exist an algebraic subvariety Y ( X such
that every non constant entire curve f : C → X tangent to V is contained in Y .
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The precise meaning of KV and of its bigness will be explained below – our definition
does not coincide with other frequently used definitions and is in our view better suited
to the study of entire curves of (X, V ). One says that (X, V ) is Brody-hyperbolic when
there are no entire curves tangent to V . According to (generalized versions of) conjectures
of Kobayashi [Kob70, Kob76] the hyperbolicity of (X, V ) should imply that KV is big,
and even possibly ample, in a suitable sense. It would then follow from conjecture (9.2)
that (X, V ) is hyperbolic if and only if for every irreducible variety Y ⊂ X , the linear
subspace V

Ỹ
= T

ỸrE
∩ µ∗−1V ⊂ T

Ỹ
has a big canonical sheaf whenever µ : Ỹ → Y is a

desingularization and E is the exceptional locus.

The most striking fact known at this date on the Green-Griffiths-Lang conjecture
is a recent result of Diverio, Merker and Rousseau [DMR10] in the absolute case, con-
firming the statement when X ⊂ Pn+1

C is a generic non singular hypersurface of large
degree d, with a (non optimal) sufficient lower bound d > 2n

5

. Their proof is based in an
essential way on a strategy developed by Siu [Siu02, Siu04], combined with techniques of
[Dem95]. Notice that if the Green-Griffiths-Lang conjecture holds true, a much stronger
and probably optimal result would be true, namely all smooth hypersurfaces of degree
d > n+3 would satisfy the expected algebraic degeneracy statement. Moreover, by results
of Clemens [Cle86] and Voisin [Voi96], a (very) generic hypersurface of degree d > 2n+1
would in fact be hyperbolic for every n > 2. Such a generic hyperbolicity statement has
been obtained unconditionally by McQuillan [McQ98, McQ99] when n = 2 and d > 35,
and by Demailly-El Goul [DEG00] when n = 2 and d > 21. Recently Diverio-Trapani
[DT10] proved the same result when n = 3 and d > 593. By definition, proving the alge-
braic degeneracy means finding a non zero polynomial P on X such that all entire curves
f : C → X satisfy P (f) = 0. All known methods of proof are based on establishing first
the existence of certain algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0 of some
order k, and then trying to find enough such equations so that they cut out a proper
algebraic locus Y ( X .

Let JkV be the space of k-jets of curves f : (C, 0) → X tangent to V . One defines the
sheaf O(EGG

k,mV
∗) of jet differentials of order k and degreem to be the sheaf of holomorphic

functions P (z; ξ1, . . . ξk) on JkV which are homogeneous polynomials of degree m on
the fibers of JkV → X with respect to local coordinate derivatives ξj = f (j)(0) (see
below in case V has singularities). The degree m considered here is the weighted degree
with respect to the natural C∗ action on JkV defined by λ · f(t) := f(λt), i.e. by
reparametrizing the curve with a homothetic change of variable. Since (λ · f)(j)(t) =
λjf (j)(λt), the weighted action is given in coordinates by

(9.3) λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

One of the major tool of the theory is the following result due to Green-Griffiths [GG79]
(see also [Blo26], [Dem95, Dem97], [SY96a, SY96b], [Siu97]).

(9.4) Fundamental vanishing theorem. Let (X, V ) be a directed projective vari-
ety and f : (C, TC) → (X, V ) an entire curve tangent to V . Then for every global
section P ∈ H0(X,EGG

k,mV
∗ ⊗ O(−A)) where A is an ample divisor of X, one has

P (f ; f ′, f ′′, . . . , f (k)) = 0.

It is expected that the global sections of H0(X,EGG
k,mV

∗⊗O(−A)) are precisely those
which ultimately define the algebraic locus Y ( X where the curve f should lie. The



9. On the Green-Griffiths-Lang conjecture 77

problem is then reduced to the question of showing that there are many non zero sections
of H0(X,EGG

k,mV
∗ ⊗ O(−A)), and further, understanding what is their joint base locus.

The first part of this program is the main result of the present paper.

(9.5) Theorem. Let (X, V ) be a directed projective variety such that KV is big and let
A be an ample divisor. Then for k ≫ 1 and δ ∈ Q+ small enough, δ 6 c(log k)/k, the
number of sections h0(X,EGG

k,mV
∗ ⊗ O(−mδA)) has maximal growth, i.e. is larger that

ckm
n+kr−1 for some m > mk, where c, ck > 0, n = dimX and r = rankV . In particular,

entire curves f : (C, TC) → (X, V ) satisfy (many) algebraic differential equations.

The statement is very elementary to check when r = rankV = 1, and therefore when
n = dimX = 1. In higher dimensions n > 2, only very partial results were known at
this point, concerning merely the absolute case V = TX . In dimension 2, Theorem 9.5
is a consequence of the Riemann-Roch calculation of Green-Griffiths [GG79], combined
with a vanishing theorem due to Bogomolov [Bog79] – the latter actually only applies to
the top cohomology group Hn, and things become much more delicate when extimates
of intermediate cohomology groups are needed. In higher dimensions, Diverio [Div09]
proved the existence of sections of H0(X,EGG

k,mV
∗⊗O(−1)) whenever X is a hypersurface

of Pn+1
C of high degree d > dn, assuming k > n and m > mn. More recently, Merker

[Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e. d > n+3,
assuming this time k to be very large. The latter result is obtained through explicit
algebraic calculations of the spaces of sections, and the proof is computationally very
intensive. Bérczi [Ber10] also obtained related results with a different approach based on
residue formulas, assuming d > 27n logn.

All these approaches are algebraic in nature, and while they use some form of holo-
morphic Morse inequalities [Dem85], they only require a very special elementary algebraic
case, namely the lower bound

(9.6) h0(X,L⊗m) >
mn

n!
(An − nAn−1 ·B)− o(mn)

for L = O(A−B) with A, B nef (cf. Trapani [Tra95]). Here, our techniques are based on
more elaborate curvature estimates in the spirit of Cowen-Griffiths [CG76]. They require
the stronger analytic form of holomorphic Morse inequalities (see Section 8). Notice that
holomorphic Morse inequalities are essentially insensitive to singularities, as we can pass
to non singular models and blow-upX as much as we want: if µ : X̃ → X is a modification
then µ∗OX̃ = OX and Rqµ∗OX̃ is supported on a codimension 1 analytic subset (even
codimension 2 if X is smooth). As already observed in Section 8.E, it follows from the
Leray spectral sequence that the cohomology estimates for L on X or for L̃ = µ∗L on X̃
differ by negligible terms, i.e.

(9.7) hq(X̃, L̃⊗m)− hq(X,L⊗m) = O(mn−1).

Finally, we can even work with singular hermitian metrics h which have analytic singu-
larities with positive rational coefficients, that is, one can write locally h = e−ϕ where,
possibly after blowing up,

(9.8) ϕ(z) = c log
∑

j

|gj |2 mod C∞, with c ∈ Q+ and gj holomorphic.
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Especially, ϕ is smooth on some Zariski open set X r Z where Z =
⋂
g−1
j (0), and it

has logarithmic poles along Z. Blowing-up the ideal sheaf J = (gj) leads to divisorial
singularities, and then by replacing L with L̃ = µ∗L⊗O(−E) where E ∈ DivQ(X̃) is the
singularity divisor, we see that holomorphic Morse inequalities still hold for the sequence
of groups Hq(X,E⊗L⊗m⊗I(h⊗m)) where I(h⊗m) is the multiplier ideal sheaf of h⊗m

(see Bonavero [Bon93] for more details). In the case of linear subspaces V ⊂ TX , we
introduce singular hermitian metrics as follows.

(9.9) Definition. A singular hermitian metric on a linear subspace V ⊂ TX is a metric
h on the fibers of V such that the function logh : ξ 7→ log |ξ|2h is locally integrable on the
total space of V .

Such a metric can also be viewed as a singular hermitian metric on the tautological
line bundle OP (V )(−1) on the projectivized bundle P (V ) = V r{0}/C∗, and therefore its
dual metric h∗ defines a curvature current Θ

OP (V )(1),h∗ of type (1, 1) on P (V ) ⊂ P (TX),
such that

p∗Θ
OP (V )(1),h∗ =

i

2π
∂∂ log h, where p : V r {0} → P (V ).

If logh is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a
smooth function) on V , then log h is indeed locally integrable, and we have moreover

(9.10) Θ
OP (V )(1),h∗ > −Cω

for some smooth positive (1, 1)-form on P (V ) and some constant C > 0 ; conversely, if
(9.10) holds, then logh is quasi psh.

(9.11) Definition. We will say that a singular hermitian metric h on V is admissible
if h can be written as h = eϕh0|V where h0 is a smooth positive definite hermitian on TX
and ϕ is a quasi-psh weight with analytic singularities on X, as in (9.9). Then h can
be seen as a singular hermitian metric on OP (V )(1), with the property that it induces a
smooth positive definite metric on a Zariski open set X ′ ⊂ X r Sing(V ) ; we will denote
by Sing(h) ⊃ Sing(V ) the complement of the largest such Zariski open set X ′.

If h is an admissible metric, we define Oh(V
∗) to be the sheaf of germs of holomorphic

sections sections of V ∗
|XrSing(h) which are h∗-bounded near Sing(h); by the assumption

on the analytic singularities, this is a coherent sheaf (as the direct image of some co-
herent sheaf on P (V )), and actually, since h∗ = e−ϕh∗0, it is a subsheaf of the sheaf
O(V ∗) := Oh0

(V ∗) associated with a smooth positive definite metric h0 on TX . If r is
the generic rank of V and m a positive integer, we define similarly Km

V,h to be sheaf of

germs of holomorphic sections of (detV ∗
|X′)⊗m = (ΛrV ∗

|X′)⊗m which are det h∗-bounded,
and Km

V := Km
V,h0

.

If V is defined by α : X > Gr(TX), there always exists a modification µ : X̃ → X
such that the composition α ◦ µ : X̃ → Gr(µ

∗TX) becomes holomorphic, and then
µ∗V|µ−1(XrSing(V )) extends as a locally trivial subbundle of µ∗TX which we will simply
denote by µ∗V . If h is an admissible metric on V , then µ∗V can be equipped with the
metric µ∗h = eϕ◦µµ∗h0 where µ∗h0 is smooth and positive definite. We may assume that
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ϕ◦µ has divisorial singularities (otherwise just perform further blow-ups of X̃ to achieve
this). We then see that there is an integer m0 such that for all multiples m = pm0 the
pull-back µ∗Km

V,h is an invertible sheaf on X̃ , and det h∗ induces a smooth non singular
metric on it (when h = h0, we can even take m0 = 1). By definition we always have
Km
V,h = µ∗(µ∗Km

V,h) for any m > 0. In the sequel, however, we think of KV,h not really
as a coherent sheaf, but rather as the “virtual” Q-line bundle µ∗(µ∗Km0

V,h)
1/m0 , and we

say that KV,h is big if h0(X,Km
V,h) > cmn for m > m1, with c > 0 , i.e. if the invertible

sheaf µ∗Km0

V,h is big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf KV differs from
the sheaf KV := i∗O(KV ) associated with the injection i : X r Sing(V ) →֒ X , which
is usually referred to as being the “canonical sheaf”, at least when V is the space of
tangents to a foliation. In fact, KV is always an invertible sheaf and there is an obvious
inclusion KV ⊂ KV . More precisely, the image of O(ΛrT ∗

X) → KV is equal to KV ⊗
OX
J

for a certain coherent ideal J ⊂ OX , and the condition to have h0-bounded sections on
X r Sing(V ) precisely means that our sections are bounded by Const

∑ |gj| in terms of
the generators (gj) of KV ⊗

OX
J, i.e. KV = KV ⊗

OX
J where J is the integral closure

of J. More generally,

Km
V,h = Km

V ⊗
OX
J

m/m0

h,m0

where J
m/m0

h,m0
⊂ OX is the (m/m0)-integral closure of a certain ideal sheaf Jh,m0

⊂ OX ,
which can itself be assumed to be integrally closed; in our previous discussion, µ is chosen
so that µ∗

Jh,m0
is invertible on X̃.

The discrepancy already occurs e.g. with the rank 1 linear space V ⊂ TPn
C
consisting

at each point z 6= 0 of the tangent to the line (0z) (so that necessarily V0 = TPn
C
,0). As a

sheaf (and not as a linear space), i∗O(V ) is the invertible sheaf generated by the vector
field ξ =

∑
zj∂/∂zj on the affine open set Cn ⊂ PnC, and therefore KV := i∗O(V ∗) is

generated over Cn by the unique 1-form u such that u(ξ) = 1. Since ξ vanishes at 0,
the generator u is unbounded with respect to a smooth metric h0 on TPn

C
, and it is easily

seen that KV is the non invertible sheaf KV = KV ⊗ mPn
C
,0. We can make it invertible

by considering the blow-up µ : X̃ → X of X = PnC at 0, so that µ∗KV is isomorphic to
µ∗
KV ⊗ O

X̃
(−E) where E is the exceptional divisor. The integral curves C of V are of

course lines through 0, and when a standard parametrization is used, their derivatives do
not vanish at 0, while the sections of i∗O(V ) do – another sign that i∗O(V ) and i∗O(V ∗)
are the wrong objects to consider. Another standard example is obtained by taking a
generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree 3 in P2

C, and the linear
space V consisting of the tangents to the fibers of the rational map P2

C
> P1

C defined
by z 7→ Q(z)/P (z). Then V is given by

0 −→ i∗O(V ) −→ O(TP2
C

)
PdQ−QdP→ OP2

C

(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the
corresponding ideal sheaf of S. Since detO(TP2) = O(3), we see thatKV = O(3) is ample,
which seems to contradict (9.2) since all leaves are elliptic curves. There is however no
such contradiction, because KV = KV ⊗ JS is not big in our sense (it has degree 0 on
all members of the elliptic pencil). A similar example is obtained with a generic pencil
of conics, in which case KV = O(1) and cardS = 4.

For a given admissible hermitian structure (V, h), we define similarly the sheaf
EGG
k,mV

∗
h to be the sheaf of polynomials defined over XrSing(h) which are “h-bounded”.
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This means that when they are viewed as polynomials P (z ; ξ1, . . . , ξk) in terms of
ξj = (∇1,0

h0
)jf(0) where ∇1,0

h0
is the (1, 0)-component of the induced Chern connection on

(V, h0), there is a uniform bound

(9.12)
∣∣P (z ; ξ1, . . . , ξk)

∣∣ 6 C
(∑

‖ξj‖1/jh

)m

near points of X r X ′ (see section 2 for more details on this). Again, by a direct
image argument, one sees that EGG

k,mV
∗
h is always a coherent sheaf. The sheaf EGG

k,mV
∗

is defined to be EGG
k,mV

∗
h when h = h0 (it is actually independent of the choice of h0, as

follows from arguments similar to those given in section 2). Notice that this is exactly
what is needed to extend the proof of the vanishing theorem 9.4 to the case of a singular
linear space V ; the value distribution theory argument can only work when the functions
P (f ; f ′, . . . , f (k))(t) do not exhibit poles, and this is guaranteed here by the boundedness
assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of
k-jets XGG

k = JkV r{0}/C∗, which by (9.3) consists of a fibration in weighted projective
spaces, and its associated tautological sheaf

L = OXGG
k

(1),

viewed rather as a virtualQ-line bundle OXGG
k

(m0)
1/m0 withm0 = lcm(1, 2, ... , k). Then,

if πk : XGG
k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the
isomorphism

(9.13) Hq(X,EGG
k,mV

∗ ⊗ F ) ≃ Hq(XGG
k ,OXGG

k
(m)⊗ π∗

kF ).

The latter group can be evaluated thanks to holomorphic Morse inequalities. In fact we
can associate with any admissible metric h on V a metric (or rather a natural family)
of metrics on L = OXGG

k
(1). The space XGG

k always possesses quotient singularities if
k > 2 (and even some more if V is singular), but we do not really care since Morse
inequalities still work in this setting. As we will see, it is then possible to get nice
asymptotic formulas as k → +∞. They appear to be of a probabilistic nature if we take
the components of the k-jet (i.e. the successive derivatives ξj = f (j)(0), 1 6 j 6 k)
as random variables. This probabilistic behaviour was somehow already visible in the
Riemann-Roch calculation of [GG79]. In this way, assuming KV big, we produce a lot of
sections σj = H0(XGG

k ,OXGG
k

(m) ⊗ π∗
kF ), corresponding to certain divisors Zj ⊂ XGG

k .
The hard problem which is left in order to complete a proof of the generalized Green-
Griffiths-Lang conjecture is to compute the base locus Z =

⋂
Zj and to show that

Y = πk(Z) ⊂ X must be a proper algebraic variety. Although we cannot address this
problem at present, we will indicate a few technical results and a couple of potential
strategies in this direction.

I would like to thank Simone Diverio and Mihai Păun for several stimulating discus-
sions, and Erwan Rousseau for convincing me to explain better the peculiarities of the
definition of the canonical sheaf employed here.
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§ 9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put dc = i

4π (∂ − ∂)

so that ddc = i
2π∂∂. The normalization of the dc operator is chosen such that we

have precisely (ddc log |z|2)n = δ0 for the Monge-Ampère operator in Cn; also, for every
holomorphic or meromorphic section σ of a hermitian line bundle (L, h) the Lelong-
Poincaré can be formulated

(9.14) ddc log |σ|2h = [Zσ]−ΘL,h,

where ΘL,h = i
2π
D2
L,h is the (1, 1)-curvature form of L and Zσ the zero divisor of σ.

The closed (1, 1)-form ΘL,h is a representative of the first Chern class c1(L). Given a
k-tuple of “weights” a = (a1, . . . , ak), i.e. of relatively prime integers as > 0 we intro-
duce the weighted projective space P (a1, . . . , ak) to be the quotient of Ck r {0} by the
corresponding weighted C∗ action:

(9.15) P (a1, . . . , ak) = Ck r {0}/C∗, λ · z = (λa1z1, . . . , λ
akzk).

As is well known, this defines a toric k − 1-dimensional algebraic variety with quotient
singularities. On this variety, we introduce the possibly singular (but almost everywhere
smooth and non degenerate) Kähler form ωa,p defined by

(9.16) π∗
aωa,p = ddcϕa,p, ϕa,p(z) =

1

p
log

∑

16s6k

|zs|2p/as ,

where πa : Ck r {0} → P (a1, . . . , ak) is the canonical projection and p > 0 is a positive
constant. It is clear that ϕp,a is real analytic on Ck r {0} if p is an integer and a
common multiple of all weights as. It is at least C2 is p is real and p > max(as), which
will be more than sufficient for our purposes (but everything would still work for any
p > 0). The resulting metric is in any case smooth and positive definite outside of the
coordinate hyperplanes zs = 0, and these hyperplanes will not matter here since they are
of capacity zero with respect to all currents (ddcϕa,p)

ℓ. In order to evaluate the volume∫
P (a1,...,ak)

ωk−1
a,p , one can observe that

∫

P (a1,...,ak)

ωk−1
a,p =

∫

z∈Ck, ϕa,p(z)=0

π∗
aω

k−1
a,p ∧ dcϕa,p

=

∫

z∈Ck, ϕa,p(z)=0

(ddcϕa,p)
k−1 ∧ dcϕa,p

=
1

pk

∫

z∈Ck, ϕa,p(z)<0

(ddcepϕa,p)k.(9.17)

The first equality comes from the fact that {ϕa,p(z) = 0} is a circle bundle over
P (a1, . . . , ak), together with the identities ϕa,p(λ · z) = ϕa,p(z) + log |λ|2 and∫
|λ|=1

dc log |λ|2 = 1. The third equality can be seen by Stokes formula applied to the

(2k − 1)-form

(ddcepϕa,p)k−1 ∧ dcepϕa,p = epϕa,p(ddcϕa,p)
k−1 ∧ dcϕa,p
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on the pseudoconvex open set {z ∈ Ck ; ϕa,p(z) < 0}. Now, we find

(ddcepϕa,p)k =
(
ddc

∑

16s6k

|zs|2p/as
)k

=
∏

16s6k

( p

as
|zs|

p
as

−1
)
(ddc|z|2)k,(9.18)

∫

z∈Ck, ϕa,p(z)<0

(ddcepϕa,p)k =
∏

16s6k

p

as
=

pk

a1 . . . ak
.(9.19)

In fact, (9.18) and (9.19) are clear when p = a1 = . . . = ak = 1 (this is just the standard
calculation of the volume of the unit ball in Ck); the general case follows by substituting
formally zs 7→ z

p/as
s , and using rotational invariance along with the observation that the

arguments of the complex numbers z
p/as
s now run in the interval [0, 2πp/as[ instead of

[0, 2π[ (say). As a consequence of (9.17) and (9.19), we obtain the well known value

(9.20)

∫

P (a1,...,ak)

ωk−1
a,p =

1

a1 . . . ak
,

for the volume. Notice that this is independent of p (as it is obvious by Stokes theorem,
since the cohomology class of ωa,p does not depend on p). When p tends to +∞, we
have ϕa,p(z) 7→ ϕa,∞(z) = logmax16s6k |zs|2/as and the volume form ωk−1

a,p converges to
a rotationally invariant measure supported by the image of the polycircle

∏{|zs| = 1}
in P (a1, . . . , ak). This is so because not all |zs|2/as are equal outside of the image of the
polycircle, thus ϕa,∞(z) locally depends only on k−1 complex variables, and so ωk−1

a,∞ = 0
there by log homogeneity.

Our later calculations will require a slightly more general setting. Instead of looking
at Ck, we consider the weighted C∗ action defined by

(9.21) C|r| = Cr1 × . . .× Crk , λ · z = (λa1z1, . . . , λ
akzk).

Here zs ∈ Crs for some k-tuple r = (r1, . . . , rk) and |r| = r1 + . . .+ rk. This gives rise to
a weighted projective space

P (a
[r1]
1 , . . . , a

[rk]
k ) = P (a1, . . . , a1, . . . , ak, . . . , ak),

πa,r : C
r1 × . . .× Crk r {0} −→ P (a

[r1]
1 , . . . , a

[rk]
k )(9.22)

obtained by repeating rs times each weight as. On this space, we introduce the degenerate
Kähler metric ωa,r,p such that

(9.23) π∗
a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =

1

p
log

∑

16s6k

|zs|2p/as

where |zs| stands now for the standard hermitian norm (
∑

16j6rs
|zs,j|2)1/2 on Crs . This

metric is cohomologous to the corresponding “polydisc-like” metric ωa,p already defined,
and therefore Stokes theorem implies

(9.24)

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

ω|r|−1
a,r,p =

1

ar11 . . . arkk
.
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Since (ddc log |zs|2)rs = 0 on Crs r {0} by homogeneity, we conclude as before that the

weak limit limp→+∞ ω
|r|−1
a,r,p = ω

|r|−1
a,r,∞ associated with

(9.25) ϕa,r,∞(z) = log max
16s6k

|zs|2/as

is a measure supported by the image of the product of unit spheres
∏
S2rs−1 in

P (a
[r1]
1 , . . . , a

[rk]
k ), which is invariant under the action of U(r1)× . . .× U(rk) on

Cr1 × . . .× Crk , and thus coincides with the hermitian area measure up to a constant
determined by condition (9.24). In fact, outside of the product of spheres, ϕa,r,∞ locally
depends only on at most k − 1 factors and thus, for dimension reasons, the top power
(ddcϕa,r,∞)|r|−1 must be zero there. In the next section, the following change of variable
formula will be needed. For simplicity of exposition we restrict ourselves to continu-
ous functions, but a standard density argument would easily extend the formula to all
functions that are Lebesgue integrable with respect to the volume form ω

|r|−1
a,r,p .

(9.26) Proposition. Let f(z) be a bounded function on P (a
[r1]
1 , . . . , a

[rk]
k ) which is

continuous outside of the hyperplane sections zs = 0. We also view f as a C∗-invariant
continuous function on

∏
(Crs r {0}). Then

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p

=
(|r| − 1)!∏

s a
rs
s

∫

(x,u)∈∆k−1×
∏

S2rs−1

f(x
a1/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s

(rs − 1)!
dx dµ(u)

where ∆k−1 is the (k−1)-simplex {xs > 0,
∑
xs = 1}, dx = dx1∧. . .∧dxk−1 its standard

measure, and where dµ(u) = dµ1(u1) . . . dµk(uk) is the rotation invariant probability
measure on the product

∏
s S

2rs−1 of unit spheres in Cr1 × . . .× Crk . As a consequence

lim
p→+∞

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p =

1∏
s a

rs
s

∫
∏

S2rs−1

f(u) dµ(u).

Proof. The area formula of the disc
∫
|λ|<1

ddc|λ|2 = 1 and a consideration of the unit
disc bundle over P (a

[r1]
1 , . . . , a

[rk]
k ) imply that

Ip :=

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p =

∫

z∈C|r|,ϕa,r,p(z)<0

f(z) (ddcϕa,r,p)
|r|−1 ∧ ddceϕa,r,p .

Now, a straightforward calculation on C|r| gives

(ddcepϕa,r,p)|r| =
(
ddc

∑

16s6k

|zs|2p/as
)|r|

=
∏

16s6k

( p

as

)rs+1

|zs|2rs(p/as−1)(ddc|z|2)|r|.

On the other hand, we have (ddc|z|2)|r| = |r|!
r1!...rk!

∏
16s6k(dd

c|zs|2)rs and

(ddcepϕa,r,p)|r| =
(
p epϕa,r,p(ddcϕa,r,p + p dϕa,r,p ∧ dcϕa,r,p)

)|r|

= |r|p|r|+1e|r|pϕa,r,p(ddcϕa,r,p)
|r|−1 ∧ dϕa,r,p ∧ dcϕa,r,p

= |r|p|r|+1e(|r|p−1)ϕa,r,p(ddcϕa,r,p)
|r|−1 ∧ ddceϕa,r,p ,
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thanks to the homogeneity relation (ddcϕa,r,p)
|r| = 0. Putting everything together, we

find

Ip =

∫

z∈C|r|, ϕa,r,p(z)<0

(|r| − 1)! pk−1f(z)

(
∑
s |zs|2p/as)|r|−1/p

∏

s

(ddc|zs|2)rs
rs! a

rs+1
s |zs|2rs(1−p/as)

.

A standard calculation in polar coordinates with zs = ρsus, us ∈ S2rs−1, yields

(ddc|zs|2)rs
|zs|2rs

= 2rs
dρs
ρs

dµs(us)

where µs is the U(rs)-invariant probability measure on S2rs−1. Therefore

Ip =

∫

ϕa,r,p(z)<0

(|r| − 1)! pk−1f(ρ1u1, . . . , ρkuk)

(
∑

16s6k ρ
2p/as
s )|r|−1/p

∏

s

2ρ
2prs/as
s

dρs
ρs
dµs(us)

(rs − 1)! ars+1
s

=

∫

us∈S2rs−1,
∑

ts<1

(|r| − 1)! p−1f(t
a1/2p
1 u1, . . . , t

ak/2p
k uk)

(
∑

16s6k ts)
|r|−1/p

∏

s

trs−1
s dts dµs(us)

(rs − 1)! arss

by putting ts = |zs|2p/as = ρ
2p/as
s , i.e. ρs = t

as/2p
s , ts ∈ ]0, 1]. We use still another change

of variable ts = txs with t =
∑

16s6k ts and xs ∈ ]0, 1],
∑

16s6k xs = 1. Then

dt1 ∧ . . . ∧ dtk = tk−1 dx dt where dx = dx1 ∧ . . . ∧ dxk−1.

The C∗ invariance of f shows that

Ip =

∫

us∈S2rs−1

Σxs=1, t∈]0,1]

(|r| − 1)!f(x
as/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s dµs(us)

(rs − 1)! arss

dx dt

p t1−1/p

=

∫

us∈S2rs−1

Σxs=1

(|r| − 1)!f(x
as/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s dµs(us)

(rs − 1)! arss
dx.

This is equivalent to the formula given in Proposition 9.26. We have x
2as/p
s → 1 as

p→ +∞, and by Lebesgue’s bounded convergence theorem and Fubini’s formula, we get

lim
p→+∞

Ip =
(|r| − 1)!∏

s a
rs
s

∫

(x,u)∈∆k−1×
∏

S2rs−1

f(u)
∏

16s6k

xrs−1
s

(rs − 1)!
dx dµ(u).

It can be checked by elementary integrations by parts and induction on k, r1, . . . , rk that

(9.27)

∫

x∈∆k−1

∏

16s6k

xrs−1
s dx1 . . . dxk−1 =

1

(|r| − 1)!

∏

16s6k

(rs − 1)! .

This implies that (|r| − 1)!
∏

16s6k
xrs−1
s

(rs−1)! dx is a probability measure on ∆k−1 and that

lim
p→+∞

Ip =
1∏
s a

rs
s

∫

u∈
∏

S2rs−1

f(u) dµ(u).

Even without an explicit check, the evaluation (9.27) also follows from the fact that we
must have equality for f(z) ≡ 1 in the latter equality, if we take into account the volume
formula (9.24). �
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§ 9.C. Probabilistic estimate of the curvature of k-jet bundles

Let (X, V ) be a compact complex directed non singular variety. To avoid any tech-
nical difficulty at this point, we first assume that V is a holomorphic vector subbundle
of TX , equipped with a smooth hermitian metric h.

According to the notation already specified in the introduction, we denote by JkV
the bundle of k-jets of holomorphic curves f : (C, 0) → X tangent to V at each point. Let
us set n = dimCX and r = rankC V . Then JkV → X is an algebraic fiber bundle with
typical fiber Crk (see below). It has a canonical C∗-action defined by λ · f : (C, 0) → X ,
(λ · f)(t) = f(λt). Fix a point x0 in X and a local holomorphic coordinate system
(z1, . . . , zn) centered at x0 such that Vx0

is the vector subspace 〈∂/∂z1, . . . , ∂/∂zr〉 at x0.
Then, in a neighborhood U of x0, V admits a holomorphic frame of the form

(9.28)
∂

∂zβ
+

∑

r+16α6n

aαβ(z)
∂

∂zα
, 1 6 β 6 r, aαβ(0) = 0.

Let f(t) = (f1(t), . . . , fn(t)) be a k-jet of curve tangent to V starting from a point f(0) =
x ∈ U . Such a curve is entirely determined by its initial point and by the projection
f̃(t) := (f1(t), . . . , fr(t)) to the first r-components, since the condition f ′(t) ∈ Vf(t)
implies that the other components must satisfy the ordinary differential equation

f ′
α(t) =

∑

16β6r

aαβ(f(t))f
′
β(t).

This implies that the k-jet of f is entirely determined by the initial point x and the
Taylor expansion

(9.29) f̃(t)− x̃ = ξ1t+ ξ2t
2 + . . .+ ξkt

k +O(tk+1)

where ξs = (ξsα)16α6r ∈ Cr. The C∗ action (λ, f) 7→ λ·f is then expressed in coordinates
by the weighted action

(9.30) λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk)

associated with the weight a = (1[r], 2[r], . . . , k[r]). The quotient projectived k-jet bundle

(9.31) XGG
k := (JkV r {0})/C∗

considered by Green and Griffiths [GG79] is therefore in a natural way a
P (1[r], 2[r], . . . , k[r]) weighted projective bundle over X . As such, it possesses a canonical
sheaf OXGG

k
(1) such that OXGG

k
(m) is invertible when m is a multiple of lcm(1, 2, . . . , k).

Under the natural projection πk : XGG
k → X , the direct image (πk)∗OXGG

k
(m) coincides

with the sheaf of sections of the bundle EGG
k,mV

∗ of jet differentials of order k and degree
m, namely polynomials

(9.32) P (z ; ξ1, . . . , ξk) =
∑

αℓ∈Nr , 16ℓ6k

aα1...αk
(z) ξα1

1 . . . ξαk

k

of weighted degree |α1|+ 2|α2|+ . . .+ k|αk| = m on JkV with holomorphic coefficients.
The jet differentials operate on germs of curves as differential operators

(9.33) P (f)(t) =
∑

aα1...αk
(f(t)) f ′(t)α1 . . . f (k)(t)αk
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In the sequel, we do not make any further use of coordinate frames as (9.28), because
they need not be related in any way to the hermitian metric h of V . Instead, we choose a
local holomorphic coordinate frame (eα(z))16α6r of V on a neighborhood U of x0, such
that

(9.34) 〈eα(z), eβ(z)〉 = δαβ +
∑

16i,j6n, 16α,β6r

cijαβzizj +O(|z|3)

for suitable complex coefficients (cijαβ). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor i

2πD
2
V,h of (V, h)

at x0 is then given by

(9.35) ΘV,h(x0) = − i

2π

∑

i,j,α,β

cijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ .

Also, instead of defining the vectors ξs ∈ Cr as in (9.29), we consider a local holomorphic
connection ∇ on V|U (e.g. the one which turns (eα) into a parallel frame), and take

ξk = ∇kf(0) ∈ Vx defined inductively by ∇1f = f ′ and ∇sf = ∇f ′(∇s−1f). This is just
another way of parametrizing the fibers of JkV over U by the vector bundle V k|U . Notice
that this is highly dependent on ∇ (the bundle JkV actually does not carry a vector
bundle or even affine bundle structure); however, the expression of the weighted action
(9.30) is unchanged in this new setting. Now, we fix a finite open covering (Uα)α∈I of X
by open coordinate charts such that V|Uα

is trivial, along with holomorphic connections
∇α on V|Uα

. Let θα be a partition of unity of X subordinate to the covering (Uα). Let
us fix p > 0 and small parameters 1 = ε1 ≫ ε2 ≫ . . .≫ εk > 0. Then we define a global
weighted exhaustion on JkV by putting for any k-jet f ∈ JkxV

(9.36) Ψh,p,ε(f) :=
(∑

α∈I
θα(x)

∑

16s6k

ε2ps ‖∇s
αf(0)‖2p/sh(x)

)1/p

where ‖ ‖h(x) is the hermitian metric h of V evaluated on the fiber Vx, x = f(0). The
function Ψh,p,ε satisfies the fundamental homogeneity property

(9.37) Ψh,p,ε(λ · f) = Ψh,p,ε(f) |λ|2

with respect to the C∗ action on JkV , in other words, it induces a hermitian metric on
the dual L∗ of the tautological Q-line bundle Lk = OXGG

k
(1) over XGG

k . The curvature
of Lk is given by

(9.38) π∗
kΘLk,Ψ

∗
h,p,ε

= ddc logΨh,p,ε

where πk : JkV r {0} → XGG
k is the canonical projection. Our next goal is to compute

precisely the curvature and to apply holomorphic Morse inequalities to L → XGG
k with

the above metric. It might look a priori like an untractable problem, since the definition of
Ψh,p,ε is a rather unnatural one. However, the “miracle” is that the asymptotic behavior
of Ψh,p,ε as εs/εs−1 → 0 is in some sense uniquely defined and very natural. It will lead
to a computable asymptotic formula, which is moreover simple enough to produce useful
results.
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(9.39) Lemma. On each coordinate chart U equipped with a holomorphic connection ∇
of V|U , let us define the components of a k-jet f ∈ JkV by ξs = ∇sf(0), and consider
the rescaling transformation

ρε(ξ1, ξ2, . . . , ξk) = (ε11ξ1, ε
2
2ξ2, . . . , ε

k
kξk) on JkxV , x ∈ Uα

(it commutes with the C∗-action but is otherwise unrelated and not canonically defined
over X as it depends on the choice of ∇). Then, if p is a multiple of lcm(1, 2, . . . , k) and
εs/εs−1 → 0 for all s = 2, . . . , k, the rescaled function Ψh,p,ε ◦ ρ−1

ε (ξ1, . . . , ξk) converges
towards ( ∑

16s6k

‖ξs‖2p/sh

)1/p

on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on which V|U is trivial and equipped with some

holomorphic connection ∇. Let us pick another holomorphic connection ∇̃ = ∇ + Γ
where Γ ∈ H0(U,Ω1

X ⊗Hom(V, V ). Then ∇̃2f = ∇2f +Γ(f)(f ′) · f ′, and inductively we
get

∇̃sf = ∇sf + Ps(f ; ∇1f, . . . ,∇s−1f)

where P (x ; ξ1, . . . , ξs−1) is a polynomial with holomorphic coefficients in x ∈ U which is
of weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words, the corresponding
change in the parametrization of JkV|U is given by a C∗-homogeneous transformation

ξ̃s = ξs + Ps(x ; ξ1, . . . , ξs−1).

Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) = (ε11ξ1, . . . , ε
k
kξk), (ξ̃1,ε, . . . , ξ̃k,ε) = (ε11ξ̃1, . . . , ε

k
k ξ̃k).

Then

ξ̃s,ε = ξs,ε + εss Ps(x ; ε
−1
1 ξ1,ε, . . . , ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)
sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients
as εs/εs−1 → 0. Now, the definition of Ψh,p,ε consists of glueing the sums

∑

16s6k

ε2ps ‖ξk‖2p/sh =
∑

16s6k

‖ξk,ε‖2p/sh

corresponding to ξk = ∇s
αf(0) by means of the partition of unity

∑
θα(x) = 1. We see

that by using the rescaled variables ξs,ε the changes occurring when replacing a connec-
tion ∇α by an alternative one ∇β are arbitrary small in C∞ topology, with error terms
uniformly controlled in terms of the ratios εs/εs−1 on all compact subsets of V k r {0}.
This shows that in C∞ topology, Ψh,p,ε ◦ ρ−1

ε (ξ1, . . . , ξk) converges uniformly towards
(
∑

16s6k ‖ξk‖
2p/s
h )1/p, whatever is the trivializing open set U and the holomorphic con-

nection ∇ used to evaluate the components and perform the rescaling. �
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Now, we fix a point x0 ∈ X and a local holomorphic frame (eα(z))16α6r satisfying
(9.34) on a neighborhood U of x0. We introduce the rescaled components ξs = εss∇sf(0)
on JkV|U and compute the curvature of

Ψh,p,ε ◦ ρ−1
ε (z ; ξ1, . . . , ξk) ≃

( ∑

16s6k

‖ξs‖2p/sh

)1/p

(by Lemma 9.39, the errors can be taken arbitrary small in C∞ topology). We write
ξs =

∑
16α6r ξsαeα. By (9.34) we have

‖ξs‖2h =
∑

α

|ξsα|2 +
∑

i,j,α,β

cijαβzizjξsαξsβ +O(|z|3|ξ|2).

The question is to evaluate the curvature of the weighted metric defined by

Ψ(z ; ξ1, . . . , ξk) =

( ∑

16s6k

‖ξs‖2p/sh

)1/p

=

( ∑

16s6k

(∑

α

|ξsα|2 +
∑

i,j,α,β

cijαβzizjξsαξsβ

)p/s)1/p

+O(|z|3).

We set |ξs|2 =
∑
α |ξsα|2. A straightforward calculation yields

logΨ(z ; ξ1, . . . , ξk) =

=
1

p
log

∑

16s6k

|ξs|2p/s +
∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβzizj
ξsαξsβ
|ξs|2

+O(|z|3).

By (9.38), the curvature form of Lk = OXGG
k

(1) is given at the central point x0 by the
following formula.

(9.40) Proposition. With the above choice of coordinates and with respect to the
rescaled components ξs = εss∇sf(0) at x0 ∈ X, we have the approximate expression

ΘLk,Ψ
∗
h,p,ε

(x0, [ξ]) ≃ ωa,r,p(ξ) +
i

2π

∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβ
ξsαξsβ
|ξs|2

dzi ∧ dzj

where the error terms are O(max26s6k(εs/εs−1)
s) uniformly on the compact variety

XGG
k . Here ωa,r,p is the (degenerate) Kähler metric associated with the weight a =

(1[r], 2[r], . . . , k[r]) of the canonical C∗ action on JkV .

Thanks to the uniform approximation, we can (and will) neglect the error terms in
the calculations below. Since ωa,r,p is positive definite on the fibers of XGG

k → X (at
least outside of the axes ξs = 0), the index of the (1, 1) curvature form ΘLk,Ψ

∗
h,p,ε

(z, [ξ])

is equal to the index of the (1, 1)-form

(9.41) γk(z, ξ) :=
i

2π

∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβ(z)
ξsαξsβ
|ξs|2

dzi ∧ dzj
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depending only on the differentials (dzj)16j6n on X . The q-index integral of (Lk,Ψ
∗
h,p,ε)

on XGG
k is therefore equal to

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=

=
(n+ kr − 1)!

n!(kr − 1)!

∫

z∈X

∫

ξ∈P (1[r],...,k[r])

ωkr−1
a,r,p (ξ)1lγk,q(z, ξ)γk(z, ξ)

n

where 1lγk,q(z, ξ) is the characteristic function of the open set of points where γk(z, ξ) has
signature (n−q, q) in terms of the dzj ’s. Notice that since γk(z, ξ)

n is a determinant, the
product 1lγk,q(z, ξ)γk(z, ξ)

n gives rise to a continuous function on XGG
k . Formula 9.26

with r1 = . . . = rk = r and as = s yields the slightly more explicit integral

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r
×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n (x1 . . . xk)
r−1

(r − 1)!k
dx dµ(u),

where gk(z, x, u) = γk(z, x
1/2p
1 u1, . . . , x

k/2p
k uk) is given by

(9.42) gk(z, x, u) =
i

2π

∑

16s6k

1

s
xs

∑

i,j,α,β

cijαβ(z) usαusβ dzi ∧ dzj

and 1lgk,q(z, x, u) is the characteristic function of its q-index set. Here

(9.43) dνk,r(x) = (kr − 1)!
(x1 . . . xk)

r−1

(r − 1)!k
dx

is a probability measure on ∆k−1, and we can rewrite

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!
×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n dνk,r(x) dµ(u).(9.44)

Now, formula (9.42) shows that gk(z, x, u) is a “Monte Carlo” evaluation of the curvature
tensor, obtained by averaging the curvature at random points us ∈ S2r−1 with certain
positive weights xs/s ; we should then think of the k-jet f as some sort of random
parameter such that the derivatives ∇kf(0) are uniformly distributed in all directions.
Let us compute the expected value of (x, u) 7→ gk(z, x, u) with respect to the probability
measure dνk,r(x) dµ(u). Since

∫
S2r−1 usαusβdµ(us) = 1

r δαβ and
∫
∆k−1

xs dνk,r(x) = 1
k ,

we find

E(gk(z, •, •)) =
1

kr

∑

16s6k

1

s
· i

2π

∑

i,j,α

cijαα(z) dzi ∧ dzj .

In other words, we get the normalized trace of the curvature, i.e.

(9.45) E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
Θdet(V ∗),deth∗ ,
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where Θdet(V ∗),deth∗ is the (1, 1)-curvature form of det(V ∗) with the metric induced
by h. It is natural to guess that gk(z, x, u) behaves asymptotically as its expected value
E(gk(z, •, •)) when k tends to infinity. If we replace brutally gk by its expected value in
(9.44), we get the integral

(n+ kr − 1)!

n!(k!)r(kr − 1)!

1

(kr)n

(
1 +

1

2
+ . . .+

1

k

)n ∫

X

1lη,qη
n,

where η := Θdet(V ∗),deth∗ and 1lη,q is the characteristic function of its q-index set in X .
The leading constant is equivalent to (log k)n/n!(k!)r modulo a multiplicative factor
1 + O(1/ log k). By working out a more precise analysis of the deviation, we will prove
the following result.

(9.46) Probabilistic estimate. Fix smooth hermitian metrics h on V and ω =
i
2π

∑
ωijdzi ∧ dzj on X. Denote by ΘV,h = − i

2π

∑
cijαβdzi ∧ dzj ⊗ e∗α ⊗ eβ the cur-

vature tensor of V with respect to an h-orthonormal frame (eα), and put

η(z) = Θdet(V ∗),deth∗ =
i

2π

∑

16i,j6n

ηijdzi ∧ dzj , ηij =
∑

16α6r

cijαα.

Finally consider the k-jet line bundle Lk = OXGG
k

(1) → XGG
k equipped with the induced

metric Ψ∗
h,p,ε (as defined above, with 1 = ε1 ≫ ε2 ≫ . . . ≫ εk > 0). When k tends to

infinity, the integral of the top power of the curvature of Lk on its q-index set XGG
k (Lk, q)

is given by

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(log k)n

n! (k!)r

(∫

X

1lη,qη
n +O((log k)−1)

)

for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in terms
of ΘV , η and ω. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is positive
along the fibers of XGG

k → X , by the plurisubharmonicity of the weight (this is true even
when the partition of unity terms are taken into account, since they depend only on the
base); therefore the q-index sets are empty for q > n. We start with three elementary
lemmas.

(9.47) Lemma. The integral

Ik,r,n =

∫

∆k−1

( ∑

16s6k

xs
s

)n
dνk,r(x)

is given by the expansion

(a) Ik,r,n =
∑

16s1,s2,...,sn6k

1

s1s2 . . . sn

(kr − 1)!

(r − 1)!k

∏
16i6k(r − 1 + βi)!

(kr + n− 1)!
.
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where βi = βi(s) = card{j ; sj = i}, ∑βi = n, 1 6 i 6 k. The quotient

Ik,r,n

/
rn

kr(kr + 1) . . . (kr + n− 1)

(
1 +

1

2
+ . . .+

1

k

)n

is bounded below by 1 and bounded above by

(b) 1 +
1

3

n∑

m=2

2mn!

(n−m)!

(
1 +

1

2
+ . . .+

1

k

)−m
= 1 +O((log k)−2)

As a consequence

Ik,r,n =
1

kn

((
1 +

1

2
+ . . .+

1

k

)n
+O((log k)n−2)

)
(c)

=
(log k + γ)n +O((log k)n−2)

kn

where γ is the Euler-Mascheroni constant.

.. Let us expand the n-th power
(∑

16s6k
xs

s

)n
. This gives

Ik,r,n =
∑

16s1,s2,...,sn6k

1

s1s2 . . . sn

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x)

and by definition of the measure νk,r we have

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x) =
(kr − 1)!

(r − 1)!k

∫

∆k−1

xr+β1−1
1 . . . xr+βk−1

k dx1 . . . dxk.

By Formula (9.27), we find

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x) =
(kr − 1)!

(r − 1)!k

∏
16i6k(r + βi − 1)!

(kr + n− 1)!

=
rn

∏
i, βi>1(1 +

1
r
)(1 + 2

r
) . . . (1 + βi−1

r
)

kr(kr + 1) . . . (kr + n− 1)
,

and (9.47 a) follows from the first equality. The final product is minimal when r = 1,
thus

rn

kr(kr + 1) . . . (kr + n− 1)
6

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x)

6
rn

∏
16i6k βi!

kr(kr + 1) . . . (kr + n− 1)
.(9.48)

Also, the integral is maximal when all βi vanish except one, in which case one gets

(9.49)

∫

∆k−1

xnj dνk,r(x) =
r(r + 1) . . . (r + n− 1)

kr(kr + 1) . . . (kr + n− 1)
.
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By (9.48), we find the lower and upper bounds

Ik,r,n >
rn

kr(kr + 1) . . . (kr + n− 1)

(
1 +

1

2
+ . . .+

1

k

)n
,(9.50)

Ik,r,n 6
rn

kr(kr + 1) . . . (kr + n− 1)

∑

16s1,...,sn6k

β1! . . . βk!

s1 . . . sn
.(9.51)

In order to make the upper bound more explicit, we reorganize the n-tuple (s1, . . . , sn)
into those indices t1 < . . . < tℓ which appear a certain number of times αi = βti > 2,
and those, say tℓ+1 < . . . < tℓ+m, which appear only once. We have of course

∑
βi =

n−m, and each choice of the ti’s corresponds to n!/α1! . . . αℓ! possibilities for the n-tuple
(s1, . . . , sn). Therefore we get

∑

16s1,...,sn6k

β1! . . . βk!

s1 . . . sn
6 n!

n∑

m=0

∑

ℓ,Σαi=n−m

∑

(ti)

1

tα1
1 . . . tαℓ

ℓ

1

tℓ+1 . . . tℓ+m
.

A trivial comparison series vs. integral yields

∑

s<t<+∞

1

tα
6

1

α − 1

1

sα−1

and in this way, using successive integrations in tℓ, tℓ−1, . . . , we get inductively

∑

16t1<...<tℓ<+∞

1

tα1
1 . . . tαℓ

ℓ

6
1∏

16i6ℓ(αℓ−i+1 + . . .+ αℓ − i)
6

1

ℓ!
,

since αi > 2 implies αℓ−i+1 + . . .+ αℓ − i > i. On the other hand

∑

16tℓ+1<...<tℓ+m6k

1

tℓ+1 . . . tℓ+m
6

1

m!

∑

16s1,...,sm6k

1

s1 . . . sm
=

1

m!

(
1 +

1

2
+ . . .+

1

k

)m
.

Since partitions α1 + . . . + αℓ = n − m satisfying the additional restriction αi > 2
correspond to α′

i = αi − 2 satisfying
∑
α′
i = n−m− 2ℓ, their number is equal to

(
n−m− 2ℓ+ ℓ− 1

ℓ− 1

)
=

(
n−m− ℓ− 1

ℓ− 1

)
6 2n−m−ℓ−1

and we infer from this

∑

16s1,...,sn6k

β1! . . . βk!

s1 . . . sn
6

∑

ℓ>1
2ℓ+m6n

2n−m−ℓ−1n!

ℓ!m!

(
1 +

1

2
+ . . .+

1

k

)m
+

(
1 +

1

2
+ . . .+

1

k

)n

where the last term corresponds to the special case ℓ = 0, m = n. Therefore

∑

16si6k

β1! . . . βk!

s1 . . . sn
6
e1/2 − 1

2

n−2∑

m=0

2n−mn!

m!

(
1+

1

2
+ . . .+

1

k

)m
+

(
1+

1

2
+ . . .+

1

k

)n

6
1

3

n∑

m=2

2mn!

(n−m)!

(
1+

1

2
+ . . .+

1

k

)n−m
+

(
1+

1

2
+ . . .+

1

k

)n
.
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This estimate combined with (9.50, 9.51) implies the upper bound (9.47 b) (the lower
bound 1 being now obvious). The asymptotic estimate (9.47 c) follows immediately. �

(9.52) Lemma. If A is a hermitian n × n matrix, set 1lA,q to be equal to 1 if A has
signature (n−q, q) and 0 otherwise. Then for all n×n hermitian matrices A, B we have
the estimate

∣∣1lA,q detA− 1lB,q detB
∣∣ 6 ‖A−B‖

∑

06i6n−1

‖A‖i‖B‖n−1−i,

where ‖A‖, ‖B‖ are the hermitian operator norms of the matrices.

Proof. We first check that the estimate holds true for | detA−detB|. Let λ1 6 . . . 6 λn
be the eigenvalues of A and λ′1 6 . . . 6 λ′n be the eigenvalues of B. We have |λi| 6 ‖A‖,
|λ′i| 6 ‖B‖ and the minimax principle implies that |λi−λ′i| 6 ‖A−B‖. We then get the
desired estimate by writing

detA− detB = λ1 . . . λn − λ′1 . . . λ
′
n =

∑

16i6n

λ1 . . . λi−1(λi − λ′i)λ
′
i+1 . . . λ

′
n.

This already implies (9.52) if A or B is degenerate. If A and B are non degenerate we
only have to prove the result when one of them (say A) has signature (n− q, q) and the
other one (say B) has a different signature. If we put M(t) = (1− t)A+ tB, the already
established estimate for the determinant yields

∣∣∣ d
dt

detM(t)
∣∣∣ 6 n‖A−B‖ ‖M(t)‖ 6 n‖A−B‖

(
(1− t)‖A‖+ t‖B‖

)n−1
.

However, since the signature ofM(t) is not the same for t = 0 and t = 1, there must exist
t0 ∈ ]0, 1[ such that (1− t0)A+ t0B is degenerate. Our claim follows by integrating the
differential estimate on the smallest such interval [0, t0], after observing that M(0) = A,
detM(t0) = 0, and that the integral of the right hand side on [0, 1] is the announced
bound. �

(9.53) Lemma. Let QA be the hermitian quadratic form associated with the hermitian
operator A on Cn. If µ is the rotation invariant probability measure on the unit sphere
S2n−1 of Cn and λi are the eigenvalues of A, we have

∫

|ζ|=1

|QA(ζ)|2dµ(ζ) =
1

n(n+ 1)

(∑
λ2i +

(∑
λi

)2)
.

The norm ‖A‖ = max |λi| satisfies the estimate

1

n2
‖A‖2 6

∫

|ζ|=1

|QA(ζ)|2dµ(ζ) 6 ‖A‖2.

Proof. The first identity as an easy calculation, and the inequalities follow by computing

the eigenvalues of the quadratic form
∑
λ2i +

(∑
λi
)2 − cλ2i0 , c > 0. The lower bound is

attained e.g. for QA(ζ) = |ζ1|2− 1
n (|ζ2|2+ . . .+ |ζn|2) when we take i0 = 1 and c = 1+ 1

n .
�
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.of Proposition 9.46. Take a vector ζ ∈ TX,z , ζ =
∑
ζi

∂
∂zi

, with ‖ζ‖ω = 1, and introduce
the trace free sesquilinear quadratic form

Qz,ζ(u) =
∑

i,j,α,β

c̃ijαβ(z) ζiζj uαuβ , c̃ijαβ = cijαβ − 1

r
ηijδαβ , u ∈ Cr

where ηij =
∑

16α6r cijαα. We consider the corresponding trace free curvature tensor

(9.54) Θ̃V =
i

2π

∑

i,j,α,β

c̃ijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ .

As a general matter of notation, we adopt here the convention that the canonical corre-
spondence between hermitian forms and (1, 1)-forms is normalized as

∑
aijdzi ⊗ dzj ↔

i
2π

∑
aijdzi∧dzj , and we take the liberty of using the same symbols for both types of ob-

jects; we do so especially for gk(z, x, u) and η(z) =
i
2π

∑
ηij(z)dzi∧dzj = TrΘV (z). First

observe that for all k-tuples of unit vectors u = (u1, . . . , uk) ∈ (S2r−1)k, us = (usα)16α6r,
we have

∫

(S2r−1)k

∣∣∣∣
∑

16s6k

1

s
xs

∑

i,j,α,β

c̃ijαβ(z) ζiζjusαusβ

∣∣∣∣
2

dµ(u) =
∑

16s6k

x2s
s2

V(Qz,ζ)

where V(Qz,ζ) is the variance of Qz,ζ on S2r−1. This is so because we have a sum
over s of independent random variables on (S2r−1)k, all of which have zero mean value.
(Lemma 9.53 shows that the variance V(Q) of a trace free hermitian quadratic form
Q(u) =

∑
16α6r λα|uα|2 on the unit sphere S2r−1 is equal to 1

r(r+1)

∑
λ2α , but we only

give the formula to fix the ideas). Formula (9.49) yields
∫

∆k−1

x2sdνk,r(x) =
r + 1

k(kr + 1)
.

Therefore, according to notation (9.42), we obtain the partial variance formula
∫

∆k−1×(S2r−1)k

∣∣gk(z, x, u)(ζ)− gk(z, x)(ζ)|2dνk,r(x)dµ(u)

=
(r + 1)

k(kr + 1)

( ∑

16s6k

1

s2

)
σh(Θ̃V (ζ, ζ))

2

in which

gk(z, x)(ζ) =
∑

16s6k

1

s
xs

1

r

∑

ijα

cijααζiζj =

( ∑

16s6k

1

s
xs

)
1

r
η(z)(ζ),

σh(Θ̃V (ζ, ζ))
2 = V

(
u 7→ 〈Θ̃V (ζ, ζ)u, u〉h

)
=

∫

u∈S2r−1

∣∣〈Θ̃V (ζ, ζ)u, u〉h
∣∣2dµ(u).

By integrating over ζ ∈ S2n−1 ⊂ Cn and applying the left hand inequality in Lemma
9.53 we infer

∫

∆k−1×(S2r−1)k

∥∥gk(z, x, u)− gk(z, x)‖2ωdνk,r(x)dµ(u)

6
n2(r + 1)

k(kr + 1)

( ∑

16s6k

1

s2

)
σω,h(Θ̃V )

2(9.55)
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where σω,h(Θ̃V ) is the standard deviation of Θ̃V on S2n−1 × S2r−1 :

σω,h(Θ̃V )
2 =

∫

|ζ|ω=1, |u|h=1

∣∣〈Θ̃V (ζ, ζ)u, u〉h
∣∣2dµ(ζ) dµ(u).

On the other hand, brutal estimates give the hermitian operator norm estimates

‖gk(z, x)‖ω 6

( ∑

16s6k

1

s
xs

)
1

r
‖η(z)‖ω,(9.56)

‖gk(z, x, u)‖ω 6

( ∑

16s6k

1

s
xs

)
‖ΘV ‖ω,h(9.57)

where
‖ΘV ‖ω,h = sup

|ζ|ω=1, |u|h=1

∣∣〈ΘV (ζ, ζ)u, u〉h
∣∣.

We use these estimates to evaluate the q-index integrals. The integral associated with
gk(z, x) is much easier to deal with than gk(z, x, u) since the characteristic function of
the q-index set depends only on z. By Lemma 9.52 we find

∣∣1lgk,q(z, x, u) det gk(z, x, u)− 1lη,q(z) det gk(z, x)
∣∣

6
∥∥gk(z, x, u)− gk(z, x)

∥∥
ω

∑

06i6n−1

‖gk(z, x, u)‖iω‖gk(z, x)‖n−1−i
ω .

The Cauchy-Schwarz inequality combined with (9.55 – 9.57) implies

∫

∆k−1×(S2r−1)k

∣∣1lgk,q(z, x, u) det gk(z, x, u)− 1lη,q(z) det gk(z, x)
∣∣ dνk,r(x)dµ(u)

6

(∫

∆k−1×(S2r−1)k

∥∥gk(z, x, u)− gk(z, x)
∥∥2
ω
dνk,r(x)dµ(u)

)1/2

×
(∫

∆k−1×(S2r−1)k

( ∑

06i6n−1

‖gk(z, x, u)‖iω‖gk(z, x)‖n−1−i
ω

)2

dνk,r(x)dµ(u)

)1/2

6
n(1 + 1/r)1/2

(k(k + 1/r))1/2

( ∑

16s6k

1

s2

)1/2

σω,h(Θ̃V )
∑

16i6n−1

‖ΘV ‖iω,h
(1
r
‖η(z)‖ω

)n−1−i

×
(∫

∆k−1

( ∑

16s6k

xs
s

)2n−2

dνk,r(x)

)1/2

= O
((log k)n−1

kn

)

by Lemma 9.47 with n replaced by 2n − 2. This is the essential error estimate. As one
can see, the growth of the error mainly depends on the final integral factor, since the
initial multiplicative factor is uniformly bounded over X . In order to get the principal
term, we compute

∫

∆k−1

det gk(z, x) dνk,r(x) =
1

rn
det η(z)

∫

∆k−1

( ∑

16s6k

xs
s

)n
dνk,r(x)

∼ (log k)n

rnkn
det η(z).
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From there we conclude that
∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n dνk,r(x)dµ(u)

=
(log k)n

rnkn

∫

X

1lη,qη
n +O

( (log k)n−1

kn

)

The probabilistic estimate 9.46 follows by (9.44). �

(9.58) Remark. If we take care of the precise bounds obtained above, the proof gives
in fact the explicit estimate

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)! Ik,r,n
n!(k!)r(kr − 1)!

(∫

X

1lη,qη
n + εk,r,nJ

)

where

J = n (1 + 1/r)1/2
( k∑

s=1

1

s2

)1/2 ∫

X

σω,h(Θ̃V )
n−1∑

i=1

ri+1‖ΘV ‖iω,h‖η(z)‖n−1−i
ω ωn

and

|εk,r,n| 6

(∫

∆k−1

( k∑

s=1

xs
s

)2n−2

dνk,r(x)

)1/2

(k(k + 1/r))1/2
∫

∆k−1

( k∑

s=1

xs
s

)n
dνk,r(x)

6

(
1 + 1

3

∑2n−2
m=2

2m(2n−2)!
(2n−2−m)!

(
1 + 1

2 + . . .+ 1
k

)−m)1/2

1 + 1
2
+ . . .+ 1

k

∼ 1

log k

by the lower and upper bounds of Ik,r,n, Ik,r,2n−2 obtained in Lemma 9.47. As
(2n− 2)!/(2n− 2−m)! 6 (2n− 2)m, one easily shows that

(9.59) |εk,r,n| 6
(31/15)1/2

log k
for k > e5n−5.

Also, we see that the error terms vanish if Θ̃V is identically zero, but this is of course a
rather unexpected circumstance. In general, since the form Θ̃V is trace free, Lemma 9.50
applied to the quadratic form u 7→ 〈Θ̃V (ζ, ζ)u, u〉 on Cr implies σω,h(Θ̃V ) 6 (r +

1)−1/2‖Θ̃V ‖ω,h. This yields the simpler bound

(9.60) �J 6 n r1/2
( k∑

s=1

1

s2

)1/2 ∫

X

‖Θ̃V ‖ω,h
n−1∑

i=1

ri‖ΘV ‖iω,h‖η(z)‖n−1−i
ω ωn.

It will be useful to extend the above estimates to the case of sections of

(9.61) Lk = OXGG
k

(1)⊗ π∗
kO

( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
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where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : XGG
k → X is the natural

projection. We assume here that F is also equipped with a smooth hermitian metric hF .
In formula (9.47), the renormalized metric ηk(z, x, u) of Lk takes the form

(9.62) ηk(z, x, u) =
1

1
kr (1 +

1
2 + . . .+ 1

k )
gk(z, x, u) + ΘF,hF

(z),

and by the same calculations its expected value is

(9.63) η(z) := E(ηk(z, •, •)) = Θdet V ∗,deth∗(z) + ΘF,hF
(z).

Then the variance estimate for ηk − η is unchanged, and the Lp bounds for ηk are still
valid, since our forms are just shifted by adding the constant smooth term ΘF,hF

(z).
The probabilistic estimate 9.45 is therefore still true in exactly the same form, provided
we use (9.61 – 9.63) instead of the previously defined Lk, ηk and η. An application of
holomorphic Morse inequalities gives the desired cohomology estimates for

hq
(
X,EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗ π∗

kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

(9.64) Theorem. Let (X, V ) be a directed manifold, F → X a Q-line bundle, (V, h)
and (F, hF ) smooth hermitian structure on V and F respectively. We define

Lk = OXGG
k

(1)⊗ π∗
kO

( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = Θdet V ∗,deth∗ +ΘF,hF
.

Then for all q > 0 and all m≫ k ≫ 1 such that m is sufficiently divisible, we have

hq(XGG
k ,O(L⊗m

k )) 6
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,q)

(−1)qηn +O((log k)−1)

)
,(a)

h0(XGG
k ,O(L⊗m

k )) >
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,61)

ηn −O((log k)−1)

)
,(b)

χ(XGG
k ,O(L⊗m

k )) =
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
(
c1(V

∗ ⊗ F )n +O((log k)−1)
)
.(c)

Green and Griffiths [GG79] already checked the Riemann-Roch calculation (9.64 c)
in the special case V = T ∗

X and F = OX . Their proof is much simpler since it relies
only on Chern class calculations, but it cannot provide any information on the individual
cohomology groups, except in very special cases where vanishing theorems can be applied;
in fact in dimension 2, the Euler characteristic satisfies χ = h0−h1+h2 6 h0+h2, hence
it is enough to get the vanishing of the top cohomology group H2 to infer h0 > χ ; this
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works for surfaces by means of a well-known vanishing theorem of Bogomolov which
implies in general

Hn

(
X,EGG

k,mT
∗
X ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)))

= 0

as soon as KX ⊗ F is big and m≫ 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], ev-
erything works almost unchanged in the case where V ⊂ TX has singularities and h is an
admissible metric on V (see (0.11)). We only have to find a blow-up µ : X̃k → Xk so that
the resulting pull-backs µ∗Lk and µ∗V are locally free, and µ∗ det h∗, µ∗Ψh,p,ε only have
divisorial singularities. Then η is a (1, 1)-current with logarithmic poles, and we have to
deal with smooth metrics on µ∗L⊗m

k ⊗ O(−mEk) where Ek is a certain effective divisor
on Xk (which, by our assumption (0.11), does not project onto X). The cohomology
groups involved are then the twisted cohomology groups

Hq(XGG
k ,O(L⊗m

k )⊗ Jk,m)

where Jk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the Morse
integrals need only be evaluated in the complement of the poles, that is on X(η, q)r S
where S = Sing(V ) ∪ Sing(h). Since

(πk)∗
(
O(L⊗m

k )⊗ Jk,m
)
⊂ EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the un-twisted
line bundle O(L⊗m

k ) on XGG
k ). If we assume that KV ⊗F is big, these considerations also

allow us to obtain a strong estimate in terms of the volume, by using an approximate
Zariski decomposition on a suitable blow-up of (X, V ). The following corollary implies
in particular Theorem 0.5.

(9.65) Corollary. If F is an arbitrary Q-line bundle over X, one has

h0
(
XGG
k ,OXGG

k
(m) ⊗ π∗

kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

>
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(
Vol(KV ⊗ F )−O((log k)−1)

)
− o(mn+kr−1),

when m≫ k ≫ 1, in particular there are many sections of the k-jet differentials of degree
m twisted by the appropriate power of F if KV ⊗ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable modifi-
cation µ : X̃ → X which converts KV into an invertible sheaf. There is of course nothing
to prove if KV ⊗ F is not big, so we can assume Vol(KV ⊗ F ) > 0. Let us fix smooth
hermitian metrics h0 on TX and hF on F . They induce a metric µ∗(det h−1

0 ⊗ hF )
on µ∗(KV ⊗ F ) which, by our definition of KV , is a smooth metric. By the result of
Fujita [Fuj94] on approximate Zariski decomposition, for every δ > 0, one can find a
modification µδ : X̃δ → X dominating µ such that

µ∗
δ(KV ⊗ F ) = O

X̃δ
(A+E)
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where A and E are Q-divisors, A ample and E effective, with

Vol(A) = An > Vol(KV ⊗ F )− δ.

If we take a smooth metric hA with positive definite curvature form ΘA,hA
, then we get

a singular hermitian metric hAhE on µ∗
δ(KV ⊗ F ) with poles along E, i.e. the quotient

hAhE/µ
∗(deth−1

0 ⊗ hF ) is of the form e−ϕ where ϕ is quasi-psh with log poles log |σE |2
(mod C∞(X̃δ)) precisely given by the divisor E. We then only need to take the singular
metric h on TX defined by

h = h0e
1
r
(µδ)∗ϕ

(the choice of the factor 1
r is there to correct adequately the metric on detV ). By

construction h induces an admissible metric on V and the resulting curvature current
η = ΘKV ,deth∗ +ΘF,hF

is such that

µ∗
δη = ΘA,hA

+ [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by

∫

X(η,0)rS

ηn =

∫

X̃δ

ΘnA,hA
= An > Vol(KV ⊗ F )− δ

and (9.65) follows from the fact that δ can be taken arbitrary small. �

(9.66) Example. In some simple cases, the above estimates can lead to very ex-
plicit results. Take for instance X to be a smooth complete intersection of multidegree
(d1, d2, . . . , ds) in Pn+sC and consider the absolute case V = TX . Then

KX = OX(d1 + . . .+ ds − n− s− 1).

Assume that X is of general type, i.e.
∑
dj > n+ s+ 1. Let us equip V = TX with the

restriction of the Fubini-Study metric h = Θ
O(1) ; a better choice might be the Kähler-

Einstein metric but we want to keep the calculations as elementary as possible. The
standard formula for the curvature tensor of a submanifold gives

ΘTX ,h = (ΘT
Pn+s ,h)|X + β∗ ∧ β

where β ∈ C∞(
Λ1,0T ∗

X ⊗ Hom(TX ,
⊕
O(dj))

)
is the second fundamental form. In other

words, by the well known formula for the curvature of projective space, we have

〈ΘTX ,h(ζ, ζ)u, u〉 = |ζ|2|u|2 + |〈ζ, u〉|2 − |β(ζ) · u|2.

The curvature ρ of (KX , deth
∗) (i.e. the opposite of the Ricci form TrΘTX ,h) is given by

(9.67) ρ = −TrΘTX,h = Tr(β ∧ β∗)− (n+ 1)h > −(n+ 1)h.

We take here F = OX(−a), a ∈ Q+, and we want to determine conditions for the
existence of sections

(9.68) H0

(
X,EGG

k,mT
∗
X ⊗ O

(
− a

m

kr

(
1 +

1

2
+ . . .+

1

k

)))
, m≫ 1.
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We have to choose KX ⊗ OX(−a) ample, i.e.
∑
dj > n + s + a + 1, and then (by an

appropriate choice of the metric of F = OX(−a)), the form η = ΘKX⊗OX (−a) can be
taken to be any positive form cohomologous to (

∑
dj− (n+ s+a+1))h. We use remark

9.58 and estimate the error terms by considering the Kähler metric

ω = ρ+ (n+ s+ 2)h ≡
(∑

dj + 1
)
h.

Inequality (9.67) shows that ω > 2h and also that ω > Tr(β ∧ β∗). From this, one easily
concludes that ‖η‖ω 6 1 by an appropriate choice of η, as well as ‖ΘTX ,h‖ω,h 6 1 and

‖Θ̃TX ,h‖ω,h 6 2. By (9.60), we obtain for n > 2

J 6 n3/2 π√
6
× 2

nn − 1

n− 1

∫

X

ωn <
4π√
6
nn+1/2

∫

X

ωn

where
∫
X
ωn =

(∑
dj + 1

)n
deg(X). On the other hand, the leading term

∫
X
ηn equals(∑

dj−n−s−a−1
)n

deg(X) with deg(X) = d1 . . . ds. By the bound (9.59) on the error
term εk,r,n, we find that the leading coefficient of the growth of our spaces of sections is
strictly controlled below by a multiple of

(∑
dj − n− s− a− 1

)n
− 4π

(31
90

)1/2 nn+1/2

log k

(∑
dj + 1

)n

if k > e5n−5. A sufficient condition for the existence of sections in (9.68) is thus

(9.69) k > exp
(
7.38nn+1/2

( ∑
dj + 1∑

dj − n− s− a− 1

)n)
.

This is good in view of the fact that we can cover arbitrary smooth complete intersections
of general type. On the other hand, even when the degrees dj tend to +∞, we still get
a large lower bound k ∼ exp(7.38nn+1/2) on the order of jets, and this is far from being
optimal : Diverio [Div09] has shown e.g. that one can take k = n for smooth hypersurfaces
of high degree. It is however not unlikely that one could improve estimate (9.69) with
more careful choices of ω, h. �

10. Effective Version of Matsusaka’s Big Theorem

An important problem of algebraic geometry is to find effective bounds m0 such that
multiplesmL of an ample line bundle become very ample form > m0. From a theoretical
point of view, this problem has been solved by Matsusaka [Mat72] and Kollár-Matsusaka
[KoM83]. Their result is that there is a bound m0 = m0(n, L

n, Ln−1 · KX) depending
only on the dimension and on the first two coefficients Ln and Ln−1 ·KX in the Hilbert
polynomial of L. Unfortunately, the original proof does not tell much on the actual
dependence of m0 in terms of these coefficients. The goal of this section is to find
effective bounds for such an integer m0, along the lines of [Siu93]. However, one of the
technical lemmas used in [Siu93] to deal with dualizing sheaves can be sharpened. Using
this sharpening of the lemma, Siu’s bound will be here substantially improved. We first
start with the simpler problem of obtaining merely a nontrivial section in mL. The idea,
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more generally, is to obtain a criterion for the ampleness of mL − B when B is nef. In
this way, one is able to subtract from mL any multiple of KX which happens to get
added by the application of Nadel’s vanishing theorem (for this, replace B by B plus a
multiple of KX + (n+ 1)L).

(10.1) Proposition. Let L be an ample line bundle over a projective n-fold X and let
B be a nef line bundle over X. Then KX + mL − B has a nonzero section for some
integer m such that

m 6 n
Ln−1 ·B
Ln

+ n+ 1.

Proof. Let m0 be the smallest integer > n Ln−1·B
Ln . Then m0L−B can be equipped with

a singular Hermitian metric of positive definite curvature. Let ϕ be the weight of this
metric. By Nadel’s vanishing theorem, we have

Hq(X,O(KX +mL−B)⊗ I(ϕ)) = 0 for q > 1,

thus P (m) = h0(X,O(KX + mL − B) ⊗ I(ϕ)) is a polynomial for m > m0. Since
P is a polynomial of degree n and is not identically zero, there must be an integer
m ∈ [m0, m0 + n] which is not a root. Hence there is a nontrivial section in

H0(X,O(KX +mL−B)) ⊃ H0(X,O(KX +mL−B)⊗ I(ϕ))

for some m ∈ [m0, m0 + n], as desired. �

(10.2) Corollary. If L is ample and B is nef, then mL − B has a nonzero section for
some integer

m 6 n
(Ln−1 ·B + Ln−1 ·KX

Ln
+ n+ 1

)
.

Proof. By Fujita’s result 10.3 (a), KX + (n + 1)L is nef. We can thus replace B by
B +KX + (n+ 1)L in the result of Proposition 10.1. Corollary 10.2 holds. �

(10.3) Remark. We do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, for B = 0, the initial constant n cannot be replaced
by anything smaller than n/2 : take X to be a product of curves Cj of large genus gj
and B = 0; our bound for L = O(a1[p1]) ⊗ · · · ⊗ O(an[pn]) to have |mL| 6= ∅ becomes
m 6

∑
(2gj − 2)/aj + n(n + 1), which fails to be sharp only by a factor 2 when a1 =

· · · = an = 1 and g1 ≫ g2 ≫ · · · ≫ gn → +∞. On the other hand, the additive constant
n+ 1 is already best possible when B = 0 and X = Pn. �

So far, the method is not really sensitive to singularities (the Morse inequalities
are indeed still true in the singular case as is easily seen by using desingularizations of
the ambient variety). The same is true with Nadel’s vanishing theorem, provided that
KX is replaced by the L2 dualizing sheaf ωX (according to the notation introduced in
Remark 6.22, ωX = KX(0) is the sheaf of holomorphic n-forms u on Xreg such that
in

2

u ∧ u is integrable in a neighborhood of the singular set). Then Proposition 10.1 can
be generalized as
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(10.4) Proposition. Let L be an ample line bundle over a projective n-fold X and let
B be a nef line bundle over X. For every p-dimensional (reduced) algebraic subvariety
Y of X, there is an integer

m 6 p
Lp−1 ·B · Y
Lp · Y + p+ 1

such that the sheaf ωY ⊗ OY (mL−B) has a nonzero section.

To proceed further, we need the following useful “upper estimate” about L2 dualizing
sheaves (this is one of the crucial steps in Siu’s approach; unfortunately, it has the effect
of producing rather large final bounds when the dimension increases).

(10.5) Proposition. Let H be a very ample line bundle on a projective algebraic mani-
fold X, and let Y ⊂ X be a p-dimensional irreducible algebraic subvariety. If δ = Hp · Y
is the degree of Y with respect to H, the sheaf

Hom
(
ωY ,OY ((δ − p− 2)H)

)

has a nontrivial section.

Observe that if Y is a smooth hypersurface of degree δ in (X,H) = (Pp+1,O(1)),
then ωY = OY (δ − p − 2) and the estimate is optimal. On the other hand, if Y is
a smooth complete intersection of multidegree (δ1, · · · , δr) in Pp+r, then δ = δ1 · · · δr
whilst ωY = OY (δ1 + · · ·+ δr − p− r− 1) ; in this case, Proposition 10.5 is thus very far
from being sharp.

Proof. Let X ⊂ PN be the embedding given by H, so that H = OX(1). There is a
linear projection Pn ≻ Pp+1 whose restriction π : Y → Pp+1 to Y is a finite and
regular birational map of Y onto an algebraic hypersurface Y ′ of degree δ in Pp+1. Let
s ∈ H0(Pp+1,O(δ)) be the polynomial of degree δ defining Y ′. We claim that for any
small Stein open setW ⊂ Pp+1 and any L2 holomorphic p-form u on Y ′∩W , there is a L2

holomorphic (p+1)-form ũ on W with values in O(δ) such that ũ↾Y ′∩W = u∧ds. In fact,
this is precisely the conclusion of the Ohsawa-Takegoshi extension theorem [OT87; Ohs88]
(see also [Man93] for a more general version); one can also invoke more standard local
algebra arguments (see Hartshorne [Har77], Theorem III-7.11). As KPp+1 = O(−p− 2),
the form ũ can be seen as a section of O(δ − p − 2) on W , thus the sheaf morphism
u 7→ u ∧ ds extends into a global section of Hom

(
ωY ′ ,OY ′(δ − p− 2)

)
. The pull-back by

π∗ yields a section of Hom
(
π∗ωY ′ ,OY ((δ − p − 2)H)

)
. Since π is finite and generically

1 : 1, it is easy to see that π∗ωY ′ = ωY . The proposition follows. �

By an appropriate induction process based on the above results, we can now improve
Siu’s effective version of the Big Matsusaka Theorem [Siu93]. Our version depends on a
constant λn such that m(KX+(n+2)L)+G is very ample for m > λn and every nef line
bundle G. Corollary 8.6 shows that λn 6

(
3n+1
n

)
− 2n, and a similar argument involving

the recent results of Angehrn-Siu [AS95] implies λn 6 n3 − n2 − n − 1 for n > 2. Of
course, it is expected that λn = 1 in view of the Fujita conjecture.

(10.6) Effective Version of the Big Matsusaka Theorem. Let L and B be nef line
bundles on a projective n-fold X. Assume that L is ample and let H be the very ample
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line bundle H = λn(KX + (n+ 2)L). Then mL −B is very ample for

m > (2n)(3
n−1−1)/2 (L

n−1 · (B +H))(3
n−1+1)/2(Ln−1 ·H)3

n−2(n/2−3/4)−1/4

(Ln)3n−2(n/2−1/4)+1/4
.

In particular mL is very ample for

m > Cn (Ln)3
n−2

(
n+ 2 +

Ln−1 ·KX

Ln

)3n−2(n/2+3/4)+1/4

with Cn = (2n)(3
n−1−1)/2(λn)

3n−2(n/2+3/4)+1/4.

Proof. We use Proposition 10.4 and Proposition 10.5 to construct inductively a sequence
of (non necessarily irreducible) algebraic subvarieties X = Yn ⊃ Yn−1 ⊃ · · · ⊃ Y2 ⊃ Y1
such that Yp =

⋃
j Yp,j is p-dimensional, and Yp−1 is obtained for each p > 2 as the union

of zero sets of sections
σp,j ∈ H0(Yp,j,OYp,j

(mp,jL−B))

with suitable integers mp,j > 1. We proceed by induction on decreasing values of the
dimension p, and find inductively upper bounds mp for the integers mp,j .

By Corollary 10.2, an integer mn for mnL − B to have a section σn can be found
with

mn 6 n
Ln−1 · (B +KX + (n+ 1)L)

Ln
6 n

Ln−1 · (B +H)

Ln
.

Now suppose that the sections σn, · · ·, σp+1,j have been constructed. Then we get

inductively a p-cycle Ỹp =
∑
µp,jYp,j defined by Ỹp = sum of zero divisors of sections

σp+1,j in Yp+1,j , where the mutiplicity µp,j on Yp,j ⊂ Yp+1,k is obtained by multiplying
the corresponding multiplicity µp+1,k of Yp+1,j with the vanishing order of σp+1,k along
Yp,j . As cohomology classes, we find

Ỹp ≡
∑

(mp+1,kL−B) · (µp+1,kYp+1,k) 6 mp+1L · Ỹp+1.

Inductively, we thus have the numerical inequality

Ỹp 6 mp+1 · · ·mnL
n−p.

Now, for each component Yp,j , Proposition 10.4 shows that there exists a section of
ωYp,j

⊗ OYp,j
(mp,jL−B) for some integer

mp,j 6 p
Lp−1 ·B · Yp,j
Lp · Yp,j

+ p+ 1 6 pmp+1 · · ·mn L
n−1 ·B + p+ 1.

Here, we have used the obvious lower bound Lp−1 · Yp,j > 1 (this is of course a rather
weak point in the argument). The degree of Yp,j with respect to H admits the upper
bound

δp,j := Hp · Yp,j 6 mp+1 · · ·mnH
p · Ln−p.

We use the Hovanski-Teissier concavity inequality ([Hov79; Tei79; Tei82])

(Ln−p ·Hp)
1
p (Ln)1−

1
p ≤ Ln−1 ·H
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to express our bounds in terms of the intersection numbers Ln and Ln−1 ·H only. We
then get

δp,j 6 mp+1 . . .mn
(Ln−1 ·H)p

(Ln)p−1
.

By Proposition 10.5, there is a nontrivial section in

Hom
(
ωYp,j

,OYp,j
((δp,j − p− 2)H)

)
.

Combining this section with the section in ωYp,j
⊗OYp,j

(mp,jL−B) already constructed,
we get a section of OYp,j

(mp,jL−B + (δp,j − p− 2)H) on Yp,j . Since we do not want H
to appear at this point, we replace B with B + (δp,j − p − 2)H and thus get a section
σp,j of OYp,j

(mp,jL−B) with some integer mp,j such that

mp,j 6 pmp+1 · · ·mn L
n−1 · (B + (δp,j − p− 2)H) + p+ 1

6 pmp+1 · · ·mn δp,j L
n−1 · (B +H)

6 p (mp+1 · · ·mn)
2 (L

n−1 ·H)p

(Ln)p−1
Ln−1 · (B +H).

Therefore, by putting M = nLn−1 · (B +H), we get the recursion relation

mp 6M
(Ln−1 ·H)p

(Ln)p−1
(mp+1 · · ·mn)

2 for 2 6 p 6 n− 1,

with initial value mn 6 M/Ln. If we let (mp) be the sequence obtained by the same
recursion formula with equalities instead of inequalities, we get mp 6 mp with mn−1 =
M3(Ln−1 ·H)n−1/(Ln)n and

mp =
Ln

Ln−1 ·H m2
p+1mp+1

for 2 6 p 6 n− 2. We then find inductively

mp 6 mp =M3n−p (Ln−1 ·H)3
n−p−1(n−3/2)+1/2

(Ln)3n−p−1(n−1/2)+1/2
.

We next show that m0L−B is nef for

m0 = max
(
m2 , m3, · · · , mn , m2 · · ·mn L

n−1 ·B
)
.

In fact, let C ⊂ X be an arbitrary irreducible curve. Either C = Y1,j for some j or
there exists an integer p = 2, · · · , n such that C is contained in Yp but not in Yp−1. If
C ⊂ Yp,j r Yp−1, then σp,j does not vanish identically on C. Hence (mp,jL − B)↾C has
nonnegative degree and

(m0L−B) · C > (mp,jL−B) · C ≥ 0.

On the other hand, if C = Y1,j , then

(m0L−B) · C > m0 −B · Ỹ1 > m0 −m2 · · ·mn L
n−1 ·B > 0.
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By the definition of λn (and by Corollary 8.6 showing that such a constant exists),
H + G is very ample for every nef line bundle G, in particular H + m0L − B is very
ample. We thus replace again B with B +H. This has the effect of replacing M with
M = n

(
Ln−1 · (B + 2H)

)
and m0 with

m0 = max
(
mn , mn−1, · · · , m2 , m2 · · ·mn L

n−1 · (B +H)
)
.

The last term is the largest one, and from the estimate on mp , we get

m0 6M (3n−1−1)/2 (L
n−1 ·H)(3

n−2−1)(n−3/2)/2+(n−2)/2(Ln−1 · (B +H))

(Ln)(3n−2−1)(n−1/2)/2+(n−2)/2+1

6 (2n)(3
n−1−1)/2 (L

n−1 · (B +H))(3
n−1+1)/2(Ln−1 ·H)3

n−2(n/2−3/4)−1/4

(Ln)3n−2(n/2−1/4)+1/4
.

�

(10.7) Remark. In the surface case n = 2, one can take λn = 1 and our bound yields
mL very ample for

m > 4
(L · (KX + 4L))2

L2
.

If one looks more carefully at the proof, the initial constant 4 can be replaced by 2. In
fact, it has been shown recently by Fernández del Busto that mL is very ample for

m >
1

2

[
(L · (KX + 4L) + 1)2

L2
+ 3

]
,

and an example of G. Xiao shows that this bound is essentially optimal (see [FdB96]).

11. Positivity Concepts for Vector Bundles

In the course of the proof of Skoda’s L2 estimates in the next section, we will have to
deal with dual bundles and exact sequences of Hermitian vector bundles. The following
fundamental differential geometric lemma will be needed.

(11.1) Lemma. Let E be a Hermitian holomorphic vector bundle of rank r on a complex
n-dimensional manifold X. Then the Chern connections of E and E∗ are related by
ΘE∗ = −tΘE where t denotes transposition. In other words, the associated Hermitian
forms Θ̃E and Θ̃E∗ are related by

Θ̃E(τ, τ) =
∑

16j,k6n, 16λ,µ6r

cjkλµτjλτkµ, τ =
∑

j,λ

τj,λ
∂

∂zj
⊗ eλ,

Θ̃E∗(τ, τ) = −
∑

16j,k6n, 16λ,µ6r

cjkµλτ
∗
jλτ

∗
kµ, τ∗ =

∑

j,λ

τ∗j,λ
∂

∂zj
⊗ e∗λ.

In particular E >Grif 0 if and only if E∗ <Grif 0.
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Notice that the corresponding duality statement for Nakano positivity is wrong (be-
cause of the twist of indices, which is fortunately irrelevant in the case of decomposable
tensors).

Proof. The Chern connections of E and E∗ are related by the Leibniz rule

d(σ ∧ s) = (DE∗σ) ∧ s+ (−1)deg σσ ∧DEs

whenever s, σ are forms with values in E, E∗ respectively, and σ ∧ s is computed using
the pairing E∗ ⊗E → C. If we differentiate a second time, this yields the identity

0 = (D2
E∗σ) ∧ s+ σ ∧D2

Es,

which is equivalent to the formula ΘE∗ = −tΘE . All other assertions follow. �

(11.2) Lemma. Let

0 −→ S
j−→ E

g−→ Q −→ 0

be an exact sequence of holomorphic vector bundles. Assume that E is equipped with a
smooth Hermitian metric, and that S and Q are endowed with the metrics (restriction-
metric and quotient-metric) induced by that of E. Then

(11.3) j∗ ⊕ g : E → S ⊕Q, j ⊕ g∗ : S ⊕Q→ E

are C∞ isomorphisms of bundles, which are inverse of each other. In the C∞-splitting
E ≃ S ⊕Q, the Chern connection of E admits a matrix decomposition

(11.4) DE =

(
DS −β∗

β DQ

)

in terms of the Chern connections of S and Q, where

β ∈ C∞(
X,Λ1,0T ∗

X ⊗ Hom(S,Q)
)
, β∗ ∈ C∞(

X,Λ0,1T ∗
X ⊗ Hom(Q, S)

)
.

The form β is called the second fundamental form associated with the exact sequence. It
is uniquely defined by each of the two formulas

(11.5) D′
Hom(S,E)j = g∗ ◦ β, j ◦ β∗ = −D′′

Hom(Q,E)g
∗.

We have D′
Hom(S,Q)β = 0, D′′

Hom(Q,S)β
∗ = 0, and the curvature form of E splits as

(11.6) ΘE =

(
ΘS − β∗ ∧ β −D′

Hom(Q,S)β
∗

D′′
Hom(S,Q)β ΘQ − β ∧ β∗

)
,

and the curvature forms of S and Q can be expressed as

(11.7) ΘS = ΘE↾S + β∗ ∧ β, ΘQ = ΘE↾Q + β ∧ β∗,

where ΘE↾S , ΘE↾Q stand for j∗ ◦ΘE ◦ j and g ◦ΘE ◦ g∗.
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Proof. Because of the uniqueness property of Chern connections, it is easy to see that
we have a Leibnitz formula

DF (f ∧ u) = (DHom(E,F )f) ∧ u+ (−1)deg ff ∧DEu

whenever u, f are forms with values in Hermitian vector bundles E and Hom(E, F )
(where Hom(E, F ) = E∗ ⊗ F is equipped with the tensor product metric and f ∧ u
incorporates the evaluation mapping Hom(E, F ) ⊗ E → F ). In our case, given a form
u with values in E, we write u = juS + g∗uQ where uS = j∗u and uQ = gu are the
projections of u on S and Q. We then get

DEu = DE(juS + g∗uQ)

= (DHom(S,E)j) ∧ uS + j ·DSuS + (DHom(Q,E)g
∗) ∧ uQ + g∗ ·DQuQ.

Since j is holomorphic as well as j∗ ◦ j = IdS, we find D′′
Hom(S,E)j = 0 and

D′′
Hom(S,S) IdS = 0 = D′′

Hom(E,S)j
∗ ◦ j.

By taking the adjoint, we see that j∗ ◦D′
Hom(S,E)j = 0, hence D′

Hom(S,E)j takes values

in g∗Q and we thus have a unique form β as in the lemma such that D′
Hom(S,E)j = g∗ ◦ β.

Similarly, g and g ◦ g∗ = IdQ are holomorphic, thus

D′′
Hom(Q,Q) IdQ = 0 = g ◦D′′

Hom(Q,E)g
∗

and there is a form γ ∈ C∞(
X,Λ0,1T ∗

X⊗Hom(Q, S)
)
such that D′′

Hom(Q,E)g
∗ = j ◦ γ. By

adjunction, we get D′
Hom(E,Q)g = γ∗ ◦ j∗ and D′′

Hom(E,Q)g = 0 implies D′
Hom(Q,E)g

∗ = 0.
If we differentiate g ◦ j = 0 we then get

0 = D′
Hom(E,Q)g ◦ j + g ◦D′

Hom(S,E)j = γ∗ ◦ j∗ ◦ j + g ◦ g∗ ◦ β = γ∗ + β,

thus γ = −β∗ and D′′
Hom(Q,E)g

∗ = −j ◦ β∗. Combining all this, we get

DEu = g∗β ∧ uS + j ·DSuS − jβ∗ ∧ uQ + g∗ ·DQuQ
= j

(
DSuS − β∗ ∧ uQ

)
+ g∗

(
β ∧ uS +DQuQ

)
,

and the asserted matrix decomposition formula follows. By squaring the matrix, we get

D2
E =

(
D2
S − β∗ ∧ β −DS ◦ β∗ − β∗ ◦DQ

DQ ◦ β + β ◦DS D2
Q − β ∧ β∗

)
.

As DQ ◦ β+β ◦DS = DHom(S,Q)β and DS ◦ β∗ +β∗ ◦DQ = DHom(Q,S)β
∗ by the Leibniz

rule, the curvature formulas follow (observe, since the Chern curvature form is of type
(1, 1), that we must have D′

Hom(S,Q)β = 0, D′′
Hom(Q,S)β

∗ = 0). �

(11.8) Corollary. Let 0 → S → E → Q → 0 be an exact sequence of Hermitian vector
bundles. Then

(a) E >Grif 0 =⇒ Q >Grif 0,
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(b) E 6Grif 0 =⇒ S 6Grif 0,

(c) E 6Nak 0 =⇒ S 6Nak 0,

and analogous implications hold true for strict positivity.

Proof. If β is written
∑
dzj ⊗ βj , βj ∈ Hom(S,Q), then Formulas (11.7) yield

iΘS = iΘE↾S −
∑

dzj ∧ dzk ⊗ β∗
kβj ,

iΘQ = iΘE↾Q +
∑

dzj ∧ dzk ⊗ βjβ
∗
k .

Since β · (ξ ⊗ s) =
∑
ξjβj · s and β∗ · (ξ ⊗ s) =

∑
ξkβ

∗
k · s we get

Θ̃S(ξ ⊗ s, ξ′ ⊗ s′) = Θ̃E(ξ ⊗ s, ξ′ ⊗ s′)−
∑

j,k

ξjξ
′
k〈βj · s, βk · s′〉,

Θ̃S(u, u) = Θ̃E(u, u)− |β · u|2,

Θ̃Q(ξ ⊗ s, ξ′ ⊗ s′) = Θ̃E(ξ ⊗ s, ξ′ ⊗ s′) +
∑

j,k

ξjξ
′
k〈β∗

k · s, β∗
j · s′〉,

Θ̃Q(ξ ⊗ s, ξ ⊗ s) = Θ̃E(ξ ⊗ s, ξ ⊗ s) = |β∗ · (ξ ⊗ s)|2. �

Next, we need positivity properties which somehow interpolate between Griffiths and
Nakano positivity. This leads to the concept of m-tensor positivity.

(11.9) Definition. Let T and E be complex vector spaces of dimensions n, r respectively,
and let Θ be a Hermitian form on T ⊗ E.

(a) A tensor u ∈ T ⊗E is said to be of rank m if m is the smallest > 0 integer such that
u can be written

u =

m∑

j=1

ξj ⊗ sj, ξj ∈ T, sj ∈ E.

(b) Θ is said to be m-tensor positive (resp. m-tensor semi-positive) if Θ(u, u) > 0 (resp.
Θ(u, u) > 0) for every tensor u ∈ T ⊗E of rank 6 m, u 6= 0. In this case, we write

Θ >m 0 (resp. Θ >m 0).

We say that a Hermitian vector bundle E is m-tensor positive if Θ̃E >m 0. Griffiths
positivity corresponds to m = 1 and Nakano positivity to m > min(n, r). Recall from
Theorem (5.2) that we have

〈[iΘE ,Λ]u, u〉 =
∑

|S|=q−1

∑

j,k,λ,µ

cjkλµ ujS,λukS,µ

for every (n, q)-form u =
∑
uK,λ dz1∧· · ·∧dzn∧dzK⊗eλ with values in E. Since ujS,λ = 0

for j ∈ S, the rank of the tensor (ujS,λ)j,λ ∈ Cn ⊗Cr is in fact 6 min{n− q + 1, r}. We
obtain therefore:
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(11.10) Lemma. Assume that E >m 0 (resp. E >m 0). Then the Hermitian operator
[iΘE ,Λ] is semipositive (resp. positive definite) on Λn,qT ∗X ⊗ E for q > 1 and m >
min{n− q + 1, r}.

The Nakano vanishing theorem can then be improved as follows.

(11.11) Theorem. Let X be a weakly pseudoconvex Kähler manifold of dimension n

and let E a Hermitian vector bundle of rank r such that Θ̃E >m 0 over X. Then

Hn,q(X,E) = 0 for q > 1 and m > min{n− q + 1, r}.

We next study some important relations which exist between the various positivity
concepts. Our starting point is the following result of [DSk79].

(11.12) Theorem. For any Hermitian vector bundle E,

E >Grif 0 =⇒ E ⊗ detE >Nak 0.

To prove this result, we use the fact that

(11.13) ΘdetE = TrE ΘE

where TrE : Hom(E,E) → C is the trace map, together with the identity

ΘE⊗detE = ΘE + TrE(ΘE)⊗ IdE ,

which is itself a consequence of (11.13) and of the standard formula

ΘE⊗F = ΘE ⊗ IdF +IdE ⊗ΘF .

In order to prove (11.13), for instance, we differentiate twice a wedge product, according
to the formula

DΛpE(s1 ∧ · · · ∧ sp) =
p∑

j=1

(−1)deg s1+···+deg sj−1s1 ∧ · · · ∧ sj−1 ∧DEsj ∧ · · · ∧ sp.

The corresponding Hermitian forms on TX ⊗ E are thus related by

Θ̃E⊗detE = Θ̃E + TrE Θ̃E ⊗ h,

where h denotes the Hermitian metric on E and TrE Θ̃E is the Hermitian form on TX
defined by

TrE Θ̃E(ξ, ξ) =
∑

16λ6r

Θ̃E(ξ ⊗ eλ, ξ ⊗ eλ), ξ ∈ TX ,

for any orthonormal frame (e1, . . . , er) of E. Theorem 11.12 is now a consequence of
the following simple property of Hermitian forms on a tensor product of complex vector
spaces.
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(11.14) Proposition. Let T,E be complex vector spaces of respective dimensions n, r,
and h a Hermitian metric on E. Then for every Hermitian form Θ on T ⊗ E

Θ >Grif 0 =⇒ Θ+ TrE Θ⊗ h >Nak 0.

We first need a lemma analogous to Fourier inversion formula for discrete Fourier
transforms.

(11.15) Lemma. Let q be an integer > 3, and xλ, yµ, 1 6 λ, µ 6 r, be complex
numbers. Let σ describe the set Urq of r-tuples of q-th roots of unity and put

x′σ =
∑

16λ6r

xλσλ, y′σ =
∑

16µ6r

yµσµ, σ ∈ Urq .

Then for every pair (α, β), 1 6 α, β 6 r, the following identity holds:

q−r
∑

σ∈Ur
q

x′σy
′
σσασβ =





xαyβ if α 6= β,

∑

16µ6r

xµyµ if α = β.

Proof. The coefficient of xλyµ in the summation q−r
∑
σ∈Ur

q
x′σy

′
σσασβ is given by

q−r
∑

σ∈Ur
q

σασβσλσµ.

This coefficient equals 1 when the pairs {α, µ} and {β, λ} are equal (in which case
σασβσλσµ = 1 for any one of the qr elements of Urq ). Hence, it is sufficient to prove
that ∑

σ∈Ur
q

σασβσλσµ = 0

when the pairs {α, µ} and {β, λ} are distinct.

If {α, µ} 6= {β, λ}, then one of the elements of one of the pairs does not belong to the
other pair. As the four indices α, β, λ, µ play the same role, we may suppose for example
that α /∈ {β, λ}. Let us apply to σ the substitution σ 7→ τ , where τ is defined by

τα = e2πi/qσα, τν = σν for ν 6= α.

We get

∑

σ

σασβσλσµ =
∑

τ

=





e2πi/q
∑

σ

if α 6= µ,

e4πi/q
∑

σ

if α = µ.

Since q > 3 by hypothesis, it follows that

∑

σ

σασβσλσµ = 0.
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Proof of Proposition. 11.14 Let (tj)16j6n be a basis of T , (eλ)16λ6r an orthonormal
basis of E and ξ =

∑
j ξjtj ∈ T , u =

∑
j,λ ujλ tj ⊗ eλ ∈ T ⊗E. The coefficients cjkλµ of

Θ with respect to the basis tj ⊗ eλ satisfy the symmetry relation cjkλµ = ckjµλ, and we
have the formulas

Θ(u, u) =
∑

j,k,λ,µ

cjkλµujλukµ,

TrE Θ(ξ, ξ) =
∑

j,k,λ

cjkλλξjξk,

(Θ + TrE Θ⊗ h)(u, u) =
∑

j,k,λ,µ

cjkλµujλukµ + cjkλλujµukµ.

For every σ ∈ Urq (cf. Lemma 11.15), put

u′jσ =
∑

16λ6r

ujλσλ ∈ C,

ûσ =
∑

j

u′jσtj ∈ T , êσ =
∑

λ

σλeλ ∈ E.

Lemma 11.15 implies

q−r
∑

σ∈Ur
q

Θ(ûσ ⊗ êσ, ûσ ⊗ êσ) = q−r
∑

σ∈Ur
q

cjkλµu
′
jσu

′
kσσλσµ

=
∑

j,k,λ6=µ
cjkλµujλukµ +

∑

j,k,λ,µ

cjkλλujµukµ.

The Griffiths positivity assumption shows that the left hand side is > 0, hence

(Θ + TrE Θ⊗ h)(u, u) >
∑

j,k,λ

cjkλλujλukλ > 0

with strict positivity if Θ >Grif 0 and u 6= 0. �

We now relate Griffiths positivity to m-tensor positivity. The most useful result is
the following

(11.16) Proposition. Let T be a complex vector space and (E, h) a Hermitian vector
space of respective dimensions n, r with r > 2. Then for any Hermitian form Θ on T ⊗E
and any integer m > 1

Θ >Grif 0 =⇒ mTrE Θ⊗ h−Θ >m 0.

Proof. Let us distinguish two cases.

(a) m = 1. Let u ∈ T ⊗ E be a tensor of rank 1. Then u can be written u = ξ1 ⊗ e1
with ξ1 ∈ T, ξ1 6= 0, and e1 ∈ E, |e1| = 1. Complete e1 into an orthonormal basis
(e1, . . . , er) of E. One gets immediately

(TrE Θ⊗ h)(u, u) = TrE Θ(ξ1, ξ1) =
∑

16λ6r

Θ(ξ1 ⊗ eλ, ξ1 ⊗ eλ)

> Θ(ξ1 ⊗ e1, ξ1 ⊗ e1) = Θ(u, u).



112 Analytic Methods in Algebraic Geometry

(b) m > 2. Every tensor u ∈ T ⊗ E of rank 6 m can be written

u =
∑

16λ6q

ξλ ⊗ eλ, ξλ ∈ T,

with q = min(m, r) and (eλ)16λ6r an orthonormal basis of E. Let F be the vector
subspace of E generated by (e1, . . . , eq) and ΘF the restriction of Θ to T ⊗F . The first
part shows that

Θ′ := TrF ΘF ⊗ h−ΘF >Grif 0.

Proposition 11.14 applied to Θ′ on T ⊗ F yields

Θ′ + TrF Θ′ ⊗ h = qTrF ΘF ⊗ h−ΘF >q 0.

Since u ∈ T ⊗ F is of rank 6 q 6 m, we get (for u 6= 0)

Θ(u, u) = ΘF (u, u) < q(TrF ΘF ⊗ h)(u, u)

= q
∑

16j,λ6q

Θ(ξj ⊗ eλ, ξj ⊗ eλ) 6 mTrE Θ⊗ h(u, u). �

Proposition 11.16 is of course also true in the semi-positive case. From these facts,
we deduce

(11.17) Theorem. Let E be a Griffiths (semi-)positive bundle of rank r > 2. Then for
any integer m > 1

E∗ ⊗ (detE)m >m 0 (resp. >m 0).

Proof. We apply Proposition 11.16 to Θ = −Θ(E∗) = tΘE >Grif 0 on TX ⊗ E∗ and
observe that

ΘdetE = TrE ΘE = TrE∗ Θ.

(11.18) Theorem. Let 0 → S → E → Q→ 0 be an exact sequence of Hermitian vector
bundles. Then for any m > 1

E >m 0 =⇒ S ⊗ (detQ)m >m 0.

Proof. Formulas 11.7 imply

iΘS >m iβ∗ ∧ β , iΘQ >m iβ ∧ β∗,

iΘdetQ = TrQ(iΘQ) > TrQ(iβ ∧ β∗).

If we write β =
∑
dzj ⊗ βj as in the proof of Corollary 11.8, then

TrQ(iβ ∧ β∗) =
∑

idzj ∧ dzk TrQ(βjβ∗
k)

=
∑

idzj ∧ dzk TrS(β∗
kβj) = TrS(−iβ∗ ∧ β).
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Furthermore, it has been already proved that −iβ∗ ∧ β >Nak 0. By Proposition 11.16
applied to the corresponding Hermitian form Θ on TX ⊗ S, we get

mTrS(−iβ∗ ∧ β) ⊗ IdS +iβ∗ ∧ β >m 0,

and Theorem 11.18 follows. �

(11.19) Corollary. Let X be a weakly pseudoconvex Kähler n-dimensional manifold, E
a holomorphic vector bundle of rank r > 2 and m > 1 an integer. Then

(a) E >Grif 0 ⇒ Hn,q(X,E ⊗ det E) = 0 for q > 1 ;

(b) E >Grif 0 ⇒ Hn,q
(
X,E∗ ⊗ (det E)m

)
= 0 for q > 1 and m > min{n− q + 1, r} ;

(c) Let 0 → S → E → Q→ 0 be an exact sequence of vector bundles and m = min{n−
q+1, rk S}, q > 1. If E >m 0 and if L is a line bundle such that L⊗ (detQ)−m > 0,
then

Hn,q(X,S ⊗ L) = 0.

Proof. Immediate consequence of Theorem 11.11, in combination with Theorem 11.12
for (a), Theorem 11.17 for (b) and Theorem 11.18 for (c). �

11. Skoda’s L2 Estimates for Surjective Bundle Morphisms

§ 12.A. Surjectivity and Division Theorems

Let (X,ω) be a Kähler manifold, dimX = n, and let g : E → Q a holomorphic morphism
of Hermitian vector bundles over X . Assume in the first instance that g is surjective.
We are interested in conditions insuring that the induced morphisms g : Hn,k(X,E) −→
Hn,k(X,Q) are also surjective (dealing with (n, •) bidegrees is always easier, since we
have to understand positivity conditions for the curvature term). For that purpose, it is
natural to consider the subbundle S = Ker g ⊂ E and the exact sequence

(12.1) 0 −→ S
j−→ E

g−→ Q −→ 0

where j : S → E is the inclusion. In fact, we need a little more flexibility to handle the
curvature terms, so we take the tensor product of the exact sequence by a holomorphic
line bundle L (whose properties will be specified later):

(12.2) 0 −→ S ⊗ L −→ E ⊗ L
g−→ Q⊗ L −→ 0.

(12.3) Theorem. Let k be an integer such that 0 6 k 6 n. Set r = rk E, q = rkQ,
s = rk S = r − q and

m = min{n− k, s} = min{n− k, r − q}.

Assume that (X,ω) possesses also a complete Kähler metric ω̂, that E >m 0, and that
L −→ X is a Hermitian holomorphic line bundle such that

iΘL − (m+ ε)iΘdetQ > 0
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for some ε > 0. Then for every D′′-closed form f of type (n, k) with values in Q ⊗ L
such that ‖f‖ < +∞, there exists a D′′-closed form h of type (n, k) with values in E ⊗L
such that f = g · h and

‖h‖2 6 (1 +m/ε) ‖f‖2.

The idea of the proof is essentially due to [Sko78], who actually proved the special
case k = 0. The general case appeared in [Dem82b].

Proof. Let j : S → E be the inclusion morphism, g∗ : Q → E and j∗ : E → S the
adjoints of g, j, and the matrix of DE with respect to the orthogonal splitting E ≃ S⊕Q
(cf. Lemma 11.2). Then g∗f is a lifting of f in E ⊗ L. We will try to find h under the
form

h = g∗f + ju, u ∈ L2(X,Λn,kT ∗
X ⊗ S ⊗ L).

As the images of S and Q in E are orthogonal, we have |h|2 = |f |2 + |u|2 at every point
of X . On the other hand D′′

Q⊗Lf = 0 by hypothesis and D′′g∗ = −j ◦β∗ by (11.5), hence

D′′
E⊗Lh = −j(β∗ ∧ f) + j D′′

S⊗L = j(D′′
S⊗L − β∗ ∧ f).

We are thus led to solve the equation

(12.4) D′′
S⊗Lu = β∗ ∧ f,

and for that, we apply Theorem 6.1 to the (n, k + 1)-form β∗ ∧ f . One now observes
that the curvature of S ⊗L can be expressed in terms of β. This remark will be used to
prove:

(12.5) Lemma. Let Ak = [iΘS⊗L,Λ] be the curvature operator acting as an Hermitian
operator on the bundle of (n, k+ 1)-forms. Then

〈A−1
k (β∗ ∧ f), (β∗ ∧ f)〉 6 (m/ε) |f |2.

If the lemma is taken for granted, Theorem 5.1 yields a solution u of (12.4) in
L2(X,Λn,qT ∗

X ⊗ S ⊗L) such that ‖u‖2 6 (m/ε) ‖f‖2. As ‖h‖2 = ‖f‖2 + ‖u‖2, the proof
of Theorem 12.3 is complete.

Proof of Lemma 12.5. Exactly as in the proof of Theorem 11.18, the formulas (11.7)
yield

iΘS >m iβ∗ ∧ β, iΘdetQ > TrQ(iβ ∧ β∗) = TrS(−iβ∗ ∧ β).
Since C∞(X,Λ1,1T ∗

X ⊗ HermS) ∋ Θ := −iβ∗ ∧ β >Grif 0, Proposition 11.16 implies

m TrS(−iβ∗ ∧ β)⊗ IdS +iβ∗ ∧ β >m 0.

From the hypothesis on the curvature of L we get

iΘS⊗L >m iΘS ⊗ IdL+(m+ ε) iΘdetQ ⊗ IdS⊗L

>m
(
iβ∗ ∧ β + (m+ ε) TrS(−iβ∗ ∧ β) ⊗ IdS

)
⊗ IdL

>m (ε/m) (−iβ∗ ∧ β)⊗ IdS ⊗ IdL .
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For any v ∈ Λn,k+1T ∗
X ⊗ S ⊗ L, Lemma 11.10 implies

(12.6) 〈Akv, v〉 > (ε/m) 〈−iβ∗ ∧ β ∧ Λv, v〉,

because rk(S ⊗ L) = s and m = min{n − k, s}. Let (dz1, . . . , dzn) be an orthonormal
basis of T ∗

X at a given point x0 ∈ X and set

β =
∑

16j6n

dzj ⊗ βj , βj ∈ Hom(S,Q).

The adjoint of the operator β∗ ∧ • =
∑
dzj ∧ β∗

j • is the contraction operator β •
defined by

β v =
∑ ∂

∂zj
(βjv) =

∑
−idzj ∧ Λ(βjv) = −iβ ∧ Λv.

Consequently, we get 〈−iβ∗ ∧ β ∧ Λv, v〉 = |β v|2 and (12.6) implies

|〈β∗ ∧ f, v〉|2 = |〈f, β v〉|2 6 |f |2 |β v|2 6 (m/ε)〈Akv, v〉 |f |2.

This is equivalent to the estimate asserted in the lemma. �

If X has a plurisubharmonic exhaustion function ψ, we can select a convex increasing
function χ ∈ C∞(R,R) and multiply the metric of L by the weight exp(−χ ◦ψ) in order
to make the L2 norm of f converge. Theorem 12.3 implies therefore:

(12.7) Corollary. Let (X,ω) be a weakly pseudoconvex Kähler manifold, g : E → Q a
surjective bundle morphism with r = rk E, q = rk Q, and L→ X a Hermitian holomor-
phic line bundle. We set m = min{n− k, r − q} and assume that E >m 0 and

iΘL − (m+ ε) iΘdetQ > 0

for some ε > 0. Then g induces a surjective map

Hn,k(X,E ⊗ L) −→ Hn,k(X,Q⊗ L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A careful
examination of the proof shows that it amounts to verify that the image of the coboundary
morphism

−β∗ ∧ • : Hn,k(X,Q⊗ L) −→ Hn,k+1(X,S ⊗ L)

vanishes; however the cohomology group Hn,k+1(X,S ⊗ L) itself does not necessarily
vanish, as it would do under a strict positivity assumption.

We want now to get estimates also when Q is endowed with a metric given a priori,
that can be distinct from the quotient metric of E by g. Then the map g∗(gg∗)−1:Q→ E
is the lifting of Q orthogonal to S = Ker g. The quotient metric | • |′ on Q is therefore
defined in terms of the original metric | • | by

|v|′2 = |g∗(gg∗)−1v|2 = 〈(gg∗)−1v, v〉 = det(gg∗)−1 〈g̃g∗v, v〉
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where g̃g∗ ∈ End(Q) denotes the endomorphism of Q whose matrix is the transposed
comatrix of gg∗. For every w ∈ detQ, we find

|w|′2 = det(gg∗)−1 |w|2.

If Q′ denotes the bundle Q with the quotient metric, we get

iΘdetQ′ = iΘdetQ + id′d′′ log det(gg∗).

In order that the hypotheses of Theorem 12.3 be satisfied, we are led to define a new

metric | • |′ on L by |u|′2 = |u|2
(
det(gg∗)

)−m−ε
. Then

iΘL′ = iΘ(L) + (m+ ε) id′d′′ log det(gg∗) > (m+ ε) iΘdetQ′ .

Theorem 12.3 applied to (E,Q′, L′) can now be reformulated:

(12.8) Theorem. Let X be a complete Kähler manifold equipped with a Kähler metric ω
on X, let E → Q be a surjective morphism of Hermitian vector bundles and let L→ X be
a Hermitian holomorphic line bundle. Set r = rk E, q = rk Q and m = min{n−k, r−q},
and assume that E >m 0 and

iΘL − (m+ ε)iΘdetQ > 0

for some ε > 0. Then for every D′′-closed form f of type (n, k) with values in Q ⊗ L
such that

I =

∫

X

〈g̃g∗f, f〉 (det gg∗)−m−1−ε dV < +∞,

there exists a D′′-closed form h of type (n, k) with values in E ⊗ L such that f = g · h
and ∫

X

|h|2 (det gg∗)−m−ε dV 6 (1 +m/ε) I. �

Our next goal is to extend Theorem 12.8 in the case when g : E −→ Q is only
generically surjective; this means that the analytic set

Y = {x ∈ X ; gx : Ex −→ Qx is not surjective }

defined by the equation Λqg = 0 is nowhere dense in X . Here Λqg is a section of the
bundle Hom(ΛqE, detQ). The idea is to apply the above Theorem 12.8 to X r Y . For
this, we have to know whether X r Y has a complete Kähler metric.

(12.9) Lemma. Let (X,ω) be a Kähler manifold, and Y = σ−1(0) an analytic subset
defined by a section of a Hermitian vector bundle E → X. If X is weakly pseudoconvex
and exhausted by Xc = {x ∈ X ; ψ(x) < c}, then Xc r Y has a complete Kähler metric
for all c ∈ R. The same conclusion holds for X rY if (X,ω) is complete and if for some
constant C > 0 we have ΘE 6Grif C ω ⊗ 〈 , 〉E on X.

Proof. Set τ = log |σ|2. Then d′τ = {D′σ, σ}/|σ|2 and D′′D′σ = D2σ = ΘEσ, thus

id′d′′τ = i
{D′σ,D′σ}

|σ|2 − i
{D′σ, σ} ∧ {σ,D′σ}

|σ|4 − {iΘEσ, σ}
|σ|2 .
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For every ξ ∈ TX , we find therefore

Hτ(ξ) =
|σ|2 |D′σ · ξ|2 − |〈D′σ · ξ, σ〉|2

|σ|4 − Θ̃E(ξ ⊗ σ, ξ ⊗ σ)

|σ|2

> −Θ̃E(ξ ⊗ σ, ξ ⊗ σ)

|σ|2

by the Cauchy-Schwarz inequality. If C is a bound for the coefficients of Θ̃E on the
compact subset Xc, we get id′d′′τ > −Cω on Xc. Let χ ∈ C

∞(R,R) be a convex
increasing function. We set

ω̂ = ω + id′d′′(χ ◦ τ) = ω + i
(
χ′ ◦ τ d′d′′τ + χ′′ ◦ τ d′τ ∧ d′′τ

)
.

We thus see that ω̂ is positive definite if χ′ 6 1/2C, and by a computation similar to the
one preceding Theorem 6.2, we check that ω̂ is complete near Y = τ−1(−∞) as soon as

∫ 0

−∞

√
χ′′(t) dt = +∞.

One can choose for example χ such that χ(t) = 1
5C (t − log |t|) for t 6 −1. In order to

obtain a complete Kähler metric on XcrY , we also need the metric to be complete near
∂Xc. If ω̂ is not, such a metric can be defined by

ω̃ = ω̂ + id′d′′ log(c− ψ)−1 = ω̂ +
id′d′′ψ

c− ψ
+

id′ψ ∧ d′′ψ
(c− ψ)2

> id′ log(c− ψ)−1 ∧ d′′ log(c− ψ)−1 ;

ω̃ is complete on Xc r Ω because log(c− ψ)−1 tends to +∞ on ∂Xc. �

We also need another elementary lemma dealing with the extension of partial differ-
ential equalities across analytic sets.

(12.10) Lemma. Let Ω be an open subset of Cn and Y an analytic subset of Ω. Assume
that v is a (p, q− 1)-form with L2

loc coefficients and w a (p, q)-form with L1
loc coefficients

such that d′′v = w on Ωr Y (in the sense of distribution theory). Then d′′v = w on Ω.

Proof. An induction on the dimension of Y shows that it is sufficient to prove the result
in a neighborhood of a regular point a ∈ Y . By using a local analytic isomorphism, the
proof is reduced to the case where Y is contained in the hyperplane z1 = 0, with a = 0.
Let λ ∈ C∞(R,R) be a function such that λ(t) = 0 for t 6 1

2 and λ(t) = 1 for t > 1. We
must show that

(12.11)

∫

Ω

w ∧ α = (−1)p+q
∫

Ω

v ∧ d′′α

for all α ∈ D(Ω,Λn−p,n−qT ∗
Ω). Set λε(z) = λ(|z1|/ε) and replace α in the integral by

λεα. Then λεα ∈D(Ωr Y,Λn−p,n−qT ∗
Ω) and the hypotheses imply

∫

Ω

w ∧ λεα = (−1)p+q
∫

Ω

v ∧ d′′(λεα) = (−1)p+q
∫

Ω

v ∧ (d′′λε ∧ α+ λεd
′′α).
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As w and v have L1
loc coefficients on Ω, the integrals of w ∧ λεα and v ∧ λεd′′α converge

respectively to the integrals of w ∧ α and v ∧ d′′α as ε tends to 0. The remaining term
can be estimated by means of the Cauchy-Schwarz inequality:

∣∣∣
∫

Ω

v ∧ d′′λε ∧ α
∣∣∣
2

6

∫

|z1|6ε
|v ∧ α|2 dV

∫

Suppα

|d′′λε|2 dV ;

as v ∈ L2
loc(Ω), the integral

∫
|z1|6ε |v ∧ α|

2 dV converges to 0 with ε, whereas

∫

Suppα

|d′′λε|2 dV 6
C

ε2
Vol

(
Supp α ∩ {|z1| 6 ε}

)
6 C′.

Equality (12.11) follows when ε tends to 0. �

(12.12) Theorem. The existence statement and the estimates of Theorem 12.8 remain
true for a generically surjective morphism g : E → Q, provided that X is weakly pseudo-
convex.

Proof. Apply Theorem 12.8 to each relatively compact domain Xc r Y (these domains
are complete Kähler by Lemma 12.9). From a sequence of solutions on Xc r Y we can
extract a subsequence converging weakly on X r Y as c tends to +∞. One gets a form
h satisfying the estimates, such that D′′h = 0 on X r Y and f = g · h. In order to see
that D′′h = 0 on X , it suffices to apply Lemma 12.10 and to observe that h has L2

loc

coefficients on X by our estimates. �

A very special but interesting case is obtained for the trivial bundles E = Ω × Cr,
Q = Ω × C over a pseudoconvex open set Ω ⊂ Cn. Then the morphism g is given by a
r-tuple (g1, . . . , gr) of holomorphic functions on Ω. Let us take k = 0 and L = Ω × C

with the metric given by a weight e−ϕ. If we observe that g̃g∗ = Id when rk Q = 1,
Theorem 12.8 applied on X = Ωr g−1(0) and Lemmas 12.9, 12.10 give:

(12.13) Theorem (Skoda [Sko72b]). Let Ω be a complete Kähler open subset of Cn,
let ϕ be a plurisubharmonic function and g = (g1, . . . , gr) be a r-tuple of holomorphic
functions on Ω. Set m = min{n, r − 1}. Then for every holomorphic function f on Ω
such that

I =

∫

ΩrZ

|f |2 |g|−2(m+1+ε)e−ϕ dV < +∞,

where Z = g−1(0), there exist holomorphic functions (h1, . . . , hr) on Ω such that f =∑
gjhj and ∫

ΩrY

|h|2 |g|−2(m+ε)e−ϕ dV 6 (1 +m/ε)I. �

§ 12.B. Applications to Local Algebra: the Briançon-Skoda Theorem

We now show that Theorem 12.13 can be applied to get deep results concerning ideals
of the local ring On = C{z1, . . . , zn} of germs of holomorphic functions on (Cn, 0). Let
I = (g1, . . . , gr) 6= (0) be an ideal of On.

(12.14) Definition. Let k ∈ R+. We associate to I the following ideals:
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(a) the ideal I
(k)

of germs u ∈ On such that |u| 6 C|g|k for some constant C > 0, where
|g|2 = |g1|2 + · · ·+ |gr|2;

(b) the ideal Î(k) of germs u ∈ On such that

∫

Ω

|u|2 |g|−2(k+ε) dV < +∞

on a small ball Ω centered at 0, if ε > 0 is small enough.

(12.15) Proposition. For all k, l ∈ R+ we have

(a) I
(k) ⊂ Î(k) ;

(b) Ik ⊂ I(k)
if k ∈ N ;

(c) I
(k)
.I

(l) ⊂ I(k+l)
;

(d) I
(k)
.Î(l) ⊂ Î(k+l).

All properties are immediate from the definitions except (a) which is a consequence
of the integrability of |g|−ε for ε > 0 small (exercise to the reader!). Before stating the
main result, we need a simple lemma.

(12.16) Lemma. If I = (g1, . . . , gr) and r > n, we can find elements g̃1, . . . , g̃n in
I such that C−1|g| 6 |g̃| 6 C|g| on a neighborhood of 0. Each g̃j can be taken to be a
linear combination

g̃j = aj . g =
∑

16k6r

ajkgk, aj ∈ Cr r {0}

where the coefficients ([a1], . . . , [an]) are chosen in the complement of a proper analytic
subset of (Pr−1)n.

It follows from the lemma that the ideal J = (g̃1, . . . , g̃n) ⊂ I satisfies J(k) = I(k)

and Ĵ(k) = Î(k) for all k.

Proof. Assume that g ∈ O(Ω)r. Consider the analytic subsets in Ω× (Pr−1)n defined by

A =
{
(z, [w1], . . . , [wn]) ; wj · g(z) = 0

}
,

A∗ =
⋃

irreducible components of A not contained in g−1(0)× (Pr−1)n.

For z /∈ g−1(0) the fiber Az = {([w1], . . . , [wn]) ; wj . g(z) = 0} = A∗
z is a product of

n hyperplanes in Pr−1, hence A ∩ (Ω r g−1(0)) × (Pr−1)n is a fiber bundle with base
Ωr g−1(0) and fiber (Pr−2)n. As A∗ is the closure of this set in Ω× (Pr−1)n, we have

dimA∗ = n+ n(r − 2) = n(r − 1) = dim(Pr−1)n.

It follows that the zero fiber

A∗
0 = A∗ ∩

(
{0} × (Pr−1)n

)
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is a proper subset of {0} × (Pr−1)n. Choose (a1, . . . , an) ∈ (Cr r {0})n such that
(0, [a1], . . . , [an]) is not in A∗

0. By compactness the set A∗ ∩
(
B(0, ε)× (Pr−1)n

)
is

disjoint from the neighborhood B(0, ε)×∏
[B(aj, ε)] of (0, [a1], . . . , [an]) for ε small

enough. For z ∈ B(0, ε) we have |aj · g(z)| > ε|g(z)| for some j, otherwise the inequality
|aj · g(z)| < ε|g(z)| would imply the existence of hj ∈ Cr with |hj | < ε and aj g(z) =
hj g(z). Since g(z) 6= 0, we would have

(z, [a1 − h1], . . . , [an − hn]) ∈ A∗ ∩
(
B(0, ε)× (Pr−1)n

)
,

a contradiction. We obtain therefore

ε|g(z)| 6 max |aj g(z)| 6 (max |aj|) |g(z)| on B(0, ε). �

(12.17) Theorem (Briançon-Skoda [BSk74]). Set p = min{n− 1, r − 1}. Then

(a) Î(k+1) = I Î(k) = I Î(k) for k > p.

(b) I
(k+p) ⊂ Î(k+p) ⊂ Ik for all k ∈ N.

Proof. (a) The inclusions I Î(k) ⊂ I Î

(k) ⊂ Î

(k+1) are obvious thanks to Proposi-

tion 12.15, so we only have to prove that Î(k+1) ⊂ I Î(k). Assume first that r 6 n. Let
f ∈ Î(k+1) be such that ∫

Ω

|f |2 |g|−2(k+1+ε) dV < +∞.

For k > p − 1, we can apply Theorem 12.13 with m = r − 1 and with the weight
ϕ = (k −m) log |g|2. Hence f can be written f =

∑
gjhj with

∫

Ω

|h|2 |g|−2(k+ε) dV < +∞,

thus hj ∈ Î(k) and f ∈ I Î(k). When r > n, Lemma 12.16 shows that there is an ideal
J ⊂ I with n generators such that Ĵ(k) = Î(k). We find

Î

(k+1) = Ĵ(k+1) ⊂ J Ĵ(k) ⊂ I Î(k) for k > n− 1.

(b) Property (a) implies inductively Î(k+p) = Ik Î(p) for all k ∈ N. This gives in

particular Î(k+p) ⊂ Ik. �

(12.18) Corollary.

(a) The ideal I is the integral closure of I, i.e. by definition the set of germs u ∈ On
which satisfy an equation

ud + a1u
d−1 + · · ·+ ad = 0, as ∈ Is, 1 6 s 6 d.

(b) Similarly, I
(k)

is the set of germs u ∈ On which satisfy an equation

ud + a1u
d−1 + · · ·+ ad = 0, as ∈ I⌈ks⌉, 1 6 s 6 d,
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where ⌈t⌉ denotes the smallest integer > t.

As the ideal I
(k)

is finitely generated, property (b) shows that there always exists a
rational number l > k such that I(l) = I(k).

Proof. (a) If u ∈ On satisfies a polynomial equation with coefficients as ∈ Is, then clearly
|as| 6 Cs |g|s and the usual elementary bound

|roots| 6 2 max
16s6d

|as|1/s

for the roots of a monic polynomial implies |u| 6 C |g|.
Conversely, assume that u ∈ I. The ring On is Noetherian, so the ideal Î(p) has

a finite number of generators v1, . . . , vN . For every j we have uvj ∈ I Î(p) = I Î(p),
hence there exist elements bjk ∈ I such that

uvj =
∑

16k6N

bjkvk.

The matrix (uδjk − bjk) has the non zero vector (vj) in its kernel, thus u satisfies the
equation det(uδjk − bjk) = 0, which is of the required type.

(b) Observe that v1, . . . , vN satisfy simultaneously some integrability condition∫
Ω
|vj|−2(p+ε) < +∞, thus Î(p) = Î

(p+η) for η ∈ [0, ε[. Let u ∈ I(k). For every in-
teger m ∈ N we have

umvj ∈ I
(km)

Î

(p+η) ⊂ Î(km+η+p).

If k /∈ Q, we can find m such that d(km + ε/2,Z) < ε/2, thus km + η ∈ N for some
η ∈ ]0, ε[. If k ∈ Q, we take m such that km ∈ N and η = 0. Then

umvj ∈ Î(N+p) = IN Î(p) with N = km+ η ∈ N,

and the reasoning made in (a) gives det(umδjk − bjk) = 0 for some bjk ∈ IN . This is an
equation of the type described in (b), where the coefficients as vanish when s is not a
multiple of m and ams ∈ INs ⊂ I⌈kms⌉. �

Let us mention that Briançon and Skoda’s result 12.17 (b) is optimal for k = 1. Take
for example I = (g1, . . . , gr) with gj(z) = zrj , 1 6 j 6 r, and f(z) = z1 · · · zr. Then

|f | 6 C|g| and 12.17 (b) yields f r ∈ I ; however, it is easy to verify that f r−1 /∈ I. The
theorem also gives an answer to the following conjecture made by J. Mather.

(12.19) Corollary. Let f ∈ On and If = (z1∂f/∂z1, . . . , zn∂f/∂zn). Then f ∈ If ,
and for every integer k > 0, fk+n−1 ∈ Ikf .

The Corollary is also optimal for k = 1 : for example, one can verify that the function
f(z) = (z1 · · · zn)3 + z3n−1

1 + · · ·+ z3n−1
n is such that fn−1 /∈ If .
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Proof. Set gj(z) = zj ∂f/∂zj, 1 6 j 6 n. By 12.17 (b), it suffices to show that |f | 6 C|g|.
For every germ of analytic curve C ∋ t 7−→ γ(t), γ 6≡ 0, the vanishing order of f ◦ γ(t) at
t = 0 is the same as that of

t
d(f ◦ γ)
dt

=
∑

16j6n

t γ′j(t)
∂f

∂zj

(
γ(t)

)
.

We thus obtain

|f ◦ γ(t)| 6 C1 |t|
∣∣∣d(f ◦ γ)

dt

∣∣∣ 6 C2

∑

16j6n

|t γ′j(t)|
∣∣∣ ∂f
∂zj

(
γ(t)

)∣∣∣ 6 C3 |g ◦ γ(t)|

and conclude by the following elementary lemma. �

(12.20) Curve selection lemma. Let f, g1, . . . , gr ∈ On be germs of holomorphic
functions vanishing at 0. Then we have |f | 6 C|g| for some constant C if and only
if for every germ of analytic curve γ through 0 there exists a constant Cγ such that
|f ◦ γ| 6 Cγ |g ◦ γ|.

Proof. If the inequality |f | 6 C|g| does not hold on any neighborhood of 0, the germ of
analytic set (A, 0) ⊂ (Cn+r, 0) defined by

gj(z) = f(z)zn+j , 1 6 j 6 r,

contains a sequence of points
(
zν , gj(zν)/f(zν)

)
converging to 0 as ν tends to +∞,

with f(zν) 6= 0. Hence (A, 0) contains an irreducible component on which f 6≡ 0 and
there is a germ of curve γ̃ = (γ, γn+j) : (C, 0) → (Cn+r, 0) contained in (A, 0) such that
f ◦γ 6≡ 0. We get gj ◦ γ = (f ◦ γ)γn+j, hence |g ◦ γ(t)| 6 C|t| |f ◦ γ(t)| and the inequality
|f ◦ γ| 6 Cγ |g ◦ γ| does not hold. �

13. The Ohsawa-Takegoshi L2 Extension Theorem

The Ohsawa-Takegoshi theorem addresses the following extension problem: let Y be a
complex analytic submanifold of a complex manifold X ; given a holomorphic function f
on Y satisfying suitable L2 conditions on Y , find a holomorphic extension F of f to X ,
together with a good L2 estimate for F on X . The first satisfactory solution has been
obtained in the fundamental papers [OT87; Ohs88]. We follow here a more geometric
approach due to Manivel [Man93], which provides a generalized extension theorem in
the general framework of vector bundles. As in Ohsawa-Takegoshi’s fundamental paper,
the main idea is to use a modified Bochner-Kodaira-Nakano inequality. Such inequalities
were originally introduced in the work of Donnelly-Fefferman [DF83] and Donnelly-Xavier
[DX84].

§ 13.A. The Basic a Priori Inequality

The main a priori inequality we are going to use is a simplified (and slightly extended)
version of the original Ohsawa-Takegoshi a priori inequality, along the lines proposed by
Ohsawa [Ohs95].
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(13.1) Lemma (Ohsawa [Ohs95]). Let E be a Hermitian vector bundle on a complex
manifold X equipped with a Kähler metric ω. Let η, λ > 0 be smooth functions on X.
Then for every form u ∈D(X,Λp,qT ∗

X ⊗ E) with compact support we have

‖(η 1
2 + λ

1
2 )D′′∗u‖2 + ‖η 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + 2‖λ− 1

2 d′η ∧ u‖2

> 〈〈[η iΘE − i d′d′′η − iλ−1d′η ∧ d′′η,Λ]u, u〉〉.

Proof. Let us consider the “twisted” Laplace-Beltrami operators

D′ηD′∗ +D′∗ηD′ = η[D′, D′∗] + [D′, η]D′∗ + [D′∗, η]D′

= η∆′ + (d′η)D′∗ − (d′η)∗D′,

D′′ηD′′∗ +D′′∗ηD′′ = η[D′′, D′′∗] + [D′′, η]D′′∗ + [D′′∗, η]D′′

= η∆′′ + (d′′η)D′′∗ − (d′′η)∗D′′,

where η, (d′η), (d′′η) are abbreviated notations for the multiplication operators η•, (d′η)∧
•, (d′′η) ∧ •. By subtracting the above equalities and taking into account the Bochner-
Kodaira-Nakano identity ∆′′ −∆′ = [iΘE ,Λ], we get

D′′ηD′′∗ +D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′

= η[iΘE ,Λ] + (d′′η)D′′∗ − (d′′η)∗D′′ + (d′η)∗D′ − (d′η)D′∗.(13.2)

Moreover, the Jacobi identity yields

[D′′, [d′η,Λ]]− [d′η, [Λ, D′′]] + [Λ, [D′′, d′η]] = 0,

whilst [Λ, D′′] = −iD′∗ by the basic commutation relations 4.5. A straightforward com-
putation shows that [D′′, d′η] = −(d′d′′η) and [d′η,Λ] = i(d′′η)∗. Therefore we get

i[D′′, (d′′η)∗] + i[d′η,D′∗]− [Λ, (d′d′′η)] = 0,

that is,

[i d′d′′η,Λ] = [D′′, (d′′η)∗] + [D′∗, d′η] = D′′(d′′η)∗ + (d′′η)∗D′′ +D′∗(d′η) + (d′η)D′∗.

After adding this to (13.2), we find

D′′ηD′′∗ +D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′ + [i d′d′′η,Λ]

= η[iΘE ,Λ] + (d′′η)D′′∗ +D′′(d′′η)∗ + (d′η)∗D′ +D′∗(d′η).

We apply this identity to a form u ∈ D(X,Λp,qT ∗
X ⊗ E) and take the inner bracket

with u. Then
〈〈(D′′ηD′′∗)u, u〉〉 = 〈〈ηD′′∗u,D′′∗u〉〉 = ‖η 1

2D′′∗u‖2,
and likewise for the other similar terms. The above equalities imply

‖η 1
2D′′∗u‖2 + ‖η 1

2D′′u‖2 − ‖η 1
2D′u‖2 − ‖η 1

2D′∗u‖2
= 〈〈[η iΘE − i d′d′′η,Λ]u, u〉〉+ 2Re 〈〈D′′∗u, (d′′η)∗u〉〉+ 2Re 〈〈D′u, d′η ∧ u〉〉.
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By neglecting the negative terms −‖η 1
2D′u‖2 − ‖η 1

2D′∗u‖2 and adding the squares

‖λ 1
2D′′∗u‖2 + 2Re 〈〈D′′∗u, (d′′η)∗u〉〉+ ‖λ− 1

2 (d′′η)∗u‖2 > 0,

‖λ 1
2D′u‖2 + 2Re 〈〈D′u, d′η ∧ u〉〉+ ‖λ− 1

2 d′η ∧ u‖2 > 0

we get

‖(η 1
2 + λ

1
2 )D′′∗u‖2 + ‖η 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + ‖λ− 1

2 d′η ∧ u‖2 + ‖λ− 1
2 (d′′η)∗u‖2

> 〈〈[η iΘE − i d′d′′η,Λ]u, u〉〉.

Finally, we use the identities

(d′η)∗(d′η)− (d′′η)(d′′η)∗ = i[d′′η,Λ](d′η) + i(d′′η)[d′η,Λ] = [id′′η ∧ d′η,Λ],
‖λ− 1

2 d′η ∧ u‖2 − ‖λ− 1
2 (d′′η)∗u‖2 = −〈〈[iλ−1d′η ∧ d′′η,Λ]u, u〉〉,

The inequality asserted in Lemma 13.1 follows by adding the second identity to our last
inequality. �

In the special case of (n, q)-forms, the forms D′u and d′η∧u are of bidegree (n+1, q),
hence the estimate takes the simpler form

(13.3) ‖(η 1
2 + λ

1
2 )D′′∗u‖2 + ‖η 1

2D′′u‖2 > 〈〈[η iΘE − i d′d′′η − iλ−1 d′η ∧ d′′η,Λ]u, u〉〉.

§ 13.B. Abstract L2 Existence Theorem for Solutions of ∂-Equations

Using standard arguments from functional analysis – actually just basic properties of
Hilbert spaces along the lines already explained in section 5 – the a priori inequality
(13.3) implies a very strong L2 existence theorem for solutions of ∂-equations.

(13.4) Proposition. Let X be a complete Kähler manifold equipped with a (non neces-
sarily complete) Kähler metric ω, and let E be a Hermitian vector bundle over X. Assume
that there are smooth and bounded functions η, λ > 0 on X such that the (Hermitian)
curvature operator

B = Bn,qE,ω,η = [η iΘE − i d′d′′η − iλ−1d′η ∧ d′′η,Λω]

is positive definite everywhere on Λn,qT ∗
X ⊗ E, for some q > 1. Then for every form

g ∈ L2(X,Λn,qT ∗
X ⊗ E) such that D′′g = 0 and

∫
X
〈B−1g, g〉 dVω < +∞, there exists

f ∈ L2(X,Λn,q−1T ∗
X ⊗E) such that D′′f = g and

∫

X

(η + λ)−1|f |2 dVω 6 2

∫

X

〈B−1g, g〉 dVω.

Proof. The proof is almost identical to the proof of standard L2 estimates for ∂ (see
Theorem 5.1), except that we use (13.3) instead of (4.7). Assume first that ω is complete.
With the same notation as in 7.4, we get for every v = v1 + v2 ∈ (KerD′′) ⊕ (KerD′′)⊥

the inequalities

|〈g, v〉|2 = |〈g, v1〉|2 6

∫

X

〈B−1g, g〉 dVω
∫

X

〈Bv1, v1〉 dVω,
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and

∫

X

〈Bv1, v1〉 dVω 6 ‖(η 1
2 + λ

1
2 )D′′∗v1‖2 + ‖η 1

2D′′v1‖2 = ‖(η 1
2 + λ

1
2 )D′′∗v‖2

provided that v ∈ DomD′′∗. Combining both, we find

|〈g, v〉|2 6
(∫

X

〈B−1g, g〉 dVω
)
‖(η 1

2 + λ
1
2 )D′′∗v‖2.

This shows the existence of an element w ∈ L2(X,Λn,qT ∗
X ⊗ E) such that

‖w‖2 6

∫

X

〈B−1g, g〉 dVω and

〈〈v, g〉〉 = 〈〈(η 1
2 + λ

1
2 )D′′∗v, w〉〉 ∀g ∈ DomD′′ ∩DomD′′∗.

As (η1/2 + λ
1
2 )2 6 2(η+ λ), it follows that f = (η1/2 +λ

1
2 )w satisfies D′′f = g as well as

the desired L2 estimate. If ω is not complete, we set ωε = ω + εω̂ with some complete
Kähler metric ω̂. The final conclusion is then obtained by passing to the limit and using
a monotonicity argument (the integrals are monotonic with respect to ε). �

(13.5) Remark. We will also need a variant of the L2-estimate, so as to obtain
approximate solutions with weaker requirements on the data : given δ > 0 and g ∈
L2(X,Λn,qT ∗

X ⊗ E) such that D′′g = 0 and
∫
X
〈(B + δI)−1g, g〉 dVω < +∞, there

exists an approximate solution f ∈ L2(X,Λn,q−1T ∗
X ⊗ E) and a correcting term h ∈

L2(X,Λn,qT ∗
X ⊗E) such that D′′f + δ1/2h = g and

∫

X

(η + λ)−1|f |2 dVω +

∫

X

|h|2 dVω 6 2

∫

X

〈(B + δI)−1g, g〉 dVω.

The proof is almost unchanged, we rely instead on the estimates

|〈g, v1〉|2 6

∫

X

〈(B + δI)−1g, g〉 dVω
∫

X

〈(B + δI)v1, v1〉 dVω,

and ∫

X

〈(B + δI)v1, v1〉 dVω 6 ‖(η 1
2 + λ

1
2 )D′′∗v‖2 + δ‖v‖2. �

§ 13.C. The L2 Extension Theorem

According to a concept already widely used in Section 5, a (non necessarily compact)
complex manifold will be said to be weakly pseudoconvex if it possesses a smooth weakly
plurisubharmonic exhaustion function.

(13.6) Theorem. Let X be a weakly pseudoconvex complex n-dimensional manifold
possessing a Kähler metric ω, and let L (resp. E) be a Hermitian holomorphic line
bundle (resp. a Hermitian holomorphic vector bundle of rank r over X), and s a global
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holomorphic section of E. Assume that s is generically transverse to the zero section,
and let

Y =
{
x ∈ X ; s(x) = 0,Λrds(x) 6= 0

}
, p = dimY = n− r.

Moreover, assume that the (1, 1)-form iΘL+r i d
′d′′ log |s|2 is semi-positive and that there

is a continuous function α > 1 such that the following two inequalities hold everywhere
on X :

(a) iΘL + r i d′d′′ log |s|2 > α−1 {iΘEs, s}
|s|2 ,

(b) |s| 6 e−α.

Then for every smooth D′′-closed (0, q)-form f over Y with values in the line bundle
ΛnT ∗

X ⊗ L (restricted to Y ), such that
∫
Y
|f |2|Λr(ds)|−2dVω < +∞, there exists a D′′-

closed (0, q)-form F over X with values in ΛnT ∗
X ⊗ L, such that F is smooth over

X r {s = Λr(ds) = 0}, satisfies F↾Y = f and

∫

X

|F |2
|s|2r(− log |s|)2 dVX,ω 6 Cr

∫

Y

|f |2
|Λr(ds)|2dVY,ω ,

where Cr is a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points where
s vanishes) induces a vector bundle isomorphism ds : TX/TY → E along Y , hence a non
vanishing section Λr(ds), taking values in

Λr(TX/TY )
∗ ⊗ detE ⊂ ΛrT ∗

X ⊗ detE.

The norm |Λr(ds)| is computed here with respect to the metrics on ΛrT ∗
X and detE

induced by the Kähler metric ω and by the given metric on E. Also notice that if
hypothesis (a) is satisfied for some α, one can always achieve (b) by multiplying the
metric of E with a sufficiently small weight e−χ◦ψ (with ψ a psh exhaustion on X and χ
a convex increasing function; property (a) remains valid after we multiply the metric of
L by e−(r+α−1

0 )χ◦ψ, where α0 = infx∈X α(x).

Proof. Let us first assume that the singularity set Σ = {s = 0} ∩ {Λr(ds) = 0} is empty,
so that Y is closed and nonsingular. We claim that there exists a smooth section

F∞ ∈ C∞(X,Λn,qT ∗
X ⊗ L) = C∞(X,Λ0,qT ∗

X ⊗ ΛnT ∗
X ⊗ L)

such that

(a) F∞ coincides with f in restriction to Y ,

(b) |F∞| = |f | at every point of Y ,

(c) D′′F∞ = 0 at every point of Y .

For this, consider coordinates patches Uj ⊂ X biholomorphic to polydiscs such that

Uj ∩ Y = {z ∈ Uj ; z1 = · · · = zr = 0}
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in the corresponding coordinates. We can certainly find a section

f̃ ∈ C∞(X,Λn,qT ∗
X ⊗ L)

which achieves (a) and (b), since the restriction map (Λ0,qT ∗
X)↾Y → Λ0,qT ∗

Y can be viewed
as an orthogonal projection onto a C∞-subbundle of (Λ0,qT ∗

X)↾Y . It is enough to extend
this subbundle from Uj ∩ Y to Uj (e.g. by extending each component of a frame), and
then to extend f globally via local smooth extensions and a partition of unity. For any
such extension f̃ we have

(D′′f̃)↾Y = (D′′f̃↾Y ) = D′′f = 0.

It follows that we can divide D′′f̃ =
∑

16λ6r gj,λ(z) ∧ dzλ on Uj ∩ Y , with suitable
smooth (0, q)-forms gj,λ which we also extend arbitrarily from Uj ∩ Y to Uj . Then

F∞ := f̃ −
∑

j

θj(z)
∑

16λ6r

zλgj,λ(z)

coincides with f̃ on Y and satisfies (c). Since we do not know about F∞ except in an
infinitesimal neighborhood of Y , we will consider a truncation Fε of F∞ with support in
a small tubular neighborhood |s| < ε of Y , and solve the equation D′′uε = D′′Fε with
the constraint that uε should be 0 on Y . As codimY = r, this will be the case if we can
guarantee that |uε|2|s|−2r is locally integrable near Y . For this, we will apply Proposition
13.4 with a suitable choice of the functions η and λ, and an additional weight |s|−2r in
the metric of L.

Let us consider the smooth strictly convex function χ0 : ] − ∞, 0] → ] − ∞, 0]
defined by χ0(t) = t− log(1− t) for t 6 0, which is such that χ0(t) 6 t, 1 6 χ′

0 6 2 and
χ′′
0(t) = 1/(1− t)2. We set

σε = log(|s|2 + ε2), ηε = ε− χ0(σε).

As |s| 6 e−α 6 e−1, we have σε 6 0 for ε small, and

ηε > ε− σε > ε− log(e−2α + ε2).

Given a relatively compact subset Xc = {ψ < c} ⊂⊂ X , we thus have ηε > 2α for
ε < ε(c) small enough. Simple calculations yield

i d′σε =
i{D′s, s}
|s|2 + ε2

,

i d′d′′σε =
i{D′s,D′s}
|s|2 + ε2

− i{D′s, s} ∧ {s,D′s}
(|s|2 + ε2)2

− {iΘEs, s}
|s|2 + ε2

>
ε2

|s|2
i{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
− {iΘEs, s}

|s|2 + ε2

>
ε2

|s|2 id
′σε ∧ d′′σε −

{iΘEs, s}
|s|2 + ε2

,
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thanks to Lagrange’s inequality i{D′s, s} ∧ {s,D′s} 6 |s|2i{D′s,D′s}. On the other
hand, we have d′ηε = −χ′

0(σε)dσε with 1 6 χ′
0(σε) 6 2, hence

−id′d′′ηε = χ′
0(σε)id

′d′′σε + χ′′
0(σε)id

′σε ∧ d′′σε

>
( 1

χ′
0(σε)

ε2

|s|2 +
χ′′
0(σε)

χ′
0(σε)

2

)
id′ηε ∧ d′′ηε − χ′

0(σε)
{iΘEs, s}
|s|2 + ε2

.

We consider the original metric of L multiplied by the weight |s|−2r. In this way, we get
a curvature form

iΘL + r id′d′′ log |s|2 >
1

2
χ′
0(σε)α

−1 {iΘEs, s}
|s|2 + ε2

by hypothesis (a), thanks to the semipositivity of the left hand side and the fact that
1
2
χ′
0(σε)

1
|s|2+ε2 6 1

|s|2 . As ηε > 2α on Xc for ε small, we infer

ηε(iΘL + id′d′′ log |s|2)− id′d′′ηε −
χ′′
0(σε)

χ′
0(σε)

2
id′ηε ∧ d′′ηε >

ε2

χ′
0(σε)|s|2

id′ηε ∧ d′′ηε

on Xc. Hence, if λε = χ′
0(σε)

2/χ′′
0(σε), we obtain

Bε :=
[
ηε(iΘL + id′d′′ log |s|2)− id′d′′ηε − λ−1

ε id′ηε ∧ d′′ηε , Λ
]

>
[ ε2

χ′
0(σε)|s|2

id′ηε ∧ d′′ηε , Λ
]
=

ε2

χ′
0(σε)|s|2

(d′′ηε)(d
′′ηε)

∗

as an operator on (n, q)-forms (see the proof of Lemma 13.1).

Let θ : R → [0, 1] be a smooth cut-off function such that θ(t) = 1 on ] − ∞, 1/2],
Supp θ ⊂ ] − ∞, 1[ and |θ′| 6 3. For ε > 0 small, we consider the (n, q)-form Fε =
θ(ε−2|s|2)F∞ and its D′′-derivative

gε = D′′Fε = (1 + ε−2|s|2)θ′(ε−2|s|2)d′′σε ∧ F∞ + θ(ε−2|s|2)D′′F∞

(as is easily seen from the equality 1 + ε−2|s|2 = ε−2eσε ). We observe that gε has its
support contained in the tubular neighborhood |s| < ε ; moreover, as ε → 0, the second
term in the right hand side converges uniformly to 0 on every compact set; it will therefore
produce no contribution in the limit. On the other hand, the first term has the same
order of magnitude as d′′σε and d′′ηε, and can be controlled in terms of Bε. In fact, for
any (n, q)-form u and any (n, q + 1)-form v we have

|〈d′′ηε ∧ u, v〉|2 = |〈u, (d′′ηε)∗v〉|2 6 |u|2|(d′′ηε)∗v|2

= |u|2〈(d′′ηε)(d′′ηε)∗v, v〉 6
χ′
0(σε)|s|2
ε2

|u|2〈Bεv, v〉.

This implies

〈B−1
ε (d′′ηε ∧ u), (d′′ηε ∧ u)〉 6

χ′
0(σε)|s|2
ε2

|u|2.

The main term in gε can be written

g(1)ε := (1 + ε−2|s|2)θ′(ε−2|s|2)χ′
0(σε)

−1d′′ηε ∧ F∞.
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On Supp g
(1)
ε ⊂ {|s| < ε}, since χ′

0(σε) > 1, we thus find

〈B−1
ε g(1)ε , g(1)ε 〉 6 (1 + ε−2|s|2)2 θ′(ε−2|s|2)2|F∞|2.

Instead of working on X itself, we will work rather on the relatively compact subset
Xc r Yc, where Yc = Y ∩Xc = Y ∩ {ψ < c}. We know that Xc r Yc is again complete
Kähler by a standard lemma (see [Dem82b], Theorem 1.5). In this way, we avoid the
singularity of the weight |s|−2r along Y . We find

∫

XcrYc

〈B−1
ε g(1)ε , g(1)ε 〉 |s|−2rdVω 6

∫

XcrYc

|F∞|2(1 + ε−2|s|2)2θ′(ε−2|s|2)2|s|−2rdVω.

Now, we let ε → 0 and view s as “transverse local coordinates” around Y . As F∞
coincides with f on Y , it is not hard to see that the right hand side converges to
cr

∫
Yc

|f |2|Λr(ds)|−2dVY,ω where cr is the “universal” constant

cr =

∫

z∈Cr, |z|61

(1 + |z|2)2θ′(|z|2)2 i
r2Λr(dz) ∧ Λr(dz)

|z|2r < +∞

depending only on r. The second term

g(2)ε = θ(ε−2|s|2)d′′F∞

in gε satisfies Supp(g
(2)
ε ) ⊂ {|s| < ε} and |g(2)ε | = O(|s|) (just look at the Taylor expansion

of d′′F∞ near Y ). From this we easily conclude that
∫

XcrYc

〈B−1
ε g(2)ε , g(2)ε 〉 |s|−2rdVX,ω = O(ε2),

provided that Bε remains locally uniformly bounded below near Y (this is the case for
instance if we have strict inequalities in the curvature assumption (a)). If this holds true,
we apply Proposition 13.4 on XcrYc with the additional weight factor |s|−2r. Otherwise,
we use the modified estimate stated in Remark 13.5 in order to solve the approximate
equation D′′u + δ1/2h = gε with δ > 0 small. This yields sections u = uc,ε,δ, h = hc,ε,δ
such that

∫

XcrYc

(ηε + λε)
−1|uc,ε,δ|2|s|−2r dVω +

∫

XcrYc

|hc,ε,δ|2|s|−2r dVω

6 2

∫

XcrYc

〈(Bε + δI)−1gε, gε〉|s|−2r dVω,

and the right hand side is under control in all cases. The extra error term δ1/2h can
be removed at the end by letting δ tend to 0. Since there is essentially no additional
difficulty involved in this process, we will assume for simplicity of exposition that we do
have the required lower bound for Bε and the estimates of g

(1)
ε and g

(2)
ε as above. For

δ = 0, the above estimate provides a solution uc,ε of the equation D′′uc,ε = gε = D′′Fε
on Xc r Yc, such that

∫

XcrYc

(ηε + λε)
−1|uc,ε|2|s|−2rdVX,ω 6 2

∫

XcrYc

〈B−1
ε gε, gε〉 |s|−2rdVX,ω

6 2 cr

∫

Yc

|f |2
|Λr(ds)|2dVY,ω +O(ε).
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Here we have

σε = log(|s|2 + ε2) 6 log(e−2α + ε2) 6 −2α +O(ε2) 6 −2 +O(ε2),

ηε = ε− χ0(σε) 6 (1 +O(ε))σ2
ε ,

λε =
χ′
0(σε)

2

χ′′
0(σε)

= (1− σε)
2 + (1− σε) 6 (3 +O(ε))σ2

ε ,

ηε + λε 6 (4 +O(ε))σ2
ε 6 (4 +O(ε))

(
− log(|s|2 + ε2)

)2
.

As Fε is uniformly bounded with support in {|s| < ε}, we conclude from an obvious
volume estimate that

∫

Xc

|Fε|2dVX,ω
(|s|2 + ε2)r(− log(|s|2 + ε2))2

6
Const.

(log ε)2
.

Therefore, thanks to the usual inequality |t+ u|2 6 (1+ k)|t|2 + (1+ k−1)|u|2 applied to

the sum Fc,ε = f̃ε − uc,ε with k = | log ε|, we obtain from our previous estimates

∫

XcrYc

|Fc,ε|2dVX,ω
(|s|2 + ε2)r(− log(|s|2 + ε2))2

6 8 cr

∫

Yc

|f |2dVY,ω
|Λr(ds)|2 +O(| log ε|−1).

In addition to this, we have d′′Fc,ε = 0 by construction, and this equation can be seen
to extend from Xc r Yc to Xc by the L2 estimate ([Dem82b], Lemma 6.9).

If q = 0, then uc,ε must also be smooth, and the non integrability of the weight |s|−2r

along Y shows that uc,ε vanishes on Y , therefore

Fc,ε↾Y = Fε↾Y = F∞↾Y = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first as
ε → 0, and then as c → +∞. The initial assumption that Σ = {s = Λr(ds) = 0} is
empty can be easily removed in two steps: i) the result is true if X is Stein, since we can
always find a complex hypersurface Z in X such that Σ ⊂ Y ∩Z ( Y , and then apply the
extension theorem on the Stein manifold X r Z, in combination with L2 extension; ii)
the whole procedure still works when Σ is nowhere dense in Y (and possibly nonempty).

Indeed local L2 extensions f̃j still exist by step i) applied on small coordinate balls Uj ;

we then set F∞ =
∑
θj f̃j and observe that |D′′F∞|2|s|−2r is locally integrable, thanks to

the estimate
∫
Uj

|f̃j|2|s|−2r(log |s|)−2dV < +∞ and the fact that |∑ d′′θj ∧ f̃j | = O(|s|δ)
for suitable δ > 0 [as follows from Hilbert’s Nullstensatz applied to f̃j − f̃k at singular
points of Y ].

When q > 1, the arguments needed to get a smooth solution involve more delicate
considerations, and we will skip the details, which are extremely technical and not very
enlightening.

(13.7) Remarks.

(a) When q = 0, the estimates provided by Theorem 13.6 are independent of the Kähler
metric ω. In fact, if f and F are holomorphic sections of ΛnT ∗

X ⊗ L over Y (resp. X),
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viewed as (n, 0)-forms with values in L, we can “divide” f by Λr(ds) ∈ Λr(TX/TY )∗ ⊗
detE to get a section f/Λr(ds) of ΛpT ∗

Y ⊗ L⊗ (detE)−1 over Y . We then find

|F |2dVX,ω = in
2{F, F},

|f |2
|Λr(ds)|2 dVY,ω = ip

2{f/Λr(ds), f/Λr(ds)},

where {•, •} is the canonical bilinear pairing described in (3.3).

(b) The Hermitian structure on E is not really used in depth. In fact, one only needs E
to be equipped with a Finsler metric, that is, a smooth complex homogeneous function
of degree 2 on E (or equivalently, a smooth Hermitian metric on the tautological bundle
OP (E)(−1) of lines of E over the projectivized bundle P (E), see (4.12)). The section s
of E induces a section [s] of P (E) over X r s−1(0) and a corresponding section s̃ of the
pull-back line bundle [s]∗OP (E)(−1). A trivial check shows that Theorem 13.6 as well as
its proof extend to the case of a Finsler metric on E, if we replace everywhere {iΘEs, s}
by {iΘ[s]∗OP (E)(−1)s̃, s̃ } (especially in hypothesis 13.6 (b)). A minor issue is that |Λr(ds)|
is (a priori) no longer defined, since no obvious Hermitian norm exists on detE. A
posteriori, we have the following ad hoc definition of a metric on (detE)∗ which makes
the L2 estimates work as before: for x ∈ X and ξ ∈ ΛrE∗

x, we set

|ξ|2x =
1

cr

∫

z∈Ex

(1 + |z|2)2θ′(|z|2)2 ir
2

ξ ∧ ξ
|z|2r

where |z| is the Finsler norm on Ex [the constant cr is there to make the result agree
with the Hermitian case; it is not hard to see that this metric does not depend on the
choice of θ ].

(c) Even when q = 0, the regularity of uc,ε,δ requires some explanations, in case δ > 0.
In fact, the equation

D′′uc,ε,δ + δ1/2hc,ε,δ = gε = D′′Fε

does not immediately imply smoothness of uc,ε,δ (since hc,ε,δ need not be smooth in gene-
ral). However, if we take the pair (uc,ε,δ, hc,ε,δ) to be the minimal L2 solution orthogonal
to the kernel ofD′′⊕δ1/2 Id, then it must be in the closure of the image of the adjoint ope-
rator D′′ ∗ ⊕ δ1/2 Id, i.e. it must satisfy the additional condition D′′ ∗hc,ε,δ = δ1/2uc,ε,δ,
whence (∆′′ + δ Id)hc,ε,δ = (D′′D′′ ∗ + δ Id)hc,ε,δ = δ1/2D′′Fε, and therefore hc,ε,δ is
smooth by the ellipticity of ∆′′. �

We now present a few interesting corollaries. The first one is a surjectivity theorem
for restriction morphisms in Dolbeault cohomology.

(13.8) Corollary. Let X be a projective algebraic manifold and E a holomorphic vec-
tor bundle of rank r over X, s a holomorphic section of E which is everywhere trans-
verse to the zero section, Y = s−1(0), and let L be a holomorphic line bundle such that
F = L1/r ⊗ E∗ is Griffiths positive (by this, we just mean formally that
1
r iΘL ⊗ IdE −iΘE >Grif 0). Then the restriction morphism

H0,q(X,ΛnT ∗
X ⊗ L) → H0,q(Y,ΛnT ∗

X ⊗ L)
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is surjective for every q > 0.

Proof. A short computation gives

i d′d′′ log |s|2 = i d′
({s,D′s}

|s|2
)

= i
({D′s,D′s}

|s|2 − {D′s, s} ∧ {s,D′s}
|s|4 +

{s,ΘEs}
|s|2

)
> −{iΘEs, s}

|s|2

thanks to Lagrange’s inequality and the fact that ΘE is antisymmetric. Hence, if δ is a
small positive constant such that

−iΘE +
1

r
iΘL ⊗ IdE >Grif δ ω ⊗ IdE > 0,

we find
iΘL + r i d′d′′ log |s|2 > rδ ω.

The compactness of X implies iΘE 6 Cω⊗ IdE for some C > 0. Theorem 13.6 can thus
be applied with α = rδ/C and Corollary 13.8 follows. By Remark 13.7 (b), the above
surjectivity property even holds if L1/r ⊗ E∗ is just assumed to be ample (in the sense
that the associated line bundle π∗L1/r⊗OP (E)(1) is positive on the projectivized bundle
π : P (E) → X of lines of E). �

Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains Ω ⊂⊂ Cn. Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(13.9) Corollary. Let Ω ⊂ Cn be a bounded pseudoconvex domain, and let Y ⊂ X be a
nonsingular complex submanifold defined by a section s of some Hermitian vector bundle
E with bounded curvature tensor on Ω. Assume that s is everywhere transverse to the
zero section and that |s| 6 e−1 on Ω. Then there is a constant C > 0 (depending only
on E), with the following property: for every psh function ϕ on Ω, every holomorphic
function f on Y with

∫
Y
|f |2|Λr(ds)|−2e−ϕdVY < +∞, there exists an extension F of f

to Ω such that
∫

Ω

|F |2
|s|2r(− log |s|)2 e

−ϕdVΩ 6 C

∫

Y

|f |2
|Λr(ds)|2 e

−ϕdVY .

Proof. We apply essentially the same idea as for the previous corollary, in the special case
when L = Ω × C is the trivial bundle equipped with a weight function e−ϕ−A|z|2 . The
choice of a sufficiently large constant A > 0 guarantees that the curvature assumption
13.6 a) is satisfied (A just depends on the presupposed bound for the curvature tensor
of E). �

(13.10) Remark. The special case when Y = {z0} is a point is especially interesting. In
that case, we just take s(z) = (e diamΩ)−1(z−z0), viewed as a section of the rank r = n
trivial vector bundle Ω× Cn with |s| 6 e−1. We take α = 1 and replace |s|2n(− log |s|)2
in the denominator by |s|2(n−ε), using the inequality

− log |s| = 1

ε
log |s|−ε 6 1

ε
|s|−ε, ∀ε > 0.



13. The Ohsawa-Takegoshi L2 Extension Theorem 133

For any given value f0, we then find a holomorphic function f such that f(z0) = f0 and

∫

Ω

|f(z)|2
|z − z0|2(n−ε)

e−ϕ(z)dVΩ 6
Cn

ε2(diamΩ)2(n−ε)
|f0|2e−ϕ(z0).

§ 13.D. Skoda’s Division Theorem for Ideals of Holomorphic Functions

Following a strategy inpired by T. Ohsawa [Ohs02; Ohs04], we reprove here a version of
Skoda’s division theorem for ideals of holomorphic functions, by reducing it to an exten-
sion problem. Our approach uses Manivel’s version of the extension theorem presented
above, and leads to results very close to those of Skoda [Sko80], albeit somewhat weaker.

Let (X,ω) be a Kähler manifold, dimX = n, and let g : E → Q a holomorphic
morphism of Hermitian vector bundles overX . Assume for a moment that g is everywhere
surjective. Given a holomorphic line bundle L → X , we are interested in conditions
insuring that the induced morphism g : H0(X,KX ⊗ E ⊗ L) → H0(X,KX ⊗ Q ⊗ L) is
also surjective (as is observed frequently in algebraic geometry, it will be easier to twist
by an adjoint line bundle KX ⊗ L than by L alone). For that purpose, it is natural to
consider the subbundle S = Ker g ⊂ E and the exact sequence

(13.11) 0 −→ S
j−→ E

g−→ Q −→ 0

where j : S → E is the inclusion, as well as the dual exact sequence

(13.11′) 0 −→ Q∗ g∗−→ E∗ j∗−→ S∗ −→ 0,

which we will twist by suitable line bundles. The main idea of [Ohs02; Ohs04] is that
finding a lifting of a section by g is essentially equivalent to extending the related section
on Y = P (Q∗) = P(Q) to X = P (E∗) = P(E), using the obvious embedding Y ⊂ X of
the projectivized bundles. In fact, if rS = rE − rQ are the respective ranks of our vector
bundles, we have the classical formula

(13.12) K
X

= KP(E) = π∗(KX ⊗ detE)⊗ OP(E)(−rS)

where π : P(E) → X is the canonical projection. Therefore, since E coincides with the
direct image sheaf π∗OP(E)(1), a section of H0(X,KX ⊗ E ⊗ L) can also be seen as a
section of

(13.13) H0(X, K
X

⊗ O
X

(rS + 1)⊗ π∗(L⊗ detE−1)).

Now, since O
X

(1)↾ cY = O
Y

(1) = OP(Q)(1), the lifting problem is equivalent to extending
to X a section of the line bundle (K

X

⊗L)↾Y where L = O
X

(rS +1)⊗π∗(L⊗ detE−1).
As a submanifold, Y is the zero locus of the bundle morphism

OP(E)(−1) →֒ π∗E∗ → π∗(E∗/Q∗) = π∗S∗,

hence it is the (transverse) zero locus of a naturally defined section

(13.14) s ∈ H0(X,E) where E := π∗S∗ ⊗ OP(E)(1).
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Let us assume that E is endowed with a smooth Hermitian metric h such that ΘE,h is
Griffiths semi-positive. We equip Q with the quotient metric and S, OP(E)(1), detE,
E (...) with the induced metrics. A sufficient curvature condition needed to apply the
Ohsawa-Takegoshi-Manivel extension theorem is

iΘ
L

+ rS id
′d′′ log |s|2 > ε

{iΘ
E

s, s}
|s|2

for ε > 0 small enough (i.e. in some range ε ∈ [0, ε0], ε0 6 1). Since id′d′′ log |s|2 >

−iΘ
O(P(E)(1)− {iΘπ∗S∗s,s}

|s|2 , we obtain the sufficient condition

(13.15) π∗iΘL⊗detE−1 + (1− ε)iΘ
OP(E)(1) − (rS + ε)

{iΘπ∗S∗s, s}
|s|2 > 0, ε ∈ [0, ε0].

The assumption that E is Griffiths semi-positive implies iΘdetE > 0, iΘ
OP(E)(1) > 0 and

also

(13.16)
{iΘπ∗S∗s, s}

|s|2 6 iΘdetQ.

In fact this is equivalent to proving that S⊗detQ is Griffiths semi-positive, but we have
in fact S ⊗ detQ = S ⊗ detS−1 ⊗ detE = ΛrS−1S∗ ⊗ detE, which is a quotient of
ΛrS−1E∗ ⊗ detE = ΛrE−rS+1E > 0. This shows that (13.15) is implied by the simpler
condition

(13.17) iΘL > iΘdetE + (rS + ε0)iΘdetQ,

in particular L = detE ⊗ (detQ)k, k > rS , satisfies the curvature condition. We derive
from there:

(13.18) Theorem. Assume that (X,ω) is a Kähler manifold possessing a complete
Kähler metric ω̂, and let g : E → Q be a surjective morphism of holomorphic vector bun-
dles, where (E, hE) is a Griffiths semi-positive Hermitian bundle. Consider a Hermitian
holomorphic line bundle (L, hL) such that

iΘL − (rS + ε)iΘdetQ − iΘdetE > 0, rS = rE − rQ, ε > 0.

Then for every L2 holomorphic section f ∈ H0(X,KX ⊗Q ⊗ L) there exists a L2 holo-
morphic section h ∈ H0(X,KX ⊗ E ⊗ L) such that f = g · h and ‖h‖2 6 Cn,rE ,ε‖f‖2.

Proof. We apply Theorem 13.6 with respect to the data (X,Y,E,L) and α = ε−1,
r = rS . Since |s| 6 1, we have to multiply s by δ = exp(−1/ε) to enforce hypothesis
13.6 (b). This affects the final estimate only as far as the term log |s| is concerned,
since both |s|2r and |Λr(ds)|2 = 1 are multiplied by δ2r. Finally, we apply Fubini’s
theorem to reduce integrals over X or Y to integrals over X , observing that all fibers of
X = P(E) → X are isometric and therefore produce the same fiber integral. Theorem
13.18 follows. By exercising a little more care in the estimates, one sees that the constant
Cn,rE ,ε is actually bounded by Cn,rEε

−2, where the ε−2 comes from the term (− log |s|)2,
after s has been multiplied by exp(−1/ε). �
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Skoda’s original method is slightly more accurate. It shows that one can take
Cn,rE ,ε = ε−1, and, more importantly, replaces the curvature hypothesis by the weaker
one

(13.19)
iΘL − (k + ε)iΘdetQ − iΘdetE > 0,

where k = min(rS , n), rS = rE − rQ, n = dimX , ε > 0,

which does not seem so easy to obtain with the present method. It is however possible to
get estimates also when Q is endowed with a metric given a priori, that can be distinct
from the quotient metric of E by g. Then the map g∗(gg∗)−1 : Q −→ E is the lifting of
Q orthogonal to S = Ker g. The quotient metric | • |′ on Q is therefore defined in terms
of the original metric | • | by

|v|′2 = |g∗(gg∗)−1v|2 = 〈(gg∗)−1v, v〉 = det(gg∗)−1 〈g̃g∗v, v〉

where g̃g∗ ∈ End(Q) denotes the endomorphism of Q whose matrix is the transposed
comatrix of gg∗. For every w ∈ detQ, we find

|w|′2 = det(gg∗)−1 |w|2.

If Q′ denotes the bundle Q with the quotient metric, we get

iΘdetQ′ = iΘdetQ + id′d′′ log det(gg∗).

In order that the hypotheses of Theorem 13.18 be satisfied, we are led to define a new

metric | • |′ on L by |u|′2 = |u|2
(
det(gg∗)

)−m−ε
. Then

iΘL′ = iΘL + (m+ ε) id′d′′ log det(gg∗) > (m+ ε) iΘdetQ′ .

Theorem 13.18 applied to (E,Q′, L′) can now be reformulated:

(13.20) Theorem. Let X be a weakly pseudoconvex manifold equipped with a Kähler
metric ω, let E → Q be a generically surjective morphism of Hermitian vector bundles
with E Griffiths semi-positive, and let L → X be a Hermitian holomorphic line bundle.
Assume that

iΘL − (rS + ε)iΘdetQ − iΘdetE > 0, rS = rE − rQ, ε > 0.

Then for every holomorphic section f of KX ⊗Q⊗ L such that

I =

∫

X

〈g̃g∗f, f〉 (det gg∗)−rS−1−ε dV < +∞,

there exists a holomorphic section of KX ⊗ E ⊗ L such that f = g · h and

∫

X

|h|2 (det gg∗)−rS−ε dV 6 Cn,rE ,ε I.

In case Q is of rank 1, the estimate reduces to

∫

X

|h|2 |g|−2rS−2ε dV 6 Cn,rE,ε

∫

X

|f |2 |g|−2(rS+1)−2ε dV.
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Proof. if Z ⊂ X is the analytic locus where g : E → Q is not surjective and Xc = {ψ < c}
is an exhaustion ofX by weakly pseudoconvex relatively compact open subsets, we exploit
here the fact that XcrZ carries a complete metric (see [Dem82b]). It is easy to see that
the L2 conditions forces a section defined a priori only on X r Z to extend to X . �

The special case where E = O

⊕p
Ω and Q = OΩ are trivial bundles over a weakly

pseudocovex open set Ω ⊂ Cn is already a quite substantial theorem, which goes back to
[Sko72b]. In this case, we take L to be the Hermitian line bundle (OΩ, e

−ϕ) associated
with an arbitrary plurisubharmonic function ϕ on Ω.

(13.21) Corollary (Skoda’s division theorem). Let f, g1, . . . , gp be holomorphic func-
tions on a weakly pseudoconvex open set Ω ⊂ Cn such that

∫

Ω

|f |2|g|−2(p+1)−2εe−ϕdV < +∞

for some plurisubharmonic function ϕ. Then there exist holomorphic functions hj, 1 6
j 6 p, such that f =

∑
gjhj on Ω, and

∫

X

|h|2 |g|−2(p−1)−2εe−ϕ dV 6 Cn,p,ε

∫

X

|f |2 |g|−2p−2εe−ϕ dV.

14. Approximation of Closed Positive Currents by Analytic Cy-
cles

§ 14.A. Approximation of Plurisubharmonic Functions Via Bergman kernels

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that every
psh function on a pseudoconvex open set Ω ⊂ Cn can be approximated very accurately
by functions of the form c log |f |, where c > 0 and f is a holomorphic function. The main
idea is taken from [Dem92]. For other applications to algebraic geometry, see [Dem93b]
and Demailly-Kollár [DK01]. Recall that the Lelong number of a function ϕ ∈ Psh(Ω)
at a point x0 is defined to be

(14.1) ν(ϕ, x0) = lim inf
z→x0

ϕ(z)

log |z − x0|
= lim
r→0+

supB(x0,r) ϕ

log r
.

In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) is equal to the vanishing order

ordx0
(f) = sup{k ∈ N ;Dαf(x0) = 0, ∀|α| < k}.

(14.2) Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex open
set Ω ⊂ Cn. For every m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic functions
f on Ω such that

∫
Ω
|f |2e−2mϕdλ < +∞ and let ϕm = 1

2m log
∑ |σℓ|2 where (σℓ) is an

orthonormal basis of HΩ(mϕ). Then there are constants C1, C2 > 0 independent of m
such that
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(a) ϕ(z)− C1

m
6 ϕm(z) 6 sup

|ζ−z|<r
ϕ(ζ)+

1

m
log

C2

rn
for every z ∈ Ω and r < d(z, ∂Ω). In

particular, ϕm converges to ϕ pointwise and in L1
loc topology on Ω when m→ +∞

and

(b) ν(ϕ, z)− n

m
6 ν(ϕm, z) 6 ν(ϕ, z) for every z ∈ Ω.

Proof. (a) Note that
∑ |σℓ(z)|2 is the square of the norm of the evaluation linear form

evz : f 7→ f(z) on HΩ(mϕ), since σℓ(z) = evz(σℓ) is the ℓ-th coordinate of evz in the
orthonormal basis (σℓ). In other words, we have

∑
|σℓ(z)|2 = sup

f∈B(1)

|f(z)|2

where B(1) is the unit ball of HΩ(mϕ) (The sum is called the Bergman kernel associated
with HΩ(mϕ)). As ϕ is locally bounded from above, the L2 topology is actually stronger
than the topology of uniform convergence on compact subsets of Ω. It follows that the
series

∑ |σℓ|2 converges uniformly on Ω and that its sum is real analytic. Moreover, by
what we just explained, we have

ϕm(z) = sup
f∈B(1)

1

m
log |f(z)|.

For z0 ∈ Ω and r < d(z0, ∂Ω), the mean value inequality applied to the psh function |f |2
implies

|f(z0)|2 6
1

πnr2n/n!

∫

|z−z−0|<r
|f(z)|2dλ(z)

6
1

πnr2n/n!
exp

(
2m sup

|z−z0|<r
ϕ(z)

) ∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z0) 6 sup
|z−z0|<r

ϕ(z) +
1

2m
log

1

πnr2n/n!

and the second inequality in (a) is proved – as we see, this is an easy consequence of the
mean value inequality. Conversely, the Ohsawa-Takegoshi extension theorem (Corollary
13.9) applied to the 0-dimensional subvariety {z0} ⊂ Ω shows that for any a ∈ C there
is a holomorphic function f on Ω such that f(z0) = a and

∫

Ω

|f |2e−2mϕdλ 6 C3|a|2e−2mϕ(z0),

where C3 only depends on n and diamΩ. We fix a such that the right hand side is 1.
Then ‖f‖ 6 1 and so we get

ϕm(z0) >
1

m
log |f(z0)| =

1

m
log |a| = ϕ(z) − logC3

2m
.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that
limm→+∞ sup|ζ−z|<1/m ϕ(ζ) = ϕ(z) by the upper semicontinuity of ϕ, and therefore

limϕm(z) = ϕ(z), since lim 1
m log(C2m

n) = 0.
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(b) The above estimates imply

sup
|z−z0|<r

ϕ(z) − C1

m
6 sup

|z−z0|<r
ϕm(z) 6 sup

|z−z0|<2r

ϕ(z) +
1

m
log

C2

rn
.

After dividing by log r < 0 when r → 0, we infer

sup|z−z0|<2r ϕ(z) +
1
m log C2

rn

log r
6

sup|z−z0|<r ϕm(z)

log r
6

sup|z−z0|<r ϕ(z)− C1

m

log r
,

and from this and definition (14.1), it follows immediately that

ν(ϕ, x)− n

m
6 ν(ϕm, z) 6 ν(ϕ, z). �

Theorem 14.2 implies in a straightforward manner the deep result of [Siu74] on the
analyticity of the Lelong number upperlevel sets.

(14.3) Corollary ([Siu74]). Let ϕ be a plurisubharmonic function on a complex mani-
fold X. Then, for every c > 0, the Lelong number upperlevel set

Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) > c

}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh
function ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in Theorem
14.2 (b) imply that

Ec(ϕ) =
⋂

m>m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations σ
(α)
ℓ (z) = 0 for all

multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable) intersection
of analytic sets. �

(14.4) Remark. It can be easily shown that the Lelong numbers of any closed positive
(p, p)-current coincide (at least locally) with the Lelong numbers of a suitable plurisub-
harmonic potential ϕ (see [Sko72a]). Hence Siu’s theorem also holds true for the Lelong
number upperlevel sets Ec(T ) of any closed positive (p, p)-current T .

§ 14.B. Global Approximation of Closed (1,1)-Currents on a Compact Com-
plex Manifold

We take here X to be an arbitrary compact complex manifold (no Kähler assumption is
needed). Now, let T be a closed (1, 1)-current on X . We assume that T is almost positive,
i.e. that there exists a (1, 1)-form γ with continuous coefficients such that T > γ ; the
case of positive currents (γ = 0) is of course the most important.

(14.5) Lemma. There exists a smooth closed (1, 1)-form α representing the same ∂∂-
cohomology class as T and an almost psh function ϕ on X such that T = α + i

π∂∂ϕ.
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(We say that a function ϕ is almost psh if its complex Hessian is bounded below by a
(1, 1)-form with locally bounded coefficients, that is, if i∂∂ϕ is almost positive).

Proof. Select an open covering (Uj) of X by coordinate balls such that T = i
π∂∂ϕj over

Uj , and construct a global function ϕ =
∑
θjϕj by means of a partition of unity {θj}

subordinate to Uj . Now, we observe that ϕ− ϕk is smooth on Uk because all differences
ϕj −ϕk are smooth in the intersections Uj ∩Uk and ϕ−ϕk =

∑
θj(ϕj −ϕk)). Therefore

α := T − i
π
∂∂ϕ is smoth. �

By replacing T with T−α and γ with γ−α, we can assume without loss of generality
that {T} = 0, i.e. that T = i

π∂∂ϕ with an almost psh function ϕ on X such that
i
π
∂∂ϕ > γ.

Our goal is to approximate T in the weak topology by currents Tm = rmi
π
∂∂ϕm

such their potentials ϕm have analytic singularities in the sense of Definition 1.10, more
precisely, defined on a neighborhood Vx0

of any point x0 ∈ X in the form ϕm(z) =
cm log

∑
j |σj,m|2 +O(1), where cm > 0 and the σj,m are holomorphic functions on Vx0

.

We select a finite covering (Wν) of X with open coordinate charts. Given δ > 0, we
take in each Wν a maximal family of points with (coordinate) distance to the boundary
> 3δ and mutual distance > δ/2. In this way, we get for δ > 0 small a finite covering
of X by open balls U ′

j of radius δ (actually every point is even at distance 6 δ/2 of
one of the centers, otherwise the family of points would not be maximal), such that
the concentric ball Uj of radius 2δ is relatively compact in the corresponding chart Wν .
Let τj : Uj −→ B(aj, 2δ) be the isomorphism given by the coordinates of Wν . Let
ε(δ) be a modulus of continuity for γ on the sets Uj , such that limδ→0 ε(δ) = 0 and
γx − γx′ 6 1

2
ε(δ)ωx for all x, x′ ∈ Uj . We denote by γj the (1, 1)-form with constant

coefficients on B(aj, 2δ) such that τ∗j γj coincides with γ − ε(δ)ω at τ−1
j (aj). Then we

have

(14.6) 0 6 γ − τ∗j γj 6 2ε(δ)ω on U ′
j

for δ > 0 small. We set ϕj = ϕ ◦ τ−1
j on B(aj, 2δ) and let qj be the homogeneous

quadratic function in z − aj such that i
π∂∂qj = γj on B(aj, 2δ). Finally, we set

(14.7) ψj(z) = ϕj(z)− qj(z) on B(aj, 2δ).

Then ψj is plurisubharmonic, since

i

π
∂∂(ψj ◦ τj) = T − τ∗j γj > γ − τ∗j γj > 0.

We let U ′
j ⊂⊂ U ′′

j ⊂⊂ Uj be concentric balls of radii δ, 1.5 δ, 2δ respectively. On each
open set Uj the function ψj := ϕ − qj ◦ τj defined in (14.7) is plurisubharmonic, so
Theorem 14.2 applied with Ω = Uj produces functions

(14.8) ψj,m =
1

2m
log

∑

ℓ

|σj,ℓ|2, (σj,ℓ) = basis of HUj
(mψj).

These functions approximate ψj as m tends to +∞ and satisfy the inequalities

(14.9) ψj(x)−
C1

m
6 ψj,m(x) 6 sup

|ζ−x|<r
ψj(ζ) +

1

m
log

C2

rn
.
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The functions ψj,m + qj ◦ τj on Uj then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating the
variation of the approximating functions on overlapping balls.

(14.10) Lemma. There are constants Cj,k independent of m and δ such that the almost
psh functions wj,m = 2m(ψj,m + qj ◦ τj), i.e.

wj,m(x) = 2mqj ◦ τj(x) + log
∑

ℓ

∣∣σj,ℓ(x)
∣∣2, x ∈ U ′′

j ,

satisfy
|wj,m − wk,m| 6 Cj,k

(
log δ−1 +mε(δ)δ2

)
on U ′′

j ∩ U ′′
k .

Proof. The details will be left as an exercise to the reader. The main idea is the following:
for any holomorphic function fj ∈ HUj

(mψj), a ∂ equation ∂u = ∂(θfj) can be solved
on Uk, where θ is a cut-off function with support in U ′′

j ∩ U ′′
k , on a ball of radius < δ/4,

equal to 1 on the ball of radius δ/8 centered at a given point x0 ∈ U ′′
j ∩U ′′

k . We apply the

L2 estimate with respect to the weight (n+ 1) log |x− x0|2 + 2mψk, where the first term
is picked up so as to force the solution u to vanish at x0, in such a way that Fk = u−θfj
is holomorphic and Fk(x0) = fj(x0). The discrepancy between the weights on U ′′

j and
U ′′
k is

ψj(x)− ψk(x) = −
(
qj ◦ τj(x)− qk ◦ τk(x)

)

and the ∂∂ of this difference is O(ε(δ)), so it is easy to correct the discrepancy up to a
O(ε(δ)δ2) term by multiplying our functions by an invertible holomorphic function Gjk.
In this way, we get a uniform L2 control on the L2 norm of the solution fk = GjkFk =
Gjk(u− θfj) of the form

∫

Uk

|fk|2e−2mψk 6 Cj,kδ
−2n−4emO(ε(δ)δ2)

∫

Uj

|fj|2e−2mψj .

The required estimate follows, using the fact that

e2mψj,m(x) =
∑

ℓ

|σj,ℓ(x)|2 = sup
f∈HUj

(mψj), ‖f‖61

|f(x)|2 on Uj ,

and the analogous equality on Uk. �

Now, the actual glueing of our almost psh functions is performed using the following
elementary partition of unity calculation.

(14.11) Lemma. Let U ′
j ⊂⊂ U ′′

j be locally finite open coverings of a complex manifold X
by relatively compact open sets, and let θj be smooth nonnegative functions with support
in U ′′

j , such that θj 6 1 on U ′′
j and θj = 1 on U ′

j. Let Aj > 0 be such that

i(θj∂∂θj − ∂θj ∧ ∂θj) > −Ajω on U ′′
j r U ′

j

for some positive (1, 1)-form ω. Finally, let wj be almost psh functions on Uj with the
property that i∂∂wj > γ for some real (1, 1)-form γ on M , and let Cj be constants such
that

wj(x) 6 Cj + sup
k 6=j, U ′

k
∋x
wk(x) on U ′′

j r U ′
j .
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Then the function w = log
(∑

θ2j e
wj

)
is almost psh and satisfies

i∂∂w > γ − 2
(∑

j

1lU ′′
j
rU ′

j
Aje

Cj

)
ω.

Proof. If we set αj = θj∂wj + 2∂θj, a straightforward computation shows that

∂w =

∑
(θ2j∂wj + 2θj∂θj)e

wj

∑
θ2j e

wj
=

∑
θje

wjαj∑
θ2j e

wj
,

∂∂w =

∑(
αj ∧ αj+θ2j∂∂wj+2θj∂∂θj−2∂θj∧∂θj

)
ewj

∑
θ2j e

wj
−

∑
j,k θje

wjθke
wkαj∧αk

(∑
θ2j e

wj

)2

=

∑
j<k

∣∣θjαk−θkαj
∣∣2ewjewk

(∑
θ2j e

wj

)2 +

∑
θ2j e

wj∂∂wj∑
θ2j e

wj
+

∑(
2θj∂∂θj−2∂θj∧∂θj

)
ewj

∑
θ2j e

wj

by using the Legendre identity. The first term in the last line is nonnegative and the
second one is > γ. In the third term, if x is in the support of θj∂∂θj − ∂θj ∧ ∂θj, then
x ∈ U ′′

j rU ′
j and so wj(x) 6 Cj +wk(x) for some k 6= j with U ′

k ∋ x and θk(x) = 1. This
gives

i

∑(
2θj∂∂θj − 2∂θj ∧ ∂θj

)
ewj

∑
θ2j e

wj
> −2

∑

j

1lU ′′
j
rU ′

j
eCjAjω.

The expected lower bound follows. �

We apply Lemma 14.11 to functions w̃j,m which are just slight modifications of the
functions wj,m = 2m(ψj,m + qj ◦ τj) occurring in (14.10) :

w̃j,m(x) = wj,m(x) + 2m
(C1

m
+ C3ε(δ)(δ

2/2− |τj(x)|2)
)

= 2m
(
ψj,m(x) + qj ◦ τj(x) +

C1

m
+ C3ε(δ)(δ

2/2− |τj(x)|2)
)

where x 7→ z = τj(x) is a local coordinate identifying Uj to B(0, 2δ), C1 is the constant
occurring in (14.9) and C3 is a sufficiently large constant. It is easy to see that we can
take Aj = C4δ

−2 in Lemma 14.11. We have

w̃j,m > wj,m + 2C1 +m
C3

2
ε(δ)δ2 on B(xj, δ/2) ⊂ U ′

j ,

since |τj(x)| 6 δ/2 on B(xj , δ/2), while

w̃j,m 6 wj,m + 2C1 −mC3ε(δ)δ
2 on U ′′

j r U ′
j .

For m > m0(δ) = (log δ−1/(ε(δ)δ2), Lemma 14.10 implies |wj,m − wk,m| 6 C5mε(δ)δ
2

on U ′′
j ∩ U ′′

k . Hence, for C3 large enough, we get

w̃j,m(x) 6 sup
k 6=j, B(xk ,δ/2)∋x

wk,m(x) 6 sup
k 6=j, U ′

k
∋x
wk,m(x) on U ′′

j r U ′
j ,
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and we can take Cj = 0 in the hypotheses of Lemma 14.11. The associated function

w = log
(∑

θ2j e
w̃j,m

)
is given by

w = log
∑

j

θ2j exp
(
2m

(
ψj,m + qj ◦ τj +

C1

m
+ C3ε(δ)(δ

2/2− |τj|2)
))
.

If we define ϕm = 1
2m
w, we get

ϕm(x) :=
1

2m
w(x) > ψj,m(x) + qj ◦ τj(x) +

C1

m
+
C3

4
ε(δ)δ2 > ϕ(x)

in view of (14.9), by picking an index j such that x ∈ B(xj, δ/2). In the opposite
direction, the maximum number N of overlapping balls Uj does not depend on δ, and
we thus get

w 6 logN + 2m
(
max
j

{
ψj,m(x) + qj ◦ τj(x)

}
+
C1

m
+
C3

2
ε(δ)δ2

)
.

By definition of ψj we have sup|ζ−x|<r ψj(ζ) 6 sup|ζ−x|<r ϕ(ζ)− qj ◦ τj(x) +C5r thanks
to the uniform Lipschitz continuity of qj ◦ τj , thus by (14.9) again we find

ϕm(x) 6
logN

2m
+ sup

|ζ−x|<r
ϕ(ζ) +

C1

m
+

1

m
log

C2

rn
+
C3

2
ε(δ)δ2 + C5r.

By taking for instance r = 1/m and δ = δm → 0, we see that ϕm converges to ϕ. On the
other hand (14.6) implies i

π
∂∂qj ◦ τj(x) = τ∗j γj > γ − 2ε(δ)ω, thus

i

π
∂∂w̃j,m > 2m

(
γ − C6ε(δ)ω

)
.

Lemma 14.11 then produces the lower bound

i

π
∂∂w > 2m

(
γ − C6ε(δ)ω

)
− C7δ

−2ω,

whence
i

π
∂∂ϕm > γ − C8ε(δ)ω

for m > m0(δ) = (log δ−1)/(ε(δ)δ2). We can fix δ = δm to be the smallest value of
δ > 0 such that m0(δ) 6 m, then δm → 0 and we have obtained a sequence of quasi psh
functions ϕm satisfying the following properties.

(14.12) Theorem. Let ϕ be an almost psh function on a compact complex manifold
X such that i

π
∂∂ϕ > γ for some continuous (1, 1)-form γ. Then there is a sequence of

almost psh functions ϕm such that ϕm has the same singularities as a logarithm of a sum
of squares of holomorphic functions and a decreasing sequence εm > 0 converging to 0
such that

(a) ϕ(x) < ϕm(x) 6 sup
|ζ−x|<r

ϕ(ζ) + C
( | log r|

m
+ r + εm

)

with respect to coordinate open sets covering X. In particular, ϕm converges to ϕ
pointwise and in L1(X) and
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(b) ν(ϕ, x)− n

m
6 ν(ϕm, x) 6 ν(ϕ, x) for every x ∈ X ;

(c)
i

π
∂∂ϕm > γ − εmω.

In particular, we can apply this to an arbitrary positive or almost positive closed
(1, 1)-current T = α+ i

π
∂∂ϕ.

(14.13) Corollary. Let T be an almost positive closed (1, 1)-current on a compact
complex manifold X such that T > γ for some continuous (1, 1)-form γ. Then there
is a sequence of currents Tm whose local potentials have the same singularities as 1/m
times a logarithm of a sum of squares of holomorphic functions and a decreasing sequence
εm > 0 converging to 0 such that

(a) Tm converges weakly to T ,

(b) ν(T, x)− n

m
6 ν(Tm, x) 6 ν(T, x) for every x ∈ X ;

(c) Tm > γ − εmω.

We say that our currents Tm are approximations of T possessing logarithmic poles.

By using blow-ups of X , the structure of the currents Tm can be better understood.
In fact, consider the coherent ideals Jm generated locally by the holomorphic functions

(σ
(k)
j,m) on Uk in the local approximations

ϕk,m =
1

2m
log

∑

j

|σ(k)
j,m|2 +O(1)

of the potential ϕ of T on Uk. These ideals are in fact globally defined, because the local

ideals J
(k)
m = (σ

(k)
j,m) are integrally closed, and they coincide on the intersections Uk ∩Uℓ

as they have the same order of vanishing by the proof of Lemma 14.10. By Hironaka
[Hir64], we can find a composition of blow-ups with smooth centers µm : X̃m → X such
that µ∗

mJm is an invertible ideal sheaf associated with a normal crossing divisor Dm.
Now, we can write

µ∗
mϕk,m = ϕk,m ◦ µm =

1

m
log |sDm

|+ ϕ̃k,m

where sDm
is the canonical section of O(−Dm) and ϕ̃k,m is a smooth potential. This

implies

(14.14) µ∗
mTm =

1

m
[Dm] + βm

where [Dm] is the current of integration over Dm and βm is a smooth closed (1, 1)-form
which satisfies the lower bound βm > µ∗

m(γ − εmω). (Recall that the pull-back of a
closed (1, 1)-current by a holomorphic map f is always well-defined, by taking a local
plurisubharmonic potential ϕ such that T = i∂∂ϕ and writing f∗T = i∂∂(ϕ ◦ f)). In the
remainder of this section, we derive from this a rather important geometric consequence,
first appeared in [DP04]). We need two related definitions.
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(14.15) Definition. A Kähler current on a compact complex space X is a closed positive
current T of bidegree (1, 1) which satisfies T > εω for some ε > 0 and some smooth
positive Hermitian form ω on X.

(14.16) Definition. A compact complex manifold is said to be in the Fujiki class C) if
it is bimeromorphic to a Kähler manifold (or equivalently, using Hironaka’s desingular-
ization theorem, if it admits a proper Kähler modification).

(14.17) Theorem. A compact complex manifold X is bimeromorphic to a Kähler mani-
fold (i.e. X ∈ C) if and only if it admits a Kähler current.

Proof. If X is bimeromorphic to a Kähler manifold Y , Hironaka’s desingularization
theorem implies that there exists a blow-up Ỹ of Y (obtained by a sequence of blow-ups
with smooth centers) such that the bimeromorphic map from Y to X can be resolved

into a modification µ : Ỹ → X . Then Ỹ is Kähler and the push-forward T = µ∗ω̃ of a
Kähler form ω̃ on Ỹ provides a Kähler current on X . In fact, if ω is a smooth Hermitian
form on X , there is a constant C such that µ∗ω 6 Cω̃ (by compactness of Ỹ ), hence

T = µ∗ω̃ > µ∗(C
−1µ∗ω) = C−1ω.

Conversely, assume that X admits a Kähler current T > εω. By Theorem 14.13 (c),

there exists a Kähler current T̃ = Tm > ε
2ω (with m ≫ 1 so large that εm 6 ε/2) in

the same ∂∂-cohomology class as T , possessing logarithmic poles. Observation (14.14)

implies the existence of a composition of blow-ups µ : X̃ → X such that

µ∗T̃ = [D̃] + β̃ on X̃,

where D̃ is a Q-divisor with normal crossings and β̃ a smooth closed (1, 1)-form such

that β̃ > ε
2µ

∗ω. In particular β̃ is positive outside the exceptional locus of µ. This is not

enough yet to produce a Kähler form on X̃, but we are not very far. Suppose that X̃ is
obtained as a tower of blow-ups

X̃ = XN → XN−1 → · · · → X1 → X0 = X,

where Xj+1 is the blow-up ofXj along a smooth center Yj ⊂ Xj . Denote by Ej+1 ⊂ Xj+1

the exceptional divisor, and let µj : Xj+1 → Xj be the blow-up map. Now, we use the
following simple

(14.18) Lemma. For every Kähler current Tj on Xj, there exists εj+1 > 0 and a
smooth form uj+1 in the ∂∂-cohomology class of [Ej+1] such that

Tj+1 = µ∗
jTj − εj+1uj+1

is a Kähler current on Xj+1.

Proof. The line bundle O(−Ej+1)|Ej+1 is equal to OP (Nj)(1) where Nj is the normal
bundle to Yj in Xj . Pick an arbitrary smooth Hermitian metric on Nj , use this metric
to get an induced Fubini-Study metric on OP (Nj)(1), and finally extend this metric as
a smooth Hermitian metric on the line bundle O(−Ej+1). Such a metric has positive
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curvature along tangent vectors of Xj+1 which are tangent to the fibers of Ej+1 =
P (Nj) → Yj . Assume furthermore that Tj > δjωj for some Hermitian form ωj on Xj

and a suitable 0 < δj ≪ 1. Then

µ∗
jTj − εj+1uj+1 > δjµ

∗
jωj − εj+1uj+1

where µ∗
jωj is semi-positive on Xj+1, positive definite on Xj+1 rEj+1, and also positive

definite on tangent vectors of TXj+1|Ej+1
which are not tangent to the fibers of Ej+1 → Yj .

The statement is then easily proved by taking εj+1 ≪ δj and by using an elementary
compactness argument on the unit sphere bundle of TXj+1

associated with any given
Hermitian metric. �

End of proof of Theorem 14.17. If ũj is the pull-back of uj to the final blow-up X̃, we

conclude inductively that µ∗T̃ −∑
εj ũj is a Kähler current. Therefore the smooth form

ω̃ := β̃ −
∑

εj ũj = µ∗T̃ −
∑

εj ũj − [D̃]

is Kähler and we see that X̃ is a Kähler manifold. �

(14.19) Remark. A special case of Theorem 14.16 is the following characterization
of Moishezon varieties (i.e. manifolds which are bimeromorphic to projective algebraic
varieties or, equivalently, whose algebraic dimension is equal to their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a Kähler current
T such that the De Rham cohomology class {T} is rational, i.e. {T} ∈ H2(X,Q).

In fact, in the above proof, we get an integral current T if we take the push forward
T = µ∗ω̃ of an integral ample class {ω̃} on Y , where µ : Y → X is a projective model
of Y . Conversely, if {T} is rational, we can take the ε′js to be rational in Lemma 3.5.
This produces at the end a Kähler metric ω̃ with rational De Rham cohomology class
on X̃ . Therefore X̃ is projective by the Kodaira embedding theorem. This result was
already observed in [JS93] (see also [Bon93; Bon98] for a more general perspective based
on a singular version of holomorphic Morse inequalities).

§ 14.C. Global Approximation by Divisors

We now translate our previous approximation theorems into a more algebro-geometric
setting. Namely, we assume that T is a closed positive (1, 1)-current which belongs to
the first Chern class c1(L) of a holomorphic line bundle L, and we assume here X to be
algebraic (i.e. projective or at the very least Moishezon).

Our goal is to show that T can be approximated by divisors which have roughly the
same Lelong numbers as T . The existence of weak approximations by divisors has already
been proved in [Lel72] for currents defined on a pseudoconvex open set Ω ⊂ Cn with
H2(Ω,R) = 0, and in [Dem92, 93b] in the situation considered here (cf. also [Dem82b],
although the argument given there is somewhat incorrect). We take the opportunity to
present here a slightly simpler derivation.

Let X be a projective manifold and L a line bundle over X . A singular Hermitian
metric h on L is a metric such that the weight function ϕ of h is L1

loc in any local
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trivialization (such that L|U ≃ U ×C and ‖ξ‖h = |ξ|e−ϕ(x), ξ ∈ Lx ≃ C). The curvature
of L can then be computed in the sense of distributions

T =
i

2π
ΘL,h =

i

π
∂∂ϕ,

and L is said to be pseudo-effective if L admits a singular Hermitian metric h such that
the curvature current T = i

2πΘL,h is semi-positive [The weight functions ϕ of L are thus
plurisubharmonic]. In what follows, we sometimes use an additive notation for Pic(X),
i.e. kL is meant for the line bundle L⊗k.

We will also make use of the concept of complex singularity exponent, following e.g.
[Var82, 83], [ArGV85] and [DK01]. A quasi-plurisubharmonic (quasi-psh) function is
by definition a function ϕ which is locally equal to the sum of a psh function and of a
smooth function, or equivalently, a locally integrable function ϕ such that i∂∂ϕ is locally
bounded below by −Cω where ω is a Hermitian metric and C a constant.

(14.20) Definition. If K is a compact subset of X and ϕ is a quasi-psh function defined
near K, we define

(a) The complex singularity exponent cK(ϕ) to be the supremum of all positive numbers
c such that e−2cϕ is integrable in a neighborhood of every point z0 ∈ K, with respect
to the Lebesgue measure in holomorphic coordinates centered at z0. In particular
cK(ϕ) = infz0∈K(ϕ).

(b) The concept is easily extended to Hermitian metrics h = e−2ϕ by putting cK(h) =
cK(ϕ), to holomorphic functions f by cK(f) = cK(log |f |), to coherent ideals J =
(g1, . . . , gN ) by cK(J) = cK(ϕ) where ϕ = 1

2 log
∑ |gj|2. Also for an effective R-

divisor D, we put cK(D) = cK(log |σD|) where σD is the canonical section.

The main technical result of this section can be stated as follows, in the case of big line
bundles (cf. Proposition 6.14 (f)).

(14.21) Theorem. Let L be a line bundle on a compact complex manifold X possessing
a singular Hermitian metric h with ΘL,h > εω for some ε > 0 and some smooth positive
definite Hermitian (1, 1)-form ω on X. For every real number m > 0, consider the space
Hm = H0(X,L⊗m ⊗I(hm)) of holomorphic sections σ of L⊗m on X such that

∫

X

|σ|2hmdVω =

∫

X

|σ|2e−2mϕdVω < +∞,

where dVω = 1
m!ω

m is the Hermitian volume form. Then for m ≫ 1, Hm is a non zero
finite dimensional Hilbert space and we consider the closed positive (1, 1)-current

Tm =
i

π
∂∂

( 1

2m
log

∑

k

|gm,k|2
)
=

i

π
∂∂

( 1

2m
log

∑

k

|gm,k|2h
)
+ΘL,h

where (gm,k)16k6N(m) is an orthonormal basis of Hm. Then :

(a) For every trivialization L|U ≃ U × C on a cordinate open set U of X and every
compact set K ⊂ U , there are constants C1, C2 > 0 independent of m and ϕ such
that

ϕ(z) − C1

m
6 ψm(z) :=

1

2m
log

∑

k

|gm,k(z)|2 6 sup
|x−z|<r

ϕ(x) +
1

m
log

C2

rn
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for every z ∈ K and r 6 1
2d(K, ∂U). In particular, ψm converges to ϕ pointwise

and in L1
loc topology on Ω when m→ +∞, hence Tm converges weakly to T = ΘL,h.

(b) The Lelong numbers ν(T, z) = ν(ϕ, z) and ν(Tm, z) = ν(ψm, z) are related by

ν(T, z) − n

m
6 ν(Tm, z) 6 ν(T, z) for every z ∈ X.

(c) For every compact set K ⊂ X, the complex singularity exponents of the metrics
given locally by h = e−2ϕ and hm = e−2ψm satisfy

cK(h)−1 − 1

m
6 cK(hm)

−1 6 cK(h)−1.

Proof. The major part of the proof is a variation of the arguments already explained in
Section 14.A.

(a) We note that
∑ |gm,k(z)|2 is the square of the norm of the evaluation linear form

σ 7→ σ(z) on Hm, hence

ψm(z) = sup
σ∈B(1)

1

m
log |σ(z)|

where B(1) is the unit ball of Hm. For r 6
1
2d(K, ∂Ω), the mean value inequality applied

to the plurisubharmonic function |σ|2 implies

|σ(z)|2 6
1

πnr2n/n!

∫

|x−z|<r
|σ(x)|2dλ(x)

6
1

πnr2n/n!
exp

(
2m sup

|x−z|<r
ϕ(x)

)∫

Ω

|σ|2e−2mϕdλ.

If we take the supremum over all σ ∈ B(1) we get

ψm(z) 6 sup
|x−z|<r

ϕ(x) +
1

2m
log

1

πnr2n/n!

and the right hand inequality in (a) is proved. Conversely, the Ohsawa-Takegoshi exten-
sion theorem [OhT87], [Ohs88] applied to the 0-dimensional subvariety {z} ⊂ U shows
that for any a ∈ C there is a holomorphic function f on U such that f(z) = a and

∫

U

|f |2e−2mϕdλ 6 C3|a|2e−2mϕ(z),

where C3 only depends on n and diamU . Now, provided a remains in a compact set
K ⊂ U , we can use a cut-off function θ with support in U and equal to 1 in a neighborhood
of a, and solve the ∂-equation ∂g = ∂(θf) in the L2 space associated with the weight
2mϕ + 2(n + 1)| log |z − a|, that is, the singular Hermitian metric h(z)m|z − a|−2(n+1)

on L⊗m. For this, we apply the standard Andreotti-Vesentini-Hörmander L2 estimates
(see e.g. [Dem82b] for the required version). This is possible for m > m0 thanks to the
hypothesis that ΘL,h > εω > 0, even if X is non Kähler (X is in any event a Moishezon
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variety from our assumptions). The bound m0 depends only on ε and the geometry of
a finite covering of X by compact sets Kj ⊂ Uj , where Uj are coordinate balls (say);
it is independent of the point a and even of the metric h. It follows that g(a) = 0 and
therefore σ = θf − g is a holomorphic section of L⊗m such that

∫

X

|σ|2hmdVω =

∫

X

|σ|2e−2mϕdVω 6 C4

∫

U

|f |2e−2mϕdVω 6 C5|a|2e−2mϕ(z),

in particular σ ∈ Hm = H0(X,L⊗m ⊗ I(hm)). We fix a such that the right hand side
is 1. This gives the inequality

ψm(z) >
1

m
log |a| = ϕ(z) − logC5

2m

which is the left hand part of statement (a).

(b) The first inequality in (a) implies ν(ψm, z) 6 ν(ϕ, z). In the opposite direction,
we find

sup
|x−z|<r

ψm(x) 6 sup
|x−z|<2r

ϕ(x) +
1

m
log

C2

rn
.

Divide by log r < 0 and take the limit as r tends to 0. The quotient by log r of the
supremum of a psh function over B(x, r) tends to the Lelong number at x. Thus we
obtain

ν(ψm, x) > ν(ϕ, x)− n

m
.

(c) Again, the first inequality (in (a) immediately yields hm 6 C6h, hence cK(hm) >
cK(h). For the converse inequality, since we have

c∪Kj
(h) = min

j
cKj

(h),

we can assume without loss of generality that K is contained in a trivializing open patch
U of L. Let us take c < cK(ψm). Then, by definition, if V ⊂ X is a sufficiently small
open neighborhood of K, the Hölder inequality for the conjugate exponents p = 1+mc−1

and q = 1 +m−1c implies, thanks to equality 1
p
= c

mq
,

∫

V

e−2(m/p)ϕdVω =

∫

V

( ∑

16k6N(m)

|gm,k|2e−2mϕ
)1/p( ∑

16k6N(m)

|gm,k|2
)−c/mq

dVω

6



∫

X

∑

16k6N(m)

|gm,k|2e−2mϕdVω




1/p

∫

V

( ∑

16k6N(m)

|gm,k|2
)−c/m

dVω




1/q

= N(m)1/p



∫

V

( ∑

16k6N(m)

|gm,k|2
)−c/m

dVω




1/q

< +∞.

From this we infer cK(h) > m/p, i.e., cK(h)−1 6 p/m = 1/m+ c−1. As c < cK(ψm) was
arbitrary, we get cK(h)−1 6 1/m+ cK(hm)−1 and the inequalities of (c) are proved. �
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(14.22) Remark. The proof would also work, with a few modifications, when X is a
Stein manifold and L is an arbitrary holomorphic line bundle.

(14.23) Corollary. Let L → X be a holomorphic line bundle and T = i
2π

ΘL,h the
curvature current of some singular Hermitian metric h on L.

(a) If L is big and ΘL,h > εω > 0, there exists a sequence of holomorphic sections
hs ∈ H0(X, qsL) with lim qs = +∞ such that the Q-divisors Ds =

1
qs
div(hs) satisfy

T = limDs in the weak topology and supx∈X |ν(Ds, x)− ν(T, x)| → 0 as s→ +∞.

(b) If L is just pseudo-effective and ΘL,h > 0, for any ample line bundle A, there exists
a sequence of non zero sections hs ∈ H0(X, psA+ qsL) with ps, qs > 0, lim qs = +∞
and lim ps/qs = 0, such that the divisors Ds =

1
qs
div(hs) satisfy T = limDs in the

weak topology and supx∈X |ν(Ds, x)− ν(T, x)| → 0 as s→ +∞.

Proof. Part (b) is a rather straightforward consequence of part (a) applied to mL + A
and Tm = 1

m
ΘmL+A,hmhA

= T + 1
m
ΘA,hA

→ T when m tends to infinity. Therefore, it
suffices to prove (a).

(a) By Theorem 14.20, we can find sections g1, . . . , gN ∈ H0(X,mL) (omitting the
index m for simplicity of notation), such that

Tm =
i

π
∂∂

( 1

2m
log

∑

16j6N

|gj|2h
)
+ΘL,h =

i

π
∂∂

( 1

2m
log

∑

16j6N

|gj |2
)

converges weakly to T and satisfies ν(T, x) − n/m 6 ν(Tm, x) 6 ν(T, x). In fact, since
the number N of sections grows at most as O(mn), we can replace

∑
16j6N |gj|2 by

max16j6N |gj|2, as the difference of the potentials tends uniformly to 0 with the help of
the renormalizing constant 1

2m
. Hence, we can use instead the approximating currents

T̃m =
i

π
∂∂um, um =

1

m
log max

16j6N
|gj|.

Now, as L is big, by the proof of (6.17b) we can write k0L = A+D where A is an ample
divisor and D is an effective divisor, for some k0 > 0. By enlarging k0, we can even
assume that A is very ample. Let σD be the canonical section of D and let h1, . . . , hN
be sections of H0(X,A). We get a section of H0(X, (mℓ+ k0)L) by considering

uℓ,m = (gℓ1h1 + · · ·+ gℓNhN )σD

By enlarging N if necessary and putting e.g. gj = gN for j > N , we can assume that the
sections hj generate all 1-jets of sections of A at every point (actually, one can always
achieve this with n+1 sections only, so this is not really a big demand). Then, for almost
every N -tuple (h1, . . . , hN ), Lemma 14.24 and the weak continuity of ∂∂ imply that

∆ℓ,m =
1

ℓm

i

π
∂∂ log |uℓ,m| =

1

ℓm
div(uℓ,m)

converges weakly to T̃m = i
π∂∂um as ℓ tends to +∞, and that

ν(Tm, x) 6 ν
( 1

ℓm
∆ℓ,m, x

)
6 ν(T, x) +

µ+ 1

ℓm
,
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where µ = maxx∈X ordx(σD). This, together with the first step, implies the proposition
for some subsequence Ds = ∆ℓ(s),s, ℓ(s) ≫ s ≫ 1. We even obtain the more explicit
inequality

ν(T, x)− n

m
6 ν

( 1

ℓm
∆ℓ,m, x

)
6 ν(T, x) +

µ+ 1

ℓm
. �

(14.24) Lemma. Let Ω be an open subset in Cn and let g1, . . . , gN ∈ H0(Ω,OΩ) be
non zero functions. Let S ⊂ H0(Ω,OΩ) be a finite dimensional subspace whose elements
generate all 1-jets at any point of Ω. Finally, set u = logmaxj |gj | and

uℓ = gℓ1h1 + · · ·+ gℓNhN , hj ∈ S r {0}.

Then for all (h1, . . . , hN ) in (Sr{0})N except a set of measure 0, the sequence 1
ℓ
log |uℓ|

converges to u in L1
loc(Ω) and

ν(u, x) 6 ν
(1
ℓ
log |uℓ|

)
6 ν(u, x) +

1

ℓ
, ∀x ∈ X, ∀ℓ > 1.

Proof. The sequence 1
ℓ
log |uℓ| is locally uniformly bounded above and we have

lim
ℓ→+∞

1

ℓ
log

∣∣uℓ(z)
∣∣ = u(z)

at every point z where all absolute values |gj(z)| are distinct and all hj(z) are nonzero.
This is a set of full measure in Ω because the sets {|gj|2 = |gl|2, j 6= l} and {hj = 0}
are real analytic and thus of zero measure (without loss of generality, we may assume
that Ω is connected and that the gj ’s are not pairwise proportional). The well-known
uniform integrability properties of plurisubharmonic functions then show that 1

ℓ
log |uℓ|

converges to u in L1
loc(Ω). It is easy to see that ν(u, x) is the minimum of the vanishing

orders ordx(gj), hence

ν(log |uℓ|, x) = ordx(uℓ) > ℓ ν(u, x).

In the opposite direction, consider the set Eℓ of all (N + 1)-tuples

(x, h1, . . . , hN ) ∈ Ω× SN

for which ν(log |uℓ|, x) > ℓ ν(u, x)+ 2. Then Eℓ is a constructible set in Ω× SN : it has a
locally finite stratification by analytic sets, since

Eℓ =
⋃

s>0

( ⋃

j, |α|=s

{
x ; Dαgj(x) 6= 0

}
× SN

)⋃ ⋂

|β|6ℓs+1

{
(x, (hj)) ; D

βuℓ(x) = 0
}
.

The fiber Eℓ ∩ ({x} × SN ) over a point x ∈ Ω where ν(u, x) = min ordx(gj) = s is
the vector space of N -tuples (hj) ∈ SN satisfying the equations Dβ

(∑
gℓjhj(x)

)
= 0,

|β| 6 ℓs+ 1. However, if ordx(gj) = s, the linear map

(0, . . . , 0, hj, 0, . . . , 0) 7−→
(
Dβ(gℓjhj(x))

)
|β|6ℓs+1
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has rank n+1, because it factorizes into an injective map J1
xhj 7→ Jℓs+1

x (gℓjhj). It follows

that the fiber Eℓ ∩ ({x} × SN ) has codimension at least n+ 1. Therefore

dim Eℓ 6 dim(Ω× SN )− (n+ 1) = dimSN − 1

and the projection of Eℓ on SN has measure zero by Sard’s theorem. By definition
of Eℓ, any choice of (h1, . . . , hN ) ∈ SN r

⋃
ℓ>1 pr(Eℓ) produces functions uℓ such that

ν(log |uℓ|, x) 6 ℓ ν(u, x) + 1 on Ω. �

(14.25) Exercise. When L is ample and h is a smooth metric with T = i
2πΘL,h > 0,

show that the approximating divisors can be taken smooth (and thus irreducible if X is
connected).
Hint. In the above proof of Corollary 14.23, the sections gj have no common zeroes and
one can take σD = 1. Moreover, a smooth divisor ∆ in an ample linear system is always
connected, otherwise two disjoint parts ∆′, ∆′′ would be big and nef and ∆′ · ∆′′ = 0
would contradict the Hovanskii-Teissier inequality when X is connected.

(14.26) Corollary. On a projective manifold X, effective Q-divisors are dense in the
weak topology in the cone P 1,1

NS (X) of closed positive (1, 1)-currents T whose cohomology
class {T} belongs to the Neron-Severi space NSR(X).

Proof. We may add ε times a Kähler metric ω so as to get T + εω > 0, and then
perturb by a small combination

∑
δjαj of classes αj in a Z-basis of NS(X) so that

Θ = T + εω +
∑
δjαj > ε

2ω and {Θ} ∈ H2(X,Q). Then Θ can be approximated by
Q-divisors by Corollary (14.23), and the conclusion follows. �

(14.27) Comments. We can rephrase the above results by saying that the cone of
closed positive currents P 1,1

NS (X) is a completion of the cone of effective Q-divisors. A
considerable advantage of using currents is that the cone of currents is locally compact
in the weak topology, namely the section of the cone consisting of currents T of mass∫
X
T ∧ ωn−1 = 1 is compact. This provides a very strong tool for the study of the

asymptotic behavior of linear systems, as required for instance in the Minimal Model
Program of Kawamata-Mori-Shokurov. One should be aware, however, that the cone of
currents is really huge and contains objects which are very far from being algebraic in
any reasonable sense. This occurs very frequently in the realm of complex dynamics. For
instance, if Pm(z, c) denotes the m-th iterate of the quadratic polynomial z 7→ z2 + c,
then Pm(z, c) defines a polynomial of degree 2m on C2, and the sequence of Q-divisors
Dm = 1

m
i
π
∂∂ log |Pm(z, c)| which have mass 1 on C2 ⊂ P2

C can be shown to converge to
a closed positive current T of mass 1 on P2

C. The support of this current T is extremely
complicated : its slices c = c0 are the Julia sets Jc of the quadratic polynomial z 7→ z2+c,
and the slice z = 0 is the famous Mandelbrot set M . Therefore, in general, limits of
divisors in asymptotic linear systems may exhibit a fractal behavior. �

§ 14.D. Singularity Exponents and log Canonical Thresholds

The goal of this section to relate “log canonical thresholds” with the α invariant intro-
duced by G. Tian [Tia87] for the study of the existence of Kähler-Einstein metrics. The
approximation technique of closed positive (1, 1)-currents introduced above can be used
to show that the α invariant actually coincides with the log canonical threshold (see also
[DK01]; [JK01]; [BGK05]; [Dem08]).
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Usually, in these applications, only the case of the anticanonical line bundle L =
−KX is considered. Here we will consider more generally the case of an arbitrary line
bundle L (or Q-line bundle L) on a complex manifoldX , with some additional restrictions
which will be stated later. We introduce a generalized version of Tian’s invariant α, as
defined in [Tia87] (see also [Siu88]).

(14.28) Definition. Assume that X is a compact manifold and that L is a pseudo-
effective line bundle, i.e. L admits a singular Hermitian metric h0 with ΘL,h0

> 0. If K
is a compact subset of X, we put

αK(L) = inf
{h,ΘL,h>0}

cK(h)

where h runs over all singular Hermitian metrics on L such that ΘL,h > 0.

In algebraic geometry, it is more usual to look instead at linear systems defined by
a family of linearly independent sections σ0, σ1, . . . , σN ∈ H0(X,L⊗m). We denote by Σ
the vector subspace generated by these sections and by

|Σ| := P (Σ) ⊂ |mL| := P (H0(X,L⊗m))

the corresponding linear system. Such an (N+1)-tuple of sections σ = (σj)06j6N defines
a singular Hermitian metric h on L by putting in any trivialization

|ξ|2h =
|ξ|2

(∑
j |σj(z)|2

)1/m =
|ξ|2

|σ(z)|2/m , ξ ∈ Lz,

hence h(z) = |σ(z)|−2/m with ϕ(z) = 1
m
log |σ(z)| = 1

2m
log

∑
j |σj(z)|2 as the associated

weight function. Therefore, we are interested in the number cK(|σ|−2/m). In the case
of a single section σ0 (corresponding to a one-point linear system), this is the same as
the log canonical threshold lctK(X, 1

m
D) = cK( 1

m
D) of the associated divisor D, in the

notation of Section 1 of [CS08]. We will also use the formal notation cK( 1
m |Σ|) in the

case of a higher dimensional linear system |Σ| ⊂ |mL|. The main result of this section is

(14.29) Theorem. Let L be a big line bundle on a compact complex manifold X. Then
for every compact set K in X we have

αK(L) = inf
{h,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|

cK

( 1

m
D
)
.

Proof. Observe that the inequality

inf
m∈Z>0

inf
D∈|mL|

cK

( 1

m
D
)
> inf

{h,ΘL,h>0}
cK(h)

is trivial, since any divisor D ∈ |mL| gives rise to a singular Hermitian metric h.

The converse inequality will follow from the approximation techniques discussed
above. Given a big line bundle L on X , there exists a modification µ : X̃ → X of X
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such that X̃ is projective and µ∗L = O(A + E) where A is an ample divisor and E an
effective divisor with rational coefficients. By pushing forward by µ a smooth metric
hA with positive curvature on A, we get a singular Hermitian metric h1 on L such that
ΘL,h1

> µ∗ΘA,hA
> εω on X . Then for any δ > 0 and any singular Hermitian metric h

on L with ΘL,h > 0, the interpolated metric hδ = hδ1h
1−δ satisfies ΘL,hδ

> δεω. Since
h1 is bounded away from 0, it follows that cK(h) > (1− δ)cK(hδ) by monotonicity. By
Theorem 14.21(C) applied to hδ, we infer

cK(hδ) = lim
m→+∞

cK(hδ,m),

and we also have

cK(hδ,m) > cK

( 1

m
Dδ,m

)

for any divisor Dδ,m associated with a section σ ∈ H0(X,L⊗m⊗I(hmδ )), since the metric
hδ,m is given by hδ,m = (

∑
k |gm,k|2)−1/m for an orthornormal basis of such sections. This

clearly implies

cK(h) > lim inf
δ→0

lim inf
m→+∞

cK

( 1

m
Dδ,m

)
> inf
m∈Z>0

inf
D∈|mL|

cK

( 1

m
D
)
. �

In the applications, it is frequent to have a finite or compact group G of auto-
morphisms of X and to look at G-invariant objects, namely G-equivariant metrics on
G-equivariant line bundles L ; in the case of a reductive algebraic group G we simply
consider a compact real form GR instead of G itself.

One then gets an α invariant αK,G(L) by looking only at G-equivariant metrics in
Definition 14.28. All contructions made are then G-equivariant, especially Hm ⊂ |mL|
is a G-invariant linear system. For every G-invariant compact set K in X , we thus infer

(14.30) αK,G(L) := inf
{h G-equiv.,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
|Σ|⊂|mL|, ΣG=Σ

cK

( 1

m
|Σ|

)
.

When G is a finite group, one can pick for m large enough a G-invariant divisor Dδ,m
associated with a G-invariant section σ, possibly after multiplying m by the order of G.
One then gets the slightly simpler equality

(14.31) αK,G(L) := inf
{h G-equiv.,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|G

cK

( 1

m
D
)
.

In a similar manner, one can work on an orbifold X rather than on a non singular
variety. The L2 techniques work in this setting with almost no change (L2 estimates are
essentially insensitive to singularities, since one can just use an orbifold metric on the
open set of regular points).

The main interest of Tian’s invariant αX,G (and of the related concept of log canonical
threshold) is that it provides a neat criterion for the existence of Kähler-Einstein metrics
for Fano manifolds (see [Tia87], [Siu88], [Nad89], [DK01]).

(14.32) Theorem. Let X be a Fano manifold, i.e. a projective manifold with −KX am-
ple. Assume that X admits a compact group of automorphisms G such that αX,G(KX) >
n/(n+ 1). Then X possesses a G-invariant Kähler-Einstein metric.
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We will not give here the details of the proof, which rely on very delicate Ck-estimates
(successively for k = 0, 1, 2, . . .) for the Monge-Ampère operator. In fine, the required
estimates can be shown to depend only on the boundedness of the integral

∫
X
e−2γϕ for

a suitable constant γ ∈ ] n
n+1

, 1], where ϕ is the potential of the Kähler metric ω ∈ c1(X)
(also viewed as the weight of a Hermitian metric on KX). Now, one can restrict the
estimate to G-invariant weights ϕ, and this translates into the sufficient condition of
Theorem 14.32. The approach explained in [DK01] simplifies the analysis developed in
earlier works by proving first a general semi-continuity theorem which implies the desired
a priori bound under the assumption of Theorem 14.32. The semi-continuity theorem
states as

(14.33) Theorem ([DK01]). Let K be a compact set in a complex manifold X. Then the
map ϕ 7→ cK(ϕ)−1 is upper semi-continuous with respect to the weak ( = L1

loc) topology on
the space of plurisubharmonic functions. Moreover, if γ < cK(ϕ), then

∫
K
|e−2γψ−e−2γϕ|

converges to 0 when ψ converges to ϕ in the weak topology.

Sketch of proof. We will content ourselves by explaining the main points. It is convenient
to observe (by a quite easy integration argument suggested to us by J. McNeal) that
cK(ϕ) can be calculated by estimating the Lebesgue volume µU ({ϕ < log r} of tubular
neighborhoods as r → 0 :
(14.34)

cK(ϕ) = sup
{
c > 0 ; r−2cµU ({ϕ < log r}) is bounded as r → 0, for some U⊃K

}
.

The first step is the following important monotonicity result, which is a straightforward
consequence of the L2 extension theorem.

(14.35) Proposition. Let ϕ be a quasi-psh function on a complex manifold X, and let
Y ⊂ X be a complex submanifold such that ϕ|Y 6≡ −∞ on every connected component
of Y . Then, if K is a compact subset of Y , we have

cK(ϕ|Y ) 6 cK(ϕ).

(Here, of course, cK(ϕ) is computed on X, i.e., by means of neighborhoods of K in X).

We need only proving monotonicity for cz0(ϕ|Y ) when z0 is a point of Y . This is done
by just extending the holomorphic function f(z) = 1 on B(z0, r)∩ Y with respect to the
weight e−2γϕ whenever γ < cz0(ϕ|Y ).

(14.36) Proposition. Let X, Y be complex manifolds of respective dimensions n, m,
let I ⊂ OX , J ⊂ OY be coherent ideals, and let K ⊂ X, L ⊂ Y be compact sets. Put
I⊕ J := pr∗1I+ pr∗2J ⊂ OX×Y . Then

cK×L(I⊕ J) = cK(I) + cL(J).

Proof. It is enough to show that c(x,y)(I ⊕ J) = cx(I) + cy(J) at every point (x, y) ∈
X × Y . Without loss of generality, we may assume that X ⊂ Cn, Y ⊂ Cm are open sets
and (x, y) = (0, 0). Let g = (g1, . . . , gp), resp. h = (h1, . . . , hq), be systems of generators
of I (resp. J) on a neighborhood of 0. Set

ϕ = log
∑

|gj|, ψ = log
∑

|hk|.
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Then I⊕ J is generated by the p+ q-tuple of functions

g ⊕ h = (g1(x), . . . , gp(x), h1(y), . . . , hq(y))

and the corresponding psh function Φ(x, y) = log
(∑ |gj(x)|+

∑ |hk(y)|
)
has the same

behavior along the poles as Φ′(x, y) = max(ϕ(x), ψ(y)) (up to a term O(1) 6 log 2).
Now, for sufficiently small neighborhoods U , V of 0, we have

µU×V
({

max(ϕ(x), ψ(y)) < log r
})

= µU
(
{ϕ < log r} × µV ({ψ < log r}

)
,

and one can derive from this that

C1r
2(c+c′) 6 µU×V

({
max(ϕ(x), ψ(y)) < log r

})
6 C2r

2(c+c′) | log r|n−1+m−1

with c = c0(ϕ) = c0(I) and c
′ = c0(ψ) = c0(J). We infer

c(0,0)(I⊕ J) = c+ c′ = c0(I) + c0(J). �

(14.37) Proposition. Let f , g be holomorphic on a complex manifold X. Then, for
every x ∈ X,

cx(f + g) ≤ cx(f) + cx(g).

More generally, if I and J are coherent ideals, then

cx(I+ J) ≤ cx(I) + cx(J).

Proof. Let ∆ be the diagonal in X ×X . Then I + J can be seen as the restriction of
I⊕ J to ∆. Hence Propositions 14.35 and 14.36 combined imply

cx(I+ J) = c(x,x)((I⊕ J)|∆) 6 c(x,x)(I⊕ J) = cx(I) + cx(J).

Since (f + g) ⊂ (f) + (g), we get

cx(f + g) 6 cx((f) + (g)) 6 cx(f) + cx(g). �

Now we can explain in rough terms the strategy of proof of Theorem 14.33. We start
by approximating psh singularities with analytic singularities, using Theorem 14.21. By
the argument of Corollary 14.23, we can even reduce ourselves to the case of invertible
ideals (f) near z0 = 0, and look at what happens when we have a uniformly convergent
sequence fν → f . In this case, we use the Taylor expansion of f at 0 to write f = pN+sN
where pN is a polynomial of degree N and sN (z) = O(|z|N+1). Clearly c0(sN ) 6 n/(N+
1), and from this we infer |c0(f)− c0(PN )| 6 n/(N +1) by Proposition 14.37. Similarly,
we get the uniform estimate |c0(fν) − c0(Pν,N )| 6 n/(N + 1) for all indices ν. This
means that the proof of the semi-continuity theorem is reduced to handling the situation
of a finite dimensional space of polynomials. This case is well-known – one can apply
Hironaka’s desingularization theorem, in a relative version involving the coefficients of
our polynomials as parameters. The conclusion is obtained by putting together carefully
all required uniform estimates (which involve a lot of L2 estimates). �
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§ 14.E. Hodge Conjecture and approximation of (p, p)-currents

Let X be a complex n-dimensional manifold. We study here the approximation in the
weak topology of a given closed (p, p)-current T by a sequence of real (or rational) analytic
cycles, i.e. by locally finite sums of the form

∑
λj [Zj ] where Zj ⊂ X is a (closed) analytic

set of pure codimension p, and λj are real or rational coefficients. The discussion of this
section is based on ideas of [Dem82c] (although the main result of Section 7 of [Dem82c]
suffers from an incorrect proof of Lemma 7.5 – fortunately all statements are entirely
salvaged by the results previously explained in Section 14).

We will concentrate ourselves on the case whereX is projective, although the problem
is interesting in other contexts, e.g. for Stein manifolds. We know that the map

T ∈D′ p,p
closed(X) 7→ {T} ∈ Hp,p(X,C)

is continuous in the weak topology. Since the cohomology class {[Z]} of an
irreducible codimension p cycle lies in the set of integral (p, p) classes, i.e. in
Hp,p(X,R) ∩H2p(X,Z)/ tors, the approximation is possible only when the cohomology
class {T} lies in the Hodge group HdgpR(X) defined by

(14.38) HdgpK(X) = K⊗Z (Hp,p(X,R) ∩H2p(X,Z)/ tors), K = R or K = Q.

(14.39) Notation. We denote byD′ p,p
Hdg(X) the set of closed real (p, p)-currents T whose

cohomology class {T} belongs to the Hodge group HdgpR(X) : this is a closed subspace of
D

′ p,p(X) in the weak topology.

The celebrated Hodge conjecture asserts that for every X projective algebraic and
every p = 0, 1, . . . , n = dimCX , the group HdgpQ(X) is generated over Q by cohomology
classes of algebraic codimension p cycles [Z] of X (since we are working in finite dimen-
sional vector spaces and since rationals are dense in the reals, the analogous statement
over R is completely equivalent to the statement over Q).

(14.40) Theorem. Let X be a projective n-dimensional manifold. The following pro-
perties are equivalent :

(a) The Hodge conjecture holds true in codimension p, namely HdgpQ(X) is generated by
codimension p algebraic cycles.

(b) Every closed current T ∈ D′ p,p
Hdg(X) is a weak limit of algebraic cycles

∑
λj [Zj ] of

codimension p with rational coefficients.

Proof. It is clear that (b) implies (a), hence it is enough to show that (a) ⇒ (b).

Fix a current T ∈D′ p,p
Hdg(X). Assumption (a) implies that there exists a codimension

p cycle T0 =
∑
λ0j [Z

0
j ] with real coefficients such that the cohomology classes of T and

T0 coincide. By the ∂∂-lemma, we conclude that there exists a real (p− 1, p− 1)-current
U such that

T − T0 = ddcU.

Now, we can approximate the coefficients of T0 by rational numbers and U by a smooth
(p − 1, p− 1)-form (just use a partition of unity with respect to coordinate charts, and
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apply a convolution in each chart). It is therefore sufficient to prove the following lemma.
�

(14.41) Lemma. Let X be a projective n-dimensional manifold and T = ddcU be a
closed (p, p)-current with zero cohomology class on X, with U and T smooth. Then
T is a weak limit of algebraic codimension p cycles with rational coefficients and zero
cohomology class. In that case, one can even take the approximating cycles to be of the
form

∑
16j6N λj [Zj] where Zj ⊂ X are non singular algebraic subvarieties and N = dn

depends only on dimension.

Proof. A standard polarization trick shows that the space of (k, k)-forms on Cn is gene-
rated by decomposable forms of the type

ddc|zα1 |2 ∧ · · · ∧ ddc|zαk |2

for a suitable family of linear coordinate systems zα = (zα1 , . . . , z
α
n ), 1 6 α 6

(
n
k

)2
. In

particular, in every coordinate patch of X , we can write U in a unique way

U =
∑

α

ϕα dd
c|zα1 |2 ∧ · · · ∧ ddc|zαp−1|2.

Now, by using a partition of unity, we see that it is enough to prove the result when U
and T can be written under the form

U = ϕ1 ∧ ddcϕ2 ∧ · · · ∧ ddcϕp, T = ddcU = ddcϕ1 ∧ ddcϕ2 ∧ · · · ∧ ddcϕp

with certain global smooth functions ϕj on X . The number of such terms needed to
generate a given smooth (p − 1, p − 1) form U depends only on dimension; in fact this
follows by an easy argument based on the topological dimension of X , if we allow non
connected coordinate open sets consisting of unions of disjoint balls. Fix a positive line
bundle (L, h) on X and a multiple mjL such that Sj = mjΘL,h + ddcϕj > 0 for every j.
Now we simply write ddcϕj = Sj −Θj , where Θj = mjΘL,h, and we use Corollary 14.23
to approximate both (1, 1) forms Sj > 0 and Θj > 0 by divisors coming from sections of
ℓmjL, ℓ≫ 1. As L is ample, we can even perturb these divisors a little bit to get them
non singular. In this way, we show by induction on k = 1, 2, . . . , p that each product

ddcϕ1 ∧ ddcϕ2 ∧ · · · ∧ ddcϕk

is a weak limit of rational cycles generated by smooth irreducible components Zj ⊂ X ,
and more precisely that

(14.42) ddcϕ1 ∧ · · · ∧ ddcϕk = lim
ℓ→+∞

∑

16j62k

λj,ℓ[Zj,ℓ], Zj,ℓ smooth.

This is true for k = 1 by what we have just explained. If the result holds true for k − 1,
we write

ddcϕ1 ∧ · · · ∧ ddcϕk = lim
ℓ→+∞

∑

16j62k−1

λj,ℓ[Zj,ℓ] ∧ ddcϕk

= lim
ℓ→+∞

∑

16j62k−1

λj,ℓ[Zj,ℓ] ∧ (Sk −Θk).
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By Corollary 14.23 applied to each algebraic submanifold Zj,ℓ ⊂ X and to the restriction
of mkL to Zj,ℓ, equipped respectively with the metrics hmke−ϕk and hmk , we find non
singular Q-divisors 1

qℓ
D′
j,ℓ,

1
qℓ
D′′
j,ℓ on Zj,ℓ which approximate respectively [Zj,ℓ] ∧ Sk

and [Zj,ℓ] ∧Θk. This implies

ddcϕ1 ∧ · · · ∧ ddcϕk = lim
ℓ→+∞

∑

16j62k−1

λj,ℓ
qℓ

([D′
j,ℓ]− [D′′

j,ℓ]).

Assertion (14.42) follows by induction, and the lemma is proved. �

(14.43) Remark. The above proof gives absolutely no control on the sign of coefficients
λj in the approximating cycles

∑
j λj [Zj]. When the current T is strongly positive (in

the sense that for ‖T‖-almost every x the value T (x) lies in the convex cone generated by
positive decomposable (p, p)-forms), it would be interesting to know whether the cycles∑
j λj [Zj] can be taken to be positive. This is true for p = 1 by Corollary 14.23, but

seems to be a very hard problem in general, except for the trivial cases p = 0, p = n.
The answer is not even known to be true locally, e.g. for closed strongly positive (p, p)-
currents on the unit ball of Cn (and p 6= 0, 1, n). We however expect that one can always
take N = 2 in 14.41 (with possibly mixed signs), assuming of course that the Hodge
conjecture holds true. �

(14.44) Remark. It is well known that the Hodge conjecture holds true for (p, p)
classes if and only if it holds for (n − p, n − p) classes. In fact, if ω = ΘA,h > 0 is the
curvature form of a very ample divisor A, the Hard Lefschetz theorem shows that there
are isomorphisms

• ∧ ωn−2p : Hp,p(X,R) → Hn−p,n−p(X,R), HdgpQ(X) → Hdgn−pQ (X),

where the right hand isomorphism comes from the fact that {ω} is an integral class.
In particular, both statements 14.40 (a) and 14.40 (b) hold true for the border cases
p = 0, 1, n− 1, n. �

15. Subadditivity of Multiplier Ideals and Fujita’s Approximate
Zariski Decomposition

The goal of this section is to compare the multiplier ideal sheaf I(ϕ + ψ) of a sum of
subharmonic functions to each of the multiplier ideal sheaves I(ϕ), I(ψ). We first notice
the following basic restriction formula for multiplier ideals, which is just a rephrasing of
the Ohsawa-Takegoshi extension theorem.

(15.1) Restriction Formula. Let ϕ be a plurisubharmonic function on a complex
manifold X, and let Y ⊂ X be a submanifold. Then

I(ϕ|Y ) ⊂ I(ϕ)|Y .

Thus, in some sense, the singularities of ϕ can only get worse if we restrict to a sub-
manifold (if the restriction of ϕ to some connected component of Y is identically −∞,
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we agree that the corresponding multiplier ideal sheaf is zero). The proof is straight-
forward and just amounts to extending locally a germ of function f on Y near a point
y0 ∈ Y to a function f̃ on a small Stein neighborhood of y0 in X , which is possible by
the Ohsawa-Takegoshi extension theorem. As a direct consequence, we get:

(15.2) Subadditivity Theorem.

(a) Let X1, X2 be complex manifolds, πi : X1 ×X2 → Xi, i = 1, 2 the projections, and
let ϕi be a plurisubharmonic function on Xi. Then

I(ϕ1 ◦ π1 + ϕ2 ◦ π2) = π∗
1I(ϕ1) · π∗

2I(ϕ2).

(b) Let X be a complex manifold and let ϕ, ψ be plurisubharmonic functions on X. Then

I(ϕ+ ψ) ⊂ I(ϕ) ·I(ψ)

Proof. (a) Let us fix two relatively compact Stein open subsets U1 ⊂ X1, U2 ⊂ X2.
Then H2(U1 × U2, ϕ1 ◦ π1 + ϕ2 ◦ π2, π∗

1dV1 ⊗ π∗
2dV2) is the Hilbert tensor product of

H

2(U1, ϕ1, dV1) and H
2(U2, ϕ2, dV2), and admits (f ′

k⊠f
′′
l ) as a Hilbert basis, where (f ′

k)
and (f ′′

l ) are respective Hilbert bases. Since I(ϕ1 ◦ π1 + ϕ2 ◦ π2)|U1×U2
is generated as

an OU1×U2
module by the (f ′

k ⊠ f ′′
l ) (Proposition 5.7), we conclude that (a) holds true.

(b) We apply (a) to X1 = X2 = X and the restriction formula to Y = diagonal of X×X .
Then

I(ϕ+ ψ) = I
(
(ϕ ◦ π1 + ψ ◦ π2)|Y

)
⊂ I

(
ϕ ◦ π1 + ψ ◦ π2

)
|Y

=
(
π∗
1I(ϕ)⊗ π∗

2I(ψ)
)
|Y

= I(ϕ) · I(ψ).
�

(15.3) Proposition. Let f : X → Y be an arbirary holomorphic map, and let ϕ be a
plurisubharmonic function on Y . Then I(ϕ ◦ f) ⊂ f∗

I(ϕ).

Proof. Let
Γf = {(x, f(x) ; x ∈ X} ⊂ X × Y

be the graph of f , and let πX : X×Y → X , πY : X×Y → Y be the natural projections.
Then we can view ϕ ◦ f as the restriction of ϕ ◦ πY to Γf , as πX is a biholomorphism
from Γf to X . Hence the restriction formula implies

I(ϕ ◦ f) = I
(
(ϕ ◦ πY )|Γf

)
⊂ I(ϕ ◦ πY )|Γf

=
(
π∗
Y I(ϕ)

)
|Γf

= f∗
I(ϕ). �

As an application of subadditivity, we now reprove a result of Fujita [Fuj93], relating
the growth of sections of multiples of a line bundle to the Chern numbers of its “largest
nef part”. Fujita’s original proof is by contradiction, using the Hodge index theorem
and intersection inequalities. The present method arose in the course of joint work with
R. Lazarsfeld [Laz99].

(15.4) Lemma. The line bundle L is big if and only if there is a multiple m0L such
that m0L = E + A, where E is an effective divisor and A an ample divisor.
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Proof. If the condition is satisfied, the decomposition km0L = kE + kA gives rise to
an injection H0(X, kA) →֒ H0(X, km0L), thus Vol(L) > m−n

0 Vol(A) > 0. Conversely,
assume that L is big, and take A to be a very ample nonsingular divisor in X . The exact
sequence

0 −→ OX(kL−A) −→ OX(kL) −→ OA(kL|A) −→ 0

gives rise to a cohomology exact sequence

0 → H0(X, kL− A) −→ H0(X, kL) −→ H0(A, kL|A),

and h0(A, kL|A) = O(kn−1) since dimA = n − 1. Now, the assumption that L is big
implies that h0(X, kL) > ckn for infinitely many k, hence H0(X,m0L−A) 6= 0 for some
large integerm0. If E is the divisor of a section inH0(X,m0L−A), we findm0L−A = E,
as required. �

(15.5) Lemma. Let G be an arbitrary line bundle. For every ε > 0, there exists a
positive integer m and a sequence ℓν ↑ +∞ such that

h0
(
X, ℓν(mL−G)

)
>
ℓmν m

n

n!

(
Vol(L)− ε

)
,

in other words, Vol(mL −G) > mn(Vol(L)− ε) for m large enough.

Proof. Clearly, Vol(mL−G) > Vol(mL− (G+E)) for every effective divisor E. We can
take E so large that G+E is very ample, and we are thus reduced to the case where G is
very ample by replacing G with G+ E. By definition of Vol(L), there exists a sequence
kν ↑ +∞ such that

h0(X, kνL) >
knν
n!

(
Vol(L)− ε

2

)
.

We take m ≫ 1 (to be precisely chosen later), and ℓν =
[
kν
m

]
, so that kν = ℓνm + rν ,

0 6 rν < m. Then
ℓν(mL−G) = kνL− (rνL+ ℓνG).

Fix a constant a ∈ N such that aG − L is an effective divisor. Then rνL 6 maG (with
respect to the cone of effective divisors), hence

h0
(
X, ℓν(mL−G)

)
> h0

(
X, kνL− (ℓν + am)G

)
.

We select a smooth divisor D in the very ample linear system |G|. By looking at global
sections associated with the exact sequences of sheaves

0 → O(−(j + 1)D)⊗ O(kνL) → O(−jD)⊗ O(kνL) → OD(kνL− jD) → 0,

0 6 j < s, we infer inductively that

h0(X, kνL− sD) > h0(X, kνL)−
∑

06j<s

h0
(
D,OD(kνL− jD)

)

> h0(X, kνL)− s h0
(
D, kνL|D)

>
knν
n!

(
Vol(L)− ε

2

)
− sCkn−1

ν
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where C depends only on L and G. Hence, by putting s = ℓν + am, we get

h0
(
X, ℓν(mL−G)

)
>
knν
n!

(
Vol(L)− ε

2

)
− C(ℓν + am)kn−1

ν

>
ℓnνm

n

n!

(
Vol(L)− ε

2

)
− C(ℓν + am)(ℓν + 1)n−1mn−1

and the desired conclusion follows by taking ℓν ≫ m≫ 1. �

We are now ready to prove Fujita’s decomposition theorem, as reproved in [DEL00].

(15.6) Theorem (Fujita). Let L be a big line bundle. Then for every ε > 0, there exists

a modification µ : X̃ → X and a decomposition µ∗L = E + A, where E is an effective
Q-divisor and A an ample Q-divisor, such that An > Vol(L)− ε.

(15.7) Remark. Of course, if µ∗L = E + A with E effective and A nef, we get an
injection

H0(X̃, kA) →֒ H0(X̃, kE + kA) = H0(X̃, kµ∗L) = H0(X, kL)

for every integer k which is a multiple of the denominator of E, hence An 6 Vol(L). �

(15.8) Remark. Once Theorem 15.6 is proved, the same kind of argument easily shows
that

Vol(L) = lim
k→+∞

n!

kn
h0(X, kL),

because the formula is true for every ample line bundle A.

Proof of Theorem 15.6. It is enough to prove the theorem with A being a big and nef
divisor. In fact, Proposition 15.4 then shows that we can write A = E′ +A′ where E′ is
an effective Q-divisor and A′ an ample Q-divisor, hence

E +A = E + εE′ + (1− ε)A+ εA′

where A′′ = (1 − ε)A + εA′ is ample and the intersection number A′′n approaches An

as closely as we want. Let G be as in Theorem 6.27 (Siu’s theorem on uniform global
generation). Lemma 15.5 implies that Vol(mL − G) > mn(Vol(L) − ε) for m large. By
Theorem 6.8 on the existence of analytic Zariski decomposition, there exists a Hermitian
metric hm of weight ϕm on mL−G such that

H0
(
X, ℓ(mL−G)

)
= H0

(
X, ℓ(mL−G)⊗I(ℓϕm)

)

for every ℓ > 0. We take a smooth modification µ : X̃ → X such that

µ∗
I(ϕm) = O

X̃
(−E)

is an invertible ideal sheaf in O
X̃
. This is possible by taking the blow-up of X with

respect to the ideal I(ϕm) and by resolving singularities [Hir64]. Theorem 6.27 applied
to L′ = mL −G implies that O(mL)⊗ I(ϕm) is generated by its global sections, hence
its pull-back O(mµ∗L− E) is also generated. This implies

mµ∗L = E + A
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where E is an effective divisor and A is a nef (semi-ample) divisor in X̃. We find

H0(X̃, ℓA) = H0
(
X̃, ℓ(mµ∗L−E)

)

⊃ H0
(
X̃, µ∗(

O(ℓmL)⊗ I(ϕm)ℓ
))

⊃ H0
(
X̃, µ∗(

O(ℓmL)⊗ I(ℓϕm)
))
,

thanks to the subadditivity property of multiplier ideals. Moreover, the direct image
µ∗µ∗

I(ℓϕm) coincides with the integral closure of I(ℓϕm), hence with I(ℓϕm), because
a multiplier ideal sheaf is always integrally closed. From this we infer

H0(X̃, ℓA) ⊃ H0
(
X,O(ℓmL)⊗I(ℓϕm)

)

⊃ H0
(
X,O(ℓ(mL−G))⊗ I(ℓϕm)

)

= H0
(
X,O(ℓ(mL−G))

)
.

By Lemma 15.5, we find

h0(X̃, ℓA) >
ℓn

n!
mn

(
Vol(L)− ε

)

for infinitely many ℓ, therefore Vol(A) = An > mn(Vol(L)− ε). Theorem 15.6 is proved,
up to a minor change of notation E 7→ 1

mE, A 7→ 1
mA. �

We conclude by using Fujita’s theorem to establish a geometric interpretation of the
volume Vol(L). Suppose as above that X is a smooth projective variety of dimension n,
and that L is a big line bundle on X . Given a large integer k ≫ 0, denote by Bk ⊂ X
the base-locus of the linear system |kL|. The moving self-intersection number (kL)[n] of
|kL| is defined by choosing n general divisors D1, . . . , Dn ∈ |kL| and putting

(kL)[n] = #
(
D1 ∩ . . . ∩Dn ∩ (X −Bk)

)
.

In other words, we simply count the number of intersection points away from the base
locus of n general divisors in the linear system |kL|. This notion arises for example in
Matsusaka’s proof of his “big theorem”. We show that the volume Vol(L) of L measures
the rate of growth with respect to k of these moving self-intersection numbers:

(15.9) Proposition. One has

Vol(L) = lim sup
k→∞

(kL)[n]

kn
.

Proof. We start by interpreting (kL)[n] geometrically. Let µk : Xk −→ X be a modifica-
tion of |kL| such that µ∗

k|kL| = |Vk|+ Fk, where

Pk := µ∗
k(kL)− Fk

is generated by sections, and H0(X,OX(kL)) = Vk = H0(Xk,OXk
(Pk)), so that Bk =

µk(Fk). Then evidently (kL)[n] counts the number of intersection points of n general
divisors in Pk, and consequently

(kL)[n] = (Pk)
n.
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Since then Pk is big (and nef) for k ≫ 0, we have Vol(Pk) = (Pk)
n. Also, Vol(kL) >

Vol(Pk) since Pk embeds in µ∗
k(kL). Hence

Vol(kL) > (kL)[n] ∀k ≫ 0.

On the other hand, an easy argument in the spirit of Lemma 15.5 shows that Vol(kL) =
kn ·Vol(L) (cf. also [ELN96], Lemma 3.4), and so we conclude that

(15.10) Vol(L) >
(kL)[n]

kn
.

for every k ≫ 0.

For the reverse inequality we use Fujita’s theorem. Fix ε > 0, and consider the
decomposition µ∗L = A + E on µ : X̃ −→ X constructed in Fujita’s theorem. Let k
be any positive integer such that kA is integral and globally generated. By taking a
common resolution we can assume that Xk dominates X̃ , and hence we can write

µ∗
kkL ∼ Ak +Ek

with Ak globally generated and

(Ak)
n > kn · (Vol(L)− ε).

But then Ak embeds in Pk and both O(Ak) and O(Pk) are globally generated, conse-
quently

(Ak)
n 6 (Pk)

n = (kL)[n].

Therefore

(15.11)
(kL)[n]

kn
> Vol(L)− ε.

But (15.11) holds for any sufficiently large and divisible k, and in view of (15.10) the
proposition holds. �

16. Hard Lefschetz Theorem with Multiplier Ideal Sheaves

§ 16.A. A Bundle Valued Hard Lefschetz Theorem

The goal of this section is to prove the following surjectivity theorem, which can be
seen as an extension of the hard Lefschetz theorem for sections of pseudo-effective line
bundles. We closely follow the exposition of [DPS00].

(16.1) Theorem. Let (L, h) be a pseudo-effective line bundle on a compact Kähler
manifold (X,ω) of dimension n, let ΘL,h > 0 be its curvature current and I(h) the
associated multiplier ideal sheaf. Then, the wedge multiplication operator ωq ∧ • induces
a surjective morphism

Φqω,h : H0(X,Ωn−qX ⊗ L⊗ I(h)) −→ Hq(X,ΩnX ⊗ L⊗ I(h)).
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The special case when L is nef is due to Takegoshi [Take97]. An even more special case
is when L is semi-positive, i.e. possesses a smooth metric with semi-positive curvature.
In that case the multiple ideal sheaf I(h) coincides with OX and we get the following
consequence already observed by Mourougane [Mou99].

(16.2) Corollary. Let (L, h) be a semi-positive line bundle on a compact Kähler mani-
fold (X,ω) of dimension n. Then, the wedge multiplication operator ωq ∧ • induces a
surjective morphism

Φqω : H0(X,Ωn−qX ⊗ L) −→ Hq(X,ΩnX ⊗ L).

It should be observed that although all objects involved in Theorem 16.1 are algebraic
when X is a projective manifold, there are no known algebraic proof of the statement; it
is not even clear how to define algebraically I(h) for the case when h = hmin is a metric
with minimal singularity. However, even in the special circumstance when L is nef, the
multiplier ideal sheaf is crucially needed (see Section 16.E for a counterexample).

The proof of Theorem 16.1 is based on the Bochner formula, combined with a use
of harmonic forms with values in the Hermitian line bundle (L, h). The method can be
applied only after h has been made smooth at least in the complement of an analytic set.
However, we have to accept singularities even in the regularized metrics because only a
very small incompressible loss of positivity is acceptable in the Bochner estimate (by the
results of [Dem92], singularities can only be removed at the expense of a fixed loss of
positivity). Also, we need the multiplier ideal sheaves to be preserved by the smoothing
process. This is possible thanks to a suitable “equisingular” regularization process.

§ 16.B. Equisingular Approximations of Quasi Plurisubharmonic Functions

Let ϕ be a quasi-psh function. We say that ϕ has logarithmic poles if ϕ is locally bounded
outside an analytic set A and has singularities of the form

ϕ(z) = c log
∑

k

|gk|2 +O(1)

with c > 0 and gk holomorphic, on a neighborhood of every point of A. Our goal is to
show the following

(16.3) Theorem. Let T = α + i∂∂ϕ be a closed (1, 1)-current on a compact Hermitian
manifold (X,ω), where α is a smooth closed (1, 1)-form and ϕ a quasi-psh function. Let
γ be a continuous real (1, 1)-form such that T > γ. Then one can write ϕ = limν→+∞ ϕν
where

(a) ϕν is smooth in the complement X r Zν of an analytic set Zν ⊂ X ;

(b) {ϕν} is a decreasing sequence, and Zν ⊂ Zν+1 for all ν ;

(c)
∫
X
(e−2ϕ − e−2ϕν )dVω is finite for every ν and converges to 0 as ν → +∞ ;

(d) I(ϕν) = I(ϕ) for all ν (“equisingularity”) ;

(e) Tν = α+ i∂∂ϕν satisfies Tν > γ − ενω, where limν→+∞ εν = 0.
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(16.4) Remark. It would be interesting to know whether the ϕν can be taken to have
logarithmic poles along Zν . Unfortunately, the proof given below destroys this property
in the last step. Getting it to hold true seems to be more or less equivalent to proving
the semi-continuity property

lim
ε→0+

I((1 + ε)ϕ) = I(ϕ).

Actually, this can be checked in dimensions 1 and 2, but is unknown in higher dimensions
(and probably quite hard to establish).

Proof of Theorem 16.3. Clearly, by replacing T with T − α and γ with γ − α, we may
assume that α = 0 and T = i∂∂ϕ > γ. We divide the proof in four steps.

Step 1. Approximation by quasi-psh functions with logarithmic poles.

By [Dem92], there is a decreasing sequence (ψν) of quasi-psh functions with logarithmic
poles such that ϕ = limψν and i∂∂ψν > γ − ενω. We need a little bit more information
on those functions, hence we first recall the main techniques used for the construction
of (ψν). For ε > 0 given, fix a covering of X by open balls Bj = {|z(j)| < rj} with

coordinates z(j) = (z
(j)
1 , . . . , z

(j)
n ), such that

(16.5) 0 6 γ + cj i∂∂|z(j)|2 6 εω on Bj,

for some real number cj . This is possible by selecting coordinates in which γ is diago-
nalized at the center of the ball, and by taking the radii rj > 0 small enough (thanks
to the fact that γ is continuous). We may assume that these coordinates come from
a finite sample of coordinates patches covering X , on which we perform suitable linear
coordinate changes (by invertible matrices lying in some compact subset of the complex
linear group). By taking additional balls, we may also assume that X =

⋃
B′′
j where

B′′
j ⊂⊂ B′

j ⊂⊂ Bj

are concentric balls B′
j = {|z(j)| < r′j = rj/2}, B′′

j = {|z(j)| < r′′j = rj/4}. We define

(16.6) ψε,ν,j =
1

2ν
log

∑

k∈N

|fν,j,k|2 − cj |z(j)|2 on Bj ,

where (fν,j,k)k∈N is an orthonormal basis of the Hilbert space Hν,j of holomorphic func-
tions on Bj with finite L2 norm

‖u‖2 =

∫

Bj

|u|2e−2ν(ϕ+cj |z(j)|2)dλ(z(j)).

(The dependence of ψε,ν,j on ε is through the choice of the open covering (Bj)). Observe
that the choice of cj in (16.5) guarantees that ϕ + cj |z(j)|2 is plurisubharmonic on Bj,
and notice also that

(16.7)
∑

k∈N

|fν,j,k(z)|2 = sup
f∈Hν,j, ‖f‖61

|f(z)|2
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is the square of the norm of the continuous linear form Hν,j → C, f 7→ f(z). We claim
that there exist constants Ci, i = 1, 2, . . . depending only on X and γ (thus independent
of ε and ν), such that the following uniform estimates hold:

i∂∂ψε,ν,j > −cj i∂∂|z(j)|2 > γ − εω on B′
j (B′

j ⊂⊂ Bj),(16.8)

ϕ(z) 6 ψε,ν,j(z) 6 sup
|ζ−z|6r

ϕ(ζ) +
n

ν
log

C1

r
+ C2r

2 ∀z ∈ B′
j , r < rj − r′j ,(16.9)

|ψε,ν,j − ψε,ν,k| 6
C3

ν
+ C4ε

(
min(rj , rk)

)2
on B′

j ∩B′
k.(16.10)

Actually, the Hessian estimate (16.8) is obvious from (16.5) and (16.6). As in the proof
of ([Dem92], Prop. 3.1), (16.9) results from the Ohsawa-Takegoshi L2 extension theorem
(left hand inequality) and from the mean value inequality (right hand inequality). Finally,
as in ([Dem92], Lemma 3.6 and Lemma 4.6), (16.10) is a consequence of Hörmander’s L2

estimates. We briefly sketch the idea. Assume that the balls Bj are small enough, so that
the coordinates z(j) are still defined on a neighborhood of all balls Bk which intersect Bj
(these coordinates can be taken to be linear transforms of coordinates belonging to a
fixed finite set of coordinate patches covering X , selected once for all). Fix a point
z0 ∈ B′

j ∩B′
k. By (16.6) and (16.7), we have

ψε,ν,j(z0) =
1

ν
log |f(z0)| − cj |z(j)|2

for some holomorphic function f on Bj with ‖f‖ = 1. We consider the weight function

Φ(z) = 2ν(ϕ(z) + ck|z(k)|2) + 2n log |z(k) − z
(k)
0 |,

on both Bj and Bk. The trouble is that a priori we have to deal with different weights,
hence a comparison of weights is needed. By the Taylor formula applied at z0, we get

∣∣∣ck|z(k) − z
(k)
0 |2 − cj |z(j) − z

(j)
0 |2

∣∣∣ 6 Cε
(
min(rj , rk)

)2
on Bj ∩Bk

[the only nonzero term of degree 2 has type (1, 1) and its Hessian satisfies

−εω 6 i∂∂(ck|z(k)|2 − cj |z(j)|2) 6 εω

by (16.5); we may suppose rj ≪ ε so that the terms of order 3 and more are negligible].

By writing |z(j)|2 = |z(j) − z
(j)
0 |2 + |z(j)0 |2 + 2Re〈z(j) − z

(j)
0 , z

(j)
0 〉, we obtain

ck|z(k)|2 − cj |z(j)|2 = 2ck Re〈z(k) − z
(k)
0 , z

(k)
0 〉 − 2cj Re〈z(j) − z

(j)
0 , z

(j)
0 〉

+ ck|z(k)0 |2 − cj |z(j)0 |2 ± Cε(min(rj , rk))
2.

We use a cut-off function θ equal to 1 in a neighborhood of z0 and with support in
Bj ∩ Bk; as z0 ∈ B′

j ∩B′
k, the function θ can be taken to have its derivatives uniformly

bounded when z0 varies. We solve the equation ∂u = ∂(θfeνg) on Bk, where g is the
holomorphic function

g(z) = ck〈z(k) − z
(k)
0 , z

(k)
0 〉 − cj〈z(j) − z

(j)
0 , z

(j)
0 〉.
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Thanks to Hörmander’s L2 estimates [Hör66], the L2 solution for the weight Φ yields a
holomorphic function f ′ = θfeνg − u on Bk such that f ′(z0) = f(z0) and

∫

Bk

|f ′|2e−2ν(ϕ+ck|z(k)|2)dλ(z(k)) 6 C′
∫

Bj∩Bk

|f |2|eνg|2e−2ν(ϕ+ck|z(k)|2)dλ(z(k))

6 C′ exp
(
2ν

(
ck|z(k)0 |2−cj |z(j)0 |2+Cε(min(rj, rk))

2
))

∫

Bj

|f |2e−2ν(ϕ+cj |z(j)|2)dλ(z(j)).

Let us take the supremum of 1
ν log |f(z0)| = 1

ν log |f ′(z0)| over all f with ‖f‖ 6 1. By
the definition of ψε,ν,k ((16.6) and (16.7)) and the bound on ‖f ′‖, we find

ψε,ν,k(z0) 6 ψν,j(z0) +
logC′

2ν
+ Cε(min(rj, rk))

2,

whence (16.10) by symmetry. Assume that ν is so large that C3/ν < C4ε(infj rj)
2. We

“glue” all functions ψε,ν,j into a function ψε,ν globally defined on X , and for this we set

ψε,ν(z) = sup
j, B′

j
∋z

(
ψε,ν,j(z) + 12C4ε(r

′2
j − |z(j)|2)

)
on X.

Every point of X belongs to some ball B′′
k , and for such a point we get

12C4ε(r
′2
k − |z(k)|2) > 12C4ε(r

′2
k − r′′2k ) > 2C4r

2
k >

C3

ν
+ C4ε(min(rj , rk))

2.

This, together with (16.10), implies that in ψε,ν(z) the supremum is never reached for
indices j such that z ∈ ∂B′

j, hence ψε,ν is well defined and continuous, and by standard
properties of upper envelopes of (quasi)-plurisubharmonic functions we get

(16.11) i∂∂ψε,ν > γ − C5εω

for ν > ν0(ε) large enough. By inequality (16.9) applied with r = e−
√
ν , we see that

limν→+∞ ψε,ν(z) = ϕ(z). At this point, the difficulty is to show that ψε,ν is decreasing
with ν – this may not be formally true, but we will see at Step 3 that this is essentially
true. Another difficulty is that we must simultaneously let ε go to 0, forcing us to change
the covering as we want the error to get smaller and smaller in (16.11).

Step 2. A comparison of integrals.

We claim that

(16.12) I :=

∫

X

(
e−2ϕ − e−2max(ϕ, ℓ

ℓ−1ψν,ε)+a
)
dVω < +∞

for every ℓ ∈ ]1, ν] and a ∈ R. In fact

I 6

∫

{ϕ< ℓ
ℓ−1ψε,ν+a}

e−2ϕdVω =

∫

{ϕ< ℓ
ℓ−1ψε,ν}+a

e2(ℓ−1)ϕ−2ℓϕdVω

6 e2(ℓ−1)a

∫

X

e2ℓ(ψε,ν−ϕ)dVω 6 C
( ∫

X

e2ν(ψε,ν−ϕ)dVω
) ℓ

ν
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by Hölder’s inequality. In order to show that these integrals are finite, it is enough, by
the definition and properties of the functions ψε,ν and ψε,ν,j, to prove that

∫

B′
j

e2νψε,ν,j−2νϕdλ =

∫

B′
j

( +∞∑

k=0

|fν,j,k|2
)
e−2νϕdλ < +∞.

By the strong Noetherian property of coherent ideal sheaves (see e.g. [GR84]), we know
that the sequence of ideal sheaves generated by the holomorphic functions
(fν,j,k(z)fν,j,k(w))k6k0 on Bj × Bj is locally stationary as k0 increases, hence indepen-
dant of k0 on B′

j × B′
j ⊂⊂ Bj × Bj for k0 large enough. As the sum of the series∑

k fν,j,k(z)fν,j,k(w) is bounded by

(∑

k

|fν,j,k(z)|2
∑

k

|fν,j,k(w)|2
)1/2

and thus uniformly covergent on every compact subset of Bj × Bj , and as the space
of sections of a coherent ideal sheaf is closed under the topology of uniform conver-
gence on compact subsets, we infer from the Noetherian property that the holomorphic
function

∑+∞
k=0 fν,j,k(z)fν,j,k(w) is a section of the coherent ideal sheaf generated by

{fν,j,k(z)fν,j,k(w)}k6k0 over B′
j × B′

j, for k0 large enough. Hence, by restricting to the
conjugate diagonal w = z, we get

+∞∑

k=0

|fν,j,k(z)|2 6 C

k0∑

k=0

|fν,j,k(z)|2 on B′
j .

This implies

∫

B′
j

( +∞∑

k=0

|fν,j,k|2
)
e−2ϕdλ 6 C

∫

B′
j

( k0∑

k=0

|fν,j,k|2
)
e−2ϕdλ = C(k0 + 1).

(16.12) is proved.

Step 3. Subadditivity of the approximating sequence ψε,ν.

We want to compare ψε,ν1+ν2 and ψε,ν1 , ψε,ν2 for every pair of indices ν1, ν2, first when
the functions are associated with the same covering X =

⋃
Bj. Consider a function

f ∈ Hν1+ν2,j with

∫

Bj

|f(z)|2e−2(ν1+ν2)ϕj(z)dλ(z) 6 1, ϕj(z) = ϕ(z) + cj |z(j)|2.

We may view f as a function f̂(z, z) defined on the diagonal ∆ of Bj ×Bj . Consider the
Hilbert space of holomorphic functions u on Bj ×Bj such that

∫

Bj×Bj

|u(z, w)|2e−2ν1ϕj(z)−2ν2ϕj(w)dλ(z)dλ(w) < +∞.
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By the Ohsawa-Takegoshi L2 extension theorem [OT87], there exists a function f̃(z, w)

on Bj ×Bj such that f̃(z, z) = f(z) and

∫

Bj×Bj

|f̃(z, w)|2e−2ν1ϕj(z)−2ν2ϕj(w)dλ(z)dλ(w)

6 C7

∫

Bj

|f(z)|2e−2(ν1+ν2)ϕj(z)dλ(z) = C7,

where the constant C7 only depends on the dimension n (it is actually independent of
the radius rj if say 0 < rj 6 1). As the Hilbert space under consideration on Bj ×Bj is
the completed tensor product Hν1,j ⊗̂Hν2,j , we infer that

f̃(z, w) =
∑

k1,k2

ck1,k2fν1,j,k1(z)fν2,j,k2(w)

with
∑
k1,k2

|ck1,k2 |2 6 C7. By restricting to the diagonal, we obtain

|f(z)|2 = |f̃(z, z)|2 6
∑

k1,k2

|ck1,k2 |2
∑

k1

|fν1,j,k1(z)|2
∑

k2

|fν2,j,k2(z)|2.

From (16.5) and (16.6), we get

ψε,ν1+ν2,j 6
logC7

ν1 + ν2
+

ν1
ν1 + ν2

ψε,ν1,j +
ν2

ν1 + ν2
ψε,ν2,j ,

in particular

ψε,2ν ,j 6 ψε,2ν−1,j +
C8

2ν
,

and we see that ψε,2ν + C82
−ν is a decreasing sequence. By Step 2 and Lebesgue’s

monotone convergence theorem, we infer that for every ε, δ > 0 and a 6 a0 ≪ 0 fixed,
the integral

Iε,δ,ν =

∫

X

(
e−2ϕ − e−2max(ϕ,(1+δ)(ψ2ν,ε+a))

)
dVω

converges to 0 as ν tends to +∞ (take ℓ = 1
δ
+1 and 2ν > ℓ and a0 such that δ supX ϕ+

a0 6 0; we do not have monotonicity strictly speaking but need only replace a by
a+ C82

−ν to get it, thereby slightly enlarging the integral).

Step 4. Selection of a suitable upper envelope.

For the simplicity of notation, we assume here that supX ϕ = 0 (possibly after subtracting
a constant), hence we can take a0 = 0 in the above. We may even further assume that
all our functions ψε,ν are nonpositive. By Step 3, for each δ = ε = 2−k, we can select an
index ν = p(k) such that

(16.13) I2−k,2−k,p(k) =

∫

X

(
e−2ϕ − e

−2max(ϕ,(1+2−k)ψ
2−k,2p(k))

)
dVω 6 2−k.

By construction, we have an estimate i∂∂ψ2−k,2p(k) > γ − C52
−kω, and the functions

ψ2−k,2p(k) are quasi-psh with logarithmic poles. Our estimates (especially (16.9)) imply
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that limk→+∞ ψ2−k,2p(k)(z) = ϕ(z) as soon as 2−p(k) log
(
1/ infj rj(k)

)

→ 0 (notice that the rj ’s now depend on ε = 2−k). We set

(16.14) ϕν(z) = sup
k>ν

(1 + 2−k)ψ2−k,2p(k)(z).

By construction {ϕν} is a decreasing sequence and satisfies the estimates

ϕν > max
(
ϕ, (1 + 2−ν)ψ2−ν ,2p(ν)

)
, i∂∂ϕν > γ − C52

−νω.

Inequality (16.13) implies that

∫

X

(e−2ϕ − e−2ϕν )dVω 6
+∞∑

k=ν

2−k = 21−ν .

Finally, if Zν is the set of poles of ψ2−ν ,2p(ν) , then Zν ⊂ Zν+1 and ϕν is continuous
on X r Zν . The reason is that in a neighborhood of every point z0 ∈ X r Zν , the term
(1 + 2−k)ψ2−k,2p(k) contributes to ϕν only when it is larger than (1 + 2−ν)ψ2−ν ,2p(ν) .
Hence, by the almost-monotonicity, the relevant terms of the sup in (16.14) are squeezed
between (1 + 2−ν)ψ2−ν ,2p(ν) and (1 + 2−k)(ψ2−ν ,2p(ν) + C82

−ν), and therefore there is
uniform convergence in a neighborhood of z0. Finally, condition (c) implies that

∫

U

|f |2(e−2ϕ − e−2ϕν )dVω < +∞

for every germ of holomorphic function f ∈ O(U) at a point x ∈ X . Therefore both in-
tegrals

∫
U
|f |2e−2ϕdVω and

∫
U
|f |2e−2ϕνdVω are simultaneously convergent or divergent,

i.e. I(ϕ) = I(ϕν). Theorem 16.3 is proved, except that ϕν is possibly just continuous
instead of being smooth. This can be arranged by Richberg’s regularization theorem
[Ri68], at the expense of an arbitrary small loss in the Hessian form. �

(16.15) Remark. By a very slight variation of the proof, we can strengthen condition
(c) and obtain that for every t > 0

∫

X

(e−2tϕ − e−2tϕν )dVω

is finite for ν large enough and converges to 0 as ν → +∞. This implies that the sequence
of multiplier ideals I(tϕν) is a stationary decreasing sequence, with I(tϕν) = I(tϕ) for
ν large.

§ 16.C. A Bochner Type Inequality

Let (L, h) be a smooth Hermitian line bundle on a (non necessarily compact) Kähler
manifold (Y, ω). We denote by | | = | |ω,h the pointwise Hermitian norm on Λp,qT ∗

Y ⊗ L
associated with ω and h, and by ‖ ‖ = ‖ ‖ω,h the global L2 norm

‖u‖2 =

∫

Y

|u|2dVω where dVω =
ωn

n!
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We consider the ∂ operator acting on (p, q)-forms with values in L, its adjoint ∂
∗
h with

respect to h and the complex Laplace-Beltrami operator ∆′′
h = ∂∂

∗
h + ∂

∗
h∂. Let v be a

smooth (n− q, 0)-form with compact support in Y . Then u = ωq ∧ v satisfies

(16.16) ‖∂u‖2 + ‖∂∗hu‖2 = ‖∂v‖2 +
∫

Y

∑

I,J

(∑

j∈J
λj

)
|uIJ |2

where λ1 6 · · · 6 λn are the curvature eigenvalues of ΘL,h expressed in an orthonormal
frame (∂/∂z1, . . . , ∂/∂zn) (at some fixed point x0 ∈ Y ), in such a way that

ωx0
= i

∑

16j6n

dzj ∧ dzj, (ΘL,h)x0
= i∂∂ϕx0

= i
∑

16j6n

λjdzj ∧ dzj .

The proof of (16.16) proceeds by checking that

(16.17) (∂
∗
ϕ ∂ + ∂ ∂

∗
ϕ)(v ∧ ωq)− (∂

∗
ϕ ∂v) ∧ ωq = q i∂∂ϕ ∧ ωq−1 ∧ v,

taking the inner product with u = ωq ∧ v and integrating by parts in the left hand side.
In order to check (16.16), we use the identity ∂

∗
ϕ = eϕ∂

∗
(e−ϕ•) = ∂

∗
+∇0,1ϕ • . Let

us work in a local trivialization of L such that ϕ(x0) = 0 and ∇ϕ(x0) = 0. At x0 we
then find

(∂
∗
ϕ ∂ + ∂ ∂

∗
ϕ)(ω

q ∧ v)− ωq ∧ (∂
∗
ϕ ∂v)

=
[
(∂

∗
∂ + ∂ ∂

∗
)(ωq ∧ v)− ωq ∧ (∂

∗
∂v)

]
+ ∂(∇0,1ϕ (ωq ∧ v)).

However, the term [ · · · ] corresponds to the case of a trivial vector bundle and it is well
known in that case that [∆′′, ωq ∧ •] = 0, hence [ · · · ] = 0. On the other hand

∇0,1ϕ (ωq ∧ v) = q(∇0,1ϕ ω) ∧ ωq−1 ∧ v = −q i∂ϕ ∧ ωq−1 ∧ v,
and so

(∂
∗
ϕ ∂ + ∂ ∂

∗
ϕ)(ω

q ∧ v)− ωq ∧ (∂
∗
ϕ ∂v) = q i∂∂ϕ ∧ ωq−1 ∧ v.

Our formula is thus proved when v is smooth and compactly supported. In general, we
have:

(16.18) Proposition. Let (Y, ω) be a complete Kähler manifold and (L, h) a smooth
Hermitian line bundle such that the curvature possesses a uniform lower bound ΘL,h >
−Cω. For every measurable (n − q, 0)-form v with L2 coefficients and values in L such

that u = ωq ∧ v has differentials ∂u, ∂
∗
u also in L2, we have

‖∂u‖2 + ‖∂∗hu‖2 = ‖∂v‖2 +
∫

Y

∑

I,J

(∑

j∈J
λj

)
|uIJ |2

(here, all differentials are computed in the sense of distributions).

Proof. Since (Y, ω) is assumed to be complete, there exists a sequence of smooth forms vν
with compact support in Y (obtained by truncating v and taking the convolution with a
regularizing kernel) such that vν → v in L2 and such that uν = ωq ∧ vν satisfies uν → u,

∂uν → ∂u, ∂
∗
uν → ∂

∗
u in L2. By the curvature assumption, the final integral in the

right hand side of (16.16) must be under control (i.e. the integrand becomes nonnegative
if we add a term C‖u‖2 on both sides, C ≫ 0). We thus get the equality by passing to
the limit and using Lebesgue’s monotone convergence theorem. �
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§ 16.D. Proof of Theorem 16.1

To fix the ideas, we first indicate the proof in the much simpler case when (L, h) is
Hermitian semi-positive, and then treat the general case.

(16.19) Special Case. (L, h) is (smooth) Hermitian semi-positive.

Let {β} ∈ Hq(X,ΩnX ⊗L) be an arbitrary cohomology class. By standard L2 Hodge
theory, {β} can be represented by a smooth harmonic (0, q)-form β with values in ΩnX ⊗
L. We can also view β as a (n, q)-form with values in L. The pointwise Lefschetz
isomorphism produces a unique (n − q, 0)-form α such that β = ωq ∧ α. Proposition
16.18 then yields

‖∂α‖2 +
∫

Y

∑

I,J

(∑

j∈J
λj

)
|αIJ |2 = ‖∂β‖2 + ‖∂∗hβ‖2 = 0,

and the curvature eigenvalues λj are nonnegative by our assumption. Hence ∂α = 0 and
{α} ∈ H0(X,Ωn−qX ⊗ L) is mapped to {β} by Φqω,h = ωq ∧ • .

(16.20) General Case.

There are several difficulties. The first difficulty is that the metric h is no longer
smooth and we cannot directly represent cohomology classes by harmonic forms. We
circumvent this problem by smoothing the metric on an (analytic) Zariski open subset
and by avoiding the remaining poles on the complement. However, some careful estimates
have to be made in order to take the error terms into account.

Fix ε = εν and let hε = hεν be an approximation of h, such that hε is smooth on
X r Zε (Zε being an analytic subset of X), ΘL,hε

> −εω, hε 6 h and I(hε) = I(h).
This is possible by Theorem 16.3. Now, we can find a family

ωε,δ = ω + δ(i∂∂ψε + ω), δ > 0

of complete Kähler metrics on X r Zε, where ψε is a quasi-psh function on X with
ψε = −∞ on Zε, ψε on X r Zε and i∂∂ψε + ω > 0 (see e.g. [Dem82b], Théorème 1.5).
By construction, ωε,δ > ω and limδ→0 ωε,δ = ω. We look at the L2 Dolbeault complex
K•
ε,δ of (n, •)-forms on X r Zε, where the L2 norms are induced by ωε,δ on differential

forms and by hε on elements in L. Specifically

Kq
ε,δ =

{
u:X r Zε→Λn,qT ∗

X ⊗ L;

∫

XrZε

(|u|2Λn,qωε,δ⊗hε
+ |∂u|2Λn,q+1ωε,δ⊗hε

)dVωε,δ
<∞

}
.

Let Kq
ε,δ be the corresponding sheaf of germs of locally L2 sections on X (the local L2

condition should hold on X , not only on X r Zε !). Then, for all ε > 0 and δ > 0,
(Kq

ε,δ, ∂) is a resolution of the sheaf ΩnX ⊗ L⊗I(hε) = ΩnX ⊗ L⊗I(h). This is because
L2 estimates hold locally on small Stein open sets, and the L2 condition on XrZε forces
holomorphic sections to extend across Zε ([Dem82b], Lemma 6.9).

Let {β} ∈ Hq(X,ΩnX ⊗ L ⊗ I(h)) be a cohomology class represented by a smooth
form with values in ΩnX ⊗ L ⊗ I(h) (one can use a Čech cocycle and convert it to an
element in the C∞ Dolbeault complex by means of a partition of unity, thanks to the
usual De Rham-Weil isomorphism). Then

‖β‖2ε,δ 6 ‖β‖2 =

∫

X

|β|2Λn,qω⊗hdVω < +∞.
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The reason is that |β|2Λn,qω⊗hdVω decreases as ω increases. This is just an easy calculation,
shown by comparing two metrics ω, ω′ which are expressed in diagonal form in suitable co-
ordinates; the norm |β|2Λn,qω⊗h turns out to decrease faster than the volume dVω increases;

see e.g. [Dem82b], Lemma 3.2; a special case is q = 0, then |β|2Λn,qω⊗hdVω = in
2

β ∧ β
with the identification L ⊗ L ≃ C given by the metric h, hence the integrand is even
independent of ω in that case.

By the proof of the De Rham-Weil isomorphism, the map α 7→ {α} from the cocycle
space Zq(K•

ε,δ) equipped with its L2 topology, into Hq(X,ΩnX⊗L⊗I(h)) equipped with
its finite vector space topology, is continuous. Also, Banach’s open mapping theorem
implies that the coboundary space Bq(K•

ε,δ) is closed in Zq(K•
ε,δ). This is true for all

δ > 0 (the limit case δ = 0 yields the strongest L2 topology in bidegree (n, q)). Now, β is
a ∂-closed form in the Hilbert space defined by ωε,δ on XrZε, so there is a ωε,δ-harmonic
form uε,δ in the same cohomology class as β, such that

‖uε,δ‖ε,δ 6 ‖β‖ε,δ.

(16.21) Remark. The existence of a harmonic representative holds true only for δ > 0,
because we need to have a complete Kähler metric on X r Zε. The trick of employing
ωε,δ instead of a fixed metric ω, however, is not needed when Zε is (or can be taken to
be) empty. This is the case if (L, h) is such that I(h) = OX and L is nef. Indeed, in that
case, from the very definition of nefness, it is easy to prove that we can take the ϕν ’s
to be everywhere smooth in Theorem 16.3. However, we will see in Section 16.E that
multiplier ideal sheaves are needed even in case L is nef, when I(h) 6= OX .

Let vε,δ be the unique (n− q, 0)-form such that uε,δ = vε,δ ∧ ωqε,δ (vε,δ exists by the
pointwise Lefschetz isomorphism). Then

‖vε,δ‖ε,δ = ‖uε,δ‖ε,δ 6 ‖β‖ε,δ 6 ‖β‖.
As

∑
j∈J λj > −qε by the assumption on ΘL,hε

, the Bochner formula yields

‖∂vε,δ‖2ε,δ 6 qε‖uε,δ‖2ε,δ 6 qε‖β‖2.
These uniform bounds imply that there are subsequences uε,δν and vε,δν with δν → 0,
possessing weak-L2 limits uε = limν→+∞ uε,δν and vε = limν→+∞ vε,δν . The limit uε =
limν→+∞ uε,δν is with respect to L2(ω) = L2(ωε,0). To check this, notice that in bidegree
(n − q, 0), the space L2(ω) has the weakest topology of all spaces L2(ωε,δ); indeed, an
easy calculation as in ([Dem82b], Lemma 3.2) yields

|f |2Λn−q,0ω⊗hdVω 6 |f |2Λn−q,0ωε,δ⊗hdVωε,δ
if f is of type (n− q, 0).

On the other hand, the limit vε = limν→+∞ vε,δν takes place in all spaces L2(ωε,δ), δ > 0,
since the topology gets stronger and stronger as δ ↓ 0 [ possibly not in L2(ω), though,
because in bidegree (n, q) the topology of L2(ω) might be strictly stronger than that of
all spaces L2(ωε,δ) ]. The above estimates yield

‖vε‖2ε,0 =

∫

X

|vε|2Λn−q,0ω⊗hε
dVω 6 ‖β‖2,

‖∂vε‖2ε,0 6 qε‖β‖2ε,0,

uε = ωq ∧ vε ≡ β in Hq(X,ΩnX ⊗ L⊗ I(hε)).
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Again, by arguing in a given Hilbert space L2(hε0), we find L2 convergent subsequences
uε → u, vε → v as ε→ 0, and in this way get ∂v = 0 and

‖v‖2 6 ‖β‖2,
u = ωq ∧ v ≡ β in Hq(X,ΩnX ⊗ L⊗ I(h)).

Theorem 16.1 is proved. Notice that the equisingularity property I(hε) = I(h) is crucial
in the above proof, otherwise we could not infer that u ≡ β from the fact that uε ≡ β.
This is true only because all cohomology classes {uε} lie in the same fixed cohomology
group Hq(X,ΩnX ⊗ L ⊗ I(h)), whose topology is induced by the topology of L2(ω) on
∂-closed forms (e.g. through the De Rham-Weil isomorphism). �

§ 16.E. A Counterexample

In view of Corollary 16.2, one might wonder whether the morphism Φqω would not still
be surjective when L is a nef vector bundle. We will show that this is unfortunately not
so, even in the case of algebraic surfaces.

Let B be an elliptic curve and let V be the rank 2 vector bundle over B which is
defined as the (unique) non split extension

0 → OB → V → OB → 0.

In particular, the bundle V is numerically flat, i.e. c1(V ) = 0, c2(V ) = 0. We consider
the ruled surface X = P(V ). On that surface there is a unique section C = P(OB) ⊂ X
with C2 = 0 and

OX(C) = OP(V )(1)

is a nef line bundle. It is easy to see that

h0(X,OP(V )(m)) = h0(B, SmV ) = 1

for all m ∈ N (otherwise we would have mC = aC + M where aC is the fixed part
of the linear system |mC| and M 6= 0 the moving part, thus M2 > 0 and C ·M > 0,
contradiction). We claim that

h0(X,Ω1
X(kC)) = 2

for all k > 2. This follows by tensoring the exact sequence

0 → Ω1
X|C → Ω1

X → π∗Ω1
C ≃ OC → 0

by OX(kC) and observing that

Ω1
X|C = KX = OX(−2C).

From this, we get

0 → H0(X,OX((k − 2)C)) → H0(X,Ω1
XO(kC)) → H0(X,OX(kC))
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where h0(X,OX((k−2)C)) = h0(X,OX(kC)) = 1 for all k > 2. Moreover, the last arrow
is surjective because we can multiply a section of H0(X,OX(kC)) by a nonzero section
in H0(X, π∗Ω1

B) to get a preimage. Our claim follows. We now consider the diagram

H0(X,Ω1
X(2C))

∧ω−−−→ H1(X,KX(2C))

≃
y

yϕ

H0(X,Ω1
X(3C))

∧ω−−−→
ψ

H1(X,KX(3C)).

Since KX(2C) ≃ OX and KX(3C) ≃ OX(C), the cohomology sequence of

0 → KX(2C) → KX(3C) → KX(3C)|C ≃ OC → 0

immediately implies ϕ = 0 (notice that h1(X,KX(2C)) = h1(X,KX(3C)) = 1,
since h1(B,OB) = h1(B, V ) = 1), and h2(X,KX(2C)) = h2(B,OB) = 0). Therefore
the diagram implies ψ = 0, and we get:

(16.22) Proposition. L = OP(V )(3) is a counterample to (16.2) in the nef case.

By Corollary 16.2, we infer that OX(3) cannot be Hermitian semi-positive and we thus
again obtain – by a quite different method — the result of [DPS94], example 1.7.

(16.23) Corollary. Let B be an elliptic curve, V the vector bundle given by the unique
non-split extension

0 → OB → V → OB → 0.

Let X = P(V ). Then L = OX(1) is nef but not Hermitian semi-positive (nor does any
multiple, e.g. the anticanonical line bundle −KX = OX(−2) is nef but not semi-positive).

17. Invariance of Plurigenera of Projective Varieties

The goal of this section is to give a proof of the following fundamental result on the
invariance of plurigenera, which has been proved by Y.T. Siu [Siu98] in the case of
varieties of general type (in which case the proof has been translated in a purely algebraic
form by Y. Kawamata [Kaw99]), and by [Siu00] in general. Let us recall that X is said
to be of general type if κ(KX) = n = dimX .

(17.1) Theorem (Siu). Let X → S be a proper holomorphic map defining a family of
smooth projective varieties of general type on an irreducible base S. Then the plurigenus
pm(Xt) = h0(Xt, mKXt

) of fibers is independent of t for all m > 0.

The proof somehow involves taking “limits” of divisors as m → +∞, and therefore
transcendental methods are a strong contender in this circle of ideas, because currents
provide a natural compactification of the space of divisors. Quite recently, M. Pǎun
obtained a very short and elegant proof of Theorem 17.1 based merely on the Ohwawa-
Takegoshi extension theorem, and we are going to sketch his arguments below (see also
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M. Pǎun [Pau07], B. Claudon [Cla07] and S. Takayama
[Taka07]). In fact, following Păun, one can prove more general results valid for cohomol-
ogy with twisted coefficients. Remarkably enough, no algebraic proof of these results are
known at this point, in the case of varieties of nonnegative Kodaira dimension which are
not of general type.

Notice that by connecting any two points of S by a chain of analytic disks, it is
enough to consider the case where S = ∆ is a disk.

(17.2) Theorem (generalized version of Păun’s theorem). Let π : X→ ∆ be a smooth
projective family over the unit disk, and let (Lj, hj)06j6m−1 be (singular) Hermitian line
bundles with semi-positive curvature currents iΘLj ,hj

> 0 on X. Assume that

(a) the restriction of hj to the central fiber X0 is well defined (i.e. not identically +∞).

(b) the multiplier ideal sheaf I(hj|X0
) is trivial for 1 6 j 6 m− 1.

Then any section σ of O(mK
X

+
∑
Lj)|X0

⊗ I(h0|X0
) over the central fiber X0 extends

to X.

The invariance of plurigenera is just the case when all line bundles Lj and their
metrics hj are trivial. Since the dimension t 7→ h0(Xt, mKXt

) is always upper semicon-
tinuous and since Theorem 17.2 implies the lower semicontinuity, we conclude that the
dimension is constant along analytic disks (hence along any irreducible base S, by joining
any two points through a chain of analytic disks).

In order to prove Theorem 17.2, we first state the technical version of the Ohsawa-
Takegoshi L2 extension theorem needed for the proof, which is a special case of the
Ohsawa-Takegoshi Theorem — the reader is invited to check that the statement indeed
follows from Theorem 13.6.

(17.3) Lemma. Let π : X→ ∆ be as before and let (L, h) be a (singular) Hermitian line
bundle with semi-positive curvature current iΘL,h > 0 on X. Let ω be a global Kähler
metric on X, and dV

X

, dVX0
the respective induced volume elements on X0 and X.

Assume that hX0
is well defined. Then any holomorphic section u of O(K

X

+L)⊗I(h|X0
)

extends into a section ũ over X satisfying an L2 estimate

∫

X

‖ũ‖2ω⊗hdVX 6 C0

∫

X0

‖u‖2ω⊗hdVX0
,

where C0 > 0 is some universal constant (independent of X, L, . . . ).

Proof of Theorem (17.2). We write hj = e−ϕj in terms of local plurisubharmonic weights.
Fix an auxiliary line bundle A (which will later be taken to be sufficiently ample), and
define inductively a sequence of line bundles Fp by putting F0 = A and

Fp = Fp−1 +K
X

+ Lr if p = mq + r, 0 6 r 6 m− 1.

By construction we have Fp+m = Fp +mK
X

+
∑
j Lj and

F0 = A, F1 = A+K
X

+ L1, . . . , Fp = A+ pK
X

+ L1 + · · ·+ Lp, 1 6 p 6 m− 1.
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The game is to construct inductively families of sections, say {ũ(p)j }j=1,...,Np
, of Fp over

X, together with ad hoc L2 estimates, in such a way that

(a) for p = 0, . . . , m− 1, Fp is generated by its sections {ũ(p)j }j=1,...,Np
;

(b) we have the m-periodicity relations Np+m = Np and ũ
(p)
j is an extension of u

(p)
j :=

σqu
(r)
j over X for p = mq + r, where u

(r)
j := ũ

(r)
j|X0

, 0 6 r 6 m− 1.

Property (a) can certainly be achieved by taking A ample enough so that F0, . . . ,

Fm−1 are generated by their sections, and by choosing the ũ
(p)
j appropriately for the first

m indices p = 0, . . . , m − 1. Now, by induction, we equip Fp−1 with the tautological

metric |ξ|2/∑ |ũ(p−1)
j (x)|2, and Fp − K

X

= Fp−1 + Lr with that metric multiplied by

hr = e−ϕr ; it is clear that these metrics have semi-positive curvature currents (the
metric on Fp itself if obtained by using a smooth Kähler metric ω on X). In this setting,

we apply the Ohsawa-Takegoshi theorem to the line bundle Fp−1+Lr to extend u
(p)
j into

a section ũ
(p)
j over X. By construction the pointwise norm of that section in Fp|X0

in a
local trivialization of the bundles involved is the ratio

|u(p)j |2
∑
ℓ |u

(p−1)
ℓ |2

e−ϕr ,

up to some fixed smooth positive factor depending only on the metric induced by ω
on K

X

. However, by the induction relations, we have

∑
j |u

(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕr =





∑
j |u

(r)
j |2

∑
ℓ |u

(r−1)
ℓ |2

e−ϕr for p = mq + r, 0 < r 6 m− 1,

∑
j |u

(0)
j |2

∑
ℓ |u

(m−1)
ℓ |2

|σ|2e−ϕ0 for p ≡ 0modm.

Since the sections {u(r)j } generate their line bundle, the ratios involved are positive func-
tions without zeroes and poles, hence smooth and bounded [possibly after shrinking the
base disc ∆, as is permitted]. On the other hand, assumption (b) and the fact that σ
has coefficients in the multiplier ideal sheaf I(h0|X0

) tell us that e−ϕr , 1 6 r < m and
|σ|2e−ϕ0 are locally integrable on X0. It follows that there is a constant C1 > 0 such
that

∫

X0

∑
j |u

(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕrdVω 6 C1

for all p > 1 (of course, the integral certainly involves finitely many trivializations of the
bundles involved, whereas the integrand expression is just local in each chart). Induc-

tively, the L2 extension theorem produces sections ũ
(p)
j of Fp over X such that

∫

X

∑
j |ũ

(p)
j |2

∑
ℓ |ũ

(p−1)
ℓ |2

e−ϕrdVω 6 C2 = C0C1.
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The next idea is to extract the limits of p-th roots of these sections to get a singular
Hermitian metric on mK

X

+
∑
Lj. As the functions e−ϕr are locally bounded below (ϕr

being psh), the Hölder inequality implies that

∫

X

(∑

j

|ũ(p)j |2
)1/p

dVω 6 C3.

The mean value inequality for plurisubharmonic functions shows a fortiori that the se-

quence of psh functions 1
p log

∑
j |ũ

(p)
j |2 is locally uniformly bounded from above. These

functions should be thought of as weights on the Q-line bundles

1

p
(A+ q(mK

X

+
∑

Lj) + L1 + · · ·+Lr) converging to K
X

+
1

m

∑
Lj as p→ +∞,

and thus they are potentials of currents in a bounded subset of the Kähler cone. Moreover,

the sections ũ
(p)
j extend σqurj on X0, and so we have in particular

lim
p→+∞

1

p
log

∑

j

|u(p)j |2 = lim
p→+∞

1

p
log

(
|σ|2q

∑

j

|u(0)j |2
)
=

1

m
log |σ|2 6≡ −∞ on X0.

Therefore, by well known facts of potential theory, the sequence 1
p log

∑
j |u

(p)
j |2 must

have some subsequence which converges in L1
loc topology to the potential ψ of a current

in the first Chern class of K
X

+ 1
m

∑
Lj , in the form of an upper regularized limit

ψ(z) = lim sup
ζ→z

lim
ν→+∞

1

pν
log

∑

j

|ũ(pν)j (ζ)|2,

which is such that ψ(z) > 1
m

log |σ|2 on X0. Hence mK
X

+
∑
Lj possesses a Hermitian

metric H = e−mψ , and we have by construction ‖σ‖H 6 1 and ΘH > 0. In order to
conclude, we equip the bundle

G = (m− 1)K
X

+
∑

Lj

with the metric γ = H1−1/m
∏
h
1/m
j , and mK

X

+
∑
Lj = K

X

+G with the metric ω⊗γ.
Clearly γ has a semi-positive curvature current on X and in a local trivialization we have

‖σ‖2ω⊗γ 6 C|σ|2 exp
(
− (m− 1)ψ +

1

m

∑
ϕj

)
6 C

(
|σ|2

∏
e−ϕj

)1/m

on X0. Since |σ|2e−ϕ0 and e−ϕr , r > 0 are all locally integrable, we see that ‖σ‖2ω⊗γ
is also locally integrable on X0 by the Hölder inequality. A new (and final) application
of the L2 extension theorem to the Hermitian line bundle (G, γ) implies that σ can be
extended to X. Theorem 17.2 is proved. �



18. Numerical Characterization of the Kähler Cone 179

18. Numerical Characterization of the Kähler Cone

The main goal of this Section is to describe a structure theorem for the Kähler cone
of any compact Kähler manifold, first obtained in [DP04]. The result can be seen as
the Kähler generalization of the Nakai-Moishezon criterion for ample line bundles on
projective varieties.

§ 18.A. Positive Classes in Intermediate (p, p)-bidegrees

We first discuss some general positivity concepts for cohomology classes of type (p, p),
although we will not be able to say much about these. Recall that we have a Serre duality
pairing

(18.1) Hp,q(X,C)×Hn−p,n−q(X,C) −→ C, (α, β) 7−→
∫

X

α ∧ β ∈ C.

In particular, if we restrict to real classes, this yields a duality pairing

(18.2) Hp,p(X,R)×Hn−p,n−p(X,R) −→ R, (α, β) 7−→
∫

X

α ∧ β ∈ R.

Now, one can define Hp,p
SP (X,R) to be the closure of the cone of classes of d-closed strongly

positive smooth (p, p)-forms (a (p, p)-form in Λp,pT ∗
X is by definition strongly positive if

it is in the convex cone generated by decomposable (p, p) forms iu1 ∧ u1 ∧ · · · ∧ iup ∧ up
where the uj are (1, 0)-forms). Clearly, H1,1

SP (X,R) = K and the cup product defines a
multilinear map

(18.3) K× · · · ×K −→ Hp,p
SP (X,R)

on the p-fold product of the Kähler cone and its closure. We also have Hp,p
SP (X,R)⊂

Hp,p
>0 (X,R) where H

p,p
>0 (X,R) is the cone of classes of d-closed weakly positive currents

of type (p, p), and the Serre duality pairing induces a positive intersection product

(18.4) Hp,p
SP (X,R)×Hn−p,n−p

>0 (X,R) −→ R+, (α, T ) 7−→
∫

X

α ∧ T ∈ R+

(notice that if α is strongly positive and T > 0, then α ∧ T is a positive measure).

IfC is a convex cone in a finite dimensional vector space E, we denote byC∨ the dual
cone, i.e. the set of linear forms u ∈ E∗ which take nonnegative values on all elements
of C. By the Hahn-Banach theorem, we always have C∨∨ = C. A basic problem would
be to investigate whether Hp,p

SP (X,R) and Hn−p,n−p
>0 (X,R) are always dual cones, and

another even harder question, which somehow encompasses the Hodge conjecture, would
be to relate these cones to the cones generated by cohomology classes of effective analytic
cycles. We are essentially unable to address these extremely difficult questions, except
in the special cases p = 1 or p = n − 1 which are much better understood and are the
main target of the following sections.

§ 18.B. Numerically Positive Classes of Type (1,1)

We describe here the main results obtained in [DP04]. The upshot is that the Kähler cone
depends only on the intersection product of the cohomology ring, the Hodge structure
and the homology classes of analytic cycles. More precisely, we have :
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(18.5) Theorem. Let X be a compact Kähler manifold. Let P be the set of real (1, 1)
cohomology classes {α} which are numerically positive on analytic cycles, i.e. such that∫
Y
αp > 0 for every irreducible analytic set Y in X, p = dimY . Then the Kähler cone

K of X is one of the connected components of P.

(18.6) Special Case. If X is projective algebraic, then K = P.

These results (which are new even in the projective case) can be seen as a general-
ization of the well-known Nakai-Moishezon criterion. Recall that the Nakai-Moishezon
criterion provides a necessary and sufficient criterion for a line bundle to be ample: a
line bundle L→ X on a projective algebraic manifold X is ample if and only if

Lp · Y =

∫

Y

c1(L)
p > 0,

for every algebraic subset Y ⊂ X, p = dimY .

It turns out that the numerical conditions
∫
Y
αp > 0 also characterize arbitrary

transcendental Kähler classes when X is projective : this is precisely the meaning of the
Special Case 18.6.

(18.7) Example. The following example shows that the cone P need not be connected
(and also that the components of P need not be convex, either). Let us consider for
instance a complex torus X = Cn/Λ. It is well-known that a generic torus X does not
possess any analytic subset except finite subsets and X itself. In that case, the numerical
positivity is expressed by the single condition

∫
X
αn > 0. However, on a torus, (1, 1)-

classes are in one-to-one correspondence with constant Hermitian forms α on Cn. Thus,
for X generic, P is the set of Hermitian forms on Cn such that det(α) > 0, and Theorem
18.5 just expresses the elementary result of linear algebra saying that the setK of positive
definite forms is one of the connected components of the open set P = {det(α) > 0} of
Hermitian forms of positive determinant (the other components, of course, are the sets
of forms of signature (p, q), p + q = n, q even. They are not convex when p > 0 and
q > 0).

Sketch of proof of Theorems 18.5 and 18.6. By Definition 14.15, a Kähler current is a
closed positive current T of type (1, 1) such that T > εω for some smooth Kähler metric
ω and ε > 0 small enough. The crucial steps of the proof of Theorem 18.5 are contained
in the following statements.

(18.8) Proposition (Păun [Pau98a, 98b]). Let X be a compact complex manifold (or
more generally a compact complex space). Then

(a) The cohomology class of a closed positive (1, 1)-current {T} is nef if and only if
the restriction {T}|Z is nef for every irreducible component Z in any of the Lelong
sublevel sets Ec(T ).

(b) The cohomology class of a Kähler current {T} is a Kähler class (i.e. the class of a
smooth Kähler form) if and only if the restriction {T}|Z is a Kähler class for every
irreducible component Z in any of the Lelong sublevel sets Ec(T ).
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The proof of Proposition 18.8 is not extremely hard if we take for granted the fact
that Kähler currents can be approximated by Kähler currents with logarithmic poles,
a fact which was first proved in Section 14.B (see also [Dem92]). Thus in (b), we may
assume that T = α+i∂∂ϕ is a current with analytic singularities, where ϕ is a quasi-psh
function with logarithmic poles on some analytic set Z, and ϕ smooth on X r Z. Now,
we proceed by an induction on dimension (to do this, we have to consider analytic spaces
rather than with complex manifolds, but it turns out that this makes no difference for
the proof). Hence, by the induction hypothesis, there exists a smooth potential ψ on Z
such that α|Z + i∂∂ψ > 0 along Z. It is well known that one can then find a potential

ψ̃ on X such that α + i∂∂ψ̃ > 0 in a neighborhood V of Z (but possibly non positive
elsewhere). Essentially, it is enough to take an arbitrary extension of ψ to X and to add a
large multiple of the square of the distance to Z, at least near smooth points; otherwise,
we stratify Z by its successive singularity loci, and proceed again by induction on the
dimension of these loci. Finally, we use a a standard gluing procedure : the current
T = α + imaxε(ϕ, ψ̃ − C), C ≫ 1, will be equal to α + i∂∂ϕ > 0 on X r V , and to a
smooth Kähler form on V . �

The next (and more substantial step) consists of the following result which is remi-
niscent of the Grauert-Riemenschneider conjecture ([Siu84; Dem85b], cf. Corollary 8.3).

(18.9) Theorem ([DP04]). Let X be a compact Kähler manifold and let {α} be a nef
class (i.e. {α} ∈ K). Assume that

∫
X
αn > 0. Then {α} contains a Kähler current T ,

in other words {α} ∈ E◦.

Step 1. The basic argument is to prove that for every irreducible analytic set Y ⊂ X
of codimension p, the class {α}p contains a closed positive (p, p)-current Θ such that
Θ > δ[Y ] for some δ > 0. For this, we use in an essential way the Calabi-Yau theorem
[Yau78] on solutions of Monge-Ampère equations, which yields the following result as a
special case:

(18.10) Lemma ([Yau78]). Let (X,ω) be a compact Kähler manifold and n = dimX.
Then for any smooth volume form f > 0 such that

∫
X
f =

∫
X
ωn, there exists a Kähler

metric ω̃ = ω + i∂∂ϕ in the same Kähler class as ω, such that ω̃n = f . �

We exploit this by observing that α + εω is a Kähler class. Hence we can solve the
Monge-Ampère equation

(18.10 a) (α+ εω + i∂∂ϕε)
n = Cεω

n
ε

where {ωε} is a family of Kähler metrics contained in the Kähler class {ω} chosen such
that a fixed fraction of their volume is concentrated in an ε-tubular neighborhood Vε of
Y ; these metrics ωε can be easily constructed by adding to ω the ∂∂ of a potential of the
form of Y — in X and Vε := {∑ θα|gj,α|2 < ε2}. Here we take.

Cε =

∫
X
(α+ εω)n∫
X
ωn

> C0 =

∫
X
αn∫

X
ωn

> 0.

Let us put αε := α+ εω + i∂∂ϕε and denote by

λ1(z) 6 · · · 6 λn(z)
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the eigenvalues of αε(z) with respect to ωε(z), at every point z ∈ X (these functions are
continuous with respect to z, and of course depend also on ε). The equation (18.10 a) is
equivalent to the fact that

(18.10 b) λ1(z) · · ·λn(z) = Cε

is constant, and the most important observation for us is that the constant Cε is bounded
away from 0, thanks to our assumption

∫
X
αn > 0.

Fix a regular point x0 ∈ Y and a small neighborhood U (meeting only the irreducible
component of x0 in Y ). By the. choice of ωε, we have (exercise!) a uniform lower bound

(18.10 c)

∫

U∩Vε

ωpε ∧ ωn−p > δp(U) > 0.

Now, by looking at the p smallest (resp. (n−p) largest) eigenvalues λj of αε with respect
to ωε, we find

αpε > λ1 · · ·λp ωpε ,(18.10 d)

αn−pε ∧ ωpε >
1

n!
λp+1 · · ·λn ωnε ,(18.10 e)

The last inequality (18.10 e) implies

∫

X

λp+1 · · ·λn ωnε 6 n!

∫

X

αn−pε ∧ ωpε = n!

∫

X

(α+ εω)n−p ∧ ωp 6M

for some constant M > 0 (we assume ε 6 1, say). In particular, for every δ > 0, the
subset Eδ ⊂ X of points z such that λp+1(z) · · ·λn(z) > M/δ satisfies

∫
Eδ
ωnε 6 δ, hence

(18.10 f)

∫

Eδ

ωpε ∧ ωn−p 6 2n−p
∫

Eδ

ωnε 6 2n−pδ.

The combination of (18.10 c) and (18.10 f) yields

∫

(U∩Vε)rEδ

ωpε ∧ ωn−p > δp(U)− 2n−pδ.

On the other hand (18.10 b) and (18.10 d) imply

αpε >
Cε

λp+1 · · ·λn
ωpε >

Cε
M/δ

ωpε on (U ∩ Vε)rEδ.

From this we infer

(18.10 g)

∫

U∩Vε

αpε ∧ ωn−p >
Cε
M/δ

∫

(U∩Vε)rEδ

ωpε ∧ ωn−p >
Cε
M/δ

(δp(U)− 2n−pδ) > 0

provided that δ is taken small enough, e.g. δ = 2−(n−p+1)δp(U). The family of (p, p)-
forms αpε is uniformly bounded in mass since

∫

X

αpε ∧ ωn−p =
∫

X

(α+ εω)p ∧ ωn−p 6 Const.



18. Numerical Characterization of the Kähler Cone 183

Inequality (18.10 g) implies that any weak limit Θ of (αpε) carries a positive mass on U∩Y .
By Skoda’s extension theorem [Sko82], 1YΘ is a closed positive current with support in
Y , hence 1YΘ =

∑
cj [Yj] is a combination of the various components Yj of Y with

coefficients cj > 0. Our construction shows that Θ belongs to the cohomology class
{α}p. Step 1 of Theorem 18.9 is proved.

Step 2. The second and final step consists in using a “diagonal trick”: for this, we apply
Step 1 to

X̃ = X ×X, Ỹ = diagonal∆ ⊂ X̃, α̃ = pr∗1α+ pr∗2α.

It is then clear that α̃ is nef on X̃ and that
∫

X̃

(α̃)2n =

(
2n

n

)(∫

X

αn
)2

> 0.

It follows by Step 1 that the class {α̃}n contains a Kähler current Θ of bidegree (n, n)
such that Θ > δ[∆] for some δ > 0. Therefore the push-forward

T := (pr1)∗(Θ ∧ pr∗2ω)

is a positive (1, 1)-current such that

T > δ(pr1)∗([∆] ∧ pr∗2ω) = δω.

It follows that T is a Kähler current. On the other hand, T is numerically equivalent to
(pr1)∗(α̃

n ∧ pr∗2ω), which is the form given in coordinates by

x 7→
∫

y∈X

(
α(x) + α(y)

)n ∧ ω(y) = Cα(x)

where C = n
∫
X
α(y)n−1 ∧ ω(y). Hence T ≡ Cα, which implies that {α} contains a

Kähler current. Theorem 18.9 is proved. �

End of Proof of Theorems 18.5 and 18.6. Clearly the open cone K is contained in P,
hence in order to show that K is one of the connected components of P, we need only
show that K is closed in P, i.e. that K∩P ⊂ K. Pick a class {α} ∈ K∩P. In particular
{α} is nef and satisfies

∫
X
αn > 0. By Theorem 18.9 we conclude that {α} contains a

Kähler current T . However, an induction on dimension using the assumption
∫
Y
αp for

all analytic subsets Y (we also use resolution of singularities for Y at this step) shows
that the restriction {α}|Y is the class of a Kähler current on Y . We conclude that {α}
is a Kähler class by Proposition 18.8 (b), therefore {α} ∈ K, as desired. �

The Projective Case 18.6 is a consequence of the following variant of Theorem 18.5.

(18.11) Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α}
on X is Kähler if and only if there exists a Kähler metric ω on X such that

∫
Y
αk∧ωp−k >

0 for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

Proof. The assumption clearly implies that
∫

Y

(α+ tω)p > 0
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for all t ∈ R+, hence the half-line α + (R+)ω is entirely contained in the cone P of
numerically positive classes. Since α + t0ω is Kähler for t0 large, we conclude that the
half-line in entirely contained in the connected component K, and therefore α ∈ K. �

In the projective case, we can take ω = c1(H) for a given very ample divisor H, and
the condition

∫
Y
αk ∧ ωp−k > 0 is equivalent to

∫

Y ∩H1∩···∩Hp−k

αk > 0

for a suitable complete intersection Y ∩ H1 ∩ · · · ∩ Hp−k, Hj ∈ |H|. This shows that
algebraic cycles are sufficient to test the Kähler property, and the special case 18.6 follows.
On the other hand, we can pass to the limit in Corollary 18.11 by replacing α by α+ εω,
and in this way we get also a characterization of nef classes.

(18.12) Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α}
on X is nef if and only if there exists a Kähler metric ω on X such that

∫
Y
αk∧ωp−k > 0

for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

By a formal convexity argument, one can derive from Corollary 18.11 or 18.12 the
following interesting consequence about the dual of the cone K.

(18.13) Theorem. Let X be a compact Kähler manifold.

(a) A (1, 1) cohomology class {α} on X is nef if and only for every irreducible analytic
set Y in X, p = dimX and every Kähler metric ω on X we have

∫
Y
α ∧ ωp−1 > 0.

(Actually this numerical condition is needed only for Kähler classes {ω} which belong
to a 2-dimensional space R{α}+ R{ω0}, where {ω0} is a given Kähler class).

(b) The dual of the nef cone K is the closed convex cone in Hn−1,n−1(X,R) generated
by cohomology classes of currents of the form [Y ] ∧ ωp−1 in Hn−1,n−1(X,R), where
Y runs over the collection of irreducible analytic subsets of X and {ω} over the set
of Kähler classes of X. This dual cone coincides with Hn−1,n−1

>0 (X,R).

Proof. (a) Clearly a nef class {α} satisfies the given numerical condition. The proof of
the converse is more tricky. First, observe that for every integer p > 1, there exists a
polynomial identity of the form

(18.14) (y − δx)p − (1− δ)pxp = (y − x)

∫ 1

0

Ap(t, δ)
(
(1− t)x+ ty

)p−1
dt

where Ap(t, δ) =
∑

06m6p am(t)δ
m ∈ Q[t, δ] is a polynomial of degree 6 p − 1 in t

(moreover, the polynomial Ap is unique under this limitation for the degree). To see
this, we observe that (y−δx)p−(1−δ)pxp vanishes identically for x = y, so it is divisible
by y − x. By homogeneity in (x, y), we have an expansion of the form

(y − δx)p − (1− δ)pxp = (y − x)
∑

06ℓ6p−1, 06m6p

bℓ,mx
ℓyp−1−ℓδm

in the ring Z[x, y, δ]. Formula (18.14) is then equivalent to

(18.14′) bℓ,m =

∫ 1

0

am(t)

(
p− 1

ℓ

)
(1− t)ℓtp−1−ℓ dt.
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Since (U, V ) 7→
∫ 1

0
U(t)V (t)dt is a non degenerate linear pairing on the space of polyno-

mials of degree 6 p − 1 and since (
(
p−1
ℓ

)
(1 − t)ℓtp−1−ℓ)06ℓ6p−1 is a basis of this space,

(18.14′) can be achieved for a unique choice of the polynomials am(t). A straightforward
calculation shows that Ap(t, 0) = p identically. We can therefore choose δ0 ∈ [0, 1[ so
small that Ap(t, δ) > 0 for all t ∈ [0, 1], δ ∈ [0, δ0] and p = 1, 2, . . . , n.

Now, fix a Kähler metric ω such that ω′ = α+ω yields a Kähler class {ω′} (just take
a large multiple ω = kω0, k ≫ 1, of the given Kähler metric ω0 to initialize the process).
A substitution x = ω and y = ω′ in our polynomial identity yields

(α+ (1− δ)ω)p − (1− δ)pωp =

∫ 1

0

Ap(t, δ)α ∧
(
(1− t)ω + tω′)p−1

dt.

For every irreducible analytic subset Y ⊂ X of dimension p we find

∫

Y

(α+ (1− δ)ω)p − (1− δ)p
∫

Y

ωp =

∫ 1

0

Ap(t, δ)dt
(∫

Y

α ∧
(
(1− t)ω + tω′)p−1

)
.

However, (1 − t)ω + tω′ is a Kähler class (contained in R{α} + R{ω0}) and therefore∫
Y
α∧

(
(1−t)ω+tω′)p−1

> 0 by the numerical condition. This implies
∫
Y
(α+(1−δ)ω)p >

0 for all δ ∈ [0, δ0]. We have produced a segment entirely contained in P such that one
extremity {α+ω} is inK, so the other extremity {α+(1−δ0)ω} is also inK. By repeating
the argument inductively after replacing ω with (1−δ0)ω, we see that {α+(1−δ0)νω} ∈ K
for every integer ν > 0. From this we infer that {α} is nef, as desired.

(b) Part (a) can be reformulated by saying that the dual cone K
∨

is the closure of
the convex cone generated by (n− 1, n− 1) cohomology classes of the form [Y ] ∧ ωp−1.
Since these classes are contained in Hn−1,n−1

>0 (X,R) which is also contained in K
∨

by
(18.6), we infer that

K

∨

= Hn−1,n−1
>0 (X,R) = Cone({[Y ] ∧ ωp−1}). �

§ 18.C. Deformations of Compact Kähler Manifolds

Our main Theorem 18.5 also has an important application to the deformation theory of
compact Kähler manifolds.

(18.16) Theorem. Let π : X→ S be a deformation of compact Kähler manifolds over
an irreducible base S. Then there exists a countable union S′ =

⋃
Sν of analytic subsets

Sν ( S, such that the Kähler cones Kt ⊂ H1,1(Xt,C) of the fibers Xt = π−1(t) are
invariant over SrS′ under parallel transport with respect to the (1, 1)-projection ∇1,1 of
the Gauss-Manin connection ∇ in the decomposition of

∇ =




∇2,0 ∗ 0
∗ ∇1,1 ∗
0 ∗ ∇0,2




on the Hodge bundle H2 = H2,0 ⊕H1,1 ⊕H0,2.
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We moreover conjecture that for an arbitrary deformation X → S of compact com-
plex manifolds, the Kähler property is open with respect to the countable Zariski topology
on the base S of the deformation.

Let us recall the general fact that all fibers Xt of a deformation over a connected
base S are diffeomorphic, since X → S is a locally trivial differentiable bundle. This
implies that the cohomology bundle

S ∋ t 7→ Hk(Xt,C)

is locally constant over the base S. The corresponding (flat) connection of this bundle
is called the Gauss-Manin connection, and will be denoted here by ∇. As is well known,
the Hodge filtration

F p(Hk(Xt,C)) =
⊕

r+s=k,r>p

Hr,s(Xt,C)

defines a holomorphic subbundle of Hk(Xt,C) (with respect to its locally constant struc-
ture). On the other hand, the Dolbeault groups are given by

Hp,q(Xt,C) = F p(Hk(Xt,C)) ∩ F k−p(Hk(Xt,C)), k = p+ q,

and they form real analytic subbundles of Hk(Xt,C). We are interested especially in the
decomposition

H2(Xt,C) = H2,0(Xt,C)⊕H1,1(Xt,C)⊕H0,2(Xt,C)

and the induced decomposition of the Gauss-Manin connection acting on H2

∇ =




∇2,0 ∗ ∗
∗ ∇1,1 ∗
∗ ∗ ∇0,2


 .

Here the stars indicate suitable bundle morphisms – actually with the lower left and
upper right stars being zero by Griffiths’ transversality property, but we do not really
care here. The notation ∇p,q stands for the induced (real analytic, not necessarily flat)
connection on the subbundle t 7→ Hp,q(Xt,C).

Sketch of Proof of Theorem 18.16. The result is local on the base, hence we may assume
that S is contractible. Then the family is differentiably trivial, the Hodge bundle t 7→
H2(Xt,C) is the trivial bundle and t 7→ H2(Xt,Z) is a trivial lattice. We use the existence
of a relative cycle space Cp(X/S) ⊂ Cp(X) which consists of all cycles contained in the
fibres of π : X → S. It is equipped with a canonical holomorphic projection

πp : C
p(X/S) → S.

We then define the Sν ’s to be the images in S of those connected components of Cp(X/S)
which do not project onto S. By the fact that the projection is proper on each component,
we infer that Sν is an analytic subset of S. The definition of the Sν ’s imply that the
cohomology classes induced by the analytic cycles {[Z]}, Z ⊂ Xt, remain exactly the
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same for all t ∈ S r S′. This result implies in its turn that the conditions defining
the numerically positive cones Pt remain the same, except for the fact that the spaces
H1,1(Xt,R) ⊂ H2(Xt,R) vary along with the Hodge decomposition. At this point, a
standard calculation implies that the Pt are invariant by parallel transport under ∇1,1.
This is done as follows.

Since S is irreducible and S′ is a countable union of analytic sets, it follows that
S r S′ is arcwise connected by piecewise smooth analytic arcs. Let

γ : [0, 1] → S r S′, u 7→ t = γ(u)

be such a smooth arc, and let α(u) ∈ H1,1(Xγ(u),R) be a family of real (1, 1)-cohomology
classes which are constant by parallel transport under ∇1,1. This is equivalent to assum-
ing that

∇(α(u)) ∈ H2,0(Xγ(u),C)⊕H0,2(Xγ(u),C)

for all u. Suppose that α(0) is a numerically positive class in Xγ(0). We then have

α(0)p · {[Z]} =

∫

Z

α(0)p > 0

for all p-dimensional analytic cycles Z in Xγ(0). Let us denote by

ζZ(t) ∈ H2q(Xt,Z), q = dimXt − p,

the family of cohomology classes equal to {[Z]} at t = γ(0), such that ∇ζZ(t) = 0 (i.e.
constant with respect to the Gauss-Manin connection). By the above discussion, ζZ(t)
is of type (q, q) for all t ∈ S, and when Z ⊂ Xγ(0) varies, ζZ(t) generates all classes of
analytic cycles in Xt if t ∈ S r S′. Since ζZ is ∇-parallel and ∇α(u) has no component
of type (1, 1), we find

d

du
(α(u)p · ζZ(γ(u)) = pα(u)p−1 · ∇α(u) · ζZ(γ(u)) = 0.

We infer from this that α(u) is a numerically positive class for all u ∈ [0, 1]. This argument
shows that the set Pt of numerically positive classes inH1,1(Xt,R) is invariant by parallel
transport under ∇1,1 over S r S′.

By a standard result of Kodaira-Spencer [KS60] relying on elliptic PDE theory, every
Kähler class in Xt0 can be deformed to a nearby Kähler class in nearby fibres Xt. This
implies that the connected component of Pt which corresponds to the Kähler cone Kt

must remain the same. The theorem is proved. �

As a by-product of our techniques, especially the regularization theorem for currents,
we also get the following result for which we refer to [DP04].

(18.17) Theorem. A compact complex manifold carries a Kähler current if and only
if it is bimeromorphic to a Kähler manifold (or equivalently, dominated by a Kähler
manifold ).

This class of manifolds is called the Fujiki class C. If we compare this result with
the solution of the Grauert-Riemenschneider conjecture 8.3, we are led to the following
statement, which is a weaker form of Conjecture 8.25.



188 Analytic Methods in Algebraic Geometry

(18.18) Conjecture. Let X be a compact complex manifold of dimension n. Assume
that X possesses a cohomology class {α} of type (1, 1) such that

∫
X(u,61)

un > 0 for some

smooth representative u ∈ α. Then {α} contains a Kähler current and X is in the Fujiki
class C.

In the case where α is nef and the assumption is replaced by
∫
X
αn > 0, Conjec-

ture 18.18 has been recently confirmed by D. Popovici [Pop08] (with a highly technical
proof). We want also to mention that most of the above results were already known in
the cases of complex surfaces (i.e. in dimension 2), thanks to the work of N. Buchdahl
[Buc99, 00] and of A. Lamari [Lam99a, 99b].

Shortly after the original [DP04] manuscript appeared in April 2001, Daniel Huy-
brechts [Huy01] informed us that Theorem 18.5 can be used to calculate the Kähler
cone of a very general hyperkähler manifold: the Kähler cone is then equal to a suitable
connected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperkähler manifold, S.Boucksom [Bou02] later showed
that a (1, 1) class {α} is Kähler if and only if it lies in the positive part of the Beauville-
Bogomolov quadratic cone and moreover

∫
C
α > 0 for all rational curves C ⊂ X (see also

[Huy99]).

19. Structure of the Pseudo-effective Cone and Mobile Intersec-
tion Theory

§ 19.A. Classes of Mobile Curves and of Mobile (n − 1, n − 1)-currents

We introduce various positive cones in Hn−1,n−1(X,R), some of which exhibit certain
“mobility” properties, in the sense that they can be more or less freely deformed. Am-
pleness is clearly such a property, since a very ample divisor A can be moved in its
linear system |A| so as to cover the whole ambient variety. By extension, a Kähler class
{ω} ∈ H1,1(X,R) is also considered to be mobile, as illustrated alternatively by the
fact that the Monge-Ampère volume form (ω + i∂∂ϕ)n of a Kähler metric in the same
cohomology class can be taken to be equal to an arbitrary volume form f > 0 with∫
X
f =

∫
X
ωn (thanks to Yau’s theorem [Yau78]).

(19.1) Definition. Let X be a smooth projective variety.

(a) One defines NE(X) to be the convex cone generated by cohomology classes of all
effective curves in Hn−1,n−1(X,R)

(b) We say that C is a mobile curve if C = Ct0 is a member of an analytic family
{Ct}t∈S such that

⋃
t∈S Ct = X and, as such, is a reduced irreducible 1-cycle. We

define the mobile cone ME(X), to be the convex cone generated by all mobile curves.

(c) If X is projective, we say that an effective 1-cycle C is a strongly mobile if we have

C = µ∗(Ã1 ∩ · · · ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modification. We
let MEs(X) be the convex cone generated by all strongly mobile effective 1-cycles

(notice that by taking Ãj general enough these classes can be represented by reduced
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irreducible curves; also, by Hironaka, one could just restrict oneself to compositions
of blow-ups with smooth centers).

Clearly, we have
MEs(X) ⊂ ME(X) ⊂ NE(X).

The cone NE(X) is contained in the analogue of the Neron-Severi group for (n− 1, n− 1)-
classes, namely

NSn−1
R (X) := (Hn−1,n−1(X,R) ∩H2n−2(X,Z)/tors)⊗Z R

(sometimes also denoted N1(X) in the literature). We wish to introduce similar concepts
for cones of non necessarily integral classes, on arbitrary compact Kähler manifolds. The
relevant definition is as follows.

(19.2) Definition. Let X be a compact Kähler manifold.

(a) We define N = Hn−1,n−1
>0 (X,R) to be the (closed) convex cone in Hn−1,n−1(X,R)

generated by classes of positive currents T of type (n− 1, n− 1), i.e., of bidimension
(1, 1).

(b) We define the cone Ms ⊂ Hn−1,n−1(X,R) of strongly mobile classes to be the closure
of the convex cone generated by classes of currents of the form

µ∗(ω̃1 ∧ · · · ∧ ω̃n−1)

where µ : X̃ → X is an arbitrary modification, and the ω̃j are Kähler forms on X̃.

(c) We define the cone M ⊂ Hn−1,n−1(X,R) of mobile classes to be the closure of the
convex cone generated by classes of currents of the form

µ∗([Ỹt0 ] ∧ ω̃1 ∧ · · · ∧ ω̃p−1)

where µ : X̃ → X is an arbitrary modification, the ω̃j are Kähler forms on X̃ and

(Ỹt)t∈S is an analytic family of effective p-dimensional analytic cycles covering X̃

such that Ỹt0 is reduced and irreducible, with p running over all {1, 2, . . . , n}.

Clearly, we have
M

s ⊂ M ⊂ N.
For X projective, it is also immediately clear from the definitions that

(19.3)





NE(X) ⊂ NNS := N ∩ NSn−1
R (X),

ME(X) ⊂ MNS := M ∩NSn−1
R (X),

MEs(X) ⊂ Ms
NS := Ms ∩ NSn−1

R (X).

The upshot of these definitions lie in the following easy observation.

(19.4) Proposition. Let X be a compact Kähler manifold. The Serre duality pairing

H1,1(X,R)×Hn−1,n−1(X,R) −→ R, (α, β) 7−→
∫

X

α ∧ β
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takes nonnegative values

(a) for all pairs (α, β) ∈ K×N;

(b) for all pairs (α, β) ∈ E×M.

Proof. (a) is obvious. In order to prove (b), we may assume that β = µ∗([Yt0 ] ∧ ω̃1 ∧
· · · ∧ ω̃p−1) for some modification µ : X̃ → X , where {α} = {T} is the class of a positive

(1, 1)-current on X and ω̃j are Kähler forms on X̃ . Then for t ∈ S generic

∫

X

α ∧ β =

∫

X

T ∧ µ∗([Ỹt] ∧ ω̃1 ∧ · · · ∧ ω̃p−1)(19.5)

=

∫

X

µ∗T ∧ [Ỹt] ∧ ω̃1 ∧ · · · ∧ ω̃p−1

=

∫

Ỹt

(µ∗T )
↾Ỹt

∧ ω̃1 ∧ · · · ∧ ω̃p−1 > 0

provided that we show that the final integral is well defined and that the formal calcu-
lations involved in (19.5) are correct. Here, we have used the fact that a closed positive
(1, 1)-current T always has a pull-back µ∗T , which follows from the observation that if
T = α+i∂∂ϕ with α smooth and ϕ quasi-psh, we may always set µ∗T = µ∗α+i∂∂(ϕ◦µ),
with ϕ ◦ µ quasi-psh and not identically −∞ on X̃. Similarly, we see that the restriction
(µ∗T )

↾Ỹt
is a well defined positive (1, 1)-current for t generic, by putting

(µ∗T )
↾Ỹt

= (µ∗α)
↾Ỹt

+ i∂∂
(
(ϕ ◦ µ)

↾Ỹt

)

and choosing t such that Ỹt is not contained in the pluripolar set of −∞ poles of ϕ ◦ µ
(this is possible thanks to the assumption that Ỹt covers X̃; locally near any given point
we can modify α so that α = 0 on a small neighborhood V , and then ϕ is psh on V ).
Finally, in order to justify the formal calculations we can use a regularization argument
for T , writing T = limTk with Tk = α + i∂∂ϕk and a decreasing sequence of smooth
almost plurisubharmonic potentials ϕk ↓ ϕ such that the Levi forms have a uniform lower
bound i∂∂ϕk > −Cω (such a sequence exists by [Dem92]). Then (µ∗Tk)↾Ỹt

→ (µ∗T )
↾Ỹt

in the weak topology of currents. �

Proposition 19.4 leads to the natural question whether the cones (K,N) and (E,M)
are dual under Serre duality, The second part of the question is addressed in the next
section. The results proved in Section 17 yield a complete answer to the first part – even
in the general Kähler setting.

(19.6) Theorem. Let X be a compact Kähler manifold. Then

(a) K and N are dual cones.

(b) If X is projective algebraic, then KNS = Nef(X) and NNS = NE(X) and these cones
are dual.

Proof. (a) is a weaker version of Theorem 18.13 (b).
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(b) The equality KNS = Nef(X) has already been discussed and is a consequence of the
Kodaira embedding theorem. Now, we know that

NE(X) ⊂ NNS ⊂ K∨

NS = Nef(X)∨,

where the second inclusion is a consequence of Proposition 19.4(a). However, it is already
well-known that NE(X) and NE(X) are dual cones (see [Har70]), hence the inclusions
are equalities (we could also obtain a self-contained proof by reconsidering the arguments
used for Theorem 18.13 (a) when α and ω0 are rational classes; one sees by the density of
the rationals that the numerical condition for α is needed only for elements of the form
[Y ] ∧ ωp−1 with ω ∈ Q{α} + Q{ω0} a rational class, so [Y ] ∧ ωp−1 is then a Q-effective
curve). �

§ 19.B. Zariski Decomposition and Mobile Intersections

Let X be compact Kähler and let α ∈ E◦ be in the interior of the pseudo–effective cone.
In analogy with the algebraic context such a class α is called “big”, and it can then be
represented by a Kähler current T , i.e. a closed positive (1, 1)-current T such that T > δω
for some smooth Hermitian metric ω and a constant δ ≪ 1. We first need a variant of
the approximation theorem proved in Section 14.B.

(19.7) Regularization Theorem for Currents. Let X be a compact complex manifold
equipped with a Hermitian metric ω. Let T = α + i∂∂ϕ be a closed (1, 1)-current on X,
where α is smooth and ϕ is a quasi-plurisubharmonic function. Assume that T > γ
for some real (1, 1)-form γ on X with real coefficients. Then there exists a sequence
Tm = α+ i∂∂ϕm of closed (1, 1)-currents such that

(a) ϕm (and thus Tm) is smooth on the complement X rZm of an analytic set Zm, and
the Zm’s form an increasing sequence

Z0 ⊂ Z1 ⊂ · · · ⊂ Zm ⊂ · · · ⊂ X.

(b) There is a uniform estimate Tm > γ − δmω with lim ↓ δm = 0 as m tends to +∞.

(c) The sequence (ϕm) is non increasing, and we have lim ↓ ϕm = ϕ. As a consequence,
Tm converges weakly to T as m tends to +∞.

(d) Near Zm, the potential ϕm has logarithmic poles, namely, for every x0 ∈ Zm, there
is a neighborhood U of x0 such that ϕm(z) = λm log

∑
ℓ |gm,ℓ|2 + O(1) for suitable

holomorphic functions (gm,ℓ) on U and λm > 0. Moreover, there is a (global) proper

modification µm : X̃m → X of X, obtained as a sequence of blow-ups with smooth
centers, such that ϕm ◦ µm can be written locally on X̃m as

ϕm ◦ µm(w) = λm
(∑

nℓ log |g̃ℓ|2 + f(w)
)

where (g̃ℓ = 0) are local generators of suitable (global) divisors Dℓ on X̃m such
that

∑
Dℓ has normal crossings, nℓ are positive integers, and the f ’s are smooth

functions on X̃m.
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Sketch of proof. We essentially repeat the proofs of Theorems 14.2 and 14.12 with addi-
tional considerations. One fact that does not follow readily from these proofs is the mono-
tonicity of the sequence ϕm (which we will not really need anyway). For this, we can take
m = 2ν and use the subadditivity technique already explained in Step 3 of the proof of
Theorem 16.3 (b). The map µm is obtained by blowing-up the (global) ideals Jm defined
by the holomorphic functions (gj,m) in the local approximations ϕm ∼ 1

2m
log

∑
j |gj,m|2.

By Hironaka [Hir64], we can achieve that µ∗
mJm is an invertible ideal sheaf associated

with a normal crossing divisor. �

(19.8) Corollary. If T is a Kähler current, then one can write T = limTm for a
sequence of Kähler currents Tm which have logarithmic poles with coefficients in 1

mZ, i.e.
there are modifications µm : Xm → X such that

µ∗
mTm = [Em] + βm

where Em is an effective Q-divisor on Xm with coefficients in 1
m
Z (the “fixed part”) and

βm is a closed semi-positive form (the “mobile part”).

Proof. We apply Theorem 19.7 with γ = εω and m so large that δm 6 ε/2. Then Tm has
analytic singularities and Tm > ε

2
ω, so we get a composition of blow-ups µm : Xm → X

such

µ∗
mTm = [Em] + βm,

where Em is an effective Q-divisor and βm > ε
2µ

∗
mω. In particular, βm is strictly positive

outside the exceptional divisors, by playing with the multiplicities of the components
of the exceptional divisors in Em, we could even achieve that βm is a Kähler class on
Xm. Notice also that by construction, µm is obtained by blowing-up the multiplier ideal
sheaves I(mT ) = I(mϕ) associated to a potential ϕ of T . �

The more familiar algebraic analogue would be to take α = c1(L) with a big line
bundle L and to blow-up the base locus of |mL|, m≫ 1, to get a Q-divisor decomposition

µ∗
mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|, and
we say that Em + Dm is an approximate Zariski decomposition of L. We will also use
this terminology for Kähler currents with logarithmic poles.

KNS

ENS

NSR(Xm)

α̃

[Em]
βm

α̃ = µ∗
mα = [Em] + βm
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In analogy with the concept of volume of a line bundle, we introduce the following
more general definition, which was already briefly mentioned in the statement of Con-
jecture 8.25.

(19.9) Definition. We define the volume, or mobile self-intersection of a class α ∈
H1,1X,R) to be

Vol(α) = sup
T∈α

∫

XrSing(T )

Tn = sup
T∈α

∫

X̃

βn > 0,

where the supremum is taken over all Kähler currents T ∈ α with logarithmic poles, and
µ∗T = [E] + β with respect to some modification µ : X̃ → X. Correspondingly, we set

Vol(α) = 0 if α /∈ E◦.

By Theorem 15.6, if L is a big line bundle, we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞
n!

mn
h0(X,mL),

and in these terms, we get the following statement.

(19.10) Proposition. Let L be a big line bundle on the projective manifold X. Let
ε > 0. Then there exists a modification µ : Xǫ → X and a decomposition µ∗(L) = E + β
with E an effective Q-divisor and β a big and nef Q-divisor such that

Vol(L)− ε 6 Vol(β) 6 Vol(L).

It is very useful to observe that the supremum in Definition 19.9 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely, if
T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler currents with logarithmic poles in
the class of α, then

(19.11) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could define as
well

(19.11′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1, m2) is the lowest common multiple of the denominators occuring in
T1, T2. Now, take a simultaneous log-resolution µm : Xm → X for which the singularities
of T1 and T2 are resolved as Q-divisors E1 and E2. Then clearly the associated divisor in
the decomposition µ∗

mT = [E]+β is given by E = min(E1, E2). By doing so, the volume∫
Xm

βn gets increased, as we shall see in the proof of Theorem 19.12 below.

(19.12) Theorem (Boucksom [Bou02]). Let X be a compact Kähler manifold. We

denote here by Hk,k
>0 (X) the cone of cohomology classes of type (k, k) which have non-

negative intersection with all closed semi-positive smooth forms of bidegree (n−k, n−k).
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(a) For each integer k = 1, 2, . . . , n, there exists a canonical “mobile intersection prod-
uct”

E× · · · ×E→ Hk,k
>0 (X), (α1, . . . , αk) 7→ 〈α1 · α2. · · · .αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(b) The product is increasing, homogeneous of degree 1 and superadditive in each argu-
ment, i.e.

〈α1 · · · (α′
j + α′′

j ) · · ·αk〉 > 〈α1 · · ·α′
j · · ·αk〉+ 〈α1 · · ·α′′

j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K are nef classes.

(c) The mobile intersection product satisfies the Teissier-Hovanskii inequalities

〈α1 · α2. · · · .αn〉 > (〈αn1 〉)1/n · · · (〈αnn〉)1/n (with 〈αnj 〉 = Vol(αj) ).

(d) For k = 1, the above “product” reduces to a (non linear) projection operator

E→ E1, α→ 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E. Moreover, there is
a “divisorial Zariski decomposition”

α = {N(α)}+ 〈α〉

where N(α) is a uniquely defined effective divisor which is called the “negative diviso-
rial part” of α. The map α 7→ N(α) is homogeneous and subadditive, and N(α) = 0
if and only if α ∈ E1.

(e) The components of N(α) always consist of divisors whose cohomology classes are
linearly independent, especially N(α) has at most ρ = rankZ NS(X) components.

Proof. We essentially repeat the arguments developped in [Bou02], with some simplifi-
cations arising from the fact that X is supposed to be Kähler from the start.

(a) First assume that all classes αj are big, i.e. αj ∈ E

◦. Fix a smooth closed
(n − k, n − k) semi-positive form u on X . We select Kähler currents Tj ∈ αj with

logarithmic poles, and a simultaneous log-resolution µ : X̃ → X such that

µ∗Tj = [Ej ] + βj .

We consider the direct image current µ∗(β1 ∧ · · ·∧βk) (which is a closed positive current
of bidegree (k, k) on X) and the corresponding integrals

∫

X̃

β1 ∧ · · · ∧ βk ∧ µ∗u > 0.

If we change the representative Tj with another current T ′
j , we may always take a si-

multaneous log-resolution such that µ∗T ′
j = [E′

j] + β′
j , and by using (19.11′) we can
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always assume that E′
j 6 Ej. Then Dj = Ej − E′

j is an effective divisor and we find
[Ej] + βj ≡ [E′

j] + β′
j , hence β

′
j ≡ βj + [Dj ]. A substitution in the integral implies

∫

X̃

β′
1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u

=

∫

X̃

β1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u+

∫

X̃

[D1] ∧ β2 ∧ · · · ∧ βk ∧ µ∗u

>

∫

X̃

β1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u.

Similarly, we can replace successively all forms βj by the β′
j , and by doing so, we find

∫

X̃

β′
1 ∧ β′

2 ∧ · · · ∧ β′
k ∧ µ∗u >

∫

X̃

β1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u.

We claim that the closed positive currents µ∗(β1 ∧ · · · ∧ βk) are uniformly bounded in
mass. In fact, if ω is a Kähler metric in X , there exists a constant Cj > 0 such that
Cj{ω} − αj is a Kähler class. Hence Cjω − Tj ≡ γj for some Kähler form γj on X . By
pulling back with µ, we find Cjµ

∗ω − ([Ej] + βj) ≡ µ∗γj, hence

βj ≡ Cjµ
∗ω − ([Ej] + µ∗γj).

By performing again a substitution in the integrals, we find
∫

X̃

β1 ∧ · · · ∧ βk ∧ µ∗u 6 C1 · · ·Ck
∫

X̃

µ∗ωk ∧ µ∗u = C1 · · ·Ck
∫

X

ωk ∧ u

and this is true especially for u = ωn−k. We can now arrange that for each of the
integrals associated with a countable dense family of forms u, the supremum is achieved
by a sequence of currents (µm)∗(β1,m∧· · ·∧βk,m) obtained as direct images by a suitable
sequence of modifications µm : X̃m → X . By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

〈α1 · α2. · · · .αk〉 = lim ↑
m→+∞

{(µm)∗(β1,m ∧ β2,m ∧ · · · ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the integrals
obtained when we evaluate against a smooth closed semi-positive form u). By evaluating
against a basis of positive classes {u} ∈ Hn−k,n−k(X), we infer by Serre duality that
the class of 〈α1 · α2. · · · .αk〉 is uniquely defined (although, in general, the representing
current is not unique).

(b) It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when the αj ’s are
in E◦. However, we can extend the product to the closed cone E by monotonicity, by
setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω). · · · .(αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evaluate against
closed semi-positive forms u). By weak compactness, the mobile intersection product
can always be represented by a closed positive current of bidegree (k, k).
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(c) The Teissier-Hovanskii inequalities are a direct consequence of the fact that they
hold true for nef classes, so we just have to apply them to the classes βj,m on X̃m and
pass to the limit.

(d) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(µm)∗Tm} = lim
m→+∞

(µm)∗[Em] + {(µm)∗βm}

and 〈α〉 = limm→+∞{(µm)∗βm} by definition. However, the images Fm = (µm)∗
Fm are effective Q-divisors inX , and the filtering property implies that Fm is a decreasing
sequence. It must therefore converge to a (uniquely defined) limit F = limFm := N(α)
which is an effective R-divisor, and we get the asserted decomposition in the limit.

Since N(α) = α − 〈α〉 we easily see that N(α) is subadditive and that N(α) = 0 if
α is the class of a smooth semi-positive form. When α is no longer a big class, we define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α + (δ + ε)ω) 6 N(α + δω)). The divisorial Zariski
decomposition follows except maybe for the fact that N(α) might be a convergent count-
able sum of divisors. However, this will be ruled out when (e) is proved. As N(•) is
subadditive and homogeneous, the set E1 = {α ∈ E ; N(α) = 0} is a closed convex
conne, and we find that α 7→ 〈α〉 is a projection of E onto E1 (according to [Bou02], E1

consists of those pseudo-effective classes which are “nef in codimension 1”).

(e) Let α ∈ E◦, and assume that N(α) contains linearly dependent components Fj .
Then already all currents T ∈ α should be such that µ∗T = [E] + β where F = µ∗E
contains those linearly dependent components. Write F =

∑
λjFj , λj > 0 and assume

that ∑

j∈J
cjFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficients cj must be
negative (and some other positive). Then E is numerically equivalent to

E′ ≡ E + tµ∗
(∑

λjFj

)
,

and by choosing t > 0 appropriate, we obtain an effective divisor E′ which has a zero
coefficient on one of the components µ∗Fj0 . By replacing E with min(E,E′) via (19.11′),
we eliminate the component µ∗Fj0 . This is a contradiction since N(α) was supposed to
contain Fj0 . �

(19.13) Definition. For a class α ∈ H1,1(X,R), we define the numerical dimension
nd(α) to be nd(α) = −∞ if α is not pseudo-effective, and

nd(α) = max{p ∈ N ; 〈αp〉 6= 0}, nd(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.



19. Structure of the Pseudo-effective Cone and Mobile Intersection Theory 197

By the results of [DP04], a class is big (α ∈ E◦) if and only if nd(α) = n. Classes of
numerical dimension 0 can be described much more precisely, again following Boucksom
[Bou02].

(19.14) Theorem. Let X be a compact Kähler manifold. Then the subset D0 of
irreducible divisors D in X such that nd(D) = 0 is countable, and these divisors are rigid
as well as their multiples. If α ∈ E is a pseudo-effective class of numerical dimension 0,
then α is numerically equivalent to an effective R-divisor D =

∑
j∈J λjDj , for some finite

subset (Dj)j∈J ⊂D0 such that the cohomology classes {Dj} are linearly independent and
some λj > 0. If such a linear combination is of numerical dimension 0, then so is any
other linear combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numerical
dimension 0 if and only if 〈α〉 = 0, in other words if α = N(α). Thus α ≡ ∑

λjDj
as described in 19.14, and since λj〈Dj〉 6 〈α〉, the divisors Dj must themselves have
numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X)∩E ⊂ H2(X,Z), otherwise two such divisors D ≡ D′ would yield a blow-

up µ : X̃ → X resolving the intersection, and by taking min(µ∗D, µ∗D′) via (19.11′), we
would find µ∗D ≡ E + β, β 6= 0, so that {D} would not be of numerical dimension 0.
This implies that there are at most countably many divisors of numerical dimension 0,
and that these divisors are rigid as well as their multiples. �

(19.15) Remark. If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd(L) = nd(c1(L)). Using the canonical maps Φ|mL| and pulling-back
the Fubini-Study metric it is immediate to see that nd(L) > κ(L) (which generalizes the
analogue inequality already seen for nef line bundles, see (6.18)).

The above general concept of numerical dimension leads to a very natural formulation
of the abundance conjecture for Kähler varieties.

(19.16) Generalized Abundance Conjecture. Let X be an arbitrary compact Kähler
manifold X.

(a) The Kodaira dimension of X should be equal to its numerical dimension: κ(KX) =
nd(KX).

(b) More generally, let ∆ be a Q-divisor which is klt (Kawamata log terminal, i.e. such
that cX(∆) > 1). Then κ(KX +∆) = nd(KX +∆).

This appears to be a fairly strong statement. In fact, already in the case ∆ = 0, it is
not difficult to show that the generalized abundance conjecture would contain the Cn,m
conjectures.

(19.17) Remark. It is obvious that abundance holds in the case nd(KX) = −∞ (if L
is not pseudo-effective, no multiple of L can have sections), or in the case nd(KX) = n
which implies KX big (the latter property follows e.g. from the solution of the Grauert-
Riemenschneider conjecture in the form proven in [Dem85b], see also [DP04]).

In the remaining cases, the most tractable situation is the case when nd(KX) = 0. In
fact Theorem 19.14 then gives KX ≡ ∑

λjDj for some effective divisor with numerically
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independent components, nd(Dj) = 0. It follows that the λj are rational and therefore

(∗) KX ∼
∑

λjDj + F where λj ∈ Q+, nd(Dj) = 0 and F ∈ Pic0(X).

If we assume additionally that q(X) = h0,1(X) is zero, thenmKX is linearly equivalent to
an integral divisor for some multiple m, and it follows immediately that κ(X) = 0. The
case of a general projective manifold with nd(KX) = 0 and positive irregularity q(X) > 0
has been solved by Campana-Peternell [CP04], Proposition 3.7. It would be interesting
to understand the Kähler case as well.

§ 19.C. The Orthogonality Estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

(19.18) Theorem. Let X be a projective manifold, and let α = {T} ∈ E◦
NS be a big

class represented by a Kähler current T . Consider an approximate Zariski decomposition

µ∗
mTm = [Em] + [Dm]

Then

(Dn−1
m · Em)2 6 20 (Cω)n

(
Vol(α)−Dn

m

)

where ω = c1(H) is a Kähler form and C > 0 is a constant such that ±α is dominated
by Cω (i.e., Cω ± α is nef ). In other words, Em and Dm become “more and more
orthogonal” as Dn

m approaches the volume.

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) > Vol(tEm +Dm).

Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ∗α−Dm = µ∗
m(α+ Cω)− (Dm + Cµ∗

mω). �

(19.19) Lemma. For all nef R-divisors A, B we have

Vol(A−B) > An − nAn−1 ·B

as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the
holomorphic Morse inequalities 7.4 (see [Dem01]); one can also argue by an elementary
estimate of to H0(X,mA−B1 − . . .−Bm) via the Riemann-Roch formula (assuming A
and B very ample, B1, . . . , Bm ∈ |B| generic). If A and B are Q-Cartier, we conclude by
the homogeneity of the volume. The general case of R-divisors follows by approximation
using the upper semi-continuity of the volume [Bou02, 3.1.26]. �
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(19.20) Remark. We hope that Lemma 19.19 also holds true on an arbitrary Kähler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from Con-
jecture 8.25 generalizing holomorphic Morse inequalities to non integral classes, exactly
by the same proof as Theorem 8.5.

(19.21) Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact Kähler man-

ifold X̃ such that each difference β′
j − βj is pseudo-effective. Then the n-th intersection

products satisfy
β1 · · ·βn 6 β′

1 · · ·β′
n.

Proof. We can proceed step by step and replace just one βj by β
′j ≡ βj +Tj where Tj is

a closed positive (1, 1)-current and the other classes β′
k = βk, k 6= j are limits of Kähler

forms. The inequality is then obvious. �

End of proof of Theorem 19.18. In order to exploit the lower bound of the volume, we
write

tEm +Dm = A−B, A = Dm + tµ∗
m(α+ Cω), B = t(Dm + Cµ∗

mω).

By our choice of the constant C, both A and B are nef. Lemma 19.19 and the binomial
formula imply

Vol(tEm+Dm) > An − nAn−1 ·B

= Dn
m + ntDn−1

m · µ∗
m(α+ Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k
m · µ∗

m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ∗

mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k
m · µ∗

m(α+ Cω)k · (Dm + Cµ∗
mω).

Now, we use the obvious inequalities

Dm 6 µ∗
m(Cω), µ∗

m(α+ Cω) 6 2µ∗
m(Cω), Dm + Cµ∗

mω 6 2µ∗
m(Cω)

in which all members are nef (and where the inequality 6 means that the difference of
classes is pseudo-effective). We use Lemma 19.21 to bound the last summation in the
estimate of the volume, and in this way we get

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded by
4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n

(Dn−1
m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2
(Cω)n

6 Vol(Em +Dm)−Dn
m 6 Vol(α)−Dn

m
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(and we have indeed t 6 1
10n by Lemma 19.21), whence Theorem 19.18. Of course, the

constant 20 is certainly not optimal. �

(19.22) Corollary. If α ∈ ENS, then the divisorial Zariski decomposition α = N(α) +
〈α〉 is such that

〈αn−1〉 ·N(α) = 0.

Proof. By replacing α with α+ δc1(H), one sees that it is sufficient to consider the case
where α is big. Then the orthogonality estimate implies

(µm)∗(D
n−1
m ) · (µm)∗Em = Dn−1

m · (µm)∗(µm)∗Em

6 Dn−1
m ·Em 6 C(Vol(α)−Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)∗(Dn−1
m ), N(α) = lim(µm)∗Em and limDn

m = Vol(α), we get the
desired conclusion in the limit. �

§ 19.D. Dual of the Pseudo-effective Cone

The following statement was first proved in [BDPP04].

(19.23) Theorem. If X is projective, the cones ENS = Eff(X) and MEs(X) are dual.

In other words, a line bundle L is pseudo-effective if (and only if) L · C > 0 for
all mobile curves, i.e., L · C > 0 for every very generic curve C (not contained in a
countable union of algebraic subvarieties). In fact, by definition of MEs(X), it is enough
to consider only those curves C which are images of generic complete intersection of
very ample divisors on some variety X̃ , under a modification µ : X̃ → X. By a standard
blowing-up argument, it also follows that a line bundle L on a normal Moishezon variety
is pseudo-effective if and only if L · C > 0 for every mobile curve C.

Proof. By Propsition 19.4 (b) we have in any case

ENS ⊂ (MEs(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS which is
in the interior of MEs(X)∨.

E

ENS

M

∨

(MNS)
∨

NSR(X) H1,1(X,R) Hn−1,n−1(X,R)

MNS

M

α− εω

α
α+ δω

ω

Γ

Nn−1
NS (X)
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Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α + δω is big for every
δ > 0, and since α ∈ ((MEs(X))∨)◦ we still have α − εω ∈ (MEs(X))∨ for ε > 0 small.
Therefore

(19.24) α · Γ > εω · Γ
for every strongly mobile curve Γ, and therefore for every Γ ∈ MEs(X). We are going to
contradict (19.24). Since α+ δω is big, we have an approximate Zariski decomposition

µ∗
δ(α+ δω) = Eδ +Dδ.

We pick Γ = (µδ)∗(D
n−1
δ ) ∈ MEs(X). By the Hovanskii-Teissier concavity inequality

ω · Γ > (ωn)1/n(Dn
δ )

(n−1)/n.

On the other hand

α · Γ = α · (µδ)∗(Dn−1
δ )

= µ∗
δα ·Dn−1

δ 6 µ∗
δ(α+ δω) ·Dn−1

δ

= (Eδ +Dδ) ·Dn−1
δ = Dn

δ +Dn−1
δ · Eδ.

By the orthogonality estimate, we find

α · Γ
ω · Γ 6

Dn
δ +

(
20(Cω)n(Vol(α+ δω)−Dn

δ )
)1/2

(ωn)1/n(Dn
δ )

(n−1)/n

6 C′(Dn
δ )

1/n + C′′ (Vol(α+ δω)−Dn
δ )

1/2

(Dn
δ )

(n−1)/n
.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also take Dδ to approximate Vol(α+δω) in such a way that (Vol(α+δω)−Dn
δ )

1/2

tends to 0 much faster than Dn
δ . Notice that Dn

δ > δnωn, so in fact it is enough to take

Vol(α+ δω)−Dn
δ 6 δ2n,

which gives (α · Γ)/(ω · Γ) 6 (C′ + C′′)δ. This contradicts (19.24) for δ small. �

(19.25) Conjecture. The Kähler analogue should be :
For an arbitrary compact Kähler manifold X, the cones E and M are dual.

K

KNS

E

ENS

NSR(X) H1,1(X,R)

MNS

M

N

NNS

NSn−1
R (X)Hn−1,n−1(X,R)

duality
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If holomorphic Morse inequalities were known also in the Kähler case (cf. Conjecture
8.25), we would infer by the same proof that “α not pseudo-effective” implies the existence

of a modification µ : X̃ → X and a Kähler metric ω̃ on X̃ such that α · µ∗(ω̃)n−1 < 0.
In the special case when α = KX is not pseudo-effective, we would expect the Kähler
manifold X to be covered by rational curves. The main trouble is that characteristic p
techniques are no longer available. On the other hand it is tempting to approach the
question via techniques of symplectic geometry :

(19.26) Question. Let (M,ω) be a compact real symplectic manifold. Fix an almost
complex structure J compatible with ω, and assume that c1(M,J) · ωn−1 > 0 (the condi-
tion does not depend on the choice of J , but only on ω). Does it follow that M is covered
by rational J-pseudoholomorphic curves ?

The relation between the various cones of mobile curves and currents in Definitions
19.1 and 19.2 is now a rather direct consequence of Theorem 19.23. In fact, using ideas
hinted in [DPS96], one can say a little bit more. Given an irreducible curve C ⊂ X , we
consider its normal “bundle” NC = Hom(I/I2,OC), where I is the ideal sheaf of C. If
C is a general member of a covering family (Ct), then NC is nef. By [DPS96], the dual
cone of the pseudo-effective cone of X contains the closed cone spanned by curves with
nef normal bundle, which in turn contains the cone of mobile curves. In this way we get :

(19.27) Theorem. Let X be a projective manifold. Then the following cones coincide:

(a) the cone MNS = M ∩NSn−1
R (X) ;

(b) the cone Ms
NS = Ms ∩ NSn−1

R (X) ;

(c) the closed cone MEs(X) of strongly mobile curves ;

(d) the closed cone ME(X) of mobile curves ;

(e) the closed cone MEnef(X) of curves with nef normal bundle.

Proof. We have already seen that

MEs(X) ⊂ ME(X) ⊂ MEnef(X) ⊂ (ENS)
∨

and

MEs(X) ⊂ Ms
NS(X) ⊂ MNS ⊂ (ENS)

∨

by 19.4 (c). Now Theorem 19.23 implies (MNS)
∨ = MEs(X), and 19.27 follows. �

(19.28) Corollary. Let X be a projective manifold and L a line bundle on X.

(a) L is pseudo-effective if and only if L · C > 0 for all curves C with nef normal
sheaf NC .

(b) If L is big, then L · C > 0 for all curves C with nef normal sheaf NC .

Corollary 19.28 (a) strenghthens results from [PSS99]. It is however not yet clear
whether MNS is equal to the closed cone of curves with ample normal bundle (although
we certainly expect this to be true). An important special case of Theorem 19.23 is
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(19.29) Theorem. If X is a projective manifold, then KX is pseudo-effective (i.e.
KX ∈ ENS), if and only if X is not uniruled (i.e. not covered by rational curves).

Proof. If X is covered by rational curves Ct, then it is well-known that the normal bundle
NCt

is nef for a general member Ct, thus

KX · Ct = KCt
· Ct −NCt

· Ct 6 −2,

and KX cannot be pseudo-effective. Conversely, if KX /∈ ENS, Theorem 19.23 shows that
there is a mobile curve Ct such that KX ·Ct < 0. The standard “bend-and-break” lemma
of Mori theory then produces a covering family Γt of rational curves with KX · Γt < 0,
so X is uniruled. �

The generalized abundance conjecture 19.16 would then yield the stronger result :

(19.30) Conjecture. Let X be a projective manifold. If X is not uniruled, then KX is
a Q-effective divisor and κ(X) = nd(KX) > 0.

§ 19.E. Infimum Formula for the Volume

We give here a confirmation of Conjecture 8.24 in the case of the volume, thus
expressing the volume in terms of Monge-Ampère integrals of smooth forms. These
results were proved in [Dem10b] as an outcome of stimulating discussions with B. Totaro
in connection with his recent work [Tot10].

(19.31) Theorem. Let L be a holomorphic line bundle on a projective algebraic mani-
fold. then

Vol(X,L) = inf
u∈c1(L)

∫

X(u,0)

un.

The proof relies mainly on five ingredients: (a) approximate Zariski decomposition
for a Kähler current T ∈ c1(L) (when L is big), i.e. a decomposition µ∗T = [E]+β where
µ : X̃ → X is a modification, E an exceptional divisor and β a Kähler metric on X̃ ;
(b) the characterization of the pseudoeffective cone ([BDPP04]), and the orthogonality
estimate

E · βn−1 6 C
(
Vol(X,L)− βn

)1/2

proved as an intermediate step of that characterization; (c) properties of solutions of
Laplace equations to get smooth approximations of [E] ; (d) log concavity of the Monge-
Ampère operator ; and finally (e) birational invariance of the Morse infimums.

Proof. Thanks to 8.20 (a) and 8.23 (a), we only have to show that

(19.32) inf
u∈c1(L)

∫

X(u,0)

un 6 Vol(X,L)

Let us first assume that L is a big line bundle, i.e. that Vol(X,L) > 0. Then it is known by
[Bou02] that Vol(X,L) is obtained as the supremum of

∫
XrSing(T )

Tn for Kähler currents
T = − i

2π∂∂h with analytic singularities in c1(L); this means that locally h = e−ϕ where
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ϕ is a strictly plurisubharmonic function which has the same singularities as c log
∑ |gj|2

where c > 0 and the gj are holomorphic functions. By [Dem92], there exists a blow-up

µ : X̃ → X such that µ∗T = [E] + β where E is a normal crossing divisor on X̃ and
β > 0 smooth. Moreover, by [BDPP04] we have the orthogonality estimate

(19.33) [E] · βn−1 =

∫

E

βn−1 6 C
(
Vol(X,L)− βn

)1/2
,

while

(19.34) βn =

∫

X̃

βn =

∫

XrSing(T )

Tn approaches Vol(X,L).

In other words, E and β become “more and more orthogonal” as βn approaches the
volume (these properties are summarized by saying that µ∗T = [E] + β defines an ap-
proximate Zariski decomposition of c1(L), cf. also [Fuj94]). By subtracting to β a small
linear combination of the exceptional divisors and increasing accordingly the coefficients
of E, we can achieve that the cohomology class {β} contains a positive definite form β′

on X̃ (i.e. the fundamental form of a Kähler metric); this follows from Lemma 14.18 (see
also [DP04], proof of Lemma 3.5). As a consequence, we can replace T by a cohomol-
ogous current such that the corresponding form β is actually a Kähler metric, and we
will assume for simplicity of notation that this situation occurs right away for T . Under
this assumption, there exists a smooth closed (1, 1)-form v belonging to the Bott-Chern
cohomology class of [E], such that we have identically (v − δβ) ∧ βn−1 = 0 where

(19.35) δ =
[E] · βn−1

βn
6 C′(Vol(X,L)− βn

)1/2

for some constant C′ > 0. In fact, given an arbitrary smooth representative v0 ∈ {[E]},
the existence of v = v0 + i∂∂ψ amounts to solving a Laplace equation ∆ψ = f with
respect to the Kähler metric β, and the choice of δ ensures that we have

∫
X
f βn = 0 and

hence that the equation is solvable. Then ũ := v+β is a smooth closed (1, 1)-form in the
cohomology class µ∗c1(L), and its eigenvalues with respect to β are of the form 1 + λj
where λj are the eigenvalues of v. The Laplace equation is equivalent to the identity∑
λj = nδ. Therefore

(19.36)
∑

16j6n

λj 6 C′′(Vol(X,L)− βn
)1/2

.

The inequality between arithmetic means and geometric means implies

∏

16j6n

(1 + λj) 6
(
1 +

1

n

∑

16j6n

λj

)n
6 1 + C3(Vol(X,L)− βn

)1/2

whenever all factors (1 + λj) are nonnegative. By 8.29 (a) we get

inf
u∈c1(L)

∫

X(u,0)

un 6

∫

X̃(ũ,0)

ũn

6

∫

X̃

βn
(
1 + C3(Vol(X,L)− βn

)1/2)

6 Vol(X,L) + C4(Vol(X,L)− βn
)1/2

.
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As βn approches Vol(X,L), this implies inequality (19.31).

We still have to treat the case when L is not big, i.e. Vol(X,L) = 0. Let A be an
ample line bundle and let t0 > 0 be the infimum of real numbers such that L + tA is a
big Q-line bundle for t rational, t > t0. The continuity of the volume function implies
that 0 < Vol(X,L + tA) 6 ε for t > t0 sufficiently close to t0. By what we have just
proved, there exists a smooth form ut ∈ c1(L + tA) such that

∫
X(ut,0)

unt 6 2ε. Take a

Kähler metric ω ∈ c1(A) and define u = ut − tω. Then clearly
∫

X(u,0)

un 6

∫

X(ut,0)

unt 6 2ε,

hence

inf
u∈c1(L)

∫

X(u,0)

un = 0.

Inequality (19.31) is now proved in all cases. �

§ 19.F. Estimate of the first cohomology group on a projective surface

In the case of higher cohomology groups, we are able to treat only the case of pro-
jective surfaces :

(19.37) Theorem. Let L → X be a holomorphic line bundle on a complex projective
surface. Then both weak and strong inequalities 8.24 (a) and 8.24 (b) are equalities for

q = 0, 1, 2, and the lim sup’s involved in ĥqNS(X,L) and ĥ
≤q
NS (X,L) are limits.

(19.38) Remark. Thanks to the Serre duality and the Riemann-Roch formula, the
(in)equality for a given q is equivalent to the (in)equality for n − q. Therefore, on
surfaces, the only substantial case which still has to be checked in addition to Theorem
19.31 is the case q = 1 : this is done by using Grauert’ criterion that the intersection
matrix (Ei · Ej) is negative definite for every exceptional divisor E =

∑
cjEj. Our

statements are of course trivial on curves since the curvature of any holomorphic line
bundle can be taken to be constant with respect to any given hermitian metric.

Proof of Theorem 19.37. We start with a projective non singular variety X of arbitrary
dimension n, and will later restrict ourselves to the case when X is a surface. The proof
again consists of using (approximate) Zariski decomposition, but now we try to compute
more explicitly the resulting curvature forms and Morse integrals; this will turn out to
be much easier on surfaces.

Assume first that L is a big line bundle on X . As in Section 19.E, we can find an
approximate Zariski decomposition, i.e. a blow-up µ : X̃ → X and a current T ∈ c1(L)

such µ∗T = [E] + β, where E an effective divisor and β a Kähler metric on X̃ such that

(19.39) Vol(X,L)− η < βn < Vol(X,L), η ≪ 1.

(On a projective surface, one could even get exact Zariski decomposition, but we want
to remain general as long as possible). By blowing-up further, we may assume that E is
a normal crossing divisor. We select a hermitian metric h on O(E) and take

(19.40) uε =
i

2π
∂∂ log(|σE |2h + ε2) + Θ

O(E),h + β ∈ µ∗c1(L)



206 Analytic Methods in Algebraic Geometry

where σE ∈ H0(X̃,O(E)) is the canonical section and Θ
O(E),h the Chern curvature form.

Clearly, by the Lelong-Poincaré equation, uε converges to [E] + β in the weak topology
as ε→ 0. Straightforward calculations yield

uε =
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h + β.

The first term converges to [E] in the weak topology, while the second, which is close
to ΘE,h near E, converges pointwise everywhere to 0 on X̃ r E. A simple asymptotic
analysis shows that

( i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE|2
ΘE,h

)p
→ [E] ∧Θp−1

E,h

in the weak topology for p > 1, hence

(19.41) lim
ε→0

unε = βn +
n∑

p=1

(
n

p

)
[E] ∧Θp−1

E,h ∧ βn−p.

In arbitrary dimension, the signature of uε is hard to evaluate, and it is also non trivial
to decide the sign of the limiting measure limunε . However, when n = 2, we get the
simpler formula

lim
ε→0

u2ε = β2 + 2[E] ∧ β + [E] ∧ΘE,h.

In this case, E can be assumed to be an exceptional divisor (otherwise some part of it
would be nef and could be removed from the poles of T ). Hence the matrix (Ej · Ek)
is negative definite and we can find a smooth hermitian metric h on O(E) such that
(ΘE,h)|E < 0, i.e. ΘE,h has one negative eigenvalue everywhere along E.

(19.42) Lemma. One can adjust the metric h of O(E) in such a way that ΘE,h is nega-
tive definite on a neighborhood of the support |E| of the exceptional divisor, and ΘE,h+β
has signature (1, 1) there. (We do not care about the signature far away from |E|).

Proof. At a given point x0 ∈ X , let us fix coordinates and a positive quadratic form q on
C2. If we put ψε(z) = εχ(z) log(1+ ε−1q(z)) with a suitable cut-off function χ, then the
Hessian form of ψε is equal to q at x0 and decays rapidly to O(ε log ε)|dz|2 away from
x0. In this way, after multiplying h with e±ψε(z), we can replace the curvature ΘE,h(x0)
with ΘE,h(x0)±q without substantially modifying the form away from x0. This allows to
adjust ΘE,h to be equal to (say)−1

4β(x0) at any singular point x0 ∈ Ej∩Ek in the support
of |E|, while keeping ΘE,h negative definite along E. In order to adjust the curvature
at smooth points x ∈ |E|, we replace the metric h with h′(z) = h(z) exp(−c(z)|σE(z)|2).
Then the curvature form ΘE,h is replaced by ΘE,h′(x) = ΘEh

(x)+ c(x)|dσE |2 at x ∈ |E|
(notice that dσE(x) = 0 if x ∈ Sing|E|), and we can always select a real function c so
that ΘE,h′ is negative definite with one negative eigenvalue between −1/2 and 0 at any
point of |E|. Then ΘE,h′ + β has signature (1, 1) near |E|. �

With this choice of the metric, we see that for ε > 0 small, the sum

ε2

ε2 + |σE |2
ΘE,h + β
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is of signature (2, 0) or (1, 1) (or degenerate of signature (1, 0)), the non positive definite
points being concentrated in a neighborhood of E. In particular the index set X(uε, 2)
is empty, and also

uε 6
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+ β

on a neighborhood V of |E|, while uε converges uniformly to β on X̃ r V . This implies
that

β2 6 lim inf
ε→0

∫

X(uε,0)

u2ε 6 lim sup
ε→0

∫

X(uε,0)

u2ε 6 β2 + 2β · E.

Since
∫
X̃
u2ε = L2 = β2 + 2β · E + E2 we conclude by taking the difference that

−E2 − 2β · E 6 lim inf
ε→0

∫

X(uε,1)

−u2ε 6 lim sup
ε→0

∫

X(uε,1)

−u2ε 6 −E2.

Let us recall that β · E 6 C(Vol(X,L) − β2)1/2 = 0(η1/2) is small by (19.39) and the

orthogonality estimate. The asymptotic cohomology is given here by ĥ2(X,L) = 0 since
h2(X,L⊗k) = H0(X,KX ⊗ L⊗−k) = 0 for k > k0, and we have by Riemann-Roch

ĥ1(X,L) = ĥ0(X,L)− L2 = Vol(X,L)− L2 = −E2 − β · E +O(η).

Here we use the fact that n!
knh

0(X,L⊗k) converges to the volume when L is big. All this
shows that equality occurs in the Morse inequalities (1.3) when we pass to the infimum.
By taking limits in the Neron-Severi space NSR(X) ⊂ H1,1(X,R), we further see that
equality occurs as soon as L is pseudo-effective, and the same is true if −L is pseudo-
effective by Serre duality.

It remains to treat the case when neither L nor −L are pseudo-effective. Then
ĥ0(X,L) = ĥ2(X,L) = 0, and asymptotic cohomology appears only in degree 1, with

ĥ1(X,L) = −L2 by Riemann-Roch. Fix an ample line bundle A and let t0 > 0 be the
infimum of real numbers such that L + tA is big for t rational, t > t0, resp. let t

′
0 > 0

be the infimum of real numbers t′ such that −L + t′A is big for t′ > t′0. Then for t > t0
and t′ > t′0, we can find a modification µ : X̃ → X and currents T ∈ c1(L + tA),
T ′ ∈ c1(−L+ t′A) such that

µ∗T = [E] + β, µ∗T ′ = [F ] + γ

where β, γ are Kähler forms and E, F normal crossing divisors. By taking a suitable
linear combination t′(L+ tA)− t(−L+ t′A) the ample divisor A disappears, and we get

1

t+ t′

(
t′[E] + t′β − t[F ]− tγ

)
∈ µ∗c1(L).

After replacing E, F , β, γ by suitable multiples, we obtain an equality

[E]− [F ] + β − γ ∈ µ∗c1(L).

We may further assume by subtracting that the divisors E, F have no common compo-
nents. The construction shows that β2 6 Vol(X,L+ tA) can be taken arbitrarily small
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(as well of course as γ2), and the orthogonality estimate implies that we can assume β ·E
and γ · F to be arbitrarily small. Let us introduce metrics hE on O(E) and hF on O(F )
as in Lemma 19.42, and consider the forms

uε =+
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
+

ε2

ε2 + |σE |2
ΘE,hE

+ β

− i

2π

ε2D1,0
hF
σF ∧D1,0

hF
σF

(ε2 + |σF |2)2
− ε2

ε2 + |σF |2
ΘF,hF

− γ ∈ µ∗c1(L).

Observe that uε converges uniformly to β−γ outside of every neighborhood of |E| ∪ |F |.
Assume that ΘE,hE

< 0 on VE = {|σE | < ε0} and ΘF,hF
< 0 on VF = {|σF | < ε0}. On

VE ∪ VF we have

uε 6
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
− ε2

ε2 + |σF |2
ΘF,hF

+ β +
ε2

ε20
Θ+
E,hE

where Θ+
E,hE

is the positive part of ΘE,hE
with respect to β. One sees immediately that

this term is negligible. The first term is the only one which is not uniformly bounded,
and actually it converges weakly to the current [E]. By squaring, we find

lim sup
ε→0

∫

X(uε,0)

u2ε 6

∫

X(β−γ,0)
(β − γ)2 + 2β ·E.

Notice that the term − ε2

ε2+|σF |2 ΘF,hF
does not contribute to the limit as it converges

boundedly almost everywhere to 0, the exceptions being points of |F |, but this set is of
measure zero with respect to the current [E]. Clearly we have

∫
X(β−γ,0)(β − γ)2 6 β2

and therefore

lim sup
ε→0

∫

X(uε,0)

u2ε 6 β2 + 2β · E.

Similarly, by looking at −uε, we find

lim sup
ε→0

∫

X(uε,2)

u2ε 6 γ2 + 2γ · F.

These lim sup’s are small and we conclude that the essential part of the mass is concen-
trated on the 1-index set, as desired. �

20. Super-Canonical Metrics and Abundance

A very fundamental fact of the theory of compact Riemann surfaces is the existence of
metrics with constant curvature, which is in this case a consequence of the uniformiza-
tion theorem. In general, “invariant” or “canonical” metrics, such as the Kobayashi and
Kobayashi-Eisenman metrics, play an important role in analytic geometry. We intro-
duce here still another way of constructing such “canonical” metrics, following ideas of
Narasimhan-Simha [NS68] which have been recently generalized by Tsuji [Tsu07a, 07b].
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§ 20.A. Construction of Super-Canonical Metrics

Let X be a compact complex manifold and (L, hL,γ) a holomorphic line bundle over X
equipped with a singular Hermitian metric hL,γ = e−γhL with satisfies

∫
e−γ < +∞

locally on X , where hL is a smooth metric on L. In fact, we can more generally consider
the case where (L, hL,γ) is a “Hermitian R-line bundle”; by this we mean that we have
chosen a smooth real d-closed (1, 1) form αL on X (whose ddc cohomology class is equal
to c1(L)), and a specific current TL,γ representing it, namely TL,γ = αL + ddcγ, such
that γ is a locally integrable function satisfying

∫
e−γ < +∞. An important special

case is obtained by considering a klt (Kawamata log terminal) effective divisor ∆. In
this situation ∆ =

∑
cj∆j with cj ∈ R, and if gj is a local generator of the ideal

sheaf O(−∆j) identifying it to the trivial invertible sheaf gjO, we take γ =
∑
cj log |gj|2,

TL,γ =
∑
cj [∆j ] (current of integration on ∆) and αL given by any smooth representative

of the same ddc-cohomology class; the klt condition precisely means that

(20.1)

∫

V

e−γ =

∫

V

∏
|gj |−2cj < +∞

on a small neighborhood V of any point in the support |∆| = ⋃
∆j (condition (20.1)

implies cj < 1 for every j, and this in turn is sufficient to imply ∆ klt if ∆ is a normal
crossing divisor; the line bundle L is then the real line bundle O(∆), which makes sens
as a genuine line bundle only if cj ∈ Z). For each klt pair (X,∆) such that KX + ∆
is pseudo-effective, H. Tsuji [Tsu07a, 07b] has introduced a “super-canonical metric”
which generalizes the metric introduced by Narasimhan and Simha [NS68] for projective
algebraic varieties with ample canonical divisor. We take the opportunity to present here
a simpler, more direct and more general approach.

We assume from now on that KX+L is pseudo-effective, i.e. that the class c1(KX)+
{αL} is pseudo-effective, and under this condition, we are going to define a “super-
canonical metric” on KX + L. Select an arbitrary smooth Hermitian metric ω on X .
We then find induced Hermitian metrics hKX

on KX and hKX+L = hKX
hL on KX +L,

whose curvature is the smooth real (1, 1)-form

α = ΘKX+L,hKX+L
= ΘKX ,ω + αL.

A singular Hermitian metric on KX + L is a metric of the form hKX+L,ϕ = e−ϕhKX+L

where ϕ is locally integrable, and by the pseudo-effectivity assumption, we can find quasi-
psh functions ϕ such that α + ddcϕ > 0. The metrics on L and KX + L can now be
“subtracted” to give rise to a metric

hL,γh
−1
KX+L,ϕ = eϕ−γhLh

−1
KX+L = eϕ−γh−1

KX
= eϕ−γdVω

on K−1
X = ΛnTX , since h−1

KX
= dVω is just the Hermitian (n, n) volume form on X .

Therefore the integral
∫
X
hL,γh

−1
KX+L,ϕ has an intrinsic meaning, and it makes sense to

require that

(20.2)

∫

X

hL,γh
−1
KX+L,ϕ =

∫

X

eϕ−γdVω 6 1

in view of the fact that ϕ is locally bounded from above and of the assumption
∫
e−γ < +∞.
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Observe that condition (20.2) can always be achieved by subtracting a constant to ϕ.
Now, we can generalize Tsuji’s super-canonical metrics on klt pairs (cf. [Tsu07b]) as
follows.

(20.3) Definition. Let X be a compact complex manifold and let (L, hL) be a Hermitian
R-line bundle on X associated with a smooth real closed (1, 1) form αL. Assume that
KX + L is pseudo-effective and that L is equipped with a singular Hermitian metric
hL,γ = e−γhL such that

∫
e−γ < +∞ locally on X. Take a Hermitian metric ω on X

and define α = ΘKX+L,hKX+L
= ΘKX ,ω+αL. Then we define the super-canonical metric

hcan of KX + L to be

hKX+L,can = inf
ϕ
hKX+L,ϕ i.e. hKX+L,can = e−ϕcanhKX+L, where

ϕcan(x) = sup
ϕ
ϕ(x) for all ϕ with α+ ddcϕ > 0,

∫

X

eϕ−γdVω 6 1.

In particular, this gives a definition of the super-canonical metric on KX + ∆ for
every klt pair (X,∆) such that KX +∆ is pseudo-effective, and as an even more special
case, a super-canonical metric on KX when KX is pseudo-effective.

In the sequel, we assume that γ has analytic singularities, otherwise not much can
be said. The mean value inequality then immediately shows that the quasi-psh func-
tions ϕ involved in Definition 20.3 are globally uniformly bounded outside of the poles
of γ, and therefore everywhere on X , hence the envelopes ϕcan = supϕ ϕ are indeed
well defined and bounded above. As a consequence, we get a “super-canonical” current
Tcan = α+ ddcϕcan > 0 and hKX+L,can satisfies

(20.4)

∫

X

hL,γh
−1
KX+L,can =

∫

X

eϕcan−γdVω < +∞.

It is easy to see that in Definition 20.3 the supremum is a maximum and that ϕcan =
(ϕcan)

∗ everywhere, so that taking the upper semicontinuous regularization is not needed.
In fact if x0 ∈ X is given and we write

(ϕcan)
∗(x0) = lim sup

x→x0

ϕcan(x) = lim
ν→+∞

ϕcan(xν) = lim
ν→+∞

ϕν(xν)

with suitable sequences xν → x0 and (ϕν) such that
∫
X
eϕν−γdVω 6 1, the well-known

weak compactness properties of quasi-psh functions in L1 topology imply the existence
of a subsequence of (ϕν) converging in L1 and almost everywhere to a quasi-psh limit
ϕ. Since

∫
X
eϕν−γdVω 6 1 holds true for every ν, Fatou’s lemma implies that we have∫

X
eϕ−γdVω 6 1 in the limit. By taking a subsequence, we can assume that ϕν → ϕ in

L1(X). Then for every ε > 0 the mean value −
∫
B(xν ,ε)

ϕν satisfies

−
∫

B(x0,ε)

ϕ = lim
ν→+∞

−
∫

B(xν ,ε)

ϕν > lim
ν→+∞

ϕν(xν) = (ϕcan)
∗(x0),

hence we get ϕ(x0) = limε→0 −
∫
B(x0,ε)

ϕ > (ϕcan)
∗(x0) > ϕcan(x0), and therefore the sup

is a maximum and ϕcan = ϕ∗
can. By elaborating on this argument, one can infer certain

regularity properties of the envelope.
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(20.5) Theorem ([BmD09]). Let X be a compact complex manifold and (L, hL) a
holomorphic R-line bundle such that KX + L is big. Assume that L is equipped with a
singular Hermitian metric hL,γ = e−γhL with analytic singularities such that

∫
e−γ <

+∞ (klt condition). Denote by Z0 the set of poles of a singular metric h0 = e−ψ0hKX+L

with analytic singularities on KX +L and by Zγ the poles of γ (assumed analytic). Then
the associated super-canonical metric hcan is continuous on X r (Z0 ∪ Zγ).

In fact, using the regularization techniques of [Dem94a], it is shown in [BmD09] that
hcan possesses some computable logarithmic modulus of continuity. In order to shorten
the exposition, we will only give a proof of the continuity in the algebraic case, using
approximation by pluri-canonical sections.

(20.6) Algebraic Version of the Super-Canonical Metric. Since the klt condition
is open and KX +L is assumed to be big, we can always perturb L a little bit, and after
blowing-up X , assume that X is projective and that (L, hL,γ) is obtained as a sum of
Q-divisors

L = G+∆

where ∆ is klt and G is equipped with a smooth metric hG (from which hL,γ is inferred,
with ∆ as its poles, so that ΘL,hL,γ

= ΘG,LG
+ [∆]). Clearly this situation is “dense”

in what we have been considering before, just as Q is dense in R. In this case, it is
possible to give a more algebraic definition of the super-canonical metric ϕcan, following
the original idea of Narasimhan-Simha [NS68] (see also H. Tsuji [Tsu07a]) — the case
considered by these authors is the special situation where G = 0, hG = 1 (and moreover
∆ = 0 and KX ample, for [NS68]). In fact, if m is a large integer which is a multiple of
the denominators involved in G and ∆, we can consider sections

σ ∈ H0(X,m(KX +G+∆)).

We view them rather as sections of m(KX +G) with poles along the support |∆| of our
divisor. Then (σ ∧ σ)1/mhG is a volume form with integrable poles along |∆| (this is the
klt condition for ∆). Therefore one can normalize σ by requiring that

∫

X

(σ ∧ σ)1/mhG = 1.

Each of these sections defines a singular Hermitian metric on KX + L = KX + G + ∆,
and we can take the regularized upper envelope

(20.7) ϕalg
can =

(
sup
m,σ

1

m
log |σ|2hm

KX+L

)∗

of the weights associated with a smooth metric hKX+L. It is clear that ϕalg
can 6 ϕcan

since the supremum is taken on the smaller set of weights ϕ = 1
m
log |σ|2hm

KX+L
, and the

equalities

eϕ−γdVω = |σ|2/mhm
KX+L

e−γdVω = (σ ∧ σ)1/me−γhL = (σ ∧ σ)1/mhL,γ = (σ ∧ σ)1/mhG

imply
∫
X
eϕ−γdVω 6 1. We claim that the inequality ϕalg

can 6 ϕcan is an equality. The
proof is an immediate consequence of the following statement based in turn on the
Ohsawa-Takegoshi theorem and the approximation technique of [Dem92].
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(20.8) Proposition. With L = G+∆, ω, α = ΘKX+L,hKX+L
, γ as above and KX + L

assumed to be big, fix a singular Hermitian metric e−ϕhKX+L of curvature α+ddcϕ > 0,
such that

∫
X
eϕ−γdVω 6 1. Then ϕ is equal to a regularized limit

ϕ =

(
lim sup
m→+∞

1

m
log |σm|2hm

KX+L

)∗

for a suitable sequence σm ∈ H0(X,m(KX +G+∆)) with
∫
X
(σm ∧ σm)1/mhG 6 1.

Proof. By our assumption, there exists a quasi-psh function ψ0 with analytic singularity
set Z0 such that

α + ddcψ0 > ε0ω > 0

and we can assume
∫
C
eψ0−γdVω < 1 (the strict inequality will be useful later). For

m > p > 1, this defines a singular metric exp(−(m− p)ϕ − pψ0)h
m
KX+L on m(KX + L)

with curvature > pε0ω, and therefore a singular metric

hL′ = exp(−(m− p)ϕ− pψ0)h
m
KX+Lh

−1
KX

on L′ = (m− 1)KX +mL, whose curvature ΘL′,hL′ > (pε0 −C0)ω is arbitrary large if p
is large enough. Let us fix a finite covering of X by coordinate balls. Pick a point x0 and
one of the coordinate balls B containing x0. By the Ohsawa-Takegoshi extension theorem
applied on the ball B, we can find a section σB of KX+L′ = m(KX+L) which has norm
1 at x0 with respect to the metric hKX+L′ and

∫
B
|σB|2hKX+L′

dVω 6 C1 for some uniform

constant C1 depending on the finite covering, but independent of m, p, x0 . Now, we use
a cut-off function θ(x) with θ(x) = 1 near x0 to truncate σB and solve a ∂-equation for
(n, 1)-forms with values in L to get a global section σ on X with |σ(x0)|hKX+L′ = 1. For

this we need to multiply our metric by a truncated factor exp(−2nθ(x) log |x−x0|) so as
to get solutions of ∂ vanishing at x0. However, this perturbs the curvature by bounded
terms and we can absorb them again by taking p larger. In this way we obtain

(20.9)

∫

X

|σ|2hKX+L′
dVω =

∫

X

|σ|2hm
KX+L

e−(m−p)ϕ−pψ0dVω 6 C2.

Taking p > 1, the Hölder inequality for congugate exponents m, m
m−1

implies

∫

X

(σ ∧ σ) 1
mhG =

∫

X

|σ|2/mhm
KX+L

e−γdVω

=

∫

X

(
|σ|2hm

KX+L
e−(m−p)ϕ−pψ0

) 1
m
(
e(1−

p
m

)ϕ+ p
m
ψ0−γ

)
dVω

6 C
1
m

2

(∫

X

(
e(1−

p
m

)ϕ+ p
m
ψ0−γ

) m
m−1

dVω

)m−1
m

6 C
1
m

2

(∫

X

(
eϕ−γ

)m−p
m−1

(
e

p
p−1 (ψ0−γ)

) p−1
m−1

dVω

)m−1
m

6 C
1
m

2

(∫

X

e
p

p−1 (ψ0−γ)dVω

) p−1
m
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using the hypothesis
∫
X
eϕ−γdVω 6 1 and another application of Hölder’s inequality.

Since klt is an open condition and

lim
p→+∞

∫

X

e
p

p−1 (ψ0−γ)dVω =

∫

X

eψ0−γdVω < 1,

we can take p large enough to ensure that

∫

X

e
p

p−1 (ψ0−γ)dVω 6 C3 < 1.

Therefore, we see that ∫

X

(σ ∧ σ) 1
mhG 6 C

1
m

2 C
p−1
m

3 6 1

for p large enough. On the other hand

|σ(x0)|2hKX+L′
= |σ(x0)|2hm

KX+L
e−(m−p)ϕ(x0)−pψ0(x0) = 1,

thus

(20.10)
1

m
log |σ(x0)|2hm

KX+L
=

(
1− p

m

)
ϕ(x0) +

p

m
ψ0(x0)

and, as a consequence
1

m
log |σ(x0)|2hm

KX+L
−→ ϕ(x0)

whenever m → +∞, p
m → 0, as long as ψ0(x0) > −∞. In the above argument, we

can in fact interpolate in finitely many points x1, x2, . . . , xq provided that p > C4q.
Therefore if we take a suitable dense subset {xq} and a “diagonal” sequence associated
with sections σm ∈ H0(X,m(KX + L)) with m ≫ p = pm ≫ q = qm → +∞, we infer
that

(20.11)

(
lim sup
m→+∞

1

m
log |σm(x)|2hm

KX+L

)∗
> lim sup

xq→x
ϕ(xq) = ϕ(x)

(the latter equality occurring if {xq} is suitably chosen with respect to ϕ). In the other
direction, (20.9) implies a mean value estimate

1

πnr2n/n!

∫

B(x,r)

|σ(z)|2hm
KX+L

dz 6
C5

r2n
sup
B(x,r)

e(m−p)ϕ+pψ0

on every coordinate ball B(x, r) ⊂ X . The function |σm|2hm
KX+L

is plurisubharmonic after

we correct the non necessarily positively curved smooth metric hKX+L by a factor of the
form exp(C6|z − x|2), hence the mean value inequality shows that

1

m
log |σm(x)|2hm

KX+L
6

1

m
log

C5

r2n
+ C6r

2 + sup
B(x,r)

(
1− pm

m

)
ϕ+

pm
m
ψ0.

By taking in particular r = 1/m and letting m → +∞, pm/m → 0, we see that the
opposite of inequality (20.9) also holds. �
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(20.12) Remark. We can rephrase our results in slightly different terms. In fact, let
us put

ϕalg
m = sup

σ

1

m
log |σ|2hm

KX+L
, σ ∈ H0(X,m(KX +G+∆)),

with normalized sections σ such that
∫
X
(σ ∧ σ)1/mhG = 1. Then ϕalg

m is quasi-psh (the
supremum is taken over a compact set in a finite dimensional vector space) and by passing
to the regularized supremum over all σ and all ϕ in (20.10) we get

ϕcan > ϕalg
m >

(
1− p

m

)
ϕcan(x) +

p

m
ψ0(x).

As ϕcan is bounded from above, we find in particular

0 6 ϕcan − ϕalg
m 6

C

m
(|ψ0(x)|+ 1).

This implies that (ϕalg
m ) converges uniformly to ϕcan on every compact subset of X ⊂ Z0,

and in this way we infer again (in a purely qualitative manner) that ϕcan is continuous
on X rZ0. Moreover, we also see that in (20.7) the upper semicontinuous regularization
is not needed on X r Z0 ; in case KX + L is ample, it is not needed at all and we have
uniform convergence of (ϕalg

m ) towards ϕcan on the whole of X . Obtaining such a uniform
convergence when KX + L is just big looks like a more delicate question, related e.g. to
abundance of KX + L on those subvarieties Y where the restriction (KX + L)|Y would
be e.g. nef but not big.

(20.13) Generalization. In the general case where L is a R-line bundle and KX + L
is merely pseudo-effective, a similar algebraic approximation can be obtained. We take
instead sections

σ ∈ H0(X,mKX + ⌊mG⌋+ ⌊m∆⌋+ pmA)

where (A, hA) is a positive line bundle, ΘA,hA
> ε0ω, and replace the definition of ϕalg

can

by

ϕalg
can =

(
lim sup
m→+∞

sup
σ

1

m
log |σ|2hmKX+⌊mG⌋+pmA

)∗
,(20.14)

∫

X

(σ ∧ σ) 2
mh

1
m

⌊mG⌋+pmA 6 1,(20.15)

where m≫ pm ≫ 1 and h
1/m
⌊mG⌋ is chosen to converge uniformly to hG.

We then find again ϕcan = ϕalg
can, with an almost identical proof – though we no

longer have a sup in the envelope, but just a lim sup. The analogue of Proposition
(20.8) also holds true in this context, with an appropriate sequence of sections σm ∈
H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋+ pmA).

(20.16) Remark. It would be nice to have a better understanding of the super-canonical
metrics. In case X is a curve, this should be easier. In fact X then has a Hermitian
metric ω with constant curvature, which we normalize by requiring that

∫
X
ω = 1, and

we can also suppose
∫
X
e−γω = 1. The class λ = c1(KX + L) > 0 is a number and we

take α = λω. Our envelope is ϕcan = supϕ where λω + ddcϕ > 0 and
∫
X
eϕ−γω 6 1. If
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λ = 0 then ϕ must be constant and clearly ϕcan = 0. Otherwise, if G(z, a) denotes the
Green function such that

∫
X
G(z, a)ω(z) = 0 and ddcG(z, a) = δa − ω(z), we find

ϕcan(z) > sup
a∈X

(
λG(z, a)− log

∫

z∈X
eλG(z,a)−γ(z)ω(z)

)

by taking already the envelope over ϕ(z) = λG(z, a)−Const. It is natural to ask whether
this is always an equality, i.e. whether the extremal functions are always given by one of
the Green functions, especially when γ = 0.

§ 20.B. Invariance of Plurigenera and Positivity of Curvature of Super-Cano-
nical Metrics

The concept of super-canonical metric can be used to give a very interesting result on
the positivity of relative pluricanonical divisors, which itself can be seen to imply the
invariance of plurigenera. The main idea is due to H. Tsuji [Tsu07a], and some important
details were fixed by Berndtsson and Păun [BnP09], using techniques inspired from their
results on positivity of direct images [Bnd06; BnP08].

(20.17) Theorem. Let π : X → S be a deformation of projective algebraic manifolds
over some irreducible complex space S (π being assumed locally projective over S). Let
L→ X be a holomorphic line bundle equipped with a Hermitian metric h

L,γ of weight γ
such that iΘ

L,h
L,γ

> 0 (i.e. γ is plurisubharmonic), and
∫
Xt
e−γ < +∞, i.e. we assume

the metric to be klt over all fibers Xt = π−1(t). Then the metric defined on K
X

+L as
the fiberwise super-canonical metric has semi-positive curvature over X. In particular,
t 7→ h0(Xt, m(KXt

+L↾Xt
)) is constant for all m > 0.

Once the metric is known to have a plurisuharmonic weight on the total space of X,
the Ohsawa-Takegoshi theorem can be used exactly as at the end of the proof of Lemma
17.3. Therefore the final statement is just an easy consequence. The cases when L = O

X

is trivial or when L↾Xt
= O(∆t) for a family of klt Q-divisors are especially interesting.

Proof (Sketch). By our assumptions, there exists (at least locally over S) a relatively
ample line bundle A over X. We have to show that the weight of the global super-
canonical metric is plurisubharmonic, and for this, it is enough to look at analytic disks
∆ → S. We may thus as well assume that S = ∆ is the unit disk. Consider the super-
canonical metric hcan,0 over the fiber X0. The approximation argument seen above (see
(20.9) and Remark (20.12)) show that hcan,0 has a weight ϕcan,0 which is a regularized
upper limit

ϕalg
can,0 =

(
lim sup
m→+∞

1

m
log |σm|2

)∗

defined by sections σm ∈ H0(X0, m(KX0
+L↾X0

) + pmA↾X0
) such that

∫

X0

|σ|2e−(m−pm)ϕcan,0−pmψ0dVω 6 C2.

with the suitable weights. Now, by the proof of the invariance of plurigenera (Section
16), these sections extend to sections σ̃m defined on the whole family X, satisfying a
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similar L2 estimate (possibly with a slightly larger constant C′
2 under control). If we set

Φ =

(
lim sup
m→+∞

1

m
log |σ̃m|2

)∗
,

then Φ is plurisubharmonic by construction, and ϕcan > Φ by the defining property of
the super-canonical metric. Finally, we also have ϕcan,0 = Φ↾X0

from the approximation
technique. It follows easily that ϕcan satisfies the mean value inequality with respect to
any disk centered on the central fiber X0. Since we can consider arbitrary analytic disks
∆ → S, the plurisubharmonicity of ϕcan follows. �

§ 20.C. Tsuji’s Strategy for Studying Abundance

H. Tsuji [Tsu07c] has recently proposed the following interesting prospective approach
of the abundance conjecture.

(20.18) Conjecture/question. Let (X,∆) be a klt pair such that KX +∆ is pseudo-
effective and has numerical dimension nd(KX + ∆) > 0. Then for every point x ∈ X
there exists a closed positive current Tx ∈ c1(KX +∆) such that the Lelong number at x
satisfies ν(Tx, x) > 0.

It would be quite tempting to try to produce such currents e.g. by a suitable modifi-
cation of the construction of super-canonical metrics, trying to enforce singularities of the
metric at any prescribed point x ∈ X . A related procedure would be to enforce enough
vanishing of sections of A+m(KX +∆) at point x, where A is a sufficiently ample line
bundle. The number of these sections grows as cmp where p = nd(KX +∆). Hence, by
an easy linear algebra argument, one can prescribe a vanishing order s ∼ c′mp/n of such
a section σ, whence a Lelong number ∼ c′m

p
n
−1 for the corresponding rescaled current

of integration T = 1
m [Zσ] on the zero divisor. Unfortunately, this tends to 0 as m→ +∞

whenever p < n. Therefore, one should use a more clever argument which takes into
account the fact that, most probably, all directions do not behave in an “isotropic way”,
and vanishing should be prescribed only in certain directions.

Assuming that (20.18) holds true, a simple semi-continuity argument would imply
that there exists a small number c > 0 such that the analytic set Zx = Ec(Tx) contains
x, and one would expect conjecturally that these sets can be reorganized as the generic
fibers of a reduction map f : X > Y , together with a klt divisor ∆′ on Y such that (in
first approximation, and maybe only after replacing X , Y by suitable blow-ups), one has
KX + ∆ = f∗(KY +∆′ + Rf ) + β where Rf is a suitable orbifold divisor (in the sense
of Campana [Cam04]) and β a suitable pseudo-effective class. The expectation is that
dimY = p = nd(KX +∆) and that (Y,∆′) is of general type, i.e. nd(KY +∆′) = p.

21. Siu’s Analytic Approach and Păun’s Non Vanishing Theo-
rem

We describe here briefly some recent developments without giving much detail about
proofs. Recall that given a pair (X,∆) where X is a normal projective variety and ∆

an effective R-divisor, the transform of (X,∆) by a birational morphism µ : X̃ → X of

normal varieties is the unique pair (X̃, ∆̃) such that K
X̃
+ ∆̃ = µ∗(KX +∆) +E where
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E is an effective µ-exceptional divisor (we assume here that KX + ∆ and K
X̃

+ ∆̃ are
R-Cartier divisors).

In [BCHM06], Birkar, Cascini, Hacon and McKernan proved several fundamental
conjectures which had been expected for more than two decades, concerning the exis-
tence of minimal models and the finiteness of the canonical ring for arbitrary projective
varieties. The latter result was also announced independently by Siu in [Siu06]. The
main results can be summarized in the following statement.

(21.1) Theorem. Let (X,∆) be a klt pair where ∆ is big.

(a) If KX + ∆ is pseudo-effective, (X,∆) has a log-minimal model, i.e. there is a bi-

rational transformation (X̃, ∆̃) with X̃ Q-factorial, such that K
X̃

+ ∆̃ is nef and
satisfies additionally strict inequalities for the discrepancies of µ-exceptional divi-
sors.

(b) If KX + ∆ is not pseudo-effective, then (X,∆) has a Mori fiber space, i.e. there

exists a birational transformation (X̃, ∆̃) and a morphism ϕ : X̃ → Y such that

−(K
X̃
+ ∆̃) is ϕ-ample.

(c) If moreover ∆ is a Q-divisor, the log-canonical ring
⊕

m>0H
0(X,m(KX + ∆)) is

finitely generated.

The proof, for which we can only refer to [BCHM06], is an extremely subtle induc-
tion on dimension involving finiteness of flips (a certain class of birational transforms
improving positivity of KX + ∆ step by step), and a generalization of Shokurov’s non
vanishing theorem [Sho85]. The original proof of this non vanishing result was itself
based on an induction on dimension, using the existence of minimal models in dimension
n − 1. Independently, Y.T. Siu [Siu06] announced an analytic proof of the finiteness of
canonical rings

⊕
m>0H

0(X,mKX), along with an analytic variant of Shokurov’s non
vanishing theorem; in his approach, multiplier ideals and Skoda’s division theorem are
used in crucial ways. Let us mention a basic statement in this direction which illustrates
the connection with Skoda’s result, and is interesting for two reasons : i) it does not re-
quire any strict positivity assumption, ii) it shows that it is enough to have a sufficiently
good approximation of the minimal singularity metric hmin by sections of sufficiently
large linear systems |pKX |.

(21.2) Proposition. Let X be a projective n-dimensional manifold with KX pseudo-
effective. Let hmin = e−ϕmin be a metric with minimal singularity on KX (e.g. the super-
canonical metric), and let c0 > 0 be the log canonical threshold of ϕmin, i.e. hc0−δmin =
e−(c0−δ)ϕmin ∈ L1 for δ > 0 small. Assume that there exists an integer p > 0 so that the
linear system |pKX | provides a weight ψp =

1
p log

∑ |σj|2 whose singularity approximates
ϕmin sufficiently well, namely

ψp >
(
1 +

1 + c0 − δ

pn

)
ϕmin +O(1) for some δ > 0.

Then
⊕

m>0H
0(X,mKX) is finitely generated, and a set of generators is actually pro-

vided by a basis of sections of
⊕

06m6np+1H
0(X,mKX).
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Proof. A simple argument based on the curve selection lemma (see e.g. [Dem01], Lemma
11.16) shows that one can extract a system g = (g1, · · · , gn) of at most n sections from (σj)
in such a way that the singularities are unchanged, i.e. C1 log |σ| 6 log |g| 6 C2 log |σ|.
We apply Skoda’s division (12.8), (12.12) with E = O⊕n

X , Q = O(pKX) and L = O((m−
p−1)KX) [so thatKX⊗Q⊗L = OX(mKX)], and with the metric induced by hmin onKX .
By definition of a metric with minimal singularities, every section f in H0(X,mKX) =
H0(X,KX ⊗ Q ⊗ L) is such that |f |2 6 Cemϕmin . The weight of the metric on Q ⊗ L
is (m− 1)ϕmin. Accordingly, we find

|f |2|g|−2n−2ε
hmin

e−(m−1)ϕmin 6 C exp
(
mϕmin − p(n+ ε)(ψp − ϕmin)− (m−1)ϕmin

)

6 C′ exp
(
− (c0 − δ/2)ϕmin

)

for ε > 0 small, thus the left hand side is in L1. Skoda’s theorem implies that we can write
f = g ·h =

∑
gjhj with hj ∈ H0(X,KX⊗L) = H0(X, (m−p)KX). The argument holds

as soon as the curvature condition m− p− 1 > (n− 1 + ε)p is satisfied, i.e. m > np+ 2.
Therefore all multiples m > np+ 2 are generated by sections of lower degree m− p, and
the result follows. �

Recently, Păun [Pau08] has been able to provide a very strong Shokurov-type analytic
non vanishing statement, and in the vein of Siu’s approach [Siu06], he gave a very detailed
independent proof which does not require any intricate induction on dimension (i.e. not
involving the existence of minimal models).

(21.3) Theorem (Păun [Pau08]). Let X be a projective manifold, and let αL ∈ NSR(X)
be a cohomology class in the real Neron-Severi space of X, such that :

(a) The adjoint class c1(KX) + αL is pseudoeffective, i.e. there exist a closed positive
current

ΘKX+L ∈ c1(KX) + αL;

(b) The class αL contains a Kähler current ΘL (so that αL is big), such that the respec-
tive potentials ϕL of ΘL and ϕKX+L of ΘKX+L satisfy

e(1+ε)(ϕKX+L−ϕL) ∈ L1
loc

where ε is a positive real number.

Then the adjoint class c1(KX) + αL contains an effective R-divisor.

The proof is a clever application of the Kawamata-Viehweg-Nadel vanishing the-
orem, combined with a perturbation trick of Shokurov [Sho85] and with diophantine
approximation to reduce the situation to the case of Q-divisors. Shokurov’s trick allows
to single out components of the divisors involved, so as to be able to take restrictions
and apply induction on dimension. One should notice that the poles of ϕL may help
in achieving condition 21.3 (b), so one obtains a stronger condition by requiring (b′)
exp((1+ε)ϕKX+L) ∈ L1

loc for ε > 0 small, namely that c1(KX)+αL is klt. The resulting
weaker statement then makes sense in a pure algebraic setting. In [BrP09], Birkar and
Păun announced a relative version of Theorem 21.3, and they showed that this can be
used to reprove a relative version of Theorem 21.1. The notes of Mihai Păun [Pau09] give
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a fairly precise account of these techniques, and incorporate as well some ideas of Ein-
Lazarsfeld-Mustaţă-Nakamaye-Popa [E-P06] and of A. Corti and V. Lazić (see [Lzc09]).
A similar purely algebraic approach has been described by C. Hacon in his Oberwolfach
lectures [Hac08].
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[BDPP04] S. Boucksom, J.-P. Demailly, M. Păun, Th. Peternell. — The pseudo-effective cone
of a compact Kähler manifold and varieties of negative Kodaira dimension, manuscript
May 2004, math.AG/0405285.

[BGK05] Ch. P. Boyer, K. Galicki, J. Kollár. — Einstein Metrics on Spheres, Annals of Math,
162 (2005), 557–580.
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[Hör65] L. Hörmander. — L2 estimates and existence theorems for the ∂ operator, Acta Math.,
113 (1965), 89–152.
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[Pau07] M. Păun. — Siu’s invariance of plurigenera: a one-tower proof, J. Differential Geom., 76
(2007), 485–493.
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[Sko80] H. Skoda. — Relèvement des sections globales dans les fibrés semi-positifs, Sém. P. Lelong-
H. Skoda (Analyse), 19e année, 1978-1979, Lecture Notes in Math. 822 (1980), 259–303.

[Sko82] H. Skoda. — Prolongement des courants positifs fermés de masse finie, Invent. Math., 66
(1982), 361–376.

[Som78] A.J. Sommese. — Submanifolds of abelian varieties, Math. Ann., 233 (1978), 229–256.

[Sug88] K.-I. Sugiyama. — A geometry of Kähler cones, Math. Ann., 281 (1988), 135–144.

[Taka06] S. Takayama. — Pluricanonical systems on algebraic varieties of general type, Invent.
Math., 165 (2006), 551–587.

[Taka07] S. Takayama. — On the invariance and lower semi-continuity of plurigenera of algebraic
varieties, J. Algebraic Geom., 16 (2007), 1–18.

[Take97] K. Takegoshi. — On cohomology groups of nef line bundles tensorized with multiplier
ideal sheaves on compact Kähler manifolds, Osaka J. Math., 34 (1997), 783–802.
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