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Introduction

This document is a work-in-progress solution manual for Tom Apostol’s Intro-
duction to Analytic Number Theory. The solutions were worked out primarily
for my learning of the subject, as Cornell University currently does not offer an
analytic number theory course at either the undergraduate or graduate level.
However, this document is public and available for use by anyone. If you are a
student using this document for a course, I recommend that you first try work
out the problems by yourself or in a group. My math documents are stored on
a math blog at www.epicmath.org.

4 Some Elementary Theorems on the Distribu-
tion of Prime Numbers

4.1. Let S = {1, 5, 9, 13, 17, . . . } denote the set of all positive integeers of the
form 4n + 1. An element p of S is called an S-prime if p > 1 and if the only
divisors of p among the elements of S, are 1 and p. (For example, 49 is an S-
prime.) An element n > 1 in S which is not an S-prime is called an S-composite.

(a) Prove that every S-composite is a product of S-primes.

Proof. Let a ∈ S be an S-composite. Then we can write a = bc, where b, c ∈
S, b, c 6= 1. Hence we have b, c < a, and we may repeat the decomposition
to b and c, ending when we get to primes. This process terminates since
the number of elements in S less than a is finite, and at each stage of the
decomposition we either have a prime or two smaller elements of S.
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(b) Find the smallest S-composite that can be expressed in more than one way
as a product of S-primes.

Solution: 693 = 21 · 33 = 9 · 77 = 32 · 7 · 11. The idea is to use the lowest
prime numbers which are not in S but whose products are primes in S. The
lowest such primes are 3, 7, 11 as 32 = 9, 3 · 7 = 21, 3 · 11 = 33, 7 · 11 = 77
are all in primes in S. This gives the solution 693.

4.2. Consider the following finite set of integers:

T = {1, 7, 11, 13, 17, 19, 23, 29}.

(a) For each prime p in the interval 30 < p < 100 determine a pair of integers
m,n, where m ≥ 0 and n ∈ T , such that p = 30m+ n.

Solution.

31 = 1 · 30 + 1 53 = 1 · 30 + 23 73 = 2 · 30 + 13

37 = 1 · 30 + 7 59 = 1 · 30 + 29 79 = 2 · 30 + 19

41 = 1 · 30 + 11 61 = 2 · 30 + 1 83 = 2 · 30 + 23

43 = 1 · 30 + 13 67 = 2 · 30 + 7 89 = 2 · 30 + 29

47 = 1 · 30 + 17 71 = 2 · 30 + 11 97 = 3 · 30 + 7

(b) Prove the following statement or exhibit a counter example: Every prime
p > 5 can be expressed in the form 30m+ n, where m ≥ 0 and n ∈ T .

Proof. Let n = 30m+ r, where 0 ≤ r < 30. We exclude all cases that force
n composite. Clearly 2|r implies 2|n, 3|r implies 3|n, and 5|r implies 5|n.
This excludes the numbers

r = 0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28.

Hence the remaining values that a prime number must take are

r = 1, 7, 11, 13, 17, 23, 29,

exactly as desired.

4.3. Let f(x) = x2 + x+ 41. Find the smallest integer x ≥ 0 for which f(x) is
composite.

Solution: 40. Note that f(40) = 402+40+41 = 412 is composite. If 0 ≤ x ≤ 39,
then f(x) is prime. One can check this exhaustively.

4.4. Let f(x) = a0 +a1x+ · · ·+anx
n be a polynomial with integer coefficients,

where an > 0 and n ≥ 1. Prove that f(x) is composite for infinitely many n.
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Proof. Suppose a0 6= 0. Then a0|f(a0), a0|f(2a0), a0|f(3a0), . . . . If a0 = 0,
then let i be the lowest power for which there is a nonzero coefficient. This is
guaranteed to exist as an > 0. Then ai|f(ai), ai|f(2ai), . . . .

4.5. Prove that for every n ≥ 1 there exist n consecutive composite numbers.

Proof. Given n ≥ 1, consider the sequence of consecutive numbers (n + 1)! +
2, (n+1)!+3, . . . , (n+1)!+(n+1). Note that 2|(n+1)!+2, 3|(n+1)!+3, . . . , (n+
1)|(n+1)!+(n+1), thus this sequence contains n consecutive composite numbers.

4.6. Prove that there do not exist polynomials P and Q such that

π(x) =
P (x)

Q(x)
for x = 1, 2, 3, . . .

Proof. This is impossible because the asymptotics are different. From the prime
number theorem we have that

π(x) ∼ x

log x
.

Letting m be the degree of P (x) and am be the coefficient of the xm term, and
letting n be the degree of Q(x) and bn be the coefficient of its xn term, we have

P (x)

Q(x)
∼ amx

m

bnxn
=
am

bn
xm−n.

4.7. Let a1 < a2 < · · · < an ≤ x be a set of positive integers such that no ai
divides the product of the others. Prove that n ≤ π(x).

We first prove a lemma.

Lemma: Let A be an n × m matrix with nonnegative integer entries that
satisfies condition H, defined as follows: for each row i, there is a column j such
that the element in the (i, j) position is greater than the sum of the elements
in column j in all the other rows, i.e. for each j, there exists an i such that
ai,j >

∑
k 6=i ak,j . Then n ≤ m.

Proof of Lemma. We proceed by induction. When n = 1 the lemma is trivial.
Suppose then that the lemma holds for n− 1, we show it holds for n, n ≥ 2. In
general, we note the following: Given an n×m matrix that satisfies condition H,
given an arbitrary column, removing that column and the row that contains the
largest element in that column results in a (n−1)×(m−1) matrix that satisfies
condition H. The proof is by contradiction. Suppose some row in the resulting
matrix contained entries that were ≤ the sum of the entries in that column in
all the other rows. Then that row in the original matrix also contains every

3



entry ≤ the sum of the entries in that column in all the other rows, including
in the column that was removed.

We then take an arbitrary n×m matrix, and suppose that it satisfies condition
H but n > m. Removing a column and the row that contains the largest entry
in that column results in a (n− 1)× (m− 1) matrix that also satisfies condition
H, which contradicts the induction hypothesis as n−1 > m−1. Hence, n ≤ m.

Proof of Exercise. Let there be n positive integers in our set a1, . . . , an. There
are precisely π(x) primes which are ≤ x. Let M be the n× π(x) matrix where
each row consists of the exponents of prime powers in the prime factorization

number for an ai. That is, let ai =
∏
j p

bij
j , then the (i, j)th entry in the matrix

is bij . The condition that no ai divides the product of the others is equivalent
to condition H on the matrix. Then by the lemma, we have n ≤ π(x).

4.8. Calculate the highest power of 10 that divides 1000!.

Solution: 249. Denote by k the highest power of 10 that divides 1000!, and let
m be the highest power of 5 that divides 1000! and n be the highest power of
2 that divides 1000!. Then k = min{m,n}. Since 5 > 2, we have m ≤ n, so it
suffices to determine m. The algorithm is to sum through all the numbers from
1 to 1000, adding the highest power of 5 for each multiple of 5. This is the same
as summing from 1 to 1000 several times, first adding 1 for each multiple of 5,
then adding 1 for each multiple of 52, then 1 for each multiple of 53, etc. This
gives

m =

1000∑
i=1
5|i

1 +

1000∑
i=1
25|i

1 +

1000∑
i=1
125|i

1 +

1000∑
i=1
625|i

1

=

[
1000

5

]
+

[
1000

25

]
+

[
1000

125

]
+

[
1000

625

]
= 200 + 40 + 8 + 1

= 249.

Note: The same method shows that

n =

[
1000

2

]
+

[
1000

4

]
+

[
1000

8

]
+

[
1000

16

]
+

[
1000

32

]
+

[
1000

64

]
+

[
1000

128

]
+

[
1000

256

]
+

[
1000

512

]
= 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1

= 994.
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4.9. Given an arithmetic progression of integers

h, h+ k, h+ 2k, . . . , h+ nk, . . . ,

where 0 < k < 2000. If h+nk is prime for n = t, t+1, . . . t+r prove that r ≤ 9.
In other words, at most 10 consecutive terms of this progression can be primes.

Proof. Suppose we had 11 or more consecutive terms of such a progression all
prime. We go through the primes ≤ 11. Since there are at least 11 consecutive,
we have 2 - n + kt and 2 - n + k(t + 1), this implies 2|k. Similarly, we have
3 - n+ kt, n+ k(t+ 1), n+ k(t+ 2), thus 3|k. Continuing, we have 5|k, 7|k, and
11|k. This implies 2 · 3 · 5 · 7 · 11 = 2310|k, which contradicts 0 < k < 2000.

4.10. Let sn denote the nth partial sum of the series

∞∑
r=1

1

r(r + 1)
.

Prove that for every integer k > 1 there exist integers m and n such that
sm − sn = 1/k.

Proof. Note that we may rewrite

1

r(r + 1)
=

1

r
− 1

r + 1
.

Hence the sum is actually a telescoping sum given by

sn =

n∑
r=1

(
1

r
− 1

r + 1

)
= 1− 1

n+ 1
.

We have 1/(2k) + 1/(2k) = 1/k, so let m = −2k − 1 and n = 2k − 1.

4.11. Let sn denote the sum of the first n primes. Prove that for each n there
exists an integer whoses square lies between sn and sn+1.

Proof. The gap between successive squares n2 and (n+ 1)2 is 2n− 1. It suffices
to show that pn is greater than 2n− 1 after a certain point. This is obvious, as
2n− 1 enumerates the odd numbers, while pn enumerates the primes which are
all odd except 2. Indeed, after p4 = 2(4)− 1 = 7, pn > 2n+ 1. We still need to
check that the claim holds for 2, 3, 5, 7. In these cases, we have sn = 2, 5, 10, 17,
and the squares 4, 9, 16 fit between them. Thus there is always a square between
sn and sn+1.

4.12.−4.16. Prove each of the statements in Exercise 12 through 16. In this
group of exercises you may use the prime number theorem.

4.12. If a > 0 and b > 0, then π(ax)/π(bx) ∼ a/b as x→∞.
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Proof. By the prime number theorem we have

π(ax)

π(bx)
∼ ax log bx

bx log ax

=
ax(log b+ log x)

bx(log a+ log x)

=
a

b

as (log b+ log x)/(log a+ log x)→ 1 as x→∞.

4.13. If 0 < a < b, there exists an x0 such that π(ax) < π(bx) if x ≥ x0.

Proof. By part (a) we have

π(bx)

π(ax)
∼ b

a
> 1.

That is, the asymptotic gives that for ε > 0, there exists M such that for all
x ≥M ,

b

a
(1− ε) < π(bx)

π(ax)
<
b

a
(1 + ε).

Choosing an ε such that (1− ε)b/a > 1 gives the desired result.

4.14. If 0 < a < b, there exists an x0 such that for all x ≥ x0 there is at least
one prime between ax and bx.

Proof. It follows directly from Exercise 4.13.

4.15. Every interval [a, b] with 0 < a < b contains a rational number of the
form p/q, where p and q are primes.

Proof. Let d = b − a. Choose prime n sufficiently large enough such that
1/n < d/2. Then there exist integers c and d such that a ≤ c/n < d/n ≤ b. By
Exercise 4.14, there exists sufficiently large m0 such that for integers x ≥ m0

there is at least one prime between cx and dx. Let y be such a prime when
x = m0, then we have a ≤ y/(nm0) ≤ b where y and n are prime. Now, let q
be a prime larger than nm0, and let l be such that q = lm0n. Note that l > 1.
Then we have

a ≤ c

n
=
clm0

q
<
p

q
<
dlm0

q
=
d

n
≤ b,

where the existence of p is guaranteed, as by Exercise 4.14, there must exist a
prime between clm0 and dlm0.

4.16.
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(a) Given a positive integer n there exists a positive integer k and a prime p
such that 10kn < p < 10k(n+ 1).

Proof. This follows from Exercise 4.14. We have 0 < n < n + 1, hence
there is large enough x0 such that for all x ≥ x0, there is at least one prime
between nx and (n + 1)x. Let k be such that 10k ≥ x, and the proof is
done.

(b) Given m integers a1, . . . , am such that 0 ≤ ai ≤ 9 for i = 1, 2, . . . ,m, there
exists a prime p whose decimal expansion has a1, . . . , am for its first m
digits.

Proof. Let n =
∑m
i=1 ai10m−i. The result then follows immediately from

part (a).

4.17. Given an integer n > 1 with two factorizations n =
∏r
i=1 pi and n =∏t

i=1 qi where the pi are primes (not necessarily distinct) and the qi are arbitrary
integers > 1. Let α be a nonnegative integer.

(a) If α ≥ 1 prove that
r∑
i=1

pαi ≤
t∑
i=1

qαi .

Proof. Each qi is the product of pi’s, say qi =
∏
j pij . Then each qαi ≥∑

j p
α
ij

, so the equation holds.

(b) Obtain a corresponding inequality relating these sums if 0 ≤ α < 1.

Solution. The inequality in part (a) is still valid for low n if α is close to 1,
yet the inequality is clearly reversed if α = 0.

4.18. Prove that the following relations are equivalent:

(a) π(x) =
x

log x
+O

(
x

log2 x

)
.

(b) ϑ(x) = x+O

(
x

log x

)
.

Proof. This follows from the relation π(x) ∼ ϑ(x)/ log x, which is a consequence
of Theorem 4.4.

4.19. If x ≥ 2, let

Li(x) =

∫ x

2

dt

log t
(the logarithmic integral of x).
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(a) Prove that

Li(x) =
x

log x
+

∫ x

2

dt

log2 t
− 2

log 2
,

and that, more generally,

Li(x) =
x

log x

(
1 +

n−1∑
k=1

k!

logk x

)
+ n!

∫ x

2

dt

logn+1 t
+ Cn,

where Cn is independent of x.

Proof. Using integration by parts, we obtain∫
dt

log t
=

t

log t
+

∫
dt

log2 t
,

from which the first statement follows when making the integral definite
from 2 to x. The general equation holds from repeatedly invoking integra-
tion by parts, and from the observation that

d

dt

1

logk t
=

logk−1 t

t

1

log2k t
=

1

t logk+1 t
.

(b) If x ≥ 2 prove that ∫ x

2

dt

logn t
= O

(
x

logn x

)
.

Proof. This follows from integration by parts as in part (a).

4.20. Let f be an arithmetical fucntion such that∑
p≤x

f(p) log p = (ax+ b) log x+ cx+O(1) for x ≥ 2.

Prove that there is a constant A (depending on f) such that, if x ≥ 2,∑
p≤x

f(p) = ax+ (a+ c)

(
x

log x
+

∫ x

2

dt

log2 t

)
+ b log(log x) +A+O

(
1

log x

)
.

Proof. We use Abel’s identity (Theorem 4.2). Letting f(p) be the arithmetical
function and 1/ log p as the function with a continuous derivative, we have∑

p≤x

f(p) =
A(x)

log x
+

∫ x

2

A(t)

t log2 t
dt+A0,

where A(x) = (ax + b) log x + cx + O(1) and A0 is a constant. The first term
gives

A(x)

log x
= ax+ b+

cx

log x
+O

(
1

log x

)
,
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while the integral term results in∫ x

2

A(t)

t log2 t
dt =

∫ x

2

(at+ b) log t+ ct+O(1)

t log2 t
dt

= a

∫ x

2

dt

log t
+ b

∫ x

2

dt

t log t
+ c

∫ x

2

dt

log2 t
+O

(
1

log x

)
.

Now, the integral of dt/(t log t) is log(log t), so the second term is b log(log x)−
b log(log 2), and by Exercise 4.19, the first term is the logarithmic integral and
is equal to

a

∫ x

2

dt

log t
= a

x

log x
+ a

∫ x

2

dt

log2 t
− a 2

log 2
.

Combining all the constants together into A gives∑
p≤x

f(p) = ax+ (a+ c)

(
x

log x
+

∫ x

2

dt

log2 t

)
+ b log(log x) +A+O

(
1

log x

)
.

4.21. Given two real-valued functions S(x) and T (x) such that

T (x) =
∑
n≤x

S
(x
n

)
for all x ≥ 1.

If S(x) = O(x) and if c is a positive coonstant, prove that the relation

S(x) ∼ cx as x→∞

implies
T (x) ∼ cx log x as x→∞.

Proof. Since S(x) ∼ cx, we have S(x/n) ∼ cx/n. Hence we have

T (x) ∼
∑
n≤x

cx

n
∼ cx log x

as
∑
n≤x 1/n ∼ log x.

Exercises 22-30 are not available at this time.
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