

- This Slideshow was developed to accompany the textbook
- Precalculus
- By Richard Wright
- https://www.andrews.edu/~rwright/Precalculus-RLW/Text/TOC.html
- Some examples and diagrams are taken from the textbook.

Slides created by
Richard Wright, Andrews Academy rwright@andrews.edu

11-01 3-D COORDINATE SYSTEM

IN THIS SECTION, YOU WILL:

- PLOT A POINT IN 3-DIMENSIONS.
- CALCULATE 3-DIMENSIONAL DISTANCE AND MIDPOINT.
- FIND AND GRAPH THE EQUATION OF A SPHERE.
- FIND A TRACE OF A SPHERE.

11-01 3-D COORDINATE SYSTEM

- Distance Formula
- In 2-D:
- $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
- In 3-D: (just add the z)
- $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

11-01 3-D COORDINATE SYSTEM

- Midpoint Formula
- In 2-D:
- $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- In 3-D: (just add the z)
- $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$

11-01 3-D COORDINATE SYSTEM

- Equation of Circle (2-D)
- $(x-h)^{2}+(y-k)^{2}=r^{2}$
- Equation of Sphere (3-D) (just add z)
- $(x-h)^{2}+(y-k)^{2}+(z-j)^{2}=r^{2}$
- Center is (h, k, j), $\mathrm{r}=$ radius
- Graph by plotting the center and moving each direction the radius
- Graph

$$
(x-2)^{2}+(y+1)^{2}+(z+1)^{2}=16
$$

11-01 3-D COORDINATE SYSTEM

- Trace (like intercepts for a sphere)
- Draw the $x y$ trace for

$$
(x-2)^{2}+(y+1)^{2}+(z+1)^{2}=16
$$

Since $x y$ trace, let $z=0$

$$
\begin{gathered}
(x-2)^{2}+(y+1)^{2}+(1)^{2}=16 \\
(x-2)^{2}+(y+1)^{2}=15
\end{gathered}
$$

Center (2, -1)

Looks funny because a perspective drawing

11-02 VECTORS IN SPACE

IN THIS SECTION, YOU WILL:

- USE VECTOR OPERATIONS IN THREE DIMENSIONS.
- FIND THE ANGLE BETWEEN VECTORS.

11-02 VECTORS IN SPACE

- Vectors in 2-D
- $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$
- Vectors in 3-D (just add z)
- $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$
- To find a vector from the initial point (p_{1}, p_{2}, p_{3}) to the terminal point $\left(q_{1}, q_{2}, q_{3}\right)$
- $\vec{v}=\left\langle q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right\rangle$
- If $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$,
- Addition
- Add corresponding elements
- $\vec{v}+\vec{u}=\left\langle v_{1}+u_{1}, v_{2}+u_{2}, v_{3}+u_{3}\right\rangle$
- Scalar multiplication
- Distribute
- $c \vec{v}=\left\langle c v_{1}, c v_{2}, c v_{3}\right\rangle$

11-02 VECTORS IN SPACE

$$
\text { - If } \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \text { and } \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle
$$

- Dot Product
- $\vec{v} \cdot \vec{u}=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}$
- Magnitude
- $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$
- Unit vector in the direction of \vec{v}
- $\frac{\vec{v}}{\|\vec{v}\|}$

11-02 VECTORS IN SPACE

- Angle between vectors
- $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$
- If $\theta=90^{\circ}$ (and $\left.\vec{u} \cdot \vec{v}=0\right)$
- Then vectors are orthogonal
- If $\vec{u}=c \vec{v}$
- Then vectors are parallel

11-02 VECTORS IN SPACE

- Let $\vec{m}=\langle 1,0,3\rangle$ and $\vec{n}=\langle-2,1,-4\rangle$
- Find $\|\vec{m}\|$
- Find unit vector in direction of \vec{m}
- Find $\vec{m}+2 \vec{n}$

11-02 VECTORS IN SPACE

- Let $\vec{m}=\langle 1,0,3\rangle$ and $\vec{n}=\langle-2,1,-4\rangle$
- Find the angle between \vec{m} and \vec{n}
- Find $\vec{m} \cdot \vec{n}$

$$
\begin{aligned}
\langle 1,0,3\rangle & \cdot\langle-2,1,-4\rangle \\
(-2)+ & (1)+3(-4) \\
& -14
\end{aligned}
$$

11-02 VECTORS IN SPACE

- Are $\vec{p}=\langle 1,5,-2\rangle$ and $\vec{q}=\left\langle-\frac{1}{5},-1, \frac{2}{5}\right\rangle \quad$ Parallel if $\vec{p}=c \vec{q}$ parallel, orthogonal, or neither?

Orthogonal if $\vec{p} \cdot \vec{q}=0$

Not 0, so not orthogonal

$$
\langle 1,5,-2\rangle=c\left(-\frac{1}{5},-1, \frac{2}{5}\right)
$$

Check x

$$
1=c\left(-\frac{1}{5}\right) \rightarrow c=-5
$$

Check y

$$
5=c(-1) \rightarrow c=-5
$$

Check z

$$
-2=c\left(\frac{2}{5}\right) \rightarrow c=-5
$$

c is always the same, so they are parallel

11-02 VECTORS IN SPACE

- Are $P(1,-1,3), Q(0,4,-2)$, and $R(6,13,-5)$ collinear?

[^0]
11-03 CROSS PRODUCTS

IN THIS SECTION, YOU WILL:

- EVALUATE A CROSS PRODUCT.
- USE A CROSS PRODUCT TO SOLVE AREA AND VOLUME PROBLEMS.

11-03 CROSS PRODUCTS

- $\vec{\imath}$ is unit vector in $x, \vec{\jmath}$ is unit vector in y, and \vec{k} is unit vector in z
- $\vec{u}=u_{1} \vec{\imath}+u_{2} \vec{\jmath}+u_{3} \vec{k}$ and $\vec{v}=v_{1} \vec{\imath}+v_{2} \vec{\jmath}+v_{3} \vec{k}$
- $\vec{u} \times \vec{v}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- If $\vec{u}=\langle-2,3,-3\rangle$ and $\vec{v}=\langle 1,-2,1\rangle$, find $\vec{u} \times \vec{v}$

11-03 CROSS PRODUCTS

- Properties of Cross Products
- $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$
- $\vec{u} \times(\vec{v}+\vec{w})=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w})$
- $c(\vec{u} \times \vec{v})=c \vec{u} \times \vec{v}=\vec{u} \times c \vec{v}$
- $\vec{u} \times \vec{u}=0$
- If $\vec{u} \times \vec{v}=0$, then \vec{u} and \vec{v} are parallel
- $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{W}$
- $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and \vec{v}
- $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$

11-03 CROSS PRODUCTS

- $A=b h$
- $h=\|\vec{u}\| \sin \theta$
- $A=\|\vec{v}\|\|\vec{u}\| \sin \theta$
- Area of a Parallelogram
- $\|\vec{u} \times \vec{v}\|$ where \vec{u} and \vec{v} represent adjacent sides

11-03 CROSS PRODUCTS

- Triple Scalar Product (shortcut)
- $\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{lll}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$
- Volume of Parallelepiped
- (3-D parallelogram)
- $V=|\vec{u} \cdot(\vec{v} \times \vec{w})|$ where \vec{u}, \vec{v}, and \vec{w} represent adjacent edges

11-04 LINES AND PLANES IN SPACE

IN THIS SECTION, YOU WILL:

- WRITE AN EQUATION FOR A LINE IN THREE DIMENSIONS.
- WRITE AN EQUATION FOR A PLANE.
- FIND THE ANGLE BETWEEN TWO PLANES.
- GRAPH A PLANE.

11-04 LINES AND PLANES IN SPACE

- Lines
- Line L goes through points P and Q
- \vec{v} is a direction vector for L
- Start at P and move any distance in direction \vec{v} to get some point Q
- $\overrightarrow{P Q}=t \vec{v}$ because they are parallel
- $\left\langle x-x_{1}, y-y_{1}, z-z_{1}\right\rangle=\langle a t, b t, c t\rangle$
- General form

11-04 LINES AND PLANES IN SPACE

- Parametric Equations of Line
- Take each component of the general form and solve for x, y, or z.
$x=a t+x_{1}$
- $y=b t+y_{1}$
$z=c t+z_{1}$
- We used these when we solved 3-D systems of equations and got many solutions
- Symmetric Equation of Line
- Solve each equation in parametric equations for t
- $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

11-04 LINES AND PLANES IN SPACE

- Find a set of parametric equations of the line that passes through $(1,3,-2)$ and $(4,0,1)$.

Find the direction vector between those two points. $\vec{v}=\langle 4-1,0-3,1-(-2)\rangle$ $=\langle 3,-3,3\rangle$ $=\langle a, b, c\rangle$
Let's call the first point $(1,3,-2)=\left(x_{1}, y_{1}, z_{1}\right)$ Plug it in

$$
\begin{aligned}
& x=a t+x_{1} \\
& y=b t+y_{1} \\
& z=c t+z_{1} \\
& x=3 t+1 \\
& y=-3 t+3 \\
& z=3 t-2
\end{aligned}
$$

11-04 LINES AND PLANES IN SPACE

- Planes
- $\overrightarrow{P Q} \cdot \vec{n}=0$ because they are perpendicular
- Standard form
- $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
- General form
- $a x+b y+c z+d=0$

11-04 LINES AND PLANES IN SPACE

- Find the general equation of plane passing through $A(3,2,2), B(1,5,0)$, and $C(1,-3,1)$

We need to find the normal vector to the plane.
Find two vectors in the plane
$\overline{A B}=\langle 1-3,5-2,0-2\rangle=\langle-2,3,-2\rangle$
$\overrightarrow{B C}=\langle 1-1,-3-5,1-0\rangle=\langle 0,-8,1\rangle$
Find the cross product to get a perpendicular (normal) vector

Fill in the general form
I chose $B(1,5,0)=\left(x_{1}, y_{1}, z_{1}\right)$
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
$-13(x-1)+2(y-5)+16(z-0)=0$
Simplify to get general form
$-13 x+2 y+16 z+3=0$

11-04 LINES AND PLANES IN SPACE

- Angle between two planes
- Find the angle between normal vectors
- Normal vectors are coefficients in the equations of the plane
- $\left|\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right|=\left\|\overrightarrow{n_{1}}\right\|\left\|\overrightarrow{n_{2}}\right\| \cos \theta$

11-04 LINES AND PLANES IN SPACE

- Distance between a Point and a Plane
- $D=\left\|\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}\right\|$
- $D=\frac{|\overrightarrow{P Q} \cdot \vec{n}|}{\|\vec{n}\|}$

11-04 LINES AND PLANES IN SPACE

- Graphing planes in space
- Find the intercepts
- Plot the intercepts
- Draw a triangle to represent the plane
- Sketch $3 x+4 y+6 z=24$

$$
\begin{aligned}
& x \text {-int } 3 x=24 \rightarrow x=8 \\
& y \text {-int } 4 y=24 \rightarrow y=6 \\
& z \text {-int } 6 z=24 \rightarrow z=4
\end{aligned}
$$

[^0]: Find $\overrightarrow{P Q}$ and $\overrightarrow{Q R}$. If they are parallel, then they go in same direction. Since they would share a point, then they would be the same line.

 $$
 \begin{aligned}
 \overrightarrow{P Q}= & \langle 0-1,4-(-1),-2-3\rangle \\
 & =\langle-1,5,-5\rangle \\
 \overrightarrow{Q R}= & \langle 6-0,13-4,-5-(-2)\rangle \\
 & =\langle 6,9,-3\rangle
 \end{aligned}
 $$

 These are not parallel because $\overrightarrow{P Q} \neq c \overrightarrow{Q R}$
 They are not going same direction, so not col linear

