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1 Preface

This work constitutes the free textbook project I initiated towards the end of Summer 2015,
while preparing for the Fall 2015 Analytical Methods in Physics course I taught to upper level
(mostly 2nd and 3rd year) undergraduates here at the University of Minnesota Duluth. During
Fall 2017, I taught the graduate-level Differential Geometry and Physics in Curved Spacetimes
here at National Central University, Taiwan; this has allowed me to further expand the text.

I assumed that the reader has taken the first three semesters of calculus, i.e., up to multi-
variable calculus, as well as a first course in Linear Algebra and ordinary differential equations.
(These are typical prerequisites for the Physics major within the US college curriculum.) My
primary goal was to impart a good working knowledge of the mathematical tools that underlie
fundamental physics – quantum mechanics and electromagnetism, in particular. This meant that
Linear Algebra in its abstract formulation had to take a central role in these notes.1 To this end,
I first reviewed complex numbers and matrix algebra. The middle chapters cover calculus beyond
the first three semesters: complex analysis and special/approximation/asymptotic methods. The
latter, I feel, is not taught widely enough in the undergraduate setting. The final chapter is meant
to give a solid introduction to the topic of linear partial differential equations (PDEs), which
is crucial to the study of electromagnetism, linearized gravitation and quantum mechanics/field
theory. But before tackling PDEs, I feel that having a good grounding in the basic elements of
differential geometry not only helps streamlines one’s fluency in multi-variable calculus; it also
provides a stepping stone to the discussion of curved spacetime wave equations.

Some of the other distinctive features of this free textbook project are as follows.
Index notation and Einstein summation convention is widely used throughout the physics

literature, so I have not shied away from introducing it early on, starting in §(3) on matrix
algebra. In a similar spirit, I have phrased the abstract formulation of Linear Algebra in §(4)
entirely in terms of P.A.M. Dirac’s bra-ket notation. When discussing inner products, I do make
a brief comparison of Dirac’s notation against the one commonly found in math textbooks.

I made no pretense at making the material mathematically rigorous, but I strived to make
the flow coherent, so that the reader comes away with a firm conceptual grasp of the overall
structure of each major topic. For instance, while the full fledged study of continuous (as opposed
to discrete) vector spaces can take up a whole math class of its own, I feel the physicist should
be exposed to it right after learning the discrete case. For, the basics are not only accessible, the
Fourier transform is in fact a physically important application of the continuous space spanned by
the position eigenkets {|x⃗⟩}. One key difference between Hermitian operators in discrete versus
continuous vector spaces is the need to impose appropriate boundary conditions in the latter;
this is highlighted in the Linear Algebra chapter as a prelude to the PDE chapter §(12), where
the Laplacian and its spectrum plays a significant role. Additionally, while the Linear Algebra
chapter was heavily inspired by the first chapter of Sakurai’s Modern Quantum Mechanics, I
have taken effort to emphasize that quantum mechanics is merely a very important application
of the framework; for e.g., even the famous commutation relation [X i, Pj] = iδij is not necessarily
a quantum mechanical statement. This emphasis is based on the belief that the power of a given

1That the textbook originally assigned for this course relegated the axioms of Linear Algebra towards the
very end of the discussion was one major reason why I decided to write these notes. This same book also cost
nearly two hundred (US) dollars – a fine example of exorbitant textbook prices these days – so I am glad I saved
my students quite a bit of their educational expenses that semester.
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mathematical tool is very much tied to its versatility – this issue arises again in the JWKB
discussion within §(7), where I highlight it is not merely some “semi-classical” limit of quantum
mechanical problems, but really a general technique for solving differential equations.

Much of §(6) is a standard introduction to calculus on the complex plane and the theory
of complex analytic functions. However, the Fourier transform application section gave me
the chance to introduce the concept of the Green’s function; specifically, that of the ordinary
differential equation describing the damped harmonic oscillator. This (retarded) Green’s function
can be computed via the theory of residues – and through its key role in the initial value
formulation of the ODE solution, allows the two linearly independent solutions to the associated
homogeneous equation to be obtained for any value of the damping parameter.

Differential geometry may appear to be an advanced topic to many, but it really is not. From
a practical standpoint, it cannot be overemphasized that most vector calculus operations can
be readily carried out and the curved space(time) Laplacian/wave operator computed once the
relevant metric is specified explicitly. I wrote much of §(9) in this “practical physicist” spirit.
Although it deals primarily with curved spaces, teaching Physics in Curved Spacetimes during
Fall 2017 at National Central University, Taiwan, gave me the opportunity to add its curved
spacetime sequel, §(11), where I elaborated upon geometric concepts – the emergence of the
Riemann tensor from parallel transporting a vector around an infinitesimal parallelogram, for
instance – deliberately glossed over in §(9). It is my hope that §(9) and §(11) can be used to
build the differential geometric tools one could then employ to understand General Relativity,
Einstein’s field equations for gravitation.

In §(12) on PDEs, I begin with the Poisson equation in curved space, followed by the enu-
meration of the eigensystem of the Laplacian in different flat spaces. By imposing Dirichlet or
periodic boundary conditions for the most part, I view the development there as the culmination
of the Linear Algebra of continuous spaces. The spectrum of the Laplacian also finds important
applications in the solution of the heat and wave equations. I have deliberately discussed the
heat instead of the Schrödinger equation because the two are similar enough, I hope when the
reader learns about the latter in her/his quantum mechanics course, it will only serve to en-
rich her/his understanding when she/he compares it with the discourse here. Finally, the wave
equation in Minkowski spacetime – the basis of electromagnetism and linearized gravitation – is
discussed from both the position/real and Fourier/reciprocal space perspectives. The retarded
Green’s function plays a central role here, and I spend significant effort exploring different means
of computing it. The tail effect is also highlighted there: classical waves associated with massless
particles transmit physical information within the null cone in (1 + 1)D and all odd dimensions.
Wave solutions are examined from different perspectives: in real/position space; in frequency
space; in the non-relativistic/static limits; and with the multipole-expansion employed to extract
leading order features. The final section contains a brief introduction to the variational principle
for the classical field theories of the Poisson and wave equations.

Finally, I have interspersed problems throughout each chapter because this is how I personally
like to engage with new material – read and “doodle” along the way, to make sure I am properly
following the details. My hope is that these notes are concise but accessible enough that anyone
can work through both the main text as well as the problems along the way; and discover they
have indeed acquired a new set of mathematical tools to tackle physical problems.

By making this material available online, I view it as an ongoing project: I plan to update
and add new material whenever time permits; for instance, illustrations/figures accompanying
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the main text may eventually show up at some point down the road. The most updated version
can be found at the following URL:

http://www.stargazing.net/yizen/AnalyticalMethods_YZChu.pdf

I would very much welcome suggestions, questions, comments, error reports, etc.; please feel free
to contact me at yizen [dot] chu @ gmail [dot] com.

– Yi-Zen Chu
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2 Complex Numbers and Functions

2The motivational introduction to complex numbers, in particular the number i,3 is the solution
to the equation

i2 = −1. (2.0.1)

That is, “what’s the square root of −1?” For us, we will simply take eq. (2.0.1) as the defining
equation for the algebra obeyed by i. A general complex number z can then be expressed as

z = x+ iy (2.0.2)

where x and y are real numbers. The x is called the real part (≡ Re(z)) and y the imaginary
part of z (≡ Im(z)).

Geometrically speaking z is a vector (x, y) on the 2-dimensional plane spanned by the
real axis (the x part of z) and the imaginary axis (the iy part of z). Moreover, you may recall
from (perhaps) multi-variable calculus, that if r is the distance between the origin and the point
(x, y) and ϕ is the angle between the vector joining (0, 0) to (x, y) and the positive horizontal
axis – then

(x, y) = (r cosϕ, r sinϕ). (2.0.3)

Therefore a complex number must be expressible as

z = x+ iy = r(cosϕ+ i sinϕ). (2.0.4)

This actually takes a compact form using the exponential:

z = x+ iy = r(cosϕ+ i sinϕ) = reiϕ, r ≥ 0, 0 ≤ ϕ < 2π. (2.0.5)

Some words on notation. The distance r between (0, 0) and (x, y) in the complex number context
is written as an absolute value, i.e.,

|z| = |x+ iy| = r =
√
x2 + y2, (2.0.6)

where the final equality follows from Pythagoras’ Theorem. The angle ϕ is denoted as

arg(z) = arg(reiϕ) = ϕ. (2.0.7)

The symbol C is often used to represent the 2D space of complex numbers.

z = |z|eiarg(z) ∈ C. (2.0.8)

Problem 2.1. Euler’s formula. Assuming exp z can be defined through its Taylor series
for any complex z, prove by Taylor expansion and eq. (2.0.1) that

eiϕ = cos(ϕ) + i sin(ϕ), ϕ ∈ R. (2.0.9)

2Some of the material in this section is based on James Nearing’s Mathematical Tools for Physics.
3Engineers use j instead of i.
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Arithmetic Addition and subtraction of complex numbers take place component-by-
component, just like adding/subtracting 2D real vectors; for example, if

z1 = x1 + iy1 and z2 = x2 + iy2, (2.0.10)

then

z1 ± z2 = (x1 ± x2) + i(y1 ± y2). (2.0.11)

Multiplication is more easily done in polar coordinates: if z1 = r1e
iϕ1 and z2 = r2e

iϕ2 , their
product amounts to adding their phases and multiplying their radii, namely

z1z2 = r1r2e
i(ϕ1+ϕ2). (2.0.12)

To summarize:

Complex numbers {z = x+iy = reiϕ|x, y ∈ R; r ≥ 0, ϕ ∈ R} are 2D real vectors as
far as addition/subtraction goes – Cartesian coordinates are useful here (cf. (2.0.11)).
It is their multiplication that the additional ingredient/algebra i2 ≡ −1 comes into
play. In particular, using polar coordinates to multiply two complex numbers (cf.
(2.0.12)) allows us to see the result is a combination of a re-scaling of their radii plus
a rotation.

Problem 2.2. If z = x+ iy what is z2 in terms of x and y?

Problem 2.3. Explain why multiplying a complex number z = x + iy by i amounts to
rotating the vector (x, y) on the complex plane counter-clockwise by π/2. Hint: first write i in
polar coordinates.

Problem 2.4. Describe the points on the complex z-plane satisfying |z − z0| < R, where
z0 is some fixed complex number and R > 0 is a real number.

Problem 2.5. Use the polar form of the complex number to proof that multiplication of
complex numbers is associative, i.e., z1z2z3 = z1(z2z3) = (z1z2)z3.

Problem 2.6. Explain why, for real a and b,

|aib| = 1. (2.0.13)

Hint: a = exp ln a.

Problem 2.7. Multiplication & Vector Calculus If z1 = x1 + iy1 and z2 = x2 + iy2,
show that

z∗1z2 = z⃗1 · z⃗2 + i

([
z⃗1
0

]
×
[
z⃗2
0

])
· ê3. (2.0.14)

Here, we have converted the complex numbers into vectors via z⃗1 ≡ (x1, y1)
T and z⃗2 ≡ (x2, y2)

T;
whereas ê3 ≡ (0, 0, 1)T.
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Complex conjugation Taking the complex conjugate of z = x+ iy means we flip the sign
of its imaginary part, i.e.,

z∗ = x− iy; (2.0.15)

it is also denoted as z̄. In polar coordinates, if z = reiϕ = r(cosϕ + i sinϕ) then z∗ = re−iϕ

because

e−iϕ = cos(−ϕ) + i sin(−ϕ) = cosϕ− i sinϕ. (2.0.16)

The sinϕ→ − sinϕ is what brings us from x+ iy to x− iy. Now

z∗z = zz∗ = (x+ iy)(x− iy) = x2 + y2 = |z|2. (2.0.17)

When we take the ratio of complex numbers, it is possible to ensure that the imaginary number
i appears only in the numerator, by multiplying the numerator and denominator by the complex
conjugate of the denominator. For x, y, a and b all real,

x+ iy

a+ ib
=

(a− ib)(x+ iy)

a2 + b2
=

(ax+ by) + i(ay − bx)
a2 + b2

. (2.0.18)

Problem 2.8. Is (z1z2)
∗ = z∗1z

∗
2 , i.e., is the complex conjugate of the product of 2 complex

numbers equal to the product of their complex conjugates? What about (z1/z2)
∗ = z∗1/z

∗
2? Is

|z1z2| = |z1||z2|? What about |z1/z2| = |z1|/|z2|? Also show that arg(z1 · z2) = arg(z1)+ arg(z2).
Strictly speaking, arg(z) is well defined only up to an additive multiple of 2π. Can you explain
why? Hint: polar coordinates are very useful in this problem.

Problem 2.9. Show that z is real if and only if z = z∗. Show that z is purely imaginary
if and only if z = −z∗. Show that z + z∗ = 2Re(z) and z − z∗ = 2iIm(z). Hint: use Cartesian
coordinates.

Problem 2.10. Prove that the roots of a polynomial with real coefficients

PN(z) ≡ c0 + c1z + c2z
2 + · · ·+ cNz

N , {ci ∈ R}, (2.0.19)

come in complex conjugate pairs; i.e., if z is a root then so is z∗.

Trigonometric, hyperbolic and exponential functions Complex numbers allow us to
connect trigonometric, hyperbolic and exponential (exp) functions. Start from

e±iϕ = cosϕ± i sinϕ. (2.0.20)

These two equations can be added and subtracted to yield

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i
, tan(z) =

sin(z)

cos(z)
. (2.0.21)

We have made the replacement ϕ → z. This change is cosmetic if 0 ≤ z < 2π, but we can in
fact now use eq. (2.0.21) to define the trigonometric functions in terms of the exp function for
any complex z.
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Trigonometric identities can be readily obtained from their exponential definitions. For
example, the addition formulas would now begin from

ei(θ1+θ2) = eiθ1eiθ2 . (2.0.22)

Applying Euler’s formula (eq. (2.0.9)) on both sides,

cos(θ1 + θ2) + i sin(θ1 + θ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) (2.0.23)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + sin θ2 cos θ1).

If we suppose θ1,2 are real angles, equating the real and imaginary parts of the left-hand-side
and the last line tell us

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2, (2.0.24)

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1. (2.0.25)

Problem 2.11. You are probably familiar with the hyperbolic functions, now defined as

cosh(z) =
ez + e−z

2
, sinh(z) =

ez − e−z

2
, tanh(z) =

sinh(z)

cosh(z)
, (2.0.26)

for any complex z. Show that

cosh(iz) = cos(z), sinh(iz) = i sin(z), cos(iz) = cosh(z), sin(iz) = i sinh(z). (2.0.27)

Problem 2.12. Calculate, for real θ and positive integer N :

cos(θ) + cos(2θ) + cos(3θ) + · · ·+ cos(Nθ) =? (2.0.28)

sin(θ) + sin(2θ) + sin(3θ) + · · ·+ sin(Nθ) =? (2.0.29)

Hint: consider the geometric series eiθ + e2iθ + · · ·+ eNiθ.

Problem 2.13. Starting from (eiθ)n, for arbitrary integer n, re-write cos(nθ) and sin(nθ)
as a sum involving products/powers of sin θ and cos θ. Hint: if the arbitrary n case is confusing
at first, start with n = 1, 2, 3 first.

Roots of unity In polar coordinates, circling the origin n times bring us back to the
same point,

z = reiθ+i2πn, n = 0,±1,±2,±3, . . . . (2.0.30)

This observation is useful for the following problem: what is mth root of 1, when m is a positive
integer? Of course, 1 is an answer, but so are

11/m = ei2πn/m, n = 0, 1, . . . ,m− 1. (2.0.31)

11



The terms repeat themselves for n ≥ m; the negative integers n do not give new solutions for m
integer. If we replace 1/m with a/b where a and b are integers that do not share any common
factors, then

1a/b = ei2πn(a/b) for n = 0, 1, . . . , b− 1, (2.0.32)

since when n = b we will get back 1. If we replaced (a/b) with say 1/π,

11/π = ei2πn/π = ei2n, (2.0.33)

then there will be infinite number of solutions, because 1/π cannot be expressed as a ratio of
integers – there is no way to get 2n = 2πn′, for n′ integer.

In general, when you are finding the mth root of a complex number z, you are actually
solving for w in the polynomial equation wm = z. The fundamental theorem of algebra tells us,
if m is a positive integer, you are guaranteed m solutions – although not all of them may be
distinct.

Square root of −1 What is
√
−1? Since −1 = ei(π+2πn) for any integer n,

(ei(π+2πn))1/2 = eiπ/2+iπn = ±i. n = 0, 1. (2.0.34)

Problem 2.14. Find all the solutions to
√
1− i.

Logarithm and powers As we have just seen, whenever we take the root of some
complex number z, we really have a multi-valued function. The inverse of the exponential is
another such function. For w = x+ iy, where x and y are real, we may consider

ew = exei(y+2πn), n = 0,±1,±2,±3, . . . . (2.0.35)

We define ln to be such that

ln ew = x+ i(y + 2πn). (2.0.36)

Another way of saying this is, for a general complex z,

ln(z) = ln |z|+ i(arg(z) + 2πn). (2.0.37)

One way to make sense of how to raise a complex number z = reiθ to the power of another
complex number w = x+ iy, namely zw, is through the ln:

zw = ew ln z = e(x+iy)(ln(r)+i(θ+2πn)) = ex ln r−y(θ+2πn)ei(y ln(r)+x(θ+2πn)). (2.0.38)

This is, of course, a multi-valued function. We will have more to say about such multi-valued
functions when discussing their calculus in §(6).

Problem 2.15. Change-of-Base If a > 0 and θ ∈ R, explain why |aiθ| = 1. What is the
change in θ swept out by a complete unit circle around the origin of the complex plane? Hint:
a = eln a.

12



Problem 2.16. Zeroes of trigonometric and hyperbolic functions Find the inverse
hyperbolic functions of eq. (2.0.26) in terms of ln. Does sin(z) = 0, cos(z) = 0 and tan(z) = 0
have any complex solutions? Hint: for the first question, write ez = w and e−z = 1/w. Then
solve for w. A similar strategy may be employed for the second question.

Problem 2.17. Let ξ⃗ and ξ⃗′ be vectors in a 2D Euclidean space, i.e., you may assume their
Cartesian components are

ξ⃗ = (x, y) = r(cosϕ, sinϕ), ξ⃗′ = (x′, y′) = r′(cosϕ′, sinϕ′). (2.0.39)

Use complex numbers, and assume that the following complex Taylor expansion of ln holds

ln(1− z) = −
∞∑
ℓ=1

zℓ

ℓ
, |z| < 1, (2.0.40)

to show that

ln |ξ⃗ − ξ⃗′| = ln r> −
∞∑
ℓ=1

1

ℓ

(
r<
r>

)ℓ
cos
(
ℓ(ϕ− ϕ′)

)
, (2.0.41)

where r> is the larger and r< is the smaller of the (r, r′), and |ξ⃗− ξ⃗′| is the distance between the

vectors ξ⃗ and ξ⃗′ – not the absolute value of some complex number. Here, ln |ξ⃗− ξ⃗′| is proportional
to the electric or gravitational potential generated by a point charge/mass in 2-dimensional flat
space. Hint: first let z = reiϕ and z′ = r′eiϕ

′
; then consider ln(z − z′) – how do you extract

ln |ξ⃗ − ξ⃗′| from it?
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3 Matrix Algebra

4In this section I will review some basic properties of matrices and matrix algebra, oftentimes
using index notation. We will assume all matrices have complex entries unless otherwise stated.
This is primarily intended to be warmup to the next section, where I will treat Linear Algebra
from a more abstract point of view.

3.1 Basics, Matrix Operations, and Special types of matrices

Index notation, Einstein summation, Basic Matrix Operations Consider two ma-
trices M and N . The ij component – the ith row and jth column of M and that of N can be
written as

M i
j and N i

j. (3.1.1)

As an example, if M is a 2× 2 matrix, we have

M =

[
M1

1 M1
2

M2
1 M2

2

]
. (3.1.2)

I prefer to write one index up and one down, because as we shall see in the abstract formulation
of linear algebra below, the row and column indices may transform ‘oppositely’. However, it is
common to see the notation Mij and M

ij, etc., too.
A vector v⃗ can be written as

vi = (v1, v2, . . . , vD−1, vD). (3.1.3)

Here, v5 does not mean the fifth power of some quantity v, but rather the 5th component of the
vector v.

The matrix multiplication M ·N can be written as

(M ·N)ij =
D∑
k=1

M i
kN

k
j ≡M i

kN
k
j. (3.1.4)

In words: the ij component of the product MN , for a fixed i and fixed j, means we are taking
the ith row of M and “dotting” it into the jth column of N . In the second equality we have
employed Einstein’s summation convention, which we will continue to do so in these notes:
repeated indices are summed over their relevant range – in this case, k ∈ {1, 2, . . . , D}. For
example, if

M =

[
a b
c d

]
, N =

[
1 2
3 4

]
, (3.1.5)

then

M ·N =

[
a+ 3b 2a+ 4b
c+ 3d 2c+ 4d

]
. (3.1.6)

4Much of the material here in this section were based on Chapter 1 of Cahill’s Physical Mathematics.
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Note: M i
kN

k
j works for multiplication of non-square matrices M and N too, as long as the

number of columns ofM is equal to the number of rows of N , so that the sum involving k makes
sense.

Addition of M and N ; and multiplication of M by a complex number λ goes respectively as

(M +N)ij =M i
j +N i

j (3.1.7)

and

(λM)ij = λM i
j. (3.1.8)

Associativity The associativity of matrix multiplication means (AB)C = A(BC) = ABC.
This can be seen using index notation

AikB
k
lC

l
j = (AB)ilC

l
j = Aik(BC)

k
j = (ABC)ij. (3.1.9)

Tr Tr(A) ≡ Aii denotes the trace of a square matrix A. The index notation makes it clear
the trace of AB is that of BA because

Tr [A ·B] = AlkB
k
l = Bk

lA
l
k = Tr [B · A] . (3.1.10)

This immediately implies the Tr is cyclic, in the sense that

Tr [X1 ·X2 · · ·XN ] = Tr [XN ·X1 ·X2 · · ·XN−1] = Tr [X2 ·X3 · · ·XN ·X1] . (3.1.11)

Problem 3.1. Prove the linearity of the Tr, namely for D × D matrices X and Y and
complex number λ,

Tr [X + Y ] = Tr [X] + Tr [Y ] , Tr [λX] = λTr [X] . (3.1.12)

Comment on whether it makes sense to define Tr(A) ≡ Aii, if A is not a square matrix.

Identity and the Kronecker delta The D ×D identity matrix I has 1 on each and
every component on its diagonal and 0 everywhere else. This is also the Kronecker delta.

Iij = δij = 1, i = j

= 0, i ̸= j (3.1.13)

The Kronecker delta is also the flat Euclidean metric in D spatial dimensions; in that context
we would write it with both lower indices δij and its inverse is δij.

The Kronecker delta is also useful for representing diagonal matrices. These are matrices that
have non-zero entries strictly on their diagonal, where row equals to column number. For example
Aij = aiδ

i
j = ajδ

i
j is the diagonal matrix with a1, a2, . . . , aD filling its diagonal components, from

the upper left to the lower right. Diagonal matrices are also often denoted, for instance, as

A = diag[a1, . . . , aD]. (3.1.14)

Suppose we multiply AB, where B is also diagonal (Bi
j = biδ

i
j = bjδ

i
j),

(AB)ij =
∑
l

aiδ
i
lbjδ

l
j. (3.1.15)
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If i ̸= j there will be no l that is simultaneously equal to i and j; therefore either one or both
the Kronecker deltas are zero and the entire sum is zero. If i = j then when (and only when)
l = i = j, the Kronecker deltas are both one, and

(AB)ij = aibj. (3.1.16)

This means we have shown, using index notation, that the product of diagonal matrices yields
another diagonal matrix.

(AB)ij = aibjδ
i
j (No sum over i, j). (3.1.17)

Transpose The transpose T of any matrix A is

(AT)ij = Aji. (3.1.18)

In words: the i row of AT is the ith column of A; the jth column of AT is the jth row of A. If
A is a (square) D ×D matrix, you reflect it along the diagonal to obtain AT.

Problem 3.2. Show using index notation that (A ·B)T = BTAT.

Adjoint The adjoint † of any matrix is given by

(A†)ij = (Aji)
∗ = (A∗)ji. (3.1.19)

In other words, A† = (AT)∗; to get A†, you start with A, take its transpose, then take its complex
conjugate. An example is,

A =

[
1 + i eiθ

x+ iy
√
10

]
, 0 ≤ θ < 2π, x, y ∈ R (3.1.20)

AT =

[
1 + i x+ iy

eiθ
√
10

]
, A† =

[
1− i x− iy
e−iθ

√
10

]
. (3.1.21)

Orthogonal, Unitary, Symmetric, and Hermitian A D ×D matrix A is

1. Orthogonal if ATA = AAT = I. The set of real orthogonal matrices implement rotations
in a D-dimensional real (vector) space.

2. Unitary if A†A = AA† = I. Thus, a real unitary matrix is orthogonal. Moreover, unitary
matrices, like their real orthogonal counterparts, implement “rotations” in aD dimensional
complex (vector) space.

3. Symmetric if AT = A; anti-symmetric if AT = −A.

4. Hermitian if A† = A; anti-hermitian if A† = −A.

Problem 3.3. Explain why, if A is an orthogonal matrix, it obeys the equation

AikA
j
lδij = δkl. (3.1.22)

Now explain why, if A is a unitary matrix, it obeys the equation

(Aik)
∗Ajlδij = δkl. (3.1.23)
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Problem 3.4. Prove that (AB)T = BTAT and (AB)† = B†A†. This means if A and B are
orthogonal, then AB is orthogonal; and if A and B are unitary AB is unitary. Can you explain
why?

Simple examples of a unitary, symmetric and Hermitian matrix are, respectively (from left to
right): [

eiθ 0
0 eiδ

]
,

[
eiθ X
X eiδ

]
,

[ √
109 1− i

1 + i θδ

]
, θ, δ ∈ R. (3.1.24)

3.2 Determinants, Linear (In)dependence, Inverses, Eigensystems

Levi-Civita symbol and the Determinant We will now define the determinant of a
D × D matrix A through the Levi-Civita symbol ϵi1i2...iD−1iD , where every index runs from 1
through D:

detA ≡ ϵi1i2...iD−1iDA
i1
1A

i2
2 . . . A

iD−1

D−1A
iD
D. (3.2.1)

This definition is equivalent to the usual co-factor expansion definition.
The D−dimensional Levi-Civita symbol is defined through the following properties.

� It is completely antisymmetric in its indices. This means swapping any of the indices
ia ↔ ib (for a ̸= b) will return

ϵi1i2...ia−1iaia+1...ib−1ibib+1...iD−1iD = −ϵi1i2...ia−1ibia+1...ib−1iaib+1...iD−1iD . (3.2.2)

� In matrix algebra and flat Euclidean space, ϵ123...D = ϵ123...D ≡ 1.5

These are sufficient to define every component of the Levi-Civita symbol. Because ϵ is fully anti-
symmetric, if any of its D indices are the same, say ia = ib, then the Levi-Civita symbol returns
zero. (Why?) Whenever i1 . . . iD are distinct indices, ϵi1i2...iD−1iD is really the sign of the per-
mutation (≡ (−)nunber of swaps of index pairs) that brings {1, 2, . . . , D− 1, D} to {i1, i2, . . . , iD−1, iD}.
Hence, ϵi1i2...iD−1iD is +1 when it takes zero/even number of swaps, and −1 when it takes odd.

For example, in the 2 dimensional case ϵ11 = ϵ22 = 0; whereas it takes one swap to go from
12 to 21. Therefore,

1 = ϵ12 = −ϵ21. (3.2.3)

In the 3 dimensional case,

1 = ϵ123 = −ϵ213 = −ϵ321 = −ϵ132 = ϵ231 = ϵ312. (3.2.4)

Properties of the determinant include

detAT = detA, det(A ·B) = detA · detB, detA−1 =
1

detA
, (3.2.5)

5In Lorentzian flat spacetimes, the Levi-Civita tensor with upper indices will need to be carefully distinguished
from its counterpart with lower indices.
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for all square matrices A and B. As a simple example, let us use eq. (3.2.1) to calculate the
determinant of

A =

[
a b
c d

]
. (3.2.6)

Remember the only non-zero components of ϵi1i2 are ϵ12 = 1 and ϵ21 = −1.

detA = ϵ12A
1
1A

2
2 + ϵ21A

2
1A

1
2 = A1

1A
2
2 − A2

1A
1
2

= ad− bc. (3.2.7)

Problem 3.5. Inverse of 2 × 2 matrix By viewing ϵ as a 2 × 2 matrix, prove that,
whenever the inverse of a matrix M exist, it can be written as

M−1 = −ϵ ·M
T · ϵ

detM
=
ϵ† ·MT · ϵ
detM

=
ϵ ·MT · ϵ†

detM
. (3.2.8)

Hint: Can you explain why eq. (3.2.1) implies

ϵABM
A
IM

B
J = ϵIJ detM? (3.2.9)

Then contract both sides with M−1 and use ϵ2 = −I. Or, simply prove it by brute force.

Problem 3.6. Explain why eq. (3.2.1) implies

ϵi1i2...iD−1iDA
i1
j1
Ai2j2 . . . A

iD−1

jD−1
AiDjD = ϵj1j2...jD−1jD detA. (3.2.10)

Hint: What happens when you swap Aimm and Ainn in eq. (3.2.1)?

Problem 3.7. Determinant of 2-Block Off Diagonal Matrix Consider the following
2N × 2N matrix,

M =

[
0 AN×N

BN×N 0

]
; (3.2.11)

where A and B are N ×N blocks. Prove that

detM = (−)N2

(detA)(detB). (3.2.12)

Hint: You should find the leftmost N terms of the right hand side of eq. (3.2.1) to involve detB
and the rightmost N terms detA.

Linear (in)dependence Given a set of D vectors {v1, . . . , vD}, we say one of them is
linearly dependent (say vi) if we can express it in as a sum of multiples of the rest of the vectors,

vi =
D−1∑
j ̸=i

χjvj for some χj ∈ C. (3.2.13)

We say the D vectors are linearly independent if none of the vectors are linearly dependent on
the rest.

18



Det as test of linear independence If we view the columns or rows of a D × D matrix
A as vectors and if these D vectors are linearly dependent, then the determinant of A is zero.
This is because of the antisymmetric nature of the Levi-Civita symbol. Moreover, suppose
detA ̸= 0. Cramer’s rule (cf. eq. (3.2.26) below) tells us the inverse A−1 exists. In fact, for
finite dimensional matrix A, its inverse A−1 is unique. That means the only solution to the
D-component row (or column) vector w, obeying w ·A = 0 (or, A ·w = 0), is w = 0. And since
w · A (or A · w) describes the linear combination of the rows (or, columns) of A; this indicates
they must be linearly independent whenever detA ̸= 0.

For a square matrix A, detA = 0 iff (≡ if and only if) its columns and rows
are linearly dependent. Equivalently, detA ̸= 0 iff its columns and rows are linearly
independent.

Problem 3.8. If the columns of a square matrix A are linearly dependent, use eq. (3.2.1)
to prove that detA = 0. Hint: use the antisymmetric nature of the Levi-Civita symbol.

Problem 3.9. Show that, for a D ×D matrix A and some complex number λ,

det(λA) = λD detA. (3.2.14)

Hint: this follows almost directly from eq. (3.2.1).
Relation to cofactor expansion The co-factor expansion definition of the determinant

is

detA =
D∑
i=1

AikC
i
k, (3.2.15)

where k is an arbitrary integer from 1 through D. The Ci
k is (−)i+k times the determinant of

the (D − 1) × (D − 1) matrix formed from removing the ith row and kth column of A. (This
definition sums over the row numbers; it is actually equally valid to define it as a sum over
column numbers.)

As a 3× 3 example, we have

det

 a b c
d e f
g h l

 = b(−)1+2 det

[
d f
g l

]
+ e(−)2+2 det

[
a c
g l

]
+ h(−)3+2 det

[
a c
d f

]
.

(3.2.16)

Pauli Matrices The 2×2 identity together with the Pauli matrices are Hermitian matrices.

σ0 ≡
[
1 0
0 1

]
, σ1 ≡

[
0 1
1 0

]
, σ2 ≡

[
0 −i
i 0

]
, σ3 ≡

[
1 0
0 −1

]
(3.2.17)

Moreover, any complex 2× 2 matrix may be expressed as a linear combination of these {σµ|µ =
0, 1, 2, 3}. This important fact has deep-ploughing applications, including the study of symme-
tries in 4D flat spacetime and (quantum) field theory.
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Problem 3.10. Let pµ ≡ (p0, p1, p2, p3) be a 4-component collection of complex numbers.
Verify the following determinant, relevant for the study of Lorentz symmetry in 4-dimensional
flat spacetime,

det pµσ
µ =

[
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

]
=

∑
0≤µ,ν≤3

ηµνpµpν ≡ p2, (3.2.18)

where pµσ
µ ≡

∑
0≤µ≤3 pµσ

µ and

ηµν ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.2.19)

(This is the metric in 4 dimensional flat “Minkowski” spacetime.) Verify, for i, j, k ∈ {1, 2, 3}
and ϵ denoting the 2D Levi-Civita symbol,

detσ0 = 1, detσi = −1, Tr
[
σ0
]
= 2, Tr

[
σi
]
= 0 (3.2.20)

σiσj = δijI+ i
∑

1≤k≤3

ϵijkσk, ϵσiϵ = (σi)∗ = ϵ(−σi)ϵ†. (3.2.21)

Also use the antisymmetric nature of the Levi-Civita symbol to aruge that

θiθjϵ
ijk = 0. (3.2.22)

Use these facts to derive the result:

U(θ⃗) ≡ exp

[
− i
2

3∑
j=1

θjσ
j

]
≡ e−(i/2)θ⃗·σ⃗

= cos

(
1

2
|θ⃗|
)
I2×2 − i

θ⃗ · σ⃗
|θ⃗|

sin

(
1

2
|θ⃗|
)
, |θ⃗| =

√
θiθi ≡

√
θ⃗ · θ⃗, (3.2.23)

which is valid for complex {θi}. (Hint: Taylor expand expX =
∑∞

ℓ=0X
ℓ/ℓ!, followed by applying

the first relation in eq. (3.2.21).)
Show that any 2 × 2 complex matrix A can be built from pµσ

µ by choosing the pµs appro-
priately. Then compute (1/2)Tr [pµσ

µσν ], for ν = 0, 1, 2, 3, and comment on how the trace can
be used, given A, to solve for the pµ in the equation

pµσ
µ = A. (3.2.24)

Inverse The inverse of the D ×D matrix A is defined to be

A−1A = AA−1 = I. (3.2.25)

The inverse A−1 of a finite dimensional matrix A is unique; moreover, the left A−1A = I and
right inverses AA−1 = I are the same object. The inverse exists if and only if (≡ iff) detA ̸= 0.
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Problem 3.11. Cramer’s rule Can you show the equivalence of equations (3.2.1) and
(3.2.15)? Can you also show that

δkl detA =
D∑
i=1

AikC
i
l? (3.2.26)

That is, show that when k ̸= l, the sum on the right hand side is zero. Explain why eq. (3.2.26)
informs us that

(A−1)li = (detA)−1

D∑
i=1

Ci
l. (3.2.27)

Hint: start from the left-hand-side, namely

detA = ϵj1...jDA
j1
1 . . . A

jD
D (3.2.28)

= Aik

(
ϵj1...jk−1ijk+1...jDA

j1
1 . . . A

jk−1

k−1A
jk+1

k+1 . . . A
jD
D

)
,

where k is an arbitrary integer in the set {1, 2, 3, . . . , D − 1, D}. Examine the term in the
parenthesis. First shift the index i, which is located at the kth slot from the left, to the ith
slot. Then argue why the result is (−)i+k times the determinant of A with the ith row and kth
column removed. Finally, remember A−1 · A = I.

Problem 3.12. Why are the left and right inverses of (an invertible) matrix A the same?
Hint: Consider LA = I and AR = I; for the first, multiply R on both sides from the right.

Problem 3.13. Prove that (A−1)T = (AT)−1 and (A−1)† = (A†)−1.

Eigenvectors and Eigenvalues If A is a D × D matrix, v is its (D-component)
eigenvector with eigenvalue λ if it obeys

Aijv
j = λvi. (3.2.29)

This means

(Aij − λδij)vj = 0 (3.2.30)

has non-trivial solutions iff

PD(λ) ≡ det (A− λI) = 0. (3.2.31)

Equation (3.2.31) is known as the characteristic equation. For a D × D matrix, it gives us a
Dth degree polynomial PD(λ) for λ, whose roots are the eigenvalues of the matrix λ – the set
of all eigenvalues of a matrix is called its spectrum. For each solution for λ, we then proceed to
solve for the vi in eq. (3.2.30). That there is always at least one solution – there could be more
– for vi is because, since its determinant is zero, the columns of A − λI are necessarily linearly
dependent. As already discussed above, this amounts to the statement that there is some sum of
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multiples of these columns (≡ “linear combination”) that yields zero – in fact, the components
of vi are precisely the coefficients in this sum. If {wi} are these columns of A− λI,

A− λI ≡ [w1w2 . . . wD] ⇒ (A− λI)v =
∑
j

wjv
j = 0. (3.2.32)

(Note that, if
∑

j wjv
j = 0 then

∑
j wj(Kv

j) = 0 too, for any complex numberK; in other words,
eigenvectors are only defined up to an overall multiplicative constant.) Every D×D matrix has
D eigenvalues from solving the Dth order polynomial equation (3.2.31); from that, you can then
obtain D corresponding eigenvectors. Note, however, the eigenvalues can be repeated; when this
occurs, it is known as a degenerate spectrum. Moreover, not all the eigenvectors are guaranteed
to be linearly independent; i.e., some eigenvectors can turn out to be sums of multiples of other
eigenvectors.

The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic
equation. In detail, if we express eq. (3.2.31) as

∑D
i=0 qiλ

i = 0 (for appropriate complex constants
{qi}), then replace λi → Ai (namely, the ith power of λ with the ith power of A), we would find

PD(A) = 0. (3.2.33)

Any D×D matrix A admits a Schur decomposition. Specifically, there is some unitary matrix
U such that A can be brought to an upper triangular form, with its eigenvalues on the diagonal:

U †AU = diag(λ1, . . . , λD) +N, (3.2.34)

where N is strictly upper triangular, with N i
j = 0 for j ≤ i. The Schur decomposition can be

proved via mathematical induction on the size of the matrix.
Diagonalization A special case of the Schur decomposition occurs when all the off-

diagonal elements are zero. A D × D matrix A can be diagonalized if there is some unitary
matrix U such that

U †AU = diag(λ1, . . . , λD), (3.2.35)

where the {λi} are the eigenvalues of A. Each column of U is filled with a distinct unit length
eigenvector of A. (Unit length means v†v = (vi)∗vjδij = 1.) In index notation,

AijU
j
k = λkU

i
k = U i

lδ
l
kλk, (No sum over k). (3.2.36)

In matrix notation,

AU = Udiag[λ1, λ2, . . . , λD−1, λD]. (3.2.37)

Here, U j
k for fixed k, is the kth eigenvector, and λk is the corresponding eigenvalue. By multi-

plying both sides with U †, we have

U †AU = D, Dj
l ≡ λlδ

j
l (No sum over l). (3.2.38)

Equivalently,

A = UDU †. (3.2.39)
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Some jargon: the null space of a matrix M is the space spanned by all vectors {vi} obeying
M · vi = 0. When we solve for the eigenvector of A by solving (A− λI) · v, we are really solving
for the null space of the matrix M ≡ A − λI, because for a fixed eigenvalue λ, there could be
more than one solution – that’s what we mean by degeneracy.

What types of matrices can be diagonalized? Real symmetric matrices can be
always diagonalized via an orthogonal transformation. Complex Hermitian matrices can always
be diagonalized via a unitary one. These statements can be proved readily using their Schur
decomposition. For, let A be Hermitian and U be a unitary matrix such that

UAU † = diag(λ1, . . . , λD) +N, (3.2.40)

where N is strictly upper triangular. Now, if A is Hermitian, so is UAU †, because (UAU †)† =
(U †)†A†U † = UAU †. Therefore,

(UAU †)† = UAU † ⇒ diag(λ∗1, . . . , λ
∗
D) +N † = diag(λ1, . . . , λD) +N. (3.2.41)

Because the transpose of a strictly upper triangular matrix returns a strictly lower triangular
matrix, we have a strictly lower triangular matrix N † plus a diagonal matrix (built out of the
complex conjugate of the eigenvalues of A) equal to a diagonal one (built out of the eigenvalues
of A) plus a strictly upper triangular N . That means N = 0 and λl = λ∗l . That is, any Hermitian
A is diagonalizable and all its eigenvalues are real.

Unitary matrices can also always be diagonalized. In fact, all its eigenvalues {λi} lie on the
unit circle on the complex plane, i.e., |λi| = 1. Suppose now A is unitary and U is another
unitary matrix such that the Schur decomposition of A reads

UAU † =M, (3.2.42)

where M is an upper triangular matrix with the eigenvalues of A on its diagonal. Now, if A is
unitary, so is UAU †, because(

UAU †)† (UAU †) = UA†U †UAU † = UA†AU † = UU † = I. (3.2.43)

That means

M †M = I ⇒ (M †M)kl = (M †)ksM
s
l =
∑
s

M s
kM

s
l = δijM i

kM
j
l = δkl, (3.2.44)

where we have recalled eq. (3.1.23) in the last equality. If wi denotes the ith column of M , the
unitary nature of M implies all its columns are orthogonal to each other and each column has
length one. Since M is upper triangular, we see that the only non-zero component of the first
column is its first row, i.e., wi1 = M i

1 = λ1δ
i
1. Unit length means w†

1w1 = 1 ⇒ |λ1|2 = 1. That
w1 is orthogonal to every other column wi>1 means the latter have their first rows equal to zero;
M1

1M
1
l = λ1M

1
l = 0⇒M1

l = 0 for l ̸= 1 – remember M1
1 = λ1 itself cannot be zero because it

lies on the unit circle on the complex plane. Now, since its first component is necessarily zero,
the only non-zero component of the second column is its second row, i.e., wi2 =M i

2 = λ2δ
i
2. Unit

length again means |λ2|2 = 1. And, by demanding that w2 be orthogonal to every other column

means their second components are zero: M2
2M

2
l = λ2M

2
l = 0 ⇒ M2

l = 0 for l > 2 – where,
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again, M2
2 = λ2 cannot be zero because it lies on the complex plane unit circle. By induction on

the column number, we see that the only non-zero component of the ith column is the ith row.
That is, any unitary A is diagonalizable and all its eigenvalues lie on the circle: |λ1≤i≤D| = 1.

More generally, a complex square matrix A is diagonalizable if and only if it is normal, which
in turn is defined as a matrix that commutes with its adjoint, namely

[A,A†] ≡ A · A† − A† · A = 0. (3.2.45)

We prove this in §(4.6). Note that, if A is Hermitian, it must be normal:

[A,A†] = AA† − A†A = A2 − A2 = 0. (3.2.46)

Likewise, unitary matrices are also normal; if A†A = I = AA†,

[A,A†] = AA† − A†A = I− I = 0. (3.2.47)

Diagonalization example As an example, let’s diagonalize σ2 from eq. (3.2.17).

P2(λ) = det
[
σ2 − λI2×2

]
= det

[
−λ −i
i −λ

]
= λ2 − 1 = 0 (3.2.48)

(We can even check Caley-Hamilton here: P2(σ
2) = (σ2)2− I = I− I = 0; see eq. (3.2.21).) The

solutions are λ = ±1 and[
∓1 −i
i ∓1

] [
v1

v2

]
=

[
0
0

]
⇒ v1± = ∓iv2±. (3.2.49)

The subscripts on v refer to their eigenvalues, namely

σ2v± = ±v±. (3.2.50)

By choosing v2 = 1/
√
2, we can check (vi±)

∗vj±δij = 1 and therefore the normalized eigenvectors
are

v± =
1√
2

[
∓i
1

]
. (3.2.51)

Furthermore you can check directly that eq. (3.2.50) is satisfied. We therefore have(
1√
2

[
i 1
−i 1

])
︸ ︷︷ ︸

≡U†

σ2

(
1√
2

[
−i i
1 1

])
︸ ︷︷ ︸

≡U

=

[
1 0
0 −1

]
. (3.2.52)

An example of a matrix that cannot be diagonalized is

A ≡
[
0 0
1 0

]
. (3.2.53)

The characteristic equation is λ2 = 0, so both eigenvalues are zero. Therefore A− λI = A, and[
0 0
1 0

] [
v1

v2

]
=

[
0
0

]
⇒ v1 = 0, v2 arbitrary. (3.2.54)

There is a repeated eigenvalue of 0, but there is only one linearly independent eigenvector (0, 1).
It is not possible to build a unitary 2 × 2 matrix U whose columns are distinct unit length
eigenvectors of σ2.
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Problem 3.14. Show how to go from eq. (3.2.36) to eq. (3.2.38) using index notation.

Problem 3.15. Use the Schur decomposition to explain why, for any matrix A, Tr [A] is
equal to the sum of its eigenvalues and detA is equal to their product:

Tr [A] =
D∑
l=1

λl, detA =
D∏
l=1

λl. (3.2.55)

Hint: For detA, the key question is how to take the determinant of an upper triangular matrix.

Problem 3.16. For a strictly upper triangular matrix N , prove that N multiplied to itself
any number of times still returns a strictly upper triangular matrix.

Problem 3.17. Can a strictly upper triangular matrix be diagonalized? (Explain.) Hint: What
is the eigensystem of such a matrix?

Problem 3.18. Suppose A = UXU †, where U is a unitary matrix. If f(z) is a function of z
that can be Taylor expanded about some point z0, explain why f(A) = Uf(X)U †. Hint: Can you
explain why (UBU †)ℓ = UBℓU †, for B some arbitrary matrix, U unitary, and ℓ = 1, 2, 3, . . . ?

Problem 3.19. Can you provide a simple explanation to why the eigenvalues {λl} of a
unitary matrix are always of unit absolute magnitude; i.e. why are the |λl| = 1?

Problem 3.20. Simplified example of neutrino oscillations. We begin with the ob-
servation that the solution to the first order equation

i∂tψ(t) = Eψ(t), (3.2.56)

for E some real constant, is

ψ(t) = e−iEtψ0. (3.2.57)

The ψ0 is some arbitrary (possibly complex) constant, corresponding to the initial condition
ψ(t = 0). Now solve the matrix differential equation

i∂tN(t) = HN(t), N(t) ≡
[
ν1(t)
ν2(t)

]
, (3.2.58)

with the initial condition – describing the production of ν1-type of neutrino, say –[
ν1(t = 0)
ν2(t = 0)

]
=

[
1
0

]
, (3.2.59)

where the Hamiltonian H is

H ≡
[
p 0
0 p

]
+

1

4p
M, (3.2.60)

M ≡
[
m2

1 +m2
2 + (m2

1 −m2
2) cos(2θ) (m2

1 −m2
2) sin(2θ)

(m2
1 −m2

2) sin(2θ) m2
1 +m2

2 + (m2
2 −m2

1) cos(2θ)

]
. (3.2.61)

25



The p is the magnitude of the momentum, m1,2 are masses, and θ is the “mixing angle”. Then
calculate

P1→1 ≡
∣∣∣∣N(t)†

[
1
0

]∣∣∣∣2 and P1→2 ≡
∣∣∣∣N(t)†

[
0
1

]∣∣∣∣2 . (3.2.62)

Express P1→1 and P1→2 in terms of ∆m2 ≡ m2
1−m2

2. (In quantum mechanics, they respectively
correspond to the probability of observing the neutrinos ν1 and ν2 at time t > 0, given ν1 was
produced at t = 0.) Hint: Start by diagonalizing M = UTAU where

U ≡
[

cos θ sin θ
− sin θ cos θ

]
. (3.2.63)

The UN(t) is known as the “mass-eigenstate” basis. Can you comment on why? Note that, in
the highly relativistic limit, the energy E of a particle of mass m is

E =
√
p2 +m2 → p+

m2

2p
+O(1/p2). (3.2.64)

Note: In this problem, we have implicitly set ℏ = c = 1, where ℏ is the reduced Planck’s constant
and c is the speed of light in vacuum.

Problem 3.21. Quadrupole Moments Show that, for N ≥ 1 positive masses {mℓ > 0},
real position vectors {x⃗ℓ}, and the x⃗2 denoting the dot product x⃗ · x⃗, the second moments

Aij =
N∑
ℓ=1

mℓx
i
ℓx
j
ℓ and Bij =

N∑
ℓ=1

mℓ

(
δijx⃗2ℓ − xiℓx

j
ℓ

)
(3.2.65)

have strictly non-negative eigenvalues. Hint: Both Aij and Bij are real and symmetric. For all
eigenvectors {v⃗}, consider viAijvj or viBijvj.

3.3 ⋆2D Real Orthogonal Matrices

In this subsection we will illustrate what a real orthogonal matrix is by studying the 2D case
in some detail. Let A be such a 2 × 2 real orthogonal matrix. We will begin by writing its
components as follows

A ≡
[
v1 v2

w1 w2

]
. (3.3.1)

(As we will see, it is useful to think of v1,2 and w1,2 as components of 2D vectors.) That A is
orthogonal means AAT = I.[

v1 v2

w1 w2

]
·
[
v1 w1

v2 w2

]
=

[
v⃗ · v⃗ v⃗ · w⃗
w⃗ · v⃗ w⃗ · w⃗

]
=

[
1 0
0 1

]
. (3.3.2)

This translates to: w⃗2 ≡ w⃗ · w⃗ = 1, v⃗2 ≡ v⃗ · v⃗ = 1 (length of both the 2D vectors are one);
and w⃗ · v⃗ = 0 (the two vectors are perpendicular). In 2D any vector can be expressed in polar
coordinates; for example, the Cartesian components of v⃗ are

vi = r(cosϕ, sinϕ), r ≥ 0, ϕ ∈ [0, 2π). (3.3.3)
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But v⃗2 = 1 means r = 1. Similarly,

wi = (cosϕ′, sinϕ′), ϕ′ ∈ [0, 2π). (3.3.4)

Because v⃗ and w⃗ are perpendicular,

v⃗ · w⃗ = cosϕ · cosϕ′ + sinϕ · sinϕ′ = cos(ϕ− ϕ′) = 0. (3.3.5)

This means ϕ′ = ϕ± π/2. (Why?) Furthermore

wi = (cos(ϕ± π/2), sin(ϕ± π/2)) = (∓ sin(ϕ),± cos(ϕ)). (3.3.6)

What we have figured out is that, any real orthogonal matrix can be parametrized by an angle
0 ≤ ϕ < 2π; and for each ϕ there are two distinct solutions.

R1(ϕ) =

[
cosϕ sinϕ
− sinϕ cosϕ

]
, R2(ϕ) =

[
cosϕ sinϕ
sinϕ − cosϕ

]
. (3.3.7)

By a direct calculation you can check that R1(ϕ > 0) rotates an arbitrary 2D vector clockwise
by ϕ. Whereas, R2(ϕ > 0) rotates the vector, followed by flipping the sign of its y-component;
this is because

R2(ϕ) =

[
1 0
0 −1

]
·R1(ϕ). (3.3.8)

In other words, the R2(ϕ = 0) in eq. (3.3.7) corresponds to a “parity flip” where the vector is
reflected about the x-axis.

Problem 3.22. What about the matrix that reflects 2D vectors about the y-axis? What
value of θ in R2(θ) would it correspond to?

Find the determinants of R1(ϕ) and R2(ϕ). You should be able to use that to argue, there
is no θ0 such that R1(θ0) = R2(θ0). Also verify that

R1(ϕ)R1(ϕ
′) = R1(ϕ+ ϕ′). (3.3.9)

This makes geometric sense: rotating a vector clockwise by ϕ then by ϕ′ should be the same as
rotation by ϕ+ϕ′. Mathematically speaking, this composition law in eq. (3.3.9) tells us rotations
form the SO2 group. The set of D × D real orthogonal matrices obeying RTR = I, including
both rotations and reflections, forms the group OD. The group involving only rotations is known
as SOD; where the ‘S’ stands for “special” (≡ determinant equals one).

Problem 3.23. 2 × 2 Unitary Matrices. Can you construct the most general 2 × 2
unitary matrix? First argue that the most general complex 2D vector v⃗ that satisfies v⃗†v⃗ = 1 is

vi = eiϕ1(cos θ, eiϕ2 sin θ), ϕ1,2, θ ∈ [0, 2π). (3.3.10)

Then consider v⃗†w⃗ = 0, where

wi = eiϕ
′
1(cos θ′, eiϕ

′
2 sin θ′), ϕ′

1,2, θ
′ ∈ [0, 2π). (3.3.11)
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You should arrive at

sin(θ) sin(θ′)ei(ϕ
′
2−ϕ2) + cos(θ) cos(θ′) = 0. (3.3.12)

By taking the real and imaginary parts of this equation, argue that

ϕ′
2 = ϕ2, θ = θ′ ± π

2
. (3.3.13)

or

ϕ′
2 = ϕ2 + π, θ = −θ′ ± π

2
. (3.3.14)

From these, deduce that the most general 2 × 2 unitary matrix U can be built from the most
general real orthogonal one O(θ) via

U =

[
eiϕ1 0
0 eiϕ2

]
·O(θ) ·

[
1 0
0 eiϕ3

]
. (3.3.15)

As a simple check: note that v⃗†v⃗ = w⃗†w⃗ = 1 together with v⃗†w⃗ = 0 provides 4 constraints
for 8 parameters – 4 complex entries of a 2 × 2 matrix – and therefore we should have 4 free
parameters left.

Bonus problem: By imposing detU = 1, can you connect eq. (3.3.15) to eq. (3.2.23)?

3.4 ⋆2D Unitary Matrices

In this section we will construct the most general 2× 2 unitary matrix Û , which satisfy

Û †Û = I2×2 = Û Û †. (3.4.1)

If we parametrize the matrix as

Û =
[
u⃗ v⃗

]
, (3.4.2)

where u⃗ and v⃗ are to be viewed as 2−component complex vectors, then

Û †Û =

[
u⃗†u⃗ u⃗†v⃗
v⃗†u⃗ v⃗†u⃗

]
=

[
1 0
0 1

]
. (3.4.3)

Notice, if Û is unitary, so is eiγÛ , for real γ; i.e., there is always an overall phase freedom. We
first note: for a unit norm vector a⃗ obeying a⃗†a⃗ = |a1|2 + |a2|2 = 1, its components may be
parametrized as a⃗ = (eiα1 cos θ, eiα2 sin θ) for real angles α1,2 and θ. The u⃗ and v⃗ are therefore
expressible

u⃗ =
(
eiα1 cos(θ), eiα2 sin(θ)

)
, (3.4.4)

v⃗ =
(
eiα

′
1 cos(θ′), eiα

′
2 sin(θ′)

)
; (3.4.5)
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for real angles α1,2, α
′
1,2 and θ, θ′. We may use the overall phase freedom of Û to set α1 to 0.

The orthogonality relation between u⃗ and v⃗ then reads

u⃗†v⃗ = 0 = v⃗†u⃗ (3.4.6)

0 = e−iα
′
1 cos(θ) cos(θ′) + ei(α2−α′

2) sin(θ) sin(θ′) (3.4.7)

0 = cos(θ) cos(θ′) + eiϕ sin(θ) sin(θ′), ϕ ≡ (α2 − α′
2) + α′

1. (3.4.8)

We may decompose this relation into the real part

0 = cos(θ) cos(θ′) + cos(ϕ) sin(θ) sin(θ′) (3.4.9)

as well as the imaginary part

0 = sin(ϕ) sin(θ) sin(θ′). (3.4.10)

We are trying to determine u⃗ in terms of the parameters of v⃗ (or vice versa) by making them
orthogonal, without specializing to specific forms of v⃗. So we do not want to set sin θ or sin θ′

to zero. But that means

(α2 − α′
2) + α′

1 = nπ, n = 0,±1,±2, . . . . (3.4.11)

In turn, we have for odd n,

0 = cos(θ) cos(θ′)− sin(θ) sin(θ′) = cos(θ + θ′); (3.4.12)

while for even n,

0 = cos(θ) cos(θ′) + sin(θ) sin(θ′) = cos(θ − θ′). (3.4.13)

Hence, for odd n = ±1,±3,±5, . . . ,

θ′ = −θ + m

2
π, m = ±1,±3,±5,±7, . . . ; (3.4.14)

and for even n = 0,±2,±4, . . . ,

θ′ = θ +
m

2
π. (3.4.15)

At this point, our 2× 2 unitary matrix takes one of the following four forms:

Û = eiγ
[

cos(θ) ∓eiα′
1 sin(θ)

ei(α
′
2−α′

1) sin(θ) ±eiα′
2 cos(θ)

]
(3.4.16)

or

Û = eiγ
[

cos(θ) ±eiα′
1 sin(θ)

ei(α
′
2−α′

1) sin(θ) ±eiα′
2 cos(θ)

]
. (3.4.17)
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Since α′
1,2 are arbitrary, we may shift them by π to absorb/introduce an overall minus sign. That

means we have

Û = eiγ
[

cos(θ) −eiα′
1 sin(θ)

ei(α
′
2−α′

1) sin(θ) eiα
′
2 cos(θ)

]
, γ, α′

1,2, θ ∈ R. (3.4.18)

YZ: The answer with + in the (1, 2) component is wrong. Why? Multiplying this by
an appropriate phase factor, we obtain the general SU2 matrix:

Û = eiγ
[
e−iβ cos(θ) −e−iα sin(θ)
eiα sin(θ) eiβ cos(θ)

]
, γ, α′

1,2, θ ∈ R. (3.4.19)

Problem 3.24. Special Unitary 2×2 Matrices: SU2 Explain why the most general SU2

matrix, with the ‘S’ ≡ ‘special’ referring to an additional unit determinant det Û = 1 constraint,
is given by eq. (3.4.19) with γ = 0:

Û =

[
e−iβ cos(θ) −e−iα sin(θ)
eiα sin(θ) eiβ cos(θ)

]
, γ, α′

1,2, θ ∈ R

= pµσ
µ; (3.4.20)

where

pµ = (cos(β) cos(θ), i sin(α) sin(θ),−i cos(α) sin(θ),−i sin(β) cos(θ)) . (3.4.21)

The {σµ} are the unit and the Pauli matrices in eq. (3.2.17). Explain using eq. (3.2.18) why

ηµνpµpν = 1. (3.4.22)

Problem 3.25. Relation Between SU2 and SO2 Matrices Show that the SU2 matrix
Û related to its SO2 cousin Ô via

Û = eiγ
[
e−iβ 0
0 eiα

]
· Ô ·

[
1 0
0 e−i(α−β)

]
. (3.4.23)
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4 Linear Algebra

4.1 Definition

Loosely speaking, the notion of a vector space – as the name suggests – amounts to abstracting
the algebraic properties – addition of vectors, multiplication of a vector by a number, etc. –
obeyed by the familiar D ∈ {1, 2, 3, . . . } dimensional Euclidean space RD. We will discuss the
linear algebra of vector spaces using Paul Dirac’s bra-ket notation. This will not only help you
understand the logical foundations of linear algebra and the matrix algebra you encountered
earlier, it will also prepare you for the study of quantum theory, which is built entirely on the
theory of both finite and infinite dimensional vector spaces.6

We will consider a vector space over complex numbers. A member of the vector space will
be denoted as |α⟩; we will use the words “ket”, “vector” and “state” interchangeably in what
follows. We will allude to aspects of quantum theory, but point out everything we state here
holds in a more general context; i.e., quantum theory is not necessary but merely an application
– albeit a very important one for physics. For now α is just some arbitrary label, but later
on it will often correspond to the eigenvalue of some linear operator. We may also use α as
an enumeration label, where |α⟩ is the αth element in the collection of vectors. In quantum
mechanics, a physical system is postulated to be completely described by some |α⟩ in a vector
space, whose time evolution is governed by some Hamiltonian. (The latter is what Schrödinger’s
equation is about.)

Here is what defines a “vector space over complex numbers”. It is a collection of states
{|α⟩ , |β⟩ , |γ⟩ , . . . } endowed with the operations of addition and scalar multiplication subject to
the following rules.

1. Ax1: Addition Any two vectors can be added to yield another vector

|α⟩+ |β⟩ = |γ⟩ . (4.1.1)

Addition is commutative and associative:

|α⟩+ |β⟩ = |β⟩+ |α⟩ (4.1.2)

|α⟩+ (|β⟩+ |γ⟩) = (|α⟩+ |β⟩) + |γ⟩ . (4.1.3)

2. Ax2: Additive identity (zero vector) and existence of inverse There is a zero
vector |zero⟩ – which can be gotten by multiplying any vector by 0, i.e.,

0 |α⟩ = |zero⟩ (4.1.4)

– that acts as an additive identity.7 Namely, adding |zero⟩ to any vector returns the vector
itself:

|zero⟩+ |β⟩ = |β⟩ . (4.1.5)

6The material in this section of our notes was drawn heavily from the contents and problems provided in
Chapter 1 of Sakurai’s Modern Quantum Mechanics.

7In this section we will be careful and denote the zero vector as |zero⟩. For the rest of the notes, whenever
the context is clear, we will often use 0 to denote the zero vector.
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For any vector |α⟩ there exists an additive inverse; if + is the usual addition, then the
inverse of |α⟩ is just (−1) |α⟩.

|α⟩+ (− |α⟩) = |zero⟩ . (4.1.6)

3. Ax3: Multiplication by scalar Any ket can be multiplied by an arbitrary complex
number c to yield another vector

c |α⟩ = |γ⟩ . (4.1.7)

(In quantum theory, |α⟩ and c |α⟩ are postulated to describe the same system.) This
multiplication is distributive with respect to both vector and scalar addition; if a and b
are arbitrary complex numbers,

a(|α⟩+ |β⟩) = a |α⟩+ a |β⟩ (4.1.8)

(a+ b) |α⟩ = a |α⟩+ b |α⟩ . (4.1.9)

Note: If you define a “vector space over scalars,” where the scalars can be more general objects
than complex numbers, then in addition to the above axioms, we have to add: (I) Associativity of
scalar multiplication, where a(b |α⟩) = (ab) |α⟩ for any scalars a, b and vector |α⟩; (II) Existence
of a scalar identity 1, where 1 |α⟩ = |α⟩.

Examples The Euclidean space RD itself, the space of D-tuples of real numbers

|⃗a⟩ ≡ (a1, a2, . . . , aD), (4.1.10)

with + being the usual addition operation is, of course, the example of a vector space. We shall
check explicitly that RD does in fact satisfy all the above axioms. To begin, let

|v⃗⟩ = (v1, v2, . . . , vD),

|w⃗⟩ = (w1, w2, . . . , wD) and (4.1.11)

|x⃗⟩ = (x1, x2, . . . , xD) (4.1.12)

be vectors in RD.

1. Addition Any two vectors can be added to yield another vector

|v⃗⟩+ |w⃗⟩ = (v1 + w1, . . . , vD + wD) ≡ |v⃗ + w⃗⟩ . (4.1.13)

Addition is commutative and associative because we are adding/subtracting the vectors
component-by-component:

|v⃗⟩+ |w⃗⟩ = |v⃗ + w⃗⟩ = (v1 + w1, . . . , vD + wD)

= (w1 + v1, . . . , wD + vD)

= |w⃗⟩+ |v⃗⟩ = |w⃗ + v⃗⟩ , (4.1.14)

|v⃗⟩+ |w⃗⟩+ |x⃗⟩ = (v1 + w1 + x1, . . . , vD + wD + xD)

= (v1 + (w1 + x1), . . . , vD + (wD + xD))

= ((v1 + w1) + x1, . . . , (vD + wD) + xD)

= |v⃗⟩+ (|w⃗⟩+ |x⃗⟩) = (|v⃗⟩+ |w⃗⟩) + |x⃗⟩ = |v⃗ + w⃗ + x⃗⟩ . (4.1.15)
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2. Additive identity (zero vector) and existence of inverse There is a zero vector
|zero⟩ – which can be gotten by multiplying any vector by 0, i.e.,

0 |v⃗⟩ = 0(v1, . . . , vD) = (0, . . . , 0) = |zero⟩ (4.1.16)

– that acts as an additive identity. Namely, adding |zero⟩ to any vector returns the vector
itself:

|zero⟩+ |w⃗⟩ = (0, . . . , 0) + (w1, . . . , wD) = |w⃗⟩ . (4.1.17)

For any vector |x⃗⟩ there exists an additive inverse; in fact, the inverse of |x⃗⟩ is just
(−1) |x⃗⟩ = |−x⃗⟩.

|x⃗⟩+ (− |x⃗⟩) = (x1, . . . , xD)− (x1, . . . , xD) = |zero⟩ . (4.1.18)

3. Multiplication by scalar Any ket can be multiplied by an arbitrary real number c
to yield another vector

c |v⃗⟩ = c(v1, . . . , vD) = (cv1, . . . , cvD) ≡ |cv⃗⟩ . (4.1.19)

This multiplication is distributive with respect to both vector and scalar addition; if a and
b are arbitrary real numbers,

a(|v⃗⟩+ |w⃗⟩) = (av1 + aw1, av2 + aw2, . . . , avD + awD)

= |av⃗⟩+ |aw⃗⟩ = a |v⃗⟩+ a |w⃗⟩ , (4.1.20)

(a+ b) |x⃗⟩ = (ax1 + bx1, . . . , axD + bxD)

= |ax⃗⟩+ |bx⃗⟩ = a |x⃗⟩+ b |x⃗⟩ . (4.1.21)

The following are some further examples of vector spaces.

1. The space of polynomials with complex coefficients.

2. The space of square integrable functions on RD (where D is an arbitrary integer greater
or equal to 1); i.e., all functions f(x⃗) such that

∫
RD dDx⃗|f(x⃗)|2 <∞.

3. The space of all homogeneous solutions to a linear (ordinary or partial) differential equa-
tion.

4. The space of M ×N matrices of complex numbers, where M and N are arbitrary integers
greater or equal to 1.

Problem 4.1. Prove that the examples in (1), (3), and (4) are indeed vector spaces, by
running through the above axioms.
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Linear (in)dependence, Basis, Dimension Suppose we pick N vectors from a vector
space, and find that one of them (say, |N⟩) can be expressed as a linear combination (or,
superposition) of the rest,

|N⟩ =
N−1∑
i=1

ci |i⟩ , (4.1.22)

where the {χi} are complex numbers. Then we say that this set of N vectors are linearly
dependent. Equivalently, we may state that |1⟩ through |N⟩ are linearly dependent if a non-
trivial superposition of them can be found to yield the zero vector:

N∑
i=1

ci |i⟩ = |zero⟩ , ∃{χi}. (4.1.23)

That equations (4.1.22) and (4.1.23) are equivalent, is because – by assumption, cN ̸= 0 – we
can divide eq. (4.1.23) throughout by cN ; similarly, we may multiply eq. (4.1.22) by cN .

Suppose we have picked D vectors {|1⟩ , |2⟩ , |3⟩ , . . . , |D⟩} such that they are linearly indepen-
dent, i.e., no vector is a linear combination of any others, and suppose further that any arbitrary
vector |α⟩ from the vector space can now be expressed as a superposition of these vectors

|α⟩ =
D∑
i=1

ci |i⟩ , {χi ∈ C}. (4.1.24)

In other words, we now have a maximal number of linearly independent vectors – then, D is
called the dimension of the vector space. The {|i⟩ |i = 1, 2, . . . , D} is a complete set of basis
vectors; and such a set of (basis) vectors is said to span the vector space.8 It is worth reiterating,
this is a maximal set because – if it were not, that would mean there is some additional vector
|α⟩ that cannot be written as eq. (4.1.24).

Example For instance, for the D-tuple |⃗a⟩ ≡ (a1, . . . , aD) from the real vector space of
RD, we may choose

|1⟩ = (1, 0, 0, . . . ), |2⟩ = (0, 1, 0, 0, . . . ),

|3⟩ = (0, 0, 1, 0, 0, . . . ), . . . |D⟩ = (0, 0, . . . , 0, 0, 1). (4.1.25)

Then, any arbitrary |⃗a⟩ can be written as

|⃗a⟩ = (a1, . . . , aD) =
D∑
i=1

ai |i⟩ . (4.1.26)

The basis vectors are the {|i⟩} and the dimension is D. Additionally, if we define

|v⃗⟩ ≡ (1, 1, 0, . . . , 0) , (4.1.27)

|w⃗⟩ ≡ (1,−1, 0, . . . , 0) , (4.1.28)

|u⃗⟩ ≡ (1, 0, 0, . . . , 0) . (4.1.29)

8The span of vectors {|1⟩ , . . . , |D⟩} is the space gotten by considering all possible linear combinations

{
∑D

i=1 c
i |i⟩ |ci ∈ C}.
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We see that {|v⃗⟩ , |w⃗⟩} are linearly independent – they are not proportional to each other – but
{|v⃗⟩ , |w⃗⟩ , |u⃗⟩} are linearly dependent because

|u⃗⟩ = 1

2
|v⃗⟩+ 1

2
|w⃗⟩ . (4.1.30)

Problem 4.2. Is the space of polynomials of complex coefficients of degree less than or
equal to (n ≥ 1) a vector space? (Namely, this is the set of polynomials of the form Pn(x) =
c0 + c1x + · · · + cnx

n, where the {ci|i = 1, 2, . . . , n} are complex numbers.) If so, write down a
set of basis vectors. What is its dimension? Answer the same questions for the space of D ×D
matrices of complex numbers.

Vector space within a vector space Before moving on to inner products, let us note
that a subset of a vector space is itself a vector space – i.e., a subspace of the larger vector space
– if it is closed under addition and multiplication by complex numbers. Closure means, if |α⟩
and |β⟩ are members of the subset, then c1 |α⟩+ c2 |β⟩ are also members of the same subset for
any pair of complex numbers c1,2.

In principle, to understand why closure guarantees the subset is a subspace, we need to run
through all the axioms in Ax1 through Ax3 above. But a brief glance tells us, the axioms in Ax1
and Ax3 are automatically satisfied when closure is obeyed. Furthermore, closure means − |α⟩
(i.e., the inverse of |α⟩) must lie within the subset whenever |α⟩ does, since the former is −1 times
|α⟩. And that in turn teaches us, the zero vector gotten from superposing |α⟩+(−1) |α⟩ = |zero⟩
must also lie within the subset. Namely, the set of axioms in Ax2 are, too, satisfied.

Examples The space of vectors {|⃗a⟩ = (a1, a2)} in a 2D real space is a subspace of the
3D counterpart {|⃗a⟩ = (a1, a2, a3)}; the former can be thought of as the latter with the third
component held fixed, a3 = same constant for all vectors. It is easy to check, the 2D vectors are
closed under linear combination.

We have already noted that the set of M × M matrices form a vector space. Therefore,
the subset of Hermitian matrices over real numbers; or (anti)symmetric matrices over complex

numbers; must form subspaces. For, the superposition of Hermitian matrices {Ĥ1, Ĥ2, . . . } with
real coefficients yield another Hermitian matrix(

c1Ĥ1 + c2Ĥ2

)†
= c1Ĥ1 + c2Ĥ2, c1,2 ∈ R; (4.1.31)

whereas the superposition of (anti)symmetric ones with complex coefficients return another
(anti)symmetric matrix:(

c1Ĥ1 + c2Ĥ2

)T
= c1Ĥ1 + c2Ĥ2, c1,2 ∈ C, ĤT

1,2 = Ĥ1,2, (4.1.32)(
c1Ĥ1 + c2Ĥ2

)T
= −(c1Ĥ1 + c2Ĥ2), c1,2 ∈ C, ĤT

1,2 = −Ĥ1,2. (4.1.33)

4.2 Inner Products

In Euclidean D-space RD the ordinary dot product, between the real vectors |⃗a⟩ ≡ (a1, . . . , aD)

and |⃗b⟩ ≡ (b1, . . . , bD), is defined as

a⃗ · b⃗ ≡
D∑
i=1

aibi = δija
ibj. (4.2.1)
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The inner product of linear algebra is again an abstraction of this notion of the dot product,
where the analog of a⃗ · b⃗ will be denoted as ⟨⃗a|⃗b⟩. Like the dot product for Euclidean space,
the inner product will allow us to define a notion of the length of vectors and angles between
different vectors.

Dual/‘bra’ space Given a vector space, an inner product is defined by first introducing
a dual space (aka bra space) to this vector space. Specifically, given a vector |α⟩ we write its
dual as ⟨α|. We also introduce the notation

|α⟩† ≡ ⟨α| . (4.2.2)

Importantly, for some complex number c, the dual of c |α⟩ is

(c |α⟩)† ≡ c∗ ⟨α| . (4.2.3)

Moreover, for complex numbers a and b,

(a |α⟩+ b |β⟩)† ≡ a∗ ⟨α|+ b∗ ⟨β| . (4.2.4)

Since there is a one-to-one correspondence between the vector space and its dual, observe that
this dual space is itself a vector space.

Now, the primary purpose of these dual vectors is that they act on vectors of the original
vector space to return a complex number:

⟨α| β⟩ ∈ C. (4.2.5)

You will soon see a few examples below.
Definition. The inner product is now defined by the following properties. For an

arbitrary complex number c,

⟨α| (|β⟩+ |γ⟩) = ⟨α| β⟩+ ⟨α| γ⟩ (4.2.6)

⟨α| (c |β⟩) = c ⟨α| β⟩ (4.2.7)

⟨α| β⟩∗ = ⟨α| β⟩ = ⟨β|α⟩ (4.2.8)

⟨α|α⟩ ≥ 0 (4.2.9)

and

⟨α|α⟩ = 0 (4.2.10)

if and only if |α⟩ is the zero vector.
Some words on notation here. Especially in the math literature, the bra-ket notation is not

used. There, the inner product is often denoted by (α, β), where α and β are vectors. Then the
defining properties of the inner product would read instead

(α, bβ + cγ) = b(α, β) + c(α, γ), (for any constants b and c), (4.2.11)

(α, β)∗ = (α, β) = (β, α), (4.2.12)

(α, α) ≥ 0; (4.2.13)
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and

(α, α) = 0 (4.2.14)

if and only if α is the zero vector. In addition, notice from equations (4.2.11) and (4.2.12) that

(bβ + cγ, α) = b∗(β, α) + c∗(γ, α). (4.2.15)

Example: Dot Product We may readily check that the ordinary dot product does, of course,
satisfy all the axioms of the inner product. Firstly, let us denote

|⃗a⟩ = (a1, a2, . . . , aD), (4.2.16)∣∣∣⃗b〉 = (b1, b2, . . . , bD), (4.2.17)

|⃗c⟩ = (c1, c2, . . . , cD); (4.2.18)

where all the components ai, bi, . . . are now real. Next, define

⟨⃗a| b⃗
〉
= a⃗ · b⃗ = a⃗Tb⃗. (4.2.19)

Then we may start with eq. (4.2.6): ⟨⃗a| (|b⟩ + |c⟩) = ⟨⃗a| b⃗+ c⃗
〉
= a⃗ · b⃗ + a⃗ · c⃗ = ⟨⃗a| b⃗

〉
+ ⟨⃗a| c⃗⟩.

Second, ⟨⃗a| (c
∣∣∣⃗b〉) = ⟨⃗a| c⃗b〉 = c(⃗a · b⃗) = c ⟨⃗a| b⃗

〉
. Third, ⟨⃗a| b⃗

〉
= a⃗ · b⃗ = b⃗ · a⃗ = (⃗b · a⃗)∗ =

〈⃗
b
∣∣∣ a⃗〉.

Fourth, ⟨⃗a| a⃗⟩ = a⃗ · a⃗ =
∑

i(a
i)2 is a sum of squares and therefore non-negative. Finally, because

⟨⃗a| a⃗⟩ is a sum of squares the only way it can be zero is for every component of a⃗ to be zero;
moreover, if a⃗ is 0⃗ then ⟨⃗a| a⃗⟩ = 0.

Problem 4.3. Prove that ⟨α|α⟩ is a real number. Hint: See eq. (4.2.8)

The following are examples of inner products.

� Take the D-tuple of complex numbers |α⃗⟩ ≡ (α1, . . . , αD) and
∣∣∣β⃗〉 ≡ (β1, . . . , βD); and

define the inner product to be

⟨α⃗| β⃗
〉
≡

D∑
i=1

(αi)∗βi = δij(α
i)∗βj = α⃗†β⃗. (4.2.20)

� Consider the space of D×D complex matrices. Consider two such matrices X̂ and Ŷ and
define their inner product to be 〈

X̂
∣∣∣ Ŷ 〉 ≡ Tr

[
X̂†Ŷ

]
. (4.2.21)

Here, Tr means the matrix trace – i.e., summation over the diagonal components –

Tr [M ] ≡
D∑
i=1

M i
i ≡M i

i; (4.2.22)

and X̂† is the matrix adjoint of X̂.
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� Consider the space of polynomials. Suppose |f⟩ and |g⟩ are two such polynomials of the
vector space. Then

⟨f | g⟩ ≡
∫ 1

−1

dxf(x)∗g(x) (4.2.23)

defines an inner product. Here, f(x) and g(x) indicates the polynomials are expressed in
terms of the variable x.

Problem 4.4. Prove the above examples are indeed inner products.

Problem 4.5. Prove the Cauchy-Schwarz inequality:

⟨α|α⟩ ⟨β| β⟩ ≥ |⟨α| β⟩|2 . (4.2.24)

The analogy in Euclidean space is |x⃗|2|y⃗|2 ≥ |x⃗ · y⃗|2. Hint: Start with

(⟨α|+ c∗ ⟨β|) (|α⟩+ c |β⟩) ≥ 0. (4.2.25)

for any complex number c. (Why is this true?) Now choose an appropriate c to prove the
Schwarz inequality.

Orthogonality Just as we would say two real vectors in RD are perpendicular (aka orthog-
onal) when their dot product is zero, we may now define two vectors |α⟩ and |β⟩ in a vector
space to be orthogonal when their inner product is zero:

⟨α| β⟩ = 0 = ⟨β|α⟩ . (4.2.26)

We also call the positive square root
√
⟨α|α⟩ the norm of the vector |α⟩; recall, in Euclidean

space, the analogous |x⃗| =
√
x⃗ · x⃗. Given any vector |α⟩ that is not the zero vector, we can

always construct a vector from it that is of unit length,

|α̂⟩ ≡ |α⟩√
⟨α|α⟩

⇒ ⟨α̂| α̂⟩ = 1. (4.2.27)

Orthonormal Basis Suppose we are given a set of basis vectors {|i′⟩} of a vector space.
Through what is known as the Gram-Schmidt process, one can always build from them a set
of orthonormal basis vectors {|i⟩}; where every basis vector has unit norm and is orthogonal to
every other basis vector,

⟨i| j⟩ = δij. (4.2.28)

As you will see, just as vector calculus problems are often easier to analyze when you choose an
orthogonal coordinate system, linear algebra problems are often easier to study when you use an
orthonormal basis to describe your vector space. If {|i⟩} form an orthonormal basis, any vector
|γ⟩ should be expandable as

|γ⟩ =
∑
i

γ̂i |i⟩ , (4.2.29)
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where the {γ̂i} are complex numbers. Projecting both sides with ⟨j| and exploiting the orthonor-
mality condition ⟨j| i⟩ = δji ,

⟨j| γ⟩ = γ̂j. (4.2.30)

This in turn means

|γ⟩ =
∑
i

|j⟩ ⟨j| γ⟩ . (4.2.31)

Compare this with the vector calculus expression v⃗ =
∑

i v
iêi, where {êi} are the unit vectors

in the i-th direction.

Problem 4.6. Suppose |α⟩ and |β⟩ are linearly dependent – they are scalar multiples of
each other. However, their inner product is zero. What are |α⟩ and |β⟩?

Problem 4.7. Projection Process Let {|1⟩ , |2⟩ , . . . , |N⟩} be a set of N orthonormal
vectors. Let |α⟩ be an arbitrary vector lying in the same vector space. Show that the following
vector constructed from |α⟩ is orthogonal to all the {|i⟩}.

∣∣α⊥〉 ≡ |α⟩ − N∑
j=1

|j⟩ ⟨j|α⟩ (4.2.32)

This result is key to the following Gram-Schmidt process.

Gram-Schmidt Let {|α1⟩ , |α2⟩ , . . . , |αD⟩} be a set of D linearly independent vectors that
spans some vector space. The Gram-Schmidt process is an iterative algorithm, based on the
observation in eq. (4.2.32), to generate from it a set of orthonormal set of basis vectors.

1. Take the first vector |α1⟩ and normalize it to unit length:

|α̂1⟩ =
|α1⟩√
⟨α1|α1⟩

. (4.2.33)

2. Take the second vector |α2⟩ and project out |α̂1⟩:∣∣α⊥
2

〉
≡ |α2⟩ − |α̂1⟩ ⟨α̂1|α2⟩ , (4.2.34)

and normalize it to unit length

|α̂2⟩ ≡
∣∣α⊥

2

〉√〈
α⊥
2

∣∣α⊥
2

〉 . (4.2.35)

3. Take the third vector |α3⟩ and project out |α̂1⟩ and |α̂2⟩:∣∣α⊥
3

〉
≡ |α3⟩ − |α̂1⟩ ⟨α̂1|α3⟩ − |α̂2⟩ ⟨α̂2|α3⟩ , (4.2.36)

then normalize it to unit length

|α̂3⟩ ≡
∣∣α⊥

3

〉√〈
α⊥
3

∣∣α⊥
3

〉 . (4.2.37)
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4. Repeat . . . Take the ith vector |αi⟩ and project out |α̂1⟩ through |α̂i−1⟩:

∣∣α⊥
i

〉
≡ |αi⟩ −

i−1∑
j=1

|α̂j⟩ ⟨α̂j|αi⟩ , (4.2.38)

then normalize it to unit length

|α̂i⟩ ≡
∣∣α⊥

i

〉√〈
α⊥
i

∣∣α⊥
i

〉 . (4.2.39)

By construction, |α̂i⟩ will be orthogonal to |α̂1⟩ through |α̂i−1⟩. Therefore, at the end of the
process, we will have D mutually orthogonal and unit norm vectors. Because they are orthogonal
they are linearly independent – hence, we have succeeded in constructing an orthonormal set of
basis vectors.

Example Here is a simple example in 3D Euclidean space endowed with the usual dot
product. Let us have

|α1⟩ =̇(2, 0, 0), |α2⟩ =̇(1, 1, 1), |α3⟩ =̇(1, 0, 1). (4.2.40)

You can check that these vectors are linearly independent by taking the determinant of the 3×3
matrix formed from them. Alternatively, the fact that they generate a set of basis vectors from
the Gram-Schmidt process also implies they are linearly independent.

Normalizing |α1⟩ to unity,

|α̂1⟩ =
|α1⟩√
⟨α1|α1⟩

=
(2, 0, 0)

2
= (1, 0, 0). (4.2.41)

Next we project out |α̂1⟩ from |α2⟩.∣∣α⊥
2

〉
= |α2⟩ − |α̂1⟩ ⟨α̂1|α2⟩ = (1, 1, 1)− (1, 0, 0)(1 + 0 + 0) = (0, 1, 1). (4.2.42)

Then we normalize it to unit length.

|α̂2⟩ =
∣∣α⊥

2

〉√〈
α⊥
2

∣∣α⊥
2

〉 =
(0, 1, 1)√

2
. (4.2.43)

Next we project out |α̂1⟩ and |α̂2⟩ from |α3⟩.∣∣α⊥
3

〉
= |α3⟩ − |α̂1⟩ ⟨α̂1|α3⟩ − |α̂2⟩ ⟨α̂2|α3⟩

= (1, 0, 1)− (1, 0, 0)(1 + 0 + 0)− (0, 1, 1)√
2

0 + 0 + 1√
2

= (1, 0, 1)− (1, 0, 0)− (0, 1, 1)

2
=

(
0,−1

2
,
1

2

)
. (4.2.44)
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Then we normalize it to unit length.

|α̂3⟩ =
∣∣α⊥

3

〉√〈
α⊥
3

∣∣α⊥
3

〉 =
(0,−1, 1)√

2
. (4.2.45)

To sum: you can check that

|α̂1⟩ = (1, 0, 0), |α̂2⟩ =
(0, 1, 1)√

2
, |α̂3⟩ =

(0,−1, 1)√
2

, (4.2.46)

are mutually perpendicular and of unit length.

Problem 4.8. Consider the space of polynomials with complex coefficients. Let the inner
product be

⟨f | g⟩ ≡
∫ +1

−1

dxf(x)∗g(x). (4.2.47)

Starting from the set {|0⟩ = 1, |1⟩ = x, |2⟩ = x2}, construct from them a set of orthonormal
basis vectors spanning the subspace of polynomials of degree equal to or less than 2. Compare
your results with the Legendre polynomials

Pℓ(x) ≡
1

2ℓℓ!

dℓ

dxℓ
(
x2 − 1

)ℓ
, ℓ = 0, 1, 2. (4.2.48)

Orthogonality and Linear independence. We close this subsection with an ob-
servation. If a set of non-zero kets {|i⟩ |i = 1, 2, . . . , N − 1, N} are orthogonal, then they are
necessarily linearly independent. This can be proved readily by contradiction. Suppose these
kets were linearly dependent. Then it must be possible to find non-zero complex numbers {Ci}
such that

N∑
i=1

Ci |i⟩ = 0. (4.2.49)

If we now act ⟨j| on this equation, for any j ∈ {1, 2, 3, . . . , N},
N∑
i=1

Ci ⟨j| i⟩ =
N∑
i=1

Ciδij ⟨j| j⟩ = Cj ⟨j| j⟩ = 0. (4.2.50)

That means all the {Cj|j = 1, 2, . . . , N} are in fact zero.
A simple application of this observation is, if you have found D mutually orthogonal kets

{|i⟩} in a D dimensional vector space, then these kets form a basis. By normalizing them to
unit length, you’d have obtained an orthonormal basis. Such an example is that of the Pauli
matrices {σµ|µ = 0, 1, 2, 3} in eq. (3.2.17). The vector space of 2 × 2 complex matrices is 4-
dimensional, since there are 4 independent components. Moreover, we have already seen that
the trace Tr

[
X†Y

]
is one way to define an inner product of matrices X and Y . Since

1

2
Tr
[
(σµ)† σν

]
=

1

2
Tr [σµσν ] = δµν , µ, ν ∈ {0, 1, 2, 3}, (4.2.51)
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that means, by the argument just given, the 4 Pauli matrices {σµ} form an orthogonal set of
basis vectors for the vector space of complex 2× 2 matrices. That means it must be possible to
choose {pµ} such that the superposition pµσ

µ is equal to any given 2× 2 complex matrix A. In
fact,

pµσ
µ = A ⇔ pµ =

1

2
Tr [σµA] . (4.2.52)

In quantum mechanics and quantum field theory, these {σµ} are fundamental to describing
spinors and spin−1/2 systems.

Problem 4.9. SU2 and Pauli Matrices Use eq. (4.2.52) to compute the coefficients {pµ}
in the Pauli-matrices expansion of the general SU2 matrix in eq. (3.4.20).

4.3 Linear Operators

4.3.1 Definitions and Fundamental Concepts

In quantum theory, a physical observable is associated with a (Hermitian) linear operator acting
on the vector space. What defines a linear operator? If A is one, it is primarily defined by how
it acts from the left on a vector to return another vector

A |α⟩ = |α′⟩ . (4.3.1)

In other words, if you can tell me what the ‘output’ |α′⟩ is, after A acts on any vector of the
vector space |α⟩ – you’d have defined A itself. But that’s not all – linearity also means, for
otherwise arbitrary operators A and B and complex numbers c and d,

(c A+ d B) |α⟩ = c A |α⟩+ d B |α⟩ (4.3.2)

A(c |α⟩+ d |β⟩) = c A |α⟩+ d A |β⟩ .

If X and Y are both linear operators, since Y |α⟩ is a vector, we can apply X to it to obtain
another vector, X(Y |α⟩). This means we ought to be able to multiply operators, for e.g., XY .
We will assume this multiplication is associative, namely

XY Z = (XY )Z = X(Y Z). (4.3.3)

Identity The identity operator obeys

I |γ⟩ = |γ⟩ for all |γ⟩. (4.3.4)

Inverse The inverse of the operator X is still defined as one that obeys

X−1X = XX−1 = I. (4.3.5)

Strictly speaking, we need to distinguish between the left and right inverse, but in finite dimen-
sional vector spaces, they are the same object.
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Adjoint Next, let us observe that an operator always acts on a bra from the right, and
returns another bra,

⟨α|A = ⟨α′| . (4.3.6)

The reason is that a bra is something that acts linearly on an arbitrary vector and returns a
complex number. Since that is what ⟨α|A does, it must therefore some bra ‘state’.

To formalize this further, we shall denote the adjoint of the linear operator X, namely X†,
by taking the † of the ket X† |α⟩ in the following way:

(X† |α⟩)† = ⟨α|X. (4.3.7)

If |α⟩ and |β⟩ are arbitrary states,

⟨β |X|α⟩ = ⟨β| (X |α⟩) =
(
X† |β⟩

)† |α⟩ . (4.3.8)

In words: Given a linear operator X, its adjoint X† is defined as the operator that – after acting
upon |β⟩ – would yield an inner product (X† |β⟩)† |α⟩ which is equal to ⟨β| (X |α⟩). As we shall
see below, an equivalent manner to define the adjoint is either

⟨α|X |β⟩ = ⟨β|X† |α⟩ (4.3.9)

or ⟨α|X† |β⟩ = ⟨β|X |α⟩ . (4.3.10)

Why such a definition yields a unique operator X† would require some explanation; in a similar
vein, we shall see below that,

(X†)† = X. (4.3.11)

Hence, we could also have began with the definition

(X |α⟩)† = ⟨α|X†. (4.3.12)

In the math literature, where α and β denote the states and X is still some linear operator, the
latter’s adjoint is expressed through the inner product as

(β,Xα) =
(
X†β, α

)
. (4.3.13)

Problem 4.10. Prove that

(XY )† = Y †X†. (4.3.14)

Hint: take the adjoint of (XY )† |α⟩ and Y †(X† |α⟩).

Eigenvectors and eigenvalues An eigenvector of some linear operator A is a vector that,
when acted upon by A, returns the vector itself multiplied by a complex number a:

X |a⟩ = a |a⟩ . (4.3.15)

This number a is called the eigenvalue of A.
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Remark The eigenvector is not unique, in that we may always multiply it by an arbitrary
complex number z and still obtain an eigenvector:

X (z |a⟩) = a(z |a⟩). (4.3.16)

In quantum mechanics we require the state to be normalized to unity, i.e., ⟨a| a⟩ = 1 =
⟨a| z∗z |a⟩ = |z|2 ⟨a| a⟩. This |z| = ±1 constraint implies that unit norm eigenvectors may
differ by a phase.

X
(
eiθ |a⟩

)
= a(eiθ |a⟩), θ ∈ R. (4.3.17)

Ket-bra operator Notice that the product |α⟩ ⟨β| can be considered a linear operator. To
see this, we apply it on some arbitrary vector |γ⟩ and observe it returns the vector |α⟩ multiplied
by a complex number describing the projection of |γ⟩ on |β⟩,

(|α⟩ ⟨β|) |γ⟩ = |α⟩ (⟨β| γ⟩) = (⟨β| γ⟩) · |α⟩ , (4.3.18)

as long as we assume these products are associative. It obeys the following “linearity” rules. If
|α⟩ ⟨β| and |α′⟩ ⟨β′| are two different ket-bra operators,

(|α⟩ ⟨β|+ |α′⟩ ⟨β′|) |γ⟩ = |α⟩ ⟨β| γ⟩+ |α′⟩ ⟨β′| γ⟩ ; (4.3.19)

and for complex numbers c and d,

|α⟩ ⟨β| (c |γ⟩+ d |γ′⟩) = c |α⟩ ⟨β| γ⟩+ d |α⟩ ⟨β| γ′⟩ . (4.3.20)

Problem 4.11. Show that

(|α⟩ ⟨β|)† = |β⟩ ⟨α| . (4.3.21)

Hint: Act (|α⟩ ⟨β|)† on an arbitrary vector, and then take its adjoint.

Projection operator The special case |α⟩ ⟨α| acting on any vector |γ⟩ will return
|α⟩ ⟨α| γ⟩. Thus, we can view it as a projection operator – it takes an arbitrary vector and
extracts the portion of it “parallel” to |α⟩.

Identity Operator and Completeness Relations We will now see that (square)
matrices can be viewed as representations of linear operators on a vector space. Let {|i⟩} denote
the basis orthonormal vectors of the vector space, which obey ⟨i| j⟩ = δij. We may begin with
eq. (4.2.31),

|γ⟩ =
∑
i

|i⟩ ⟨i| γ⟩ =

(∑
i

|i⟩ ⟨i|

)
|γ⟩ . (4.3.22)

Since |γ⟩ was arbitrary, we have identified the identity operator as

I =
∑
i

|i⟩ ⟨i| . (4.3.23)
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This is also often known as a completeness relation: summing over the ket-bra projection oper-
ators built out of the orthonormal basis vectors of a vector space returns the unit (aka identity)
operator. I acting on any vector yields the same vector.

Representations, Vector components, Matrix elements Once a set of orthonormal
basis vectors are chosen, notice from the expansion in eq. (4.3.22), that to specify a vector |γ⟩
all we need to do is to specify the complex numbers {⟨i| γ⟩}. These can be arranged as a column
vector; if the dimension of the vector space is D, then

|γ⟩ =̇


⟨1| γ⟩
⟨2| γ⟩
⟨3| γ⟩
. . .
⟨D| γ⟩

 . (4.3.24)

The =̇ is not quite an equality; rather it means “represented by,” in that this column vector
contains as much information as eq. (4.3.22), provided the orthonormal basis vectors are known.

We may also express an arbitrary bra through a superposition of the basis bras {⟨i|}, using
the adjoint of eq. (4.3.23).

⟨α| =
∑
i

⟨α| i⟩ ⟨i| . (4.3.25)

(According to eq. (4.3.23), this is simply ⟨α| I.) In this case, the coefficients {⟨α| i⟩} may be
arranged as a row vector:

⟨α| =̇
[
⟨α| 1⟩ ⟨α| 2⟩ . . . ⟨α|D⟩

]
. (4.3.26)

Inner products Let us consider the inner product ⟨α| γ⟩. By inserting the completeness
relation in eq. (4.3.23), we obtain

⟨α| γ⟩ =
∑
i

⟨α| i⟩ ⟨i| γ⟩ = δij
(
α̂i
)∗
γ̂j = α̂†γ̂, (4.3.27)

α̂i ≡ ⟨i|α⟩ , γ̂j ≡ ⟨j| γ⟩ . (4.3.28)

This is the reason for writing a ket |γ⟩ as a column whose components are its representation (eq.
(4.3.24)) and a bra ⟨α| as a row whose components are the complex conjugate of its representation
(eq. (4.3.26)) – their inner product is in fact the complex ‘dot product’

⟨α| γ⟩ =


⟨1|α⟩
⟨2|α⟩
. . .
⟨D|α⟩


† 
⟨1| γ⟩
⟨2| γ⟩
. . .
⟨D| γ⟩

 , (4.3.29)

where the dagger here refers to the matrix algebra operation of taking the transpose and complex
conjugation, for e.g. v† = (vT)∗. Furthermore, if |γ⟩ has unit norm, then

1 = ⟨γ| γ⟩ =
∑
i

⟨γ| i⟩ ⟨i| γ⟩ =
∑
i

|⟨i| γ⟩|2 =̇δij
(
γ̂i
)∗
γ̂j = γ̂†γ̂. (4.3.30)
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Linear operators Next, consider some operatorX acting on an arbitrary vector |γ⟩, expressed
through the orthonormal basis vectors {|i⟩}. We can insert identity operators, one from the left
and another from the right of X,

X |γ⟩ =
∑
i,j

|j⟩ ⟨j |X| i⟩ ⟨i| γ⟩ . (4.3.31)

We can also apply the lth basis bra ⟨l| from the left on both sides and obtain

⟨l|X |γ⟩ =
∑
i

⟨l |X| i⟩ ⟨i| γ⟩ . (4.3.32)

Just as we read off the components of the vector in eq. (4.3.22) as a column vector, we can do
the same here. Again supposing a D dimensional vector space for notational convenience,

X |γ⟩ =̇


⟨1 |X| 1⟩ ⟨1 |X| 2⟩ . . . ⟨1 |X|D⟩
⟨2 |X| 1⟩ ⟨2 |X| 2⟩ . . . ⟨2 |X|D⟩
. . . . . . . . . . . .

⟨D |X| 1⟩ ⟨D |X| 2⟩ . . . ⟨D |X|D⟩



⟨1| γ⟩
⟨2| γ⟩
⟨3| γ⟩
. . .
⟨D| γ⟩

 . (4.3.33)

In words: X acting on some vector |γ⟩ can be represented by the column vector gotten from
acting the matrix ⟨j |X| i⟩, with row number j and column number i, acting on the column
vector ⟨i| γ⟩. In index notation, with9

X̂ i
j ≡ ⟨i |X| j⟩ and γ̂j ≡ ⟨j| γ⟩ , (4.3.34)

we have

⟨i|X |γ⟩ =̇X̂ i
j γ̂

j. (4.3.35)

Since |γ⟩ in eq. (4.3.31) was arbitrary, we may record that any linear operator X admits an
ket-bra operator expansion:

X =
∑
i,j

|j⟩ ⟨j |X| i⟩ ⟨i| =
∑
i,j

|j⟩ X̂j
i ⟨i| . (4.3.36)

We have already seen, this result follows from inserting the completeness relation in eq. (4.3.23)

on the left and right ofX. Importantly, notice that specifying the matrix X̂j
i amounts to defining

the linear operator X itself, once a orthonormal basis has been picked.
As an example: what is the matrix representation of |β⟩ ⟨α|? We apply ⟨i| from the left and

|j⟩ from the right to obtain the ij component

⟨i| (|α⟩ ⟨β|) |j⟩ = ⟨i|α⟩ ⟨β| j⟩ =̇α̂i
(
β̂j
)∗
. (4.3.37)

9In this chapter on the abstract formulation of Linear Algebra, I use a ·̂ to denote a matrix (representation),
in order to distinguish it from the linear operator itself.
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Products of Linear Operators We can consider Y X, where X and Y are linear operators.
By inserting the completeness relation in eq. (4.3.23),

Y X |γ⟩ =
∑
i,j,k

|k⟩ ⟨k|Y |j⟩ ⟨j |X| i⟩ ⟨i| γ⟩

=
∑
k

|k⟩ Ŷ k
jX̂

j
iγ̂
i. (4.3.38)

The product Y X can therefore be represented as

Y X=̇


⟨1 |Y | 1⟩ ⟨1 |Y | 2⟩ . . . ⟨1 |Y |D⟩
⟨2 |Y | 1⟩ ⟨2 |Y | 2⟩ . . . ⟨2 |Y |D⟩
. . . . . . . . . . . .

⟨D |Y | 1⟩ ⟨D |Y | 2⟩ . . . ⟨D |Y |D⟩



⟨1 |X| 1⟩ ⟨1 |X| 2⟩ . . . ⟨1 |X|D⟩
⟨2 |X| 1⟩ ⟨2 |X| 2⟩ . . . ⟨2 |X|D⟩
. . . . . . . . . . . .

⟨D |X| 1⟩ ⟨D |X| 2⟩ . . . ⟨D |X|D⟩

 .
(4.3.39)

Notice how the rules of matrix multiplication emerges from this abstract formulation of linear
operators acting on a vector space.

Adjoint Finally, we may now understand how to construct the matrix representation of
the adjoint of a given linear operator X by starting from eq. (4.3.8) with orthonormal states
{|i⟩}. Firstly, from eq. (4.3.36),

X† |i⟩ =
∑
a,b

|a⟩ (X̂†)ab ⟨b| i⟩ =
∑
a

|a⟩ (X̂†)ai. (4.3.40)

Taking the † using eq. (4.2.3), and then applying it to |j⟩,

(X† |i⟩)† |j⟩ =
∑
a

(X̂†)ai ⟨a| j⟩ = (X̂†)ji. (4.3.41)

According to eq. (4.3.8), this must be equal to ⟨i |X| j⟩ = X̂ i
j. This, of course, coincides with

the definition of the adjoint from matrix algebra: the representation of the adjoint of X is the
complex conjugate and transpose of that of X:〈

j
∣∣X†∣∣ i〉 = ⟨i |X| j⟩∗ ⇔ X̂† =

(
X̂T
)∗
. (4.3.42)

Because the matrix representation of a linear operator within an orthonormal basis is unique,
notice we have also provided a constructive proof of the uniqueness of X† itself. We could also
have obtained eq. (4.3.42) more directly by starting with the ket-bra expansion (cf. (4.3.36)) of
X and then using equations (4.2.3) and (4.3.21) to directly implement † on the right hand side:

X† =
∑
i,j

(
(X̂ i

j |i⟩) ⟨j|
)†

(4.3.43)

=
∑
i,j

|j⟩ X̂ i
j ⟨i| ≡

∑
i,j

|j⟩ (X̂†)ji ⟨i| . (4.3.44)

Problem 4.12. Adjoint of an adjoint Prove that (X†)† = X.

47



Now that you have shown that (Y †)† = Y for any linear operator Y , for any states |α⟩ and
|β⟩; and for any linear operator X, we may recover eq. (4.3.9) from the property ⟨α| γ⟩ = ⟨γ|α⟩:

⟨α|X |β⟩ = (X |β⟩)† |α⟩ = ((X†)† |β⟩)† |α⟩ = ⟨β|X† |α⟩ . (4.3.45)

Vector Space of Linear Operators You may step through the axioms of Linear Algebra
to verify that the space of Linear operators is, in fact, a vector space itself. (More specifically,
we have just seen that linear operators may be represented by D×D square matrices, which in
turn span a vector space of dimension D2.) Given an orthonormal basis {|i⟩} for the original
vector space upon which these linear operators are acting, the expansion in eq. (4.3.36) – which
holds for an arbitrary linear operator X – teaches us the set of D2 ket-bra operators

{|j⟩ ⟨i| |j, i = 1, 2, 3, . . . , D} (4.3.46)

form the basis of the space of linear operators. The matrix elements ⟨j |X| i⟩ = X̂j
i are the

expansion coefficients.

The set of linear operators {X} acting on a D−dimensional vector space is itself
a D2 dimensional vector space, because they are represented by the set of D × D
matrices {X̂ i

j = ⟨i |X| j⟩}.

Inner Product of Linear Operators We have already witnessed how the trace operation

may be used to define an inner product between matrices:
〈
Â
∣∣∣ B̂〉 = Tr

[
Â†B̂

]
. Let us now

define the trace of a linear operator X to be

Tr [X] ≡
D∑
ℓ=1

⟨ℓ |X| ℓ⟩ ; (4.3.47)

where the {|ℓ⟩} form an orthonormal basis. (That any orthonormal basis would do – i.e., this is
a basis independent definition, as along as the basis is unit norm and mutually perpendicular –
will be proven in the section on unitary operators below.) We may now define the inner product
between two linear operators X and Y as

⟨X|Y ⟩ ≡ Tr
[
X†Y

]
. (4.3.48)

This is in fact equivalent to the matrix trace inner product because, by inserting the completeness
relation (4.3.23) between X and Y and employing eq. (4.3.47),

⟨X|Y ⟩ =
∑
i,j

⟨i|X† |j⟩ ⟨j|Y |i⟩ = (X̂†)ijŶ
j
i = Tr

[
X̂†Ŷ

]
. (4.3.49)

With such a tool, it is now possible to sharpen the statement that the set of D2 ket-bra operators
{|i⟩ ⟨j| |i, j ∈ 1, 2, 3, . . . , D} form an orthonormal basis for the vector space of linear operators.
Recall: since the dimension of such a space is D2, all we have to show is the linear independence
of this set. But this in turn follows if they are orthonormal. Hence, consider the inner product
between |i⟩ ⟨j| and |m⟩ ⟨n|. Utilizing the result that (|i⟩ ⟨j|)† = |j⟩ ⟨i|:

Tr
[
(|i⟩ ⟨j|)†(|m⟩ ⟨n|)

]
=
∑
ℓ

⟨ℓ| j⟩ ⟨i|m⟩ ⟨n| ℓ⟩ . (4.3.50)
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Now, by assumption, ⟨ℓ| j⟩ is non-zero only when ℓ = j. Similarly, ⟨n| ℓ⟩ is non-zero only when
ℓ = n. Therefore when j ̸= n the entire sum is zero because ℓ cannot be simultaneously equal
to both j and n. But again by the orthonormal assumption, when ℓ = j = n, ⟨ℓ| j⟩ ⟨n| ℓ⟩ = 1.
In other words, the sum is proportional to δjn; likewise ⟨i|m⟩ = δim too. At this point, we have
arrived at the orthonormality condition:

Tr
[
(|i⟩ ⟨j|)†(|m⟩ ⟨n|)

]
= δimδ

j
n. (4.3.51)

The kets must be identical and so must the bras; otherwise these ket-bra linear operators are
perpendicular.

Problem 4.13. Throughout this section, we are focusing on linear operators that act on a ket
and return another within the same vector space; hence, their matrix representations are D×D
matrices. Suppose a linear operator acts on kets within a N dimensional vector space but returns
a ket from a (different) M dimensional one. What is the size of the matrix representation?

Mapping finite dimensional vector spaces to CD Let us pause to summarize our
preceding discussion. Even though it is possible to discuss finite dimensional vector spaces
in the abstract, it is always possible to translate the setup at hand to one of the D-tuple of
complex numbers, where D is the dimensionality. First choose a set of orthonormal basis vectors
{|1⟩ , . . . , |D⟩}. Then, every vector |α⟩ can be represented as a column vector; the ith component
is the result of projecting the abstract vector on the ith basis vector ⟨i|α⟩; conversely, writing a
column of complex numbers can be interpreted to define a vector in this orthonormal basis. The
inner product between two vectors ⟨α| β⟩ =

∑
i ⟨α| i⟩ ⟨i| β⟩ boils down to the complex conjugate

of the ⟨i|α⟩ column vector dotted into the ⟨i| β⟩ vector. Moreover, every linear operator O can
be represented as a matrix with the element on the ith row and jth column given by ⟨i |O| j⟩;
and conversely, writing any square matrix Ôi

j can be interpreted to define a linear operator, on
this vector space, with matrix elements ⟨i |O| j⟩. Product of linear operators becomes products
of matrices, with the usual rules of matrix multiplication.

Object Representation
Vector/Ket: |α⟩ =

∑
i |i⟩ ⟨i|α⟩ αi = (⟨1|α⟩ , . . . , ⟨D|α⟩)T

Dual Vector/Bra: ⟨α| =
∑

i ⟨α| i⟩ ⟨i| (α†)i = (⟨α| 1⟩ , . . . , ⟨α|D⟩)
Inner product: ⟨α| β⟩ =

∑
i ⟨α| i⟩ ⟨i| β⟩ α†β = δijαiβ

j

Linear operator (LO): X =
∑

i,j |i⟩ ⟨i |X| j⟩ ⟨j| X̂ i
j = ⟨i |X| j⟩

LO acting on ket: X |γ⟩ =
∑

i,j |i⟩ ⟨i |X| j⟩ ⟨j| γ⟩ (X̂γ)i = X̂ i
jγ

j

Products of LOs: XY =
∑

i,j,k |i⟩ ⟨i |X| j⟩ ⟨j |Y | k⟩ ⟨k| (X̂Y )ik = X̂ i
jŶ

j
k

Adjoint of LO: X† =
∑

i,j |j⟩ ⟨i |X| j⟩ ⟨i| (X̂†)ji = ⟨i |X| j⟩ = (X̂T)ji

Differentiating kets, bras, and linear operators Suppose a ket |ψ(t)⟩ depends on a
continuous real parameter t. Then it should make sense to define the limit

∂t |ψ(t)⟩ ≡ lim
δt→0

|ψ(t+ δt)⟩ − |ψ(t)⟩
δt

. (4.3.52)

Taking the adjoint on both sides hands us the corresponding definition for the derivative of the
bra.

∂t ⟨ψ(t)| ≡ lim
δt→0

⟨ψ(t+ δt)| − ⟨ψ(t)|
δt

= (∂t |ψ(t)⟩)† . (4.3.53)
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Likewise, the derivative of a linear operator A(t) that depends on a real continuous parameter
t may be defined as

∂tA(t) = lim
δt→0

A(t+ δt)− A(t)
δt

. (4.3.54)

Problem 4.14. Product rule Can you prove the product rule holds for the derivative of
matrix elements; i.e.,

∂t (⟨ψ1(t) |A(t)|ψ2(t)⟩)
= (∂t ⟨ψ1(t)|)A(t) |ψ2(t)⟩+ ⟨ψ1(t)| (∂tA(t)) |ψ2(t)⟩+ ⟨ψ1(t)|A(t)∂t |ψ2(t)⟩? (4.3.55)

Explain why the derivative of the adjoint of a linear operator is the adjoint of the derivative of
the same operator: (∂tA(t))

† = ∂tA
†.

Next we highlight two special types of linear operators that play central roles in quantum theory:
hermitian and unitary operators.

4.3.2 Hermitian Operators

A hermitian linear operator X is one that is equal to its own adjoint, namely

X† = X. (4.3.56)

From eq. (4.3.9), we see that a linear operator X is hermitian if and only if

⟨α|X |β⟩ = ⟨β|X |α⟩∗ (4.3.57)

for arbitrary vectors |α⟩ and |β⟩. In particular, if {|i⟩ |i = 1, 2, 3, . . . , D} form an orthonormal
basis, we recover the definition of a Hermitian matrix,

⟨j|X |i⟩ = ⟨i|X |j⟩∗ . (4.3.58)

We now turn to the following important facts about Hermitian operators.

Hermitian Operators Have Real Spectra: If X is a Hermitian operator,
all its eigenvalues are real and eigenvectors corresponding to different eigenvalues are
orthogonal.

Proof Let |a⟩ and |a′⟩ be eigenvectors of X, i.e.,

X |a⟩ = a |a⟩ (4.3.59)

Taking the adjoint of the analogous equation for |a′⟩, and using X = X†,

⟨a′|X = a′∗ ⟨a′| . (4.3.60)

We can multiply ⟨a′| from the left on both sides of eq. (4.3.59); and multiply |a⟩ from the right
on both sides of eq. (4.3.60).

⟨a′|X |a⟩ = a ⟨a′| a⟩ , ⟨a′|X |a⟩ = a′∗ ⟨a′| a⟩ (4.3.61)
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Subtracting these two equations,

0 = (a− a′∗) ⟨a′| a⟩ . (4.3.62)

Suppose the eigenvalues are the same, a = a′. Then 0 = (a − a∗) ⟨a| a⟩; because |a⟩ is not a
null vector, this means a = a∗; eigenvalues of Hermitian operators are real. Suppose instead
the eigenvalues are distinct, a ̸= a′. Because we have just proven that a′ can be assumed to
be real, we have 0 = (a − a′) ⟨a′| a⟩. By assumption the factor a − a′ is not zero. Therefore
⟨a′| a⟩ = 0, namely, eigenvectors corresponding to different eigenvalues of a Hermitian operator
are orthogonal.

Completeness of Hermitian Eigensystem:10 The eigenkets {|λk⟩ |k =
1, 2, . . . , D} of a Hermitian operator span the vector space upon which it is acting.
The full set of eigenvalues {λk|k = 1, 2, . . . , D} of some Hermitian operator is called
its spectrum; and from eq. (4.3.23), completeness of its eigenvectors reads

I =
D∑
k=1

|λk⟩ ⟨λk| . (4.3.63)

In the language of matrix algebra, we’d say that a Hermitian matrix is always diag-
onalizable via a unitary transformation.

In quantum theory, we postulate that (many) observables such as spin, position, momentum,
etc., correspond to Hermitian operators; their eigenvalues are then the possible outcomes of the
measurements of these observables. (It is not possible to obtain a measurement corresponding
to X that is not its eigenvalue.) Since their spectrum are real, this guarantees we get a real
number from performing a measurement on the system at hand. That the eigenstates of an
observable span the given vector space also means the range of physical states corresponding
to possible measurement outcomes may be employed to fully characterize the dynamics of the
quantum system itself.

Degeneracy and Symmetry If more than one eigenket of A has the same eigenvalue,
we say A’s spectrum is degenerate. The simplest example is the identity operator itself: every
basis vector is an eigenvector with eigenvalue 1. The matrix diag[1, π, 2, 2] is degenerate: it acts
on a 4D vector space with two repeated eigenvalues.

When an operator is degenerate, the labeling of eigenkets using their eigenvalues become
ambiguous – which eigenket does |λ⟩ correspond to, if this subspace is 5 dimensional, say?
What often happens is that one can find a different observable B to distinguish between the
eigenkets of the same λ. For example, we will see below that the negative Laplacian on the 2-
sphere – known as the “square of total angular momentum,” when applied to quantum mechanics
– will have eigenvalues ℓ(ℓ+1), where ℓ ∈ {0, 1, 2, 3, . . . }. It will also turn out to be (2ℓ+1)-fold
degenerate, but this degeneracy can be labeled by an integer m, corresponding to the eigenvalues
of the generator-of-rotation about the North pole J(ϕ) (where ϕ is the azimuthal angle). A closely

related fact is that [−∇⃗2
S2 , J(ϕ)] = 0, where [X, Y ] ≡ XY − Y X.

− ∇⃗2
S2 |ℓ,m⟩ = ℓ(ℓ+ 1) |ℓ,m⟩ , (4.3.64)

10The most general type of operator that is diagonalizable is a normal operator, defined as one that commutes
with its own adjoint. Both Hermitian and Unitary (discussed in §(4.3.3) below) operators are normal. I prove
the diagonalizability of normal operators in §(4.6).
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ℓ ∈ {0, 1, 2, . . . }, m ∈ {−ℓ,−ℓ+ 1, . . . ,−1, 0, 1, . . . , ℓ− 1, ℓ}.

It’s worthwhile to mention, in the context of quantum theory – degeneracy in the spectrum is
often associated with the presence of symmetry. For example, the Stark and Zeeman effects
can be respectively thought of as the breaking of rotational symmetry of an atomic system by,
respectively, a non-zero magnetic and electric field. Previously degenerate spectral lines become
split into distinct ones, due to these E⃗ and B⃗ fields.11 In the context of classical field theory, we
will witness in the section on continuous vector spaces below, how the translation invariance of
space leads to a degenerate spectrum of the Laplacian.

Problem 4.15. Let X be a linear operator with eigenvalues {λi|i = 1, 2, 3, . . . , D} and
orthonormal eigenvectors {|λi⟩ |i = 1, 2, 3, . . . , D} that span the given vector space. Show that
X can be expressed as

X =
∑
i

λi |λi⟩ ⟨λi| . (4.3.65)

(Assume a non-degenerate spectra for now.) Verify that the right hand side is represented by a
diagonal matrix in this basis {|λi⟩}. Of course, a Hermitian linear operator is a special case of eq.
(4.3.65), where all the {λi} are real. Hint: Given that the eigenkets of X span the vector space,
all you need to verify is that all possible matrix elements of X return what you expect.

How to diagonalize a Hermitian operator? To diagonalize a linear operator X means
to get it in the form in eq. (4.3.65), where it is expanded in terms of projectors built out of its
eigen-kets {|λi⟩}. The matrix representation in such a basis is purely diagonal ⟨λi |X|λj⟩ = λiδ

i
j.

Suppose you are given a Hermitian operator H in some orthonormal basis {|i⟩}, namely

H =
∑
i,j

|i⟩ Ĥ i
j ⟨j| =

∑
i,j

|i⟩ ⟨i |H| j⟩ ⟨j| . (4.3.66)

How does one go about diagonalizing it? Here is where the matrix algebra you are familiar with
comes in – recall the discussion leading up to eq. (3.2.39). By treating Ĥ i

j as a matrix, you can
find its eigenvectors and eigenvalues {λk}. Specifically, what you are solving for is the unitary

matrix Û j
k, whose kth column is the kth unit length eigenvector of Ĥ i

j, with eigenvalue λk:

Ĥ i
jÛ

j
k = λkÛ

j
k ⇔

∑
j

⟨i |H| j⟩ ⟨j|λk⟩ = λk ⟨i|λk⟩ , (4.3.67)

with

⟨i |H| j⟩ ≡ Ĥ i
j and ⟨j|λk⟩ ≡ Û j

k. (4.3.68)

In other words,

Ĥ i
j = (Ûdiag[λ1, . . . , λD]Û

†)ij

11See Wikipedia articles on the Stark and Zeeman effects for plots of the energy levels vs. electric/magnetic
field strengths.
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=
∑
k

⟨i|λk⟩λk ⟨λk| j⟩ . (4.3.69)

Once you have obtained the representation of the kth eigenket Û i
k = (⟨1|λk⟩ , ⟨2|λk⟩ , . . . , ⟨D|λk⟩)T,

you can then write the eigenket itself as

|λk⟩ =
∑
i

|i⟩ ⟨i|λk⟩ =
∑
i

|i⟩ Û i
k. (4.3.70)

The adjoint of the same eigenket is

⟨λk| =
∑
i

⟨λk| i⟩ ⟨i| =
∑
i

Û i
k ⟨i| =

∑
i

(Û †)ki ⟨i| . (4.3.71)

The operator H has now been diagonalized as

H =
∑
k

λk |λk⟩ ⟨λk| (4.3.72)

because according to eq. (4.3.69),

H =
∑
i,j

|i⟩ Ĥ i
j ⟨j| =

∑
i,j,a

|i⟩ ⟨i|λa⟩λa ⟨λa| j⟩ ⟨j| . (4.3.73)

Using the completeness relation in eq. (4.3.23) then leads us to eq. (4.3.72).
In summary, with the relations in eq. (4.3.68),

H =
∑
i,j

|i⟩ Ĥ i
j ⟨j| =

∑
k

λk |λk⟩ ⟨λk| (4.3.74)

=
∑
i,j,m,n

|i⟩ Û i
m (diag [λ1, . . . , λD])

m
n (Û

†)nj ⟨j| . (4.3.75)

This matrix algebra that guarantees every Hermitian matrix can be diagonalized through a
unitary transformation, Ĥ = Ûdiag[λ1, . . . , λD]Û

†, also amounts to a proof that all Hermitian
operators acting on finite dimensional vector spaces have a complete spectra – since, the columns
of Û are the (representation of) the orthonormal eigenbasis.

Problem 4.16. Consider a 2 dimension vector space with the orthonormal basis {|1⟩ , |2⟩}. The
operator H is defined through its actions:

H |1⟩ = a |1⟩+ ib |2⟩ , (4.3.76)

H |2⟩ = −ib |1⟩+ a |2⟩ ; (4.3.77)

where a and b are real numbers. Is H hermitian? What are its eigenvectors and eigenvalues?

Compatible observables Let X and Y be observables – aka Hermitian operators. We
shall define compatible observables to be ones where the operators commute,

[A,B] ≡ AB −BA = 0. (4.3.78)

They are incompatible when [A,B] ̸= 0. Finding the maximal set of mutually compatible set of
observables in a given physical system will tell us the range of eigenvalues that fully capture the
quantum state of the system. To understand this we need the following result.
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Theorem Suppose X and Y are observables – they are Hermitian operators.
Then X and Y are compatible (i.e., commute with each other) if and only if they
are simultaneously diagonalizable.

Proof We will provide the proof for the case where the spectrum of X is non-degenerate.
We have already stated earlier that if X is Hermitian we can expand it in its basis eigenkets.

X =
∑
a

a |a⟩ ⟨a| (4.3.79)

In this basis X is already diagonal. But what about Y ? Suppose [X, Y ] = 0. We consider, for
distinct eigenvalues a and a′ of X,

⟨a′ |[X, Y ]| a⟩ = ⟨a′ |XY − Y X| a⟩ = (a′ − a) ⟨a′ |Y | a⟩ = 0. (4.3.80)

Remember, all eigenvalues of X and Y are real because the operators are Hermitian; hence not
only X |a⟩ = a |a⟩ we also have ⟨a′|X = (X† |a′⟩)† = (X |a′⟩)† = (a′ |a′⟩)† = a′ ⟨a′|. From the
last equality, since a− a′ ̸= 0 by assumption, we must have ⟨a′ |Y | a⟩ = 0. That means the only
non-zero matrix elements are the diagonal ones ⟨a |Y | a⟩.12

We have thus shown [X, Y ] = 0⇒ X and Y are simultaneously diagonalizable. We now turn
to proving, if X and Y are simultaneously diagonalizable, then [X, Y ] = 0. That is, suppose

X =
∑
a,b

a |a, b⟩ ⟨a, b| and Y =
∑
a,b

b |a, b⟩ ⟨a, b| , (4.3.81)

13let’s compute the commutator

[X, Y ] =
∑

a,b,a′,b′

ab′ (|a, b⟩ ⟨a, b| a′, b′⟩ ⟨a′, b′| − |a′, b′⟩ ⟨a, b|) . (4.3.82)

Remember that eigenvectors corresponding to distinct eigenvalues are orthogonal, namely ⟨a, b| a′, b′⟩
is unity only when a = a′ and b = b′ simultaneously. This means we may discard the summation
over (a′, b′) and set a = a′ and b = b′ within the summand.

[X, Y ] =
∑
a,b

ab (|a, b⟩ ⟨a, b| − |a, b⟩ ⟨a, b| a, b⟩ ⟨a, b|) = 0. (4.3.83)

Problem 4.17. Assuming the spectrum of X is non-degenerate, show that the Y in the
preceding theorem can be expanded in terms of the eigenkets of X as

Y =
∑
a

|a⟩ ⟨a |Y | a⟩ ⟨a| . (4.3.84)

Read off the eigenvalues.
12If the spectrum of X were N -fold degenerate, {|a; i⟩ |i = 1, 2, . . . , N} with X |a; i⟩ = a |a; i⟩, to extend the

proof to this case, all we have to do is to diagonalize the N ×N matrix ⟨a; i |Y | a; j⟩. That this is always possible
is because Y is Hermitian. Within the subspace spanned by these {|a; i⟩}, X =

∑
i a |a; i⟩ ⟨a; i|+ . . . acts like a

times the identity operator, and will therefore definitely commute with Y .
13Remember, to say X or Y is diagonalized means it has been put in the form in eq. (4.3.65). To say both of

them have been simultaneously diagonalized therefore means they can be put in the form in eq. (4.3.65) using
the same set of eigenkets.
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Problem 4.18. Properties of Commutators Show that, for linear operators A, B, and
C, the following relations hold.

[AB,C] = A[B,C] + [A,C]B, (4.3.85)

[A,BC] = B[A,C] + [A,B]C, (4.3.86)

[A,B]† = −[A†, B†]; (4.3.87)

and

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (4.3.88)

If we have a collection of linear operators {A(i)|i = 1, 2, . . . ,M} and {B(i)|i = 1, 2, . . . , N},
explain why the commutator in linear in both slots, in that[

M∑
i=1

A(i),
N∑
j=1

B(j)

]
=

M∑
i=1

N∑
j=1

[
A(i), B(j)

]
. (4.3.89)

Uncertainty Relation If X and Y are incompatible observables, then they cannot be
simultaneously diagonalized. The product of their ‘variances’, however, can be shown to have a
lower limit provided by their commutator [X, Y ]. (Hence, if X and Y were compatible, namely
[X, Y ] = 0, this lower limit would become zero.) This is the celebrated uncertainty relation.
More precisely, we define the variance of an operator X with respect to a given state |ψ⟩ via the
relation 〈

ψ
∣∣∆X2

∣∣ψ〉 ≡ 〈ψ ∣∣(X − ⟨ψ |X|ψ⟩)2∣∣ψ〉 ; (4.3.90)

i.e., ∆X ≡ X − ⟨ψ |X|ψ⟩. Note that, since X is Hermitian and ⟨ψ |X|ψ⟩ is a real number; ∆X
(and, similarly, ∆Y ) is Hermitian.

From the Cauchy-Schwarz inequality of eq. (4.2.24), if we identify |α⟩ = ∆X |ψ⟩ and |β⟩ =
∆Y |ψ⟩, then 〈

ψ
∣∣∆X2

∣∣ψ〉 〈ψ ∣∣∆Y 2
∣∣ψ〉 ≥ | ⟨ψ |∆X∆Y |ψ⟩ |2. (4.3.91)

The product of two arbitrary operators A and B may be written as half of their commutator
plus half of their anti-commutator:

AB =
1

2
[A,B] +

1

2
{A,B} ; (4.3.92)

where the anti-commutator itself is defined as

{A,B} ≡ AB +BA. (4.3.93)

(If eq. (4.3.92) is not apparent, simply expand the right hand side.) Now, let us note that the
commutator of two observables is anti-Hermitian, in that

[∆X,∆Y ]† = (∆X∆Y )† − (∆Y∆X)† (4.3.94)
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= ∆Y∆X −∆X∆Y = − [∆X,∆Y ] . (4.3.95)

Whereas the anti-commutator of a pair of observables is itself an observable:

{∆X,∆Y }† = (∆X∆Y )† + (∆Y∆X)† (4.3.96)

= ∆Y∆X +∆X∆Y = {∆X,∆Y } . (4.3.97)

Additionally, if A† = ±A; then ⟨ψ |A|ψ⟩∗ =
〈
ψ
∣∣A†
∣∣ψ〉 = ±⟨ψ |A|ψ⟩.

The expectation value of a (anti-)Hermitian operator is purely (imaginary) real.

Altogether, we learn that the expectation value of eq. (4.3.92), when A = ∆X and B = ∆Y –
which reads

⟨ψ |∆X∆Y |ψ⟩ = 1

2
⟨ψ| [∆X,∆Y ] |ψ⟩+ 1

2
⟨ψ| {∆X,∆Y } |ψ⟩ , (4.3.98)

– consists of a purely imaginary portion (the commutator term) plus a purely real one (the
anti-commutator term). But since the modulus square of a complex number is the sum of the
square of its real and imaginary pieces,

| ⟨ψ |∆X∆Y |ψ⟩ |2 = 1

4
| ⟨ψ| [∆X,∆Y ] |ψ⟩ |2 + 1

4
| ⟨ψ| {∆X,∆Y } |ψ⟩ |2. (4.3.99)

Plugging this result back into eq. (4.3.91),〈
ψ
∣∣∆X2

∣∣ψ〉 〈ψ ∣∣∆Y 2
∣∣ψ〉 ≥ 1

4
| ⟨ψ| [∆X,∆Y ] |ψ⟩ |2 + 1

4
| ⟨ψ| {∆X,∆Y } |ψ⟩ |2. (4.3.100)

Note that [∆X,∆Y ] = [X + ⟨X⟩, Y + ⟨Y ⟩] = [X, Y ] because ⟨X⟩ and ⟨Y ⟩ are numbers, which
must commute with everything. Since the sum of two squares on the right hand side of eq.
(4.3.100) must certainly larger or equal to the first commutator term, we arrive at the famous
uncertainty relation 〈

ψ
∣∣∆X2

∣∣ψ〉 〈ψ ∣∣∆Y 2
∣∣ψ〉 ≥ 1

4
| ⟨ψ| [X, Y ] |ψ⟩ |2. (4.3.101)

Probabilities and Expectation value In the context of quantum theory, given a state
|α⟩ and an observable O, we may expand the former in terms of the orthonormal eigenkets {|λi⟩}
of the latter,

|α⟩ =
∑
i

|λi⟩ ⟨λi|α⟩ , O |λi⟩ = λi |λi⟩ . (4.3.102)

It is a postulate of quantum theory that the probability of obtaining a specific λj in an experiment
designed to observe O (which can be energy, spin, etc.) is given by | ⟨λj|α⟩ |2 = ⟨α|λi⟩ ⟨λi|α⟩;
if the spectrum is degenerate, so that there are N eigenkets {|λi; j⟩ |j = 1, 2, 3, . . . , N} corre-
sponding to λi, then the probability will be

P (λi) =
∑
j

⟨α|λi; j⟩ ⟨λi; j|α⟩ . (4.3.103)
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This is known as the Born rule.
The expectation value of some operator O with respect to some state |α⟩ is defined to be

⟨α |O|α⟩ . (4.3.104)

If O is Hermitian, then the expectation value is real, since

⟨α |O|α⟩∗ =
〈
α
∣∣O†∣∣α〉 = ⟨α |O|α⟩ . (4.3.105)

In the quantum context, because we may interpret O to be an observable, its expectation value
with respect to some state can be viewed as the average value of the observable – the result of
measuring it over N →∞ number of times. This can be seen by expanding |α⟩ in terms of the
eigenstates of O.

⟨α |O|α⟩ =
∑
i,j

⟨α|λi⟩ ⟨λi |O|λj⟩ ⟨λj|α⟩

=
∑
i,j

⟨α|λi⟩λi ⟨λi|λj⟩ ⟨λj|α⟩

=
∑
i

| ⟨α|λi⟩ |2λi =
∑
i

λiP (λi). (4.3.106)

The probability of finding λi is | ⟨α|λi⟩ |2, therefore the expectation value is an average. (In the
sum here, we assume a non-degenerate spectrum for simplicity; otherwise, simply include the
sum over all the relevant degenerate states.)

Suppose instead O is anti-Hermitian, O† = −O. Then we see its expectation value with
respect to some state |α⟩ is purely imaginary.

⟨α |O|α⟩∗ =
〈
α
∣∣O†∣∣α〉 = −⟨α |O|α⟩ (4.3.107)

Hellmann-Feynman Whenever the Hermitian operator A(α1, α2, . . . ) ≡ A(α⃗) depends on
a number of parameters {αi}, we expect its (unit-norm) eigenstates {|λ(α⃗)⟩} and eigenvalues
{λ(α⃗)} to also depend on them. We may express these eigenvalues through the expectation
value

λ(α⃗) = ⟨λ(α⃗) |A(α⃗)|λ(α⃗)⟩ . (4.3.108)

The result due to Hellmann and Feynman – which has applications in, say, the quantum me-
chanics of molecules – is that the derivative of this eigenvalue does not involve the derivatives
of the states, namely

∂λ(α⃗)

∂αi
=

〈
λ(α⃗)

∣∣∣∣∂A(α⃗)∂αi

∣∣∣∣λ(α⃗)〉 , i = 1, 2, 3, . . . . (4.3.109)

Proof A straightforward differentiation would confirm

∂αi
λ = (∂αi

⟨λ|)A |λ⟩+ ⟨λ|A∂αi
|λ⟩+ ⟨λ |∂αi

A|λ⟩ . (4.3.110)
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Keeping in mind ⟨λ|A = λ ⟨λ| and A |λ⟩ = λ |λ⟩, the result follows upon recognizing the unit-
norm character of the |λ⟩.

∂αi
λ = λ {(∂αi

⟨λ|) |λ⟩+ ⟨λ| ∂αi
|λ⟩}+ ⟨λ |∂αi

A|λ⟩
= λ∂αi

(⟨λ|λ⟩) + ⟨λ |∂αi
A|λ⟩

= λ∂αi
(1) + ⟨λ |∂αi

A|λ⟩ . (4.3.111)

Pauli matrices from their algebra. Before moving on to unitary operators, let us now
try to construct (up to a phase) the Pauli matrices in eq. (3.2.17). We assume the following.

� The {σi|i = 1, 2, 3} are Hermitian linear operators acting on a 2 dimensional vector space.

� They obey the algebra

σiσj = δijI+ i
∑
k

ϵijkσk. (4.3.112)

That this is consistent with the Hermitian nature of the {σi} can be checked by taking † on
both sides. We have (σiσj)† = σjσi on the left-hand-side; whereas on the right-hand-side
(δijI+ i

∑
k ϵ

ijkσk)† = δijI− iϵijkσk = δijI+ iϵjikσk = σjσi.

We begin by noting

[σi, σj] = (δij − δji)I+
∑
k

i(ϵijk − ϵjik)σk = 2i
∑
k

ϵijkσk. (4.3.113)

We then define the operators

σ± ≡ σ1 ± iσ2 ⇒ (σ±)† = σ∓; (4.3.114)

and calculate14

[σ3, σ±] = [σ3, σ1]± i[σ3, σ2] = 2iϵ312σ2 ± 2i2ϵ321σ1 (4.3.115)

= 2iσ2 ± 2σ1 = ±2(σ1 ± iσ2),

⇒ [σ3, σ±] = ±2σ±. (4.3.116)

Also,

σ∓σ± = (σ1 ∓ iσ2)(σ1 ± iσ2)

= (σ1)2 + (∓i)(±i)(σ2)2 ∓ iσ2σ1 ± iσ1σ2

= 2I± i(σ1σ2 − σ2σ1) = 2I± i[σ1, σ2] = 2I± 2i2ϵ123σ3

⇒ σ∓σ± = 2(I∓ σ3). (4.3.117)

σ3 and its Matrix representation. Suppose |λ⟩ is a unit norm eigenket of σ3. Using
σ3 |λ⟩ = λ |λ⟩ and (σ3)2 = I,

1 = ⟨λ|λ⟩ =
〈
λ
∣∣σ3σ3

∣∣λ〉 = (σ3 |λ⟩
)† (

σ3 |λ⟩
)
= λ2 ⟨λ|λ⟩ = λ2. (4.3.118)

14The commutator is linear in that [X,Y + Z] = X(Y + Z) − (Y + Z)X = (XY − Y X) + (XZ − ZX) =
[X,Y ] + [X,Z].
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We see immediately that the spectrum is at most λ± = ±1. (We will prove below that the vector
space is indeed spanned by both |±⟩.) Since the vector space is 2 dimensional, and since the
eigenvectors of a Hermitian operator with distinct eigenvalues are necessarily orthogonal, we see
that |±⟩ span the space at hand. We may thus say

σ3 = |+⟩ ⟨+| − |−⟩ ⟨−| , (4.3.119)

which immediately allows us to read off its matrix representation in this basis {|±⟩}, with
⟨+ |σ3|+⟩ being the top left hand corner entry:〈

j
∣∣σ3
∣∣ i〉 = [ 1 0

0 −1

]
. (4.3.120)

Observe that we could have considered ⟨λ |σiσi|λ⟩ for any i ∈ {1, 2, 3}; we are just picking
i = 3 for concreteness. In particular, we see from their algebraic properties that all three Pauli
operators σ1,2,3 have the same spectrum {+1,−1}. Moreover, since the σis do not commute, we
already know they cannot be simultaneously diagonalized.

Raising and lowering (aka Ladder) operators σ±, and σ1,2. Let us now consider

σ3σ± |λ⟩ = (σ3σ± − σ±σ3 + σ±σ3) |λ⟩
= ([σ3, σ±] + σ±σ3) |λ⟩ = (±2σ± + λσ±) |λ⟩
= (λ± 2)σ± |λ⟩ ⇒ σ± |λ⟩ = K±

λ |λ± 2⟩ , K±
λ ∈ C. (4.3.121)

This is why the σ± are often called raising/lowering operators: when applied to the eigenket
|λ⟩ of σ3 it returns an eigenket with eigenvalue raised/lowered by 2 relative to λ. This sort of
algebraic reasoning is important for the study of group representations; solving the energy levels
of the quantum harmonic oscillator and the Hydrogen atom15; and even the notion of particles
in quantum field theory.

What is the norm of σ± |λ⟩?〈
λ
∣∣σ∓σ±∣∣λ〉 = |K±

λ |
2 ⟨λ± 2|λ± 2⟩〈

λ
∣∣2(I∓ σ3)

∣∣λ〉 = |K±
λ |

2

2(1∓ λ) = |K±
λ |

2. (4.3.122)

This means we can solve K±
λ up to a phase

K±
λ = eiδ

(λ)
±
√

2(1∓ λ), λ ∈ {−1,+1}. (4.3.123)

Note that K+
+ = eiδ

(+)
+

√
2(1− (+1)) = 0, and K−

− = eiδ
(−)
−
√

2(1 + (−1)) = 0, which means

σ+ |+⟩ = 0, σ− |−⟩ = 0. (4.3.124)

We can interpret this as saying, there are no larger eigenvalues than +1 and no smaller than −1
– this is consistent with our assumption that we have a 2-dimensional vector space. Moreover,

K−
+ = eiδ

(+)
−
√

2(1 + (+1)) = 2eiδ
(+)
− and K+

− = eiδ
(−)
+

√
2(1− (−1)) = 2eiδ

(+)
− .

σ+ |−⟩ = 2eiδ
(−)
+ |+⟩ , σ− |+⟩ = 2eiδ

(+)
− |−⟩ . (4.3.125)

15For the H atom, the algebraic derivation of its energy levels involve the quantum analog of the classical
Laplace-Runge-Lenz vector.
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At this point, we have proved that the spectrum of σ3 has to include both |±⟩, because we can
get from one to the other by applying σ± appropriately. In other words, if |+⟩ exists, so does
|−⟩ ∝ σ− |+⟩; and if |−⟩ exists, so does |+⟩ ∝ σ+ |−⟩.

Also notice we have figured out how σ± acts on the basis kets (up to phases), just from
their algebraic properties. We may now turn this around to write them in terms of the basis
bras/kets:

σ+ = 2eiδ
(−)
+ |+⟩ ⟨−| , σ− = 2eiδ

(+)
− |−⟩ ⟨+| . (4.3.126)

Since (σ+)† = σ−, we must have δ
(−)
+ = −δ(+)

− ≡ δ.

σ+ = 2eiδ |+⟩ ⟨−| , σ− = 2e−iδ |−⟩ ⟨+| . (4.3.127)

with the corresponding matrix representations, with ⟨+ |σ±|+⟩ being the top left hand corner
entry: 〈

j
∣∣σ+
∣∣ i〉 = [ 0 2eiδ

0 0

]
,

〈
j
∣∣σ−∣∣ i〉 = [ 0 0

2e−iδ 0

]
. (4.3.128)

Now, we have σ± = σ1 ± iσ2, which means we can solve for

2σ1 = σ+ + σ−, 2iσ2 = σ+ − σ−. (4.3.129)

We have

σ1 = eiδ |+⟩ ⟨−|+ e−iδ |−⟩ ⟨+| , (4.3.130)

σ2 = −ieiδ |+⟩ ⟨−|+ ie−iδ |−⟩ ⟨+| , δ ∈ R, (4.3.131)

with matrix representations〈
j
∣∣σ1
∣∣ i〉 = [ 0 eiδ

e−iδ 0

]
,

〈
j
∣∣σ2
∣∣ i〉 = [ 0 −ieiδ

ie−iδ 0

]
. (4.3.132)

You can check explicitly that the algebra in eq. (4.3.112) holds for any δ. However, we can also
use the fact that unit normal eigenkets can be re-scaled by a phase and still remain unit norm
eigenkets.

σ3
(
eiθ |±⟩

)
= ±

(
eiθ |±⟩

)
,

(
eiθ |±⟩

)† (
eiθ |±⟩

)
= 1, θ ∈ R. (4.3.133)

We re-group the phases occurring within our σ3 and σ± as follows.

σ3 = (eiδ/2 |+⟩)(eiδ/2 |+⟩)† − (e−iδ/2 |−⟩)(e−iδ/2 |−⟩)†, (4.3.134)

σ+ = 2(eiδ/2 |+⟩)(e−iδ/2 |−⟩)†, σ− = 2(e−iδ/2 |−⟩)(eiδ/2 |+⟩)†. (4.3.135)

That is, if we re-define |±′⟩ ≡ e±iδ/2 |±⟩, followed by dropping the primes, we would have

σ3 = |+⟩ ⟨+| − |−⟩ ⟨−| , (4.3.136)

σ+ = 2 |+⟩ ⟨−| , σ− = 2 |−⟩ ⟨+| , (4.3.137)
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and again using σ1 = (σ1 + σ2)/2 and σ2 = −i(σ1 − σ2)/2,

σ1 = |+⟩ ⟨−|+ |−⟩ ⟨+| , (4.3.138)

σ2 = −i |+⟩ ⟨−|+ i |−⟩ ⟨+| , δ ∈ R. (4.3.139)

We see that the Pauli matrices in eq. (3.2.17) correspond to the matrix representations of σi in
the basis built out of the unit norm eigenkets of σ3, with an appropriate choice of phase.

Note that there is nothing special about choosing our basis as the eigenkets of σ3 – we could
have chosen the eigenkets of σ1 or σ2 as well. The analogous raising and lower operators can
then be constructed from the remaining σis.

Finally, for Û unitary we have already noted that det(Û σ̂iÛ †) = det σ̂i and Tr
[
Û σ̂iÛ †

]
=

Tr [σ̂i]. Therefore, if we choose Û such that Û σ̂iÛ † = diag(1,−1) – since we now know the
eigenvalues of each σ̂i are ±1 – we readily deduce that

det σ̂i = −1, Tr
[
σ̂i
]
= 0. (4.3.140)

(However, σ̂2σ̂iσ̂2 = −(σ̂i)∗ does not hold unless δ = 0.)

4.3.3 Unitary Operation as Change of Orthonormal Basis

A unitary operator U is one whose inverse is its adjoint, i.e.,

U †U = UU † = I. (4.3.141)

Like their Hermitian counterparts, unitary operators play a special role in quantum theory. At a
somewhat mundane level, they describe the change from one set of basis vectors to another. The
analog in Euclidean space is the rotation matrix. But when the quantum dynamics is invariant
under a particular change of basis – i.e., there is a symmetry enjoyed by the system at hand –
then the eigenvectors of these unitary operators play a special role in classifying the dynamics
itself. Also, in order to conserve probabilities, the time evolution operator, which takes an initial
wave function(nal) of the quantum system and evolves it forward in time, is in fact a unitary
operator itself.

Let us begin by understanding the action of a unitary operator as a change of basis vectors.
Up till now we have assumed we can always find an orthonormal set of basis vectors {|i⟩ |i =
1, 2, . . . , D}, for a D dimensional vector space. But just as in Euclidean space, this choice of basis
vectors is not unique – in 3-space, for instance, we can rotate {x̂, ŷ, ẑ} to some other {x̂′, ŷ′, ẑ′}
(i.e., redefine what we mean by the x, y and z axes). Hence, let us suppose we have found two
such sets of orthonormal basis vectors

{|1⟩ , . . . , |D⟩} and {|1′⟩ , . . . , |D′⟩} . (4.3.142)

(For concreteness the dimension of the vector space is D.) Remember a linear operator is defined
by its action on every element of the vector space; equivalently, by linearity and completeness,
it is defined by how it acts on each basis vector. We may thus define our unitary operator U via

U |i⟩ = |i′⟩ , i ∈ {1, 2, . . . , D}. (4.3.143)
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Its matrix representation in the unprimed basis {|i⟩} is gotten by projecting both sides along
|j⟩.

⟨j |U | i⟩ = ⟨j| i′⟩ , i, j ∈ {1, 2, . . . , D}. (4.3.144)

Is U really unitary? One way to verify this is through its matrix representation. We have

⟨j|U † |i⟩ = ⟨i|U |j⟩∗ = ⟨j′| i⟩ . (4.3.145)

Whereas U †U in matrix form is∑
k

⟨j|U † |k⟩ ⟨k|U |i⟩ =
∑
k

⟨k|U |j⟩∗ ⟨k|U |i⟩ (4.3.146)

=
∑
k

⟨k| i′⟩ ⟨k| j′⟩∗ =
∑
k

⟨j′| k⟩ ⟨k| i′⟩ . (4.3.147)

Because both {|k⟩} and {|k′⟩} form an orthonormal basis, we may invoke the completeness
relation eq. (4.3.23) to deduce∑

k

⟨j|U † |k⟩ ⟨k|U |i⟩ = ⟨j′| i′⟩ = δji . (4.3.148)

That is, we recover the unit matrix when we multiply the matrix representation of U † to that
of U .16 Since we have not made any additional assumptions about the two arbitrary sets of
orthonormal basis vectors, this verification of the unitary nature of U is itself independent of
the choice of basis.

Alternatively, let us observe that the U defined in eq. (4.3.143) can be expressed as

U =
∑
j

|j′⟩ ⟨j| . (4.3.149)

All we have to verify is U |i⟩ = |i′⟩ for any i ∈ {1, 2, 3, . . . , D}.

U |i⟩ =
∑
j

|j′⟩ ⟨j| i⟩ =
∑
j

|j′⟩ δji = |i′⟩ . (4.3.150)

The unitary nature of U can also be checked explicitly. Remember (|α⟩ ⟨β|)† = |β⟩ ⟨α|.

U †U =
∑
j

|j⟩ ⟨j′|
∑
k

|k′⟩ ⟨k|

=
∑
j,k

|j⟩ ⟨j′| k′⟩ ⟨k|

=
∑
j,k

|j⟩ δjk ⟨k| =
∑
j

|j⟩ ⟨j| = I. (4.3.151)

16Strictly speaking we have only verified that the left inverse of U is U†, but for finite dimensional matrices,
the left inverse is also the right inverse.
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The very last equality is just the completeness relation in eq. (4.3.23).
Starting from U defined in eq. (4.3.143) as a change-of-basis operator, we have shown U is

unitary whenever the old {|i⟩} and new {|i′⟩} basis are given. Turning this around – suppose U
is some arbitrary unitary linear operator, given some orthonormal basis {|i⟩} we can construct
a new orthonormal basis {|j′⟩} by defining

|i′⟩ ≡ U |i⟩ . (4.3.152)

All we have to show is that {|i′⟩} form an orthonormal set.

⟨j′| i′⟩ = (U |j⟩)† (U |i⟩) =
〈
j
∣∣U †U

∣∣ i〉 = ⟨j| i⟩ = δji . (4.3.153)

We may therefore pause to summarize our findings as follows.

A linear operator U implements a change-of-basis from the orthonormal set {|i⟩} to
some other (appropriately defined) orthonormal set {|i′⟩} if and only if U is unitary.

Change-of-basis of ⟨α| i⟩ Given a bra ⟨α|, we may expand it either in the new {⟨i′|} or
old {⟨i|} basis bras,

⟨α| =
∑
i

⟨α| i⟩ ⟨i| =
∑
i

⟨α| i′⟩ ⟨i′| . (4.3.154)

We can relate the components of expansions using ⟨i |U | k⟩ = ⟨i| k′⟩ (cf. eq. (4.3.144)),∑
k

⟨α| k′⟩ ⟨k′| =
∑
i

⟨α| i⟩ ⟨i|

=
∑
i,k

⟨α| i⟩ ⟨i| k′⟩ ⟨k′| =
∑
k

(∑
i

⟨α| i⟩ ⟨i |U | k⟩

)
⟨k′| . (4.3.155)

Equating the coefficients of ⟨k′| on the left and (far-most) right hand sides, we see the components

of the bra in the new basis can be gotten from that in the old basis using Û ,

⟨α| k′⟩ =
∑
i

⟨α| i⟩ ⟨i |U | k⟩ . (4.3.156)

In words: the ⟨α| row vector in the basis {⟨i′|} is equal to U , written in the basis {⟨j |U | i⟩},
acting (from the right) on the ⟨α| i⟩ row vector, the ⟨α| in the basis {⟨i|}. Moreover, in index
notation,

α̂k′ = α̂iÛ
i
k. (4.3.157)

Problem 4.19. Change-of-basis of ⟨i|α⟩ Given a vector |α⟩, and the orthonormal basis
vectors {|i⟩}, we can represent it as a column vector, where the ith component is ⟨i|α⟩. What
does this column vector look like in the basis {|i′⟩}? Show that it is given by the matrix
multiplication

⟨i′|α⟩ =
∑
k

〈
i
∣∣U †∣∣ k〉 ⟨k|α⟩ , U |i⟩ = |i′⟩ . (4.3.158)
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In words: the |α⟩ column vector in the basis {|i′⟩} is equal to U †, written in the basis {
〈
j
∣∣U †
∣∣ i〉},

acting (from the left) on the ⟨i|α⟩ column vector, the |α⟩ in the basis {|i⟩}.
Furthermore, in index notation,

α̂i
′
= (Û †)ikα̂

k. (4.3.159)

From the discussion on how components of bra(s) transform under a change-of-basis, together
the analogous discussion of linear operators below, you will begin to see why in index notation,
there is a need to distinguish between upper and lower indices – they transform oppositely from
each other.

Problem 4.20. 2D rotation in 3D. Let’s rotate the basis vectors of the 2D plane, spanned
by the x- and z-axis, by an angle θ. If |1⟩, |2⟩, and |3⟩ respectively denote the unit vectors along
the x, y, and z axes, how should the operator U(θ) act to rotate them? For example, since we
are rotating the 13-plane, U |2⟩ = |2⟩. (Drawing a picture may help.) Can you then write down
the matrix representation ⟨j |U(θ)| i⟩?

Problem 4.21. Consider a 2 dimension vector space with the orthonormal basis {|1⟩ , |2⟩}. The
operator U is defined through its actions:

U |1⟩ = 1√
2
|1⟩+ i√

2
|2⟩ , (4.3.160)

U |2⟩ = i√
2
|1⟩+ 1√

2
|2⟩ . (4.3.161)

Is U unitary? Solve for its eigenvectors and eigenvalues.

Change-of-basis of ⟨i |X| j⟩ Now we shall proceed to ask, how do we use U to change the
matrix representation of some linear operator X written in the basis {|i⟩} to one in the basis
{|i⟩′}? Starting from ⟨i′ |X| j′⟩ we insert the completeness relation eq. (4.3.23) in the basis {|i⟩},
on both the left and the right,

⟨i′ |X| j′⟩ =
∑
k,l

⟨i′| k⟩ ⟨k |X| l⟩ ⟨l| j′⟩

=
∑
k,l

〈
i
∣∣U †∣∣ k〉 ⟨k |X| l⟩ ⟨l |U | j⟩ = 〈i ∣∣U †XU

∣∣ j〉 , (4.3.162)

where we have recognized (from equations (4.3.144) and (4.3.145)) ⟨i′| k⟩ =
〈
i
∣∣U †
∣∣ k〉 and

⟨l| j′⟩ = ⟨l |U | j⟩. If we denote X̂ ′ as the matrix representation of X with respect to the primed

basis; and X̂ and Û as their corresponding operators with respect to the unprimed basis, we
recover the similarity transformation

X̂ ′ = Û †X̂Û . (4.3.163)

In index notation, with primes on the indices reminding us that the matrix is written in the
primed basis {|i′⟩} and the unprimed indices in the unprimed basis {|i⟩},

X̂ i′

j′ = (Û †)ikX̂
k
lÛ

l
j. (4.3.164)
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As already alluded to, we see here the i and j indices transform “oppositely” from each other – so
that, even in matrix algebra, if we view square matrices as (representations of) linear operators
acting on some vector space, then the row index i should have a different position from the
column index j so as to distinguish their transformation properties. This will allow us to readily
implement that fact, when upper and lower indices are repeated, the pair transform as a scalar
– for example, X i′

i′ = X i
i.
17

On the other hand, from the last equality of eq. (4.3.162), we may also view X̂ ′ as the matrix
representation of the operator

X ′ ≡ U †XU (4.3.165)

written in the old basis {|i⟩}. To reiterate,

⟨i′ |X| j′⟩ =
〈
i
∣∣U †XU

∣∣ j〉 . (4.3.166)

The next two theorems can be interpreted as telling us that the Hermitian/unitary nature of
operators and their spectra are really basis-independent constructs.

Theorem Let X ′ ≡ U †XU . If U is a unitary operator, X and X ′ shares the
same spectrum.

Proof Let |λ⟩ be the eigenvector and λ be the corresponding eigenvalue of X.

X |λ⟩ = λ |λ⟩ (4.3.167)

By inserting a I = UU † between X and |λ⟩; and multiplying both sides on the left by U †,

U †XUU † |λ⟩ = λU † |λ⟩ , (4.3.168)

X ′(U † |λ⟩) = λ(U † |λ⟩). (4.3.169)

That is, given the eigenvector |λ⟩ of X with eigenvalue λ, the corresponding eigenvector of X ′

is U † |λ⟩ with precisely the same eigenvalue λ.

Theorem. Let X ′ ≡ U †XU . Then X is Hermitian iff X ′ is Hermitian.
Moreover, X is unitary iff X ′ is unitary.

Proof If X is Hermitian, we consider X ′†.

X ′† =
(
U †XU

)†
= U †X†(U †)† = U †XU = X ′. (4.3.170)

If X is unitary we consider X ′†X ′.

X ′†X ′ =
(
U †XU

)†
(U †XU) = U †X†UU †XU = U †X†XU = U †U = I. (4.3.171)

17This issue of upper versus lower indices will also appear in differential geometry. Given a pair of indices that
transform oppositely from each other, we want them to be placed differently (upper vs. lower), so that when we
set their labels equal – with Einstein summation in force – they automatically transforms as a scalar, since the
pair of transformations will undo each other.
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Remark We won’t prove it here, but it is possible to find a unitary operator U , related to
rotation in R3, that relates any one of the Pauli operators to the other

U †σiU = σj, i ̸= j. (4.3.172)

This is consistent with what we have already seen earlier, that all the {σk} have the same
spectrum {−1,+1}.

Physical Significance To put the significance of these statements in a physical context,
recall the eigenvalues of an observable are possible outcomes of a physical experiment, while U
describes a change of basis. Just as classical observables such as lengths, velocity, etc. should not
depend on the coordinate system we use to compute the predictions of the underlying theory –
in the discussion of curved space(time)s we will see the analogy there is called general covariance
– we see here that the possible experimental outcomes from a quantum system is independent of
the choice of basis vectors we use to predict them. Also notice the very Hermitian and Unitary
nature of a linear operator is invariant under a change of basis.

Diagonalization of observable Diagonalization of a matrix is nothing but the change-of-
basis, expressing a linear operator X in some orthonormal basis {|i⟩} to one where it becomes
a diagonal matrix with respect to the orthonormal eigenket basis {|λ⟩}. That is, suppose you
started with

X =
∑
k

λk |λk⟩ ⟨λk| (4.3.173)

and defined the unitary operator

U |k⟩ = |λk⟩ ⇔ ⟨i |U | k⟩ = ⟨i|λk⟩ . (4.3.174)

Notice the kth column of Û i
k ≡ ⟨i |U | k⟩ are the components of the kth unit norm eigenvector

|λk⟩ written in the {|i⟩} basis. This implies, via two insertions of the completeness relation in
eq. (4.3.23),

X =
∑
i,j,k

λk |i⟩ ⟨i|λk⟩ ⟨λk| j⟩ ⟨j| . (4.3.175)

Taking matrix elements,

⟨i |X| j⟩ = X̂ i
j =

∑
k,l

⟨i|λk⟩λkδkl ⟨λl| j⟩ =
∑
k,l

Û i
kλkδ

k
l (Û

†)lj. (4.3.176)

Multiplying both sides by Û † on the left and Û on the right, we have

Û †X̂Û = diag(λ1, λ2, . . . , λD). (4.3.177)

Schur decomposition. Not all linear operators are diagonalizable. However, we already know
that any square matrix X̂ can be brought to an upper triangular form

Û †X̂Û = Γ̂ + N̂ , Γ̂ ≡ diag (λ1, . . . , λD) , (4.3.178)

where the {λi} are the eigenvalues of X and N̂ is strictly upper triangular. We may now phrase

the Schur decomposition as a change-of-basis from X̂ to its upper triangular form.
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Given a linear operator X, it is always possible to find an orthonormal basis such
that its matrix representation is upper triangular, with its eigenvalues forming its
diagonal elements.

Trace Earlier, we have already defined the trace of a linear operator X as

Tr [X] =
∑
i

⟨i |X| i⟩ , ⟨i| j⟩ = δij. (4.3.179)

The Trace yields a complex number.18 Let us now see that this definition is independent of
the orthonormal basis {|i⟩}. Suppose we found a different set of orthonormal basis {|i′⟩}, with
⟨i′| j′⟩ = δij. Now consider∑

i

⟨i′ |X| i′⟩ =
∑
i,j,k

⟨i′| j⟩ ⟨j |X| k⟩ ⟨k| i′⟩ =
∑
i,j,k

⟨k| i′⟩ ⟨i′| j⟩ ⟨j |X| k⟩

=
∑
j,k

⟨k| j⟩ ⟨j |X| k⟩ =
∑
k

⟨k |X| k⟩ . (4.3.180)

Because Tr is invariant under a change of basis, we can view the trace operation that turns
an operator into a genuine scalar. This notion of a scalar is analogous to the quantities (pres-
sure of a gas, temperature, etc.) that do not change no matter what coordinates one uses to
compute/measure them.

Problem 4.22. Prove the following statements. For linear operators X and Y , and unitary
operator U ,

Tr [XY ] = Tr [Y X] (4.3.181)

Tr
[
U †XU

]
= Tr [X] (4.3.182)

The second identity tells you Tr is a basis-independent operation.

Problem 4.23. Commutation Relations and Unitary Transformations The com-
mutation relations between linear operators underlie much of the algebraic analysis of quantum
systems exhibiting continuous symmetries.

Prove that commutation relations remain invariant under a change-of-basis. Specifically,
suppose a set of operators {Ai|i = 1, 2, . . . , N} obeys[

Ai, Aj
]
= if ijkAk (4.3.183)

for some constants {f ijk}; then under

A′i ≡ U †AiU, (4.3.184)

one obtains [
A′i, A′j] = if ijkA′k (4.3.185)

for the same f ijks. In actuality, U does not need to be unitary but merely invertible: namely, if
A′i ≡ U−1AiU , then eq. (4.3.185) still holds.

18Be aware that the trace may not make sense in an infinite dimensional continuous vector space.
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4.3.4 Additional Problems

Problem 4.24. If {|i⟩ |i = 1, 2, 3 . . . , D} is a set of orthonormal basis vectors, what is
Tr [|j⟩ ⟨k|], where j, k ∈ {1, 2, . . . , D}?

Problem 4.25. Verify the following Jacobi identity. For linear operators X, Y and Z,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (4.3.186)

Furthermore, verify that

[X, Y ] = −[Y,X], [X, Y + Z] = [X, Y ] + [X,Z], (4.3.187)

[X, Y Z] = [X, Y ]Z + Y [X,Z]. (4.3.188)

The Jacobi identity appears not only within the context of Linear Algebra (the generators of
continuous symmetries obey it, for e.g.); it also appears in differential geometry, leading to one
of the Bianchi identities obeyed by the Riemann curvature tensor.

Problem 4.26. Find the unit norm eigenvectors that can be expressed as a linear combi-
nation of |1⟩ and |2⟩, and their corresponding eigenvalues, of the operator

X ≡ a (|1⟩ ⟨1| − |2⟩ ⟨2|+ |1⟩ ⟨2|+ |2⟩ ⟨1|) . (4.3.189)

Assume that |1⟩ and |2⟩ are orthogonal and of unit norm. (Hint: First calculate the matrix
⟨j |X| i⟩.)

Now consider the operators built out of the orthonormal basis vectors {|i⟩ |i = 1, 2, 3}.

Y ≡ a (|1⟩ ⟨1| − |2⟩ ⟨2| − |3⟩ ⟨3|) , (4.3.190)

Z ≡ b |1⟩ ⟨1| − ib |2⟩ ⟨3|+ ib |3⟩ ⟨2| .

(In equations (4.3.189) and (4.3.190), a and b are real numbers.) Are Y and Z hermitian? Write
down their matrix representations. Verify [Y, Z] = 0 and proceed to simultaneously diagonalize
Y and Z.

Problem 4.27. Pauli matrices re-visited. Refer to the Pauli matrices {σµ} defined in
eq. (3.2.17). Let pµ be a 4-component collection of real numbers. We may then view pµσ

µ (where
µ sums over 0 through 3) as a Hermitian operator acting on a 2 dimensional vector space.

1. Show that the eigenvalues λ± and corresponding unit norm eigenvectors ξ± of piσ
i (where

i sums over 1 through 3) are

ξ+A =

(
e−iϕp cos

[
θp
2

]
, sin

[
θp
2

])T

(4.3.191)

=
1√
2

√
1− p3
|p⃗|

(
|p⃗|+ p3
p1 + ip2

, 1

)T

ξ−A =

(
−e−iϕp sin

[
θp
2

]
, cos

[
θp
2

])T

(4.3.192)
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=
1√
2

√
1 +

p3
|p⃗|

(
− |p⃗| − p3
p1 + ip2

, 1

)T

.

where we have employed spherical coordinates

pi ≡ p (sin θp cosϕp, sin θp sinϕp, cos θp) . (4.3.193)

These are called the helicity eigenstates – eigenstates of spin along the ‘momentum’ pi.
Are they also eigenstates of pµσ

µ? (Hint: consider [piσ
i, pµσ

µ].)

2. Explain why

piσ̂
i = λ+ξ

+(ξ+)† + λ−ξ
−(ξ−)†. (4.3.194)

Can you write down the analogous expansion for pµσ̂
µ?

3. If we define the square root of an operator or matrix
√
A as the solution to

√
A
√
A = A,

write down the expansion for
√
pµσ̂µ.

4. These 2 component spinors ξ± play a key role in the study of Lorentz symmetry in 4 space-
time dimensions. Consider applying an invertible transformation L B

A on these spinors, i.e.,
replace

(ξ±)A → L B
A (ξ±)B. (4.3.195)

(The A and B indices run from 1 to 2, the components of ξ±.) How does pµσ̂
µ change

under such a transformation? And, how does its determinant change?

Problem 4.28. Change-of-non-orthonormal-basis Not all change-of-basis involves a
switch from one orthonormal set to another. Let us begin with the orthonormal basis {|i⟩} but
switch to a non-orthonormal one {|i′⟩} and define the change-of-basis operator S by specifying

the expansion coefficients {Ŝij} in

S |i⟩ =
∑
j

|j⟩ Ŝji ≡ |i′⟩ . (4.3.196)

Explain why Ŝij = ⟨i |S| j⟩ is still ⟨i| j′⟩. (Compare with eq. (4.3.145).) On the other hand,

since S is no longer unitary, its matrix representation Ŝ is no longer a unitary matrix. Show,
however, that the inverse transformation is directly related to the inverse matrix, which obeys
Ŝ−1Ŝ = I:

|i⟩ =
∑
j

|j′⟩
(
Ŝ−1

)j
i
. (4.3.197)
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19As a concrete problem, let us perform the following change-of-basis, for θ ̸= ϕ:

S |1⟩ = cos(θ) |1⟩+ sin(θ) |2⟩ ≡ |1′⟩ , (4.3.198)

S |2⟩ = − sin(ϕ) |1⟩+ cos(ϕ) |2⟩ ≡ |2′⟩ . (4.3.199)

Solve Ŝ−1 and find |1⟩ and |2⟩ in terms of {|1′⟩ , |2′⟩}.

Problem 4.29. Schrödinger’s Equation and Dyson Series The primary equation in
quantum mechanics (and quantum field theory), governing how states evolve in time, is

iℏ∂t |ψ(t)⟩ = H |ψ(t)⟩ , (4.3.200)

where ℏ ≈ 1.054572 × 10−34 J s is the reduced Planck’s constant, and H is the Hamiltonian
(≡ Hermitian total energy linear operator) of the system. The physics of a particular system is
encoded within H.

Suppose H is independent of time, and suppose its orthonormal eigenkets {|Ei;nj⟩} are
known (nj being the degeneracy label, running over all eigenkets with the same energy Ej), with
H |Ei;ni⟩ = Ei |Ei;ni⟩ and {Ei ∈ R}, where we will assume the energies are discrete. Show that
the solution to Schrödinger’s equation in (4.3.200) is

|ψ(t)⟩ =
∑
j,nj

e−(i/ℏ)Ejt |Ej;nj⟩ ⟨Ej;nj|ψ(t = 0)⟩ , (4.3.201)

where |ψ(t = 0)⟩ is the initial condition, i.e., the state |ψ(t)⟩ at t = 0. (Hint: Check that eq.
(4.3.200) and the initial condition are satisfied.) Since the initial state was arbitrary, what you
have verified is that the operator

U(t, t′) ≡
∑
j,nj

e−(i/ℏ)Ej(t−t′) |Ej;nj⟩ ⟨Ej;nj| (4.3.202)

obeys Schrödinger’s equation,

iℏ∂tU(t, t′) = HU(t, t′). (4.3.203)

Is U(t, t′) unitary? Explain what is the operator U(t = t′)?
Express the expectation value ⟨ψ(t) |H|ψ(t)⟩ in terms of the energy eigenkets and eigenvalues.

Compare it with the expectation value ⟨ψ(t = 0) |H|ψ(t = 0)⟩.
Time-Dependent Hamiltonian What if the Hamiltonian in Schrödinger’s equation

depends on time – what is the corresponding U? Consider the following (somewhat formal)
solution for U .

U(t, t′) ≡ I− i

ℏ

∫ t

t′
dτ1H(τ1) +

(
− i
ℏ

)2 ∫ t

t′
dτ2

∫ τ2

t′
dτ1H(τ2)H(τ1) + . . . (4.3.204)

19Note that our discussion implicitly assumes Ŝ−1 exists, for otherwise we are not performing a faithful co-
ordinate transformation but discarding information about the vector space. As a simple 2D example, we could
define S |1⟩ = |1⟩ ≡ |1′⟩ and S |2⟩ = |1⟩ ≡ |2′⟩ but this basically collapses the 2-dimensional vector space to a

1-dimensional one – i.e., we ‘lose information’ and Ŝ−1 most certainly does not exist.
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= I+
∞∑
ℓ=1

Iℓ(t, t′), (4.3.205)

where the ℓ-nested integral Iℓ(t, t′) is

Iℓ(t, t′) ≡
(
− i
ℏ

)ℓ ∫ t

t′
dτℓ

∫ τℓ

t′
dτℓ−1· · ·

∫ τ3

t′
dτ2

∫ τ2

t′
dτ1H(τℓ)H(τℓ−1) . . . H(τ2)H(τ1). (4.3.206)

Remark Be aware that, if the Hamiltonian H(t) depends on time, it may not commute with
itself at different times, namely one cannot assume [H(τ1), H(τ2)] = 0 if τ1 ̸= τ2; hence, the
order of H in eq. (4.3.206) is important. Furthermore, this time-dependent Dyson series is often
phrased in the following ‘time-ordered’ form:

U(t, t′) = T exp

(
− i
ℏ

∫ t

t′
H(τ)dτ

)
, (4.3.207)

where, upon Taylor expansion, the (−i/ℏ)ℓ term (for ℓ ≥ 0) in the ensuing T−ordered product
is given by eq. (4.3.206).

Verify that, for t > t′,

iℏ∂tU(t, t′) = H(t)U(t, t′). (4.3.208)

What is U(t = t′)? You should be able to conclude that |ψ(t)⟩ = U(t, t′) |ψ(t′)⟩. Hint: Start
with iℏ∂tIℓ(t, t′) and employ Leibniz’s rule:

d

dt

(∫ β(t)

α(t)

F (t, z)dz

)
=

∫ β(t)

α(t)

∂F (t, z)

∂t
dz + F (t, β(t)) β′(t)− F (t, α(t))α′(t). (4.3.209)

Bonus Question 1: Can you prove Leibniz’s rule, by say, using the limit definition of the deriva-
tive?
Bonus Question 2: Can you prove that U(t, t′) associated with such a time-dependent H is still
unitary?

Problem 4.30. Dyson Series: Matrix Version A very similar problem to Problem
(4.29) is given by the first order matrix equation

∂tÂ(t) = B̂(t), (4.3.210)

with the initial condition

Â(t = t′) = Â0. (4.3.211)

Here, Â, B̂ and Â0 are D ×D matrices. Argue that the solution is

Â(t ≥ t′) = T exp

(∫ t

t′
B̂(τ)dτ

)
Â0 (4.3.212)

= Â0 +
+∞∑
ℓ=1

∫ t

t′
dτℓ

∫ τℓ

t′
dτℓ−1· · ·

∫ τ3

t′
dτ2

∫ τ2

t′
dτ1B̂(τℓ)B̂(τℓ−1) . . . B̂(τ2)B̂(τ1)Â0. (4.3.213)

In the second line, the ordering of the matrices is important: from the earliest B̂ on the rightmost,
to the latest B̂ at the leftmost – i.e., τℓ > τℓ−1 > · · · > τ2 > τ1.

Problem 4.31. If an operator A is simultaneously unitary and Hermitian, what is A? Hint:
Diagonalize it first.
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4.4 Tensor Products of Vector Spaces

In this section we will introduce the concept of a tensor product. It is a way to “multiply” vector
spaces, through the product ⊗, to form a larger vector space. Tensor products not only arise in
quantum theory but is present even in classical electrodynamics, gravitation and field theories of
non-Abelian gauge fields interacting with spin−1/2 matter. In particular, tensor products arise
in quantum theory when you need to, for example, simultaneously describe both the spatial
wave-function and the spin of a particle.

Definition To set our notation, let us consider multiplying N ≥ 2 distinct vector spaces,
i.e., V1 ⊗ V2 ⊗ · · · ⊗ VN to form a VL. We write the tensor product of a vector |α1; 1⟩ from V1,
|α2; 2⟩ from V2 and so on through |αN ;N⟩ from VN as

|A;L⟩ ≡ |α1; 1⟩ ⊗ |α2; 2⟩ ⊗ · · · ⊗ |αN ;N⟩ , (4.4.1)

where it is understood the vector |αi; i⟩ in the ith slot (from the left) is an element of the ith
vector space Vi. As we now see, the tensor product is multi-linear because it obeys the following
algebraic rules.

1. The tensor product is distributive over addition. For example,

|α⟩ ⊗ (|α′⟩+ |β′⟩)⊗ |α′′⟩ = |α⟩ ⊗ |α′⟩ ⊗ |α′′⟩+ |α⟩ ⊗ |β′⟩ ⊗ |α′′⟩ . (4.4.2)

2. Scalar multiplication can be factored out. For example,

c (|α⟩ ⊗ |α′⟩) = (c |α⟩)⊗ |α′⟩ = |α⟩ ⊗ (c |α′⟩). (4.4.3)

Our larger vector space VL is spanned by all vectors of the form in eq. (4.4.1), meaning every
vector in VL can be expressed as a linear combination:

|A′;L⟩ ≡
∑

α1,...,αN

Cα1,...,αN |α1; 1⟩ ⊗ |α2; 2⟩ ⊗ · · · ⊗ |αN ;N⟩ ∈ VL. (4.4.4)

(The Cα1,...,αN is just a collection complex numbers.) In fact, if we let {|i; j⟩ |i = 1, 2, . . . , Dj}
be the basis vectors of the jth vector space Vj,

|A′;L⟩ =
∑

α1,...,αN

∑
i1,...,iN

Cα1,...,αN ⟨i1; 1|α1⟩ ⟨i2; 2|α2⟩ . . . ⟨iN ;N |αN⟩

× |i1; 1⟩ ⊗ |i2; 2⟩ ⊗ · · · ⊗ |iN ;N⟩ . (4.4.5)

In other words, the basis vectors of this tensor product space VL are formed from products of
the basis vectors from each and every vector space {Vi}.

Dimension If the ith vector space Vi has dimension Di, then the dimension of VL itself
is D1D2 . . . DN−1DN . The reason is, for a given tensor product |i1; 1⟩ ⊗ |i2; 2⟩ ⊗ · · · ⊗ |iN ;N⟩,
there are D1 choices for |i1; 1⟩, D2 choices for |i2; 2⟩, and so on.

Example Suppose we tensor two copies of the 2-dimensional vector space that the Pauli
operators {σi} act on. Each space is spanned by |±⟩. The tensor product space is then spanned
by the following 4 vectors

|1;L⟩ = |+⟩ ⊗ |+⟩ , |2;L⟩ = |+⟩ ⊗ |−⟩ , (4.4.6)
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|3;L⟩ = |−⟩ ⊗ |+⟩ , |4;L⟩ = |−⟩ ⊗ |−⟩ . (4.4.7)

(Note that this ordering of the vectors is of course not unique.) In particular, an arbitrary state
takes the form

|A;L⟩ = C++ |+⟩ ⊗ |+⟩+ C+− |+⟩ ⊗ |−⟩+ C−+ |−⟩ ⊗ |+⟩+ C−− |−⟩ ⊗ |−⟩ . (4.4.8)

Adjoint and Inner Product Just as we can form tensor products of kets, we can do so
for bras. We have

(|α1⟩ ⊗ |α2⟩ ⊗ · · · ⊗ |αN⟩)† = ⟨α1| ⊗ ⟨α2| ⊗ · · · ⊗ ⟨αN | , (4.4.9)

where the ith slot from the left is a bra from the ith vector space Vi. We also have the inner
product

(⟨α1| ⊗ ⟨α2| ⊗ · · · ⊗ ⟨αN |) (c |β1⟩ ⊗ |β2⟩ ⊗ · · · ⊗ |βN⟩+ d |γ1⟩ ⊗ |γ2⟩ ⊗ · · · ⊗ |γN⟩)
= c ⟨α1| β1⟩ ⟨α2| β2⟩ . . . ⟨αN | βN⟩+ d ⟨α1| γ1⟩ ⟨α2| γ2⟩ . . . ⟨αN | γN⟩ , (4.4.10)

where c and d are complex numbers. For example, the orthonormal nature of the {|i1; 1⟩⊗ · · ·⊗
|iN ;N⟩} follow from

(⟨j1; 1| ⊗ · · · ⊗ ⟨jN ;N |) (|i1; 1⟩ ⊗ · · · ⊗ |iN ;N⟩) = ⟨j1; 1| i1; 1⟩ ⟨j2; 2| i2; 2⟩ . . . ⟨jN ;N | iN ;N⟩
= δj1i1 . . . δ

jN
iN
. (4.4.11)

Linear Operators If Xi is a linear operator acting on the ith vector space Vi, we can form
a tensor product of them. Their operation is defined as

(X1 ⊗X2 ⊗ · · · ⊗XN) (c |β1⟩ ⊗ |β2⟩ ⊗ · · · ⊗ |βN⟩+ d |γ1⟩ ⊗ |γ2⟩ ⊗ · · · ⊗ |γN⟩) (4.4.12)

= c(X1 |β1⟩)⊗ (X2 |β2⟩)⊗ · · · ⊗ (XN |βN⟩) + d(X1 |γ1⟩)⊗ (X2 |γ2⟩)⊗ · · · ⊗ (XN |γN⟩),

where c and d are complex numbers.
The most general linear operator Y acting on our tensor product space VL can be built out

of the basis ket-bra operators.

Y =
∑

i1,...,iN
j1,...,jN

|i1; 1⟩ ⊗ · · · ⊗ |iN ;N⟩Ŷ i1...iN
j1...jN

⟨j1; 1| ⊗ · · · ⊗ ⟨jN ;N | , (4.4.13)

Ŷ i1...iN
j1...jN

∈ C. (4.4.14)

Due to the orthonormality condition in eq. (4.4.11), the action of Y on an arbitrary state

|B⟩ =
∑
i1...iN

B̂i1...iN |i1; 1⟩ ⊗ · · · ⊗ |iN ;N⟩ (4.4.15)

reads

Y |B⟩ =
∑

i1,...,iN
j1,...,jN

|i1; 1⟩ ⊗ · · · ⊗ |iN ;N⟩ Ŷ i1...iN
j1...jN

B̂j1...jN . (4.4.16)
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Problem 4.32. Tensor transformations Consider the state

|A′;L⟩ =
∑

1≤i1≤D1

∑
1≤i2≤D2

· · ·
∑

1≤iN≤DN

T i1i2...iN−1iN |i1; 1⟩ ⊗ |i2; 2⟩ ⊗ · · · ⊗ |iN ;N⟩ , (4.4.17)

where {|ij; j⟩} are the Dj orthonormal basis vectors spanning the jth vector space Vj, and
T i1i2...iN−1iN are complex numbers. Consider a change of basis for each vector space, i.e., |i; j⟩ →
|i′; j⟩. By defining the unitary operator that implements this change-of-basis

U ≡ (1)U ⊗ (2)U ⊗ · · · ⊗ (N)U, (4.4.18)

(i)U ≡
∑

1≤j≤Di

|j′; i⟩ ⟨j; i| , (4.4.19)

expand |A′;L⟩ in the new basis {|j′1; 1⟩ ⊗ · · · ⊗ |j′N ;N⟩}; this will necessarily involve the U †’s.
Define the coefficients of this new basis via

|A′;L⟩ =
∑

1≤i′1≤D1

∑
1≤i′2≤D2

· · ·
∑

1≤i′N≤DN

T ′i′1i′2...i′N−1i
′
N |i′1; 1⟩ ⊗ |i′2; 2⟩ ⊗ · · · ⊗ |i′N ;N⟩ . (4.4.20)

Now relate T ′i′1i′2...i′N−1i
′
N to the coefficients in the old basis T i1i2...iN−1iN using the matrix elements(

(i)Û
†
)j
k
≡
〈
j; i
∣∣∣( (i)U

)†∣∣∣ k; i〉 . (4.4.21)

Can you perform a similar change-of-basis for the following dual vector?

⟨A′;L| =
∑

1≤i1≤D1

∑
1≤i2≤D2

· · ·
∑

1≤iN≤DN

Ti1i2...iN−1iN ⟨i1; 1| ⊗ ⟨i2; 2| ⊗ · · · ⊗ ⟨iN ;N | (4.4.22)

In differential geometry, tensors will transform in analogous ways.

Problem 4.33. Product Rule Suppose the collection of states {|ψi(t)⟩ |i = 1, 2, . . . , N}
depend on the real parameter t. Explain why the product rule of differentiation holds for their
tensor product.

∂t

(
|ψ1(t)⟩ ⊗ |ψ2(t)⟩ ⊗ · · · ⊗ |ψN(t)⟩

)
= (∂t |ψ1(t)⟩)⊗ |ψ2(t)⟩ ⊗ · · · ⊗ |ψN(t)⟩+ |ψ1(t)⟩ ⊗ (∂t |ψ2(t)⟩)⊗ · · · ⊗ |ψN(t)⟩

+ · · ·+ |ψ1(t)⟩ ⊗ |ψ2(t)⟩ ⊗ · · · ⊗ (∂t |ψN(t)⟩). (4.4.23)

4.5 ⋆Wedge Products & Determinants as Volumes of N−Parallelepipeds
In this section, we shall understand why the volume of an arbitrary N dimensional parallelepiped
in a (D ≥ 2)−dimensional flat space, is intimately connected to both the notion of a wedge
product and to matrix determinants. The material of this section also serves as a warm up to
the discussion of infinitesimal volumes and differential forms in Chapters (9) and (11) below.
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N−Parallelepipeds: Definition A N−parallelepiped is defined by N vectors. Let us
define it iteratively, starting in 2D. There, a parallelepiped is simply a parallelogram, which in
turn is defined by specifying two vectors v⃗1 and v⃗2 – i.e., one pair of parallel lines are specified
by v⃗1; and another pair by v⃗2. By geometry, we note that the volume (aka area) of such a 2D
parallelogram is simply the length of the first vector |v⃗1| multiplied by the perpendicular height
of the other |v⃗⊥2 |; where v⃗⊥2 is v⃗2 with its component parallel to v⃗1 subtracted out,

v⃗⊥2 ≡ v⃗2 −
(
v⃗2 ·

v⃗1
|v⃗1|

)
v⃗1
|v⃗1|

. (4.5.1)

A quick calculation verifies v⃗⊥2 is perpendicular to v⃗1:

v⃗⊥2 · v⃗1 = v⃗2 · v⃗1 −
(
v⃗2 ·

v⃗1
|v⃗1|

)
v⃗21
|v⃗1|

= 0; (4.5.2)

and therefore, via a direct calculation,

|v⃗1|2|v⃗⊥2 |2 = |v⃗1|2
(
|v⃗2|2 −

(v⃗2 · v⃗1)2

|v⃗1|2

)
= |v⃗1|2|v⃗2|2 sin(θ)2 (4.5.3)

=
(
v
[1
1 v

2]
2

)2
(4.5.4)

=
(
det
[
v⃗1 v⃗2

]
2×2

)2
=

∣∣∣∣(v⃗10
)
×
(
v⃗2
0

)∣∣∣∣2 . (4.5.5)

The θ is the angle between v⃗1 and v⃗2; namely

cos θ ≡ v⃗1 · v⃗2
|v⃗1||v⃗2|

. (4.5.6)

We could also have defined the 2D volume to be the length of the second vector |v⃗2| multiplied
by the perpendicular height of the first vector |v⃗⊥1 |, where

v⃗⊥1 ≡ v⃗1 −
(
v⃗1 ·

v⃗2
|v⃗2|

)
v⃗2
|v⃗2|

, v⃗⊥1 · v⃗2 = 0. (4.5.7)

(Drawing a figure helps, if such a projection process is unfamiliar.) One may readily that that
these two definitions yield the same answer.

A 3D parallelepiped is a ‘volume-of-translation’, generated by a 2D parallelepiped (formed
by, say, v⃗1 and v⃗2) translated along a third vector v⃗3 not lying within the plane containing v⃗1 and
v⃗2. (If v⃗3 does lie in the plane, the ‘volume-of-translation’ remains a 2D plane, and the associated
3D volume would be zero.) By geometry, this 3D parallelepiped has volume given by the 2D one
built from v⃗1 and v⃗2, multiplied by the perpendicular height of v⃗3 from the 2D parallelepiped.
From vector calculus, since v⃗1× v⃗2 not only has length equal to the 2D parallelogram spanned by
v⃗1 and v⃗2, it is also perpendicular to it. This in turn tells us the 3D parallelepiped has volume
that can be expressed through

|(v⃗1 × v⃗2) · v⃗3| = (Area of 2D parallelogram spanned by v⃗1 and v⃗2) |v⃗⊥3 |, (4.5.8)
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=
∣∣∣det [ v⃗1 v⃗2 v⃗3

]
3×3

∣∣∣ (4.5.9)

|v⃗⊥3 | ≡
|(v⃗1 × v⃗2) · v⃗3|
|v⃗1 × v⃗2|

. (4.5.10)

The generalization of this 2D → 3D parallelepiped process may be iterated as many times as
desired. Suppose an N ≥ 2 dimensional parallelepiped has already been defined by the vectors
v⃗1 through v⃗N . Then an N + 1 dimensional parallelepiped may be created as a ‘volume-of-
translation’ by translating this N dimensional parallelepiped along some vector v⃗N+1 not lying
within the N dimensional space spanned by the v⃗1 through v⃗N .

The primary issue is: how do we compute the volume of an arbitrary parallelepiped, when
its dimension is greater than 3? Our method of choice is by invoking the wedge product.

Wedge Product As we shall see, the wedge product ∧ allows us to compute the volume
of the N−parallelepiped, regardless of the dimension of the ambient space; this is in contrast to
the formulas in equations (4.5.5) and (4.5.9), where the vectors have the same dimension as the
ambient space.

The N−wedge product is a multi-linear fully anti-symmetric object, and exists in any number
of dimensions higher than 1. It has the following defining properties, which will turn out to be
very similar in spirit to those of the Levi-Civita symbol.

� The first key property of ∧ is its anti-symmetry; for any two vectors v⃗1 and v⃗2 in D ≥ 2
dimensions, we define

v⃗1 ∧ v⃗2 = −v⃗2 ∧ v⃗1. (4.5.11)

Extending this definition to arbitrary number of vectors {v⃗L|L = 1, 2, . . . , N |N ≤ D}, we
simply demand the wedge product be fully anti-symmetric:

v⃗L1 ∧ . . . v⃗Li
∧ · · · ∧ v⃗Lj

∧ · · · ∧ v⃗LN
= −v⃗L1 ∧ . . . v⃗Lj

∧ · · · ∧ v⃗Li
∧ · · · ∧ v⃗LN

, (4.5.12)

where the {L1, . . . ,LN} are a permutation of {1, . . . , N}. If N > D, note that this wedge
product is automatically zero – can you explain why?

� The second property is linearity in every ‘slot’. If w⃗ = α1w⃗1 + α2w⃗2 for scalars α1,2 and
vectors w⃗1,2, then for an arbitrary wedge product,

v⃗1 ∧ · · · ∧ w⃗ ∧ · · · ∧ v⃗N = v⃗1 ∧ · · · ∧ (α1w⃗1 + α2w⃗2) ∧ · · · ∧ v⃗N (4.5.13)

= α1v⃗1 ∧ · · · ∧ w⃗1 ∧ · · · ∧ v⃗N + α2v⃗1 ∧ · · · ∧ w⃗2 ∧ · · · ∧ v⃗N .

� The wedge product is associative; for example

v⃗1 ∧ v⃗2 ∧ v⃗3 = (v⃗1 ∧ v⃗2) ∧ v⃗3 = v⃗1 ∧ (v⃗2 ∧ v⃗3). (4.5.14)

� The final property is, whenever we are dealing with orthonormal vectors {êL|L = 1, 2, . . . , N}
with N less than or equal to D, their wedge product will be identified – up to a ± sign
– with the volume of a unit cube in the N dimensions spanned by these vectors. For
instance, in 2D, if ê1 ≡ (1, 0) and ê2 ≡ (0, 1),

ê1 ∧ ê2 ≡ ‘right-handed’ square defined by
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the vertices (0, 0), (1, 0), (1, 1), (1, 0). (4.5.15)

Whereas

ê2 ∧ ê1 = −ê1 ∧ ê2
≡ ‘left-handed’ square defined by the vertices (0, 0), (0, 1), (1, 1), (0, 1). (4.5.16)

These ê1 and ê2 may actually reside in higher dimensions too – the definitions do not
really change, except we now have to insert additional zeroes to their components. For
example, in 5D, ê1 and ê2 may read instead (0, 0, 1, 0, 0) and (0, 0, 0, 0, 1); then ê1∧ ê2 is the
‘right-handed’ unit square defined by (0, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 1, 0, 1), (0, 0, 0, 0, 1);
and ê2 ∧ ê1 = −ê1 ∧ ê2 is the ‘left-handed’ one.

More generally, D ≥ 2 dimensions, we may have N ≤ D orthonormal vectors {êL|L =
1, 2, . . . , N} such that

ê1 ∧ · · · ∧ êN (4.5.17)

describes a unit N−dimensional cube. Swapping any pair of these vectors, say êi ↔ êj for
i ̸= j and i, j = 1, . . . , N , amounts to switching orientations; i.e., from a left-handed to a
right-handed cube or vice-versa.

Problem 4.34. As a start, show that in 2D space spanned by the orthonormal ê1,2,

v⃗1 ∧ v⃗2 = (v11v
2
2 − v21v12)ê1 ∧ ê2. (4.5.18)

Then show that in 3D space spanned by the orthonormal ê1,2,3,

v⃗1 ∧ v⃗2 ∧ v⃗3 = {(v⃗1 × v⃗2) · v⃗3} ê1 ∧ ê2 ∧ ê3. (4.5.19)

The coefficients of ê1 ∧ ê2 and ê1 ∧ ê2 ∧ ê3 tell us, the wedge product does in fact recover the
volume of the 2D parallelogram and 3D parallelepiped that we worked out using geometric
considerations.

Gram-Schmidt and Volume-as-Wedge Products We will now prove that v⃗1∧ · · · ∧ v⃗N
computes the volume of the N -parallelepiped defined by the v⃗Ls, even when N < D, where D
is the dimension of space. Firstly, the Gram-Schmidt process discussed earlier in this Chapter
informs us, we may use the v⃗Ls to derive N orthonormal basis vectors {êL|L = 1, 2, . . . , N} that
spans the same N−dimensional space; i.e., there must be an invertible N × N transformation
Q such that

v⃗L = QM
LêM, êA · êB = δAB. (4.5.20)

Suppose the N−wedge product does produce the volume of the associated N−parallelepiped:

v⃗1 ∧ · · · ∧ v⃗N = (±)(vol. of N− parallelepiped)ê1 ∧ · · · ∧ êN . (4.5.21)

If we now generate an (N + 1)-parallelepiped by translating the N -parallelepiped along v⃗N+1,
the resulting volume must be – by the rules of Euclidean geometry –

(volume of N -parallelepiped)× (perpendicular height of v⃗N+1 from N -parallelepiped).
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But the anti-symmetric character of the wedge product automatically projects out any compo-
nent of v⃗N+1 lying within the N -space spanned by the v⃗1, . . . , v⃗N . For, we may express

v⃗N+1 =
N∑

L=1

χLv⃗L + v⃗⊥N+1 (4.5.22)

– for appropriate scalars {χL} and v⃗⊥N+1 · v⃗1 = · · · = v⃗⊥N+1 · v⃗N = 0 – and consider

v⃗1 ∧ · · · ∧ v⃗N ∧ v⃗N+1 =
N∑

L=1

χLv⃗1 ∧ · · · ∧ v⃗N ∧ v⃗L + v⃗1 ∧ · · · ∧ v⃗N ∧ v⃗⊥N+1. (4.5.23)

For a fixed L in the summation, v⃗L must occur within the first N slots of the first wedge product
on the right hand side. That means this first term must be zero, as, by anti-symmetry,

v⃗1 ∧ · · · ∧ v⃗L ∧ · · · ∧ v⃗N ∧ v⃗L = −v⃗1 ∧ · · · ∧ v⃗L ∧ · · · ∧ v⃗N ∧ v⃗L. (4.5.24)

Hence, as claimed, only the components perpendicular to the {v⃗L|L = 1, . . . , N} survive.

v⃗1 ∧ · · · ∧ v⃗N ∧ v⃗N+1 = v⃗1 ∧ · · · ∧ v⃗N ∧ v⃗⊥N+1 (4.5.25)

where the {ê1, . . . , êN} form the orthonormal basis vectors, then by defining the new unit vector
êN+1 ≡ v⃗⊥N+1/|v⃗⊥N+1|, we deduce

v⃗1 ∧ · · · ∧ v⃗N ∧ v⃗N+1 = (±)(vol. of N−parallelepiped)|v⃗⊥N+1|ê1 ∧ · · · ∧ êN ∧ êN+1 (4.5.26)

= (±)(vol. of (N + 1)−parallelepiped)ê1 ∧ · · · ∧ êN ∧ êN+1, (4.5.27)

since |v⃗⊥N+1| is the perpendicular height of v⃗N+1 from the N -parallelepiped. By induction on the
number of vectors N , we have proven that the wedge product of N vectors does in fact yield the
volume of their associated parallelepiped.

Matrix Determinants as Volumes Now that we have proven eq. (4.5.21), let us also
observe that

(±)(Volume of N−parallelepiped defined by v⃗1 . . . v⃗N)(ê1 ∧ · · · ∧ êN)
= v⃗1 ∧ · · · ∧ v⃗N
= QM1

1 . . . Q
MN

N êM1 ∧ · · · ∧ êMN

=
(
ϵM1...MN

QM1
1 . . . Q

MN
N

)
ê1 ∧ · · · ∧ êN

=
(
detQA

B

)
ê1 ∧ · · · ∧ êN (4.5.28)

That is, the volume of the N−parallelepiped is a determinant, but that of the N × N matrix
formed from the components of the D−dimensional v⃗Ls restricted to the N−dimensional sub-
space spanned by the êLs. When N = D = 2, this recovers eq. (4.5.5); and when N = D = 3,
this recovers eq. (4.5.9).

Basis-Independence Observe that the choice of orthonormal basis {êL|L = 1, 2, . . . , N}
does not affect the result of the volume in eq. (4.5.21), because under an orthogonal transfor-
mation êL ≡ O · ê′L for all O ∈ ON ,

ê1 ∧ · · · ∧ êN = OL1
1 . . . O

LN
N ê

′
L1
∧ · · · ∧ ê′LN

(4.5.29)
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= ϵL1...LN
OL1

1 . . . O
LN

N ê
′
1 ∧ · · · ∧ ê′N (4.5.30)

= (detO)ê′1 ∧ · · · ∧ ê′N (4.5.31)

= (±)ê′1 ∧ · · · ∧ ê′N . (4.5.32)

The Levi-Civita symbol ϵL1...LN
above lives in the N dimensions spanned by {v⃗L}; with ϵ1...N ≡ 1.

Order-Independence Note too, although we have built up the N−parallelepiped iter-
atively; the result in eq. (4.5.21) tells us the order in which we did so does not actually matter
– for, all that would change is the order of the êLs within the wedge product. For example, to
construct a 3−parallelepiped, we may first choose the 2D one defined by (v⃗1, v⃗2), then translate
it along v⃗2; or, (v⃗1, v⃗3), then translate it along v⃗3; or, (v⃗2, v⃗3), then translate it along v⃗1. These
will yield, respectively, v⃗1 ∧ v⃗2 ∧ v⃗3, v⃗1 ∧ v⃗3 ∧ v⃗2, and v⃗2 ∧ v⃗3 ∧ v⃗1; which only differ by an overall
± sign.

Example: 3−parallelepiped in 5D Suppose we have the following 3 vectors:

v⃗1=̇(3, 0, 1, 2, 0), (4.5.33)

v⃗2=̇(1, 0, 1, 1, 0), (4.5.34)

v⃗3=̇(5, 0, 3, 7, 0). (4.5.35)

By a direct calculation,

v⃗1 ∧ v⃗2 ∧ v⃗3 = (3ê1 + ê3 + 2ê4) ∧ (ê1 + ê3 + ê4) ∧ (5ê1 + 3ê3 + 7ê4) (4.5.36)

= 4ê1 ∧ ê3 ∧ ê4. (4.5.37)

(The second equality requires repeated use of the linearity and anti-symmetric properties of ∧.)
On the other hand, since the second and fifth components of the v⃗s are zero, we may simply
focus on the non-zero components; namely,

v⃗′1=̇(3, 1, 2), (4.5.38)

v⃗′2=̇(1, 1, 1), (4.5.39)

v⃗′3=̇(5, 3, 7). (4.5.40)

This allows us to check the above wedge product calculation by re-evaluating the volume as

(v⃗′1 × v⃗′2) · v⃗′3 = 4. (4.5.41)

Problem 4.35. Volume of parallelogram Use the wedge product (and Gram-Schmidt)
to find the volume of the 3−parallelepiped in 5D (flat) space defined by

v⃗1 = (1, 1, 1, 1, 1), (4.5.42)

v⃗2 = (1, 2, 3, 4, 5), (4.5.43)

v⃗3 = (−1, 1,−1, 1,−4). (4.5.44)

Answer: v⃗1 ∧ v⃗2 ∧ v⃗3 = ±2
√
165 · ê1 ∧ ê2 ∧ ê3, for the appropriate definitions of these {ê1,2,3}.
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4.6 ⋆Normal Operators

Definition A normal operator N is one that commutes with its own adjoint.[
N,N †] = NN † −N †N = 0 (4.6.1)

An important fact is:

Diagonalizability An operator is diagonalizable if and only if it is normal.

Proof If N is diagonalizable, we may use its eigenvectors {|λk⟩} which obey N |λk⟩ = λk |λk⟩,
k = 1, 2, . . . , to express

N =
∑
k

|λk⟩λk ⟨λk| . (4.6.2)

A direct calculation would show

NN † −N †N =
∑
k

|λk⟩ |λk|2 ⟨λk| −
∑
k

|λk⟩ |λk|2 ⟨λk| = 0. (4.6.3)

Now, suppose N is normal. Let us recall: If N acts on a D−dimensional space, its characteristic
equation would hand us a polynomial of degreeD. By the fundamental theorem of algebra we are
guaranteed D solutions for its eigenvalues. Hence, whether or not an operator is diagonalizable
amounts to asking if its eigenvectors can form an orthonormal basis.

Then if |λk⟩ is its kth eigenvector,

(N − λk) |λk⟩ = 0. (4.6.4)

Taking the inner product of (N − λk) |λk⟩ with itself, and employing [N †, N ] = 0,

⟨λk|
(
N † − λ∗k

)
(N − λk) |λk⟩ = 0, (4.6.5)

⟨λk| (N − λk)
(
N † − λ∗k

)
|λk⟩ = 0. (4.6.6)

The second equality tells us, the inner product of the vector (N † − λ∗k) |λk⟩ with itself is zero –
i.e., it must be the zero vector. That in turn implies,

N † |λk⟩ = λ∗k |λk⟩ (4.6.7)

⟨λk|N = ⟨λk|λk. (4.6.8)

For λk ̸= λl, we may act ⟨λl|N = ⟨λl|λl on |λk⟩.
⟨λl|N |λk⟩ = λl ⟨λl|λk⟩ (4.6.9)

Whereas acting ⟨λl| on the eigenvector equation N |λk⟩ = λk |λk⟩ yields instead
⟨λl|N |λk⟩ = λk ⟨λl|λk⟩ . (4.6.10)

Subtracting equations (4.6.9) and (4.6.10),

(λl − λk) ⟨λl|λk⟩ = 0. (4.6.11)

By assumption, λl − λk ̸= 0. Therefore ⟨λl|λk⟩ = 0: eigenvectors of distinct eigenvalues are
orthogonal. For eigenvectors belonging to a degenerate subspace, we may use Gram-Schmidt to
construct an orthonormal set.

Problem 4.36. Compatible operators Prove that two normal operators N and M are
simultaneously diagonalizable if and only if they are compatible; i.e., iff [N,M ] = 0.
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5 Continuous Vector Spaces and Infinite D−Space
This Chapter deals with vector spaces with infinite dimensionality and continuous spectra. To
make this topic rigorous is beyond the scope of these notes; but the interested reader should
consult the functional analysis portion of the math literature. Our goal here is a practical one: we
want to be comfortable enough with continuous spaces to solve problems in quantum mechanics
and (quantum and classical) field theory.

5.1 Dirac’s δ-“function”, Eigenket integrals, and Continuous (Lie
group) Operators

Dirac’s δ-“function” and its representations We will see that transitioning from dis-
crete, finite dimensional vector spaces to continuous ones means summations become integrals;
while Kronecker-δs will be replaced with Dirac-δ functions. In case the latter is not familiar, the
Dirac-δ function of one variable is to be viewed as an object that occurs within an integral, and
is defined via ∫ b

a

f(x′)δ(x′ − x)dx′ = f(x), (5.1.1)

for all a less than x and all b greater than x, i.e., a < x < b. This indicates δ(x′ − x) has to be
sharply peaked at x′ = x and zero everywhere, since the result of integral picks out the value of
f solely at x.

The Dirac δ-function20 is often loosely viewed as δ(x) = 0 when x ̸= 0 and δ(x) = ∞ when
x = 0. An alternate approach is to define δ(x) as a sequence of functions more and more sharply
peaked at x = 0, whose integral over the real line is unity. Three examples are

δ(x) = lim
ϵ→0+

Θ
( ϵ
2
− |x|

) 1

ϵ
(5.1.2)

= lim
ϵ→0+

e−
|x|
ϵ

2ϵ
(5.1.3)

= lim
ϵ→0+

1

π

ϵ

x2 + ϵ2
(5.1.4)

For the first equality, Θ(z) is the step function, defined to be

Θ(z) = 1, for z > 0

= 0, for z < 0. (5.1.5)

Problem 5.1. Justify these three definitions of δ(x). What happens, for finite x ̸= 0, when
ϵ → 0+? Then, by holding ϵ fixed, integrate them over the real line, before proceeding to set
ϵ→ 0+.

20In the rigorous mathematical literature, Dirac’s δ is not a function but a distribution, whose theory is due
to Laurent Schwartz.
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For later use, we record the following integral representation of the Dirac δ-function.∫ +∞

−∞

dω

2π
eiω(z−z

′) = δ(z − z′) (5.1.6)

Finally, for functions defined within the interval −1 < x < +1, the following is yet another
representation of the Dirac delta function:

δ(x) = lim
n→+∞

δn(x), (5.1.7)

δn(x) ≡ (1− x2)n (2n+ 1)!

22n+1(n!)2
; (5.1.8)

where n ≥ 0 is to be viewed as a non-negative integer. We may understand eq. (5.1.7) heuristi-
cally as follows. Because the even function P (x) ≡ 1−x2 peaks at P (x = 0) = 1 and falls to zero
as x→ ±1, that means the non-zero portion of P (x)n, for some large n≫ 1, will be increasingly
localized around x ≈ 0; namely, any number with magnitude less than unity, when raised to a
large positive power, will yield a yet smaller number. The factorials multiplying (1 − x2)n in
eq. (5.1.7) ensure the total area of the right-hand-side is still unity. This representation in eq.
(5.1.7) plays a central role in the Weierstrass approximation theorem,21 which states that any
continuous function f(x) defined within a finite interval on the real line, say a ≤ x ≤ b, may be
approximated by a polynomial Pn(x) of degree n, by – cf. eq. (5.1.8) – arguing that

f(x) = lim
n→+∞

Pn(x), (5.1.9)

Pn(x) ≡
∫ b

a

δn

(
x− x′

b− a

)
f(x′)

dx′

b− a
. (5.1.10)

That is, if such an argument may be carried out, we would have justified the relation in eq.
(5.1.7), that for any a < x < b,

f(x) =

∫ b

a

f(x′)δ

(
x− x′

b− a

)
dx′

b− a
. (5.1.11)

Problem 5.2. Dirac as the derivative of Heaviside Can you justify the following?

Θ(z − z′) =
∫ z

z0

dz′′δ(z′′ − z′), z′ > z0. (5.1.12)

We may therefore assert the derivative of the step function is the δ-function,

Θ′(z − z′) = δ(z − z′). (5.1.13)

Somewhat more rigorously, we may refer to the integral representation of the step function in eq.
(6.3.41) below; and thereby justify its counterpart for the Dirac δ−function in eq. (5.1.6).

21A discourse more detailed than the one here may be found in Byron and Fuller [14].
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Problem 5.3. Weierstrass’ polynomial approximation In this problem we shall work
out an explicit example of the Weierstrass’ polynomial approximation using the δn in eq. (5.1.8).
Specifically, let us obtain a polynomial to approximate the power law

f(x) = xp (5.1.14)

for 0 < p < 1 near x ⪆ 0. The reason for choosing such a power law, is that while the derivatives
of f(x) do not exist at x = 0 and hence there is no Taylor expansion available about the origin,
Weierstrass tells us we may nonetheless still produce a polynomial Pn(x) that describes f(x)
arbitrarily accurately as n→∞.

Firstly, show that δn(x) is normalized such that∫ +1

−1

δn(x
′)dx′ = 1. (5.1.15)

Then, choose a p and some large n≫ 1, and proceed to work out Pn(x) in eq. (5.1.10). Assume
a = 0 and pick b ∼ O(few). Compare Pn(x) with x

p by plotting the two on the same axes. Try
to vary n and the interval [0, b] too.

Remark Unlike the Taylor series approximation f(x) ≈
∑n

ℓ=0 cℓx
ℓ around x = 0, where

cℓ = (1/ℓ!)f (ℓ)(0), notice all the coefficients {cℓ} of the Weierstrass approximation change as the
highest power n is altered. For instance, for p = 1/3 and [a, b] = [0, 1], eq. (5.1.10) would yield

P2(x) =
45x4

64
− 45x3

28
+

9x2

32
+

135x

182
+

81

256
, (5.1.16)

P3(x) = −
105x6

128
+

45x5

16
− 315x4

128
− 15x3

26
+

189x2

512
+

405x

494
+

1701

5632
. (5.1.17)

These P2(x) and P3(x) are very poor approximations to x1/3 because 2 and 3 are not much
greater than unity; but they illustrate clearly the n dependence of the polynomial coefficients.
– for e.g., c0(n = 2) = 81/256 whereas c0(n = 3) = 1701/5632.

Dirac’s δ-“function”: Properties Returning to the general discussion of Dirac δ−functions,
several of its properties are worth highlighting.

� From eq. (5.1.13) – that a δ(z − z′) follows from taking the derivative of a discontinuous
function (in this case, Θ(z − z′) the Heaviside step function) – will be important for the
study of Green’s functions of ordinary and partial differential operators. Heuristically: the
abrupt ‘jump’ ∆f ≡ f(a + 0+) − f(a − 0+) of a discontinuous function f at x = a is
accounted for by the δ−function via f ′(x = a)dx = δ(x− a)(∆f)dx.

� If the argument of the δ-function is a function f of some variable z, then as long as f ′(z) ̸= 0
whenever f(z) = 0, it may be re-written as

δ (f(z)) =
∑

zi≡ith zero of f(z)

δ(z − zi)
|f ′(zi)|

. (5.1.18)
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To justify this we recall the fact that, the δ-function itself is non-zero only when its argu-
ment is zero. This explains why we sum over the zeros of f(z). Now we need to fix the
coefficient of the δ-function near each zero. That is, what are the φi’s in

δ (f(z)) =
∑

zi≡ith zero of f(z)

δ(z − zi)
φi

? (5.1.19)

We now use the fact that integrating a δ-function around the small neighborhood of the ith
zero of f(z) with respect to f has to yield unity. It makes sense to treat f as an integration
variable near its zero because we have assumed its slope is non-zero, and therefore near its
ith zero,

f(z) = f ′(zi)(z − zi) +O((z − zi)2), (5.1.20)

⇒ df = f ′(zi)dz +O((z − zi)1)dz. (5.1.21)

The integration around the ith zero reads, for 0 < ϵ≪ 1,

1 =

∫ z=zi+ϵ

z=zi−ϵ
dfδ (f) =

∫ z=zi+ϵ

z=zi−ϵ
dz
∣∣(f ′(zi) +O((z − zi)1)

)∣∣ δ (z − zi)
φi

(5.1.22)

ϵ→0→ |f ′(zi)|
φi

. (5.1.23)

(When you change variables within an integral, remember to include the absolute value of
the Jacobian, which is essentially |f ′(zi)| in this case.) The O(zp) means “the next term
in the series has a dependence on the variable z that goes as zp”; this first correction can
be multiplied by other stuff, but has to be proportional to zp.

A simple application of eq. (5.1.18) is, for a ∈ R,

δ(az) =
δ(z)

|a|
. (5.1.24)

� Since δ(z) is non-zero only when z = 0, it must be that δ(−z) = δ(z) and more generally

δ(z − z′) = δ(z′ − z). (5.1.25)

� We may also take the derivative of a δ-function. Under an integral sign, we may apply
integration-by-parts as follows:∫ b

a

δ′(x− x′)f(x)dx = [δ(x− x′)f(x)]x=bx=a −
∫ b

a

δ(x− x′)f ′(x)dx = −f ′(x′) (5.1.26)

as long as x′ lies strictly between a and b, a < x′ < b, where a and b are both real.

� Dimension What is the dimension of the δ-function? Turns out δ(ξ) has dimensions
of 1/[ξ], i.e., the reciprocal of the dimension of its argument. The reason is∫

dξδ(ξ) = 1 ⇒ [ξ] [δ(ξ)] = 1. (5.1.27)
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� More on distributional calculus can be found in §(6.5.1).

Problem 5.4. We may generalize the identities in equations (5.1.18) and (5.1.24) in the
following manner. Show that, whenever some function g(z) is strictly positive within the range
of z−integration, it may be ’pulled out’ of the delta function as though it were a constant:

δ (g(z)f(z)) =
δ(f(z))

g(z)
=

∑
zi≡ith zero of f(z)

δ(z − zi)
g(zi)|f ′(zi)|

. (5.1.28)

Hint: Simply apply eq. (5.1.18).

Continuous spectrum Let Ω be a Hermitian operator whose spectrum is continuous;
i.e., Ω |ω⟩ = ω |ω⟩ with ω being a continuous parameter. If |ω⟩ and |ω′⟩ are both “unit norm”
eigenvectors of different eigenvalues ω and ω′, we have for example

⟨ω|ω′⟩ = δ(ω − ω′). (5.1.29)

(This assumes a “translation symmetry” in this ω-space; we will see later how to modify this
inner product when the translation symmetry is lost.) The completeness relation in eq. (4.3.23)
is given by ∫

dω |ω⟩ ⟨ω| = I; (5.1.30)

because for an arbitrary ket |f⟩,

⟨ω′| f⟩ = ⟨ω′| I |f⟩ =
∫

dω ⟨ω′|ω⟩ ⟨ω| f⟩ (5.1.31)

=

∫
dωδ(ω′ − ω) ⟨ω| f⟩ . (5.1.32)

An arbitrary vector |α⟩ can thus be expressed as

|α⟩ =
∫

dω |ω⟩ ⟨ω|α⟩ . (5.1.33)

When the state is normalized to unity, we say

⟨α|α⟩ =
∫

dω ⟨α|ω⟩ ⟨ω|α⟩ =
∫

dω| ⟨ω|α⟩ |2 = 1. (5.1.34)

The inner product between arbitrary vectors |α⟩ and |β⟩ now reads

⟨α| β⟩ =
∫

dω ⟨α|ω⟩ ⟨ω| β⟩ . (5.1.35)

Since by assumption Ω is diagonal, i.e.,

Ω =

∫
dωω |ω⟩ ⟨ω| , (5.1.36)
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the matrix elements of Ω are

⟨ω |Ω|ω′⟩ = ωδ(ω − ω′) = ω′δ(ω − ω′). (5.1.37)

Because of the δ-function, which enforces ω = ω′, it does not matter if we write ω or ω′ on the
right hand side.

Continuous operators connected to the identity In the following, we will deal with
continuous operators. By a continuous operator A, we mean one that depends on some con-
tinuous parameter(s) ξ⃗. For example, spatial translations would involve a displacement vector;
for rotations, the associated angles; for Lorentz boosts, the unit direction vector and rapidity;
etc. Furthermore, if these continuous parameters may be tuned such that A(ξ⃗) becomes the
identity, then we say that this operator is continuously connected to the identity. When such
a continuous operator is ‘close enough’ to the identity operator I, we would expect it may be
phrased as an exponential of another operator −iZ(ξ⃗); namely,

A(ξ⃗) = e−iZ(ξ⃗). (5.1.38)

22The exponential of an operator Y is itself defined through the Taylor series

eY ≡ I+ Y +
Y 2

2!
+
Y 3

3!
+ · · · =

∞∑
ℓ=0

Y ℓ

ℓ!
. (5.1.39)

For later use, note that

(
eY
)†

=
+∞∑
ℓ=0

(Y ℓ)†

ℓ!
=

+∞∑
ℓ=0

(Y †)ℓ

ℓ!
= eY

†
. (5.1.40)

It may also be usually argued that Z (dubbed the ‘generator’), is in fact linear in the continuous
parameters; so that it is a superposition of some basis generators {T a} that induce infinitesimal
versions of the transformations under consideration.

Z = ξ⃗ · T⃗ ≡ ξaT
a. (5.1.41)

That these {T a} form a vector space in turn follows from the multiplication rules that these
operators need to obey. Specifically, operators belonging to the same group must take the same
form {A = exp(−iaiT i)}, for appropriate (basis) generators {T i}; then since two consecutive

operations (parametrized, say, by a⃗ and b⃗) must yield another operator of the same group, that
means there must be some other c⃗ such that

exp
(
−i⃗a · T⃗

)
exp

(
−i⃗b · T⃗

)
= exp

(
−i⃗c · T⃗

)
. (5.1.42)

22If A and Y ≡ −iZ were complex numbers, then the A = eY in eq. (5.1.38) is always true in that, for a given
A = exp lnA ≡ expY ; where Y ≡ lnA. For operators A and Y , if we assume Y is ‘close enough’ to zero (and,
therefore, A is ‘close enough’ to the identity) we may define Y ≡ ln(I+ (A− I)) ≡ −

∑∞
ℓ=1(I−A)ℓ/ℓ. Whenever

the series make sense, then A = eY . Furthermore, that the Taylor series for the natural logarithm involves powers
of the deviation of the operator from the identity, namely A − I, is why there is a need to demand that A is
continuously connected to I – i.e., lnA would cease to be valid if the operator norm ||A− I|| is too large.
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Lie Groups and Lie Algebras The framework we are describing here is a Lie group, a
group with continuous parameters. (See §(B) for the axioms defining a group.) Because the
operators here are already linear operators acting on some Hilbert space, the closure assumption
in eq. (5.1.42) – that products of group elements yield another group element – is all we need
to ensure these they indeed form a group.23

The crucial property ensuring eq. (5.1.42) holds, is that the basis generators {T a} themselves
obey a Lie algebra: [

T a, T b
]
= ifabcT c ≡ i

∑
c

fabcT c. (5.1.43)

These {fabc} are called structure constants. As we shall witness shortly, this implies the c⃗ may

be solved in terms of a⃗, b⃗, and the structure constants.

Problem 5.5. Prove that the set of linear operators {T a} in eq. (5.1.43) that are closed
under commutation forms a vector space. Hint: Remember, we have already proven that linear
operators themselves form a vector space. What’s the only property you need to verify?

Baker-Campbell-Hausdorff The Baker-Campbell-Hausdorff formula tells us, for generic op-
erators X and Y , the product eXeY would produce an exponential eZ where the exponent Z
only involves X+Y and their commutators [X, Y ] and nested commutators; for e.g., [X, [X, Y ]],
[Y, [Y, [X, Y ]]], [X, [X, [Y [Y,X]]]], etc. Because these are operators, note that eXeY ̸= eX+Y ̸=
eY eX . In detail, the first few terms in the exponent read

eXeY = exp

(
X + Y +

1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . .

)
. (5.1.44)

(Parenthetically, this informs us that, when multiplying exponentials of operators, the exponents
add if and only if they commute.) Returning to the discussion around equations (5.1.41) and
(5.1.42), if

X = −iaiT i and Y = −ibiT i; (5.1.45)

then eq. (5.1.43) inserted into the right hand side of (5.1.44) reads

−iZ = −i (ai + bi)T
i +

1

2
(−i)2aibj

[
T i, T j

]
+

1

12
(−i)3aiajbk

[
T i,
[
T j, T k

]]
− 1

12
(−i)3biajbk

[
T i,
[
T j, T k

]]
+ . . .

= −i
{
al + bl +

1

2
aibjf

ijl +
1

12
aiajbkf

jksf isl − 1

12
biajbkf

jksf isl + . . .

}
T l. (5.1.46)

From this, we may now read off – the exponent on the right hand side of eq. (5.1.42) is

Z = c⃗ · T⃗ , (5.1.47)

23Lie groups are analogous to curved space(time)s, where each space(time) point corresponds to a group

element; and the superposition of the generators ξ⃗ · T⃗ are ‘tangent vectors’ based at the identity operator.
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cl = al + bl +
1

2
aibjf

ijl +
1

12
aiajbkf

jksf isl − 1

12
biajbkf

jksf isl + . . . . (5.1.48)

To sum: because the generators of the Lie group are closed under commutation, the Baker-
Campbell-Hausdorff formula tells us, upon multiplying two operators (both continuously con-
nected to the identity), the exponent of the result is necessarily again a linear combination of
the same generators.

Continuous unitary operators Continuous unitary operators form a special subclass
of the Lie groups we have just discussed. When the underlying flat space is space-translation
and rotation symmetric, for example, there is no distinguished origin nor special direction. As
we shall discuss below, this will also lead to the lack of distinguished basis kets spanning the
corresponding Hilbert space. When such a situation arises, the action of these operators amount
to a change-of-basis, and hence are unitary. In other words, these operators become unitary due
to the underlying symmetries of the flat space.

For now, let us note that

An operator continuously connected to the identity, namely U = exp(−iZ), is
unitary if and only if its generator Z is Hermitian.

If Z is Hermitian, then we may take the dagger of the Taylor series of exp(−iZ) term-by-term,
and recognize

U † =
(
e−iZ

)†
= e+iZ

†
= eiZ . (5.1.49)

Therefore, since iZ certainly commutes with −iZ,

U †U = eiZe−iZ = ei(Z−Z) = I. (5.1.50)

On the other hand, if U is unitary, we may introduce a fictitious real parameter ϵ and expand

(e−iϵZ)†e−iϵZ = I, (5.1.51)(
I+ iϵZ† +O(ϵ2)

) (
I− iϵZ +O(ϵ2)

)
= I, (5.1.52)

I+ iϵ(Z† − Z) +O(ϵ2) = I. (5.1.53)

The presence of the parameter ϵ allows us to see that each order in Z is independent, as we may
view the product as a Taylor series in ϵ. At first order, in particular, we have – as advertised –

Z† = Z. (5.1.54)

At this juncture, we gather the following:

Symmetry and Observables In quantum mechanics unitary operators
{U = e−iZ} play an important role, not only because they implement symmetry
transformations – the inner product ⟨α| β⟩ = ⟨α′| β′⟩ is preserved whenever both
|α′⟩ ≡ U |α⟩ and |β′⟩ ≡ U |β⟩ – their generators {Z} often correspond to physical
observables since they are Hermitian.

88



Unitary Operators and Conservation of Probability An elementary example of a
continuous unitary operator is provided by the following example, which occurs in quantum
mechanics. Let H be a time-independent Hermitian operator, and suppose U(t) is an operator
that satisfies

i∂tU = HU ; (5.1.55)

and the boundary condition

U(t = 0) = I. (5.1.56)

We see the solution is provided by

U(t) = exp(−itH). (5.1.57)

We may readily verify U † = exp(+itH). Since itH and −itH commute, we have

U †U = eitHe−itH = eitH−itH = e0 = I. (5.1.58)

Let |ψ(t0)⟩ be the initial state at time t0. The state at any later time t > t0 is given by

|ψ(t > t0)⟩ = U(t− t0) |ψ(t0)⟩ = exp (−i(t− t0)H) |ψ(t0)⟩ (5.1.59)

This |ψ(t > t0)⟩ automatically satisfies i∂t |ψ(t)⟩ = H |ψ(t)⟩ because i∂t |ψ(t)⟩ = i(∂tU) |ψ(t0)⟩.
We may also check that the initial conditions are recovered: |ψ(t→ t0)⟩ = U(0) |ψ(t0)⟩ =
|ψ(t0)⟩. Moreover, we may write the evolution operator as a sum over the energy eigenstates
{|E⟩ |H |E⟩ = E |E⟩} in the following manner.

U(t) = e−itH =
∑
E

e−itE |E⟩ ⟨E| . (5.1.60)

Problem 5.6. The physical importance of having time evolution of states governed by a
unitary operator, is that it guarantees conservation of probability: if the particle can be found
somewhere at time t0, it must be found somewhere at any later time t > t0. This is summed up
in the statement that ⟨ψ(t)|ψ(t)⟩ = 1 for all t.

Show that

∂t (⟨ψ(t)|ψ(t)⟩) = 0 (5.1.61)

and therefore if it is ⟨ψ(t0)|ψ(t0)⟩ = 1, the constancy of the amplitude implies ⟨ψ(t)|ψ(t)⟩ = 1
for all t.

Symmetry and Degeneracy Since unitary operators may be associated with symmetry
transformations, we may now understand the connection between symmetry and degeneracy. In
particular, if A is some Hermitian operator, and it forms mutually compatible observables with
the Hermitian generators {T a} of some unitary symmetry operator U(ξ⃗) = exp(−iξ⃗ · T⃗ ), then
A must commute with U as well. [

A,U(ξ⃗)
]
= 0. (5.1.62)
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But that implies, if |α⟩ is an eigenket of A with eigenvalue α, namely

A |α⟩ = α |α⟩ , (5.1.63)

so must U |α⟩ be. For, [A,U ] = 0 leads us to consider

[A,U ] |α⟩ = 0, (5.1.64)

A(U |α⟩) = UA |α⟩ = α(U |α⟩). (5.1.65)

If U |α⟩ is not the same ket as |α⟩ (up to an overall phase), then this corresponds to a degeneracy:

the physically distinct states U(ξ⃗) |α⟩ and |α⟩ both correspond to eigenkets of A with the same
eigenvalue α. To sum:

Symmetry implies degeneracy.

5.2 Spatial translations and the Fourier transform

In this section, we shall discuss in detail the Hilbert space spanned by the eigenkets of the position
operator X⃗, where we assume there is some underlying infinite (flat/Euclidean) D-space RD.
The arrow indicates the position operator itself has D components, each one corresponding
to a distinct axis of the D-dimensional Euclidean space. |x⃗⟩ would describe the state that is
(infinitely) sharply localized at the position x⃗; namely, it obeys the D-component equation

X⃗ |x⃗⟩ = x⃗ |x⃗⟩ . (5.2.1)

Or, in index notation,

Xk |x⃗⟩ = xk |x⃗⟩ , k ∈ {1, 2, . . . , D}. (5.2.2)

The position eigenkets are normalized as, in Cartesian coordinates,

⟨x⃗| x⃗′⟩ = δ(D)(x⃗− x⃗′) ≡
D∏
i=1

δ(xi − x′i) = δ(x1 − x′1)δ(x2 − x′2) . . . δ(xD − x′D). (5.2.3)

As an important aside, the generalization of the 1D transformation law in eq. (5.1.18) involving
the δ-function has the following higher dimensional generalization. If we are given a transfor-
mation x⃗ ≡ x⃗(y⃗) and x⃗′ ≡ x⃗′(y⃗′), then

δ(D) (x⃗− x⃗′) = δ(D)(y⃗ − y⃗′)
|det ∂xa(y⃗)/∂yb|

=
δ(D)(y⃗ − y⃗′)

|det ∂x′a(y⃗′)/∂y′b|
, (5.2.4)

where δ(D)(x⃗ − x⃗′) ≡
∏D

i=1 δ(x
i − x′i), δ(D)(y⃗ − y⃗′) ≡

∏D
i=1 δ(y

i − y′i), and the Jacobian inside
the absolute value occurring in the denominator on the right hand side is the usual determinant
of the matrix whose ath row and bth column is given by ∂xa(y⃗)/∂yb. (The second and third
equalities follow from each other because the δ-functions allow us to assume y⃗ = y⃗′.) Equation
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(5.2.4) can be justified by demanding that its integral around the point x⃗ = x⃗′ gives one. For
0 < ϵ≪ 1, and denoting δ(D)(x⃗− x⃗′) = δ(D)(y⃗ − y⃗′)/φ(y⃗′),

1 =

∫
|x⃗−x⃗′|≤ϵ

dDx⃗δ(D)(x⃗− x⃗′) =
∫
|x⃗−x⃗′|≤ϵ

dDy⃗

∣∣∣∣det ∂xa(y⃗)∂yb

∣∣∣∣ δ(D)(y⃗ − y⃗′)
φ(y⃗′)

=

∣∣∣det ∂x′a(y⃗′)∂y′b

∣∣∣
φ(y⃗′)

. (5.2.5)

Now, any vector |α⟩ in the Hilbert space can be expanded in terms of the position eigenkets.

|α⟩ =
∫
RD

dDx⃗ |x⃗⟩ ⟨x⃗|α⟩ . (5.2.6)

Notice ⟨x⃗|α⟩ is an ordinary (possibly complex) function of the spatial coordinates x⃗. We see
that the space of functions emerges from the vector space spanned by the position eigenkets.
Just as we can view ⟨i|α⟩ in |α⟩ =

∑
i |i⟩ ⟨i|α⟩ as a column vector, the function f(x⃗) ≡ ⟨x⃗| f⟩

is in some sense a continuous (infinite dimensional) “vector” in this position representation.
In the context of quantum mechanics ⟨x⃗|α⟩ would be identified as a wave function, more

commonly denoted as ψ(x⃗); in particular, | ⟨x⃗|α⟩ |2 is interpreted as the probability density that
the system is localized around x⃗ when its position is measured. This is in turn related to the
demand that the wave function obey

∫
dDx⃗| ⟨x⃗|α⟩ |2 = 1. However, it is worth highlighting

here that our discussion regarding the Hilbert spaces spanned by the position eigenkets {|x⃗⟩}
(and later below, by their momentum counterparts {|⃗k⟩}) does not necessarily have to involve
quantum theory.24 We will provide concrete examples below, such as how the concept of Fourier
transform emerges and how classical field theory problems – the derivation of the Green’s function
of the Laplacian in eq. (12.3.47), for instance – can be tackled using the methods/formalism
delineated here.

Matrix elements Suppose we wish to calculate the matrix element ⟨α |Y | β⟩ in the
position representation. It is

⟨α |Y | β⟩ =
∫

dDx⃗

∫
dDx⃗′ ⟨α| x⃗⟩ ⟨x⃗ |Y | x⃗′⟩ ⟨x⃗′| β⟩

=

∫
dDx⃗

∫
dDx⃗′ ⟨x⃗|α⟩∗ ⟨x⃗ |Y | x⃗′⟩ ⟨x⃗′| β⟩ . (5.2.7)

If the operator Y (X⃗) were built solely from the position operator X⃗, then〈
x⃗
∣∣∣Y (X⃗)

∣∣∣ x⃗′〉 = Y (x⃗)δ(D)(x⃗− x⃗′) = Y (x⃗′)δ(D)(x⃗− x⃗′); (5.2.8)

and the double integral collapses into one,〈
α
∣∣∣Y (X⃗)

∣∣∣ β〉 =

∫
dDx⃗ ⟨x⃗|α⟩∗ ⟨x⃗′| β⟩Y (x⃗). (5.2.9)

Problem 5.7. Show that if U is a unitary operator and |α⟩ is an arbitrary vector, then
|α⟩, U |α⟩ and U † |α⟩ have the same norm.

24This is especially pertinent for those whose first contact with continuous Hilbert spaces was in the context
of a quantum mechanics course.
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Translations in RD To make these ideas regarding continuous operators more concrete,
we will now study the case of translation in some detail, realized on a Hilbert space spanned
by the position eigenkets {|x⃗⟩}. To be specific, let T (d⃗) denote the translation operator param-

eterized by the displacement vector d⃗. We shall work in D space dimensions. We define the
translation operator by its action

T (d⃗) |x⃗⟩ =
∣∣∣x⃗+ d⃗

〉
. (5.2.10)

Since |x⃗⟩ and |x⃗+d⃗⟩ can be viewed as distinct elements of the set of basis vectors, we shall see that
the translation operator can be viewed as a unitary operator, changing basis from {|x⃗⟩ |x⃗ ∈ RD}
to {|x⃗ + d⃗⟩|x⃗ ∈ RD}. Let us in fact first show that the translation operator is unitary. Taking
the dagger of eq. (5.2.10),

⟨y⃗| T (d⃗)† =
〈
y⃗ + d⃗

∣∣∣ . (5.2.11)

Therefore, recalling eq. (5.2.3),

⟨y⃗| T (d⃗)†T (d⃗) |x⃗⟩ =
〈
y⃗ + d⃗

∣∣∣ x⃗+ d⃗
〉
= δ(D)(y⃗ − x⃗) = ⟨y⃗ |I| x⃗⟩ ; (5.2.12)

and since this is true for arbitrary states |x⃗⟩ and |y⃗⟩,

T (d⃗)†T (d⃗) = I. (5.2.13)

The inverse transformation of the translation operator is

T (d⃗)† |x⃗⟩ =
∣∣∣x⃗− d⃗〉 (5.2.14)

since

T (d⃗)†T (d⃗) |x⃗⟩ = T (d⃗)†
∣∣∣x⃗+ d⃗

〉
=
∣∣∣x⃗+ d⃗− d⃗

〉
= |x⃗⟩ . (5.2.15)

Of course we have the identity operator I when d⃗ = 0⃗,

T (⃗0) |x⃗⟩ = |x⃗⟩ ⇒ T (⃗0) = I. (5.2.16)

The following composition law has to hold

T (d⃗1)T (d⃗2) = T (d⃗1 + d⃗2), (5.2.17)

because translation is commutative

T (d⃗1)T (d⃗2) |x⃗⟩ = T (d⃗1)
∣∣∣x⃗+ d⃗2

〉
=
∣∣∣x⃗+ d⃗2 + d⃗1

〉
=
∣∣∣x⃗+ d⃗1 + d⃗2

〉
= T (d⃗1 + d⃗2) |x⃗⟩ . (5.2.18)

Problem 5.8. Translation operator is unitary. Show that

T (d⃗) =
∫
RD

dDx⃗′
∣∣∣d⃗+ x⃗′

〉
⟨x⃗′| (5.2.19)

satisfies eq. (5.2.10) and therefore is the correct ket-bra operator representation of the translation

operator. Check explicitly that T (d⃗) is unitary. Remember an operator U is unitary iff it
implements a change from one orthonormal basis to another – compare eq. (5.2.19) with eq.
(4.3.143).
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Momentum operator We now turn to demonstrate that eq. (5.1.38) can be expressed as

T (d⃗) = exp
(
−id⃗ · P⃗

)
= exp

(
−idkPk

)
. (5.2.20)

This because translation in the position representation may simply be implemented as a Taylor
series,

〈
x⃗+ d⃗

∣∣∣ f〉 = f(x⃗+ d⃗) =
+∞∑
ℓ=0

(
d⃗ · ∇⃗x⃗

)ℓ
ℓ!

f(x⃗) (5.2.21)

=
+∞∑
ℓ=0

(
id⃗ · (−i)∇⃗x⃗

)ℓ
ℓ!

⟨x⃗| f⟩ (5.2.22)

≡
+∞∑
ℓ=0

iℓ

ℓ!

〈
x⃗

∣∣∣∣(d⃗ · P⃗)ℓ∣∣∣∣ f〉 ; (5.2.23)

where we have identified

⟨x⃗ |Pa| f⟩ = −i∂xa ⟨x⃗| f⟩ . (5.2.24)

This then allows us to re-collapse the series back into the exponential of the momentum operator:〈
x⃗+ d⃗

∣∣∣ f〉 =
〈
x⃗
∣∣∣eid⃗·P⃗ ∣∣∣ f〉 =

(
e−id⃗·P⃗

† |x⃗⟩
)†
|f⟩ . (5.2.25)

Since T (d⃗) is unitary in infinite space, the P⃗ is Hermitian. We will call this Hermitian operator

P⃗ the momentum operator.25 To summarize:∣∣∣x⃗+ d⃗
〉
= T (d⃗) |x⃗⟩ = e−id⃗·P⃗ |x⃗⟩ . (5.2.26)

In this exp form, eq. (5.2.17) reads

exp
(
−id⃗1 · P⃗

)
exp

(
−id⃗2 · P⃗

)
= exp

(
−i(d⃗1 + d⃗2) · P⃗

)
. (5.2.27)

Problem 5.9. Commutation relations between momentum operators Because trans-
lation is commutative, d⃗1 + d⃗2 = d⃗2 + d⃗1, argue that the translation operators commute:[

T (d⃗1), T (d⃗2)
]
= 0. (5.2.28)

By considering infinitesimal displacements d⃗1 = dξ⃗1 and d⃗2 = dξ⃗2, show that eq. (5.2.20) leads
to us to conclude that momentum operators commute among themselves,

[Pi, Pj] = 0, i, j ∈ {1, 2, 3, . . . , D}. (5.2.29)

Comparing against eq. (5.1.43), we may conclude the structure constants occurring within the
Lie algebra obeyed by the translation generators are all zero.

25Strictly speaking Pj here has dimensions of 1/[length], whereas the momentum you might be familiar with
has units of [mass × length/time2] = [angular momentum]/[length]. The reason for such nomenclature is because
of its application in Quantum Mechanics.
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Note that, for any operator A and arbitrary state |ψ⟩,

A |ψ⟩ =
∫
RD

dDx⃗ |x⃗⟩ ⟨x⃗|A |ψ⟩ . (5.2.30)

Therefore to find T (d⃗) (and hence P⃗ ) of eq. (5.2.20) in any other representation, we merely need
to find the change-of-basis from the position eigenkets to the new basis.

Translation invariance Infinite (flat) D-space RD is the same everywhere and in every

direction. This intuitive fact is intimately tied to the property that T (d⃗) is a unitary operator:
it just changes one orthonormal basis to another, and physically speaking, there is no privileged
set of basis vectors. In particular, the norm of vectors is position independent:〈

x⃗+ d⃗
∣∣∣ x⃗′ + d⃗

〉
= δ(D) (x⃗− x⃗′) = ⟨x⃗| x⃗′⟩ . (5.2.31)

This observation played a crucial role in the proof of the unitary character of T in eq. (5.2.12).

In turn, the unitary T (d⃗) = exp(−id⃗ · P⃗ ) implies its generators {Pj} must be Hermitian. To
reiterate:

Symmetry, Unitarity & Hermicity The unitary nature of the translation
operator T (d⃗) = exp(−id⃗ · P⃗ ) and the Hermitian character of the momentum P⃗ are
both direct consequences of the space-translation symmetry of infinite flat space.

As we will see below, if we confine our attention to some finite domain in RD or if space is no
longer flat, then global translation symmetry is lost and the translation operator still exists but
is no longer unitary.

Commutation relations between X i and Pj We have seen, just from postulating a
Hermitian position operator X i, and considering the translation operator acting on the space
spanned by its eigenkets {|x⃗⟩}, that there exists a Hermitian momentum operator Pj that occurs
in the exponent of said translation operator. This implies the continuous space at hand can be
spanned by either the position eigenkets {|x⃗⟩} or the momentum eigenkets, which obey

Pj |⃗k⟩ = kj |⃗k⟩. (5.2.32)

Are the position and momentum operators simultaneously diagonalizable? Can we label a state
with both position and momentum? The answer is no.

To see this, we now consider an infinitesimal displacement operator T (dξ⃗).

X⃗T (dξ⃗) |x⃗⟩ = X⃗
∣∣∣x⃗+ dξ⃗

〉
= (x⃗+ dξ⃗)

∣∣∣x⃗+ dξ⃗
〉
, (5.2.33)

and

T (dξ⃗)X⃗ |x⃗⟩ = x⃗
∣∣∣x⃗+ dξ⃗

〉
. (5.2.34)

Since |x⃗⟩ was an arbitrary vector, we may subtract the two equations[
X⃗, T (dξ⃗)

]
|x⃗⟩ = dξ⃗

∣∣∣x⃗+ dξ⃗
〉
= dξ⃗ |x⃗⟩+O

(
dξ⃗2
)
. (5.2.35)
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At first order in dξ⃗, we have the operator identity[
X⃗, T (dξ⃗)

]
= dξ⃗. (5.2.36)

The left hand side involves operators, but the right hand side only real numbers. At this point
we invoke eq. (5.2.20), and deduce, for infinitesimal displacements,

T (dξ⃗) = 1− idξ⃗ · P⃗ +O(dξ⃗2) (5.2.37)

which in turn means eq. (5.2.36) now reads, as dξ⃗ → 0⃗,[
X⃗,−idξ⃗ · P⃗

]
= dξ⃗ (5.2.38)[

X l, Pj
]
dξj = iδljdξ

j (the lth component) (5.2.39)

Since the {dξj} are independent, the coefficient of dξj on both sides must be equal. This leads
us to the fundamental commutation relation between kth component of the position operator
with the j component of the momentum operator:[

Xk, Pj
]
= iδkj , j, k ∈ {1, 2, . . . , D}. (5.2.40)

To sum: although Xk and Pj are both Hermitian operators in infinite flat RD, we see they
are incompatible and thus, to span the continuous vector space at hand we can use either the
eigenkets of X i or that of Pj but not both. We will, in fact, witness below how changing from
the position to momentum eigenket basis gives rise to the Fourier transform and its inverse.

|f⟩ =
∫
RD

dDx⃗′ |x⃗′⟩ ⟨x⃗′| f⟩ , X i |x⃗′⟩ = x′i |x⃗′⟩ (5.2.41)

|f⟩ =
∫
RD

dDk⃗′

(2π)D

∣∣∣⃗k′〉 〈k⃗′∣∣∣ f〉 , Pj

∣∣∣⃗k′〉 = k′j

∣∣∣⃗k′〉 . (5.2.42)

For those already familiar with quantum theory, notice there is no ℏ on the right hand side;
nor will there be any throughout this section. This is not because we have “set ℏ = 1” as is
commonly done in theoretical physics literature. Rather, it is because we wish to reiterate that
the linear algebra of continuous operators, just like its discrete finite dimension counterparts, is
really an independent structure on its own. Quantum theory is merely one of its application,
albeit a very important one.

Problem 5.10. Check that the position representation of the momentum operator P⃗ in eq.
(5.2.24) is consistent with eq. (5.2.40) by considering〈

x⃗
∣∣[Xk, Pj

]∣∣α〉 = iδkj ⟨x⃗|α⟩ . (5.2.43)

Start by expanding the commutator on the left hand side, and show that you can recover eq.
(5.2.24).

Problem 5.11. Express the following matrix element in the position space representation〈
α
∣∣∣P⃗ ∣∣∣ β〉 =

∫
dDx⃗

(
?

)
. (5.2.44)
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Problem 5.12. Show that the negative of the Laplacian, namely

−∇⃗2 ≡ −
∑
i

∂

∂xi
∂

∂xi
(in Cartesian coordinates {xi}), (5.2.45)

is the square of the momentum operator. That is, for an arbitrary state |α⟩, show that〈
x⃗
∣∣∣P⃗ 2
∣∣∣α〉 = −δij ∂

∂xi
∂

∂xj
⟨x⃗|α⟩ ≡ −∇⃗2 ⟨x⃗|α⟩ . (5.2.46)

Problem 5.13. Prove the Campbell-Baker-Hausdorff lemma. For linear operators A and
B, and complex number α,

eiαABe−iαA = B +
∞∑
ℓ=1

(iα)ℓ

ℓ!
[A, [A, . . . [A︸ ︷︷ ︸

ℓ of these

, B]]]. (5.2.47)

Hint: Taylor expand the left-hand-side and use mathematical induction.
Next, consider the expectation values of the position X⃗ and momentum P⃗ operator with

respect to a general state |ψ⟩:〈
ψ
∣∣∣X⃗∣∣∣ψ〉 and

〈
ψ
∣∣∣P⃗ ∣∣∣ψ〉 . (5.2.48)

What happens to these expectation values when we replace |ψ⟩ → T (d⃗) |ψ⟩?

Fourier analysis We will now show how the concept of a Fourier transform readily
arises from the formalism we have developed so far. To initiate the discussion we start with eq.
(5.2.24), with |α⟩ replaced with a momentum eigenket |⃗k⟩. This yields the eigenvalue/vector
equation for the momentum operator in the position representation.〈

x⃗
∣∣∣P⃗ ∣∣∣ k⃗〉 = k⃗⟨x⃗|⃗k⟩ = −i ∂

∂x⃗
⟨x⃗|⃗k⟩, ⇔ kj⟨x⃗|⃗k⟩ = −i

∂⟨x⃗|⃗k⟩
∂xj

. (5.2.49)

In D-space, this is a set of D first order differential equations for the function ⟨x⃗|⃗k⟩. Via a direct
calculation you can verify that the solution to eq. (5.2.49) is simply the plane wave

⟨x⃗|⃗k⟩ = χ exp
(
i⃗k · x⃗

)
. (5.2.50)

where χ is complex constant to be fixed in the following way. We want∫
RD

dDk

(2π)D
⟨x⃗|⃗k⟩⟨k⃗|x⃗′⟩ = ⟨x⃗| x⃗′⟩ = δ(D)(x⃗− x⃗′). (5.2.51)

Using the plane wave solution,

(2π)D|χ|2
∫

dDk

(2π)D
eik⃗·(x⃗−x⃗

′) = δ(D)(x⃗− x⃗′). (5.2.52)
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Now, recall the representation of the D-dimensional δ-function∫
RD

dDk⃗

(2π)D
eik⃗·(x⃗−x⃗

′) = δ(D)(x⃗− x⃗′). (5.2.53)

Therefore, up to an overall multiplicative phase eiδ, which we will choose to be unity, χ = 1 and
eq. (5.2.50) becomes

⟨x⃗|⃗k⟩ = exp
(
i⃗k · x⃗

)
. (5.2.54)

By comparing eq. (5.2.54) with eq. (4.3.144), we see that the plane wave in eq. (5.2.54) can
be viewed as the matrix element of the unitary operator implementing the change-of-basis from
position to momentum space, and vice versa.

We may now examine how the position representation of an arbitrary state ⟨x⃗| f⟩ can be
expanded in the momentum eigenbasis.

⟨x⃗| f⟩ =
∫
RD

dDk⃗

(2π)D
⟨x⃗|⃗k⟩

〈
k⃗
∣∣∣ f〉 =

∫
RD

dDk⃗

(2π)D
eik⃗·x⃗

〈
k⃗
∣∣∣ f〉 (5.2.55)

Similarly, we may expand the momentum representation of an arbitrary state
〈
k⃗
∣∣∣ f〉 in the

position eigenbasis. 〈
k⃗
∣∣∣ f〉 =

∫
RD

dDx⃗
〈
k⃗
∣∣∣ x⃗〉 ⟨x⃗| f⟩ = ∫

RD

dDx⃗e−ik⃗·x⃗ ⟨x⃗| f⟩ (5.2.56)

Equations (5.2.55) and (5.2.56) are nothing but the Fourier expansion of some function f(x⃗) and
its inverse transform.26 We may sum up the discussion here with the following expansions:

|x⃗⟩ =
∫
RD

dDk⃗

(2π)D
e−ik⃗·x⃗

∣∣∣⃗k〉 , (5.2.57)∣∣∣⃗k〉 =

∫
RD

dDx⃗eik⃗·x⃗ |x⃗⟩ . (5.2.58)

Plane waves as orthonormal basis vectors For practical calculations, it is of course cumber-
some to carry around the position {|x⃗⟩} or momentum eigenkets {|⃗k⟩}. As far as the space of
functions in RD is concerned, i.e., if one works solely in terms of the components f(x⃗) ≡ ⟨x⃗| f⟩,
as opposed to the space spanned by |x⃗⟩, then one can view the plane waves {exp(i⃗k · x⃗)/(2π)D/2}
in the Fourier expansion of eq. (5.2.55) as the orthonormal basis vectors. The coefficients of the

expansion are then the f̃(k⃗) ≡ ⟨k⃗|f⟩.

f(x⃗) =

∫
RD

dDk⃗

(2π)D
eik⃗·x⃗f̃(k⃗) (5.2.59)

26A warning on conventions: our Fourier transform conventions will be
∫
dDk/(2π)D for the momentum

integrals and
∫
dDx for the position space integrals; these conventions can be traced back to equations (5.2.41)

and (5.2.42). This is just a matter of where the (2π)s are allocated, and no math/physics content is altered.
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By multiplying both sides by exp(−i⃗k′ · x⃗), integrating over all space, using the integral repre-

sentation of the δ-function in eq. (5.1.6), and finally replacing k⃗′ → k⃗,

f̃(k⃗) =

∫
RD

dDx⃗e−ik⃗·x⃗f(x⃗). (5.2.60)

Problem 5.14. Prove that, for the eigenstate of momentum |⃗k⟩, arbitrary states |α⟩ and
|β⟩, 〈

k⃗
∣∣∣X⃗∣∣∣α〉 = i

∂

∂k⃗

〈
k⃗
∣∣∣α〉 (5.2.61)〈

β
∣∣∣X⃗∣∣∣α〉 =

∫
dDk⃗

〈
k⃗
∣∣∣ β〉∗ i ∂

∂k⃗

〈
k⃗
∣∣∣α〉 . (5.2.62)

The X⃗ is the position operator.

Uncertainly relation According to (4.3.101) and (5.2.40), if we work in 1 dimension
for now, 〈

ψ
∣∣∆X2

∣∣ψ〉 〈ψ ∣∣∆P 2
∣∣ψ〉 ≥ 1

4
. (5.2.63)

In D−spatial dimensions, we may consider〈
ψ
∣∣∣∆X⃗2

∣∣∣ψ〉〈ψ ∣∣∣∆P⃗ 2
∣∣∣ψ〉 =

∑
1≤i,j≤D

〈
ψ
∣∣(∆X i)2

∣∣ψ〉 〈ψ ∣∣(∆Pj)2∣∣ψ〉 . (5.2.64)

We may apply eq. (4.3.101) on each term in the sum – i.e., identify ∆X i(here)↔ ∆X(4.3.101)
and ∆Pj(here)↔ ∆Y (4.3.101) – to deduce,〈

ψ
∣∣∣∆X⃗2

∣∣∣ψ〉〈ψ ∣∣∣∆P⃗ 2
∣∣∣ψ〉 ≥ 1

4

∑
1≤i,j≤D

|
〈
ψ
∣∣[X i, Pj]

∣∣ψ〉 |2 =∑
i,j

δij
4

=
D

4
. (5.2.65)

This is the generalization of eq. (5.2.63) to D−dimensions.

Problem 5.15. Planck’s constant: From inverse length to momentum Notice that
eq. (5.2.24) tells us the “momentum operator” has dimension

[Pj] = 1/Length. (5.2.66)

Explain why, to re-scale Pj → κPj to an object κPj that truly has dimension of momentum, the
κ must have dimension of Planck’s (reduced) constant ℏ.

From Linear Algebra to Quantum Mechanics What you have discovered in Prob-
lem (5.15) is that, upon rescaling P⃗new ≡ ℏP⃗old, it is the ‘new’ translation generator P⃗new that

has the correction dimensions of momentum. Therefore, the eigenvalues are now p⃗ ≡ ℏk⃗ with

corresponding eigenstate
∣∣∣p⃗ ≡ ℏk⃗

〉
; the position representation in eq. (5.2.24) is now

⟨x⃗ |Pj|ψ⟩ = −iℏ∂j ⟨x⃗|ψ⟩ ; (5.2.67)
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while the commutation relations of eq. (5.2.40) becomes[
X i, Pj

]
= iℏδij. (5.2.68)

– i.e., each P on the left hand side now has a ℏ. Furthermore, the change-of-basis matrix element
in eq. (5.2.54), i.e., the plane wave, may now be re-expressed as

⟨x⃗|p⃗⟩ = exp

(
i

ℏ
p⃗ · x⃗

)
, p⃗ ≡ ℏk⃗. (5.2.69)

Problem 5.16. Gaussian states & Uncertainty Relations Consider the function, with
d > 0,

⟨x⃗|ψ⟩ = eik⃗·x⃗

(
√
πd)D/2

exp

(
− x⃗2

2d2

)
. (5.2.70)

Compute ⟨k⃗′|ψ⟩, the state |ψ⟩ in the momentum eigenbasis. Let X⃗ and P⃗ denote the position
and momentum operators. Calculate the following expectation values:〈

ψ
∣∣∣X⃗∣∣∣ψ〉 , 〈

ψ
∣∣∣X⃗2

∣∣∣ψ〉 , 〈
ψ
∣∣∣P⃗ ∣∣∣ψ〉 , 〈

ψ
∣∣∣P⃗ 2
∣∣∣ψ〉 . (5.2.71)

What is the value of(〈
ψ
∣∣∣X⃗2

∣∣∣ψ〉− 〈ψ ∣∣∣X⃗∣∣∣ψ〉2)(〈ψ ∣∣∣P⃗ 2
∣∣∣ψ〉− 〈ψ ∣∣∣P⃗ ∣∣∣ψ〉2)? (5.2.72)

Hint: In this problem you will need the following results∫ +∞

−∞
dxe−a(x+iy)

2

=

∫ +∞

−∞
dxe−ax

2

=

√
π

a
, a > 0, y ∈ R. (5.2.73)

If you encounter an integral of the form∫
RD

dDx⃗′e−αx⃗
2

eix⃗·(q⃗−q⃗
′), α > 0, (5.2.74)

you should try to combine the exponents and “complete the square”. Do you find that the
uncertainty relation in eq. (5.2.65) to be saturated?

Problem 5.17. Free Particle in QuantumMechanics: Wave Packets The Schrödinger
equation governing the time evolution of quantum states is

iℏ∂t |ψ⟩ = H |ψ⟩ . (5.2.75)

The free particle is described by the ‘pure kinetic energy’ Hamiltonian

H =
P⃗ 2

2m
, (5.2.76)
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where m > 0 is the particle’s mass. As we have discussed in eq. (5.1.57), given an initial state
|ψ(t0)⟩, the solution for t > t0 is given by

|ψ(t)⟩ = U |ψ(t0)⟩ = exp (−i(t− t0)H) |ψ(t0)⟩ . (5.2.77)

Explain why the following solutions for ψ̃(t > t0, k⃗) ≡ ⟨k⃗|ψ(t > t0)⟩ are equivalent.

ψ̃(t > t0, k⃗) = exp

(
−i(t− t0)

k⃗2

2m

)
ψ̃0(k⃗), ψ̃0(k⃗) ≡

〈
k⃗
∣∣∣ψ(t0)〉 (5.2.78)

=

∫
dDx⃗′ exp

(
−i(t− t0)

k⃗2

2m
− i⃗k · x⃗′

)
ψ(x⃗′), ψ0(x⃗) ≡ ⟨x⃗|ψ(t0)⟩ . (5.2.79)

Explain why the following solutions for ψ(t > t0, x⃗) ≡ ⟨x⃗|ψ(t)⟩ are equivalent.

ψ(t > t0, x⃗) =

∫
dDk⃗

(2π)D
exp

(
−i(t− t0)

k⃗2

2m
+ i⃗k · x⃗

)
ψ̃0(k⃗) (5.2.80)

=

∫
dDx⃗′K(t− t0; x⃗− x⃗′)ψ(x⃗′) (5.2.81)

Here, theK(τ ; z⃗) is known as the quantum mechanical propagator of the free particle; you should
find that it reads

K(τ ; z⃗) =

∫
dDk⃗

(2π)D
exp

(
−iτ k⃗

2

2m
+ i⃗k · z⃗

)
. (5.2.82)

Can you evaluate the integral? Answer: with the square root denoting the positive one,

K(τ ; z⃗) = e−iD
π
4

( m

2πτ

)D
2
exp

[
i
mz⃗2

2τ

]
. (5.2.83)

Hint: You may wish to start on this problem by inserting a complete set of momentum states
between the time evolution operator U and |ψ(t0)⟩.

Space Translation of Momentum Eigenket Let |⃗k⟩ be an eigenket of the momentum

operator P⃗ . Notice that

T (d⃗)
∣∣∣⃗k〉 = exp(−id⃗ · P⃗ )

∣∣∣⃗k〉 = exp(−id⃗ · k⃗)
∣∣∣⃗k〉 . (5.2.84)

In words: the momentum eigenstate |⃗k⟩ is an eigenvector of T (d⃗) with eigenvalue exp(−id⃗ · k⃗).
Since this is merely a phase, in quantum mechanics, we would regard T (d⃗)|⃗k⟩ and |⃗k⟩ as the
same physical ket: i.e., space-translation merely shifts the momentum eigenket by a phase.

However, if we were to translate a superposition over different k⃗ modes,

T (d⃗) |f⟩ =
∫
RD

dDk⃗

(2π)D

∣∣∣⃗k〉〈k⃗∣∣∣ e−id⃗·P⃗ |f⟩ (5.2.85)
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=

∫
RD

dDk⃗

(2π)D

∣∣∣⃗k〉(e+id⃗·P⃗ ∣∣∣⃗k〉)† |f⟩ = ∫
RD

dDk⃗

(2π)D

∣∣∣⃗k〉 e−ik⃗·d⃗f̃(k⃗). (5.2.86)

Under a translation |f⟩ → T (d⃗) |f⟩ we see the Fourier coefficients transform as

f̃(k⃗)→ e−ik⃗·d⃗f̃(k⃗). (5.2.87)

Momentum Translation We have discussed how to implement translation in position
space using the momentum operator P⃗ , namely T (d⃗) = exp(−id⃗ · P⃗ ). What would be the

corresponding translation operator in momentum space?27 That is, what is T̃ such that

T̃ (d⃗)|⃗k⟩ =
∣∣∣⃗k + d⃗

〉
, Pj |⃗k⟩ = kj |⃗k⟩? (5.2.88)

Of course, one representation would be the analog of eq. (5.2.19).

T̃ (d⃗) =
∫
RD

dDk⃗′
∣∣∣⃗k′ + d⃗

〉〈
k⃗′
∣∣∣ (5.2.89)

But is there an exponential form, like there is one for the translation in position space (eq.

(5.2.20))? We start with the observation that the momentum eigenstate |⃗k⟩ can be written as a
superposition of the position eigenkets using eq. (5.2.54),

|⃗k⟩ =
∫
RD

dDx⃗′ |x⃗′⟩
〈
x⃗′
∣∣∣⃗k〉 =

∫
RD

dDx⃗′

(2π)D/2
eik⃗·x⃗

′ |x⃗′⟩ . (5.2.90)

Now consider

exp(+id⃗ · X⃗)|⃗k⟩ =
∫
RD

dDx⃗′

(2π)D/2
eik⃗·x⃗

′
eid⃗·x⃗

′ |x⃗′⟩

=

∫
RD

dDx⃗′

(2π)D/2
ei(k⃗+d⃗)·x⃗

′ |x⃗′⟩ =
∣∣∣⃗k + d⃗

〉
. (5.2.91)

That means

T̃ (d⃗) = exp
(
id⃗ · X⃗

)
. (5.2.92)

Spectra of P⃗ and P⃗ 2 in infinite RD We conclude this section by summarizing the several
interpretations of the plane waves {⟨x⃗|⃗k⟩ ≡ exp(i⃗k · x⃗)}.

1. They can be viewed as the orthonormal basis vectors (in the δ-function sense) spanning
the space of complex functions on RD.

2. They can be viewed as the matrix element of the unitary operator U that performs a
change-of-basis between the position and momentum eigenbasis, namely U |x⃗⟩ = |⃗k⟩.

27This question was suggested by Jake Leistico, who also correctly guessed the essential form of eq. (5.2.92).
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3. They are simultaneous eigenstates of the momentum operators {−i∂j ≡ −i∂/∂xj|j =

1, 2, . . . , D} and the negative Laplacian −∇⃗2 in the position representation.

−∇⃗2
x⃗⟨x⃗|⃗k⟩ = k⃗2⟨x⃗|⃗k⟩, −i∂j⟨x⃗|⃗k⟩ = kj⟨x⃗|⃗k⟩, k⃗2 ≡ δijkikj. (5.2.93)

The eigenvector/value equation for the momentum operators had been solved previously
in equations (5.2.49) and (5.2.50). For the negative Laplacian, we may check

−∇⃗2
x⃗⟨x⃗|⃗k⟩ =

〈
x⃗
∣∣∣P⃗ 2
∣∣∣ k⃗〉 = k⃗2⟨x⃗|⃗k⟩. (5.2.94)

That the plane waves are simultaneous eigenvectors of Pj and P⃗
2 = −∇⃗2 is because these

operators commute amongst themselves: [Pj, P⃗
2] = [Pi, Pj] = 0. This is therefore an

example of degeneracy. For a fixed eigenvalue k2 of the negative Laplacian, there is a
continuous infinity of eigenvalues of the momentum operators, only constrained by

k⃗2 ≡
D∑
j=1

(kj)
2 = k2, P⃗ 2

∣∣k2; k1 . . . kD〉 = k2
∣∣k2; k1 . . . kD〉 . (5.2.95)

Physically speaking we may associate this degeneracy with the presence of rotational sym-
metry of the underlying infinite flat RD: the eigenvalue of P⃗ 2, namely k⃗2, is the same no
matter where k⃗/|⃗k| is pointing.
Additionally, eq. (5.2.84) tells us that, both T (d⃗)|⃗k⟩ and |⃗k⟩ are eigenkets of P⃗ 2 with

eigenvalue k2. This is of course because [T (d⃗), P⃗ ] = 0 and is, in turn, a consequence of
translation symmetry of the underlying flat space.

5.3 Boundary Conditions, Finite Box, Periodic functions and the
Fourier Series

Up to now we have not been terribly precise about the boundary conditions obeyed by our states
⟨x⃗| f⟩, except to say they are functions residing in an infinite space RD. Let us now rectify this
glaring omission – drop the assumption of infinite space RD – and study how, in particular, the
Hermitian nature of the P⃗ 2 ≡ −∇⃗2 operator now depends crucially on the boundary conditions
obeyed by its eigenstates. If P⃗ 2 is Hermitian,〈

ψ1

∣∣∣P⃗ 2
∣∣∣ψ2

〉
=

〈
ψ1

∣∣∣∣(P⃗ 2
)†∣∣∣∣ψ2

〉
=
〈
ψ2

∣∣∣P⃗ 2
∣∣∣ψ1

〉∗
, (5.3.1)

for any states |ψ1,2⟩. Inserting a complete set of position eigenkets, and using〈
x⃗
∣∣∣P⃗ 2
∣∣∣ψ1,2

〉
= −∇⃗2

x⃗ ⟨x⃗|ψ1,2⟩ , (5.3.2)

we arrive at the condition that, if P⃗ 2 is Hermitian then the negative Laplacian can be “integrated-
by-parts” to act on either ψ1 or ψ2.∫

D

dDx ⟨ψ1| x⃗⟩
〈
x⃗
∣∣∣P⃗ 2
∣∣∣ψ2

〉
?
=

∫
D

dDx ⟨ψ2| x⃗⟩∗
〈
x⃗
∣∣∣P⃗ 2
∣∣∣ψ1

〉∗
,
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∫
D

dDxψ1(x⃗)
∗
(
−∇⃗2

x⃗ψ2(x⃗)
)

?
=

∫
D

dDx
(
−∇⃗2

x⃗ψ1(x⃗)
∗
)
ψ2(x⃗), ψ1,2(x⃗) ≡ ⟨x⃗|ψ1,2⟩ . (5.3.3)

Notice we have to specify a domain D to perform the integral. If we now proceed to work from
the left hand side, and use Gauss’ theorem from vector calculus,∫

D

dDxψ1(x⃗)
∗
(
−∇⃗2

x⃗ψ2(x⃗)
)
=

∫
∂D

dD−1Σ⃗ ·
(
−∇⃗ψ1(x⃗)

∗
)
ψ2(x⃗) +

∫
D

dDx∇⃗ψ1(x⃗)
∗ · ∇⃗ψ2(x⃗)

=

∫
∂D

dD−1Σ⃗ ·
{(
−∇⃗ψ1(x⃗)

∗
)
ψ2(x⃗) + ψ1(x⃗)

∗∇⃗ψ2(x⃗)
}

+

∫
D

dDxψ1(x⃗)
∗
(
−∇⃗2ψ2(x⃗)

)
(5.3.4)

Here, dD−1Σ⃗ is the (D−1)-dimensional analog of the 2D infinitesimal area element dA⃗ in vector
calculus, and is proportional to the unit (outward) normal n⃗ to the boundary of the domain ∂D.

We see that integrating-by-parts the P⃗ 2 from ψ1 onto ψ2 can be done, but would incur the two
surface integrals. To get rid of them, we may demand the eigenfunctions {ψλ} of P⃗ 2 or their

normal derivatives {n⃗ · ∇⃗ψλ} to be zero:

ψλ(∂D) = 0 (Dirichlet) or n⃗ · ∇⃗ψλ(∂D) = 0 (Neumann). (5.3.5)

28No boundaries The exception to the requirement for boundary conditions, is when the
domain D itself has no boundaries – there will then be no “surface terms” to speak of, and the
Laplacian is hence automatically Hermitian. In this case, the eigenfunctions often obey periodic
boundary conditions; we will see examples below.

Boundary Conditions The abstract bra-ket notation ⟨ψ1|P⃗ 2|ψ2⟩ obscures the
fact that boundary conditions are required to ensure the Hermitian nature of P⃗ 2 in a
finite domain. Not only do we have to specify what the domain D of the underlying
space actually is; to ensure P⃗ 2 remains Hermitian, we may demand the eigenfunctions
or their normal derivatives (expressed in the position representation) to vanish on
the boundary ∂D.

In the discussion of partial differential equations below, we will generalize this analysis to curved
spaces.

Example: Finite box The first illustrative example is as follows. Suppose our system
is defined only in a finite box. For the ith Cartesian axis, the box is of length Li. If we demand
that the eigenfunctions of −∇⃗2 vanish at the boundary of the box, we find the eigensystem

−∇⃗2
x⃗ ⟨x⃗| n⃗⟩ = λ(n⃗) ⟨x⃗| n⃗⟩ ,

〈
x⃗;xi = 0

∣∣ n⃗〉 = 〈
x⃗;xi = Li

∣∣ n⃗〉 = 0, (5.3.6)

28We may also allow the eigenfunctions to obey a mixed boundary condition, but we will stick to either Dirichlet
or Neumann for simplicity.
Moreover, in a non-relativistic quantum mechanical system with Hamiltonian equals to kinetic (2m)−1P⃗ 2 plus

potential V (X⃗); when ψ1 = ψ2 ≡ ψ the integrand J⃗ = ψ∗∇⃗ψ−ψ∇⃗ψ∗ within the surface integral of eq. (5.3.4) is

proportional to the probability current. Choosing the right boundary conditions to set J⃗ = 0, so as to guarantee
the hermicity of P⃗ 2, then amounts to, in this limit, ensuring there is zero flow of probability outside the domain
D under consideration.
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i = 1, 2, 3, . . . , D, (5.3.7)

admits the solution

⟨x⃗| n⃗⟩ ∝
D∏
i=1

sin

(
πni

Li
xi
)
, λ(n⃗) =

D∑
i=1

(
πni

Li

)2

. (5.3.8)

These {ni} runs over the positive integers only; because sine is an odd function, the negative
integers do not yield new solutions.

Problem 5.18. Verify that the basis eigenkets in eq. (5.3.8) do solve eq. (5.3.6). What
is the correct normalization for ⟨x⃗| n⃗⟩? Also verify that the basis plane waves in eq. (5.3.25)
satisfy the normalization condition in eq. (5.3.24).

Use these {|n⃗⟩} to solve the free particle Schrödinger equation:

⟨n⃗ |iℏ∂t|ψ(t)⟩ =
〈
n⃗
∣∣∣P⃗ 2/(2m)

∣∣∣ψ(t)〉 (5.3.9)

with the initial conditions ⟨n⃗|ψ(t = t0)⟩ = 1. Then solve for ⟨x⃗|ψ(t)⟩.

Finite Domains & Translation Symmetry Let us recall that, in infinite flat space,
the translation operator was unitary because of spatial-translation symmetry. In a finite domain
D; we expect this symmetry to be broken due to the presence of the boundaries, which does
select a privileged set of position eigenkets. More specifically, the domain is ‘here’ and not
‘there’: translating a position eigenket |x⃗⟩ → |x⃗+ d⃗⟩ may in fact place it completely outside the
domain, rendering it non-existent.

To be sure, the Taylor expansion of a function,

f(x⃗+ d⃗) = exp
(
dj∂j

)
⟨x⃗| f⟩ (5.3.10)

still holds, as long as both x⃗ and x⃗ + d⃗ lie within D. This means equations (5.2.20), (5.2.24),

and (5.2.26) are still valid – the T (d⃗) = exp(−id⃗ · P⃗ ) form of the translation operator itself may
still be employed – as long as the associated displacement is not too large.

On the other hand, let us study this breaking of translation symmetry in a simple example,
by working in a 1D ‘box’ of size L parametrized by z; restricted to 0 ≤ z ≤ L. This means the
position eigenket |z⟩ cannot be translated further that L−z to the right or further than z to the
left, because it will be outside the box. Moreover, we may attempt to construct the analogue of
eq. (5.2.19):

T (d > 0)
?
=

∫ L

0

dz′ |z′ + d⟩ ⟨z′| . (5.3.11)

In fact, this would not work because of the reasons already alluded to above. When z′ = L, for
example, the |L+ d⟩ contribution to eq. (5.3.11) would not make sense. Likewise, for d < 0 and
z′ = 0, the ⟨d| in eq. (5.3.11) would, too, be non-existent. More generally, for d > 0, the bras
{⟨z′ > L− d|} and ket {|z′ > L− d⟩} when translated by d,

⟨z′| → ⟨z′ + d| and |z′⟩ → |z′ + d⟩ ; (5.3.12)

would place them entirely out of the box.
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The translation operator in a finite 1D box cannot be a change-of-basis oper-
ator because some of the position eigenkets will be moved outside the box by the
translation operation. Hence, the translation operator cannot be unitary.

Kinetic Energy vs Momentum Notice that, even though P 2 is Hermitian in this finite domain
0 ≤ z ≤ L (if we, say, impose Dirichlet boundary conditions), P itself is no longer Hermitian.
For, if it were Hermitian, the translation operator T (ξ) = exp(−iξ · P ) would be unitary,
contradicting what we have just uncovered. This is a subtle point: even though [P, P 2] = 0,
because P itself is no longer Hermitian, P 2 and P are no longer simultaneously diagonalizable.
Specifically, from eq. (5.3.6) and (5.3.8), we recall the eigensystem relation〈

z
∣∣P 2
∣∣n〉 = (πn

L

)2
⟨z|n⟩ ; (5.3.13)

but on the other hand,

⟨z |P |n⟩ ∝ πn

L
· cos

(πn
L
z
)
, (5.3.14)

which is not proportional to ⟨z|n⟩ ∝ sin[(πn/L)x] – namely, P 2 and P do not share eigensystems,
because the latter is simply not Hermitian.

Local vs Global Symmetry What we have described is the breaking of global symmetry
(and its consequences): translating the entire box does not work, because it would render part
of the box non-existent, due to the presence of the boundaries. However, when we restrict the
domain D to a finite one embedded within flat RD, there is still local translation symmetry in
that, performing the same experiment at x⃗ and at x⃗′ should not lead to any physical differences
as long as both x⃗ and x⃗′ lie within the said domain. For instance, we have already noted that
the exponential form of the translation operator in eq. (5.2.20) still properly implements local
translations, so long as the displacement is not too large.

To further quantify local translation symmetry, let us remain in the 1D box example. We
may construct – instead of eq. (5.3.11) – a local translation operator in the ket-bra form, in the
following manner. Suppose we wish to translate the region 0 < a < z < b < L by ε > 0 either to
the left or to the right. As long as ε < min(a, b), we will not run intro trouble: the entire region
will still remain in the box. Moreover, the region a + ε < z < b will remain within the original
region a < z < b if it were a left-translation; while a < z < b − ε remains within the original
region if it were a right-translation. These considerations suggest that we consider

T (ε|a, b) ≡
∫ b

a

dz′ |z′ + ε⟩ ⟨z′| . (5.3.15)

For an arbitrary position eigenket |z⟩, we may compute

T (ε|a, b) |z⟩ =
∫ b

a

dz′ |z′ + ε⟩ δ(z′ − z) (5.3.16)

= Θ(z − a)Θ(b− z) |z + ε⟩ . (5.3.17)

The Θ(z− a)Θ(b− z) is the ‘top-hat’ function, which is unity within the interval a < z < b and
zero outside. The reason for its appearance is, the δ-function within the integral of eq. (5.3.16)
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is zero unless z′ = z and a < z′ < b simultaneously. Therefore, as expected, eq. (5.3.16) provides
a well-defined ket-bra form of the translation operator; but restricted to acting upon kets lying
within (a, b) and for small enough ε.

Problem 5.19. Local ‘Identity’ and ‘Unitary’-Translation Operators Explain why,
for 0 < a < b < L,

I(a, b) ≡
∫ b

a

dz′ |z′⟩ ⟨z′| (5.3.18)

is the identity operator when acting on position eigenkets lying within the interval (a, b) in the
1D box example above. Next, verify that T (ε|a, b) in eq. (5.3.16) obeys

T (ε|a, b)†T (ε|a, b) = I(a+ ε, b+ ε). (5.3.19)

Since I(a + ε, b + ε) is the identity on the interval (a + ε, b + ε), eq. (5.3.19) may be regarded
as a restricted form of the unitary condition U †U = I. This, in turn, may be interpreted as a
consequence of local translation symmetry.

Periodic Domains: the Fourier Series. If we stayed within the infinite space, but
instead imposed periodic boundary conditions,〈

x⃗;xi → xi + Li
∣∣ f〉 = 〈

x⃗;xi
∣∣ f〉 , (5.3.20)

f(x1, . . . , xi + Li, . . . , xD) = f(x1, . . . , xi, . . . , xD) = f(x⃗), (5.3.21)

this would mean, not all the basis plane waves from eq. (5.2.54) remains in the Hilbert space.
Instead, periodicity means

⟨x⃗;xj = xj + Lj |⃗k⟩ = ⟨x⃗;xj = xj |⃗k⟩
eikj(x

j+Lj) = eikjx
j

, (No sum over j.) (5.3.22)

(The rest of the plane waves, eiklx
l
for l ̸= j, cancel out of the equation.) This further implies

the eigenvalue kj becomes discrete:

eikjL
j

= 1 (No sum over j.) ⇒ kjL
j = 2πn ⇒ kj =

2πnj

Lj
,

nj = 0,±1,±2,±3, . . . . (5.3.23)

We need to re-normalize our basis plane waves. In particular, since space is now periodic, we
ought to only need to integrate over one typical volume.∫

{0≤xi≤Li|i=1,2,...,D}
dDx⃗ ⟨n⃗′| x⃗⟩ ⟨x⃗| n⃗⟩ = δn⃗n⃗′ ≡

D∏
i=1

δn
′i

ni . (5.3.24)

The set of orthonormal eigenvectors of the negative Laplacian may be taken as

⟨x⃗ |n⃗⟩ ≡
D∏
j=1

exp
(
i2πn

j

Lj x
j
)

√
Lj

, (5.3.25)
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−∇⃗2 ⟨x⃗ |n⃗⟩ = λ(n⃗) ⟨x⃗ |n⃗⟩ , λ(n⃗) =
∑
i

(
2πni

Li

)2

. (5.3.26)

Notice the basis vectors in eq. (5.3.25) are momentum eigenkets too:

⟨x⃗ |Pj| n⃗⟩ = −i∂j ⟨x⃗| n⃗⟩ = ki ⟨x⃗| n⃗⟩ , ki(n
i) =

2πni

Li
. (5.3.27)

Even though sines and cosines are also eigenfunctions of ∇⃗2, they are no longer eigenfunctions
of −i∂j. We may use these simultaneous eigenkets of Pj and P⃗

2 to write the identity operator
– i.e., the completeness relation:

⟨x⃗| x⃗′⟩ = δ(D)(x⃗− x⃗′) =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

⟨x⃗| n⃗⟩ ⟨n⃗| x⃗′⟩ , (5.3.28)

I =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

|n⃗⟩ ⟨n⃗| . (5.3.29)

We may also use the position eigenkets themselves to write I, but instead of integrating over all
space, we only integrate over one domain (since space is now periodic):

I =
∫
{0≤xi≤Li|i=1,2,...,D}

dDx⃗ |x⃗⟩ ⟨x⃗| . (5.3.30)

To summarize our discussion here: any periodic function f , subject to eq. (5.3.21), can be
expanded as a superposition of periodic plane waves in eq. (5.3.25),

f(x⃗) =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

f̃(n1, . . . , nD)
D∏
j=1

(Lj)−1/2 exp

(
i
2πnj

Lj
xj
)
. (5.3.31)

This is known as the Fourier series. By using the inner product in eq. (5.3.24), or equivalently,
multiplying both sides of eq. (5.3.31) by

∏
j(L

j)−1/2 exp(−i(2πn′j/Lj)xj) and integrating over
a typical volume, we obtain the coefficients of the Fourier series expansion

f̃(n1, n2, . . . , nD) =

∫
0≤xj≤Lj

dDx⃗f(x⃗)
D∏
j=1

(Lj)−1/2 exp

(
−i2πn

j

Lj
xj
)
. (5.3.32)

Remark I The exp in eq. (5.3.25) are not a unique set of basis vectors, of course. One could
use sines and cosines instead, for example.
Remark II Even though we are explicitly integrating the ith Cartesian coordinate from 0
to Li in eq. (5.3.32), since the function is periodic, we really just need only to integrate over a
complete period, from κ to κ + Li (for κ real), to achieve the same result. For example, in 1D,
and whenever f(x) is periodic (with a period of L),∫ L

0

dxf(x) =

∫ κ+L

κ

dxf(x). (5.3.33)

(Drawing a plot here may help to understand this statement.)
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Problem 5.20. Translation operator in ket-bra form Construct the translation op-
erator in the ket-bra form, analogous to eq. (5.2.19). Verify that the translation operator in a
periodic space is unitary. Can you explain why it is so – in words?

From eq. (5.3.29) we see that any state |f⟩ may be expanded as

|f⟩ =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

|n⃗⟩ ⟨n⃗| f⟩ . (5.3.34)

If we apply the translation operator directly to this, eq. (5.3.27) tells us T (d⃗) |f⟩ is

e−id⃗·P⃗ |f⟩ =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

e−id⃗·⃗k(n⃗) |n⃗⟩ ⟨n⃗| f⟩ (5.3.35)

=

 ∞∑
n1=−∞

· · ·
∞∑

nD=−∞

exp
(
−id⃗ · k⃗(n⃗)

)
|n⃗⟩ ⟨n⃗|

 |f⟩ . (5.3.36)

Since |f⟩ was arbitrary, we have managed to uncover the diagonal form of the translation oper-
ator:

T (d⃗) =
∞∑

n1=−∞

· · ·
∞∑

nD=−∞

exp
(
−id⃗ · k⃗(n⃗)

)
|n⃗⟩ ⟨n⃗| , kj =

2πnj

Lj
. (5.3.37)

5.4 Rotations and Translations in D = 2 Spatial Dimensions

In this and the following sections we will further develop linear operators in continuous vector
spaces by extending our discussion in §(5.2) on spatial translations to that of rotations. This is
not just a mathematical exercise, but has deep implications for the study of rotational symmetry
in quantum systems as well as the meaning of particles in relativistic Quantum Field Theory.

Let us begin in 2D. We will use cylindrical coordinates, defined through the Cartesian ones
x⃗ via

x⃗(r, ϕ) ≡ r (cosϕ, sinϕ) , r ≥ 0, 0 ≤ ϕ < 2π, (5.4.1)

= r cosϕ ê1 + r sinϕ ê2; (5.4.2)

êiI = δiI, i, I ∈ {1, 2}. (5.4.3)

We may study the rotation of any arbitrary vector by first studying its effect on the basis unit
vectors ê1 and ê2. By geometry – drawing a picture helps – rotating ê1 and ê2 counterclockwise
by an angle ϕ produces

R̂(ϕ)

[
1
0

]
=

[
cosϕ
sinϕ

]
= x⃗(r, ϕ)/r (5.4.4)

and R̂(ϕ)

[
0
1

]
=

[
− sinϕ
cosϕ

]
= − sinϕ ê1 + cosϕ ê2. (5.4.5)

These immediately imply

R̂(ϕ) ≡
[
cosϕ − sinϕ
sinϕ cosϕ

]
. (5.4.6)

108



Problem 5.21. Verify through a direct calculation that

R̂(ϕ)R̂(ϕ′) = R̂(ϕ+ ϕ′). (5.4.7)

Draw a picture and explain what this result means.

Relation between SO2 and U1: Group Representations We now consider the
following function of rotation matrices:

D
(
R̂(ϕ)

)
≡ eiϕ. (5.4.8)

In §(5.5) below, we shall identity rotation matrices with the group SOD; and dub the set of
D×D unitary matrices as UD. Hence, the above is a map from SO2 (2D rotations) to U1 (1× 1
unitary ‘matrices’).

Let us consider replacing each rotation matrix of the multiplication rule in eq. (5.4.7) with

its corresponding D(R̂). The left hand side is

D(R̂(ϕ))D(R̂(ϕ′)) = eiϕeiϕ
′

(5.4.9)

whereas the right hand side is simply

D(R̂(ϕ+ ϕ′)) = ei(ϕ+ϕ
′). (5.4.10)

That is, we see that the group multiplication rule of eq. (5.4.7) is preserved:

D(R̂(ϕ)R̂(ϕ′)) = D(R̂(ϕ+ ϕ′)). (5.4.11)

This map from rotation matrices in 2D {R̂(ϕ)} to the unit circle on the complex plane {eiϕ}
is related to the fact that, multiplication of one complex number by another is a rotation (plus
a strech in the radial direction). Below, we shall build more involved group representations –
functions of group elements that yield as output linear operators, in such a manner that the
latter preserves the product rules of the original group (e.g., eq. (5.4.11)).

Effect on position eigenkets We will now consider position eigenstates {|ψ⟩ |0 ≤ ψ <
2π} on a circle of fixed radius r; and denote D(ϕ) to be the rotation operator that acts in the
following manner:

D(ϕ) |ψ⟩ = |ψ + ϕ⟩ ; (5.4.12)

with the identity

I |ψ⟩ ≡ D(ϕ = 0) |ψ⟩ = |ψ⟩ . (5.4.13)

We will assume the periodic boundary condition

|ψ + 2π⟩ = |ψ⟩ . (5.4.14)

We will normalize these position eigenstates such that

⟨ϕ|ϕ′⟩ = δ(ϕ− ϕ′). (5.4.15)
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Starting from the definition in eq. (5.4.12), we may first check that it obeys the same product
rule as the rotation matrix in eq. (5.4.7).

D(ϕ)D(ϕ′) |ψ⟩ = D(ϕ) |ψ + ϕ′⟩ = |ψ + ϕ′ + ϕ⟩ (5.4.16)

= D(ϕ+ ϕ′) |ψ⟩ (5.4.17)

Since addition is associative and commutative, i.e., |ψ + ϕ⟩ = |ϕ+ ψ⟩ and |ψ + ϕ+ ϕ′⟩ =
|ψ + ϕ′ + ϕ⟩, we see that rotation on 2D is associative and commutative – in accordance to
our intuition. To sum:

D(ϕ)D(ϕ′) = D(ϕ′)D(ϕ) = D(ϕ+ ϕ′). (5.4.18)

Unitary Acting on this abstract vector space of position eigenstates, the rotation operator
in eq. (5.4.12) is unitary. To see this, we take the adjoint of D(ϕ) |ψ′⟩ = |ψ′ + ϕ⟩,

⟨ψ′|D(ϕ)† = ⟨ψ′ + ϕ| . (5.4.19)

Combining equations (5.4.12) and (5.4.19) hands us〈
ψ′ ∣∣D(ϕ)†D(ϕ)

∣∣ψ〉 = ⟨ψ′ + ϕ|ψ + ϕ⟩ = δ(ψ′ − ψ) = ⟨ψ′|ψ⟩ . (5.4.20)

But since ⟨ψ′| and |ψ⟩ are arbitrary, we must have

D(ϕ)†D(ϕ) = I. (5.4.21)

Problem 5.22. Can you argue that

D(ϕ)† = D(ϕ)−1 = D(−ϕ)? (5.4.22)

Hint: We just proved the second equality. The third can be gotten by acting on an arbitrary
state.

Problem 5.23. Parity Parity is the operation where all the vectors in a given space is
reversed in direction. If P̂ denotes the parity operator, we have

P̂ v⃗ = −v⃗ (5.4.23)

for arbitrary vector v⃗. In 2D, this parity operator is simply

P̂ =

[
−1 0
0 −1

]
. (5.4.24)

What is the angle ϕP in the rotation matrix of eq. (5.4.6) such that R̂(ϕP) = P̂? The existence
of ϕP tells us:

In 2D, the parity operation can be implemented as a rotation.

As we shall see below, this is not true in 3D – there is no rotation matrix that can implement
parity simultaneously on all 3 axes.
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Exponential Form We have alluded to earlier that any operator, such as translation
or rotations, that is continuously connected to the identity may be written as eX . The exponent
X would depend on the continuous parameter(s) concerned, such as the amount of translation
or angle subtended by the rotation. For the 2D rotation case at hand, let us postulate

D(ϕ) = e−iϕJ (5.4.25)

where the J is the generator of rotation (aka angular momentum operator). We may readily
verify the multiplication rule in eq. (5.4.18),

D(ϕ)D(ϕ′) = e−iϕJe−iϕ
′J = e−i(ϕ+ϕ

′)J = D(ϕ+ ϕ′) (5.4.26)

since −iϕJ and −iϕ′J commutes; i.e., [−iϕJ,−iϕ′J ] = 0 and refer to eq. (5.1.44). Since we just
proved that D(ϕ) is unitary (cf. eq. (5.4.21)) it must be that J is Hermitian. Firstly, note that

(
eX
)†

=
+∞∑
ℓ=0

(Xℓ)†

ℓ!
=

+∞∑
ℓ=0

(X†)ℓ

ℓ!
= eX

†
. (5.4.27)

Utilizing eq. (5.1.40), we see by Taylor expanding eq. (5.4.21) up to first order in ϕ bring us(
e−iϕJ

)†
e−iϕJ = eiϕJ

†
e−iϕJ =

(
I+ iϕJ† + . . .

)
(I− iϕJ + . . . ) (5.4.28)

= I+ iϕ
(
J† − J

)
+ · · · = I. (5.4.29)

The coefficient of ϕ must therefore vanish and we have

J† = J. (5.4.30)

Problem 5.24. Pauli Matrices and 2D Rotations Express the rotation matrix R̂(ϕ)
in eq. (5.4.6) in exponential form by identifying the appropriate matrix representation of the

generator J . That is, what is Ĵ such that the R̂(ϕ) of eq. (5.4.6) can be written as

R̂(ϕ) = exp(−iϕĴ)? (5.4.31)

Hint: Use the Pauli matrices in eq. (3.2.17) and the result in eq. (3.2.23) to construct Ĵ .

Problem 5.25. Taylor Expansion as Rotation To confirm eq. (5.4.25) is the right form
of the rotation operator, argue, for an arbitrary state |f⟩ and |ϕ⟩ a position eigenstate, that by
denoting f(ϕ) ≡ ⟨ϕ| f⟩,

f(ϕ− ϕ′) = e−ϕ
′∂ϕf(ϕ) =

〈
ϕ
∣∣∣e−iϕ′J ∣∣∣ f〉 . (5.4.32)

Can you also prove that

⟨ϕ |J | f⟩ = −i∂ϕ ⟨ϕ| f⟩? (5.4.33)

(Hint: Taylor expansion.) Compare these results to the one in eq. (5.2.24).
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Problem 5.26. Ket-Bra form of rotation operator Argue that an alternate represen-
tation for the rotation operator is

D(ϕ) =

∫ 2π

0

dφ |φ+ ϕ⟩ ⟨φ| . (5.4.34)

Show that it is unitary. (Hint: Recall the normalization in eq. (5.4.15).) Explain why the
rotation will no longer unitary if the position eigenstates in eq. (5.4.34) are restricted to a wedge
{|ψ⟩ |0 ≤ ψ ≤ ϕ0 < 2π} instead of a full circle.

‘Orbital’ Angular Momentum According to eq. (5.4.6), if we rotate the Cartesian

coordinates x⃗ ≡ (x1, x2) via x⃗→ R̂x⃗, and employ the Taylor expansions cosϕ = 1−(1/2)ϕ2+ . . .
and sinϕ = ϕ− (1/3!)ϕ3 + . . . ,

R̂(ϕ) · x⃗ =

(
I2×2 + ϕ

[
0 −1
1 0

]
+O(ϕ2)

)[
x1

x2

]
(5.4.35)

= exp

(
−ϕ
[

0 1
−1 0

])
·
[
x1

x2

]
(5.4.36)

=

[
x1

x2

]
+ ϕ

[
−x2
x1

]
+O(ϕ2). (5.4.37)

We may re-write this by first defining

iĴ ≡
[

0 1
−1 0

]
=̇ϵij; (5.4.38)

where in the second equality we have identified the 2D Levi-Civita symbol ϵij, with ϵ12 ≡ 1.
Then eq. (5.4.35) reads

R̂(ϕ)x⃗ =
(
I− iϕĴ +O(ϕ2)

)
x⃗, (5.4.39)

R̂(ϕ)ijx
j =

(
δij − ϕϵij +O(ϕ2)

)
xj. (5.4.40)

As we shall see below, that the −iĴ is anti-symmetric – and therefore the ‘generator’ of rotations
Ĵ is Hermitian – is a feature that holds in general; not just in the 2D case here.

Next, we may consider the Taylor expansion resulting from the infinitesimal rotation carried
out in eq. (5.4.37):

⟨x⃗| f⟩ →
〈
xi − ϕϵijxj + . . .

∣∣ f〉
= ⟨x⃗| f⟩ − ϕ(−)ϵjixj∂i ⟨x⃗| f⟩+O(ϕ2) (5.4.41)

= ⟨x⃗| f⟩+ ϕ(x1∂2 − x2∂1) ⟨x⃗| f⟩+O(ϕ2). (5.4.42)

On the other hand, we must have |xi − ϕϵijxj + . . .⟩ = exp(−iϕJ) |x⃗⟩.〈
xi − ϕϵijxj + . . .

∣∣ f〉 = (e−iϕJ |x⃗⟩)† |f⟩ = ⟨x⃗| (1 + iϕJ + . . . ) |f⟩ (5.4.43)

= ⟨x⃗| f⟩+ iϕ ⟨x⃗ |J | f⟩+ . . . . (5.4.44)
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Comparing equations (5.4.42) and (5.4.44) hands us the position representation of the generator
of rotations – aka ’orbital’ angular momentum – in 2D:

⟨x⃗ |J | f⟩ = −iϵijxi∂j ⟨x⃗| f⟩ = −i
(
x1∂2 − x2∂1

)
⟨x⃗| f⟩ (5.4.45)

=
〈
x⃗
∣∣X1P2 −X2P1

∣∣ f〉 ; (5.4.46)

where, in the final equality, we have recalled eq. (5.2.24). Below, we will generalize the identifi-
cation

J = X1P2 −X2P1 (5.4.47)

to higher dimensions.

Problem 5.27. ‘Flow’ of J In differential geometry, §(9) below, we will learn that direc-
tional derivatives vi∂i may be viewed as tangent vectors spanning a vector space at a given point
in space. Their geometric meaning is they ‘generate’ flow along the direction vi, not unlike how
J in eq. (5.4.25) generates rotations on the coordinates x⃗.

Verify that the first order term −ϕϵijxj∂if in eq. (5.4.41) is consistent with polar coordinates
version of J in eq. (5.4.33). Explain your results in words.

Eigenstates and Topology Since J is Hermitian, we are guaranteed its eigenstates
form a complete basis {|m⟩}. Let us now witness how the choice of boundary conditions in eq.
(5.4.14) will allow us to fix the eigenvalues. Consider, for |ψ⟩ some position eigenbra and |m⟩
an eigenstate of J , 〈

ψ
∣∣ei(2π)J ∣∣m〉 = ei(2π)m ⟨ψ|m⟩ (5.4.48)

=
(
e−i(2π)J |ψ⟩

)† |m⟩ = ⟨ψ + 2π|m⟩ = ⟨ψ|m⟩ . (5.4.49)

Comparing the rightmost terms on the first and second line,

ei(2π)m = 1 ⇔ m = 0,±1,±2,±3, . . . . (5.4.50)

Choosing eq. (5.4.14) as our boundary condition implies any (bosonic) function f(ϕ) ≡ ⟨ϕ| f⟩ is
periodic on a circle. It may be ‘intuitively obvious’ but is not actually always the case: fermionic
states describing fundamental matter – electrons, muons, taus, quarks, etc. – in fact obey instead

|ψ + 2π⟩ = − |ψ⟩ . (5.4.51)

In such a case, we have, from the above analysis, e+i(2π)m ⟨ψ|m⟩ = − ⟨ψ|m⟩. In turn, we see
the eigenvalues {m} of J are now

m =
1

2
+ n, n = 0,±1,±2,±3, . . . (5.4.52)

= ±1

2
,±3

2
,±5

2
, . . . . (5.4.53)

Completeness We may construct the identity operator

I =
∫ 2π

0

dφ |φ⟩ ⟨φ| . (5.4.54)
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As a check, we recall eq. (5.4.15) and calculate

⟨ϕ′ |I|ϕ⟩ =
∫ 2π

0

dφ ⟨ϕ′|φ⟩ ⟨φ|ϕ⟩ (5.4.55)

=

∫ 2π

0

dφδ(ϕ′ − φ)δ(φ− ϕ) = δ(ϕ′ − ϕ). (5.4.56)

Problem 5.28. Change-of-basis Using eq. (5.4.33), can you show that

⟨ϕ|m⟩ ∝ eimϕ? (5.4.57)

If we agree to normalize the eigenstates as

⟨m|n⟩ = δmn (5.4.58)

explain why, up to an overall phase factor,

⟨ϕ|m⟩ = exp(imϕ)√
2π

. (5.4.59)

If we assume the eigenstates of J , namely {|m⟩}, are normalized to unity, we may also write

I =
+∞∑

m=−∞

|m⟩ ⟨m| . (5.4.60)

For, we may check that we have the proper normalization; invoking eq. (5.4.59),∫ 2π

0

dϕ ⟨ϕ |I|ϕ′⟩ = 1 =

∫ 2π

0

dϕ
+∞∑

m=−∞

⟨ϕ|m⟩ ⟨m|ϕ′⟩ (5.4.61)

=

∫ 2π

0

dϕ
+∞∑

m=−∞

eim(ϕ−ϕ′)

2π
=

+∞∑
m=−∞

δ0m. (5.4.62)

Observe that eq. (5.4.60) is essentially the 1D version of (5.3.29). This is not a coincidence: the
circle ϕ ∈ [0, 2π) can, of course, be thought of as a periodic space with period 2π.

Fourier Series Any state |f⟩ may be decomposed into modes by inserting the com-
pleteness relation in eq. (5.4.60):

|f⟩ =
+∞∑

m=−∞

|m⟩ ⟨m| f⟩ . (5.4.63)

Multiplying both sides by a position eigenbra ⟨ϕ| and using employing eq. (5.4.59), we obtain
the Fourier series expansion

⟨ϕ| f⟩ =
+∞∑

m=−∞

eimϕ√
2π
⟨m| f⟩ . (5.4.64)
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Rotation Operator At this point, recalling (4.3.65) and the eigenvector equations

J |m⟩ = m |m⟩ and e−iϕJ |m⟩ = e−imϕ |m⟩ (5.4.65)

hands us the following representation of the rotation operator:

D(ϕ) =
+∞∑

m=−∞

e−imϕ |m⟩ ⟨m| (5.4.66)

= |0⟩ ⟨0|+
+∞∑
m=1

(
e−imϕ |m⟩ ⟨m|+ eimϕ |−m⟩ ⟨−m|

)
. (5.4.67)

This result is the 1D analog of eq. (5.3.37).

Problem 5.29. Recover eq. (5.4.67) by employing eq. (5.4.59) and inserting the completeness
relation in eq. (5.4.60) on the left and right of eq. (5.4.34).

Problem 5.30. Our discussion thus far may seem a tad abstract. However, if we view the
rotation matrix in eq. (5.4.6) as the matrix element of some operator,

⟨i |R| j⟩ = R̂i
j, i, j ∈ {1, 2}; (5.4.68)

show that this R is in fact related to the m = 1 term in eq. (5.4.67) via a change-of-basis. In
other words, the 2D rotation in real space is a ‘sub-operator’ of the D(ϕ) of this section. Hint:
Consider the subspace spanned by the two states |±⟩ ≡ (±i/

√
2) |ϕ = 0⟩+(1/

√
2) |ϕ = π/2⟩.

Problem 5.31. Rotating Momentum Show that, if
∣∣∣⃗k〉 is a momentum eigenket,

D(ϕ)
∣∣∣⃗k〉 =

∣∣∣R̂(ϕ) · k⃗〉 . (5.4.69)

Hint: Insert a complete set of position eigenstates.
If |x⃗⟩ is the position eigenket, argue that D(2π) |x⃗⟩ = |x⃗⟩ iff D(2π)|⃗k⟩ = |⃗k⟩.

Invariant subspaces We close this section by making the observation that, due to the
abelian (or, commutative) nature of 2D rotations in eq. (5.4.18),

D(φ)†D(ϕ)D(φ) = D(φ)†D(φ)D(ϕ) = D(ϕ) (5.4.70)

since D(φ)†D(φ) = I (cf. (5.4.21)). Recall from the discussion in §(4.3.3) that U †D(ϕ)U , for any
unitary U , may be regarded as D(ϕ) but written in a different basis. Eq. (5.4.70) informs us that
the 2D rotation operator in fact remains invariant under all change-of-basis transformations.

5.4.1 Including Spatial Translations: Euclidean Group E2

We now consider combining both rotations and translations in 2D (flat) space. In Cartesian
components, this amounts to replacing the position vector x⃗ as follows:

x⃗→ R̂(ϕ) · x⃗+ a⃗, (5.4.71)
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xi → R̂(ϕ)ijx
j + ai. (5.4.72)

The R̂ is the rotation matrix and a⃗ is the constant displacement vector. We may in fact package
this transformation rule using a 3 × 3 matrix Π by first promoting x⃗ to a 3-component object
with 1 as its 3rd entry:

xA ≡ (xi, 1)T = (x⃗, 1)T; (5.4.73)

followed by defining

Π̂(ϕ, a⃗) ≡

 cosϕ − sinϕ a1

sinϕ cosϕ a2

0 0 1

 =

[
R̂(ϕ)ij ai

0 0 1

]
. (5.4.74)

By expanding in small angle ϕ and displacement a⃗,

Π̂(ϕ, a⃗) = I3×3 − iϕĴ − iajP̂j + . . . , (5.4.75)

we may read off from eq. (5.4.74) that the 3 × 3 matrix representation of the rotation and
translation generators in 2D space are

Ĵ = i

 0 −1 0
1 0 0
0 0 0

 and P̂a = i

 0 0 δ1a
0 0 δ2a
0 0 0

 . (5.4.76)

The action in eq. (5.4.71) may then be read off the top two components of

xA → Π(ϕ, a⃗)ABx
B; (5.4.77)

(x⃗, 1)T →
(
R̂ · x⃗+ a⃗, 1

)T
, (5.4.78)

with the indices A and B running over {1, 2, 3}.

Problem 5.32. Why does the set {(x⃗, 1)T} not form a vector space? Is Π(ϕ, a⃗) unitary? Or-
thogonal?

Problem 5.33. 2D Euclidean Group Verify that

Π(0, 0⃗) = I3×3, (5.4.79)

Π(ϕ, a⃗)−1 = Π
(
−ϕ,−R̂(−ϕ) · a⃗

)
, (5.4.80)

Π(ϕ1, a⃗1)Π(ϕ2, a⃗2) = Π
(
ϕ1 + ϕ2, R̂(ϕ1) · a⃗2 + a⃗1

)
. (5.4.81)

Explain why the set of {Π} forms a group. The collection of rotations and translations is known
as the Euclidean group ED, where D ≥ 2 is the dimension of space.
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Note that, for a general Π̂(ϕ, a⃗), a zero rotation angle corresponds to a pure displacement by
a⃗; whereas a zero displacement a⃗ = 0⃗ corresponds to a pure rotation by ϕ. Hence,

Π(ϕ = 0, a⃗) = T (⃗a) and Π(ϕ, a⃗ = 0⃗) = D(ϕ). (5.4.82)

Let us also recognize the most general 2D Euclidean transformation to be a rotation R̂(ϕ)

followed by a translation a⃗; i.e., x⃗→ R̂ · x⃗→ R̂ · x⃗+ a⃗. Or, from eq. (5.4.81):

Π(0, a⃗)Π(ϕ, 0⃗) = Π(ϕ, a⃗) = T (⃗a) ·D(ϕ) = exp
(
−i⃗a · P⃗

)
exp (−iϕ · J) . (5.4.83)

From this, we may observe that

Π(ϕ, a⃗)−1 = D(−ϕ) · T (−a⃗). (5.4.84)

Moreover, from eq. (5.4.81),

D(ϕ)T (⃗a)D(ϕ)† = Π(ϕ, 0⃗) · Π(−ϕ, a⃗)

= Π
(
0, R̂(ϕ) · a⃗

)
= T

(
R̂(ϕ) · a⃗

)
. (5.4.85)

On the other hand, the same computation may be carried out via

D(ϕ)T (⃗a)D(ϕ)† = D(ϕ)e−i⃗a·P⃗D(ϕ)† (5.4.86)

= exp
(
−i⃗a ·

(
D(ϕ)P⃗D(ϕ)†

))
. (5.4.87)

Comparing the two routes leads us to the recognition that

D(ϕ)(⃗a · P⃗ )D(ϕ)† = (R̂(ϕ) · a⃗) · P⃗ (5.4.88)

D(ϕ)PiD(ϕ)† = PjR̂(ϕ)
j
i. (5.4.89)

In other words: the generator of translations P⃗ transforms as a vector under rotations.
Previously, we have derived in the position representation that Pa may be identified with the

derivative operator −i∂xa in Cartesian coordinates. Let us now invoke eq. (5.4.45) to compute
the commutators of J and Pa in the position representation:

⟨x⃗ |[J, Pa]| f⟩ = (−i)2ϵijxi∂j∂af(x⃗)− (−i)2∂a
(
ϵijxi∂jf(x⃗)

)
(5.4.90)

= +ϵijδia∂jf = i(−i)ϵab∂bf (5.4.91)

= iϵab ⟨x⃗ |Pb| f⟩ . (5.4.92)

Since ⟨x⃗| was arbitrary, we may now record the Lie algebra of E2:

[J, Pa] = iϵabPb and [Pa, Pb] = 0. (5.4.93)

The anti-symmetric character of ϵab also indicates[
J, P⃗ 2

]
= [J, Pi]Pi + Pi [J, Pi] = 0. (5.4.94)
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Problem 5.34. Rotating Momentum: Infinitesimal Version Work out eq. (5.4.89)
to first order in ϕ and verify that it reproduces the commutation relation (on the left) in eq.
(5.4.93). Since the Lie algebra determines group multiplication for all elements continuously
connected to the identity, both eq. (5.4.89) and the infinitesimal version in eq. (5.4.93) are
equivalent. More generally, we would say that an operator V i (in a Cartesian basis) transforms
as a vector iff [J, V i] = iϵijV j.

Problem 5.35. Eq. (5.4.94) is, in fact, a statement of rotational invariance of P⃗ 2. Can you

explain why? Hint: Relate it to the change-of-basis D(ϕ)P⃗ 2D(ϕ)†.

Problem 5.36. Verify the commutation relation between J and P⃗ using (1) the matrix
representation in eq. (5.4.76); and (2) the relation in eq. (5.4.89).

Problem 5.37. One may be tempted to write

Π(ϕ, a⃗) = exp
(
−i⃗a · P⃗ − iϕJ

)
. (5.4.95)

This cannot hold because of eq. (5.4.83) and the fact that [J, Pa] ̸= 0.

Π(ϕ, a⃗) = exp
(
−i⃗a · P⃗

)
exp (−iϕJ) ̸= exp

(
−i⃗a · P⃗ − iϕJ

)
. (5.4.96)

By exploiting eq. (5.1.44), show that

T (⃗a)D(ϕ)T (⃗a)† = exp [−iϕJ + iϕϵmnamPn] . (5.4.97)

Why does this imply

exp [−iϕJ + iϕϵmnamPn] = exp
(
−i
(
a⃗− R̂(ϕ) · a⃗

)
· P⃗
)
exp (−iϕJ)? (5.4.98)

Use this to deduce, the general E2 group element is in fact

Π (ϕ, a⃗) = e−i⃗a·P⃗ e−iϕJ = exp

(
−iϕ

2

[
cot(ϕ/2) 1
−1 cot(ϕ/2)

]i
j

ajPi − iϕJ

)
. (5.4.99)

Does this result recover Π (ϕ = 0, a⃗) = T (⃗a)?

Compatible Observables The Lie algebra of E2 tells us not all three generators are
mutually compatible. If J is excluded, we have already seen that picking the eigenstates of
{P1, P2} yields a basis that complements the position eigenkets {|x⃗⟩}. The eigenbasis of P⃗ is of
course the momentum eigenkets obeying

Pi

∣∣∣⃗k〉 = ki

∣∣∣⃗k〉 . (5.4.100)

On the other hand, if we do include the rotation generator J in the set of compatible observables,
then neither P1 nor P2 may be included; only {J, P⃗ 2} are compatible. Their simultaneous
eigenket is {|m, k⟩}, where

J |m, k⟩ = m |m, k⟩ and P⃗ 2 |m, k⟩ = k2 |m, k⟩ ; (5.4.101)
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and m is an integer if we demand periodic boundary conditions and half integer if we impose
anti-periodic ones.

D(ϕ = 2π) |m, k⟩ = e−i(2π)m |m, k⟩ = ± |m, k⟩ (5.4.102)

For the rest of this section, we will assume m ∈ Z.

Problem 5.38. Laplacian in Polar Coordinates If x⃗ = r(cosϕ, sinϕ), verify that[
∂x1
∂x2

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
∂r
1
r
∂ϕ

]
. (5.4.103)

From this, show that

−
〈
x⃗
∣∣∣P⃗ 2
∣∣∣ f〉 = ∇⃗2 ⟨x⃗| f⟩ ≡ ∇⃗2f(x⃗) (5.4.104)

≡ (∂2x1 + ∂2x2)f(x⃗) (5.4.105)

=
1

r
∂r (r∂rf) +

1

r2
∂2ϕf. (5.4.106)

for any arbitrary state |f⟩. Hint: First start from (∂r, ∂ϕ), but relate them to their Cartesian
counterparts.

Change-Of-Basis and the Hankel Transform Previously, we discovered the change-
of-basis from momentum to position space eigenkets gave us the plane wave

⟨x⃗|⃗k⟩ = eik⃗·x⃗ (5.4.107)

and led us to the Fourier transform. Let us now examine the change of basis between the
position, momentum, and the {|m, k⟩} basis. Firstly, we recognize that, for

x⃗ = r(cosϕ, sinϕ), (5.4.108)

the eigenequations for the compatible observables P⃗ 2 and J read

−k2 ⟨x⃗|m, k⟩ =
〈
x⃗
∣∣∣P⃗ 2
∣∣∣m, k〉 = −∇⃗2 ⟨x⃗|m, k⟩ (5.4.109)

m ⟨x⃗|m, k⟩ = ⟨x⃗ |J |m, k⟩ = −i∂ϕ ⟨x⃗|m, k⟩ . (5.4.110)

The first equation is also obeyed by the plane wave; i.e., ∇⃗2⟨x⃗|⃗k⟩ = −k2⟨x⃗|⃗k⟩. This indicates

there ought to be an intimate relation between |⃗k⟩ and |m, k⟩; in fact, we shall see that the latter
is a Fourier mode of the former. On the other hand, the second line tells us immediately that

⟨r, ϕ|m, k⟩ = ⟨r|m, k⟩ eimϕ, (5.4.111)

where ⟨r|m, k⟩ is now shorthand for a function of r, m, and k and is not necessarily an inner
product. Additionally, if we now employ eq. (5.4.106),

−1

r
∂r
(
r∂r ⟨r|m, k⟩ eimϕ

)
+

1

r2
∂2ϕ
(
⟨r|m, k⟩ eimϕ

)
= −k2 ⟨r|m, k⟩ eimϕ. (5.4.112)
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Dividing throughout by k2eimϕ and moving everything to the left hand side, we obtain Bessel’s
equation (

d2

dξ2
+

1

ξ

d

dξ
+ 1− m2

ξ2

)
⟨r|m, k⟩ = 0; (5.4.113)

where we have defined ξ ≡ kr. (Even though m is integer here, note that this equation holds
for the Bessel function even when m is complex.) A pair of linearly independent solutions are
⟨r|m, k⟩ = Jm(kr) and ⟨r|m, k⟩ = Ym(kr), with the former given by the series

Jν(z) =
(z
2

)ν +∞∑
ℓ=0

(−)ℓ

ℓ!(ℓ+ ν)!

(z
2

)2ℓ
. (5.4.114)

29However, for small kr ≪ 1, Ym(kr) diverges as ln(kr) for m = 0 and as 1/(kr)|m| for non-
zero integers. Whereas, Jm(kr) for small kr goes as (kr)m – see its series representation in eq.
(5.4.114) below. Since r = 0 is not a distinguished point, and since we are transforming from one
complete basis to another, we expect ⟨r = 0, ϕ|m, k⟩ to remain finite for any choice of origin.
Therefore, up to an overall constant χm,

⟨r, ϕ|m, k⟩ = χmJm(kr)e
imϕ. (5.4.115)

Remember that the infinitesimal volume in 2D polar coordinates (r, ϕ) is given by dr(rdϕ).
Hence, the coordinate representation of the operator identity must be

⟨x⃗ |I| x⃗′⟩ = ⟨r, ϕ |I| r′, ϕ′⟩ = δ(r − r′)√
r · r′

δ(ϕ− ϕ′); (5.4.116)

so that the volume integral with respect to (r, ϕ) or (r′, ϕ′) is one. Likewise, in 2D momentum
space, we may define

k⃗ ≡ k (cosφ, sinφ) ; (5.4.117)

and deduce its associated identity operator to be〈
k⃗ |I| k⃗′

〉
= ⟨k, φ |I| k′, φ′⟩ = (2π)2

δ(k − k′)√
k · k′

δ(φ− φ′). (5.4.118)

For instance, we must have – via completeness –∫
R2

d2x⃗′
〈
k⃗
∣∣∣ x⃗′〉 ⟨x⃗′| k⃗′〉 = (2π)2

δ(k − k′)√
k · k′

δ(φ− φ′). (5.4.119)

Let us now turn to computing

⟨m, k|m′, k′⟩ =
∫
R2

d2x⃗′ ⟨m, k| x⃗′⟩ ⟨x⃗′|m′, k′⟩ (5.4.120)

29The factorial involving a non-integer, for e.g., (ℓ + ν)! in eq. (5.4.114), is defined via the Gamma function:
Γ(z + 1) ≡ z!. We will study its properties in §(6) below.
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=

∫ 2π

0

dϕ′
∫ ∞

0

dr′r′ei(m
′−m)ϕ′χ∗

mχm′Jm(kr
′)Jm′(k′r′) (5.4.121)

= 2π · |χm|2δmm′

∫ ∞

0

dr′r′Jm(kr
′)Jm′(k′r′). (5.4.122)

We will show below that, for r, r′, k, k′ > 0 and ν > −1,∫ ∞

0

dr′r′Jν(kr
′)Jν(k

′r′) =
δ(k − k′)√

k · k′
, (5.4.123)∫ ∞

0

dk′k′Jν(k
′r)Jν(k

′r′) =
δ(r − r′)√

r · r′
. (5.4.124)

This leads us to choose χm ≡ 1 and therefore

⟨r, ϕ|m, k⟩ = Jm(kr)e
imϕ, (5.4.125)

so that

⟨m, k|m′, k′⟩ = 2π · δmm′
δ(k − k′)√

k · k′
. (5.4.126)

Furthermore,

+∞∑
m′=−∞

∫ +∞

0

dk′k′

2π
⟨r, ϕ|m′, k′⟩ ⟨m′, k′| r′, ϕ′⟩ =

+∞∑
m′=−∞

eim
′(ϕ−ϕ′)

2π

∫ +∞

0

dk′k′ · Jm(k′r)Jm(k′r′)

= δ(ϕ− ϕ′)
δ(r − r′)√

r · r′
= ⟨x⃗| x⃗′⟩ . (5.4.127)

Since the position eigenstates are arbitrary, this teaches us that the identity written in momen-
tum space polar coordinates is

I =
+∞∑

m′=−∞

∫ +∞

0

dk′k′

2π
|m′, k′⟩ ⟨m′, k′| . (5.4.128)

Problem 5.39. Domain of the Hankel Transform The completeness relations of equa-
tions (5.4.123) and (5.4.124) depend crucially on the domain of its definition; i.e., k, k′, r, r′ > 0.

Here is an example to illustrate this issue. Show that, if x·x′ > 0 but x and x′ are unrestricted
over the whole real line,∫ ∞

0

dk · k · J 1
2
(kx)J 1

2
(kx′) =

δ(x− x′)− δ(x+ x′)√
x · x′

. (5.4.129)

It is when x and x′ are both positive that x ̸= −x′; and, thus, the δ(x+ x′) drops out.

Let us observe that eq. (5.4.123) and (5.4.124) imply, for some fixed ν, the {Jν(kr)} may
be regarded as a complete set of functions on the positive real line r ∈ R+. This forms the
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underpinnings of the Hankel transform; which in turn is, loosely speaking, the ‘radial component’
of the 2D Fourier transform when ν = m is an integer. If, for an arbitrary function f , we define

F̃ν(k) ≡
∫ ∞

0

dr′ · r′ · Jν(kr′)f(r′); (5.4.130)

then f itself may be recovered by multiplying both sides by kJν(kr) and integrating over k ∈
[0,∞) to obtain

f(r) =

∫ ∞

0

dk′ · k′ · Jν(k′r)f̃ν(k). (5.4.131)

Next, we turn to examine the change-of-basis〈
k⃗′
∣∣∣m, k〉 = ⟨k′, φ′|m, k⟩ =

∫ 2π

0

dϕ′
∫ ∞

0

dr′r′
〈
k⃗′
∣∣∣ r′, ϕ′

〉
⟨r′, ϕ′|m, k⟩ (5.4.132)

=

∫ 2π

0

dϕ′
∫ ∞

0

dr′r′e−ik
′r′ cos(φ′−ϕ′)Jm(kr

′)eimϕ
′

(5.4.133)

=

∫ ∞

0

dr′r′
(∫ 2π

0

dθe−ik
′r′ cos θeimθ

)
Jm(kr

′)eimφ
′
. (5.4.134)

The Bessel function Jn(z) for integer n = 0,±1,±2, . . . , admits the integral representations

Jn(z) =

∫ 2π

0

dθ

2π
eiz sin(θ)−inθ =

∫ 2π

0

dθ

2πin
eiz cos(θ)−inθ. (5.4.135)

Since the integration domain runs over a full period of the integrand, we may replace the limits∫ 2π

0
with

∫ π
−π and recognize Jn(z) is real whenever z is real. For,

Jn(z)
∗ =

∫ +π

−π

dθ

2π
e−iz

∗ sin(θ)+inθ (5.4.136)

= −
∫ −θ=−π

−θ=+π

d(−θ)
2π

eiz
∗ sin(−θ)−in(−θ) (5.4.137)

= Jn(z
∗). (5.4.138)

Another way to arrive at the same conclusion is to derive its series representation, which we
shall do so in eq. (5.4.114) below. In any case, this result now informs us, the change-of-basis is
therefore 〈

k⃗′
∣∣∣m, k〉 = ⟨k′, φ′|m, k⟩ = 2π(−i)m δ(k − k

′)√
kk̇′

eimφ
′
. (5.4.139)

As already alluded to, this tells us |m, k⟩ is a single Fourier mode of |⃗k = k(cosφ, sinφ)⟩.

|⃗k(k, φ)⟩ =
+∞∑

m′=−∞

∫ ∞

0

dk′ · k′

2π
|m′, k′⟩ ⟨m′, k′|⃗k⟩ (5.4.140)
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=
+∞∑

m=−∞

ime−imφ |m, k⟩ (5.4.141)

At this point, we may summarize: For any state |f⟩,

f(r, ϕ) ≡ ⟨r, ϕ| f⟩ =
∫ 2π

0

dφ

2π

∫ ∞

0

dk · k
2π

eikr cos(φ−ϕ) ⟨k, φ| f⟩ (5.4.142)

f̃(k, φ) = ⟨k, φ| f⟩ =
∫ 2π

0

dϕ

∫ ∞

0

dr · r · e−ikr cos(φ−ϕ) ⟨r, ϕ| f⟩ ; (5.4.143)

and

f(r, ϕ) ≡ ⟨r, ϕ| f⟩ =
+∞∑

m′=−∞

∫ ∞

0

dk · k
2π

Jm(kr)e
imϕ ⟨m, k| f⟩ (5.4.144)

f̃m(k) ≡ ⟨m, k| f⟩ =
∫ 2π

0

dϕ

∫ ∞

0

dr · r · Jm(kr)e−imϕ ⟨r, ϕ| f⟩ . (5.4.145)

Problem 5.40. Verify that the integral representation of Jn(z) in eq. (5.4.135) in fact
satisfies Bessel’s equation: J ′′

n(z) + (1/z)J ′
n(z) + (1− (n/z)2)Jn(z) = 0.

Problem 5.41. Bessel Function Identity If n is an integer, show from the integral
representation in eq. (5.4.135) that J−n(z) = (−)nJn(z).

Problem 5.42. Bessel Jn as Fourier Series Coefficient Show that

⟨x⃗|⃗k⟩ = eik⃗·x⃗ =
+∞∑

n=−∞
n∈Z

inJn(kr)e
inφ; (5.4.146)

where k ≡ |⃗k|, r ≡ |x⃗|, and

cosφ ≡ (k⃗ · x⃗)/(kr). (5.4.147)

Why does this justify the statement that the Hankel transform is the ‘radial component’ of the
Fourier transform in 2D?

Problem 5.43. Spherical Bessel Functions For non-negative integer n = 0, 1, 2, . . . , the
spherical Bessel function is defined in terms of its Bessel Jν counterpart as

jn(z) ≡
√

π

2z
Jn+ 1

2
(z). (5.4.148)

From the completeness relations in equations (5.4.123) and (5.4.124), derive the following com-
pleteness relations: ∫ ∞

0

dr′r′2jn(kr
′)jn(k

′r′) =
π

2
· δ(k − k

′)

k · k′
, (5.4.149)∫ ∞

0

dk′k′2jn(k
′r)jn(k

′r′) =
π

2
· δ(r − r

′)

r · r′
. (5.4.150)

These relations will be useful in the discussion of spherical symmetry in 3D space.
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Matrix Elements of Π(ϕ, a⃗) Let us compute the matrix elements of T (⃗a) and Π(ϕ, a⃗)
in the {|m, k⟩} eigenbasis. By inserting a complete set of momentum eigenstates,

⟨m′, k′ |T (⃗a(θ))|m, k⟩

=

∫ 2π

0

dφ′′

2π

∫ ∞

0

dk′′ · k′′

2π

〈
m′, k′

∣∣∣e−i⃗a·P⃗ ∣∣∣ k′′, φ′′
〉
⟨k′′, φ′′|m, k⟩

=

∫ 2π

0

dφ′′

2π

∫ ∞

0

dk′′ · k′′

2π
e−ik

′′a cos(φ′′−θ)(2π)2im
′ δ(k′ − k′′)√

k′k̇′′
e−im

′φ′′
(−i)m δ(k

′′ − k)√
k′′k̇

eimφ
′′

= 2π(−)m−m′
∫ 2π

0

dφ′′

2π(−i)m−m′ e
−ik′′a cos(φ′′−θ)ei(m−m′)φ′′ δ(k′ − k)√

k′ · k

= 2π
δ(k′ − k)√

k′ · k
· Jm′−m(ka)e

−i(m′−m)θ. (5.4.151)

Raising and Lowering Operators Alternatively, we shall now witness that raising and
lowering operators may be employed to arrive at a series solution to these matrix elements. If
we define

P± ≡ P1 ± iP2, (5.4.152)

we may deduce from eq. (5.4.93) and linearity of the commutator that [J, P±] = i(ϵ12P2±iϵ21P1).

[J, P±] = ±P± (5.4.153)

Now, if |m, k⟩ is the simultaneous eigenket of J and P⃗ 2, we may consider

J (P± |m, k⟩) = (JP± − P±J + P±J) |m⟩ = ([J, P±] + P±J) |m, k⟩ (5.4.154)

= (m± 1)P± |m, k⟩ . (5.4.155)

Moreover,

(P±)
†P± = (P1 ∓ iP2)(P1 ± iP2) = P⃗ 2, (5.4.156)

which means

(P± |m, k⟩)† (P± |m, k⟩) = k2 ⟨m, k|m, k⟩ . (5.4.157)

If we assume these {|m, k⟩} are normalized to unity, then we shall verify below that the consistent
choice of phases is provided by the relation

P± |m, k⟩ = ±ik |m± 1, k⟩ . (5.4.158)

Returning to the matrix element of Π(ϕ, a⃗), we first employ eq. (5.4.89) to express the translation
along a⃗ ≡ a · â(θ), with â2 = 1, as one rotated from the 1−axis:

T (⃗a(θ)) = D(θ)T (aê1)D(θ)†. (5.4.159)
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Then, exploiting this decomposition, and denoting a ≡ |⃗a|,

⟨m′, k |T (⃗a)|m, k⟩ =
〈
m′, k

∣∣D(θ) exp [−iaP1]D(θ)†
∣∣m, k〉 (5.4.160)

= ei(m−m′)θ ⟨m′, k |exp [−iaP1]|m, k⟩ . (5.4.161)

If we recognize that P1 can be expressed as the average of P±,

⟨m′, k′ |exp [−iaP1]|m, k⟩

=
+∞∑
ℓ=0

(−i)ℓ

ℓ!

〈
m′, k′

∣∣∣∣∣aℓ
(
P+ + P−

2

)ℓ∣∣∣∣∣m, k
〉

(5.4.162)

=
+∞∑
ℓ=0

(−i)ℓ

ℓ!

ℓ∑
b=0

ℓ!

b!(ℓ− b)!
aℓ

2ℓ
〈
m′, k′

∣∣(P+)
b(P−)

ℓ−b∣∣m, k〉 (5.4.163)

=
+∞∑
ℓ=0

(−i)ℓ
ℓ∑
b=0

(a/2)ℓ

b!(ℓ− b)!
(+ik)b(−ik)ℓ−b ⟨m′, k′|m− ℓ+ 2b, k⟩ . (5.4.164)

The final inner product is zero unless ℓ = m−m′ +2b. Note that b runs to infinity since ℓ does.
Hence, if we allow the ℓ−summation to be collapsed by ⟨m′, k′|m− ℓ+ 2b, k⟩ ∝ δℓ2b+m−m′ ,

⟨m′, k′ |exp [−iaP1]|m, k⟩ = 2π(−)m−m′ δ(k′ − k)√
k′ · k

(
ka

2

)m−m′ +∞∑
b=0

(−)b

b!(b+m−m′)!

(
ka

2

)2b

= 2π
δ(k′ − k)√

k′ · k
· Jm′−m(ka), (5.4.165)

where we have employed (−)nJn(z) = J−n(z) for integer n; and recognized the series represen-
tation of the Bessel function J in eq. (5.4.114).

Note that eq. (5.4.114) defines Jν(z) even when ν is complex. In particular, the factorial of
α when α is a complex number is defined as α! ≡ Γ(α + 1), where the right hand side is the
Gamma function. Furthermore, one may check that eq. (5.4.114) converges for all z ∈ C; the
even power series multiplying (z/2)ν is in fact analytic in both z and ν.

Problem 5.44. Series from Integral Representation Derive the series in eq. (5.4.114)
directly from the integral representation in eq. (5.4.135). Hint: Taylor expand the eiz sin θ or
eiz cos θ within the integrand.

To summarize: with the choice of phases in eq. (5.4.158), the translation operator matrix
elements takes the form

⟨m′, k′ |T (⃗a)|m, k⟩ = 2π
δ(k′ − k)√

k′ · k
· Jm′−m(ka)e

−i(m′−m)θ, (5.4.166)

a⃗ = a (cos θ, sin θ) . (5.4.167)

Finally, we compute Π(ϕ, a⃗) = T (⃗a) ·D(ϕ) in the same basis.

⟨m′, k′ |Π(ϕ, a⃗)|m, k⟩ = 2π
δ(k′ − k)√

k′ · k
· Jm′−m(ka)e

−i(m′−m)θe−imϕ. (5.4.168)
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Addition Theorem of Bessel Let us define

a⃗ ≡ a (cos θ, sin θ) (5.4.169)

a⃗′ ≡ a′ (cos θ′, sin θ′) ; (5.4.170)

and study the implication of

T (⃗a)T (⃗a′) = T
(
R⃗(ψ) ≡ a⃗(θ) + a⃗′(θ′)

)
. (5.4.171)

(Drawing a figure helps.) Computing the matrix elements of T (⃗a)T (⃗a′),

⟨m′, k′ |T (⃗a)T (⃗a′)|m, k⟩

=
+∞∑

m′′=−∞

∫ ∞

0

dk′′k′′

2π
⟨m′, k′ |T (⃗a)|m′′, k′′⟩ ⟨m′′, k′′ |T (⃗a′)|m, k⟩

= 2π
δ(k′ − k)√

k′ · k
·

+∞∑
m′′=−∞

Jm′−m′′(ka)Jm′′−m(ka
′)eim

′′(θ−θ′)e−im
′θeimθ

′
. (5.4.172)

This is supposed to be equivalent to the same matrix element of T (R⃗). Denoting R ≡ |R⃗|,〈
m′, k′

∣∣∣T (R⃗(ψ))∣∣∣m, k〉 = 2π
δ(k′ − k)√

k′ · k
· Jm′−m(kR)e

−i(m′−m)ψ. (5.4.173)

Reading off the coefficients of the δ−functions on both sides, we arrive at the following additional
formula for Bessel Jn(z):

Jm′−m(kR)e
−i(m′−m)ψ =

+∞∑
m′′=−∞

Jm′−m′′(ka)Jm′′−m(ka
′)eim

′′(θ−θ′)e−im
′θeimθ

′
. (5.4.174)

If we set m′ = n ∈ Z and m = 0,

Jn(kR)e
−in(ψ−θ) =

+∞∑
m′′=−∞

Jn−m′′(ka)Jm′′(ka′)eim
′′(θ−θ′); (5.4.175)

R⃗ ≡ R (cosψ, sinψ) . (5.4.176)

Note that cos(ψ − θ) = (R⃗ · a⃗)/(R · a) and cos(θ − θ′) = (⃗a · a⃗′)/(a · a′).

Problem 5.45. Demonstrate that the translation operator T (⃗a) admits the following
Fourier series representation in the momentum eigenbasis.

〈
k⃗ |T (⃗a)| k⃗′

〉
= (2π)2δ(2)(k⃗ − k⃗′)

+∞∑
n=−∞
n∈Z

(−i)nJn(ka)e−inφ; (5.4.177)

Hint: The involves the decomposition of exp(−i⃗k · a⃗).
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Problem 5.46. Alternate Derivation of Bessel Addition Formula By recalling eq.
(5.4.125), explain why 〈

0⃗
∣∣T (⃗a(θ))†∣∣m, k〉 = Jm(ka)e

imθ. (5.4.178)

Then derive eq. (5.4.175) by considering

〈
0⃗

∣∣∣∣(T (⃗a(θ))T (⃗a′(θ′)))†∣∣∣∣n, k〉.
Problem 5.47. Multiple Translations If we define

a⃗I ≡ aI (cos θI, sin θI) , (5.4.179)

for I = 1, . . . , N ; and

R⃗ = a⃗1 + · · ·+ a⃗N ≡ R (cosψ, sinψ) ; (5.4.180)

show that

Jm′−m(kR)e
−i(m′−m)ψ

=
∑
m1∈Z

∑
m2∈Z

· · ·
∑

mN−2∈Z

∑
mN−1∈Z

Jm′−m1(ka1)Jm1−m2(ka2) . . . JmN−2−mN−1
(kaN−1)JmN−1−m(kaN)

× e−i(m′−m1)θ1e−i(m1−m2)θ2 . . . e−i(mN−2−mN−1)θN−1e−i(mN−1−m)θN . (5.4.181)

Explain why the right hand side remains the same upon swapping any of the two a⃗s.

Problem 5.48. If a⃗ · P⃗ ≡ a1P1 + a2P2 in Cartesian coordinates (a1, a2), show that the dot
product can be expressed as

a⃗ · P⃗ = a−P+ + a+P−, (5.4.182)

where a∓ ≡ (1/2)(a1 ∓ ia2).

Problem 5.49. Derivatives If x⃗ = r(cosϕ, sinϕ), show that

i

2

〈
r, ϕ

∣∣e−iϕP+ + e+iϕP−
∣∣ f〉 = ∂r ⟨r, ϕ| f⟩ (5.4.183)

1

2

〈
r, ϕ

∣∣e−iϕP+ − e+iϕP−
∣∣ f〉 = 1

r
∂ϕ ⟨r, ϕ| f⟩ ; (5.4.184)

for any arbitrary state |f⟩. Also verify the following commutators.〈
r, ϕ

∣∣[P±, e
±iϕ]∣∣ f〉 = i

r
e±2iϕ ⟨r, ϕ| f⟩ (5.4.185)〈

r, ϕ
∣∣[P±, e

∓iϕ]∣∣ f〉 = − i
r
⟨r, ϕ| f⟩ (5.4.186)〈

r, ϕ
∣∣[P±, r

−1
]∣∣ f〉 = i

r2
e±iϕ ⟨r, ϕ| f⟩ . (5.4.187)

Hint: First start by computing ⟨r, ϕ|P± |f⟩ in polar coordinates.
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Problem 5.50. Bessel Equation Via a direct calculation, show that{(
i

2k

(
e−iϕP+ + e+iϕP−

))2

+
i

2k2r

(
e−iϕP+ + e+iϕP−

)
+ 1− m2

(kr)2

}
|m, k⟩ = 0. (5.4.188)

By acting ⟨r, ϕ| from the left, explain why this yields the Bessel equation,

J ′′
n(ξ) +

1

ξ
J ′
n(ξ) +

(
1− m2

ξ2

)
Jn(ξ) = 0; (5.4.189)

where ξ ≡ kr. Remember that the P± do not commute with 1/r nor e±iϕ.

Problem 5.51. Bessel Recursion Relations Use eq. (5.4.158) and the results in Problem
(5.49) to show that

J ′
m(ξ) = −Jm+1(ξ) +

m

ξ
Jm(ξ) (5.4.190)

= Jm−1(ξ)−
m

ξ
Jm(ξ). (5.4.191)

Explain why these immediately imply

2J ′
m(ξ) = Jm−1(ξ)− Jm+1(ξ) (5.4.192)

2
m

ξ
Jm(ξ) = Jm−1(ξ) + Jm+1(ξ). (5.4.193)

Hint: Work in the position representation.

Invariant Subgroup of E2 Next, we compute the following change-of-basis of the
translation operator, keeping in mind equations (5.4.83) and (5.4.85) as well as the fact that
translations commute:

Π(ϕ, a⃗) · T (⃗b) · Π(ϕ, a⃗)−1 = T (⃗a) ·D(ϕ) · T (⃗b) ·D(−ϕ) · T (−a⃗) (5.4.194)

= T (⃗a) · T (R̂(ϕ) · b⃗) · T (−a⃗) (5.4.195)

= T (⃗a) · T (−a⃗) · T (R̂(ϕ) · b⃗) (5.4.196)

= T
(
R̂(ϕ) · b⃗

)
. (5.4.197)

Since Π(ϕ, a⃗) is a completely general E2 group element, we see that the subgroup of translations
remain so under arbitrary change-of-basis. In group theory lingo, we say that translations in 2D
form an invariant subgroup of E2.

We may consider forming the left coset of the group of translations, viewed as an invariant
subgroup of E2 translations by multiplying some fixed Π(ϕ, a⃗) from the left to the set of all
translation operators. (Multiplying it from the right would yield the right coset.) Specifically,
for fixed ϕ and a⃗, we may construct the left coset

Π(ϕ, a⃗)
{
T (⃗b)

∣∣∣⃗b ∈ R2
}
≡
{
Π
(
ϕ, R̂(ϕ) · b⃗+ a⃗

) ∣∣∣⃗b ∈ R2
}
. (5.4.198)
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Since b⃗ runs over all possible vectors in R2, we may always find a b⃗′ such that R̂(ϕ) · b⃗+ a⃗ = b⃗′.

Likewise, given b⃗′, we may always find a b⃗ such that b⃗ = R̂(−ϕ) · (⃗b′ − a⃗). Our left coset is
therefore the set of all Πs in E2 with a fixed ϕ.

Π(ϕ, a⃗)
{
T (⃗b)

∣∣∣⃗b ∈ R2
}

=
{
Π
(
ϕ, b⃗′

) ∣∣∣⃗b′ ∈ R2
}

(5.4.199)

If H is an invariant subgroup and if we define group multiplication of (left) cosets by (g1 ·H)(g2 ·
H) = (g1g2) ·H, where g1 and g2 are group elements, then in the case at hand,{

Π
(
ϕ, b⃗
) ∣∣∣⃗b ∈ R2

}
·
{
Π
(
ϕ′, b⃗′

) ∣∣∣⃗b′ ∈ R2
}

= (Π(ϕ, a⃗) · Π(ϕ′, a⃗′))
{
T (⃗b)

∣∣∣⃗b ∈ R2
}

= Π
(
ϕ+ ϕ′, a⃗+ R̂(ϕ) · a⃗′

){
T (⃗b)

∣∣∣⃗b ∈ R2
}

=
{
Π
(
ϕ+ ϕ′, b⃗′′

) ∣∣∣⃗b′′ ∈ R2
}
. (5.4.200)

The two cosets on the leftmost and the coset on the rightmost portions of the above calculation
are the same except for the angles of rotation – the latter’s is the sum of the former two. By
viewing the entire set into one group element of the coset group gH ∈ E2/T2, we are modding
out the translation group from the Euclidean group to obtain SO2. This tells us the factor group
E2/T2 defined via the rule (g1 ·H)(g2 ·H) = (g1g2) ·H is in fact equivalent to that of the rotation
group in 2D.

5.5 Rotations in D ≥ 3 Spatial Dimensions

We now move on to study rotations in spatial dimensions D higher than 2. In 2D we were able
to write down the general rotation matrix R̂(ϕ) in eq. (5.4.6) because the associated geometric
considerations were simple enough. In general D ≥ 3 dimensions, however, we would need a
more abstract starting point. For the D = 3 case, we have an intuitive understanding that
rotations are a continuous operation, parametrized by some appropriate angles, that do not
change the length of vectors nor their dot products. For general D,30 we thus begin by defining
rotations as the linear operator that preserves the lengths of vectors and their dot products. If
R̂ is a rotation matrix and u⃗ and v⃗ are arbitrary but distinct vectors, for their dot product to
be preserved under rotations means

u⃗ · v⃗ = u⃗Tv⃗ = (R̂u⃗) · (R̂v⃗) (5.5.1)

= u⃗T(R̂TR̂)v⃗. (5.5.2)

Since this holds for any pair of distinct u⃗ and v⃗, we see that rotation matrices are orthogonal
ones:

I = R̂TR̂. (5.5.3)

In index notation,

δij = δabR̂
a
iR̂

b
j. (5.5.4)

30Do not let the general-D character of the discussion intimidate you: a good portion of what follows would
be identical even if we had put D = 3.
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Because the inverse is unique, and the left- and right-inverses are the same for finite dimensional
matrices, we may in fact deduce from eq. (5.5.3) that

R̂T = R̂−1 and R̂R̂T = I = R̂TR̂. (5.5.5)

We will soon see that these D×D rotation matrices R̂ are parametrized by D(D− 1)/2 angles

{θ⃗}. Moreover, it must be possible to tune these angles {θ⃗ → θ⃗0} so that the identity matrix is
recovered – i.e., no rotation at all:

R̂(θ⃗0) = ID×D (5.5.6)

Let us now take the determinant of both sides of eq. (5.5.3). Using det ÂB̂ = (det Â)(det B̂)

and det ÂT = det Â,

1 = det I = det R̂TR̂ = (det R̂)2. (5.5.7)

In other words, orthogonal matrices satisfying eq. (5.5.3) have either ±1 determinant:

det R̂ = ±1. (5.5.8)

If R̂ is a rotation matrix, however, since θ⃗ are continuous parameters, the det R̂(θ⃗) must be a

number that is also a continuous function of these θ⃗. Suppose we start from the angles θ⃗0 in
eq. (5.5.6); where, det R̂(θ⃗0) = 1. By tuning θ⃗ away from θ⃗0 in the number det R̂(θ⃗), one might
think the determinant would vary continuously as a function of these angles. But we have just
seen it can only take on 2 discrete values ±1; therefore det R̂(θ⃗) has to remain +1 for all θ⃗ for
otherwise it would violate continuity.

Rotations: det R̂(θ⃗) = +1 (5.5.9)

To summarize, for arbitrary D ≥ 2 dimensional space, the set of rotation matrices are thus
defined to be the set of D × D matrices that are simultaneously orthogonal (eq. (5.5.3)) and
have unit determinant (eq. (5.5.9)).

Problem 5.52. Explain why eq. (5.5.4) implies eq. (5.5.3). That is, convert the index notation
to a matrix notation. Also explain why, eq. (5.5.4) implies

δijR̂a
iR̂

b
j = δab. (5.5.10)

Hint: Use R̂T = R̂−1.

Problem 5.53. If R̂ is a rotation matrix and ϵi1...iD the Levi-Civita symbol in D dimensions,
with ϵ1 2 ... D ≡ 1, explain why

R̂i1
j1
. . . R̂iD

jD
ϵi1...iD = ϵj1...jD . (5.5.11)

Hint: Recall the definition of the matrix determinant in eq. (3.2.1).
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Group Structure Note that the product of two rotations R̂1 and R̂2 is another rotation
because, as long as eq. (5.5.3) is obeyed – namely R̂T

1 R̂1 = I and R̂T
2 R̂2 = I – then we have(

R̂1R̂2

)T (
R̂1R̂2

)
= R̂T

2 R̂
T
1 R̂1R̂2 (5.5.12)

= R̂T
2 R̂2 = I. (5.5.13)

That is, R̂3 ≡ R̂1R̂2 satisfies R̂
T
3 R̂3 = I. Moreover, as long as as eq. (5.5.9) is respected – namely,

det R̂1 = 1 = det R̂2 – then det R̂3 = 1 too, because

det
(
R̂1R̂2

)
= (det R̂1)(det R̂2) = 1. (5.5.14)

(Special) Orthogonal Group The set of matrices {R̂} obeying eq. (5.5.3) form the
orthogonal group OD(≡ O(D)); if they are further restricted to be of unit determinant, i.e.,
obeying eq. (5.5.9) (aka ‘special’), they form the SOD(≡ SO(D)) group. Hence, rotations in
D−space correspond to the study of the SOD group.

Problem 5.54. UD and SUD Groups Prove that the set of D × D unitary matrices
{Û |Û †Û = I = Û Û †} forms a group. For every matrix in the UD group, explain how to obtain a

matrix in the SUD group. Hint: If Û is in UD, consider multiplying Û by an appropriate phase
eiφID×D.

How is the U1 group related to the complex plane? Can you write down the general 2 × 2
matrix of the U2 and SU2 groups using the Pauli matrices {σµ|µ = 0, 1, 2, 3} in eq. (3.2.17)?
Hints: Remember these Pauli matrices span the space of 2× 2 matrices. Consider the following
complex 4−component object:

a⃗ =
(
eiφ1 sin(θ1) sin(θ2) cos(θ3), e

iφ2 sin(θ1) sin(θ2) sin(θ3),

eiφ3 sin(θ1) cos(θ2), e
iφ4 cos(θ1)

)
, φ1,2,3,4, θ1,2,3 ∈ R. (5.5.15)

Compute a⃗∗ · a⃗.

Geometry Let us turn to the geometry of flat space itself, and witness how it enjoys
rotational and spatial translation symmetries. Firstly, by Pythagoras’s theorem – which holds
for arbitrary D ≥ 2 dimensions – the distance dℓ between x⃗ and x⃗+ dx⃗ obeys

dℓ2 = dx⃗ · dx⃗ = δijdx
idxj ≡ gijdx

idxj. (5.5.16)

In differential geometry, the metric gij is defined as the coefficient of dxidxj in the square of the
infinitesimal distance dℓ2. Here, gij = δij. Moreover, under an orthogonal transformation of the

Cartesian coordinates x⃗ → R̂x⃗; followed by a spatial translation a⃗, namely R̂x⃗ → R̂x⃗ + a⃗; we
gather

x⃗→ R̂ · x⃗+ a⃗, (5.5.17)

xi → R̂i
jx
j + ai. (5.5.18)
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For constant rotation angles θ⃗ and translation vector a⃗, eq. (5.5.17) tells us the infinitesimal
displacement is rotated as

dxi → R̂i
jdx

j. (5.5.19)

The square of the infinitesimal distance dℓ is, in turn, replaced as

δijdx
idxj → δij(R̂

i
adx

a)(R̂j
bdx

b) (5.5.20)

= (δabR̂
a
iR̂

b
j)dx

idxj = δijdx
idxj, (5.5.21)

where eq. (5.5.4) was used in the final equality. In matrix notation, and invoking the matrix
version of orthogonality in eq. (5.5.3),

dx⃗ · dx⃗→ (R̂dx⃗) · (R̂dx⃗)δab
∂xa

∂x′i
∂xb

∂x′j
= dx⃗ · (R̂TR̂)dx⃗ = dx⃗ · dx⃗. (5.5.22)

Conversely, if we perform a coordinate transformation x⃗ = x⃗(x⃗′), the element transforms into

δabdx
adxb = δab

∂xa

∂x′i
∂xb

∂x′j
dx′idx′j. (5.5.23)

We won’t show it here – but see §(10.1) below for the Poincaré symmetry case – but one can
show that the most general transformation that preserves the metric, namely

gij(x⃗) = δij → δab
∂xa

∂x′i
∂xb

∂x′j
= δij = gi′j′(x⃗

′), (5.5.24)

is

x⃗ = R̂x⃗′ + a⃗, (5.5.25)

xi = R̂i
jx

′j + ai. (5.5.26)

To sum:

The rotation and translation operation(s), namely x⃗→ R̂x⃗+ a⃗ – with orthogonal

transformations implemented by {R̂(θ⃗)|R̂TR̂ = I = R̂R̂T} and translations imple-
mented by constant vectors {a⃗} – together preserve the infinitesimal line element
dx⃗ ·dx⃗→ dx⃗ ·dx⃗. We say that flat space is rotationally and translationally invariant:
δij → δij.

Problem 5.55. Euclidean Group Explain how you would generalize eq. (5.4.74) to all
spatial dimensions D ≥ 2.

Anti-symmetric Generators We now turn to the construction of R̂ itself. As we have
argued previously, any operator continuously connected to the identity can be expressed as an
exponential:

R̂(θ⃗) = eε·Ω̂ = I+ ε · Ω̂ +O
(
ε2
)
, (5.5.27)
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where the matrix Ω̂ is known as the generator of rotations, which we will take to be real since
R̂ is real. Furthermore, we have inserted a parameter ε so that eq. (5.5.3) may be now regarded
as a Taylor series in ε. (

I+ ε · Ω̂T +O
(
ε2
))(

I+ ε · Ω̂ +O
(
ε2
))

= I (5.5.28)

I+ ε
(
Ω̂T + Ω̂

)
+O

(
ε2
)
= I (5.5.29)

The identity cancels out from both sides; leaving us with the conclusion that each order in ε
must cancel. In particular, at first oder,

Ω̂T = −Ω̂. (5.5.30)

Now, if eq. (5.5.30) were true then from eq. (5.5.27), we may verify eq. (5.5.3). By Taylor

expanding the exponential, one may readily verify that (exp(Ω̂))T = exp(Ω̂T) = exp(−Ω̂). Since
−Ω̂ and Ω̂ commutes, we may combine the exponents in eq. (5.5.3)

R̂TR̂ = e−Ω̂eΩ̂ = eΩ̂−Ω̂ = I, (5.5.31)

where we have now absorbed ε into the generator Ω̂.
Rotation angles Moreover, note that antisymmetric matrices (with a total of D2 en-

tries) have zeros on the diagonal (since Ω̂ii = −Ω̂ii, with no sum over i) and are hence fully
specified by either its strictly upper or lower triangular components (since its off diagonal

counterparts may be obtained via Ω̂ij = −Ω̂ji). Thus, the space of antisymmetric matrices
is (D2 −D)/2 = D(D − 1)/2 dimensional.

On the other hand, there are
(
D
2

)
= D!/(2!(D − 2)!) = D(D − 1)/2 ways to choose a 2D

plane spanned by 2 of the D axes in a Cartesian coordinate system. As we shall see below, each
of the D(D−1)/2 basis anti-symmetric matrices Ĵ ij that span the space of {Ω̂ = −iωijĴ ij|Ω̂T =

−Ω̂} in fact generate rotations about these 2D planes, with rotation angle θI ↔ ωij. Hence,
rotations in D spatial dimensions are parametrized by a total of D(D − 1)/2 rotation angles
{θI|I = 1, 2, . . . , D(D − 1)/2}.

Basis generators One such basis of anti-symmetric generators Ω̂ is as follows. First
recall all diagonal components are zero. For the first generator basis matrix, set the (1, 2)
component to −1, the (2, 1) to +1, and the rest to 0. For the next, set the (1, 3) component to
−1, the (3, 1) to +1, and the rest to 0. And so on, until all the upper triangular components
have been covered. For example, in 2D, the generator is proportional to the 2D Levi-Civita
symbol (with ϵ12 ≡ 1):

iĴ=̇ϵij =

[
0 1
−1 0

]
; (5.5.32)

whereaas in 3D, we have the following three generators

iĴ12 =

 0 1 0
−1 0 0
0 0 0

 , iĴ13 =

 0 0 1
0 0 0
−1 0 0

 , iĴ23 =

 0 0 0
0 0 1
0 −1 0

 . (5.5.33)
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And so on, for all D ≥ 2. Altogether, this amounts to writing eq. (5.5.27) as

R̂ = exp

(
− i
2
ωijĴ

ij

)
, (5.5.34)

where ωij = −ωji is a collection of D(D − 1)/2 parameters (i.e., rotation angles) expressing the
superposition of the anti-symmetric basis generators {iJ ij} as described above:

i
(
Ĵ ij
)
ab
= δiaδ

j
b − δ

i
bδ
j
a ≡ δi[aδ

j
b]. (5.5.35)

31The reason for writing the generators in the form in eq. (5.5.34) is that, since Ω̂ = −(i/2)ωijĴ ij
is real and antisymmetric, Ω̂T = Ω̂† = −Ω̂ (cf. eq. (5.5.30)),

1

2
ω∗
ij(−iĴ ij)† =

i

2
ωijĴ

ij = −1

2
ωij(−iĴ ij). (5.5.36)

But eq. (5.5.35) tells us −iĴ ij is real and anti-symmetric, i.e., (−iĴ ij)† = +iĴ ij; so not only is

Ĵ ij therefore Hermitian

+iĴ ij = (−iĴ ij)† = i(Ĵ ij)† (5.5.37)

eq. (5.5.36) informs us the parameters {ωij} in eq. (5.5.34) must therefore be real.

Problem 5.56. Rotation on (i, j)-plane By regarding J ij as an operator acting on the
D−Euclidean space, whose Cartesian basis we shall denote by {|i⟩}, explain why

−iJ ij |j⟩ = − |i⟩ and − iJ ij |i⟩ = + |j⟩ ; (5.5.38)

while

−iJ ij |k⟩ = 0, ∀k ̸= i, j. (5.5.39)

In other words,

−iJ ij = |j⟩ ⟨i| − |i⟩ ⟨j| . (5.5.40)

Can you compute (−iJ ij)n for odd and even n? Then show that

e−iθJ
ij

= cos(θ) |i⟩ ⟨i| − sin(θ) |i⟩ ⟨j|+ sin(θ) |j⟩ ⟨i|+ cos(θ) |j⟩ ⟨j|+
∑
k ̸=i,j

|k⟩ ⟨k| . (5.5.41)

In other words, the basis anti-symmetric rotation generators in eq. (5.5.35) produce counter-
clockwise rotations on the (i, j) 2D plane, leaving the rest of the D−space untouched.

31One may check that Ĵ ij = −Ĵji, and therefore the sum in eq. (5.5.34) over the upper triangular indices
are not independent from those over the lower triangular ones; this accounts for the factor of 1/2. In other
words: exp(−(i/2)ωabJ

ab) = exp(−i
∑

a<b ωabJ
ab) = exp(−i

∑
a>b ωabJ

ab). Furthermore, whenever i = j we
see eq. (5.5.35) vanishes; whereas for a fixed pair i ̸= j, the kronecker deltas on the right hand side tell us
−i(J ij)ab = −1 (coming solely from the first term on the left) when i = a and j = b while −i(J ij)ab = +1
(coming solely from the second term) when i = b and j = a.
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Change-of-basis and rotating the ωs We may now show that

R̂ exp

(
− i
2
ωabĴ

ab

)
R̂T = exp

(
− i
2
ω′
abĴ

ab

)
, (5.5.42)

with

ω′
ab = R̂amR̂bnωmn; (5.5.43)

or, if we view ω as a matrix,

ω̂′ = R̂ · ω̂ · R̂T. (5.5.44)

To see this, we first note from Taylor expansion and R̂R̂T = I that

R̂ exp(X)R̂T = exp
(
R̂ ·X · R̂T

)
. (5.5.45)

Therefore we may employ eq. (5.5.35) to evaluate

− i
2
ω′
ij

(
Ĵ ij
)
ab
≡ − i

2
ωij

(
R̂Ĵ ijR̂T

)
ab
= −1

2
ωijR̂amδ

i
[mδ

j
n]R̂bn (5.5.46)

= −R̂amR̂bnωmn (5.5.47)

On the other hand,

− i
2
ω′
ij

(
Ĵ ij
)
ab
= −1

2
ω′
ijδ

i
[aδ

j
b] (5.5.48)

= −ω′
ab. (5.5.49)

Comparing equations (5.5.47) and (5.5.49), we arrive at eq. (5.5.43).

Summary Rotation matrices in D−space – defined to be length-preserving
linear transformations continuously connected to the identity – are the exponential
of anti-symmetric D × D matrices. These anti-symmetric matrices may be chosen
in such a manner that they ‘generate’ an infinitesimal rotation on the (xa, xb)-plane,
for a fixed and distinct pair 1 ≤ a, b ≤ D. There are D(D − 1)/2 such basis anti-
symmetric matrices, corresponding to the

(
D
2

)
ways of choosing a 2D plane formed

by a pair of Cartesian axes.

Rotation Operators Acting on Position Eigenkets We now turn to the eigenkets of
the position operators {|x⃗⟩}. Let us implement rotation via

D(R̂) |x⃗⟩ ≡ exp

(
− i
2
ωabJ

ab

)
|x⃗⟩ =

∣∣∣R̂x⃗〉 , (5.5.50)

where D(R̂) is now the linear operator associated with the rotation matrix R̂ in eq. (5.5.34).

Now, we must have, for two rotation matrices R̂1 and R̂2,

D(R̂1)D(R̂2) |x⃗⟩ = D(R̂1)
∣∣∣R̂2x⃗

〉
=
∣∣∣R̂1R̂2x⃗

〉
= D(R̂1R̂2) |x⃗⟩ . (5.5.51)
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Since |x⃗⟩ was arbitrary, we have the product rule

D(R̂1)D(R̂2) = D(R̂1R̂2). (5.5.52)

Now, according to the discourse enveloping equations (5.1.42) through (5.1.47), the product of
linear operators continuously connected to the identity is determined by the (nested) commuta-
tors of its generators. The latter, in turn, is completely determined by the Lie Algebra of the
basis generators (cf. eq. (5.1.43)). On the other hand, eq. (5.5.52) tells us

exp

(
− i
2
ωabJ

ab

)
exp

(
− i
2
ω′
abJ

ab

)
= exp

(
− i
2
ω′′
abJ

ab

)
; (5.5.53)

where ωab are the rotation angles describing R̂1(ω), ω
′
ab are those describing R̂2(ω

′), and ω′′
ab are

those describing their product (R̂1R̂2)(ω
′′). One way to guarantee eq. (5.5.53) holds, is therefore

to ensure the operators {Jab} obey the same Lie algebra as their matrix counterparts {Ĵab}.

Problem 5.57. Rotating Momenta If
∣∣∣⃗k〉 is the eigenket of the momentum operator P⃗

in Cartesian coordinates, show that

D(R̂)
∣∣∣⃗k〉 =

∣∣∣R̂ · k⃗〉 . (5.5.54)

Hint: Insert a complete set of position eigenkets.

Problem 5.58. Lie Algebra of SOD Use the choice of basis {Ĵab} in eq. (5.5.35) to argue
there must a basis {Jab} such that[

Jkl, Jmn
]
= −i

(
δk[mJn]l − δl[mJn]k

)
. (5.5.55)

That the generators do not commute indicates rotations for D > 2 do not, in general, commute:
R̂1R̂2 ̸= R̂2R̂1. (The anti-symmetrization symbol means, for e.g., T [ij] = T ij − T ji.)

Group Representations This is a good place to highlight, the product rule in eq. (5.5.52)
does not only apply to rotations nor to linear operators acting only on position eigenkets. More
generally, we may motivate the notation of group representations as follows. To apply the notion
of translations, rotations, Lorentz boosts, parity flips, and more general group operations to
quantum states {|ψ⟩}, there needs to be a function D(·) of these translation/rotation matri-
ces/Lorentz boost matrices/group elements (which we will simply denote here as g1, g2, . . . ) that
converts them into linear operators acting on these {|ψ⟩}. For these D(g1), D(g2), . . . to preserve
the notion of translations, rotations, Lorentz boosts, parity flips, etc., they must preserve the
group multiplication rules of the original group. If g1 · g2 = g3, then we must have for all such
group products

D(g1)D(g2) = D(g3) = D(g1g2). (5.5.56)

Such a map that preserves group multiplication rules is known as a group homomorphism. For
instance, in the case of 2D rotations, we defined D(R̂(ϕ)) ≡ eiϕ. One may readily check

eiϕeiϕ
′
= D(R̂(ϕ)) ·D(R̂(ϕ′)) = D(R̂(ϕ) · R̂(ϕ′)) = D(R̂(ϕ+ ϕ′)) = ei(ϕ+ϕ

′). (5.5.57)

136



Furthermore, a map that converts these original group elements {g1, g2, . . . } into linear operators
{D(g1), D(g2), . . . } acting on some vector space, is known as a group representation. Note that,
if e is the identity group element (obeying e · g = g for arbitrary group element g), it must map
into the identity linear operator I,

D(e) = I. (5.5.58)

This guarantees that, by eq. (5.5.56), I ·D(g) = D(e)D(g) = D(e ·g) = D(g) for arbitrary group
element g.

Additionally, since the {g1, g2, . . . } are assumed to have inverses, the linear operators them-
selves must be invertible as well. If g is a group element and g−1 is its inverse, we have

D(g−1) = D(g)−1; (5.5.59)

so that, by equations (5.5.56) and (5.5.58), D(g−1)D(g) = D(g−1g) = D(e) = I.
For group homomorphisms of elements continuously connected to the identity operator, for

them to be faithful representations – i.e., with no loss of information on the original group –
we see that their corresponding generators must obey the same Lie Algebra as that of original
group generators.

Finally, if {D(g)} are matrices, we may ask if {D(g)∗} are also a valid representation. The
answer is yes: D(g1)

∗D(g2)
∗ = (D(g1)D(g2))

∗ = D(g1g2)
∗. If D(g) and D(g)∗ can be related

via the same change-of-basis for all g, D(g) = UD(g)∗U−1, however, we regard them to be
equivalent.

Unitary D(R̂) and Hermitian Jab We will next see that these {Jab} are Hermitian

because D(R̂) = exp(−(i/2)ωabJab) is unitary, since the ωab are rotation angles and hence always
real. To this end, we may discover from eq. (5.5.50) that〈

R̂x⃗′
∣∣∣ = ⟨x⃗′|D(R̂)†. (5.5.60)

Together, we deduce

⟨x⃗′|D(R̂)†D(R̂) |x⃗⟩ =
〈
R̂x⃗′
∣∣∣ R̂x⃗〉 = δ(D)(R̂(x⃗− x⃗′)) (5.5.61)

=
δ(D)(x⃗− x⃗′)

| det ∂(R̂x)i/∂xa| 12 | det ∂(R̂x′)i/∂x′a| 12
=

δ(D)(x⃗− x⃗′)
| det ∂(R̂x)i/∂xa|

=
δ(D)(x⃗− x⃗′)

| det ∂(R̂x′)i/∂x′a|
;

where in the second line we have appealed to eq. (5.2.4). Moreover, we may compute

det
∂(R̂i

jx
j)

∂xa
= det

∂(R̂i
jx

′j)

∂x′a
= det R̂i

jδ
j
a = det R̂i

a = 1, (5.5.62)

if we recall eq. (5.5.9). At this point, we gather

⟨x⃗′|D(R̂)†D(R̂) |x⃗⟩ = δ(D)(x⃗′ − x⃗) = ⟨x⃗′| x⃗⟩ . (5.5.63)

Since |x⃗⟩ and |x⃗′⟩ are arbitrary, we have proven

D(R̂)†D(R̂) = I. (5.5.64)
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Problem 5.59. Can you argue that, when acting on the position eigenkets {|x⃗⟩},

D(R̂)† = D(R̂T)? (5.5.65)

This is the generalization of eq. (5.4.22) to D ≥ 3. Hint: Remember R̂T = R̂−1.

Problem 5.60. ‘Orbital’ Angular Momentum: Position Representation In this
problem, we shall work out Jab within the position representation.

According to eq. (5.5.27), an infinitesimal rotation may be implemented via the replacement

xi → R̂i
jx
j =

(
δij + Ω̂i

j + . . .
)
xj, (5.5.66)

where Ω is anti-symmetric; cf. eq. (5.5.30). (Here, the placement of indices on Ω̂, i.e., up versus
down, is unimportant.) In eq. (5.5.50), take

Ω̂ = −iθĴ ij, (5.5.67)

where J ij is one of the basis anti-symmetric matrices in eq. (5.5.35); and let f(x⃗) = ⟨x⃗| f⟩ be
an arbitrary function. Explain why the replacement in eq. (5.5.66) induces

f(x⃗)→ f(x⃗) + θ · (xi∂j − xj∂i)f(x⃗). (5.5.68)

Next show that, upon an infinitesimal rotation generated by J ij – now acting on the {|x⃗⟩} –

⟨x⃗| f⟩ →
(
D(R̂) |x⃗⟩

)†
|f⟩ (5.5.69)

= ⟨x⃗| f⟩+ iθ
〈
x⃗
∣∣J ij∣∣ f〉+O(θ2). (5.5.70)

We may therefore identify

⟨x⃗| J ij |f⟩ = −i
(
xi∂j − xj∂i

)
⟨x⃗| f⟩ , ∂j ≡

∂

∂xj
. (5.5.71)

That is, these J ij are the D−dimensional analogs of the ‘orbital angular-momentum’ operators
in 3D space. Employing eq. (5.2.24), we may deduce from (5.5.71) that

J ij = X iPj −XjPi, (5.5.72)

where X⃗ and P⃗ are now, respectively, the position and momentum operators.
Can you verify that eq. (5.5.72) satisfies the Lie Algebra in eq. (5.5.55) through a direct

calculation? Recall that the same Lie Algebra has to be satisfied for all representations of
the group elements continuously connected to the identity, because it is the Lie Algebra that
completely determines the product rule between any two such elements.

Relation between J⃗2 ≡ (1/2)JabJab and P⃗ 2 In §(9) below, we explain how to express

P⃗ 2, which in the position representation is the negative Laplacian, in any coordinate system.
Practically speaking, the key is to first write down the Euclidean metric in eq. (5.5.16) in
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the desired coordinate system. For our case, we will focus on the D−dimensional spherical
coordinate system (r, θ⃗), which yields

δijdx
idxj = dr2 + r2HIJdθ

IdθJ (5.5.73)

if we set the Cartesian coordinate vector to be equal to the radial distance r times an appropri-
ately defined unit radial vector parameterized by θ⃗: xi = rr̂(θ⃗). In particular,

r2HIJ = r2δij
∂n̂i

∂θI
∂n̂j

∂θJ
. (5.5.74)

Generically, given a metric

dℓ2 = gijdx
idxj (5.5.75)

we may first compute its determinant g ≡ det gij, its inverse gij (which satisfies gijgjk = δik),
and its scalar Laplacian

∇⃗2ψ =
1
√
g
∂i
(√

ggij∂jψ
)
. (5.5.76)

For instance, the metric in Cartesian coordinates is simply δij, whose determinant is unity,
inverse δij, and Laplacian

∇⃗2ψ = δij∂i∂jψ. (5.5.77)

Problem 5.61. If H denotes the determinant of HIJ in eq. (5.5.73), show that the D−space
Laplacian is

∇⃗2ψ =
1

rD−1
∂r
(
rD−1∂rψ

)
+

1

r2
∇⃗2

SD−1ψ; (5.5.78)

where ∇⃗2
SD−1 is the Laplacian on the unit (D − 1)-sphere (i.e., r = 1), namely

∇⃗2
SD−1ψ =

1√
H
∂I

(√
HH IJ∂Jψ

)
, (5.5.79)

where the I and J indices run only over the angular coordinates {θI}. This result will be used
in the next problem.

Problem 5.62. (2r2)−1JabJab = J⃗2/r2 and Laplacian on Sphere Use eq. (5.5.71) to
show that

1

2

〈
x⃗
∣∣JabJab∣∣ψ〉 = ((D − 1)xa∂a + xaxb∂a∂b − x⃗2∇⃗2

)
⟨x⃗|ψ⟩ . (5.5.80)

Next, recall eq. (5.2.46) and show that

−
〈
x⃗

∣∣∣∣P⃗ 2 − 1

2r2
JabJab

∣∣∣∣ψ〉 =
1

rD−1
∂r
(
rD−1∂r ⟨x⃗|ψ⟩

)
. (5.5.81)
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From this, identify (1/2)JabJab as the negative Laplacian on the (D − 1)−sphere:〈
x⃗
∣∣∣J⃗2
∣∣∣ψ〉 ≡ 1

2

〈
x⃗
∣∣JabJab∣∣ψ〉 = −∇⃗2

SD−1 ⟨x⃗|ψ⟩ . (5.5.82)

Hints: You may need the result from the previous problem. Recognize too, from xi = rr̂i(θ⃗),

r∂r = r
∂xi

∂r
∂i = rr̂i∂i = xi∂i; (5.5.83)

as well as (keeping in mind r̂a∂ar̂
b = 0 – can you see why?)

xixj∂i∂jψ = r2∂2rψ. (5.5.84)

To reiterate: just as −P⃗ 2 is the D−space Laplacian in Euclidean space, the −(2r2)−1JabJab is
its counterpart on the (D − 1)-sphere of radius r.

Since Jab ‘generates’ rotation, in the position representation they must correspond to strictly
angular derivatives, for any radial ones would imply a moving off the surface of some constant
radius – thereby violating the notation of rotation as length-preserving. To see this, we first as-
sume it is possible to find angular coordinates θ⃗ such that not only does the Cartesian coordinate
vector take the form

xi = rr̂i(θ⃗), r̂ir̂i = 1 (5.5.85)

these angles are orthogonal in the sense that

∂Ir̂ · ∂Jr̂ = δij∂Ir̂
i · ∂Jr̂j = HIJ ≡ diag [H22, H33, . . . , HDD] . (5.5.86)

In other words, we assume the angular metric in eq. (5.5.74) is diagonal.
Another consequence of eq. (5.5.85) follows from differentiating r̂ir̂i = 1 with respect to any

of one of the angles is

r̂i∂Ir̂
i = 0. (5.5.87)

The Jacobian ∂xi/∂(r, θ)a takes the form

∂xi

∂r
= r̂i and

∂xi

∂θI
= r

∂r̂i

∂θI
. (5.5.88)

Let us now observe, through the chain rule

∂xi

∂(r, θ⃗)a

∂(r, θ⃗)a

∂xj
=
∂xi

∂xj
= δij, (5.5.89)

the matrix ∂(r, θ⃗)a/∂xj is simply the inverse of ∂xi/∂(r, θ⃗)a; namely,

∂(r, θ⃗)a

∂xj
=

( ∂x⃗

∂(r, θ⃗)

)−1
a

j

. (5.5.90)
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It has components

∂r

∂xi
= r̂i and

∂θI

∂xi
=
H IJ

r

∂r̂i

∂θJ
; (5.5.91)

where the inverse angular metric is defined through the relation

H IKHKJ = δIJ. (5.5.92)

To see this, we simply check that our expressions for ∂r/∂xi and ∂θI/∂xi do indeed yield the
components of the inverse of ∂xi/∂(r, θ)a; namely,

∂r

∂r
=

∂r

∂xi
∂xi

∂r
= r̂ir̂i = 1; (5.5.93)

∂r

∂θI
=

∂r

∂xi
∂xi

∂θI
= rr̂i∂Ir̂

i = 0; (5.5.94)

∂θI

∂r
=
∂θI

∂xi
∂xi

∂r
=
H IJ

r

∂r̂i

∂θJ
r̂i = 0; (5.5.95)

and

∂θI

∂θJ
=
∂θI

∂xi
∂xi

∂θJ
=
H IK

r
∂Kr̂

i · r∂Jr̂i = H IKHKJ = δIJ. (5.5.96)

Hence, from eq. (5.5.91),〈
r, θ⃗
∣∣Jab∣∣ψ〉 = −ix[a∂b] ⟨x⃗|ψ⟩ = −i

(
x[a

∂r

∂xb]
∂r + x[a

∂θI

∂xb]
∂I

)
⟨x⃗|ψ⟩ (5.5.97)

= −i
(
x[ar̂b]∂r + x[a

∂θI

∂xb]
∂I

)
⟨x⃗|ψ⟩ . (5.5.98)

Because rr̂ = x⃗ (cf. eq. (5.5.85)), the left term in the last line is zero because rr̂[ar̂b] = 0. From
eq. (5.5.91), we now arrive at the spherical coordinates analog of eq. (5.5.71):〈

r, θ⃗
∣∣Jab∣∣ψ〉 = −iH IJ

(
r̂a
∂r̂b

∂θI
− r̂b∂r̂

a

∂θI

)
∂

∂θJ

〈
r, θ⃗
∣∣∣ψ〉 . (5.5.99)

Problem 5.63. Show that Jab commutes with (1/2)J ijJ ij, i.e.[
Jab,

1

2
J ijJ ij

]
= 0. (5.5.100)

Hint: Remember eq. (4.3.86).

Spherical Harmonics in D−dimensions The Poisson equation of Newtonian gravity
or Coulomb’s law reads

∇⃗2ψ = 4πρ, (5.5.101)
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where ρ is either mass or charge density. Suppose we were solving ψ away from the source at x⃗,
where ρ(x⃗) = 0. If we choose the origin to be located nearby, so that ρ(x⃗ = 0⃗) = 0 too, then we
may perform a Taylor expansion

ψ(x⃗) =
+∞∑
ℓ=0

xi1 . . . xiℓ

ℓ!
ψi1...iℓ , (5.5.102)

ψi1...iℓ ≡ ∂i1 . . . ∂iℓψ(x⃗ = 0⃗). (5.5.103)

Since ρ(x⃗) = 0 in this region, eq. (5.5.101) reduces to ∇⃗2ψ = 0. Eq. (5.5.102) inserted into
eq. (5.5.101) must yield the statement that, for a fixed ℓ but with summation over the ℓ indices
{i1, . . . , iℓ} still in force,

∇⃗2
x⃗

(
xi1xi2 . . . xiℓ−1xiℓ

)
ψi1...iℓ = 0. (5.5.104)

Notice xi1 . . . xiℓψi1...iℓ is a homogeneous polynomial of degree ℓ. (Here, a homogeneous poly-
nomial of degree ℓ, Pℓ, is a polynomial built of out the Cartesian components of x⃗ such that,
under the re-scaling x⃗ → λx⃗, the polynomial scales as Pℓ → λℓPℓ.) Therefore, for each ℓ, the
solution of the vacuum Poisson equation in D−dimensions involves eq. (5.5.104): homogeneous
polynomials of degree ℓ annihilated by the Laplacian – this is often the starting definition of the
spherical harmonics.

Problem 5.64. Recall the space of polynomials of degree less than or equal to ℓ forms a vector
space. Is the space of homogeneous polynomials of degree ≤ ℓ a vector space? What about the
space of polynomials of degree ≤ ℓ satisfying eq. (5.5.104)? Hint: Remember the discussion at
the end of §(4.1).

If we employ spherical coordinates in D−dimensions,

xi = rr̂i(θ⃗), θ⃗ = (θ1, . . . , θD−1); (5.5.105)

then eq. (5.5.104) takes the form

∇⃗2
(
rℓY (θ⃗)

)
= 0; (5.5.106)

where the angular portion arises from

Y (θ⃗) = r̂i1 . . . r̂iℓψi1...iℓ . (5.5.107)

Problem 5.65. Eigenfunctions/values on the (D− 1)-sphere Show that eq. (5.5.106)
leads to the eigenvector/value equation

∇⃗2
SD−1Y (θ⃗) = −ℓ(ℓ+D − 2)Y (θ⃗). (5.5.108)

These angular spherical harmonics, for D = 3, are usually denoted as Y m
ℓ (θ, ϕ), where ℓ =

0, 1, 2, . . . and −ℓ ≤ m ≤ +ℓ. We shall examine them in the next section.
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5.6 Rotations in 3 Spatial Dimensions

5.6.1 Lie Algebra of Generators

We will now focus on rotations in 3D, where rotating the (i, j) plane is equivalent to rotating
space about the k-axis perpendicular to it. Such a ‘dual’ perspective is unique to 3D; because
there are more than one axes perpendicular to (i, j) in higher dimensions. More quantitatively,
this statement may be captured by utilizing the fully anti-symmetric 3D Levi-Civita symbol
ϵijk = ϵijk, with ϵ123 = ϵ123 ≡ 1. Specifically, let us define the Hermitian operator

J i ≡ 1

2
ϵijkJ jk, (5.6.1)

which, by multiplying both sides with ϵmni and using the result

ϵaijϵamn = δi[mδ
j
n] = δimδ

j
n − δinδjm, (5.6.2)

32is equivalent to

J ij = ϵijmJm; (5.6.3)

so that

− i
2
ωijJ

ij = −iθiJ i ⇔ θi =
1

2
ωabϵ

abi. (5.6.4)

Hence,

θ1 =
1

2
ϵ123ω23 +

1

2
ϵ132ω32 = ω23, (5.6.5)

θ2 =
1

2
ϵ213ω13 +

1

2
ϵ231ω31 = −ω13, (5.6.6)

θ3 =
1

2
ϵ312ω12 +

1

2
ϵ321ω21 = ω12. (5.6.7)

Recall that J23 generates rotations of the (2, 3) plane, and ω23 is the corresponding angle (for e.g.,
eq. (5.5.41)); we see that −iθ1J1 can be thought of as generating a rotation around the 1−axis
because it actually generates rotations around the (2, 3) plane. Keeping in mind equations (5.6.1)
and (5.6.4), when D = 3, we thus specialize the D−dimensional result in eq. (5.5.34) as

3D : R̂(θ⃗) = exp

(
− i
2
ωabJ

ab

)
= exp

(
−iθ⃗ · J⃗

)
. (5.6.8)

It is worth reiterating, that this rotation operator can be written either in terms of J i or Jab is
unique to 3D. Using eq. (5.5.41), the rotations around each Cartesian axes can be constructed
explicitly:

e−iθJ
12

= e−iθJ
3

=

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (5.6.9)

32The proof of eq. (5.6.2) can be found in the discussion following eq. (9.4.32) below.
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e−iθJ
13

= e+iθJ
2

=

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (5.6.10)

e−iθJ
23

= e−iθJ
1

=

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (5.6.11)

Euler Angles and 3D Rotations What is the most general rotation matrix? Imagine a
perfectly rigid body in 3D space, defined as one where each point within it always lie at a fixed
distance from every other point.

Global Structure of SO3

Algebra of 3D Rotation Generators Next, we invoke eq. (5.6.2) to deduce

J⃗2 ≡ JaJa =
1

4
ϵamnϵaijJmnJ ij (5.6.12)

=
1

4

(
δmi δ

n
j − δmj δni

)
JmnJ ij =

1

2
JmnJmn. (5.6.13)

In the previous section, we have already demonstrated that D(R̂) is unitary, and hence {Jab}
and {Ja} are Hermitian operators, with real eigenvalues and a complete set of eigenkets. We
will now attempt to perform a systematic analysis of the eigensystem of the {Ja} in 3D. The
following problem will provide the key ingredient.

Problem 5.66. Lie Algebra of Rotation Generators in 3D Show that[
Ja, J b

]
= iϵabcJ c (5.6.14)

and [
Ja, J⃗2

]
= 0, J⃗2 ≡ J iJ i. (5.6.15)

Hint: Recall equations (5.5.55) and (5.5.100). Eq. (5.6.14) may also be tackled by first utilizing
eq. (5.5.35) to prove that the matrix generator is

(Ĵ i)ab = −iϵiab ⇔ i(Ĵ i)ab = ϵiab. (5.6.16)

Compare equations (5.4.38) and (5.6.16).

Eigenvalues of J⃗2 and J3 from Ladder Operators in 3D According to eq. (5.6.14),

the {Ja} do not commute among themselves. However, eq. (5.6.15) tells us we may choose J⃗2

and one of the {Ja} as a pair of mutually compatible observables. As it is customary to do so,

we shall choose to simultaneously diagonalize J⃗2 and J3. Denote the simultaneous eigenket of
J⃗2 and J3 as |λJ ,m⟩.

J⃗2 |λJ ,m⟩ = λJ |λJ ,m⟩ and J3 |λJ ,m⟩ = m |λJ ,m⟩ (5.6.17)

To this end, let us define the raising J+ and lowering J− operators

J± ≡ J1 ± iJ2; (5.6.18)
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and compute, using the linearity of the commutator and the Lie Algebra of eq. (5.6.14),[
J3, J±] = [J3, J1

]
± i
[
J3, J2

]
(5.6.19)

= −iϵ132J2 ∓ i2ϵ231J1 = ±
(
J1 ± iJ2

)
. (5.6.20)

In other words, [
J3, J±] = ±J±. (5.6.21)

These are dubbed ladder or raising/lower operators because the J± acting on |λJ ,m⟩ will raise
or lower the m by unity.

J± |λJ ,m⟩ = cm±1 |λJ ,m± 1⟩ (5.6.22)

To see this, we employ eq. (5.6.21),

J3J± |λJ ,m⟩ =
(
J3J± − J±J3 + J±J3

)
|λJ ,m⟩

=
([
J3, J±]+ J±J3

)
|λJ ,m⟩

= (m± 1)J± |λJ ,m⟩ . (5.6.23)

Problem 5.67. Show that [
J+, J−] = 2J3. (5.6.24)

Next, let us prove that, for a fixed λJ , there is a maximum and minimum eigenvalue of J3.
We shall use the non-negative character of the norm to do so. Specifically,(

J± |λJ ,m⟩
)†
J± |λJ ,m⟩ ≥ 0. (5.6.25)

Now,

(J±)†J± = (J1 ∓ iJ2)(J1 ± iJ2) (5.6.26)

= (J1)2 + (J2)2 ± i(J1J2 − J2J1) (5.6.27)

= (J1)2 + (J2)2 ± i2J3 (5.6.28)

= (J1)2 + (J2)2 + (J3)2 − (J3)2 ∓ J3 = J⃗2 − (J3)2 ∓ J3. (5.6.29)

Therefore, their average is

1

2
(J+)†J+ +

1

2
(J−)†J− = J⃗2 − (J3)2; (5.6.30)

and we have

1

2

(
J+ |λJ ,m⟩

)†
J+ |λJ ,m⟩+

1

2

(
J− |λJ ,m⟩

)†
J− |λJ ,m⟩ ≥ 0 (5.6.31)

⟨λJ ,m| J⃗2 − (J3)2 |λJ ,m⟩ ≥ 0 (5.6.32)

145



λJ ≥ m2. (5.6.33)

If there were no mmax, eq. (5.6.23) tells us we may keep applying more and more powers of
J+ to obtain an ever increasing m2 – but that would certainly be greater than λJ at some
point, contradicting eq. (5.6.33). By applying more and more powers of J−, we may similarly
argue there has to be a mmin, otherwise m

2 will eventually violate eq. (5.6.33) again. These
considerations also tell us,

J+ |λJ ,mmax⟩ = 0; (5.6.34)

for otherwise eq. (5.6.23) would imply there is no mmax; likewise,

J− |λJ ,mmin⟩ = 0. (5.6.35)

Let us in fact consider the former; this implies

⟨λJ ,mmax| (J+)†J+ |λJ ,mmax⟩ = 0 (5.6.36)

⟨λJ ,mmax| J⃗2 − (J3)2 − J3 |λJ ,mmax⟩ = 0 (5.6.37)

λJ = mmax(mmax + 1); (5.6.38)

where eq. (5.6.29) was employed in the second line. If we instead considered J− |λJ ,mmin⟩ = 0,

⟨λJ ,mmin| (J−)†J− |λJ ,mmin⟩ = 0 (5.6.39)

⟨λJ ,mmin| J⃗2 − (J3)2 + J3 |λJ ,mmin⟩ = 0 (5.6.40)

λJ = mmin(mmin − 1); (5.6.41)

where once again eq. (5.6.29) was employed in the second line. Equating the right hand sides
of equations (5.6.38) and (5.6.41),

mmax =
−1±

√
1− 4(1)(−)mmin(mmin − 1)

2
(5.6.42)

= −1

2
±
(
mmin −

1

2

)
. (5.6.43)

This indicates, either mmax = mmin − 1 or mmax = −mmin. But the former is a contradiction,
since the maximum should never be smaller than the minimum. Moreover, there must be some
positive integer n such that (J+)n |λJ ,mmin⟩ ∝ |λJ ,mmax⟩. At this point we gather

mmin + n = −mmax + n = mmax; (5.6.44)

which in turn implies

mmax =
n

2
. (5.6.45)

Since we have no further constraints on the integer n, we now search the cases where mmax is
integer (i.e., when n is even) and when it is half-integer (i.e., when n is odd). Cleaning up our
notation somewhat, mmax = −mmin ≡ ℓ, and recalling eq. (5.6.38):

146



Spin and 3D Rotations Starting solely from the commutation relations
between the angular momentum operators {J i} in eq. (5.6.14), we surmise: the

simultaneous eigensystem of J⃗2 and J3 is encoded within

J⃗2 |ℓ,m⟩ = ℓ(ℓ+ 1) |ℓ,m⟩ and J3 |ℓ,m⟩ = m |ℓ,m⟩ . (5.6.46)

Here, the spin ℓ can be a non-negative integer (ℓ = 0, 1, 2, . . . ) or positive half-integer
(ℓ = 1/2, 3/2, 5/2, . . . ); whereas the azimuthal eigenvalue runs between −ℓ to ℓ in
integer steps:

m ∈ {−ℓ,−ℓ+ 1,−ℓ+ 2, . . . , ℓ− 2, ℓ− 1, ℓ}. (5.6.47)

Problem 5.68. Rotating the rotation axis Show that the 3D version of eq. (5.5.43) is:

R̂ exp
(
−iθ⃗ · J⃗

)
R̂T = exp

(
−iθ⃗′ · J⃗

)
, θ⃗ · J⃗ ≡ θaJ

a, (5.6.48)

where

θ′a ≡ R̂abθb. (5.6.49)

In the other words, a change-of-basis through a rotation R̂ amounts to rotating the angles θ⃗.

We may also compute, up to an overall phase, the normalization constant in eq. (5.6.22). We
have, from eq. (5.6.29),

0 ≤ |cm±1|2 ⟨ℓ,m± 1| ℓ,m± 1⟩ = ⟨ℓ,m| (J±)†J± |ℓ,m⟩ (5.6.50)

= ⟨ℓ,m| J⃗2 − (J3)2 ∓ J3 |ℓ,m⟩ (5.6.51)

= ℓ(ℓ+ 1)−m(m± 1) = (ℓ∓m)(ℓ±m+ 1). (5.6.52)

Since eigenvectors are only defined up to a phase, we shall choose to simply take the positive
square root on both sides.

J± |ℓ,m⟩ =
√
ℓ(ℓ+ 1)−m(m± 1) |ℓ,m± 1⟩ (5.6.53)

=
√

(ℓ∓m)(ℓ±m+ 1) |ℓ,m± 1⟩ .

Invariant Subspaces in 3D, Degeneracy & Symmetry Because [J⃗2, Ja] = 0, we must

have, for D(R̂) = exp(−iθ⃗ · J⃗),[
D(R̂), J⃗2

]
= 0, (5.6.54)

J⃗2D(R̂) |ℓ,m⟩ = D(R̂)J⃗2 |ℓ,m⟩ = ℓ(ℓ+ 1) ·D(R̂) |ℓ,m⟩ . (5.6.55)

In words, D(R̂) |ℓ,m⟩ is an eigenvector of J⃗2 with eigenvalue ℓ(ℓ + 1). Hence, we see that

rotations do not ‘mix’ the eigenvectors {|ℓ,m⟩} of J⃗2 with different ℓ. That is,

D(R̂) |ℓ,m⟩ =
+ℓ∑

m′=−ℓ

|ℓ,m′⟩ D̂ m′

(ℓ) m(R̂),

147



D̂
m′

(ℓ) m(R̂) ≡ ⟨ℓ,m
′|D(R̂) |ℓ,m⟩ . (5.6.56)

While the completeness relation should involve a sum over all ℓ′, namely

I =
∞∑
ℓ′=0

+ℓ′∑
m′=−ℓ′

|ℓ′,m′⟩ ⟨ℓ′,m′| ; (5.6.57)

only the ℓ′ = ℓ terms will survive when employed in eq. (5.6.56) – due to the result in eq.
(5.6.55).

Now, suppose a Hermitian operator A remains invariant under rotations. That means it
should be invariant under all change-of-basis induced by rotations – for e.g., in the position
representation,

⟨x⃗ |A| x⃗′⟩ = ⟨R̂x⃗ |A| R̂x⃗′⟩ (5.6.58)

=
〈
x⃗
∣∣∣D(R̂)†AD(R̂)

∣∣∣ x⃗′〉 (5.6.59)

for all rotations R̂. This motivates the following: A is rotationally invariant iff it obeys

D(R̂)†AD(R̂) = A. (5.6.60)

By Taylor expanding D(R̂), we see an equivalent definition is: A is rotationally invariant iff it
commutes with the generators {J i}. [

J i, A
]
= 0 (5.6.61)

We must therefore be able to simultaneously diagonalize {A, J⃗2, J3}. Furthermore, let us observe
that the eigenstates |λ; ℓ,m⟩ of A – obeying A |λ; ℓ,m⟩ = λ |λ; ℓ,m⟩ – must in fact be degenerate
with respect to the eigenvalues of J3. This is an explicit example of the “symmetry implies
degeneracy” discussion at the end of §(5.1). To see this, we first compute

A
(
D(R̂) |λ; ℓ,m⟩

)
= D(R̂)A |λ; ℓ,m⟩ (5.6.62)

= λ
(
D(R̂) |λ; ℓ,m⟩

)
. (5.6.63)

Inserting a complete set of eigenstates, and exploiting the fact that eigenstates with distinct
eigenvalues are necessarily orthogonal,

A
∑

λ′,ℓ′,m′

|λ′; ℓ′,m′⟩
〈
λ′; ℓ′,m′

∣∣∣D(R̂)
∣∣∣λ; ℓ,m〉 (5.6.64)

= A
∑
m′

|λ; ℓ,m′⟩
〈
λ; ℓ,m′

∣∣∣D(R̂)
∣∣∣λ; ℓ,m〉 (5.6.65)

= λ
∑
m′

|λ; ℓ,m′⟩
〈
λ; ℓ,m′

∣∣∣D(R̂)
∣∣∣λ; ℓ,m〉 . (5.6.66)

Since we have made no assumption of the rotation R̂ here, we see that an arbitrary superposition
of eigenstates of differentm−values remain an eigenstate of A. That is, allm−values must belong
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the same degenerate subspace of a given λ: there must be at least be a 2ℓ+1 degeneracy if A is
rotationally invariant. Note, however, this says nothing about states of distinct J⃗2 eigenvalues
– i.e., eigenvectors with different ℓs can have either the same or different eigenvalues of A,
depending on what A itself actually is.

Vector Operators Suppose D(R̂) is a rotation operator. Consider the following oper-
ation involving the position operator X i and its eigenkets {|x⃗⟩}:

D(R̂)†X iD(R̂) |x⃗⟩ = D(R̂)†X i
∣∣∣R̂x⃗〉 (5.6.67)

= (R̂x⃗)iD(R̂)†
∣∣∣R̂x⃗〉 = (R̂x⃗)i

∣∣∣R̂TR̂x⃗
〉

(5.6.68)

= R̂i
jx⃗
j |x⃗⟩ . (5.6.69)

(We have employed eq. (5.5.65) in the third equality.) Since this holds for arbitrary position
eigenkets, we must have the operator identity

D(R̂)†X iD(R̂) = R̂i
jX

j. (5.6.70)

Problem 5.69. Using eq. (5.2.90), first explain why the rotation operator applied to
∣∣∣⃗k〉,

the eigenket of the momentum operator, behaves similarly as its position cousin:

D(R̂)
∣∣∣⃗k〉 =

∣∣∣R̂k⃗〉 . (5.6.71)

Then show that the analog to eq. (5.6.70) for the momentum operator holds; namely,

D(R̂)†PiD(R̂) = R̂ j
i Pj, (5.6.72)

where we have defined R̂ j
i ≡ R̂i

j.

Equations (5.6.70) and (5.6.72) motivate the following definition:

Vector Operator: Definition A vector operator V i is one whose compo-
nents transforms like those of an ordinary 3−vector in flat space, upon a change-of-
basis induced by a rotation operator D(R̂):

D(R̂)†V iD(R̂) = R̂i
jV

j. (5.6.73)

Although we shall focus on the D = 3 case here, note that this definition holds in
arbitrary dimensions D ≥ 3.

Recall that, since D(R̂) is unitary, that means D†V iD may be thought of V i computed in a
rotated orthonormal basis. In particular, if V i is a vector operator, the matrix element〈

ψ1

∣∣∣D(R̂)†V iD(R̂)
∣∣∣ψ2

〉
=
〈
ψ′
1

∣∣V i
∣∣ψ′

2

〉
, (5.6.74)

where
∣∣ψ′

1,2

〉
≡ D(R̂) |ψ1,2⟩ are the rotated kets, transforms as – according to eq. (5.6.72) –〈

ψ′
1

∣∣V i
∣∣ψ′

2

〉
= R̂i

j

〈
ψ1

∣∣V j
∣∣ψ2

〉
. (5.6.75)

In words: the matrix element of V i with respect to the rotated kets amounts to that with respect
to the ‘old’ kets, but rotated with the matrix R̂.
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Problem 5.70. Vector Operator in 3D: Infinitesimal Version In 3D, show that if V i

is a vector operator obeying eq. (5.6.73), then it also obeys[
Ja, V b

]
= iϵabcV c. (5.6.76)

Can you argue, if eq. (5.6.76) holds, then so does eq. (5.6.73) – i.e., they are equivalent definitions
of a vector operator? Hint: Recall equations (5.2.47) and (5.6.16).

Remark Notice, from eq. (5.6.76), that the angular momentum generators {Ja} are
themselves vector operators.

Problem 5.71. Scalars from Dot Product Show that the ‘dot product’ of vector oper-
ators V i and W i, namely V⃗ · W⃗ ≡ V aW a, transforms as a scalar:[

Ja, V⃗ · W⃗
]
= 0. (5.6.77)

Through eq. (5.2.47), this means D(R̂)†(V⃗ · W⃗ )D(R̂) = V⃗ · W⃗ .

Problem 5.72. Parity In 3D, the parity operator P̂ acting on 3−vectors v⃗, namely P̂ v⃗ =
−v⃗ for arbitrary v⃗, may be readily identified as

P̂ =

 −1 0 0
0 −1 0
0 0 −1

 . (5.6.78)

What is the determinant of this 3 × 3 parity-implementing P̂? Use this to argue, there is no
rotation matrix R̂ in 3D that can implement P̂ . If we do not flip all 3 directions, but only 1,
namely

(1)P̂ =

 −1 0 0
0 1 0
0 0 1

 , (2)P̂ =

 1 0 0
0 −1 0
0 0 1

 , (3)P̂ =

 1 0 0
0 1 0
0 0 −1

 , (5.6.79)

explain why these { (i)P̂} cannot be implemented by a continuous rotation operator. Hint:
Remember eq. (5.5.9). On the other hand, explain why flipping 2 out of the 3 axes, namely

(1,2)P̂ =

 −1 0 0
0 −1 0
0 0 1

 , (1,3)P̂ =

 −1 0 0
0 1 0
0 0 −1

 , (2,3)P̂ =

 1 0 0
0 −1 0
0 0 −1

 , (5.6.80)

can in fact be implemented by rotations – find the appropriate rotation matrices and their
associated angles.

Parity in general D ≥ 2 dimensions More generally, can you show that reversing the
directions of even number of Cartesian coordinate axes may always be implemented by an appro-
priate rotation? (Write down the rotation matrix and the associated rotation angles.) Whereas,
show that reversing the direction of an odd number of Cartesian coordinate axes cannot be
implemented by a rotation.
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5.6.2 Integer Spin and Spherical Harmonics

33In this section, we shall witness how the angular spherical harmonics introduced in equations
(5.5.106) and (5.5.108) are in fact the position representation of the integer spin case (ℓ =
0, 1, 2, 3, . . . ) in eq. (5.6.46) for 3D rotations. Specifically, if we apply the position eigenket
⟨r, θ, ϕ| – written in spherical coordinates

(x1, x2, x3) = r (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) = rr̂(θ, ϕ) (5.6.81)

– on both sides of eq. (5.6.46):

⟨r, θ, ϕ| J⃗2 |ℓ,m⟩ = ℓ(ℓ+ 1) ⟨r, θ, ϕ| ℓ,m⟩ . (5.6.82)

Recalling the result in eq. (5.5.82),

−∇⃗S2 ⟨r, θ, ϕ| ℓ,m⟩ = ℓ(ℓ+ 1) ⟨r, θ, ϕ| ℓ,m⟩ . (5.6.83)

Notice, when D = 3, eq. (5.5.108) reads

−∇⃗S2Y
m
ℓ (θ, ϕ) = ℓ(ℓ+ 1)Y m

ℓ (θ, ϕ). (5.6.84)

Below, we shall identify

Y m
ℓ (θ, ϕ) = ⟨θ, ϕ| ℓ,m⟩ . (5.6.85)

Firstly, if we convert Cartesian to Spherical coordinates via eq. (5.6.81), the metric in 3D flat
space becomes

dℓ2 = δijdx
idxj = δij

∂xi

∂(r, θ, ϕ)a
∂xj

∂(r, θ, ϕ)b
(dr, dθ, dϕ)a(dr, dθ, dϕ)b (5.6.86)

= dr2 + r2HIJdθ
IdθJ, (5.6.87)

HIJdθ
IdθJ = dθ2 + sin(θ)2dϕ2. (5.6.88)

34The square root of the determinant is

√
g = r2

√
H = r2 sin θ; (5.6.89)

the non-zero components of the inverse metric are

grr = 1, gθθ = r−2Hθθ = r−2, gϕϕ = r−2Hϕϕ = (r sin(θ))−2. (5.6.90)

Therefore, the Laplacian is

∇⃗2ψ =
1

r2sθ

(
∂r
(
r2sθ∂rψ

)
+ ∂θ

(
r2sθr

−2∂θψ
)
+ ∂ϕ

(
r2sθ(rsθ)

−2∂ϕψ
))

(5.6.91)

=
1

r2
∂r
(
r2∂rψ

)
+

1

r2
∇⃗2

S2ψ, (5.6.92)

33This and the next 2 sections are under heavy construction.
34The above calculation is described in more detail in §(9.1).
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where ∇⃗2
S2 is the Laplacian on the 2−sphere of unit radius,

−
〈
x⃗
∣∣∣J⃗2
∣∣∣ψ〉 = ∇⃗2

S2ψ =
1

sin(θ)

(
∂θ (sin(θ)∂θψ) +

1

sin(θ)
∂2ϕψ

)
. (5.6.93)

We may directly infer from equations (5.5.71) and (5.6.1) that in 3D, the position representation
of the generators of rotations (aka “angular momentum operators”) are〈

x⃗
∣∣∣J⃗∣∣∣ f〉 = −ix⃗× ∇⃗ ⟨x⃗| f⟩ , (5.6.94)(

x⃗× ∇⃗
)k

= ϵijkxi∂j; (5.6.95)

whereas the operator form is

J⃗ = X⃗ × P⃗ ⇔ Jk = ϵijkX iPj =
1

2
ϵijkJ ij. (5.6.96)

Problem 5.73. Cross Product & Levi-Civita By working out the components explicitly,
show that the cross product can indeed be written in terms of the Levi-Civita symbol:

(A⃗× B⃗)i = ϵijkAjBk. (5.6.97)

For instance, (A⃗× B⃗)1 = ϵ1jkAjBk = ϵ123A2B3 + ϵ132A3B2 = A2B3 − A3B2.

Problem 5.74. Orbital Angular Momentum Operators In the spherical coordinate
system defined in eq. (5.6.81), show that the angular momentum operators, i.e., the generators
of rotation in 3D, are〈

r, θ, ϕ
∣∣J1
∣∣ψ〉 = i (sin(ϕ)∂θ + cos(ϕ) cot(θ)∂ϕ) ⟨r, θ, ϕ|ψ⟩ , (5.6.98)〈

r, θ, ϕ
∣∣J2
∣∣ψ〉 = i (− cos(ϕ)∂θ + sin(ϕ) cot(θ)∂ϕ) ⟨r, θ, ϕ|ψ⟩ , (5.6.99)〈

r, θ, ϕ
∣∣J3
∣∣ψ〉 = −i∂ϕ ⟨r, θ, ϕ|ψ⟩ . (5.6.100)

In turn, deduce that the position representations of the ladder operators in eq. (5.6.18) are〈
r, θ, ϕ

∣∣J±∣∣ψ〉 = e±iϕ (±∂θ + i cot(θ)∂ϕ) ⟨r, θ, ϕ|ψ⟩ . (5.6.101)

Hint: Recall equations (5.5.99) and (5.6.1).

Spherical Harmonics in 3D Let us now turn to solving the spherical harmonics in 3D,
and the associated eigenfunctions of J⃗2 – recall equations (5.5.106) and (5.5.108). Remember,

since [J3, J⃗2] = 0, we must be able to simultaneously diagonalize J3 and J⃗2. In fact, since
⟨r, θ, ϕ |J3|ψ⟩ = −i∂ϕ ⟨r, θ, ϕ|ψ⟩, we must have〈

θ, ϕ
∣∣J3
∣∣ ℓ,m〉 = m ⟨θ, ϕ| ℓ,m⟩ , (5.6.102)

−i∂ϕ ⟨θ, ϕ| ℓ,m⟩ = m ⟨θ, ϕ| ℓ,m⟩ . (5.6.103)

The solution to the second line is the solution to −i∂ϕf(ϕ) = mf(ϕ) ⇒ f(ϕ) = f0 exp(imϕ),
except in our case f0 can still depend on θ and other parameters in the problem. This implies
the angular spherical harmonics takes the form

Y m
ℓ (θ, ϕ) = ⟨θ, ϕ| ℓ,m⟩ = ⟨θ| ℓ,m⟩ exp(imϕ). (5.6.104)
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Next, we recall the discussions around equations (5.6.34) and (5.6.35), that the raising operator
applied to the state with maximum azimuthal eigenvalue mmax ≡ ℓ must be a null vector
(otherwise there would not be a maximum value in the first place). Similarly the lowering
operator applied to the state with minimum azimuthal eigenvalue mmin = −mmax = −ℓ must
also be a null vector. Using the results in eq. (5.6.101) and (5.6.104), we may write the position
representation of eq. (5.6.34) as

eiϕ (∂θ + i cot(θ)∂ϕ)Y
ℓ
ℓ (θ, ϕ) = ei(ℓ+1)ϕ (∂θ − ℓ · cot(θ)) ⟨θ| ℓ, ℓ⟩ = 0. (5.6.105)

Using the results in eq. (5.6.101) and (5.6.104), we may write the position representation of eq.
(5.6.35) as

e−iϕ (−∂θ + i cot(θ)∂ϕ)Y
−ℓ
ℓ (θ, ϕ) = e−i(ℓ+1)ϕ (−∂θ + ℓ · cot(θ)) ⟨θ| ℓ,−ℓ⟩ = 0. (5.6.106)

Problem 5.75. Solve equations (5.6.105) and (5.6.106) and proceed to normalize

⟨ℓ,±ℓ| ℓ,±ℓ⟩ =
∫
S2
d2Ω|Y ±ℓ

ℓ |
2 (5.6.107)

=

∫ +1

−1

d(cos θ)

∫ 2π

0

dϕ|Y ±ℓ
ℓ (θ, ϕ)|2 = 1; (5.6.108)

to arrive at – up to an overall multiplicative phase eiδ± –

Y ±ℓ
ℓ (θ, ϕ) =

eiδ±

2ℓℓ!

√
2ℓ+ 1

4π
(2ℓ)! sinℓ(θ)e±iℓϕ. (5.6.109)

Hint: The integrand may be binomial expanded in powers of e±iθ.

For m ≥ 0, it is consistent to define

Y m
ℓ (θ, ϕ) =

(−)ℓ

2ℓℓ!

√
2ℓ+ 1

4π
· (ℓ+m)!

(ℓ−m)!

eimϕ

sinm(θ)

(
d

d cos(θ)

)ℓ−m (
1− cos2(θ)

)ℓ
; (5.6.110)

whereas for define negative m, we may obtain it via the definition

Y −m
ℓ = (−)mY m

ℓ (θ, ϕ). (5.6.111)

The validity of eq. (5.6.110) may be demonstrated via induction on m. For, one may assume
the mth case is true. Then, the Y m−1

ℓ must be gotten by applying the lowering operator once.
Keeping in mind equations (5.6.53) and (5.6.101),〈

θ, ϕ
∣∣J−∣∣ ℓ,m〉 =√(ℓ+m)(ℓ−m+ 1) ⟨θ, ϕ| ℓ,m− 1⟩ (5.6.112)

Y m−1
ℓ (θ, ϕ) =

eiδ
′
e−iϕ√

(ℓ+m)(ℓ−m+ 1)
(−∂θ + i cot(θ)∂ϕ)Y

m
ℓ (θ, ϕ), (5.6.113)

where eiδ
′
is an arbitrary phase. The proof is established via a direct calculation. Additionally,

since everything except the eimϕ in eq. (5.6.110) is real, eq. (5.6.111) says the negative m
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value spherical harmonics may simply obtained by flipping the sign of m; i.e., eimϕ → e−imϕ.
This certainly yields the correct eigenvalue of J3 ↔ −i∂ϕ in eq. (5.6.100). But what about
the θ−dependent portion? To this end, we recall the position space eigenvector/value equation
(5.6.84). If we insert into eq. (5.6.84) the definition

Y m
ℓ (θ, ϕ) ≡ Pm

ℓ (cos θ)eimϕ, (5.6.114)

we would obtain the ordinary differential equation for the associated Legendre function:

∂c
(
(1− c2)∂cPm

ℓ (c)
)
+

(
ℓ(ℓ+ 1)− m2

1− c2

)
Pm
ℓ (c) = 0, c ≡ cos θ. (5.6.115)

The presence of m2 in eq. (5.6.115) tells us, Pm
ℓ (cos θ) and P−m

ℓ (cos θ) must both refer to the
same solution, since this ODE is insensitive to the sign of m.

Problem 5.76. Verify eq. (5.6.115) from the D = 3 version of eq. (5.5.108).

Spherical Harmonics as Homogeneous Polynomials35 We already know from the
discussion in §(5.5) that rℓY (θ, ϕ) is a homogeneous polynomial of degree ℓ ≥ 0, involving the
Cartesian components (x1, x2, x3), satisfying the (homogeneous) Laplace equation (5.5.104) – or,
equivalently eq. (5.5.106):

∇⃗2
(
rℓY m

ℓ (θ, ϕ)
)
= 0 (5.6.116)

The {rℓY m
ℓ = rℓPm

ℓ (cos θ)eimϕ} may be constructed by first defining

x± = x1 ± ix2 = r sin(θ)e±iϕ. (5.6.117)

Let us consider homogeneous polynomials of degree ℓ by superposing the products of positive
powers of x± and x3, namely

rℓY m
ℓ = ψa+a−b(x

+)a+(x−)a−(x3)b (5.6.118)

= ψa+a−b · ra++a−+b(sin(θ))a++a− cosb(θ) exp(i(a+ − a−)ϕ). (5.6.119)

In order to obtain a degree ℓ polynomial, the sum of the powers must yield ℓ.

a+ + a− + b = ℓ (5.6.120)

To achieve this, for a fixed a+, we may choose a−{0, 1, 2, . . . , ℓ − a+}; followed by putting
b = ℓ− a+ − a−. Therefore, the total number of independent terms in eq. (5.6.118) is

Nℓ =
ℓ∑

a+=0

ℓ−a+∑
a−=0

1 =
ℓ∑

a+=0

(ℓ− a+ + 1) = (ℓ+ 1)2 − 0 + ℓ

2
(ℓ+ 1) =

(ℓ+ 1)(ℓ+ 2)

2
. (5.6.121)

Problem 5.77. Show that the Laplacian acting on an arbitrary function ψ(x+, x−, x3) is

δij∂i∂jψ = (4∂+∂− + ∂23)ψ, (5.6.122)

where ∂± is the derivative with respect to x± ≡ x1 ± ix2.
35Part of the discussion here is modeled after the one in Weinberg [12].
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Inserting eq. (5.6.118) into eq. (5.5.104), one would find

∇⃗2
(
ψa+a−b(x

+)a+(x−)a−(x3)b
)

= ψa+a−b(x
+)a+(x−)a−(x3)b−2 + 4ψa+a−b(x

+)a+−1(x−)a−−1(x3)b = 0. (5.6.123)

This explicitly demonstrates that the Laplacian acting on a homogeneous polynomial of degree
ℓ is a homogeneous polynomial of degree ℓ− 2. Since the latter has Nℓ−2 independent terms (by
eq. (5.6.121)), that means eq. (5.6.123) provides us Nℓ−2 constraints to be obeyed by the Nℓ

independent terms of eq. (5.6.118). Therefore, there must actually be

Nℓ −Nℓ−2 =
(ℓ+ 1)(ℓ+ 2)

2
− (ℓ− 1)ℓ

2
= 2ℓ+ 1 (5.6.124)

independent terms in the most general homogeneous polynomial of degree ℓ that solves eq.
(5.5.104) in 3D.

But, as we have already discovered, 2ℓ + 1 is exactly the number of linearly independent
spherical harmonics {Y m

ℓ |m = −ℓ, . . . ,+ℓ} for a fixed ℓ. This indicates the solutions of eq.
(5.5.104) in 3D must, up to an overall multiplicative constant, be the Y m

ℓ themselves. In fact,
let us define

m ≡ a+ − a−. (5.6.125)

By superposing the (a+ − a−)/2 and (a+ + a−)/2 axes on the (a+, a−) plane – drawing a figure
here would help – we may readily observe that

max(a+ − a−) = ℓ and min(a− − a−) = −ℓ. (5.6.126)

In the other words,

−ℓ ≤ m ≤ +ℓ. (5.6.127)

By taking into account equations (5.6.120) and (5.6.125), eq. (5.6.118) now reads

Y ′
ℓ
m
(θ, ϕ) =

1

rℓ

∑
a++a−+b=ℓ
a+−a−=m

ψ′
b(x

+)a+(x−)a−(x3)b
(
a± =

ℓ− b±m
2

)
(5.6.128)

=
∑
b

ψ′
b · sinℓ−b(θ) cosb(θ)eimϕ; (5.6.129)

for appropriate coefficients {ψ′
b}. The exp(imϕ) indicates it obeys the equivalent of eq. (5.6.103),

namely

−i∂ϕY ′m
ℓ = mY ′m

ℓ . (5.6.130)

Furthermore, from our analysis, these {Y ′m
ℓ (θ, ϕ)} must be proportional to the corresponding

{Y m
ℓ (θ, ϕ)}; since they correspond to the same number of independent solutions to

−∇⃗2
S2Y

′m
ℓ = ℓ(ℓ+ 1)Y ′m

ℓ . (5.6.131)
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To sum: in 3D, the rℓY m
ℓ (θ, ϕ), when expressed in Cartesian coordinates x⃗, are homogeneous

polynomials of degree ℓ satisfying equations (5.6.130) and (5.6.131).
Example: ℓ = 0 For ℓ = 0, this corresponds to having zero powers of the coordinates – i.e.,
a constant: i.e., Y 0

0 =constant.
Example: ℓ = 1 A polynomial linear in either x+, x−, or x3 is automatically a solution of
the Laplace equation ∇⃗2ψ = 0 since the Laplacian has two derivatives. Hence, we must have

rY ±1
1 ∝ x± = r sin(θ)e±iϕ, rY 0

1 ∝ x3 = r cos(θ). (5.6.132)

Example: ℓ = 2 For ℓ = 2, we have the possibilities

(a+, a−, b) = (2, 0, 0)⇒ m = 2 (5.6.133)

(a+, a−, b) = (0, 2, 0)⇒ m = −2 (5.6.134)

(a+, a−, b) = (0, 0, 2)⇒ m = 0 (5.6.135)

(a+, a−, b) = (1, 1, 0)⇒ m = 0 (5.6.136)

(a+, a−, b) = (1, 0, 1)⇒ m = 1 (5.6.137)

(a+, a−, b) = (0, 1, 1)⇒ m = −1. (5.6.138)

Here, the “⇒” means the term (x+)a+(x−)a−(x3)b under consideration (given by the (a+, a−, b)
on its left hand side) contributes to the corresponding azimuthal eigenvalue (on its right hand
side).

Problem 5.78. Normalize the spherical harmonics to unity on the sphere, i.e.,

⟨ℓ,m| ℓ,m⟩ =
∫ +1

−1

d(cos θ)

∫ 2π

0

dϕ|Y m
ℓ (θ, ϕ)|2 = 1. (5.6.139)

Proceed to compute Y m
ℓ (up to a multiplicative phase) for ℓ = 0, 1, 2 by demanding they satisfy

the homogeneous equations (5.5.104) and (5.5.106). Hint: The answers can be found in equations
(12.2.67), (12.2.68) and (12.2.69) below.

5.6.3 Half Integer Spin and SU2

In this section, we shall witness how the Special Unitary group of 2 × 2 matrices, or SU2 for
short, implements rotations on spin−1/2 systems, the smallest of the half integer spin solutions
we obtained in §(5.6.1). Let us construct its group elements explicitly, using the Pauli matrices

in eq. (3.2.17). If Û denotes an arbitrary element, it obeys

Û †Û = I and det Û = 1. (5.6.140)

(The ‘Special’ in the SU2 refers to the det Û = 1 condition.) The Û †Û = I is a matrix equation

and therefore provides 4 constraints; whereas det Û = 1 provides another – altogether 5 algebraic
equations for the 4 complex matrix entires of Û . This leaves 3 real parameters. On the other
hand, if we assume SU2 matrices are continuously connected to the identity, we may write
Û = exp(−iX̂). In particular, since the Pauli matrices {σ̂µ} in eq. (3.2.17) are a complete set,
we may express

Û = exp (−iξµσ̂µ) , ξµ ∈ R. (5.6.141)
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Next, let us use the matrix identity

det eX̂ = eTr[X̂] (5.6.142)

36as well as the traceless propery of {σ̂i} to infer

det Û = eTr[ξ0σ̂
0] = e−i2ξ0 . (5.6.143)

Hence, ξ0 = πn (for integer n) and we have Û = (−)n exp(−iξ⃗ · σ⃗). We will later see that the

odd n case, i.e., −I, can gotten by an appropriate choice of ξ⃗ · σ⃗. Hence, the most general SU2

group element must take the form

Û = exp
(
−iξ⃗ · σ⃗

)
∈ SU2. (5.6.144)

Spin-1/2 From the algebra in eq. (4.3.112), we see that[
σi, σj

]
= i(ϵijk − ϵjik)σk = 2iϵijkσk. (5.6.145)

Dividing throughout by 4, [
σi

2
,
σj

2

]
= iϵijk

σk

2
, (5.6.146)

allows us to recover the SO3 algebra in eq. (5.6.14), provided we identify

J i ≡ σi

2
, i ∈ {1, 2, 3}. (5.6.147)

At this point, we may re-express eq. (5.6.144) as

Û = exp
(
−iθ⃗ · σ⃗/2

)
(5.6.148)

= cos

(
1

2
|θ⃗|
)
− i θ⃗ · σ⃗
|θ⃗|

sin

(
1

2
|θ⃗|
)
, |θ⃗| =

√
θiθi ≡

√
θ⃗ · θ⃗, (5.6.149)

where θ⃗ are the same rotation angles as in the SO3 element exp(−iθ⃗ · J⃗) and in the second
equality we have recalled eq. (3.2.23). Moreover, as we have already derived in §(4.3.2), the
{σi} obeying eq. (4.3.112) have eigenvalues ±1; therefore, upon diagonalization,

J3 |±⟩ = ±1

2
|±⟩ . (5.6.150)

These SU2 group elements {Û} in eq. (5.6.148) are acting on spin−1/2 systems.

36See, for e.g., Theorem 3.10 of arXiv: math-ph/0005032.
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Problem 5.79. SU2 and the Unit Sphere S3 We have learned that the identity matrix
σ̂0 and the Pauli matrices {σ̂i} form a complete basis of the vector space of 2 × 2 complex
matrices. Therefore, it must be possible to write any SU2 matrix as a superposition pµσ̂

µ. If we
first redefine

p0 ≡ q0 and pi ≡ iqi, (5.6.151)

for i = 1, 2, 3 and for real {qµ|µ = 0, 1, 2, 3}; then show that the superposition

Û ≡ pµσ̂
µ (5.6.152)

yields the relation

Û †Û = Û Û † = q⃗2 · I2×2, (5.6.153)

where

q⃗2 ≡ δµνqµqν . (5.6.154)

Also explain why this parametrization is independent of the choice of basis for the {σ̂µ}; i.e., if
Û ≡ pµσ̂

µ is an SU2 matrix then so is Û ′ ≡ pµσ̂
′µ, as long as

σ̂′µ = Ŝ†σ̂µŜ (5.6.155)

for some unitary Ŝ change-of-basis transformation.
To sum, the expansion q0 + iqiσ̂

i yields an SU2 matrix if the vector q⃗ = (q0, q1, q2, q3) lies on
the unit sphere S3 in 4 spatial dimensions. If we now compare equations (5.6.151) and (5.6.152)
with the general SU2 matrix in eq. (3.4.20), we see that the two forms coincides.

An SU2 matrix may be identified with a unique point on S3. Since the surface of
the unit sphere is simply connected, so is the group SU2 – in contrast to SO3, which
is not simply connected.

Pseudo-Real representation We may also obtain the SO3 Lie Algebra in eq. (5.6.14)
using −(σi)∗/2 by simply taking the complex conjugate of eq. (5.6.146).[

−(σi)∗

2
,
−(σj)∗

2

]
= iϵijk

−(σk)∗

2
(5.6.156)

Since the Lie Algebra determines the group multiplication rules (for elements continuously con-
nected to the identity) we have shown that

Û∗ = exp
(
−iθ⃗ · (−σ⃗)∗/2

)
(5.6.157)

are also SU2 group elements. However, according to eq. (3.2.21), ϵ(σi)ϵ† = (−σi)∗, where ϵ is
the 2D Levi-Civita symbol with non-zero entries

ϵ12 = 1 = −ϵ21. (5.6.158)
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Moreover, a direct calculation would demonstrate it is unitary and anti-symmetric,

ϵ−1 = ϵ† = −ϵ. (5.6.159)

Therefore, Û∗ is actually related to Û via a similarity transformation – i.e., a change-of-basis –

ϵ · exp
(
−iθ⃗ · (−σ⃗)∗/2

)
· ϵ† = exp

(
−(i/2)θj ·

(
ϵ(−σj)∗ϵ†

))
(5.6.160)

= exp
(
−iθ⃗ · σ⃗/2

)
, (5.6.161)

ϵ · Û∗(θ⃗) · ϵ† = Û(θ⃗); (5.6.162)

and we therefore consider Û and Û∗ to be equivalent. In the literature, the Û in eq. (5.6.148)
is said to be a pseudo-real representation: for, it is equivalent to its complex conjugate via a
change-of-basis matrix ϵ that is anti-symmetric.37

SU2 As Double Cover of SO3 Even though the Lie Algebra of SU2 and SO3 are the
same, we now show that group elements in eq. (5.6.148) versus the 3× 3 rotation matrices

R̂ = exp
(
−iθ⃗ · J⃗

)
(5.6.163)

cannot be mapped into each other in a 1−to−1 manner. Instead, there is a 2−to−1 map from
SU2 to SO3; and this is why the former is often said to be a ‘double cover’ of the latter. For this
purpose, without loss of generality, we may choose θ⃗ = θê3 to point along the 3−axis. Choosing
a diagonal basis, σ3 = diag[1,−1], we have

Û(θ) = e−iθσ̂
3/2 =

[
e−iθ/2 0
0 eiθ/2

]
; (5.6.164)

while ordinary 3D rotation along the 3−axis yields

R̂(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 . (5.6.165)

Borrowing the result from Problem (5.30), and replacing ϕ there with the θ/2 here, we see that

Û(θ) can in fact be readily mapped to

R̂(θ/2) =

 cos(θ/2) − sin(θ/2) 0
sin(θ/2) cos(θ/2) 0

0 0 1

 . (5.6.166)

Specifically, it is not difficult to find a Ŝ that diagonalizes the 2× 2 block[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
= Ŝe−iθσ̂

3/2Ŝ†. (5.6.167)

37It can be shown, if group elements {Û} were equivalent to their complex conjugates {Û∗}, the associated

change-of-basis matrix Â can only be symmetric or anti-symmetric. If it were symmetric, the representation will
be dubbed ‘real’.
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This means, while it takes two revolutions on the complex circle eiϕ to return to the same SU2

group element, namely

Û(θ + 4π) = Û(θ), (5.6.168)

this journey would have returned the corresponding rotation matrix R̂(θ) to itself twice:

R̂(θ) = R̂(θ + 2π) = R̂(θ + 4π). (5.6.169)

Moreover, if θ only went through 1 revolution, the SU2 element Û(2π) in eq. (5.6.164) would
actually yield the negative identity operator:

Û(2π) = exp
(
−iπσ̂3

)
= −I. (5.6.170)

This is how a spin−1/2 spinor transforms – for e.g., the electron’s wavefunction ψ transforms
into (−1) · ψ upon a 2π rotation, and only returns to ψ after 2 full rotations.

Rotating the rotation axis According to equations (5.6.48) and (5.6.49), if R̂(ϑ⃗) is a
3D rotation matrix, then

Û(ϑ⃗) exp

(
− i
2
θ⃗ · σ⃗

)
Û(ϑ⃗)† = exp

(
− i
2
(R̂ · θ⃗) · σ⃗

)
. (5.6.171)

This also implies

Û(ϑ⃗)σ⃗Û(ϑ⃗)† = R̂T · σ⃗ (5.6.172)

Û(ϑ⃗)†σ⃗Û(ϑ⃗) = R̂ · σ⃗. (5.6.173)

If R̂(ϑ⃗)p̂ = p̂′, where both p̂ and p̂′ are unit vectors, then if ξ± are the eigenvectors of p̂ · σ⃗ –
namely

(p̂ · σ⃗) ξ± = ±ξ± (5.6.174)

– the eigenvector of p̂′ · σ⃗ is simply

ξ′± ≡ Û(ϑ)ξ± (5.6.175)

because

(p̂′ · σ⃗) ξ′± = (R̂ · p̂)ijσjÛ(ϑ⃗)ξ± (5.6.176)

= (R̂ · p̂)ijÛ(ϑ⃗)Û(ϑ⃗)†σjÛ(ϑ⃗)ξ± (5.6.177)

= (R̂ · p̂)ij(R̂ · σ⃗)jξ± = Û(ϑ⃗)p̂ · R̂TR̂ · σ⃗ξ± (5.6.178)

= Û(ϑ⃗)(p̂ · σ⃗)ξ± = ±Û(ϑ⃗)ξ±. (5.6.179)

In words: since the SU2 group element Û(ϑ⃗) is supposed to ‘represent’ the 3D rotation R̂(ϑ⃗) (but

acting on spinors instead), the eigenvectors ξ′± of the helicity operator p̂′ · σ⃗, where R̂ · p̂ = p̂′,

is gotten by simply ‘rotating’ the eigenvectors ξ± of p̂ · σ⃗ – namely ξ′± = Û(ϑ⃗)ξ±.
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Problem 5.80. Rotating ‘spin-up/down’ If Û in eq. (5.6.148) does in fact implement
rotations on 2 component spinors, then we should be able to obtain the eigenvectors of p̂ · σ⃗,
where p̂ ≡ (sin(θp) cos(ϕp), sin(θp) sin(ϕp), cos(θp)) is a generic unit radial vector, by rotating the
eigenvectors of σ̂3 ≡ ê3 · σ⃗. In particular, we know that

σ̂3

[
1
0

]
=

[
1
0

]
and σ̂3

[
0
1

]
= −

[
1
0

]
. (5.6.180)

To rotate the unit vector ê3 along the 3−axis to the general r̂ direction, we may first rotate it
by θ around the unit vector ê2 parallel to the 2−axis. Then rotate the result by ϕ around the
unit vector ê3. Show that the result yields equations (4.3.191) and (4.3.192), up to possibly an
overall multiplicative phase factor.

Position representation? One may wonder if a position representation ⟨θ, ϕ| 1
2
± 1

2

〉
exists. As Sakurai [11] explains, this turns out to be impossible. Using raising/lowering opera-
tors, 〈

θ, ϕ

∣∣∣∣J±
∣∣∣∣12 ,±1

2

〉
= 0 (5.6.181)

we may obtain 〈
θ, ϕ

∣∣∣∣12 , ± 1

2

〉
∝
√

sin(θ) exp(±iϕ/2). (5.6.182)

But if we, say, start from the ⟨θ, ϕ| 1/2,+1/2⟩ ∝
√

sin(θ) exp(iϕ/2) solution above and apply

the lowering operator, we would not obtain the above ⟨θ, ϕ| 1/2,−1/2⟩ ∝
√

sin(θ) exp(−iϕ/2).
Instead, from eq. (5.6.101),〈

θ, ϕ

∣∣∣∣12 ,−1

2

〉
∝
〈
θ, ϕ

∣∣∣∣J−
∣∣∣∣12 , 1

2

〉
= e−iϕ (−∂θ + i cot(θ)∂ϕ)

〈
θ, ϕ

∣∣∣∣12 ,+1

2

〉
(5.6.183)

∝ e−
i
2
ϕ cos(θ)/

√
sin(θ). (5.6.184)

5.6.4 ‘Adding’ Angular Momentum, Tensor Operators, Wigner-Eckart Theorem

In this section, we will consider how to ‘add’ angular momentum. By that, we really mean the
study of the vector space spanned by the orthonormal basis {|ℓ1 m1, ℓ2 m2⟩} formed from the
tensor product of two separate angular momentum spaces:

|ℓ1 m1, ℓ2 m2⟩ ≡ |ℓ1 m1⟩ ⊗ |ℓ2 m2⟩ ; (5.6.185)

where the |ℓ1 m1⟩ and |ℓ2 m2⟩ are the eigenvectors of two separate sets of angular momentum

operators {J⃗ ′2 = J ′iJ ′i, J ′3} and {J⃗ ′′2 = J ′′iJ ′′i, J ′′3}. Namely, we have 2 distinct sets of eq.
(5.6.46):

J⃗ ′2 |ℓ1 m1⟩ = ℓ1(ℓ1 + 1) |ℓ1 m1⟩ (5.6.186)

J ′3 |ℓ1 m1⟩ = m1 |ℓ1 m1⟩ (5.6.187)
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and

J⃗ ′′2 |ℓ2 m2⟩ = ℓ2(ℓ2 + 1) |ℓ2 m2⟩ (5.6.188)

J ′′3 |ℓ2 m2⟩ = m2 |ℓ2 m2⟩ . (5.6.189)

The situation represented by eq. (5.6.185) has widespread applications in physics. For instance,
it occurs frequently in atomic and nuclear physics, where one of the kets on the right hand side
represent orbital angular momentum and the other intrinsic spin.

The ’addition’ of angular momentum comes from defining the ’total’ angular momentum
operator

J i ≡ J ′i ⊗ I+ I⊗ J ′′i. (5.6.190)

Oftentimes, the ⊗ is dropped for notational convenience.

J i ≡ J ′i + J ′′i. (5.6.191)

By assumption, the 2 separate sets of angular momentum operators commute[
J ′a, J ′′b] = 0. (5.6.192)

This allows us to see that, the exponential of the total angular momentum operator yields the
rotation operator that implements rotations on the states {|ℓ1 m1, ℓ2 m2⟩}.

exp (−iθaJa) |ℓ1 m1, ℓ2 m2⟩ = exp (−iθa(J ′a + J ′′a)) |ℓ1 m1, ℓ2 m2⟩ (5.6.193)

=
(
exp

(
−iθ⃗ · J⃗ ′

)
|ℓ1 m1⟩

)
⊗
(
exp

(
−iθ⃗ · J⃗ ′′

)
|ℓ2 m2⟩

)
(5.6.194)

=
(
D
(
R̂(θ⃗)

)
|ℓ1 m1⟩

)
⊗
(
D
(
R̂(θ⃗)

)
|ℓ2 m2⟩

)
. (5.6.195)

In words: rotating the state |ℓ1 m1, ℓ2 m2⟩ means simultaneously rotating the |ℓ1 m1⟩ and
|ℓ2 m2⟩; this is precisely what exponential of the total angular momentum operator does. Note
that exp(−iθa(J ′a + J ′′a)) = exp(−iθaJ ′a) exp(−iθaJ ′′a) because J ′a commutes with J ′′b.

Eigensystems We may see from equations (5.6.186) through (5.6.189) that the tensor
product state |ℓ1 m1, ℓ2 m2⟩ are, too, eigenstates of

{J⃗ ′2, J ′3, J⃗ ′′2, J ′′3}. (5.6.196)

For example,

J⃗ ′2 |ℓ1 m1, ℓ2 m2⟩ = J⃗ ′2 |ℓ1 m1⟩ ⊗ |ℓ2m2⟩
= ℓ1(ℓ1 + 1) |ℓ1 m1, ℓ2 m2⟩ (5.6.197)

and

J ′3 |ℓ1 m1, ℓ2 m2⟩ = m1 |ℓ1 m1, ℓ2 m2⟩ . (5.6.198)

Likewise

J⃗ ′′2 |ℓ1 m1, ℓ2 m2⟩ = ℓ2(ℓ2 + 1) |ℓ1 m1, ℓ2 m2⟩ (5.6.199)
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J ′′3 |ℓ1 m1, ℓ2 m2⟩ = m2 |ℓ1 m1, ℓ2 m2⟩ . (5.6.200)

We will now proceed to argue that, instead of the mutually compatible observables in eq.
(5.6.196), one may also pick the set {

J⃗2, J3, J⃗ ′2, J⃗ ′′2
}
. (5.6.201)

Their simultaneous eigenstates will be denoted as {|j m; ℓ1 ℓ2⟩}, obeying the relations

J⃗2 |j m; ℓ1ℓ2⟩ = j(j + 1) |j m; ℓ1ℓ2⟩ , (5.6.202)

J3 |j m; ℓ1ℓ2⟩ = m |j m; ℓ1ℓ2⟩ , (5.6.203)

J⃗ ′2 |j m; ℓ1ℓ2⟩ = ℓ1(ℓ1 + 1) |j m; ℓ1ℓ2⟩ (5.6.204)

J⃗ ′′2 |j m; ℓ1ℓ2⟩ = ℓ2(ℓ2 + 1) |j m; ℓ1ℓ2⟩ . (5.6.205)

The total angular momentum j will turn out to be restricted within the range

j ∈ {|ℓ1 − ℓ2|, |ℓ1 − ℓ2|+ 1, . . . , ℓ1 + ℓ2 − 1, ℓ1 + ℓ2} . (5.6.206)

and, of course,

m ∈ {−j,−j + 1, . . . , j − 1, j} . (5.6.207)

Problem 5.81. Explain why the total angular momentum generators still obey the Lie Algebra
in eq. (5.6.14). That is, verify [

Ja, J b
]
= iϵabcJ c. (5.6.208)

From the discussions in the previous sections, we see that upon diagonalization, equations
(5.6.202), (5.6.203) and (5.6.207) follow.

Eq. (5.6.208) tells us the total angular momentum operators {Ja} are vector operators –

recall eq. (5.6.76). Therefore, referring to eq. (5.6.77), J⃗2 must be a scalar.[
J⃗2, Ja

]
= 0 (5.6.209)

Moreover, since [J ′a, J ′′b] = 0, that means the angular momentum operators acting on the
individual ℓ1− and ℓ2−spaces are also vector operators:[

Ja, J ′b] = iϵabcJ ′c, (5.6.210)[
Ja, J ′′b] = iϵabcJ ′′c. (5.6.211)

These relations in turn informs us, again via eq. (5.6.77), the J⃗ ′2 and J⃗ ′′2 are scalars.[
Ja, J⃗ ′2

]
= 0 =

[
Ja, J⃗ ′′2

]
(5.6.212)
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Thus, [
J⃗2, J⃗ ′2

]
= 0 =

[
J⃗2, J⃗ ′′2

]
. (5.6.213)

Of course, [J ′a, J ′′b] = 0 also implies

[J⃗ ′2, J⃗ ′′2] = 0. (5.6.214)

At this point, we have checked that the following
(
4
2

)
= 6 commutators are zero:[

J⃗2, J3
]
,
[
J⃗2, J⃗ ′2

]
,
[
J⃗2, J⃗ ′′2

]
,
[
J3, J⃗ ′2

]
,
[
J3, J⃗ ′′2

]
and

[
J⃗ ′2, J⃗ ′′2

]
. (5.6.215)

We have verified that eq. (5.6.201) consists of a set of mutually compatible observables.

Problem 5.82. Note, however, that none of the individual components of J ′i or J ′′i commute
with J⃗2. Show that [

J⃗2, J ′i
]
= −2i

(
J⃗ ′′ × J⃗ ′

)i
, (5.6.216)[

J⃗2, J ′′i
]
= −2i

(
J⃗ ′ × J⃗ ′′

)i
; (5.6.217)

where, for vector operators A⃗ and B⃗, we have defined

(A⃗× B⃗)i ≡ ϵiabAaBb. (5.6.218)

Recalling the discussion in Problem (5.6.77), we see these commutators are non-zero because J ′i

generates rotation only on the |ℓ1,m1⟩ space; and J ′′i only the |ℓ2,m2⟩ space. Hence, only the

J⃗ ′ operators in J⃗2 are altered for the former; and only the J⃗ ′′ operators are transformed for the
latter.

Change-of-basis & Clebsch-Gordan Coefficients How does one switch between the
basis {|ℓ1m1, ℓ2m2⟩} and {|j m; ℓ1ℓ2⟩}? Here, we will attempt to do so by computing the Clebsch-
Gordan coefficients {⟨ℓ1m1, ℓ2m2| j m; ℓ1ℓ2⟩} occurring within the change-of-basis expansion

|j m; ℓ1ℓ2⟩ =
∑

−ℓ1≤m1≤ℓ1

∑
−ℓ2≤m2≤ℓ2

|ℓ1 m1, ℓ2 m2⟩ ⟨ℓ1 m1, ℓ2 m2| j m; ℓ1ℓ2⟩ . (5.6.219)

There is no sum over the ℓs, because |ℓ′1m′
1, ℓ

′
2m

′
2⟩ would be a simultaneous eigenvector of J⃗ ′2 (or

J⃗ ′′2) but different eigenvalues from |j m; ℓ1ℓ2⟩, whenever ℓ1 ̸= ℓ′1 (or ℓ2 ̸= ℓ′2). In such a situation,
remember ⟨ℓ′1m′

1, ℓ
′
2m

′
2| j m; ℓ1ℓ2⟩ = 0. Within this (ℓ1, ℓ2) subspace, we therefore have∑
−ℓ1≤m1≤ℓ1

∑
−ℓ2≤m2≤ℓ2

|ℓ1 m1, ℓ2 m2⟩ ⟨ℓ1 m1, ℓ2 m2| = I. (5.6.220)

To begin, let us first notice that

J3 |j m; ℓ1ℓ2⟩ = m |j m; ℓ1ℓ2⟩ (5.6.221)
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=
∑
m′

1,m
′
2

(J ′3 + J ′′3) |ℓ1m′
1, ℓ2m

′
2⟩ ⟨ℓ1m′

1, ℓ2m
′
2| j m; ℓ1ℓ2⟩ (5.6.222)

=
∑
m′

1,m
′
2

(m′
1 +m′

2) |ℓ1m′
1, ℓ2m

′
2⟩ ⟨ℓ1m′

1, ℓ2m
′
2| j m; ℓ1ℓ2⟩ . (5.6.223)

Applying ⟨ℓ1m1, ℓ2m2| on both sides, and employing the orthonormality of these eigen states,
we deduce that the superposition over {|ℓ1m1, ℓ2m2⟩} in eq. (5.6.219) must be constrained by

m = m1 +m2. (5.6.224)

Now, the largest possible m, which is also the maximum j (cf. (5.6.207)), is gotten from
max(m1 +m2) =maxm1 +maxm2 = ℓ1 + ℓ2.

maxm = ℓ1 + ℓ2 = max j. (5.6.225)

A similar argument informs us, minm = minm1 +minm2 = −(ℓ1 + ℓ2). Altogether,

|j = ℓ1 + ℓ2 m = ±(ℓ1 + ℓ2); ℓ1ℓ2⟩ = |ℓ1 ± ℓ1, ℓ2 ± ℓ2⟩ (5.6.226)

= |ℓ1,±ℓ1⟩ ⊗ |ℓ2,±ℓ2⟩ .

Problem 5.83. Checking eq. (5.6.226) Defining the total raising (+) and lowering (−)
operator as

J± ≡ J1 ± iJ2 = J ′± + J ′′±, (5.6.227)

verify the relation

J⃗2 = J⃗ ′2 + J⃗ ′′2 + 2(J ′3)(J ′′3) + J ′+J ′′− + J ′−J ′′+. (5.6.228)

Use it to directly calculate the result of acting J⃗2 on both sides of eq. (5.6.226).

We may now follow the procedure we used to relate the |ℓ,m⟩ with |ℓ,±ℓ⟩, using the rais-
ing/lowering operators in eq. (5.6.227). We recall eq. (5.6.53):

J± |j m; ℓ1ℓ2⟩ =
√
j(j + 1)−m(m± 1) |j,m± 1; ℓ1ℓ2⟩ (5.6.229)

=
√

(j ∓m)(j ±m+ 1) |j,m± 1; ℓ1ℓ2⟩ . (5.6.230)

On the other hand, using J± = J ′± + J ′′±,√
(j ∓m)(j ±m+ 1) |j m± 1; ℓ1ℓ2⟩

=
∑
m1,m2

(J ′± + J ′′±) |ℓ1m1, ℓ2m2⟩ ⟨ℓ1m1, ℓ2m2| j m; ℓ1ℓ2⟩ (5.6.231)

=
∑
m1,m2

(√
(ℓ1 ∓m1)(ℓ1 ±m1 + 1) |ℓ1 m1 ± 1, ℓ2m2⟩

+
√

(ℓ2 ∓m2)(ℓ2 ±m2 + 1) |ℓ1 m1, ℓ2 m2 ± 1⟩
)
⟨ℓ1m1, ℓ2m2| j m; ℓ1ℓ2⟩ . (5.6.232)

165



Let us now apply the lowering operator to the maximum possible m state in eq. (5.6.226). For
j = ℓ1 + ℓ2,√

(j + j)(j − j + 1) |j j − 1; ℓ1ℓ2⟩ =
√
(ℓ1 + ℓ1)(ℓ1 − ℓ1 + 1) |ℓ1 ℓ1 − 1, ℓ2ℓ2⟩ (5.6.233)

+
√

(ℓ2 + ℓ2)(ℓ2 − ℓ2 + 1) |ℓ1 ℓ1, ℓ2 ℓ2 − 1⟩ .

Because there is only one ket on both sides, we have managed to solve the next-to-highest m
state (for the maximum j) in terms of the tensor product ones:

|j j − 1; ℓ1ℓ2⟩ =
1√
j

(√
ℓ1 |ℓ1 ℓ1 − 1, ℓ2ℓ2⟩+

√
ℓ2 |ℓ1 ℓ1, ℓ2 ℓ2 − 1⟩

)
, (5.6.234)

j ≡ ℓ1 + ℓ2. (5.6.235)

We may continue this ‘lowering procedure’ to obtain all the m states |j = ℓ1 + ℓ2 m; ℓ1ℓ2⟩ until
we reach |j − j; ℓ1ℓ2⟩ ∝ (J−)2j |j j; ℓ1ℓ2⟩.38

Now that we see how to construct the maximum j states, with j = ℓ1 + ℓ2, let us move on to
the construction of the next-to-highest j states. Since this next-to-highest j must be equal to
its highest m value, according to eq. (5.6.224) it must be an integer step away from the highest
j because m = m1 +m2 are integer steps away from ℓ1 + ℓ2. In other words, the next-to-highest
j and its associated maximum m value must both be j = ℓ1 + ℓ2 − 1 = maxm. Furthermore,
according to eq. (5.6.224), we need to superpose all states consistent with m = ℓ1+ ℓ2− 1. Only
two such states, (m1 = ℓ1 − 1,m2 = ℓ2) and (m1 = ℓ1,m2 = ℓ2 − 1), are relevant:

|j = ℓ1 + ℓ2 − 1 j; ℓ1ℓ2⟩ = |ℓ1 ℓ1 − 1, ℓ2 ℓ2⟩ ⟨ℓ1 ℓ1 − 1, ℓ2 ℓ2| j j; ℓ1ℓ2⟩
+ |ℓ1 ℓ1, ℓ2 ℓ2 − 1⟩ ⟨ℓ1 ℓ1, ℓ2 ℓ2 − 1| j j; ℓ1ℓ2⟩ . (5.6.236)

Above in eq. (5.6.234), we have already constructed the highest-j state with the same m value
as the next-to-highest-j state in eq. (5.6.236), namely |j = ℓ1 + ℓ2 j − 1; ℓ1ℓ2⟩, which has the
same m value as |j = ℓ1 + ℓ2 − 1 j; ℓ1ℓ2⟩. These two states must be orthogonal because they

have different J⃗2 eigenvalues. Taking their inner product and setting it to zero,√
ℓ1 ⟨ℓ1 ℓ1 − 1, ℓ2 ℓ2| j j; ℓ1ℓ2⟩+

√
ℓ2 ⟨ℓ1 ℓ1, ℓ2 ℓ2 − 1| j j; ℓ1ℓ2⟩ = 0. (5.6.237)

Inserting it back into eq. (5.6.236),

|j = ℓ1 + ℓ2 − 1 j; ℓ1ℓ2⟩ =

(
−
√
ℓ2
ℓ1
|ℓ1 ℓ1 − 1, ℓ2 ℓ2⟩+ |ℓ1 ℓ1, ℓ2 ℓ2 − 1⟩

)
× ⟨ℓ1 ℓ1, ℓ2 ℓ2 − 1| j j; ℓ1ℓ2⟩ . (5.6.238)

Since this state needs to be normalized to unity, we have up to an arbitrary phase eiδℓ1+ℓ2−1 ,

|j = ℓ1 + ℓ2 − 1 j; ℓ1ℓ2⟩

=
eiδℓ1+ℓ2−1

√
ℓ1 + ℓ2

(
−
√
ℓ2 |ℓ1 ℓ1 − 1, ℓ2 ℓ2⟩+

√
ℓ1 |ℓ1 ℓ1, ℓ2 ℓ2 − 1⟩

)
. (5.6.239)

38Actually, we know from the preceding arguments that |j = ℓ1 + ℓ2 − j; ℓ1ℓ2⟩ = |ℓ1 − ℓ1, ℓ2 − ℓ2⟩. But if
you do push the analysis all the way till (J−)2j |j j; ℓ1ℓ2⟩, this would serve as a consistency check.
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As before, we may then apply the lowering operator repeatedly to obtain all the j = ℓ1 + ℓ2 − 1
states, namely

|j = ℓ1 + ℓ2 − 1 j − s; ℓ1ℓ2⟩ ∝ (J−)s |j = ℓ1 + ℓ2 − 1 j; ℓ1ℓ2⟩ . (5.6.240)

Moving on to the states {|j = ℓ1 + ℓ2 − 2 m; ℓ1ℓ2⟩}, we may again begin with the highestm value.
This may be expressed as a superposition of tensor product states involving – by distributing
−2 among the the (m1,m2)s –

(m1 = ℓ1 − 2,m2 = ℓ2), (m1 = ℓ1 − 1,m2 = ℓ2 − 1), (m1 = ℓ1,m2 = ℓ2 − 2). (5.6.241)

The |j = ℓ1 + ℓ2 − 2 j; ℓ1ℓ2⟩ must be perpendicular to both

|j = ℓ1 + ℓ2 m = j − 2⟩ and |j = ℓ1 + ℓ2 − 1 m = j − 1⟩ (5.6.242)

because they have different J⃗2 eigenvalues. Setting to zero

⟨j = ℓ1 + ℓ2 m = j − 2| j′ = ℓ1 + ℓ2 − 2 m′ = j′⟩
and ⟨j = ℓ1 + ℓ2 − 1 m = j − 1| j′ = ℓ1 + ℓ2 − 2 m′ = j′⟩ (5.6.243)

yields 2 equations for 3 unknown Clebsch-Gordan coefficients

⟨ℓ1 ℓ1 − 2, ℓ2 ℓ2| j = ℓ1 + ℓ2 − 2 j; ℓ1ℓ2⟩ , (5.6.244)

⟨ℓ1 ℓ1 − 1, ℓ2 ℓ2 − 1| j = ℓ1 + ℓ2 − 2 j; ℓ1ℓ2⟩ , (5.6.245)

⟨ℓ1 ℓ1, ℓ2 ℓ2 − 2| j = ℓ1 + ℓ2 − 2 j; ℓ1ℓ2⟩ . (5.6.246)

This allows us to solve 2 of them in terms of a third. This remaining coefficient can then be
fixed, up to an overall phase, by demanding the state has unit norm. Once this is done, all the
j = ℓ1 + ℓ2− 2 and m < j states may be obtained by applying the lowering operator repeatedly.

This process can continue for the j = ℓ1 + ℓ2 − 3, ℓ1 + ℓ2 − 4 states, and so on. But it will
have to terminate, since we know from the tensor product

|ℓ1,m1⟩ ⊗ |ℓ2,m2⟩ ≡ |ℓ1 m1, ℓ2 m2⟩ (5.6.247)

there are N ≡ (2ℓ1+1)(2ℓ2+1) such orthonormal basis vectors; i.e., the dimension of the vector
space, for fixed ℓ1,2, is N . On the other hand, we know the j = ℓ1+ ℓ2 states have (2ℓ1+2ℓ2+1)
distinct m values; the j = ℓ1 + ℓ2 − 1 ones have (2ℓ1 + 2ℓ2 − 2 + 1) distinct m values; and so
on. Let’s suppose our procedure terminates at j = ℓ1 + ℓ2 − s, for some non-negative integer s.
Then we may count the total number of orthonormal states as

N = (2ℓ1 + 1)(2ℓ2 + 1) =
s∑
i=0

(2ℓ1 + 2ℓ2 − 2i+ 1) (5.6.248)

= (2ℓ1 + 2ℓ2 + 1)(s+ 1)− 2
s+ 0

2
(s+ 1) = (2ℓ1 + 2ℓ2 + 1)(s+ 1)− s(s+ 1). (5.6.249)

This quadratic equation for s has two solutions

s = 2ℓ1 ⇒ j = ℓ2 − ℓ1, (5.6.250)
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or s = 2ℓ2 ⇒ j = ℓ1 − ℓ2. (5.6.251)

Since j ≥ 0, the correct solution is j = ℓ1−ℓ2 whenever ℓ1 > ℓ2 and j = ℓ2−ℓ1 whenever ℓ2 > ℓ1.
As already alluded to earlier,

min j = |ℓ1 − ℓ2|. (5.6.252)

Problem 5.84. From |j j − 1⟩ to |j − 1 j − 1⟩ YZ: Ignore this problem for now.
Use equations (5.6.216) and (5.6.217) to show that[

J⃗2, J ′±
]
= ∓2J ′3J ′′+ ± 2J ′+J ′′3, (5.6.253)[

J⃗2, J ′′±
]
= ∓2J ′′3J ′+ ± 2J ′′+J ′3. (5.6.254)

Consider

J⃗2J ′± =
[
J⃗2, J ′±

]
+ J ′±J⃗2 (5.6.255)

= ∓2J ′3J ′′± ± 2J ′±J ′′3 + J ′±J⃗2, (5.6.256)

J⃗2J ′′± =
[
J⃗2, J ′′±

]
+ J ′′±J⃗2 (5.6.257)

= ∓2J ′′3J ′± ± 2J ′′±J ′3 + J ′′±J⃗2. (5.6.258)

Example: Tensor product of spin-1/2 systems Consider the tensor product of
two spin-1/2 systems. Eq. (5.6.206) informs us, the total angular momentum j runs from
|1/2− 1/2| = 0 to 1/2 + 1/2 = 1.

j ∈ {0, 1} . (5.6.259)

To save notational baggage, let us denote

|++⟩ ≡
∣∣∣∣12 , 12

〉
⊗
∣∣∣∣12 , 12

〉
, (5.6.260)

|+−⟩ ≡
∣∣∣∣12 , 12

〉
⊗
∣∣∣∣12 ,−1

2

〉
, (5.6.261)

|−+⟩ ≡
∣∣∣∣12 ,−1

2

〉
⊗
∣∣∣∣12 , 12

〉
, (5.6.262)

|−−⟩ ≡
∣∣∣∣12 ,−1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉
. (5.6.263)

We will also suppress the (1/2)s in the total j states; i.e.,∣∣∣∣j m;
1

2

1

2

〉
≡ |j m⟩ . (5.6.264)

j = 1 Let us start with j = 1. The highest m state is

|j = 1 m = 1⟩ = |++⟩ . (5.6.265)
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Applying the lowering operator gives

√
2 |1 0⟩ = |−+⟩+ |+−⟩ (5.6.266)

|1 0⟩ = |−+⟩+ |+−⟩√
2

. (5.6.267)

Applying the lowering operator once more,√
1(1 + 1) |1 − 1⟩

=
1√
2
(J ′− + J ′′−) |−+⟩+ 1√

2
(J ′− + J ′′−) |+−⟩ (5.6.268)

=
1√
2
J ′′− |−+⟩+ 1√

2
J ′− |+−⟩ (5.6.269)

=
1√
2

√
1

2

(
1

2
+ 1

)
− 1

2

(
1

2
− 1

)
|−−⟩+ 1√

2

√
1

2

(
1

2
+ 1

)
− 1

2

(
1

2
− 1

)
|−−⟩ .

=
√
2 |−−⟩ . (5.6.270)

This final calculation is really a consistency check: we already know, from the previous dis-
cussion, that the minimum m is given by minm1 = −1/2 and minm2 = −1/2. We gather the
results thus far.∣∣∣∣1 1;

1

2

1

2

〉
=

∣∣∣∣12 1

2
,
1

2

1

2

〉
= |++⟩ , (5.6.271)∣∣∣∣1 0;

1

2

1

2

〉
=

1√
2

∣∣∣∣12 − 1

2
,
1

2

1

2

〉
+

1√
2

∣∣∣∣12 1

2
,
1

2
− 1

2

〉
=
|−+⟩+ |+−⟩√

2
, (5.6.272)∣∣∣∣1 − 1;

1

2

1

2

〉
=

∣∣∣∣12 − 1

2
,
1

2
− 1

2

〉
= |−−⟩ . (5.6.273)

j = 0 For the |j = 0 m = 0⟩ state, we need to superpose m1 and m2 such that m1+m2 = 0.
There are only two choices (

m1 = ±
1

2
,m2 = ∓

1

2

)
. (5.6.274)

Hence,

|0 0⟩ = |−+⟩ ⟨−+| 0 0⟩+ |+−⟩ ⟨+−| 0 0⟩ . (5.6.275)

This state must be perpendicular to |1 0⟩ in eq. (5.6.272), because they have distinct J⃗2 eigen-
values (1(1 + 1) vs. 0). Taking their inner product,

⟨−+| 0 0⟩+ ⟨+−| 0 0⟩ = 0. (5.6.276)

At this point,

|0 0⟩ = (|−+⟩ − |+−⟩) ⟨−+| 0 0⟩ . (5.6.277)
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Because the state has to be normalized to unity, we have now determined it up to a phase eiδ0 :∣∣∣∣0 0;
1

2

1

2

〉
=
eiδ0√
2

(∣∣∣∣12 − 1

2
,
1

2

1

2

〉
−
∣∣∣∣12 1

2
,
1

2
− 1

2

〉)
(5.6.278)

=
eiδ0√
2
(|−+⟩ − |+−⟩) . (5.6.279)

Example: ‘Orbital’ angular momentum and spin-half Let us now consider taking
the tensor product

|ℓ,m⟩ ⊗
∣∣∣∣12 ,±1

2

〉
; (5.6.280)

for integer ℓ = 0, 1, 2, . . . and −ℓ ≤ m ≤ ℓ. This can be viewed as simultaneously describing the
orbital and intrinsic spin of a single electron bound to a central nucleus.
ℓ = 0 For ℓ = 0, the only possible total j is 1/2. Hence,∣∣∣∣j = 1

2
m = ±1

2
; 0

1

2

〉
= |0, 0⟩ ⊗

∣∣∣∣12 ± 1

2

〉
. (5.6.281)

ℓ ≥ 1 For non-zero ℓ, eq. (5.6.206) says we must have j running from ℓ− 1/2 to ℓ+ 1/2:

j = ℓ± 1

2
. (5.6.282)

We start from the highest possible m value.∣∣∣∣j = ℓ+
1

2
m = j; ℓ

1

2

〉
= |ℓ, ℓ⟩ ⊗

∣∣∣∣12 , 12
〉
. (5.6.283)

Applying the lowering operator s times, we have on the left hand side

(J−)s
∣∣∣∣j = ℓ+

1

2
m = j; ℓ

1

2

〉
= A

ℓ+ 1
2

s

∣∣∣∣j = ℓ+
1

2
m = j − s

〉
, (5.6.284)

where the constant A
ℓ+ 1

2
s follows from repeated application of eq. (5.6.53)

A
ℓ+ 1

2
s =

s−1∏
i=0

√
(2ℓ+ 1− i)(i+ 1). (5.6.285)

Whereas on the right hand side, (J−)s = (J ′− + J ′′−)s may be expanded using the binomial
theorem since [J ′−, J ′′−] = 0. Altogether,

A
ℓ+ 1

2
s

∣∣∣∣j = ℓ+
1

2
m = j − s; ℓ 1

2

〉
=

s∑
i=0

(
s

i

)
(J ′−)s−i |ℓ, ℓ⟩ ⊗ (J ′′−)i

∣∣∣∣12 , 12
〉
. (5.6.286)

But (J ′′−)i
∣∣1
2

1
2

〉
= 0 whenever i ≥ 2. This means there are only two terms in the sum, which

can of course be inferred from the fact that – since the azimuthal number for the spin-half sector

170



can only take 2 values (±1/2) – for a fixed total azimuthal number m, there can only be two
possible solutions for the ℓ−sector azimuthal number.

A
ℓ+ 1

2
s

∣∣∣∣j = ℓ+
1

2
m = j − s; ℓ 1

2

〉
(5.6.287)

= (J ′−)s |ℓ, ℓ⟩ ⊗
∣∣∣∣12 , 12

〉
+

s!

(s− 1)!

√(
1

2
+

1

2

)(
1

2
− 1

2
+ 1

)
(J ′−)s−1 |ℓ, ℓ⟩ ⊗

∣∣∣∣12 ,−1

2

〉
= Aℓs |ℓ, ℓ− s⟩ ⊗

∣∣∣∣12 , 12
〉
+ s · Aℓs−1 |ℓ, ℓ− s+ 1⟩ ⊗

∣∣∣∣12 ,−1

2

〉
.

Here, the constants are

Aℓs =
s−1∏
i=0

√
(2ℓ− i)(i+ 1), (5.6.288)

Aℓs−1 =
s−2∏
i=0

√
(2ℓ− i)(i+ 1). (5.6.289)

Writing them out more explicitly,

√
2ℓ+ 1

√
1
√
2ℓ
√
2
√
2ℓ− 1

√
3 . . .

√
2ℓ− (s− 2)

√
s

∣∣∣∣j = ℓ+
1

2
m = j − s; ℓ 1

2

〉
(5.6.290)

=
√
2ℓ
√
1
√
2ℓ− 1

√
2
√
2ℓ− 2

√
3 . . .

√
2ℓ− (s− 1)

√
s |ℓ, ℓ− s⟩ ⊗

∣∣∣∣12 , 12
〉

+ (
√
s)2
√
2ℓ
√
1
√
2ℓ− 1

√
2
√
2ℓ− 2

√
3 . . .

√
2ℓ− (s− 2)

√
s− 1 |ℓ, ℓ− s+ 1⟩ ⊗

∣∣∣∣12 ,−1

2

〉
.

The factors
√
2ℓ . . .

√
2ℓ− (s− 2) and

√
1 . . .
√
s are common throughout.

√
2ℓ+ 1

∣∣∣∣j = ℓ+
1

2
m = j − s; ℓ 1

2

〉
=
√

2ℓ− (s− 1) |ℓ, ℓ− s⟩ ⊗
∣∣∣∣12 , 12

〉
+
√
s |ℓ, ℓ− s+ 1⟩ ⊗

∣∣∣∣12 ,−1

2

〉
We use the definition j − s = ℓ+ (1/2)− s ≡ m to re-express s in terms of m.∣∣∣∣j = ℓ+

1

2
m; ℓ

1

2

〉
(5.6.291)

=
1√

2
√
2ℓ+ 1

(√
2ℓ+ 2m+ 1

∣∣∣∣ℓ,m− 1

2

〉
⊗
∣∣∣∣12 , 12

〉
+
√
2ℓ− 2m+ 1

∣∣∣∣ℓ,m+
1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉)
.

(Remember ℓ± 1/2 is half-integer, since ℓ is integer; so the azimuthal number m± 1/2 itself is
an integer.) For the states |j = ℓ− (1/2) m⟩, we will again see that there are only two terms
in the superposition over the tensor product states. For a fixed m, |j = ℓ− (1/2) m⟩ must be
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perpendicular to |j = ℓ+ (1/2) m⟩. This allows us to write down its solution (up to an arbitrary
phase) by inspecting eq. (5.6.291):∣∣∣∣j = ℓ− 1

2
m; ℓ

1

2

〉
(5.6.292)

=
e
iδ

ℓ− 1
2

√
2
√
2ℓ+ 1

(√
2ℓ− 2m+ 1

∣∣∣∣ℓ,m− 1

2

〉
⊗
∣∣∣∣12 , 12

〉
−
√
2ℓ+ 2m+ 1

∣∣∣∣ℓ,m+
1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉)
.

Problem 5.85. Use the form of J⃗2 in eq. (5.6.228) to confirm the right hand sides of equations
(5.6.291) and (5.6.292) are indeed its eigenvectors, with respective eigenvalues of (ℓ + 1/2)(ℓ +
1/2 + 1) and (ℓ− 1/2)(ℓ− 1/2 + 1).

Problem 5.86. Express the states
∣∣j m; 3

2
1
〉
in terms of the basis {

∣∣3
2
,m1

〉
⊗ |1,m2⟩}.

Invariant Subspaces & Clebsch-Gordan Unitarity Among the mutually compati-
ble observables in eq. (5.6.201), we highlight[

J⃗2, J3
]
= 0. (5.6.293)

Because the rotation operator involves the exponential of the generators J⃗ , that means it also
commutes with J⃗2. [

J⃗2, D(R̂)
]
=
[
J⃗2, exp

(
−iθ⃗ · J⃗

)]
= 0 (5.6.294)

This in turn allows us to point out, it is the total angular momentum basis {|j m; ℓ1ℓ2⟩} that
spans – for a fixed triplet of (j, ℓ1, ℓ2) – an invariant subspace under rotations. For, we may
utilize eq. (5.6.294) to compute

J⃗2
(
D(R̂) |j m; ℓ1ℓ2⟩

)
= D(R̂)J⃗2 |j m; ℓ1ℓ2⟩ (5.6.295)

= j(j + 1)D(R̂) |j m; ℓ1ℓ2⟩ . (5.6.296)

In words: both |j m; ℓ1ℓ2⟩ and D(R̂) |j m; ℓ1ℓ2⟩ are eigenvectors of J⃗2, with the same eigenvalue

j(j+1). Therefore, under an arbitrary rotation D(R̂), the vector space spanned by {|j m; ℓ1ℓ2⟩}
gets rotated into itself – the matrix element〈

j′ m′; ℓ1ℓ2

∣∣∣D(R̂)
∣∣∣ j m; ℓ1ℓ2

〉
∝ δj

′

j (5.6.297)

is zero unless j′ = j. In fact, for fixed (ℓ1, ℓ2) the matrix of eq. (5.6.297) is a (2ℓ1 + 1)(2ℓ2 + 1)-
dimensional square one; taking a block-diagonal form, with a unitary matrix comprising each
block. If the basis vectors are arranged in the following order,

{|j = ℓ1 + ℓ2 − j ≤ m ≤ j; ℓ1ℓ2⟩} (5.6.298)

{|j = ℓ1 + ℓ2 − 1 − j ≤ m ≤ j; ℓ1ℓ2⟩} (5.6.299)

. . . (5.6.300)

{|j = |ℓ1 − ℓ2|+ 1 − j ≤ m ≤ j; ℓ1ℓ2⟩} (5.6.301)
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{|j = |ℓ1 − ℓ2| − j ≤ m ≤ j; ℓ1ℓ2⟩} ; (5.6.302)

then the uppermost block would be a (2(ℓ1 + ℓ2) + 1)-dimensional unitary square matrix; the
second (to its lower right) would be a (2(ℓ1 + ℓ2 − 1) + 1)-dimensional one; and so on, until the
lowest block on the bottom right, which would be a (2|ℓ1 − ℓ2|+ 1)-dimensional square unitary
transformation.

Moreover, note that the Clebsch-Gordan coefficients themselves form a unitary matrix, since
they implement a change-of-orthonormal basis – i.e., from {|ℓ1 m1, ℓ2 m2⟩} to {|j m; ℓ1ℓ2⟩} and
vice versa. In particular, the inverse relation to eq. (5.6.219) is

|ℓ1 m1, ℓ2 m2⟩ =
ℓ1+ℓ2∑

j=|ℓ1−ℓ2|

+j∑
m=−j

|j m; ℓ1ℓ2⟩ ⟨j m; ℓ1ℓ2| ℓ1 m1, ℓ2 m2⟩ , (5.6.303)

with the associated completeness relation

ℓ1+ℓ2∑
j=|ℓ1−ℓ2|

+j∑
m=−j

|j m; ℓ1ℓ2⟩ ⟨j m; ℓ1ℓ2| = I. (5.6.304)

The unitary character of these Clebsch-Gordan coefficients follow from the completeness relation
in equations (5.6.220) and (5.6.304).

+ℓ1∑
m1=−ℓ1

+ℓ2∑
m2=−ℓ2

⟨j′ m′; ℓ1ℓ2| ℓ1 m1, ℓ2 m2⟩ ⟨ℓ1 m1, ℓ2 m2| j m; ℓ1ℓ2⟩ = δj
′

jδ
m′

m (5.6.305)

ℓ1+ℓ2∑
j=|ℓ1−ℓ2|

+j∑
m=−j

⟨ℓ1 m′
1, ℓ2 m

′
2| j m; ℓ1ℓ2⟩ ⟨j m; ℓ1ℓ2| ℓ1 m1, ℓ2 m2⟩ = δ

m′
1

m1
δ
m′

2

m2
. (5.6.306)

(Irreducible) Spherical Vector & Tensor Operators We may generalize the definition
of a vector operator in eq. (5.6.73) to a higher rank tensor Ti1i2...iN .

D(R̂)†Ti1i2...iND(R̂) = R̂ j1
i1
R̂ j2
i2

. . . R̂ jN
iN

Tj1j2...jN (5.6.307)

But we may also remember eq. (5.6.55), where we found a different representation for the
rotation operation, one based on the angular momentum eigenkets themselves. Specifically,
because the rotation operator D(R̂) leaves invariant the space spanned by {|ℓ,m⟩} for a fixed ℓ

and this is the smallest such space (i.e., D(R̂) mixes all the m values in general), this basis is
said to provide an irreducible representation for the rotation operator in eq. (5.6.56). In many
physical applications, moreover, it is these angular momentum eigenstates {|ℓ,m⟩} that play an
important role.

To motivate the definition of irreducible tensors, we shall follow an analogous path that led
to eq. (5.6.55); but one that would involve the angular spherical harmonics Y m

ℓ (r̂). We first
define the spherical harmonic of the 3D position operator X i by

Y m
ℓ (X⃗) |x⃗⟩ ≡ rℓY m

ℓ (r̂) |x⃗ ≡ rr̂⟩ ; (5.6.308)
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where rr̂ is simply the Cartesian coordinates x⃗ expressed in spherical coordinates, with r ≡ |x⃗|
and r̂ = x⃗/r. Remember that rℓY m

ℓ is a homogeneous polynomial of degree ℓ. This means, for
instance:

Y 0
0 (X⃗) =

1√
4π
, (5.6.309)

and √
3

4π
X± ≡ Y ±

1 (X⃗) = ∓
√

3

4π

X1 ± iX2

√
2

, (5.6.310)√
3

4π
X0 ≡ Y 0

1 (X⃗) =

√
3

4π
X3. (5.6.311)

Now, on the one hand

D(R̂)†Y m
ℓ (X⃗)D(R̂) |x⃗⟩ = D(R̂)†Y m

ℓ (X⃗)
∣∣∣R̂x⃗〉

= D(R̂)†Y m
ℓ (R̂x⃗)

∣∣∣R̂x⃗〉 = rℓY m
ℓ (R̂r̂) |x⃗⟩ ; (5.6.312)

which holds for arbitrary |x⃗⟩ and hence

D(R̂)†Y m
ℓ (X⃗)D(R̂) = Y m

ℓ (R̂X⃗). (5.6.313)

On the other hand,

D(R̂T) |ℓ,m⟩ = D(R̂)† |ℓ,m⟩ =
∑
m′

|ℓ,m′⟩D m
(ℓ) m′ . (5.6.314)

Upon acting ⟨θ, ϕ| ≡ ⟨r̂| from the left on both sides, and recognizing ⟨r̂|D(R̂)† =
〈
R̂r̂
∣∣∣ and

⟨r̂| ℓ,m⟩ = Y m
ℓ (θ, ϕ),

Y m
ℓ (R̂r̂) =

∑
m′

D
m

(ℓ) m′(R̂)Y
m′

ℓ (r̂). (5.6.315)

Comparing equations (5.6.313) and (5.6.315),

D(R̂)†Y m
ℓ (X⃗)D(R̂) =

+ℓ∑
m′=−ℓ

Y m′

ℓ (X⃗)D
m

(ℓ) m′(R̂). (5.6.316)

Swapping R̂↔ R̂T and recalling D(R̂T) = D(R̂)†, we see that

D(R̂)Y m
ℓ (X⃗)D(R̂)† = Y m

ℓ (R̂TX⃗) =
+ℓ∑

m′=−ℓ

Y m′

ℓ (X⃗)D
m′

(ℓ) m(R̂)

=
+ℓ∑

m′=−ℓ

Y m′

ℓ (X⃗)
〈
ℓ,m′

∣∣∣D(R̂)
∣∣∣ ℓ,m〉 . (5.6.317)
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In words: we have found an explicit example of a linear operator operator – namely the spherical
harmonics of position operators – where a change-of-basis induced by a rotation transforms it
in a manner as though it were an angular momentum eigenket |ℓ,m⟩; i.e., as if we were doing
the right hand side of

D(R̂) |ℓ,m⟩ =
∑
m′

|ℓ,m′⟩ ⟨ℓ,m′|D(R̂) |ℓ,m⟩ . (5.6.318)

The relation in eq. (5.6.317) really does not depend on X⃗ being the position operator; rather, it

is really due to X⃗ being a vector operator. That is, eq. (5.6.317) would still hold if we replaced

X⃗ with any vector operator V i obeying D(R̂)†V iD(R̂) = R̂i
jV

j.

D(R̂)Y m
ℓ (V⃗ )D(R̂)† = Y m

ℓ (R̂TV⃗ ) =
+ℓ∑

m′=−ℓ

Y m′

ℓ (V⃗ )
〈
ℓ,m′

∣∣∣D(R̂)
∣∣∣ ℓ,m〉 (5.6.319)

These considerations motivates the following generalization to arbitrary linear operators Om
j .

Spherical Tensor: Definition A spherical tensor Om
j of rank j with 2j+1

components is defined as a linear operator obeying

D(R̂)Om
j D(R̂)† =

+j∑
m′=−j

Om′

j D
m′

(j) m(R̂). (5.6.320)

The equivalent infinitesimal version is provided by the equations

[
J i, Om

j

]
=

+j∑
m′=−j

Om′

j

〈
j,m′ ∣∣J i∣∣ j,m〉 ; (5.6.321)

where J i = (J1, J2, J3) refers to the Cartesian components of the rotation generators.

Problem 5.87. Derive eq. (5.6.321) from eq. (5.6.320). Then explain why[
J3, Om

j

]
= mOm

j , (5.6.322)[
J±, Om

j

]
=
√

(j ∓m)(j ±m+ 1)Om±1
j ; (5.6.323)

where J± ≡ J1 ± iJ2 are the raising/lowering angular momentum operators.

Example We may immediately generalize the results in equations (5.6.310) and (5.6.311)
to an arbitrary vector operator V i. We define

V ±1
1 ≡ ∓V

1 ± iV 2

√
2

, (5.6.324)

V 0
1 ≡ V 3. (5.6.325)

In other words, once a 3−axis has been chosen, a Cartesian vector V i is a spin-1 object; with
V 1 and V 2 contributing to its m = ±1 azimuthal modes and V 0 to its m = 0 component. The
inverse relations can be summed up by writing the Cartesian components V⃗ as

V⃗ =
V −1
1 − V +1

1√
2

ê1 +
i√
2

(
V −1
1 + V +1

1

)
ê2 + V 0

1 ê3, (5.6.326)
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where êi is the unit vector along the ith axis.
In particular, the angular momentum operators themselves can be expressed as

J±1
1 = ∓J

±
√
2

and J0
1 = J3. (5.6.327)

Problem 5.88. Generating spherical tensors from products If Am1
j1

and Bm2
j2

are
spherical tensors of ranks j1 and j2 respectively, explain why the construction

Qm
j =

∑
|j1−j2|≤j≤j1+j2

∑
m=m1+m2

Am1
j1
Bm2
j2
⟨j1 m1, j2 m2| j m; j1j2⟩ (5.6.328)

produces a spherical tensor Qm
j . This teaches us, we may superpose the products of spherical

tensors to produce another spherical tensor, in the same way we superpose the tensor product
of angular momentum eigenstates to produce a ‘total’ angular momentum state.

Problem 5.89. Irreducible decomposition of Vector ⊗ Vector Via a direct calcula-
tion, show that the following trace, antisymmetric, and symmetric-trace-free decomposition of
a product of two vectors, namely

V iW j =
1

3
δijV⃗ · W⃗ +

V iW j − V jW i

2
+

(
V iW j + V jW i

2
− 1

3
δijV⃗ · W⃗

)
; (5.6.329)

admits the following irreducible decomposition. The trace portion is

V⃗ · W⃗ = V 0
1 W

0
1 − V +1

1 W−1
1 − V −1

1 W+1
1 ; (5.6.330)

the anti-symmetric sector is

V iW j − V jW i

2
=
i

2

(
V −1
1 W+1

1 − V +1
1 W−1

1

) (
êi1ê

j
2 − ê

j
1ê
i
2

)
(5.6.331)

+
1

2

V −1
1 W 0

1 − V 0
1 W

−1
1√

2

{(
êi1ê

j
3 − ê

j
1ê
i
3

)
+ i
(
êi2ê

j
3 − ê

j
2ê
i
3

)}
− 1

2

V +1
1 W 0

1 − V 0
1 W

+1
1√

2

{(
êi1ê

j
3 − ê

j
1ê
i
3

)
− i
(
êi2ê

j
3 − ê

j
2ê
i
3

)}
= −1

2

(
V −1
1 W+1

1 − V +1
1 W−1

1

) (
êi+ê

j
− − ê

j
+ê

i
−
)

+
1

2

(
V −1
1 W 0

1 − V 0
1 W

−1
1

) (
êi+ê

j
3 − ê

j
+ê

i
3

)
− 1

2

(
V +1
1 W 0

1 − V 0
1 W

+1
1

) (
êi−ê

j
3 − ê

j
−ê

i
3

)
and the symmetric and trace-less part is

V iW j + V iW j

2
− 1

3
δijV⃗ · W⃗

=
V −1
1 W−1

1

2

{(
êi1ê

j
1 − êi2ê

j
2

)
+ i
(
êi1ê

j
2 + êi2ê

j
1

)}
(5.6.332)
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+
V +1
1 W+1

1

2

{(
êi1ê

j
1 − êi2ê

j
2

)
− i
(
êi1ê

j
2 + êi2ê

j
1

)}
+

1

2

V −1
1 W 0

1 + V 0
1 W

−1
1√

2

{(
êi1ê

j
3 + êj1ê

i
3

)
+ i
(
êi2ê

j
3 + êj2ê

i
3

)}
− 1

2

V +1
1 W 0

1 + V 0
1 W

+1
1√

2

{(
êi1ê

j
3 + êj1ê

i
3

)
− i
(
êi2ê

j
3 + êj2ê

i
3

)}
− 1

6

(
2V 0

1 W
0
1 + V +1

1 W−1
1 + V −1

1 W+1
1

) (
êi1ê

j
1 + êi2ê

j
2 − 2êi3ê

j
3

)
= V −1

1 W−1
1 êi+ê

j
+ + V +1

1 W+1
1 êi−ê

j
−

+
V −1
1 W 0

1 + V 0
1 W

−1
1

2

(
êi+ê

j
3 + êj+ê

i
3

)
− V +1

1 W 0
1 + V 0

1 W
+1
1

2

(
êi−ê

j
3 + êj−ê

i
3

)
− 1

6

(
2V 0

1 W
0
1 + V +1

1 W−1
1 + V −1

1 W+1
1

) (
êi+ê

j
− + êi+ê

j
− − 2êi3ê

j
3

)
.

We have defined

ê± ≡
ê1 ± iê2√

2
. (5.6.333)

Identity all the distinct (irreducible) spherical tensors in these expressions; there are 1+3+5 = 9
of them; with the “1” coming from the scalar dot product, “3” from the anti-symmetric sector,
and “5” from the symmetric and traceless portion. Hint: Taking the product of two vectors is
like taking the tensor product of two spin−1 objects – what are the possible outcomes? Also
note that, since the {êi} are orthonormal vectors, δabêiaê

j
b = δij. (Can you explain why?)

The notion of irreducible spherical tensors allows the effective classification and calculation
of matrix elements by exploiting the transformation properties of the operators at hand under
rotations. To this end, we first prove the following result.

Lemma If the states |j,m; Ψ⟩ and |j,m; Φ⟩ obey

J i |j,m; Ψ⟩ =
∑
m′

|j,m′; Ψ⟩
〈
j,m′ ∣∣J i∣∣ j,m〉 , (5.6.334)

J i |j,m; Φ⟩ =
∑
m′

|j,m′; Φ⟩
〈
j,m′ ∣∣J i∣∣ j,m〉 ; (5.6.335)

then the matrix element

⟨j,m; Ψ |Q| j,m; Φ⟩ (5.6.336)

is in fact independent of m, as long as the operator Q commutes with {J i}.

We will use the raising/lowering operators. Consider〈
j,m± 1;Ψ

∣∣QJ±∣∣ j,m; Φ
〉
=
√

(j ∓m)(j ±m+ 1) ⟨j,m± 1;Ψ |Q| j,m± 1; Φ⟩ . (5.6.337)

By assumption, the J± may also be moved to the left of Q,〈
j,m± 1;Ψ

∣∣QJ±∣∣ j,m; Φ
〉
=
〈
j,m± 1;Ψ

∣∣(J∓)†Q
∣∣ j,m; Φ

〉
(5.6.338)
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=
√

(j ± (m± 1))(j ∓ (m± 1) + 1)) ⟨j,m; Ψ |Q| j,m; Φ⟩ .

Comparing the two results tell us

⟨j,m± 1;Ψ |Q| j,m± 1; Φ⟩ = ⟨j,m; Ψ |Q| j,m; Φ⟩ . (5.6.339)

This relation may be iterated to show that, since all nearest-neighbors in m-values yield the
same matrix element, the ⟨j,m; Ψ |Q| j,m; Φ⟩ must thus yield the same answer regardless of m.
We will employ this lemma to prove the Wigner-Eckart theorem.

Wigner-Eckart The matrix element of a tensor operator Om
j with respect to an-

gular momentum states, namely ⟨j′′ m′′; Φ|Om
j |j′m′; Ψ⟩, is proportional to a matrix

element ⟨j′′; Φ||Oj||j′; Ψ⟩ that does not depend on the azimuthal numbers m,m′,m′′.〈
j′′ m′′; Φ

∣∣Om
j

∣∣ j′ m′; Ψ
〉
= ⟨j′′; Φ||Oj||j′; Ψ⟩ ⟨j′′ m′′; j j′| j m, j′ m′⟩ (5.6.340)

The proportionality constant that depends on m,m′,m′′ is simply the Clebsch-
Gordan coefficient obtained from projecting the ‘total’ angular momentum j′′ with
azimuthal number m′′ onto the tensor product state |j′ m′⟩ ⊗ |j m⟩.

Proof of Wigner-Eckart theorem Let Om
j be a spherical tensor operator and |j′m′; Ψ⟩ be an

angular momentum eigenstate that could also depend on other variables (which we collectively
denote as Ψ).

J⃗2 |j′m′; Ψ⟩ = j′(j′ + 1) |j′m′; Ψ⟩ , (5.6.341)

J3 |j′m′; Ψ⟩ = m′ |j′m′; Ψ⟩ . (5.6.342)

We see that

D(R̂)
(
Om
j |j′m′; Ψ⟩

)
= D(R̂)Om

j D(R̂)†D(R̂) |j′m′; Ψ⟩ (5.6.343)

=
∑
n,n′

On
j |j′n′; Ψ⟩

〈
j, n

∣∣∣D(R̂)
∣∣∣ j,m〉〈j′, n′

∣∣∣D(R̂)
∣∣∣ j′,m′

〉
.

In other words, this Om
j |j′m′; Ψ⟩ transforms in the same manner under rotations as the tensor

product state |j m⟩ ⊗ |j′m′⟩.

Om
j |j′m′; Ψ⟩ ↔ |j m⟩ ⊗ |j′m′⟩ (5.6.344)

Hence it must be possible to use the Clebsch-Gordan coefficients to construct the analog of the
‘total angular momentum’ state∣∣j′′m′′; j j′;O,Ψ

〉
≡

∑
m+m′=m′′

Om
j |j′ m′; Ψ⟩ ⟨j m, j′ m′| j′′m′′; j j′

〉
. (5.6.345)

By construction, this state obeys

J⃗2
∣∣j′′m′′; j j′;O,Ψ

〉
= j′′(j′′ + 1)

∣∣j′′m′′; j j′;O,Ψ
〉
, (5.6.346)

J3
∣∣j′′m′′; j j′;O,Ψ

〉
= m′′ ∣∣j′′m′′; j j′;O,Ψ

〉
. (5.6.347)
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This also implies we should be able to invert this relation and solve for

Om
j |j′m′; Ψ⟩ =

∑
j′′∈{|j−j′|,|j−j′|+1,...,j+j′}

m′′=m+m′

∣∣j′′m′′; j j′;O,Ψ
〉 〈
j′′m′′; j j′

∣∣ j m, j′ m′〉 . (5.6.348)

If |j′′ m′′; Φ⟩ is another eigenstate of angular momentum (which may depend on other variables,
collectively denoted as Φ); then we may project both sides of eq. (5.6.348) with it.

⟨j′′ m′′; Φ|Om
j |j′m′; Ψ⟩ = ⟨j′′m′′; j j′; Φ| j′′m′′; j j′;O,Ψ⟩ ⟨j′′ m′′; j j′| j m, j′ m′⟩ (5.6.349)

But ⟨j′′m′′; j j′; Φ| j′′m′′; j j′;O,Ψ⟩ is independent of m′′. We have thus arrived at the primary
statement.

Example If V i and W i are vector operators, we may exploit the Wigner-Eckart the-
orem to examine their matrix elements between states that transform like angular momentum
eigenstates under rotation. We have three distinct ones:

⟨ℓ,m;α |V n
1 | ℓ′,m′; β⟩ = ⟨ℓ m; 1 ℓ′| 1 n, ℓ′m′⟩ ⟨ℓ;α| |V1| |ℓ′; β⟩ (5.6.350)

n ∈ {±1, 0}. (5.6.351)

Likewise for W i,

⟨ℓ,m;α |W n
1 | ℓ′,m′; β⟩ = ⟨ℓ m; 1 ℓ′| 1 n, ℓ′m′⟩ ⟨ℓ;α| |W1| |ℓ′; β⟩ (5.6.352)

n ∈ {±1, 0}. (5.6.353)

Since the Clebsch-Gordan coefficients are common between the two, this means the ratio of the
matrix elements in equations (5.6.350) and (5.6.352) only depends on the m-independent matrix
elements.

⟨ℓ,m;α |V n
1 | ℓ′,m′; β⟩

⟨ℓ,m;α |W n
1 | ℓ′,m′; β⟩

=
⟨ℓ;α| |V1| |ℓ′; β⟩
⟨ℓ;α| |W1| |ℓ′; β⟩

. (5.6.354)

This must hold for the ratio of the Cartesian components {V i,W i} too, provided it is the same
component in both the numerator and denominator.

⟨ℓ,m;α |V i| ℓ′,m′; β⟩
⟨ℓ,m;α |W i| ℓ′,m′; β⟩

=
⟨ℓ;α| |V1| |ℓ′; β⟩
⟨ℓ;α| |W1| |ℓ′; β⟩

. (5.6.355)

Selection rules from Angular Momentum Addition We see that such matrix elements in equa-
tions (5.6.350) and (5.6.352) are non-zero only when the following selection rules are satisfied,
as dictated by the Clebsch-Gordan coefficient ⟨ℓ m; 1 ℓ′| 1 n, ℓ′m′⟩.

ℓ ∈ {|ℓ′ − 1|, . . . , ℓ′ + 1} , m′ + n = m (5.6.356)

In other words, ℓ cannot differ from ℓ′ by more than one; and similarly for m and m’ since
n = ±1, 0.

|ℓ− ℓ′| ≤ 1, |m−m′| ≤ 1 (5.6.357)
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When ℓ′ = 0 then ℓ > 0; i.e., ℓ = 0 = ℓ′ is forbidden. Therefore, for integer ℓ and ℓ′, note that

ℓ+ ℓ′ ≥ 1, (5.6.358)

Selection Rules from Parity If V i is also a vector under parity, namely

P †V iP = −V i, (5.6.359)

then 〈
ℓ,m;α

∣∣P †V n
1 P
∣∣ ℓ′,m′; β

〉
= −

〈
ℓ,m;α

∣∣PV n
1 P

−1
∣∣ ℓ′,m′; β

〉
. (5.6.360)

On the other hand, for integer ℓ and ℓ′,

⟨ℓ,m;α|P † = (−)ℓ ⟨ℓ,m;α| (5.6.361)

P |ℓ′,m′; β⟩ = (−)ℓ′ |ℓ′,m′; β⟩ , (5.6.362)

which implies 〈
ℓ,m;α

∣∣P †V n
1 P
∣∣ ℓ′,m′; β

〉
= (−)ℓ+ℓ′ ⟨ℓ,m;α |V n

1 | ℓ′,m′; β⟩ . (5.6.363)

Altogether,

⟨ℓ,m;α |V n
1 | ℓ′,m′; β⟩ = (−)ℓ+ℓ′+1 ⟨ℓ,m;α |V n

1 | ℓ′,m′; β⟩ . (5.6.364)

We conclude: if V i is a vector under parity and if ℓ and ℓ′ are integers, only when the difference
of the latter is an odd number, namely |ℓ−ℓ′| = 2n+1 for n = 0, 1, 2, 3, . . . , is the corresponding
matrix element ⟨ℓ,m;α |V n

1 | ℓ′,m′; β⟩ non-zero. But we have already found |ℓ− ℓ′| ≤ 1; hence,

|ℓ− ℓ′| = 1 (5.6.365)

Electric dipole transitions in quantum mechanics are described by replacing V⃗ with the position
operator X⃗ in eq. (5.6.350).

If, instead, V i were a pseudo-vector under parity,

P †V iP = V i, (5.6.366)

we’d discover that

⟨ℓ,m;α |V n
1 | ℓ′,m′; β⟩ = (−)ℓ+ℓ′ ⟨ℓ,m;α |V n

1 | ℓ′,m′; β⟩ . (5.6.367)

For the matrix element to be non-zero, the difference between ℓ and ℓ′ must now be even. To be
consistent with |ℓ− ℓ′| ≤ 1, therefore, the non-trivial matrix element involving a pseudo-vector
must have

ℓ = ℓ′. (5.6.368)
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Projection theorem We now turn to using the lemma enveloping eq. (5.6.336) and the
Wigner-Eckart theorem itself to deduce, the matrix element within a spin j subspace of the rank
1 spherical tensor V n

1 is related to its angular momentum counterpart Jn1 via the relation

⟨j,m; Ψ |V n
1 | j,m′; Φ⟩ =

〈
j,m; Ψ

∣∣∣J⃗ · V⃗ ∣∣∣ j,m; Φ
〉

j(j + 1)
⟨j,m |Jn1 | j,m′⟩ (5.6.369)

=

〈
j,m′; Ψ

∣∣∣J⃗ · V⃗ ∣∣∣ j,m′; Φ
〉

j(j + 1)
⟨j,m |Jn1 | j,m′⟩ ,

where J⃗ · V⃗ is the Cartesian dot product; and the ⟨j,m |Jn1 | j,m′⟩ is simply the matrix element
of Jn1 in the angular momentum eigenstate basis, and does not involve Ψ nor Φ.

By the Wigner-Eckart theorem, we know that

⟨j,m; Ψ |V n
1 | j,m′; Φ⟩ = ⟨j m; 1 j| 1 n; j m′⟩ ⟨j; Ψ ||V1|| j; Φ⟩ , (5.6.370)

⟨j,m |Jn1 | j,m′⟩ = ⟨j m; 1 j| 1 n; j m′⟩ ⟨j ||J1|| j⟩ . (5.6.371)

Therefore, we may establish eq. (5.6.369) once we can show〈
j,m; Ψ

∣∣∣J⃗ · V⃗ ∣∣∣ j,m; Φ
〉

j(j + 1)
=

〈
j,m; Ψ

∣∣∣J⃗ · V⃗ ∣∣∣ j,m; Φ
〉

〈
j,m

∣∣∣J⃗2

∣∣∣ j,m〉 =
⟨j; Ψ ||V1|| j; Φ⟩
⟨j ||J1|| j⟩

; (5.6.372)

since eq. (5.6.369) will read

⟨j m; 1 j| 1 n; j m⟩ ⟨j; Ψ ||V1|| j; Φ⟩ =
⟨j; Ψ ||V1|| j; Φ⟩
⟨j ||J1|| j⟩

⟨j m; 1 j| 1 n; j m⟩ ⟨j ||J1|| j⟩ . (5.6.373)

The key point is that, since the Cartesian versions of J⃗ and V⃗ are vector operators, both J⃗ · V⃗
and J⃗2 are scalar operators and therefore commute with J i itself. By the lemma surrounding
eq. (5.6.336), we see that both the numerator and denominator after the first equality of eq.
(5.6.372) are m independent. In particular, we may exploit the decomposition in eq. (5.6.330)
(and eq. (5.6.326)),〈

j,m; Ψ
∣∣∣J⃗ · V⃗ ∣∣∣ j,m; Φ

〉
=
〈
j,m; Ψ

∣∣J0
1V

0
1 + 2−1/2J+V −1

1 − 2−1/2J−V +1
1

∣∣ j,m; Φ
〉

(5.6.374)

= m
〈
j,m; Ψ

∣∣V 0
1

∣∣ j,m; Φ
〉
+
√
(j +m)(j −m+ 1)/2

〈
j,m− 1;Ψ

∣∣V −1
1

∣∣ j,m; Φ
〉

−
√

(j −m)(j +m+ 1)/2
〈
j,m+ 1;Ψ

∣∣V +1
1

∣∣ j,m; Φ
〉

(5.6.375)

=
(
m ⟨j m; 1 j| 1 0, j m⟩+

√
(j +m)(j −m+ 1)/2 ⟨j m− 1; 1 j| 1 − 1, j m⟩

−
√

(j −m)(j +m+ 1)/2 ⟨j m+ 1; 1 j| 1 + 1, j m⟩
)
⟨j; Ψ ||V1|| j; Φ⟩ (5.6.376)

≡ χj ⟨j; Ψ ||V1|| j; Φ⟩ . (5.6.377)
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(This χj actually does not depend on m – can you explain why?) By replacing V⃗ → J⃗ we may
immediately write down

j(j + 1) =
〈
j,m

∣∣∣J⃗2
∣∣∣ j,m〉 (5.6.378)

=
(
m ⟨j m; 1 j| 1 0, j m⟩+

√
(j +m)(j −m+ 1)/2 ⟨j m− 1; 1 j| 1 − 1, j m⟩

−
√

(j −m)(j +m+ 1)/2 ⟨j m+ 1; 1 j| 1 + 1, j m⟩
)
⟨j ||J1|| j⟩ (5.6.379)

= χj ⟨j ||J1|| j⟩ . (5.6.380)

Dividing equations (5.6.377) by (5.6.380) lead us to eq. (5.6.372). This proves the projection
theorem.

5.7 ⋆Rotations in 4 Spatial Dimensions

In this section, let us briefly examine 4D rotations – i.e., SO4. Because the generators {Jab} in the
general SOD algebra are anti-symmetric, Jab = −J ba, recall that means there are (42− 4)/2 = 6
independent ones. More geometrically, in 4D, there are

(
4
2

)
= 4!/(22) = 6 independent 2D planes

that may be rotated. When a and b of Jab are both not equal to 4, the generators are simply
the set of 3 generators {J i = ϵijkJk} of the 3D case above. To avoid confusion, we will now use
capital letters to denote an index that runs between 1 and 3; so, for e.g., we have

J I =
1

2
ϵIJKJJK ⇔ ϵIJKJ I = JJK. (5.7.1)

The remaining 3 generators of SO4 are then {J I4}. Like the preceding 3D case, we need to
compute the Lie Algebra of these angular momentum operators. We already know from eq.
(5.6.14) that [

JA, JB
]
= iϵABCJC. (5.7.2)

We therefore only need to figure out the commutation relations among the {J I4} and between
them and the {J I}. From eq. (5.5.55), we have[

JA4, JB4
]
= −i

(
δA[BJ4]4 − δ4[BJ4]A

)
. (5.7.3)

Keeping in mind A, B ̸= 4 and J44 = 0 because of anti-symmetry,[
JA4, JB4

]
= −iJBA (5.7.4)[

JA4, JB4
]
= iϵABCJC. (5.7.5)

Next, we do [
JA4, JBC

]
= −i

(
δA[BJC]4 − δ4[BJC]A

)
(5.7.6)[

JA4, JK
]
= − i

2
ϵKBC

(
δA[BJC]4 − δ4[BJC]A

)
. (5.7.7)

This leads us to [
JA4, JB

]
= iϵABCJC4. (5.7.8)
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SO4 Lie Algebra If A, B, C runs from 1 through 3 only, and if we remember
the definition in eq. (5.7.1), the angular momentum operators in 4D obey the Lie
Algebra in equations (5.7.2), (5.7.5) and (5.7.8).

Problem 5.90. so4: Two copies of SO3 Lie Algebra Define

M I
± ≡

J I ± J I4

2
. (5.7.9)

Show that [
M I

+,M
J
−
]
= 0 and

[
M I

±,M
J
±
]
= iϵIJKMK

± . (5.7.10)

That is, the SO4 Lie Algebra can be re-written into two independent copies of the SO3 ones.
Borrowing the 3D discussion, we may deduce that the eigenstates of the angular momentum
operators in 4D may be described by two independent pairs of numbers (ℓ±,m±); with ℓ± non-
negative integer/half-integer,

M⃗2
±

∣∣∣ℓ+,m+
ℓ−,m−

〉
= ℓ±(ℓ± + 1)

∣∣∣ℓ+,m+
ℓ−,m−

〉
, M⃗2

± ≡M I
±M

I
± (5.7.11)

M3
±

∣∣∣ℓ+,m+
ℓ−,m−

〉
= m±

∣∣∣ℓ+,m+
ℓ−,m−

〉
(5.7.12)

and m± ∈ {−ℓ±,−ℓ± + 1, . . . , ℓ± − 1, ℓ±}.

5.8 ⋆Dilatations and the Mellin Transform

In this section, we shall study the group of dilatations, where the positive real line {r|r ≥ 0} is
re-scaled by a non-negative number λ ≥ 0. If |r⟩ denotes the position eigenket, we define the
dilatation operator as

Ds(λ) |r⟩ ≡ λs+1 |λ · r⟩ . (5.8.1)

We may readily verify,

Ds(λ)Ds(λ
′) |r⟩ = (λ · λ′)s+1 |λ · λ′ · r⟩

= Ds(λ · λ′) |r⟩ ; (5.8.2)

Ds(λ)Ds(λ
′)Ds(λ

′′) |r⟩ = (λ · λ′ · λ′′)s+1 |λ · λ′ · λ′′ · r⟩
= (Ds(λ)Ds(λ

′))Ds(λ
′′) |r⟩

= Ds(λ)(Ds(λ
′)Ds(λ

′′)) |r⟩ ; (5.8.3)

Ds(1) |r⟩ = |r⟩ = I |r⟩ ; (5.8.4)

and

Ds(λ)
−1 = Ds(λ

−1). (5.8.5)

The inverse in eq. (5.8.5) may be readily checked, since

Ds(λ)Ds(λ
−1) |r⟩ = (λ · λ−1)s+1

∣∣λ · λ−1 · r
〉
. (5.8.6)
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If we define the inner product between two arbitrary states |f⟩ and |g⟩ as

⟨f | g⟩ (s) ≡
∫ ∞

0

⟨f | r⟩ ⟨r| g⟩ r2s+1dr (5.8.7)

=

∫ ∞

0

f(r)∗g(r)r2s+1dr, (5.8.8)

the identity operator is then given by the following sum-over-eigenkets

I =
∫ ∞

0

|r⟩ ⟨r| r2s+1dr. (5.8.9)

This allows us to, im turn, deduce the inner product between two position eigenkets. Since
I |r′⟩ = |r′⟩, eq. (5.8.9) leads us to

|r′⟩ =
∫ ∞

0

|r⟩ ⟨r| r′⟩ r2s+1dr. (5.8.10)

Because |r′⟩ is arbitrary,

⟨r| r′⟩ = δ(r − r′)
(r · r′)s+ 1

2

. (5.8.11)

Caution Note that we are not assuming |r⟩ resides in some flat (Euclidean) space, where
the associated inner product in spherical or polar coordinates would have s here dependent on
the number of spatial dimensions.

Translation Non-Invariance Additionally, notice eq. (5.8.7) is an example of an inner
product that is not invariant under translations r → r + a (for constant a); due to both the
lower limit 0 as well as the integration measure r2s+1dr. In other words: moving to the left of
r = 0 is illegal; and the integration measure r2s+1, at least when s > 1/2, gives a heavier weight
for larger values of r.

Problem 5.91. Ds(λ) Is Unitary Show that Ds(λ) is unitary.

Without loss of generality, if we express

λ = eϵ (5.8.12)

for ϵ ∈ R, we can check that eq. now becomes

Ds(e
ϵ)Ds(e

ϵ′) = Ds(e
ϵ+ϵ′); (5.8.13)

i.e., the exponents of λ and λ′ add under group multiplication. This and the unitary character
of Ds(λ) informs us,

Ds(e
ϵ) = exp(−iϵEs) (5.8.14)

for some Hermitian generator Es.
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Problem 5.92. Dilatation Generator in Position r−Space If we write λ = eϵ and
assume |ϵ| ≪ 1, Ds(λ) will be very ‘close’ to the identity. Derive the following representation
for the dilatation generator:

⟨r |Es| f⟩ = i (r∂r + s+ 1) ⟨r| f⟩ . (5.8.15)

Solve its eigen-equation Es |ν⟩ = ν |ν⟩ and show that up to a multiplicative phase factor,

⟨r| ν⟩ = r−iν−(s+1), (5.8.16)

⟨ν| ν ′⟩ = 2πδ(ν − ν ′). (5.8.17)

Hint: Start by considering ⟨r |Ds(e
ϵ)| f⟩ =

〈
r
∣∣e−iϵ·Es∣∣ f〉.

The eigenvalue ν in Es |ν⟩ = ν |ν⟩ runs over the entire real line. To see this, we note that the
inner product of eq. (5.8.7) as well as the measure of the δ−functions on the right hand side of
eq. (5.8.17) strongly indicates

I =
∫
R

dν

2π
|ν⟩ ⟨ν| . (5.8.18)

An arbitrary state |f⟩ may therefore be expanded as

f(r ≥ 0) ≡ ⟨r| f⟩ =
∫ ∞

−∞
⟨r| ν⟩ ⟨ν| f⟩ dν

2π

= r−(s+1)

∫
R
e−iν ln rf̃(ν)

dν

2π
. (5.8.19)

To prove its validity, we simply compute its matrix element in the position basis:∫
R

dν

2π
⟨r| ν⟩ ⟨ν| r′⟩ =

∫
R

dν

2π
r−iν−(s+1) · r′+iν−(s+1) (5.8.20)

= (r · r′)−(s+1)

∫
R

dν

2π
e−i(ν−ν

′) ln(t/r′) (5.8.21)

= (r · r′)−(s+1)δ (ln(r/r′)) (5.8.22)

=
δ (r − r′)
(r · r′)s+ 1

2

. (5.8.23)

The identity operator in the position basis, i.e., eq. (5.8.9), tells us the state |f⟩ may also be
expressed as

f̃(ν ∈ R) ≡ ⟨ν| f⟩ =
∫ ∞

0

⟨ν| r⟩ ⟨r| f⟩ r2s+1dr

=

∫ ∞

0

rs+iνf(r)dr. (5.8.24)

Mellin Transform For s, ν ∈ R, the Mellin transform of some function f(r ≥ 0) defined
on the positive real line is

f̃(z) ≡
∫ ∞

0

rz−1f(r)dr, (5.8.25)

185



z ≡ s+ 1 + iν. (5.8.26)

Comparing equations (5.8.19) and (5.8.25) demonstrates the intimate relationship between the
Mellin transform and the dilatation group. In particular, the imaginary part of the exponent z
in the Mellin transform is the eigenvalue of the generator of the dilatation operator. Recall the
analogous situation for the Fourier transform, which we discovered while studying the translation

group – for e.g., the momentum vector k⃗ occurring in the plane wave expansion eik⃗·x⃗ was the
eigenvalue of the generator of translations.

The absolute value of eq. (5.8.25) is bounded as

|f̃(z)| ≤
∫ ∞

0

rs|f(r)|dr. (5.8.27)

Hence, whenever the integral on the right hand side of eq. (5.8.27) convergences within some
open interval s+ 1 ∈ (a, b) – then so does the Mellin transform in eq. (5.8.25). For instance, if
f(r) is continuous and

f(r → 0) ∼ r−a+iα, f(r → +∞) ∼ r−b+iβ; (5.8.28)

then

lim
r→0
|f(r)rz−1| ∼ rRe(z)−a−1, (5.8.29)

lim
r→∞
|f(r)rz−1| ∼ rRe(z)−b−1; (5.8.30)

and therefore the Mellin transform in eq. (5.8.25) converges because the contributions from the
lower and upper limits converge.

Moreover, the Riemann-Lebesgue lemma tells us

lim
ν→∞

f̃(z = s+ 1 + iν) = 0. (5.8.31)

As we shall explore further in §(6) below, these properties allow us to view the Mellin transform
of f(r) as an (infinitely) differentiable function of the complex variable z in the (open) vertical
strip a < Re(z) < b.

Mellin Transform Pair Given an open interval Re(z) = s + 1 ∈ (a, b)
where the Mellin transform in eq. (5.8.25) is well defined; its inverse can be found in
eq. (5.8.19).

A simple example of the Mellin transform is that of the radial integral in D−dimensional infinite
flat space. The volume measure is dΩdr · rD−1, where dΩ refers to the infinitesimal solid angle
and r is the radial coordinate. The radial portion of a volume integral involving some function
f(r) (with all angular coordinates suppressed) would read

f̃(z = D) =

∫ ∞

0

f(r)rD−1dr; (5.8.32)

We shall explore further applications of the Mellin transform in §(6) below.

Problem 5.93. Inverse Mellin as Fourier Explain why the inverse Mellin transform in
eq. (5.8.19) is really a Fourier decomposition.

Hint: Multiply both sides of eq. (5.8.25) with e−iν ln r
′
, and integrate over ν using the integral

representation of the Dirac δ−function in eq. (5.1.6).
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5.9 ⋆Clebsch-Gordan Coefficients

In this section, we compile for the reader’s reference, Clebsch-Gordan coefficients

{⟨ℓ1 m1, ℓ2 m2| j m; ℓ1ℓ2⟩} (5.9.1)

for adding the spins ℓ1 and ℓ2, with m1 and m2 being their respectively azimuthal numbers.The
j demotes the total angular momentum label, and m its corresponding azimuthal number. We
use the notation

|ℓ1,m1⟩ ⊗ |ℓ2,m2⟩ ≡ |ℓ1 m1, ℓ2 m2⟩ . (5.9.2)

for the tensor product states; and

|j m; ℓ1ℓ2⟩ (5.9.3)

for the total angular momentum states arising from adding spin ℓ1 and ℓ2.
Remember the constraint

m1 +m2 = m (5.9.4)

and admissible range of j:

j ∈ {|ℓ1 − ℓ2|, |ℓ1 − ℓ2|+ 1, |ℓ1 − ℓ2|+ 2, . . . , ℓ1 + ℓ2 − 2, ℓ1 + ℓ2 − 1, ℓ1 + ℓ2} . (5.9.5)

Adding
∣∣1
2
,m1

〉
⊗
∣∣1
2
,m2

〉
to yield spin 0〈

1

2

1

2
,
1

2
− 1

2

∣∣∣∣ 0 0;
1

2

1

2

〉
=

1√
2
, (5.9.6)〈

1

2
− 1

2
,
1

2

1

2

∣∣∣∣ 0 0;
1

2

1

2

〉
= − 1√

2
. (5.9.7)

Adding
∣∣1
2
,m1

〉
⊗
∣∣1
2
,m2

〉
to yield spin 1〈

1

2

1

2
,
1

2

1

2

∣∣∣∣ 1 1;
1

2

1

2

〉
= 1, (5.9.8)〈

1

2

1

2
,
1

2
− 1

2

∣∣∣∣ 1 0;
1

2

1

2

〉
=

1√
2
, (5.9.9)〈

1

2
− 1

2
,
1

2

1

2

∣∣∣∣ 1 0;
1

2

1

2

〉
=

1√
2
, (5.9.10)〈

1

2
− 1

2
,
1

2
− 1

2

∣∣∣∣ 1 − 1;
1

2

1

2

〉
= 1. (5.9.11)

Adding
∣∣1
2
,m1

〉
⊗ |1,m2⟩ or |1,m1⟩ ⊗

∣∣1
2
,m2

〉
to yield spin 1/2〈

1

2
− 1

2
, 1 1

∣∣∣∣ 12 1

2
;
1

2
1

〉
= −

√
2

3
, (5.9.12)
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〈
1

2

1

2
, 1 0

∣∣∣∣ 12 1

2
;
1

2
1

〉
=

√
1

3
, (5.9.13)〈

1

2
− 1

2
, 1 0

∣∣∣∣ 12 1

2
;−1

2
1

〉
= −

√
1

3
, (5.9.14)〈

1

2

1

2
, 1 − 1

∣∣∣∣ 12 1

2
;
1

2
1

〉
=

√
2

3
; (5.9.15)

and 〈
1 1,

1

2
− 1

2

∣∣∣∣ 12 1

2
;
1

2
1

〉
=

√
2

3
, (5.9.16)〈

1 0,
1

2

1

2

∣∣∣∣ 12 1

2
;
1

2
1

〉
= −

√
1

3
, (5.9.17)〈

1 0,
1

2
− 1

2

∣∣∣∣ 12 1

2
;−1

2
1

〉
=

√
1

3
, (5.9.18)〈

1 − 1,
1

2

1

2

∣∣∣∣ 12 1

2
;
1

2
1

〉
= −

√
2

3
. (5.9.19)

Adding
∣∣1
2
,m1

〉
⊗|1,m2⟩ or |1,m1⟩⊗

∣∣1
2
,m2

〉
to yield spin 3/2 YZ: This section is woefully

incomplete.

5.10 ⋆Approximation Methods for Eigensystems

5.10.1 Rayleigh-Schrödinger Perturbation Theory

Suppose we know how to diagonalize some Hermitian operator H0 exactly.

H0

∣∣Ē〉 = Ē
∣∣Ē〉 (5.10.1)

In this section39 we will address how to diagonalize a H, namely

H |E⟩ = E |E⟩ ; (5.10.2)

in the situation where it is a small perturbation of the H0, in the following sense:

H ≡ H0 + ϵH1 + ϵ2H2 +O
(
ϵ3
)

(5.10.3)

= H0 +
+∞∑
ℓ=1

ϵℓHℓ. (5.10.4)

Here, 0 < ϵ≪ 1 is oftentimes fictitious parameter indicating the ‘smallness’ of the His; so the ϵ
in ϵH1 reminds us H1 is to be considered first order in perturbation, ϵ2H2 second order, etc. and
the {δℓH|ℓ = 1, 2, 3, . . . } are assumed to be Hermitian operators. Such a perturbed operator H

39The discussion here is inspired by §4.11 of Byron and Fuller [14], Sakurai and Napolitano [11], and Weinberg
[12] Chapter 5.
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appears in many physical situations, such as atomic physics – where the H0 is the Hamiltonian
of the nucleus-electron(s) atomic system itself; and the δℓH are perturbations induced, say, spin-
orbit interactions; relativistic corrections; or by immersing the atom in an electric (Stark effect)
and/or magnetic field (Zeeman effect); etc. In physical problems, the ‘smallness’ parameter
ϵ of an operator may often be identified with ratios of important dimensionful quantities of
the setup at hand. Moreover, we have implicitly assumed a single parameter ϵ here; while in
physical problems where there are more than 2 dimension-ful quantities there will generically be
multiple independent ϵs. In such a scenario the perturbation theory delineated here will have to
be extended appropriately.

Non-degenerate Case The solution strategy is to postulate that the eigensystems of
H are themselves a power series in ϵ, where the zeroth order (i.e., ϵ-independent) piece is simply
a given, exact, eigensystem of H0. The corrections to the eigenstates induced by the Hℓ≥1s will
in turn be expressed in terms of the unperturbed eigensystems of H0. Specifically, let

∣∣Ēa〉 be
the ath eigenstate of H0 and |Ea⟩ be that of the full H. For now, we shall assume that Ēa is a
non-degenerate eigenvalue; and the eigenstates are orthonormal,〈

Ēb
∣∣ Ēa〉 = δba, (5.10.5)∑

a

∣∣Ēa〉 〈Ēa∣∣ = I. (5.10.6)

40Then, we assert

|Ea⟩ =
∣∣Ēa〉+ +∞∑

ℓ=1

ϵℓ | ℓEa⟩ (5.10.7)

=
∣∣Ēa〉+ +∞∑

ℓ=1

∑
s

ϵℓ
∣∣Ēs〉 〈Ēs∣∣ ℓEa〉 . (5.10.8)

where | ℓEa⟩ is the ℓth correction to the ath energy eigenstate. The ath energy eigenvalue is,
itself, a power series

Ea = Ēa +
+∞∑
ℓ=1

ϵℓδℓEa. (5.10.9)

The goal is therefore to compute the perturbations of the eigenstate along the unperturbed ones
{
〈
Ēs
∣∣
ℓEa
〉
} and of the eigenvalues {δℓEa} in terms of the unperturbed ones {Ēa}.

Now, the eigenvalue problem is given by H |Ea⟩ = Ea |Ea⟩. Expanding in powers of ϵ,(
H0 + ϵH1 + ϵ2H2 + . . .

) (∣∣Ēa〉+ ϵ | 1Ea⟩+ ϵ2 | 2Ea⟩+ . . .
)

=
(
Ēa + ϵδ1Ea + ϵ2δ2Ea + . . .

) (∣∣Ēa〉+ ϵ | 1Ea⟩+ ϵ2 | 2Ea⟩+ . . .
)
; (5.10.10)

40The completeness relation of eq. (5.10.6) involves the sum over all states – both degenerate and non-
degenerate ones. While we are assuming Ēa is non-degenerate for now; the other eigenstates {

∣∣Ēb ̸=a

〉
} are

allowed to be degenerate. Strictly speaking, in such a situation we ought to introduce a degeneracy label, for
e.g.,

∣∣Ēb; i
〉
, but prefer not to do so to avoid notation overload.
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we may collect powers of ϵ in the following manner:

H0

∣∣Ēa〉+ ϵH0 | 1Ea⟩+ ϵ2H0 | 2Ea⟩+ . . . (5.10.11)

+ ϵH1

∣∣Ēa〉+ ϵ2H1 | 1Ea⟩+ . . . (5.10.12)

+ ϵ2H2

∣∣Ēa〉+ . . . (5.10.13)

= Ēa
∣∣Ēa〉+ ϵĒa | 1Ea⟩+ ϵ2Ēa | 2Ea⟩+ . . . (5.10.14)

+ ϵδ1Ea
∣∣Ēa〉+ ϵ2δ1Ea | 1Ea⟩+ . . . (5.10.15)

+ ϵ2δ2Ea
∣∣Ēa〉+ . . . . (5.10.16)

The O(ϵ0) terms on both sides cancel out because they simply amount to eq. (5.10.1). The
O(ϵ, ϵ2) terms are(

H0 − Ēa
)
| 1Ea⟩ = − (H1 − δ1Ea)

∣∣Ēa〉 , (5.10.17)(
H0 − Ēa

)
| 2Ea⟩ = − (H1 − δ1Ea) | 1Ea⟩ − (H2 − δ2Ea)

∣∣Ēa〉 . (5.10.18)

More generally, at the O(ϵℓ≥1) level,(
H0 − Ēa

)
| ℓEa⟩

= − (H1 − δ1Ea) | ℓ−1Ea⟩ − (H2 − δ2Ea) | ℓ−2Ea⟩
· · · − (Hℓ−2 − δℓ−2Ea) | 2Ea⟩ − (Hℓ−1 − δℓ−1Ea) | 1Ea⟩ − (Hℓ − δℓEa)

∣∣Ēa〉 (5.10.19)

= −
ℓ−1∑
s=1

(Hs − δsEa) | ℓ−sEa⟩ − (Hℓ − δℓEa)
∣∣Ēa〉 .

Due to the hermitian character of H0, eq. (5.10.1) may be expressed as〈
Ēa
∣∣ (H0 − Ēa

)
= 0. (5.10.20)

Therefore,
〈
Ēa
∣∣ acting on both sides of equations (5.10.17), (5.10.18), (5.10.19), etc. would yield

zero on their left hand sides and in turn lead to

0 = −
〈
Ēa
∣∣H1

∣∣Ēa〉+ δ1Ea, (5.10.21)

0 = −
〈
Ēa
∣∣H1 − δ1Ea | 1Ea⟩ −

〈
Ēa
∣∣H2

∣∣Ēa〉+ δ2Ea, (5.10.22)

. . . . . .

0 = −
〈
Ēa
∣∣H1 − δ1Ea | ℓ−1Ea⟩ −

〈
Ēa
∣∣H2 − δ2Ea | ℓ−2Ea⟩ (5.10.23)

· · · −
〈
Ēa
∣∣Hℓ−2 − δℓ−2Ea | 2Ea⟩ −

〈
Ēa
∣∣Hℓ−1 − δℓ−1Ea | 1Ea⟩ −

〈
Ēa
∣∣Hℓ

∣∣Ēa〉+ δℓEa.

At this juncture, let us observe it is always possible to render〈
Ēa
∣∣
ℓEa
〉
= 0 (5.10.24)

for all ℓ ≥ 1 simply by choosing to normalize our eigenstates as〈
Ēa
∣∣Ea〉 = 1. (5.10.25)
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To this end, let us first recall that an eigenvector |λ⟩ is only defined up to an overall multiplicative
complex amplitude χ; i.e., if A |λ⟩ = λ |λ⟩ so does A(χ |λ⟩) = λ(χ |λ⟩). Therefore, since χ
multiplies every coefficient when we expand χ |λ⟩ as a superposition over basis vectors {|j⟩}, as
long as the overlap between |λ⟩ =

∑
j |j⟩ ⟨j|λ⟩ and a given basis vector |i⟩ is non-zero; we may

choose to normalize |λ⟩ by specifying ⟨i|λ⟩ – since, under re-scaling |λ⟩ → χ |λ⟩, ⟨i|λ⟩ → χ ⟨i|λ⟩.
This is precisely the case in eq. (5.10.25), where we know

∣∣Ēa〉 must have significant overlap
with the exact eigenstate |Ea⟩. Expanding eq. (5.10.25),

〈
Ēa
∣∣ Ēa〉+ +∞∑

ℓ=1

ϵℓ
〈
Ēa
∣∣
ℓEa
〉
= 1 (5.10.26)

+∞∑
ℓ=1

ϵℓ
〈
Ēa
∣∣
ℓEa
〉
= 0; (5.10.27)

followed by setting to zero the coefficient of each ϵℓ≥1, we arrive at eq. (5.10.24).
Additionally, starting with | 1Ea⟩, notice eq. (5.10.17) is invariant under the replacement

| 1Ea⟩ → | 1Ea⟩ + χ1

∣∣Ēa〉 – for arbitrary complex number χ1 – because of the eigen-equation
(5.10.1). In other words, if we found a solution | 1Ea⟩ = |ψ1⟩; then so is | 1Ea⟩ = |ψ1⟩+ χ1

∣∣Ēa〉.
Hence, if

〈
Ēa
∣∣
ℓEa
〉
=
〈
Ēa
∣∣ψ1

〉
̸= 0, we may simply choose χ1 such that the new solution

| 1Ea⟩new ≡ |ψ1⟩ + χ
∣∣Ēa〉 satisfies

〈
Ēa
∣∣

1Ea
〉
new

=
〈
Ēa
∣∣ψ1

〉
+ χ = 0. Now, suppose we have

solved | iEa⟩ from i = 1 up to i = ℓ− 1. Then we see, just like the ℓ = 1 case, both | ℓEa⟩ = |ψℓ⟩
and | ℓEa⟩ = |ψℓ⟩ + χℓ

∣∣Ēa〉 solve eq. (5.10.19) as long as |ψℓ⟩ is a solution. Therefore if〈
Ēa
∣∣
ℓEa
〉
were not zero, then the ‘new’ solution | ℓEa⟩new ≡ |ψℓ⟩+χℓ

∣∣Ēa〉 can be made to satify
0 =

〈
Ēa
∣∣
ℓEa
〉
new

=
〈
Ēa
∣∣ψℓ〉+ χ simply by choosing χ = −

〈
Ēa
∣∣ψℓ〉.

The freedom to shift the perturbation by a constant multiple of
∣∣Ēa〉 at each step of the

construction is related to the freedom to re-scale the eigenket |Ea⟩ itself. For, at the ℓth step,
when we perform | ℓEa⟩ → | ℓEa⟩+χℓ

∣∣Ēa〉, the normalization condition in eq. (5.10.25) is altered
into 〈

Ēa
∣∣Ea〉 = 〈Ēa∣∣(∣∣Ēa〉+ ℓ−1∑

k=1

ϵk | kEa⟩+ ϵℓ(| ℓEa⟩+ χℓ
∣∣Ēa〉) +O(ϵℓ+1)

)
= 1 + ϵℓχℓ +O(ϵℓ+1) (5.10.28)

As you will witness in Problem (5.95) below, at least up to the second order in perturbations,
this freedom to shift the solution may in fact be used to construct a unit norm eigenket.

Returning to the equations (5.10.21)–(5.10.23), we may thus employ eq. (5.10.24) to gather:

0 = −
〈
Ēa
∣∣H1

∣∣Ēa〉+ δ1Ea, (5.10.29)

0 = −
〈
Ēa
∣∣H1 | 1Ea⟩ −

〈
Ēa
∣∣H2

∣∣Ēa〉+ δ2Ea, (5.10.30)

. . . . . .

0 = −
〈
Ēa
∣∣H1 | ℓ−1Ea⟩ −

〈
Ēa
∣∣H2 | ℓ−2Ea⟩ (5.10.31)

· · · −
〈
Ēa
∣∣Hℓ−2 | 2Ea⟩ −

〈
Ēa
∣∣Hℓ−1 | 1Ea⟩ −

〈
Ēa
∣∣Hℓ

∣∣Ēa〉+ δℓEa.

The eigensystem of eq. (5.10.1) also tells us, for b ̸= a,〈
Ēb
∣∣ (H0 − Ēa

)
= (Ēb − Ēa)

〈
Ēb
∣∣ . (5.10.32)
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Therefore,
〈
Ēb ̸=a

∣∣ acting on both sides of equations (5.10.17), (5.10.18), (5.10.19), etc. would
produce(

Ēb − Ēa
) 〈
Ēb
∣∣

1Ea
〉
= −

〈
Ēb
∣∣H1

∣∣Ēa〉 , (5.10.33)(
Ēb − Ēa

) 〈
Ēb
∣∣

2Ea
〉
= −

〈
Ēb
∣∣H1 − δ1Ea | 1Ea⟩ −

〈
Ēb
∣∣H2

∣∣Ēa〉 , (5.10.34)

. . . . . .(
Ēb − Ēa

) 〈
Ēb
∣∣
ℓEa
〉
= −

〈
Ēb
∣∣H1 − δ1Ea | ℓ−1Ea⟩ −

〈
Ēb
∣∣H2 − δ2Ea | ℓ−2Ea⟩ (5.10.35)

· · · −
〈
Ēb
∣∣Hℓ−2 − δℓ−2Ea | 2Ea⟩ −

〈
Ēb
∣∣Hℓ−1 − δℓ−1Ea | 1Ea⟩

−
〈
Ēb
∣∣Hℓ

∣∣Ēa〉 .
From eq. (5.10.29), we see that the first order correction to the energy is the expectation value
of the first correction to the Hamiltonian:

δ1Ea =
〈
Ēa
∣∣H1

∣∣Ēa〉 . (5.10.36)

The off-diagonal term in eq. (5.10.33) allows us to infer, the first-order correction to the ath
eigenstate along the

∣∣Ēb ̸=a〉-direction is

〈
Ēb ̸=a

∣∣
1Ea
〉
=

〈
Ēb |H1| Ēa

〉
Ēa − Ēb

. (5.10.37)

Turning to the second order corrections, the completeness relation I =
∑

c

∣∣Ēc〉 〈Ēc∣∣, together
with equations (5.10.5), (5.10.24), (5.10.36), and (5.10.37), allow us to massage equations (5.10.30)
and (5.10.34):

0 = −
∑
b

〈
Ēa
∣∣H1

∣∣Ēb〉 〈Ēb∣∣ 1Ea
〉
−
〈
Ēa
∣∣H2

∣∣Ēa〉+ δ2Ea (5.10.38)

δ2Ea =
∑
b ̸=a

〈
Ēa
∣∣H1

∣∣Ēb〉 〈Ēb∣∣ 1Ea
〉
+
〈
Ēa
∣∣H2

∣∣Ēa〉 (5.10.39)

=
∑
b ̸=a

〈
Ēa
∣∣H1

∣∣Ēb〉 〈Ēb |H1| Ēa
〉

Ēa − Ēb
+
〈
Ēa
∣∣H2

∣∣Ēa〉 . (5.10.40)

(
Ēb − Ēa

) 〈
Ēb
∣∣

2Ea
〉
= −

∑
c

〈
Ēb
∣∣H1 − δ1Ea

∣∣Ēc〉 〈Ēc∣∣ 1Ea
〉
−
〈
Ēb
∣∣H2

∣∣Ēa〉 (5.10.41)

= −
∑
c ̸=a

〈
Ēb
∣∣H1 −

〈
Ēa |H1| Ēa

〉 ∣∣Ēc〉 〈Ēc |H1| Ēa
〉

Ēa − Ēc
−
〈
Ēb
∣∣H2

∣∣Ēa〉
〈
Ēb
∣∣

2Ea
〉
=
(
Ēa − Ēb

)−1

(∑
c ̸=a

〈
Ēb |H1| Ēc

〉 〈Ēc |H1| Ēa
〉

Ēa − Ēc
(5.10.42)

−
〈
Ēa |H1| Ēa

〉 〈Ēb |H1| Ēa
〉

Ēa − Ēb
+
〈
Ēb
∣∣H2

∣∣Ēa〉).
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We now have the necessary ingredients to construct both the eigenvalue and eigenstate pertur-
bations | ℓEa⟩ =

∑
b

∣∣Ēb〉 〈Ēb∣∣ ℓEa〉 up to second order. Collecting the first order results from
equations (5.10.36) and (5.10.37); the second order ones from equations (5.10.40) and (5.10.42);
and remembering we have chosen to satisfy the constraint in eq. (5.10.24) that eigenket pertur-
bations are orthogonal to

∣∣Ēa〉:
Non-Degenerate PT The eigensystem of

H = H0 + ϵH1 + ϵ2H2 +O(ϵ3), (5.10.43)

expressed in terms of the unperturbed ones – i.e., {
∣∣Ēa〉} obeying H0

∣∣Ēa〉 = Ēa
∣∣Ēa〉

– are given by

H |Ea⟩ = Ea |Ea⟩ , (5.10.44)

Ea = Ēa + ϵ
〈
Ēa |H1| Ēa

〉
(5.10.45)

+ ϵ2

(∑
b ̸=a

|
〈
Ēb |H1| Ēa

〉
|2

Ēa − Ēb
+
〈
Ēa
∣∣H2

∣∣Ēa〉)+O(ϵ3)

|Ea⟩ =
∣∣Ēa〉+ ϵ

∑
b̸=a

∣∣Ēb〉 〈Ēb |H1| Ēa
〉

Ēa − Ēb
+ ϵ2

∑
b ̸=a

∣∣Ēb〉
Ēa − Ēb

(∑
c ̸=a

〈
Ēb |H1| Ēc

〉 〈Ēc |H1| Ēa
〉

Ēa − Ēc

−
〈
Ēa |H1| Ēa

〉 〈Ēb |H1| Ēa
〉

Ēa − Ēb
+
〈
Ēb
∣∣H2

∣∣Ēa〉)+O(ϵ3).

Note that, for Ēb ̸= Ēa, the eigenvalue Ēb can of course be degenerate. The sums
in the above formula must include all the orthonormal basis states within such a
degenerate subspace.

Problem 5.94. ‘Inverse’ of H0 − Ēa The operator H0 − Ēa on the left hand sides of
equations (5.10.17), (5.10.18) and (5.10.19), etc. has no inverse because it has a null eigenvector∣∣Ēa〉; i.e., (H0 − Ēa)

∣∣Ēa〉 = 0. However, if we restrict our attention to the portion of the vector
space perpendicular to

∣∣Ēa〉, then we may write down a pseudo-inverse of sorts:

(H0 − Ēa)−1
⊥ ≡

∑
b ̸=a

∣∣Ēb〉 〈Ēb∣∣
Ēb − Ēa

. (5.10.46)

Verify that

(H0 − Ēa)−1
⊥ (H0 − Ēa) = (H0 − Ēa)(H0 − Ēa)−1

⊥ (5.10.47)

=
∑
b ̸=a

∣∣Ēb〉 〈Ēb∣∣ = I−
∣∣Ēa〉 〈Ēa∣∣ . (5.10.48)

Let |ψ⟩ be orthogonal to
∣∣Ēa〉 but otherwise arbitrary. Explain why

(H0 − Ēa)−1
⊥ (H0 − Ēa) |ψ⟩ = (H0 − Ēa)(H0 − Ēa)−1

⊥ |ψ⟩ = |ψ⟩ . (5.10.49)

Now explain how we may solve for {| iEa⟩ |i = 1, 2, 3, . . . } from (5.10.17), (5.10.18) and (5.10.19),
etc. through the pseudo-inverse (H0 − Ēa)−1

⊥ .
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Problem 5.95. Unit Norm Eigenket Above, we have argued that, if we had already
solved | iEa⟩ from i = 1 up to i = ℓ−1, then if | ℓEa⟩ solves eq. (5.10.19) – so does | ℓEa⟩+χℓ

∣∣Ēa〉.
For example, if | 1Ea⟩ is given by equations (5.10.24) and (5.10.37); then both

∣∣Ēa〉+ ϵ | 1Ea⟩+
ϵ2 | 2Ea⟩ and (1 + ϵ2χ2)

∣∣Ēa〉 + ϵ | 1Ea⟩ + ϵ2 | 2Ea⟩ are eigenkets of H = H0 + ϵH1 + ϵ2H2 up to
quadratic order in ϵ; as long as | 2Ea⟩ solves eq. (5.10.18).

Demonstrate that we may normalize eq. (5.10.46) to unity, up to O(ϵ2), by shifting the
second order correction by

| 2Ea⟩ → | 2Ea⟩ −
∣∣Ēa〉
2

∑
c̸=a

∣∣∣∣∣
〈
Ēc |H1| Ēa

〉
Ēa − Ēc

∣∣∣∣∣
2

. (5.10.50)

Hence, up to second order in perturbation theory,

|Ea⟩ =
∣∣Ēa〉+ ϵ

∑
b̸=a

∣∣Ēb〉 〈Ēb |H1| Ēa
〉

Ēa − Ēb
+ ϵ2

{∑
b̸=a

∣∣Ēb〉
Ēa − Ēb

(∑
c ̸=a

〈
Ēb |H1| Ēc

〉 〈Ēc |H1| Ēa
〉

Ēa − Ēc

−
〈
Ēa |H1| Ēa

〉 〈Ēb |H1| Ēa
〉

Ēa − Ēb
+
〈
Ēb
∣∣H2

∣∣Ēa〉)− ∣∣Ēa〉
2

∑
c ̸=a

∣∣∣∣∣
〈
Ēc |H1| Ēa

〉
Ēa − Ēc

∣∣∣∣∣
2}
(5.10.51)

is not only an eigenket of H = H0 + ϵH1 + ϵ2H2 it is also unit norm.

Degenerate Case If the eigenvalue Ēa in eq. (5.10.1) (and (5.10.20)) is degenerate, the
preceding discussion goes through, up to equations (5.10.17), (5.10.18), and (5.10.19); but we
now need to add an enumeration label j to the eigenstate – namely,

∣∣Ēa; j〉 – that runs from 1
through N , the dimension of this degenerate subspace. Beginning with eq. (5.10.17), we have(

H0 − Ēa
)
| 1Ea; j⟩ = − (H1 − δ1Ea)

∣∣Ēa; j〉 . (5.10.52)

Let us now act
〈
Ēa; i

∣∣ on both sides of this equations, keeping in mind eq. (5.10.20).

0 = −
〈
Ēa; i

∣∣H1

∣∣Ēa; j〉+ δ1Ea
〈
Ēa; i

∣∣ Ēa; j〉 . (5.10.53)

Within the degenerate subspace, we may of course choose the {
∣∣Ēa; i〉} to be orthonormal,〈

Ēa; i
∣∣ Ēa; j〉 = δij. (5.10.54)

Eq. (5.10.53) then reads

δ1Ea · δij =
〈
Ēa; i

∣∣H1

∣∣Ēa; j〉 . (5.10.55)

This equation teaches us why there is a need to divide our analysis into non-degenerate and
degenerate cases. For the non-degenerate case, we have eq. (5.10.36). But for the degenerate
case, we appear instead to arrive at a potential inconsistency. For, while the diagonal i = j
equations appear to return us to eq. (5.10.36); the off-diagonal i ̸= j equations appear to tell us
H1 must have trivial off-diagonal components,〈

Ēa; i
∣∣H1

∣∣Ēa; j〉 = 0, (i ̸= j). (5.10.56)
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But H1 has not been specified at all; i.e., this cannot possibly be true for all possible H1. Instead,
we should view eq. (5.10.55) as an instruction to choose the basis of this degenerate subspace
such that H1 is diagonal within it:

δ1,jEa · δij =
〈
Ēa; i

∣∣H1

∣∣Ēa; j〉 . (5.10.57)

Note, however, that eq. (5.10.55) does not imply {
∣∣Ēa; i〉 |i = 1, 2, . . . , N} are eigenvectors of

H1; because the diagonal N ×N matrix equation does not say anything about H1

∣∣Ēa; j〉 along
the directions perpendicular to these

∣∣Ēa; i〉s; namely,
〈
Ēb ̸=a

∣∣H1

∣∣Ēa; j〉 are not yet fixed.
We have also appended an additional subscript j to the first eigenvalue correction because, if

N is the dimension of the degenerate subspace, eq. (5.10.57) now informs us the first correction
to Ēa could take up to N distinct values {δ1,jEa =

〈
Ēa; j |H1| Ēa; j

〉
|j = 1, . . . , N}. Note that

not all the {δ1,jEa} may be distinct – the breaking of degeneracy is often intimately tied to the
amount of symmetries enjoyed by H1 relative to H0. Equations (5.10.7) and (5.10.9) with this
updated notation now read

|Ea; j⟩ =
∣∣Ēa; j〉+ +∞∑

ℓ=1

∑
s ̸=a

ϵℓ
∣∣Ēs〉 〈Ēs∣∣ ℓEa; j〉+ +∞∑

ℓ=1

N∑
i=1

ϵℓ
∣∣Ēa; i〉 〈Ēa; i∣∣ ℓEa; j〉 , (5.10.58)

Ea,j = Ēa +
+∞∑
ℓ=1

ϵℓδℓ,jEa; (5.10.59)

and eq. (5.10.52) takes the form(
H0 − Ēa

)
| 1Ea; j⟩ = − (H1 − δ1,jEa)

∣∣Ēa; j〉 . (5.10.60)

Like the non-degenerate case, we now require that the eigenket be normalized as〈
Ēa; j

∣∣Ea; j〉 = 1. (5.10.61)

Then, the expansion in eq. (5.10.58) tells us

〈
Ēa; j

∣∣ Ēa; j〉+ ∞∑
ℓ=1

ϵℓ
〈
Ēa; j

∣∣
ℓEa; j

〉
= 1 (5.10.62)

∞∑
ℓ=1

ϵℓ
〈
Ēa; j

∣∣
ℓEa; j

〉
= 0. (5.10.63)

Setting the coefficient of ϵℓ to zero, 〈
Ēa; j

∣∣
ℓ≥1Ea; j

〉
= 0. (5.10.64)

Even though the left hand side of eq. (5.10.60) appears to be invariant under the replacement
| 1Ea; j⟩ → | 1Ea; j⟩ + χ1

∣∣Ēa; i〉, we will discover from the O(ϵ2) equations below that, it is
inconsistent to set

〈
Ēa; i ̸= j

∣∣
ℓEa; j

〉
= 0. However, eq. (5.10.64) will remain consistent.

For now, let us apply
〈
Ēb
∣∣, for Ēb ̸= Ēa, on both sides of eq. (5.10.60).(

Ēb − Ēa
) 〈
Ēb̸=a

∣∣
1Ea; j

〉
= −

〈
Ēb ̸=a

∣∣H1

∣∣Ēa; j〉 (5.10.65)
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Since Ēb ̸= Ēa, we have eliminated the δ1,jEa term in eq. (5.10.60) via the orthogonality
condition 〈

Ēb ̸=a
∣∣ Ēa; j〉 = 0. (5.10.66)

Eq. (5.10.65) returns us the component of the first order eigenstate correction along
∣∣Ēb ̸=a〉.

〈
Ēb ̸=a

∣∣
1Ea; j

〉
=

〈
Ēb ̸=a

∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

(5.10.67)

As already alluded to, in order to determine
〈
Ēa; i

∣∣
1Ea; j

〉
, we need to turn to the O(ϵ2) eq.

(5.10.18).(
H0 − Ēa

)
| 2Ea; j⟩ = − (H1 − δ1,jEa) | 1Ea; j⟩ − (H2 − δ2,jEa)

∣∣Ēa; j〉 . (5.10.68)

Keeping in mind eq. (5.10.57), applying
〈
Ēa; i

∣∣ and 〈Ēb̸=a∣∣ on both sides now yield, respectively

0 = −
〈
Ēa; i

∣∣H1 | 1Ea; j⟩+ δ1,jEa
〈
Ēa; i

∣∣
1Ea; j

〉
−
〈
Ēa; i

∣∣H2

∣∣Ēa; j〉+ δ2,jEaδ
i
j (5.10.69)

0 = −
∑
b ̸=a

〈
Ēa; i

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

− (δ1,iEa − δ1,jEa)
〈
Ēa; i

∣∣
1Ea; j

〉
−
〈
Ēa; i

∣∣H2

∣∣Ēa; j〉+ δ2,jEaδ
i
j (5.10.70)

and (
Ēb − Ēa

) 〈
Ēb ̸=a

∣∣
2Ea; j

〉
= −

〈
Ēb̸=a

∣∣H1 | 1Ea; j⟩+ δ1,jEa
〈
Ēb ̸=a

∣∣
1Ea; j

〉
−
〈
Ēb ̸=a

∣∣H2

∣∣Ēa; j〉+ δ2,jEa
〈
Ēb ̸=a

∣∣ Ēa; j〉 (5.10.71)〈
Ēb
∣∣

2Ea; j
〉
= (Ēa − Ēb)−1

(∑
c ̸=a

〈
Ēb
∣∣H1

∣∣Ēc〉 〈Ēc∣∣H1

∣∣Ēa; j〉
Ēa − Ēc

+
N∑
k=1
k ̸=j

〈
Ēb ̸=a

∣∣H1

∣∣Ēa; k〉 〈Ēa; k∣∣ 1Ea; j
〉

− δ1,jEa
〈
Ēb
∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēb
∣∣H2

∣∣Ēa; j〉). (5.10.72)

By setting i = j in eq. (5.10.70) we immediately obtain the second order corrections to the
eigenvalue

δ2,jEa =
∑
b ̸=a

〈
Ēa; j

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēa; j

∣∣H2

∣∣Ēa; j〉 . (5.10.73)

whereas the i ̸= j equations hand us the components of | 1Ea; j⟩ along
∣∣Ēa; i ̸= j

〉
,〈

Ēa; i
∣∣

1Ea; j
〉
= −(δ1,iEa − δ1,jEa)−1
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×

(∑
b ̸=a

〈
Ēa; i

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēa; i

∣∣H2

∣∣Ēa; j〉) . (5.10.74)

This explicitly demonstrates, as long as i ̸= j, it is inconsistent to set
〈
Ēa; i

∣∣
1Ea; j

〉
= 0. To

obtain eq. (5.10.74), note that we have assumed the degeneracy has been completely lifted; so
δ1,iEa ̸= δ1,jEa for all i ̸= j.

Inserting eq. (5.10.74) into eq. (5.10.72),

〈
Ēb ̸=a

∣∣
2Ea; j

〉
= (Ēa − Ēb)−1

(∑
c ̸=a

〈
Ēb
∣∣H1

∣∣Ēc〉 〈Ēc∣∣H1

∣∣Ēa; j〉
Ēa − Ēc

−
N∑
k=1
k ̸=j

〈
Ēb
∣∣H1

∣∣Ēa; k〉
δ1,kEa − δ1,jEa

(∑
c ̸=a

〈
Ēa; k

∣∣H1

∣∣Ēc〉 〈Ēc∣∣H1

∣∣Ēa; j〉
Ēa − Ēc

+
〈
Ēa; k

∣∣H2

∣∣Ēa; j〉)

−
〈
Ēa; j |H1| Ēa; j

〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēb
∣∣H2

∣∣Ēa; j〉). (5.10.75)

To derive
〈
Ēa; i

∣∣
2Ea; j

〉
we need to move on to the O(ϵ3) equations. Applying

〈
Ēa; j

∣∣ on both
sides of ℓ = 3 version of eq. (5.10.35).

(
H0 − Ēa

)
| 3Ea; j⟩ = −

2∑
s=1

(Hs − δs,jEa) | ℓ−sEa; j⟩ − (H3 − δ3,jEa)
∣∣Ēa; j〉 . (5.10.76)

Because we are only after
〈
Ēa; i

∣∣
2Ea; j

〉
, let us apply

〈
Ēa; i

∣∣ on eq. (5.10.76) to eliminate
| 3Ea; j⟩ (cf. eq. (5.10.20)).

0 = −
(〈
Ēa; i

∣∣H1 | 2Ea; j⟩ − δ1,jEa
〈
Ēa; i

∣∣
2Ea; j

〉)
−
(〈
Ēa; i

∣∣H2 | 1Ea; j⟩ − δ2,jEa
〈
Ēa; i

∣∣
1Ea; j

〉)
−
〈
Ēa; i

∣∣H3

∣∣Ēa; j〉 (5.10.77)

Inserting the zeroth order completeness relations,∑
c̸=a

〈
Ēa; i

∣∣H1

∣∣Ēc〉 〈Ēc∣∣ 2Ea; j
〉
+

N∑
k=1

〈
Ēa; i

∣∣H1

∣∣Ēa; k〉 〈Ēa; k∣∣ 2Ea; j
〉
− δ1,jEa

〈
Ēa; i

∣∣
2Ea; j

〉
= −

∑
c ̸=a

〈
Ēa; i

∣∣H2

∣∣Ēc〉 〈Ēc∣∣ 1Ea; j
〉
−

N∑
k=1

〈
Ēa; i

∣∣H2

∣∣Ēa; k〉 〈Ēa; k∣∣ 1Ea; j
〉
+ δ2,jEa

〈
Ēa; i

∣∣
1Ea; j

〉
−
〈
Ēa; i

∣∣H3

∣∣Ēa; j〉 (5.10.78)

(δ1,iEa − δ1,jEa)
〈
Ēa; i

∣∣
2Ea; j

〉
(5.10.79)

= −
∑
f ̸=a

〈
Ēa; i

∣∣H1

∣∣Ēf〉
Ēa − Ēf

(∑
c ̸=a

〈
Ēf
∣∣H1

∣∣Ēc〉 〈Ēc∣∣H1

∣∣Ēa; j〉
Ēa − Ēc

−
N∑
k=1
k ̸=j

〈
Ēf
∣∣H1

∣∣Ēa; k〉
δ1,iEa − δ1,jEa

(∑
c̸=a

〈
Ēa; k

∣∣H1

∣∣Ēc〉 〈Ēc∣∣H1

∣∣Ēa; j〉
Ēa − Ēc

+
〈
Ēa; k

∣∣H2

∣∣Ēa; j〉)
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−
〈
Ēa; j |H1| Ēa; j

〉 〈Ēf ∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēf
∣∣H2

∣∣Ēa; j〉)

−
∑
c ̸=a

〈
Ēa; i

∣∣H2

∣∣Ēc〉 〈Ēc∣∣H1

∣∣Ēa; j〉
Ēa − Ēc

+
N∑
k=1

〈
Ēa; i

∣∣H2

∣∣Ēa; k〉
δ1,kEa − δ1,iEa

(∑
b ̸=a

〈
Ēa; k

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēa; k

∣∣H2

∣∣Ēa; j〉)

−

(∑
b̸=a

〈
Ēa; j

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēa; j

∣∣H2

∣∣Ēa; j〉) (δ1,iEa − δ1,jEa)−1

×

(∑
b ̸=a

〈
Ēa; i

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēa; i

∣∣H2

∣∣Ēa; j〉)− 〈Ēa; i∣∣H3

∣∣Ēa; j〉 .
Let us summarize the situation thus far.

� When a given set of eigenkets {
∣∣Ēa; j〉 |i = 1, 2, . . . , N} of H0 is degenerate, to find the

corresponding eigenvectors of the perturbed operator

H = H0 + ϵH1 + ϵ2H2 + . . . , (5.10.80)

first ensure these {
∣∣Ēa; j〉} have been chosen such that H1 is diagonal within this subspace

(cf. eq. (5.10.57)): 〈
Ēa; i |H1| Ēa; j

〉
= δ1,jEa δ

i
j. (5.10.81)

� With respect to such a basis, the perturbed eigenvalue up to second order then reads (cf.
equations (5.10.57) and (5.10.73)):

Ea,j = Ēa + ϵ
〈
Ēa; j |H1| Ēa; j

〉
+ ϵ2

 ∑
Ēb ̸=Ēa

∣∣〈Ēa; j∣∣H1

∣∣Ēb〉∣∣2
Ēa − Ēb

+
〈
Ēa; j

∣∣H2

∣∣Ēa; j〉
+O(ϵ3). (5.10.82)

� If the first order corrections completely break the degeneracy, then the eigenkets of H up
to second order, namely

|Ea; j⟩ =
∣∣Ēa; j〉+ ϵ

( ∑
Ēb ̸=Ēa

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

−
N∑
i=1
i ̸=j

∣∣Ēa; i〉
δ1,iEa − δ1,jEa

(∑
b ̸=a

〈
Ēa; i

∣∣H1

∣∣Ēb〉 〈Ēb∣∣H1

∣∣Ēa; j〉
Ēa − Ēb

+
〈
Ēa; i

∣∣H2

∣∣Ēa; j〉))

+ ϵ2

 N∑
i=1
i ̸=j

∣∣Ēa; i〉 〈Ēa; i∣∣ 2Ea; j
〉
+
∑
Ēb ̸=Ēa

∣∣Ēb〉 〈Ēb∣∣ 2Ea; j
〉+O(ϵ3), (5.10.83)
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may be constructed using the coefficients in equations (5.10.67), (5.10.74), (5.10.75), and
(5.10.79).

Examples

Problem 5.96. Auxiliary Observable for First Order Degenerate PT Suppose Q
is a Hermitian operator that commutes with the first order H1, and suppose the spectrum of Q
restricted to some degenerate subspace of the zeroth order H0 is completely distinct; that is, for
the subspace spanned by {

∣∣Ē; i〉 |H0

∣∣Ē; i〉 = Ē
∣∣Ē; i〉}, we have〈

Ē; a |Q| Ē; b
〉
= qa · δab. (5.10.84)

Prove that 〈
Ē; a |H1| Ē; b

〉
= δ1,aE · δab. (5.10.85)

In other words, if we already know how to diagonalize an observable Q within the degenerate
subspace of the zeroth order H0, its eigenstates necessarily also diagonalize the first order H1 –
and can therefore be used to compute the first order shift in energies – as long as [Q,H1] = 0.

5.10.2 Variational Method

The variational method is usually used to estimate the lowest eigenvalue of a given Hermitian
operator. It is based on the following upper bound statement.

An Upper Bound The lowest eigenvalue E0 of a Hermitian operator H is less than or
equal to its expectation value with respect to any state |ψ⟩ within the Hilbert space it is acting
upon.

E0 ≤
⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

, ∀ |ψ⟩ . (5.10.86)

To see this, we exploit the fact that H is Hermitian to insert a complete set of its eigenstates
{|Ea⟩} on the right hand side.

⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

=

∑
nEn ⟨ψ|En⟩ ⟨En|ψ⟩

⟨ψ|ψ⟩
. (5.10.87)

Denote the lowest eigenvalue as E0 – i.e., E0 ≤ En for all n ̸= 0; we have ≤ instead of < because
the lowest eigenvalue might be degenerate. Then each term in the sum is greater than itself, but
with Ea replaced with E0; namely,

E0 ⟨ψ|En⟩ ⟨En|ψ⟩ = E0| ⟨ψ|En⟩ |2 ≤ En| ⟨ψ|En⟩ |2 = En ⟨ψ|En⟩ ⟨En|ψ⟩ (5.10.88)

for all n ̸= 0. Therefore∑
nEn ⟨ψ|En⟩ ⟨En|ψ⟩

⟨ψ|ψ⟩
=

∑
0E0 ⟨ψ|E0⟩ ⟨E0|ψ⟩+

∑
n̸=0En| ⟨ψ|En⟩ |2

⟨ψ|ψ⟩
(5.10.89)
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≥ E0

∑
n ⟨ψ|En⟩ ⟨En|ψ⟩
⟨ψ|ψ⟩

= E0
⟨ψ|ψ⟩
⟨ψ|ψ⟩

. (5.10.90)

Variational Method Since the lowest eigenvalue of H is bounded from above by any
of its expectation values, one could attempt to get as close to E0 as possible by choosing an
appropriate state |ψ⟩. In particular, if |ψ⟩ depends on a host of parameters {αI|I = 1, 2, 3, . . . },
then

E (αI) ≡
⟨ψ; {αI} |H|ψ; {αI}⟩
⟨ψ; {αI}|ψ; {αI}⟩

(5.10.91)

is necessarily a function of these αs. We may then search for its minimum – i.e., evaluate it
at the ᾱI obeying ∂E/∂ᾱI = 0. This must yield, at least within this class of states |ψ; {αI}⟩,
a number closest to E0 (from above): E0 ≤ E(ᾱI). There is a certain art here, to cook up the
right family of states, with parameters {αI} introduced, so that one may obtain a good enough
estimate for the application at hand.

Higher Eigenstates Suppose we know how to construct states {|ψ⟩} that are orthogo-
nal to the ground state, namely ⟨ψ|E0⟩ = 0; either because we somehow know the ground state
|E0⟩, or using symmetry arguments (without knowing |E0⟩), or by some other means. Then the
expectation value of H with respect to |ψ⟩ must be greater or equal to the first excited state
E1 > E0:

⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

≥ E1, ∀ ⟨ψ|E0⟩ = 0. (5.10.92)

To see this, we simply insert a complete set of eigenstates.

⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

=

∑
Eℓ
| ⟨ψ|Eℓ⟩ |2Eℓ
⟨ψ|ψ⟩

=

∑
Eℓ>E0

| ⟨ψ|Eℓ⟩ |2Eℓ
⟨ψ|ψ⟩

(5.10.93)

≥ E1

∑
Eℓ>E0

⟨ψ|Eℓ⟩ ⟨Eℓ|ψ⟩
⟨ψ|ψ⟩

= E1

∑
Eℓ
⟨ψ|Eℓ⟩ ⟨Eℓ|ψ⟩
⟨ψ|ψ⟩

= E1. (5.10.94)

We may continue this argument. Suppose we know how to construct {|ψ⟩} such that it is
orthogonal to the first n eigenstates {|E0⟩ , . . . , |En−1⟩}, where En−1 > · · · > E0. Then

⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

≥ En, (5.10.95)

∀ ⟨ψ|En−1⟩ = ⟨ψ|En−2⟩ = · · · = ⟨ψ|E1⟩ = ⟨ψ|E0⟩ = 0. (5.10.96)

For,

⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

=

∑
Eℓ
| ⟨ψ|Eℓ⟩ |2Eℓ
⟨ψ|ψ⟩

=

∑
Eℓ>En−1

| ⟨ψ|Eℓ⟩ |2Eℓ
⟨ψ|ψ⟩

(5.10.97)

≥ En

∑
Eℓ>En−1

⟨ψ|Eℓ⟩ ⟨Eℓ|ψ⟩
⟨ψ|ψ⟩

= En

∑
Eℓ
⟨ψ|Eℓ⟩ ⟨Eℓ|ψ⟩
⟨ψ|ψ⟩

= En. (5.10.98)
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Extremization We also note that, the first order perturbation of the normalized expecta-
tion value obtained by varying the state |ψ⟩ → |ψ⟩+ |δψ⟩ is

δ

(
⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

)
=
⟨δψ |H|ψ⟩+ ⟨ψ |H| δψ⟩

⟨ψ|ψ⟩
− ⟨ψ |H|ψ⟩
⟨ψ|ψ⟩2

(⟨δψ|ψ⟩+ ⟨ψ| δψ⟩) (5.10.99)

=
⟨δψ|
⟨ψ|ψ⟩

(
H |ψ⟩ − |ψ⟩ ⟨ψ |H|ψ⟩

⟨ψ|ψ⟩

)
+ h.c.. (5.10.100)

Hence, if |ψ⟩ is an eigenvector of H, namely H |ψ⟩ = λ |ψ⟩ and hence ⟨ψ |H|ψ⟩ / ⟨ψ|ψ⟩ = λ, we
in turn have

δ

(
⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

)
= 0. (5.10.101)

On the other hand, if the first order variation of this normalized expectation value is zero for all
variations |δψ⟩, then

0 =
⟨δψ|
⟨ψ|ψ⟩

(
H |ψ⟩ − |ψ⟩ ⟨ψ |H|ψ⟩

⟨ψ|ψ⟩

)
+ h.c.

=
2

⟨ψ|ψ⟩
Re

[
⟨δψ|

(
H |ψ⟩ − |ψ⟩ ⟨ψ |H|ψ⟩

⟨ψ|ψ⟩

)]
. (5.10.102)

Since |δψ⟩ is arbitrary, we may rotate its phase ⟨δψ| → e−iϑ ⟨δψ| (for real ϑ) and render the
argument inside the square bracket real, if it were not real to begin with. Then, again by the
arbitrariness of |δψ⟩, we may conclude that the eigensystem equation

H |ψ⟩ = |ψ⟩ ⟨ψ |H|ψ⟩
⟨ψ|ψ⟩

(5.10.103)

must hold for the expectation value to be extremized. To sum:

Eigenvectors extremize The averaged expectation value of the Hermitian
operator H, namely λ ≡ ⟨ψ |H|ψ⟩ / ⟨ψ|ψ⟩, is extremized iff |ψ⟩ is its eigenvector
with corresponding eigenvalue λ.

Example Let us consider the Hermitian operator consisting of the unit radial vector r̂
dotted into the Pauli matrices in eq. (3.2.17):

r̂ · σ⃗ ≡ δij r̂
iσj (5.10.104)

r̂(0 ≤ θ ≤ π, 0 < ϕ ≤ 2π) ≡ (sin θ cosϕ, sin θ sinϕ, cos θ) . (5.10.105)

Now, up to an overall (irrelevant) multiplicative phase eiδ, the most general unit norm ξ†ξ = 1
2-component object ξ can be parametrized as

ξ(α, β) =
(
eiβ sinα, cosα

)T
, (5.10.106)

where α, β are real angles. We are going to extremize the expectation value

E(α, β) ≡ ⟨ξ |r̂ · σ⃗| ξ⟩
⟨ξ| ξ⟩

= ξ†(r̂ · σ⃗)ξ (5.10.107)
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= sin(2α) sin(θ) cos(β + ϕ)− cos(2α) cos(θ). (5.10.108)

Because eq. (5.10.106) is the most general 2-component object, the extremum of E through the
variation of ξ should not only provide an estimate of the lowest eigenvalue; it should in fact
provide both the exact eigenvalues and their corresponding eigenvectors.

Differentiation E with respect to α and β, and setting the results to zero yield the following
relations.

0 =
∂E
∂α

= 2 cos(2α) sin(θ) cos(β + ϕ) + 2 sin(2α) cos(θ) (5.10.109)

0 =
∂E
∂β

= − sin(2α) sin(θ) sin(β + ϕ). (5.10.110)

Suppose sin θ = 0, then eq. (5.10.110) becomes trivial; while equations (5.10.108) and (5.10.109)
become instead

E = −(2 cos(α)2 − 1) cos(θ) (5.10.111)

0 =
∂E
∂α

= sin(α) cos(α) cos(θ). (5.10.112)

If sin(2α) = 0 = sin θ, the possible solutions are

(α, cosα, θ, cos θ, E) = (0, 1, 0, 1,−1), (5.10.113)

(α, cosα, θ, cos θ, E) = (0, 1, π,−1,+1), (5.10.114)

(α, cosα, θ, cos θ, E) = (π,−1, 0, 1,−1), (5.10.115)

(α, cosα, θ, cos θ, E) = (π,−1, π,−1,+1). (5.10.116)

If θ = 0, the sin θ = 0 and cos θ = +1. Then ∂E/∂β is trivially zero; whereas ∂E/∂α = 0 =
2 sin(2α). This in turn implies β can be anything; while α = 0,±π/2,±π,±(3/2)π, · · · = (n/2)π.

E(α = (n/2)π, β) = −(−)n (5.10.117)

ξ(α = nπ, β) = (0, 1)T (5.10.118)

Problem 5.97. Variation Method for Excited States via Symmetry S

5.11 ⋆Ordinary Differential Operators and Their Inverses

In this section we are going to consider the vector space of single-variable functions defined on
some interval a ≤ z ≤ b on the real line, endowed with the following inner product. Given two
arbitrary functions f1,2,

⟨f1| f2⟩ =
∫ b

a

⟨f1| z⟩ ⟨z| f2⟩ dz (5.11.1)

=

∫ b

a

f1(z)
∗f2(z)dz. (5.11.2)
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This inner product in turn tells us the identity operator is expressed as∫ b

a

|z⟩ ⟨z| dz = I. (5.11.3)

We may view |z⟩ as the position eigenket restricted to the range a ≤ z ≤ b, with the inner
product

⟨z| z′⟩ = δ(z − z′). (5.11.4)

The inverse of differential operators is usually known as the Green’s function, whose physical
application spans both classical and quantum physics. We begin the study of Green’s functions
by considering the inverse of the following second order Hermitian differential operators of a
single variable.41

Dzf(z) ≡
d

dz

(
p2(z)

df(z)

dz

)
+ p0(z)f(z), (5.11.5)

where p0,2(z) are assumed to be real. If this operator is defined over the interval a ≤ z ≤ b, then
by Hermitian we mean that

⟨f1 |D| f2⟩ ≡
∫ b

a

f1(z)
∗Dzf2(z)dz (5.11.6)

=

[
f1(z)

∗p2(z)
df2(z)

dz

]z=b
z=a

+

∫ b

a

(
−df1(z)

∗

dz
p2(z)

df2(z)

dz
+ p0(z)f1(z)

∗ · f2(z)
)
dz (5.11.7)

=

[
f1(z)

∗p2(z)
df2(z)

dz
− df1(z)

∗

dz
p2(z)f2(z)

]z=b
z=a

+

∫ b

a

{
d

dz

(
p2(z)

df1(z)
∗

dz

)
+ p0(z)f1(z)

∗
}
f2(z)dz

=

∫ b

a

Dzf1(z)
∗ · f2(z)dz; (5.11.8)

for all functions f1,2(z) that satisfy[
p2(z)

(
f1(z)

df2(z)

dz
− df1(z)

dz
f2(z)

)]z=b
z=a

= 0. (5.11.9)

Two common choices of boundary conditions that would satisfy eq. (5.11.9) are:

� Dirichlet f1,2(z = a) = 0 = f1,2(z = b);

� Neumann (d/dz)f1,2(z = a) = 0 = (d/dz)f1,2(z = b).

Mode Expansion Because of the Hermitian character of D, it must admit a complete set
of eigenfunctions.

D |λ⟩ = λ |λ⟩ (5.11.10)

41The inverse of higher order differential operators of a single variable is examined in Byron and Fuller [14]
Chapter 7 Problems 7, 8, and 9.
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D =
∑
λ

λ |λ⟩ ⟨λ| (5.11.11)

We may them use it to construct its inverse, i.e., the Green’s function:

Gs =
∑
λ

|λ⟩ ⟨λ|
λ

, (5.11.12)

Gs[z, z
′] ≡ ⟨z |G| z′⟩ =

∑
λ

⟨z|λ⟩ ⟨λ| z′⟩
λ

. (5.11.13)

That is, if ⟨z|λ⟩ ≡ ψλ(z) is the unit norm eigenfunction of Dz with eigenvalue λ – i.e., Dzψλ(z) =
λ · ψλ(z) – then we have

Gs[z, z
′] =

∑
λ

ψλ(z)ψλ(z
′)∗

λ
; (5.11.14)

⟨λ′|λ⟩ =
∫ b

a

ψλ′(z)ψλ(z)dz = δλ
′

λ; (5.11.15)∑
λ

ψλ(z)ψλ(z
′)∗ = δ(z − z′). (5.11.16)

This mode expansion immediately teaches us that the Green’s function obeys reciprocity – or,
hermiticity in the operator sense –

Gs[z, z
′]∗ = Gs[z

′, z]; (5.11.17)

as well as the ordinary differential equation (ODE)

DzGs[z, z
′] = Dz′Gs[z, z

′] =
∑
λ

ψλ(z)ψλ(z
′)∗ = δ[z − z′]. (5.11.18)

Example Consider the operator Dz ≡ −(d/dz)2 = P 2. This can be viewed as the square
of the momentum operator P = −i(d/dz). If z runs over the entire real line, its eigenfunction is

⟨z| k⟩ = eikz (5.11.19)

for k ∈ R; i.e.,

⟨z |D| k⟩ = −(d/dz)2eikz = k2eikz. (5.11.20)

The mode sum expansion would read

Gs[z − z′] =
∫ +∞

−∞

dk

2π

eik(z−z
′)

k2
. (5.11.21)

Referring to eq. (7.2.8) below,

Gs[z − z′] =
〈
z

∣∣∣∣ 1P 2

∣∣∣∣ z′〉 =
1

2
|z − z′|. (5.11.22)

204



Problem 5.98. (−d/dz)−2 for a box Solve Gs(z, z
′) for Dx = −(d/dz)2; but now z, z′ is

confined in the box of length L > 0, i.e., z, z′ ∈ [0, L]. You should find

Gs(z, z
′) =

L

2π2

(
Li2

(
e−i

π
L
(z−z′)

)
+ Li2

(
ei

π
L
(z−z′)

)
− Li2

(
e−i

π
L
(z+z′)

)
− Li2

(
ei

π
L
(z+z′)

))
, (5.11.23)

where Li2 is the dilogarithm. Hint: See DLMF 25.12.

Discontinuous First Derivatives We now infer from eq. (5.11.18) that the first deriva-
tives of the Green’s function near z ≈ z′ must be discontinuous, regardless of the boundary
conditions it obeys. Roughly speaking, for a second order differential operator to produce a
δ−function singularity, the function it is acting on must be continuous otherwise a second deriva-
tive would produce a δ′ singularity. On the other hand, if the first derivative were continuous,
the second derivative would be at most discontinuous. These considerations are closely related
to the identity (d/dz)Θ(z) = δ(z), where Θ is the step function.

In more detail, by integrating DG = δ around z ≈ z′ and as long as p2 is continuous, then
for ε→ 0+: ∫ z′+ε

z′−ε

{
d

dz

(
p2(z)

dG

dz

)
+ p0(z)G(z, z

′)

}
dz =

∫ z′+ε

z′−ε
δ(z − z′)dz, (5.11.24)

p2(z = z′)

(
dG(z = z′ + ε)

dz
− dG(z = z′ − ε)

dz

)
= 1. (5.11.25)

A similar calculation involving Dz′G(z, z
′) = δ(z − z′) would hand us

p2(z = z′)

(
dG(z′ = z + ε)

dz′
− dG(z′ = z − ε)

dz′

)
= 1. (5.11.26)

We may summarize this ‘jump condition’ using the following notation:

p2 · [G′]z=z′ = 1. (5.11.27)

Hermitian Green’s Function from Homogeneous Solutions Now, for z ̸= z′ the
δ(z − z′) on the right hand side of DG = δ is zero and we need to solve the homogeneous
equations

DzG[z, z
′] = 0 = Dz′G[z, z

′]. (5.11.28)

Since 2nd order ODEs should admit two linearly independent solutions ψ1,2, we expect that the
most general form of Gs to be

G[z, z′] = A IJ
< · ψI(z)ψJ(z

′), z < z′

= A IJ
> · ψI(z)ψJ(z

′), z > z′; (5.11.29)

where the A<s and A>s are constants; and the I and J indices run over {1, 2}. Since the G(z, z′)
needs to be continuous across z = z′,

A 11
> · ψ1(z)

2 + A 22
> · ψ2(z)

2 + (A 12
> + A 21

> )ψ1(z)ψ2(z)
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= A 11
< · ψ1(z)

2 + A 22
< · ψ2(z)

2 + (A 12
< + A 21

< )ψ1(z)ψ2(z) (5.11.30)

For this to hold for any a ≤ z ≤ b, the coefficients of ψ1(z)
2, ψ2(z)

2 and ψ1(z)ψ2(z) on both
sides must be equal.

A 11
> = A 11

< ≡ A11 (5.11.31)

A 22
> = A 22

< ≡ A22 (5.11.32)

A 12
> + A 21

> = A 12
< + A 21

< (5.11.33)

Dirichlet B.C.s The analysis up to this point holds for any boundary condition, since we
have not used any. But if D is viewed as a Hermitian operator acting on the space of functions
vanishing at the boundaries z = a and z = b, then we must also have

Gs[z = a, z′] = 0 = Gs[z, z
′ = a] (5.11.34)

Gs[z = b, z′] = 0 = Gs[z, z
′ = b]. (5.11.35)

Employing the form in eq. (5.11.29), we see that

ψM(b)A
MN

> ψN(z
′) = 0 = ψM(z)A

MN
> ψN(a); (5.11.36)

ψM(a)A
MN

< ψN(z
′) = 0 = ψM(z)A

MN
< ψN(b). (5.11.37)

To be consistent with Dirichlet boundary conditions, we may demand that ψI(a) = 0 = ψI(b).
But the only consistent solution that vanishes at both end points would be zero. Hence, we
should only require either ψ1 to vanish at z = a; and ψ2 to do so at z = b – or, vice versa. (The
ψ1,2 are linearly independent but otherwise arbitrary at this point, so either choice is equivalent.)
For the former,

ψ1(b)A
1N

> ψN(z
′) = 0 = ψM(z)A

M2
> ψ2(a); (5.11.38)

ψ2(a)A
2N

< ψN(z
′) = 0 = ψM(z)A

M1
< ψ1(b). (5.11.39)

Since {ψN(z
′)} (or {ψN(z)}) are linearly independent we conclude that the only non-zero com-

ponents are A 21
> and A 12

< . At this point, recalling eq. (5.11.33) to recognize A 21
> = A 12

< ≡ A,

Gs[z, z
′] = Θ(z − z′)A · ψ2(z)ψ1(z

′) + Θ(z′ − z)A · ψ1(z)ψ2(z
′). (5.11.40)

We have only fixed ψ1(a) and ψ2(b); to fix the solutions ψ1,2(z) uniquely we would have to
specify, say, ψ1(b) and ψ2(a), which in turn amounts to specifying the overall amplitudes of
these solutions. But since Gs(z, z

′) involves the product ψ1 · ψ2, that means Gs(z, z
′) at this

point is determined once the overall amplitude A is pinned down; i.e., the individual amplitudes
of ψ1,2 are not needed. To this end, let us apply the junction conditions in equations (5.11.25)
and (5.11.26):

A ·Wrz (ψ1, ψ2) =
1

p2(z)
; (5.11.41)

where the Wrz(ψ1, ψ2), dubbed the Wronskian of the two solutions ψ1,2, is given by

Wrz (ψ1, ψ2) ≡ ψ1(z)ψ
′
2(z)− ψ′

1(z)ψ2(z) = det

[
ψ1(z) ψ2(z)
ψ′
1(z) ψ′

2(z)

]
. (5.11.42)
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The prime here denotes a derivative with respect to the argument,
In eq. (5.11.58) below, you will show that the Wronskian can be solved without knowing the

explicit forms of the two linearly independent solutions. In particular, the p1 in eq. (5.11.56) is
p′2(z) in the case at hand, and therefore

Wrz(ψ1, ψ2) = W0 exp

(
−
∫ z

(ln p2(z
′′))′dz′′

)
(5.11.43)

= W0/p2(z). (5.11.44)

This verifies the consistency of our ‘junction conditions’ in equations (5.11.25) and (5.11.26). If
we had defined our Green’s function equation to be DGs = Γ(z, z′)δ(z − z′) instead, the all the
1/p2 in the ensuing steps would be replaced with Γ(z = z′)/p2. But the Wronskian would not
be proportional to it.

Let us summarize the construction of the Green’s function as the inverse of a Hermitian 2nd
order differential operator Dz in eq. (5.11.5), defined on a ≤ z ≤ b, with Dirichlet boundary
conditions.

� Obtain two linearly independent solutions to Dzψ1,2(z) = 0 such that one vanishes at the
left boundary and the other at the right: ψ1(z = a) = 0 = ψ2(z = b).

� Compute the Wronskian Wr(ψ1, ψ2))
−1.

� The solution to Gs is then given by

Gs[z, z
′] = (p2 ·Wr(ψ1, ψ2))

−1 (Θ(z − z′)ψ2(z)ψ1(z
′) + Θ(z′ − z)ψ2(z

′)ψ1(z))

≡ ψ1(z<)ψ2(z>)

p2 ·Wr(ψ1, ψ2)
; (5.11.45)

where z< is the smaller of the two (z, z′) while z> is the larger. Remember, the denominator
in the second line is a constant by construction.

Example Let us now solve the Gs of momentum squared Dz ≡ −(d/dz)2 but within the
interval a ≤ z ≤ b. The general solution to ψ′′(z) = 0. The solutions that vanish at z = a and
z = b are, respectively,

ψ1(z) = z − a and ψ2(z) = z − b. (5.11.46)

Here p2 = −1; and the Wronskian of this pair is

Wr(ψ1, ψ2) = (z − a)(+1)− (+1)(z − b) (5.11.47)

= b− a. (5.11.48)

The Green’s function is therefore

Gs(z, z
′) =

−1
b− a

(Θ(z − z′)(z′ − a)(z − b) + Θ(z − z′)(z − a)(z′ − b)) (5.11.49)

=
(z< − a)(b− z>)

b− a
. (5.11.50)
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By setting a = 0 and b = L > 0, followed by recalling eq. (5.11.23), we may also deduce

z<(L− z>)
L

=
L

2π2

(
Li2

(
e−i

π
L
(z−z′)

)
+ Li2

(
ei

π
L
(z−z′)

)
− Li2

(
e−i

π
L
(z+z′)

)
− Li2

(
ei

π
L
(z+z′)

))
. (5.11.51)

Neumann is illegal Let us observe that it is in fact illegal to impose Neumann boundary
conditions. This can be seen from integrating its equation DGs = δ.∫ b

a

∂z (p2(z)∂zGs(z, z
′)) = 1 (5.11.52)

p2(b)∂zGs(z = b, z′)− p2(a)∂zGs(z = a, z′) = 1. (5.11.53)

If the eigenfunctions of D has zero derivatives at the boundaries z = a, b; the mode sum in eq.
(5.11.12) indicates the first derivatives of Gs at the boundaries would, too, vanish and we would
arrive at a 0 = 1 contradiction. Thus, for a mathematically consistent Green’s function, at least
one of the boundaries cannot obey Neumann boundary conditions.

Problem 5.99. Simple Harmonic Oscillator The 1D simple harmonic oscillator (SHO)
obeys the differential equation (

d2

dt2
+ Ω2

)
x(t) = 0. (5.11.54)

Hence, p2 = 1 and p0 = Ω2. Show that the hermitian Green’s function is

Gs,SHO(t, t
′) = −sin[Ω(t< − a)] · sin[Ω(b− t>)]

Ω sin[Ω(b− a)]
, (5.11.55)

where t< is the smaller of (t, t′) while t> is the larger.

Problem 5.100. Mixed Boundary Conditions Let us turn to considering Neumann or
mixed boundary conditions at z = a and z = b. Argue that, as long as p0 ̸= 0, eq. (5.11.45) is
still the correct solution, but the ψ1,2 now needs to be subject to the following conditions.

� Gs(z = a, z′) = 0 = ∂z′Gs(z, z
′ = b) ↔ ψ1(z = a) = 0 = ψ′

2(z = b)

� ∂z′Gs(z = a, z′) = 0 = Gs(z, z
′ = b) ↔ ψ′

1(z = a) = 0 = ψ2(z = b)

� ∂z′Gs(z = a, z′) = 0 = ∂z′Gs(z, z
′ = b) ↔ ψ′

1(z = a) = 0 = ψ′
2(z = b)

Problem 5.101. Wronskian: Properties Consider the following 2nd order ODE.

p2(z)
d2f(z)

dz2
+ p1(z)

df(z)

dz
+ p0(z)f(z) = 0, (5.11.56)

defined along the interval a ≤ z ≤ b. Prove the following statements regarding the Wronskian.
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� If f1,2(z) are linearly dependent, then Wrz(f1, f2) = 0 along the entire interval. Hence,
if then Wrz(f1, f2) ̸= 0 except perhaps at isolated points, the f1,2(z) must be linearly
independent.42

� The Wronskian is anti-symmetric: Wr(f1, f2) = −Wr(f2, f1).

� By differentiating eq. (5.11.42), verify that the Wronskian itself obeys the 1st order ODE

d

dz
Wrz(f1, f2) = −

p1(z)

p2(z)
Wrz(f1, f2), (5.11.57)

which immediately implies the Wronskian can be determined, up to an overall multiplica-
tive constant, without the need to know explicitly the pair of homogeneous solutions f1,2,

Wrz(f1, f2) = W0 exp

(
−
∫ z

b

p1(z
′′)

p2(z′′)
dz′′
)
, W0 = constant. (5.11.58)

� If we “rotate” from one pair of linearly independent solutions (f1, f2) to another (g1, g2)
via a constant invertible matrix M J

I ,

fI(z) =M J
I gJ(z), I, J ∈ {1, 2}, detM J

I ̸= 0; (5.11.59)

then verify that

Wrz(f1, f2) =
(
detM J

I

)
Wrz(g1, g2). (5.11.60)

Solution to Inhomogeneous ODE Let us now recognize that

ψ(a < z < b) =

∫ b

a

Gs(z, z
′)J(z′)dz′ (5.11.61)

is a (particular) solution to

Dzψ(z) = J(z); (5.11.62)

as can be checked by direct differentiation:

Dz

∫ b

a

Gs(z, z
′)J(z′)dz′ =

∫ b

a

δ(z − z′)J(z′)dz′ (5.11.63)

= J(z). (5.11.64)

42Zero Wronksian of f1,2 along the entire interval does not itself, in fact, imply the solutions are linearly depen-
dent; additional constraints are needed. For example, x2 and |x|x are linearly independent in a finite neighborhood
of x = 0, but their Wronskian is zero – see Peano, Giuseppe (1889), ”Sur le déterminant wronskien.”, Mathesis
(in French), IX: 75–76, 110–112, JFM 21.0153.01.
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An insight into the nature of this solution may be obtained by using the explicit prescription in
eq. (5.11.45). Remember that p2 ·Wr(ψ1, ψ2) is constant, and therefore may be pulled out of
the integration itself:

ψ(z) =

∫ b

a

ψ1(z<)ψ2(z>)

p2 ·Wr(ψ1, ψ2)
J(z′)dz′ (5.11.65)

=
ψ1(z)

p2 ·Wr(ψ1, ψ2)

∫ b

z

ψ2(z
′)J(z′)dz′ +

ψ2(z)

p2 ·Wr(ψ1, ψ2)

∫ z

a

ψ1(z
′)J(z′)dz′. (5.11.66)

To simplify the interpretation further, we will suppose J(z) is non-zero only within some range
z′J ≤ z ≤ zJ . Whenever the ψ is evaluated to the left of this range,

ψ(z < z′J) =
ψ1(z)

p2 ·Wr(ψ1, ψ2)

∫ zJ

z′J

ψ2(z
′)J(z′)dz′; (5.11.67)

and whenever it is instead evaluated to the right of J ,

ψ(z > zJ) =
ψ2(z)

p2 ·Wr(ψ1, ψ2)

∫ zJ

z′J

ψ1(z
′)J(z′)dz′. (5.11.68)

These expressions teach us, away from the source J , the solution is the homogeneous one (either
ψ1 or ψ2) but with an amplitude that is built out of J integrated against the other linearly
independent solution.

Asymptotic Boundary Conditions Now, as long as ψ1,2 are linearly independent the

G(z, z′) ≡ ψ1(z<)ψ2(z>)

p2 ·Wr(ψ1, ψ2)
(5.11.69)

satisfies DG = δ regardless of the boundary conditions they obey – i.e., G here need not be
Hermitian. This tells us that, if we wish to solve Dψ = J subject to asymptotic boundary
conditions

ψ(z → a) ∝ L(z) and ψ(z → b) ∝ R(z); (5.11.70)

then we may simply choose the ψ1,2 such that

ψ1(z → a)→ L(z) and ψ2(z → b)→ R(z); (5.11.71)

An example is provided by the following ‘simple harmonic oscillator’ equation(
d2

dz2
+ k2

)
ψ(z) = J(z) (5.11.72)

defined on the entire real line, so p2 = 1, a = −∞, and b = +∞. A pair of linearly independent
solutions are {e±ikz}. If we view e−iktψ(z) is a superposition of traveling waves, then it is
reasonable to demand that the wave is left-moving as z → −∞ and right-moving as z → +∞,

e−iktψ(z → −∞) ∝ e−ik(t+z) and e−iktψ(z → +∞) ∝ e−ik(t−z). (5.11.73)
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This prompts us to choose

ψ1(z) = e−ikz and ψ2(z) = eikz. (5.11.74)

Their Wronskian is e−ikz(eikz)′ − (e−ikz)′eikz = 2ik. The relevant Green’s function is therefore

G(z, z′) =
1

2ik

(
Θ(z − z′)e−ik(z′−z) +Θ(z − z′)e−ik(z−z′)

)
(5.11.75)

= − i

2k
exp (−ik|z − z′|) . (5.11.76)

Let us justify why the form of the solution in eq. (5.11.45) supplemented by the boundary
conditions in eq. (5.11.71) do in fact provide the (particular) solution to Dψ = J with the
asymptotic conditions in eq. (5.11.71). For fixed z′, as z → a, we have from equations (5.11.29),
(5.11.31), and (5.11.32),

G = A11ψ1(z)ψ1(z
′) + A22ψ2(z)ψ2(z

′) + A 12
< ψ1(z)ψ2(z

′) + A 21
< ψ2(z)ψ1(z

′). (5.11.77)

If ψ1(z → a) → L(z) but ψ2(z → a) does not approach L(z), then we choose A22 = 0 = A 21
< .

Similarly, for fixed z′, as z → b, we have again from equations (5.11.29), (5.11.31), and (5.11.32),

G = A11ψ1(z)ψ1(z
′) + A 12

> ψ1(z)ψ2(z
′) + A 21

> ψ2(z)ψ1(z
′). (5.11.78)

If ψ2(z → b) → R(z) while ψ1(z → b) does not tend to R(z), then we choose A11 = 0 = A 12
> .

At this point, eq. (5.11.33) tells us A 12
> = A 21

> ≡ A and G = Aψ1(z<)ψ2(z>) at this point.
The jump condition of eq. (5.11.25) will then set A = (p2 ·Wrz(ψ1, ψ2))

−1.
A Non-Example YZ: Incomplete. A non-example is provided by the operator

Dzf(z) ≡
d

dz

(
(1− z2)df(z)

dz

)
(5.11.79)

defined on the interval −1 ≤ z ≤ +1; namely, a = −1 and b = +1. We see that, as long as
f(z = ±1) and f ′(z = ±1) are finite, the p2 = (1 − z2) will set the boundary terms in eq.
(5.11.9) to zero, and render Dz Hermitian. In fact, we have already seen the complete set of
eigenfunctions of Dz: the Legendre polynomials {Pℓ(z)|ℓ = 0, 1, 2, 3, . . . }, which satisfy

d

dz

(
(1− z2)dPℓ(z)

dz

)
= −ℓ(ℓ+ 1)Pℓ(z); (5.11.80)

i.e., the eigenvalues of Dz are −ℓ(ℓ+ 1) for ℓ = 0, 1, 2, . . . .
‘Retarded’ Green’s Functions and Distributional Calculus To complement the

preceding discussion, we now turn to a different perspective on solving the Green’s function
equation

DzG+[z, z
′] = δ(z − z′) = Dz′G+[z, z

′] (5.11.81)

– without assuming Dz in eq. (5.11.5) is Hermitian nor Dirichlet boundary conditions for its
homogeneous solutions. Instead, we shall employ the ‘retarded’ ansatz, defined by the condition
G+(z < z′) = 0:

G+[z, z
′] = Θ[z − z′]G[z, z′]. (5.11.82)
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The first and second derivatives of G+ with respect to z and z′ are

∂zG+[z, z
′] = δ[z − z′]G[z, z′] + Θ[z − z′]∂zG[z, z′], (5.11.83)

∂z′G+[z, z
′] = −δ[z − z′]G[z, z′] + Θ[z − z′]∂z′G[z, z′], (5.11.84)

∂2zG+[z, z
′] = δ′[z − z′]G[z, z′] + δ[z − z′]2∂zG[z, z′] + Θ[z − z′]∂2zG[z, z′], (5.11.85)

∂2z′G+[z, z
′] = δ′[z − z′]G[z, z′]− δ[z − z′]2∂z′G[z, z′] + Θ[z − z′]∂2z′G[z, z′]. (5.11.86)

For G+ to satisfy the Green’s function equation DG+[z, z
′] = δ[z − z′] we must therefore have

δ′[z − z′] · p2(z) · G + δ[z − z′] (2p2(z) · ∂zG + p′2(z) · G) (5.11.87)

+Θ[t− t′]DzG = δ[z − z′] (5.11.88)

δ′[z − z′] · p2(z′) · G − δ[z − z′] (2p2(z′) · ∂z′G + p′2(z
′) · G) (5.11.89)

+Θ[t− t′]Dz′G = δ[z − z′] (5.11.90)

The distributional identity zδ(z) = 0 may be differentiated to deduce

δ(z) = −zδ′(z). (5.11.91)

Furthermore, by multiplying both sides by zn−1, we see that znδ′(z) = 0 for all higher powers
n = 2, 3, 4, . . . . Therefore, we may Taylor expand

δ′(z)g(z) = δ′(z)
(
g(0) + g′(0) · z +O(z2)

)
(5.11.92)

= δ′(z) · g(0)− δ(z) · g′(0). (5.11.93)

At this point, our Green’s function equation reads

δ′[z − z′] · (p2 · G)z=z′ + δ[z − z′] (p2 · ∂zG)z=z′ +Θ[t− t′]DzG[z, z′] = δ[z − z′], (5.11.94)

δ′[z − z′] · (p2 · G)z=z′ − δ[z − z′] (p2 · ∂zG)z=z′ +Θ[t− t′]Dz′G[z, z′] = δ[z − z′]. (5.11.95)

Since there is nothing special about the location z = z′, we must have the coefficients of δ′[z−z′]
and Θ[z− z′] vanish and that of the δ(z− z′) equal to 1. This tells us G must be a homogeneous
solution to the ODE Dψ = 0:

DzG[z, z′] = 0 = Dz′G[z, z′]. (5.11.96)

And, the G must obey the following ‘junction conditions’ at z = z′:

G[z = z′] = 0 (5.11.97)

∂zG[z = z′] = 1/p2(z = z′) = −∂z′G[z = z′]. (5.11.98)

It is worth highlighting, from equations (5.11.97) and (5.11.112), because G vanishes at z = z′,
G+(z, z

′) itself is continuous at z = z′, since one side of the step function yields zero; while the
other side is unity. It is in fact the first derivative of G that is necessarily discontinuous, since
∂zG+(z = z′) = ∂zG(z = z′ + 0+) whereas ∂zG+(z = z′ − 0+) = 0; so that the ‘jump’ in the first
derivative across z = z′ is p2. These observations are consistent with the junction conditions in
equations (5.11.25) and (5.11.26), which only depend on the differential equation DG = δ and
not on the Hermitian character of D.
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Let us now argue that the solution is

G+(z, z
′) = Θ(z − z′)G(z, z′), (5.11.99)

G(z, z′) = ψ1(z
′)ψ2(z)− ψ1(z)ψ2(z

′)

p2 ·Wr(ψ1, ψ2)
; (5.11.100)

where the ψ1,2 are linearly independent solutions to Dψ1,2 = 0. (As discussed earlier, the
combination p2 ·Wr(ψ1, ψ2) is constant.) Firstly, from eq. (5.11.96), we may infer

G(z, z′) = AIJψI(z)ψJ(z
′) (5.11.101)

for constants {AIJ}. Eq. (5.11.97) then translates to

A11ψ1(z)
2 + A22ψ2(z)

2 + (A12 + A21)ψ1(z)ψ2(z) = 0. (5.11.102)

Since this has to be true for all a ≤ z ≤ b, we must have A11 = 0 = A22 and A12 = −A21 ≡ A.

G(z, z′) = A(ψ2(z)ψ1(z
′)− ψ2(z

′)ψ1(z)) (5.11.103)

Imposing eq. (5.11.98),

∂zG(z = z′) = A ·Wrz(ψ1, ψ2) =
1

p2(z)
. (5.11.104)

We have already seen that the Wronskian is necessarily proportional to 1/p2. This proves our
assertion.

Example: SHO For the simple harmonic oscillator, we may take the two linearly
independent solutions to be ψ1(t) = cos(Ωt) and ψ2(t) = sin(Ωt). Their Wronskian is

Wr(ψ1, ψ2) = Ω cos(Ωt)2 + Ωsin(Ωt)2 = Ω. (5.11.105)

We must therefore have

G(t, t′) = cos(Ωt′) sin(Ωt)− cos(Ωt) sin(Ωt′)

Ω
(5.11.106)

=
sin (Ω(t− t′))

Ω
; (5.11.107)

G+[t− t′] = Θ(t− t′)sin[Ω(t− t
′)]

Ω
. (5.11.108)

In §(6) you will find this ‘retarded’ Green’s function by a direct evaluation of

G+(t− t′) =
∫
R

dk

2π

e−ik(t−t
′)

Ω2 − k2
(5.11.109)

by choosing the right contour on the complex k−plane. Even though this is not the Hermitian
Green’s function Gs, note the similarity with the mode expansion of eq. (5.11.12) since (d/dt)2+
Ω2 acting on exp(−ikt) yields Ω2 − k2.
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Problem 5.102. Wronskian of Independent Functions Show that the Wronskian of
x2 and |x|x is zero. This shows that zero Wronskian does not imply linear dependence, which
is the case here for any finite neighborhood of x = 0. Hint: To use distributional calculus, first
explain why |x| = Θ(x)x−Θ(−x)x.

Problem 5.103. Check via a direct calculation that eq. (5.11.69) does in fact satisfy
DG = δ regardless of the boundary conditions satisfied by the ψ1,2.

Problem 5.104. ‘Advanced’ Green’s Function Consider instead the alternate ansatz

G−[z, z
′] = Θ[z′ − z]G[z, z′]. (5.11.110)

Show that

DzG[z, z′] = 0 = Dz′G[z, z′], (5.11.111)

G[z = z′] = 0, (5.11.112)

∂zG[z = z′] = − 1

p2(z = z′)
= ∂z′G[z = z′]. (5.11.113)

Then argue that the solution can be built out of the two linearly independent homogeneous
solutions to Dψ1,2 = 0 via the prescription

G(z, z′) = ψ1(z)ψ2(z
′)− ψ1(z

′)ψ2(z)

p2 ·Wr(ψ1, ψ2)
. (5.11.114)

(It is not a coincidence, this G is the negative of that in eq. (5.11.100).) Moreover, verify that

G+(z
′, z) = G−(z, z

′). (5.11.115)

That is, G+ can be obtained from G−, and vice versa.

Problem 5.105. Even though we have obtained boundary conditions for the homogeneous
solution G occurring within the ‘retarded’ and ‘advanced’ Green’s functions, you may be puzzled
by why no boundary conditions appeared necessary for the homogeneous solutions ψ1,2.

Prove that equations (5.11.100) and (5.11.114) are, in fact, independent of the choice of basis

(ψ1, ψ2). Under the transformation ψI = R̂ J
I φJ for any invertible R̂, show that, for e.g.,

G(z, z′) = ψ1(z
′)ψ2(z)− ψ1(z)ψ2(z

′)

p2 ·Wr(ψ1, ψ2)
=
φ1(z

′)φ2(z)− φ1(z)φ2(z
′)

p2 ·Wr(φ1, φ2)
. (5.11.116)

In other words, since the solution for G is basis independent, there is no need to impose boundary
conditions for the ψ1,2.

Boundary versus Initial/Final Value Problems We now turn to some basic ap-
plication of Green’s functions: the solution of ODEs. For some f(z) sourced by some given
J(z):

Dzf(z) = J(z); (5.11.117)

we wish to solve f subject to one of the following.
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� Boundary conditions: f(z = a) and f(z = b) given.

� ‘Initial’ or ‘final’ conditions: either f(z = a) and f ′(z = a); or f(z = b) and f ′(z = b)
given.

For the former, we shall see that Gs with Dirichlet boundary conditions can be used to obtain
the solution; while for the initial value problem it is the G+; and for the final value problem it
is the G− that will prove useful.

To begin we consider the following integral, where G can be either one of the three Green’s
functions.

I(z) ≡
∫ b

a

(Dz′G(z, z
′) · f(z′)−G(z, z′) ·Dz′f(z

′)) dz′ (5.11.118)

On the one hand, we may simply employ DG = δ and eq. (5.11.117).

I(z) =

∫ b

a

(δ(z − z′)f(z′)−G(z, z′)J(z′)) dz′ (5.11.119)

= f(z)−
∫ b

a

G(z, z′)J(z′)dz′. (5.11.120)

On the other hand, we may integrate-by-parts,

I(z) = [f(z′)p2(z
′)∂z′G(z, z

′)−G(z, z′)p2(z′)∂z′f(z′)]z
′=b
z′=a

−
∫ b

a

(p2(z
′)∂z′G(z, z

′)∂z′f(z
′)− ∂z′G(z, z′) · p2(z′)∂z′f(z′)) dz′. (5.11.121)

The p0 term cancels right away; whereas we see the p2 terms cancel after integration-by-parts.
We may now equate the two expressions for I(z) to arrive at

f(a ≤ z ≤ b) =

∫ b

a

G(z, z′)J(z′)dz′ (5.11.122)

+ [p2(z
′) {f(z′)∂z′G(z, z′)−G(z, z′)∂z′f(z′)}]z

′=b
z′=a .

Boundary Value Solution Now, if f(z = a) and f(z = b) are specified, then choosing
the hermitian Gs(z, z

′) obeying Dirichlet boundary conditions would render the Gs(z, z
′ = a) =

0 = Gs(z, z
′ = b) and reduce eq. (5.11.122) to

f(a ≤ z ≤ b) =

∫ b

a

Gs(z, z
′)J(z′)dz′

+ p2(b)f(b)∂z′Gs(z, z
′ = b)− p2(a)f(a)∂z′Gs(z, z

′ = a). (5.11.123)

The term on the right hand side of the first line may be interpreted as the inhomogeneous
(source-dependent) solution; while those in the second may be interpreted as the homogeneous
solution.
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Problem 5.106. Homogeneous solution with Boundary Conditions Show that the
homogeneous solution portion of eq. (5.11.123) can be written as

p2(b)f(b)∂z′Gs(z, z
′ = b)− p2(a)f(a)∂z′Gs(z, z

′ = a) = f(a)
ψ2(z)

ψ2(a)
+ f(b)

ψ1(z)

ψ1(b)
. (5.11.124)

Hint: For the first and second terms, evaluate the Wronskian in Gs at a and b respectively.

Problem 5.107. SHO: Initial and Final Positions If the initial position x⃗(t1) = x⃗1 and
final position x⃗(t2) ≡ x⃗2 of a SHO, obeying ẍ + ω2x⃗ = 0, are given, show that its trajectory is
given by

x⃗(t) =
x⃗2 sin (ω(t− t1)) + x⃗1 sin (ω(t2 − t))

sin (ω(t2 − t1))
. (5.11.125)

Use the Green’s function method; but also check explicitly that both the SHO equations and
the relevant boundary conditions are obeyed.

Initial Value Solution If f(z = a) and f ′(z = a) are specified instead, choosing G+

in equations (5.11.99) and (5.11.100) would render the G+(z, z
′ = b) = 0 = ∂z′G+(z, z

′ = b)
because of the step function in G+(z, z

′ = b) ∝ Θ(z − b) = 0, for all z < b.

f(a ≤ z < b) =

∫ z

a

G+(z, z
′)J(z′)dz′

− p2(a) {f(a)∂z′G(z, z′ = a)− G(z, z′ = a)f ′(a)} . (5.11.126)

We have discarded the step function within G+, so that with G+(z, z
′) is simply replaced with

G(z, z′) = (ψ1(z
′)ψ2(z) − ψ2(z

′)ψ1(z))/(p2 ·Wr(ψ1, ψ2)) because Θ(z − a) = 1 within the range
of z in question. Moreover, note that ∂z′G+(z, z

′ = a) = Θ(z − a)∂z′G(z, z′ = a). There is no
need to differentiate the step function because G(z = z′) = 0, for

∂aΘ(z − a)G(z, z′ = a) = δ(z − a)G(z = a = z′) = 0. (5.11.127)

Again, the term on the right hand side of the first line in eq. (5.11.126) may be interpreted as
the inhomogeneous (source-dependent) solution; while those in the second may be interpreted
as the homogeneous solution.

Problem 5.108. SHO: Initial Position and Velocity If the initial position x⃗(t′) = x⃗0
and initial velocity ˙⃗x(t′) = v⃗0 of a SHO, obeying ẍ+ω2x⃗ = 0, are given, show that its trajectory
is given by

x⃗(t) = x⃗0 · cos (ω(t− t′))−
v⃗0
ω

sin (ω(t− t′)) . (5.11.128)

Use the Green’s function method; but also check explicitly that both the SHO equations and
the relevant initial conditions are obeyed.
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Problem 5.109. Boundary Value Solution from ‘Retarded’ Green’s Function Ver-
ify by a direct calculation, it is actually possible to use the ‘retarded’ Green’s function of eq.
(5.11.99) instead of the hermitian Gs(z, z

′) one employed in eq. (5.11.123) to solve the homoge-
neous portion of the boundary value problem:

f(a ≤ z ≤ b) =

∫ b

a

Gs(z, z
′)J(z′)dz′ + fh(z), (5.11.129)

fh(z) ≡
G(z, a)
G(b, a)

· f(b) + G(z, b)
G(a, b)

· f(a). (5.11.130)

That is, check that Dfh = 0 and f(a) and f(b) are recovered upon setting z to a and b respec-
tively. Since G is the homogeneous solution portion of the retarded Green’s function, there is a
direct relation of this result to eq. (5.11.124).

Final Value Solution If f(z = b) and f ′(z = b) are specified, then choosing G− in eq.
(5.11.110) would render the G−(z, z

′ = a) = 0 = ∂z′G−(z, z
′ = a) because of the step function

in G−(z, z
′ = a) ∝ Θ(a− z) = 0, for all z > a.

f(a < z ≤ b) =

∫ b

z

G−(z, z
′)J(z′)dz′

+ p2(b) {f(b)∂z′G−(z, z
′ = b)−G−(z, z

′ = b)f ′(b)} . (5.11.131)

Like its previous two counterparts, the term on the right hand side of the first line in eq.
(5.11.131) may be interpreted as the inhomogeneous (source-dependent) solution; while those in
the second may be interpreted as the homogeneous solution.

Problem 5.110. Explain why the limits of integration in equations (5.11.126) and (5.11.131)
depend on z. Hints: If we allow the limits to depend on z, the relevant step functions may be
dropped; otherwise if the limits run from a to b, then the step functions need to be kept.

Then, verify directly that the right hand sides of equations (5.11.123), (5.11.126), and
(5.11.131) satisfies Df = J ; and, moreover, also obey the relevant boundary, initial, or final
conditions.
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6 Calculus on the Complex Plane

6.1 Differentiation
43The derivative of a complex function f(z) is defined in a similar way as its real counterpart:

f ′(z) ≡ df(z)

dz
≡ lim

∆z→0

f(z +∆z)− f(z)
∆z

. (6.1.1)

However, the meaning is considerably more subtle because ∆z (just like z itself) is now complex.
What this means is that, in taking this limit, it has to yield the same answer no matter what
direction you approach z on the complex plane. For example, if z = x+ iy, taking the derivative
along the real direction must be equal to that along the imaginary one,

f ′(z) = lim
∆x→0

f(x+∆x+ iy)− f(x+ iy)

∆x
= ∂xf(z)

= lim
∆y→0

f(x+ i(y +∆y))− f(x+ iy)

i∆y
=
∂f(z)

∂(iy)
=

1

i
∂yf(z), (6.1.2)

where x, y, ∆x and ∆y are real. This direction independence imposes very strong constraints on
complex differentiable functions: they will turn out to be extremely smooth, in that if you can
differentiate them at a given point z, you are guaranteed they are differentiable infinite number
of times there. (This is not true of real functions.) If f(z) is differentiable in some region on the
complex plane, we say f(z) is analytic there.

Problem 6.1. Derivative in the θ−direction Suppose we take the derivative in the
θ−direction, namely ∆z = ϵeiθ for ϵ infinitesimal, show that

f ′(z) = e−iθ (cos θ · ∂xf(z) + sin θ · ∂yf(z)) . (6.1.3)

Check this result against the θ = 0 and θ = π/2 cases above.

If the first derivatives of f are continuous, the criteria for determining whether it is differen-
tiable comes in the following pair of partial differential equations.

Cauchy-Riemann conditions for analyticity Let z = x+ iy and f(z) =
u(x, y) + iv(x, y), where x, y, u and v are real. Let u and v have continuous first
partial derivatives in x and y. Then f(z) is an analytic function in the neighborhood
of z if and only if the following (Cauchy-Riemann) equations are satisfied by the real
and imaginary parts of f :

∂xu = ∂yv, ∂yu = −∂xv. (6.1.4)

To understand these Cauchy-Riemann conditions, we first consider differentiating along the
(real) x direction,

df

dz
=
∂f

∂x
= ∂xu+ i∂xv. (6.1.5)

43The material in this Chapter is based on Arfken, Weber and Harris [18]; Morse and Feshbach [13]; and Byron
and Fuller [14].
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If we instead differentiate along the (imaginary) iy direction,

df

dz
=

1

i

∂f

∂y
=

1

i
∂yu+ ∂yv = ∂yv − i∂yu. (6.1.6)

Since these two results must be the same, we may equate their real and imaginary parts to
obtain eq. (6.1.4). Altogether, eq. (6.1.4) is equivalent to:(

∂

∂x
− 1

i

∂

∂y

)
f(x, y) = 0. (6.1.7)

Conversely, if u and v have continuous first derivatives then we may consider an arbitrary
variation of the function f .44

df = (∂xu+ i∂xv)dx+ (∂yu+ i∂yv)dy. (6.1.8)

For the (. . . )dy terms, the Cauchy-Riemann conditions in eq. (6.1.4) may now be employed to
turn ∂yu into −∂xv; and ∂yv into ∂xu.

df = (∂xu+ i∂xv)dx+ (∂xu+ i∂xv)idy

= ∂xfdz (6.1.9)

Along similar lines, it is also possible to write df = ∂yfdz, upon using Cauchy-Riemann. Hence,
we may vary f along any dz and if Cauchy-Riemann holds, then df/dz = ∂xf = ∂yf is well-
defined – i.e., f is thus analytic.

Remark Notice, the Cauchy-Riemann equations of (6.1.4) allow us to solve for the real
part of f in terms its imaginary part (or, vice versa) by integrating these first order relations.
We will, below, provide such an integral solution known as the Hilbert transform pairs.
Cauchy-Riemann in Polar Coordinates It is also useful to express the Cauchy-Riemann
conditions in polar coordinates (x, y) = r(cos θ, sin θ). We have

∂r =
∂x

∂r
∂x +

∂y

∂r
∂y = cos θ∂x + sin θ∂y (6.1.10)

∂θ =
∂x

∂θ
∂x +

∂y

∂θ
∂y = −r sin θ∂x + r cos θ∂y. (6.1.11)

By viewing this as a matrix equation (∂r, ∂θ)
T = M(∂x, ∂y)

T, we may multiply M−1 on both
sides and obtain the (∂x, ∂y) in terms of the (∂r, ∂θ).

∂x = cos θ∂r −
sin θ

r
∂θ (6.1.12)

∂y = sin θ∂r +
cos θ

r
∂θ. (6.1.13)

44It is at this point, if we did not assume u and v have continuous first derivatives, that we see the Cauchy-
Riemann conditions in eq. (6.1.4) are necessary but not necessarily sufficient ones for analyticity. For, df may
no longer be approximated by its first derivatives, and the following steps no longer hold.
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The Cauchy-Riemann conditions in eq. (6.1.4) can now be manipulated by replacing the ∂x and
∂y with the right hand sides above. Denoting c ≡ cos θ and s ≡ sin θ,(

cs∂r −
s2

r
∂θ

)
u =

(
s2∂r +

cs

r
∂θ

)
v, (6.1.14)(

sc∂r +
c2

r
∂θ

)
u = −

(
c2∂r −

sc

r
∂θ

)
v, (6.1.15)

and (
c2∂r −

sc

r
∂θ

)
u =

(
sc∂r +

c2

r
∂θ

)
v, (6.1.16)(

s2∂r +
sc

r
∂θ

)
u = −

(
cs∂r −

s2

r
∂θ

)
v. (6.1.17)

(We have multiplied both sides of eq. (6.1.4) with appropriate factors of sines and cosines.) Sub-
tracting the first pair and adding the second pair of equations, we arrive at the polar coordinates
version of Cauchy-Riemann:

1

r
∂θu = −∂rv, ∂ru =

1

r
∂θv. (6.1.18)

Examples Complex differentiability is much more restrictive than the real case. An example
is f(z) = |z|. If z is real, then at least for z ̸= 0, we may differentiate f(z) – the result is
f ′(z) = 1 for z > 0 and f ′(z) = −1 for z < 0. But in the complex case we would identify, with
z = x+ iy,

f(z) = |z| =
√
x2 + y2 = u(x, y) + iv(x, y) ⇒ v(x, y) = 0. (6.1.19)

It’s not hard to see that the Cauchy-Riemann conditions in eq. (6.1.4) cannot be satisfied
since v is zero while u is non-zero. Alternatively, one may simply recognize |z| =

√
z∗z is not

independent of z̄.
Moreover, any f that remains strictly real across the complex z plane is not differentiable

unless it is constant.

f(x, y) = u(x, y) ⇒ ∂xu = ∂yv = 0, ∂yu = −∂xv = 0. (6.1.20)

Similarly, if f were purely imaginary across the complex z plane, it is not differentiable unless
it is constant.

f(x, y) = iv(x, y) ⇒ 0 = ∂xu = ∂yv, 0 = −∂yu = ∂xv. (6.1.21)

Cauchy-Riemann as z̄ independence It is also useful to recast the Cartesian coordinates
(x, y) in terms of the complex coordinate z = x+ iy and its complex conjugate z∗ = z̄ = x− iy
through the relations

x =
z + z̄

2
and y =

z − z̄
2i

. (6.1.22)
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This in turn means any (not necessarily analytic) complex function f(x, y) = u(x, y)+ iv(x, y) =
f(z, z̄) can be viewed as a function of z and z̄. Taking into account eq. (6.1.22),

df(z, z̄) = du+ idv = ∂xf(z, z̄)
dz + dz̄

2
+ ∂yf(z, z̄)

dz − dz̄

2i

=
1

2

(
∂f(z, z̄)

∂x
+
∂f(z, z̄)

∂(iy)

)
dz +

1

2

(
∂f(z, z̄)

∂x
− ∂f(z, z̄)

∂(iy)

)
dz̄ (6.1.23)

≡ ∂f(z, z̄)

∂z
dz +

∂f(z, z̄)

∂z̄
dz̄. (6.1.24)

45Using the version of Cauchy-Riemann relations in eq. (6.1.7), the dz̄ term in eq. (6.1.23) is
set to zero and we infer

df

dz
=
∂f

∂x
=

1

i

∂f

∂y
and

∂f

∂z̄
= 0. (6.1.25)

To sum:

A complex function f(x, y) = f(z, z̄) = f(z, z∗) with continuous first derivatives
is analytic (i.e., complex differentiable) if and only if it is independent of z∗ = z̄.

For instance, z∗, Re z = (z + z̄)/2, |z|2 = z∗z are not analytic functions because they depends
on both z and z∗.

Differentiation rules We will prove below – by the principle of analytic continuation
– that if you know how to differentiate a function f(z) when z is real, then as long as you can
show that f ′(z) exists, the differentiation formula for the complex case would carry over from
the real case. That is, suppose f ′(z) = g(z) when f , g and z are real; then this form has to hold
for complex z. For example, powers are differentiated the same way

d

dz
zα = αzα−1, α ∈ R, (6.1.26)

and

d sin(z)

dz
= cos z,

daz

dz
=

dez ln a

dz
= az ln a. (6.1.27)

It is not difficult to check the first derivatives of zα, sin(z) and az are continuous; and the
Cauchy-Riemann conditions are satisfied. For instance, zα = rαeiαθ = rα cos(αθ) + irα sin(αθ)
and eq. (6.1.18) can be verified.

rα−1∂θ cos(αθ) = −αrα−1 sin(αθ)
?
= − sin(αθ)∂rr

α = −αrα−1 sin(αθ), (6.1.28)

cos(αθ)∂rr
α = αrα−1 cos(αθ)

?
= rα−1∂θ sin(αθ) = αrα−1 cos(αθ). (6.1.29)

45In case the assumption of continuous first derivatives is not clear – note that, if ∂xf and ∂yf were not
continuous, then df (the variation of f) in the direction across the discontinuity cannot be computed in terms of
the first derivatives. Drawing a plot for a real function F (x) with a discontinuous first derivative (i.e., a “kink”)
would help.
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(This proof that zα is analytic fails at r = 0; in fact, for α < 1, we see that zα is not analytic
there.) In particular, differentiability is particularly easy to see if f(z) can be defined through
its power series.

Product and chain rules The product and chain rules apply too. For instance,

(fg)′ = f ′g + fg′. (6.1.30)

because

(fg)′ = lim
∆z→0

f(z +∆z)g(z +∆z)− f(z)g(z)
∆z

= lim
∆z→0

(f(z) + f ′ ·∆z)(g(z) + g′∆z)− f(z)g(z)
∆z

= lim
∆z→0

fg + fg′∆z + f ′g∆z +O((∆z)2)− fg
∆z

= f ′g + fg′. (6.1.31)

We will have more to say later about carrying over properties of real differentiable functions to
their complex counterparts.

Problem 6.2. Simple analytic functions Use the Cauchy-Riemann conditions to verify
that ez, ln z and zα are analytic functions. (You may assume α is real.) Can you identify where
Cauchy-Riemann would break down for these functions? Then, explain why (z + 5)/(z∗ + i) is
not analytic.

Problem 6.3. Conformal (angle-preserving) transformations Complex functions
{f(x, y) = u(x, y) + iv(x, y)} can be thought of as a map from one 2D plane to another; i.e.,
from (x, y) to (u, v). Prove that analytic ones define angle preserving transformations everywhere
their derivatives are not zero, {f ′(z) ̸= 0}.

Hints: First, let us recall eq. (2.0.14), which tells us the Re part of z∗1z2 yields the dot
product between the two complex numbers z1 and z2, when they are viewed as vectors. For
analytic f(z = x+ iy) = u(x, y)+ iv(x, y), the directions df on the (u, v)−plane induced by the
small displacements dz1 = dx1 + idy1 and dz2 = dx2 + idy2 on the z−plane are described by

df1 = (∂xu+ i∂xv)(dx1 + idy1), (6.1.32)

df2 = (∂xu+ i∂xv)(dx2 + idy2). (6.1.33)

Show that Re df ∗
1df2 is proportional Re dz∗1dz2; and explain why that implies, as long as

f ′(z) ̸= 0, the angle between df1 and df2 is the same as that between dz1 and dz2.

2D Laplace’s equation Suppose f(z) = u(x, y)+ iv(x, y), where z = x+ iy
and x, y, u and v are real. If f(z) is complex-differentiable then the Cauchy-Riemann
relations in eq. (6.1.4) imply that both the real and imaginary parts of a complex
function obey Laplace’s equation, namely

(∂2x + ∂2y)u(x, y) = (∂2x + ∂2y)v(x, y) = 0. (6.1.34)
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To see this we differentiate eq. (6.1.4) appropriately,

∂x∂yu = ∂2yv, ∂x∂yu = −∂2xv (6.1.35)

∂2xu = ∂x∂yv, −∂2yu = ∂x∂yv. (6.1.36)

We now can equate the right hand sides of the first line; and the left hand sides of the second
line. This leads to (6.1.34).

Because of eq. (6.1.34), complex analysis can be very useful for 2D electrostatic problems.
Moreover, u and v cannot admit local minimum or maximums, as long as ∂2xu and ∂2xv are

non-zero. In particular, the determinants of the 2× 2 Hessian matrices ∂2u/∂(x, y)i∂(x, y)j and
∂2v/∂(x, y)i∂(x, y)j – and hence the product of their eigenvalues – are negative. For,

det
∂2u

∂(x, y)i∂(x, y)j
= det

[
∂2xu ∂x∂yu
∂x∂yu ∂2yu

]
= ∂2xu∂

2
yu− (∂x∂yu)

2 = −(∂2yu)2 − (∂2yv)
2 ≤ 0, (6.1.37)

det
∂2v

∂(x, y)i∂(x, y)j
= det

[
∂2xv ∂x∂yv
∂x∂yv ∂2yv

]
= ∂2xv∂

2
yv − (∂x∂yv)

2 = −(∂2yv)2 − (∂2yu)
2 ≤ 0, (6.1.38)

where both equations (6.1.34) and (6.1.35) were employed.

All turning points of an analytic f(z) are saddles points.

This will be an important feature when, for instance, we seek approximate expressions for certain
class of integrals involving complex analytic functions.

6.2 Integration, Laurent Series, Analytic Continuation

Complex integration is really a line integral
∫
A⃗ · (dx, dy) on the 2D complex plane. Given

some path (aka “contour”) C, defined by z(λ1 ≤ λ ≤ λ2) = x(λ) + iy(λ), with z(λ1) = z1 and
z(λ2) = z2,∫

C

dzf(z) =

∫
z(λ1≤λ≤λ2)

(dx+ idy) (u(x, y) + iv(x, y))

=

∫
z(λ1≤λ≤λ2)

(udx− vdy) + i

∫
z(λ1≤λ≤λ2)

(vdx+ udy)

=

∫ λ2

λ1

dλ

(
u
dx(λ)

dλ
− vdy(λ)

dλ

)
+ i

∫ λ2

λ1

dλ

(
v
dx(λ)

dλ
+ u

dy(λ)

dλ

)
≡
∫
z⃗(λ1≤λ≤λ2)

A⃗R · dz⃗ + i

∫
z⃗(λ1≤λ≤λ2)

A⃗I · dz⃗; (6.2.1)

A⃗R ≡ (u(x, y),−v(x, y))T , A⃗I ≡ (v(x, y), u(x, y))T , dz⃗ ≡ (dx, dy)T . (6.2.2)

The real part of the line integral involves ReA⃗ ≡ A⃗R = (u,−v) and its imaginary part Im

A⃗ ≡ A⃗I = (v, u).
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Remark I Because complex integration is a line integral, reversing the direction of contour
C (which we denote as −C) would yield return negative of the original integral.∫

−C
dzf(z) = −

∫
C

dzf(z) (6.2.3)

Fundamental Theorem of Calculus For analytic f , i.e., where f ′(z) exists, the complex
version of the fundamental theorem of calculus has to hold:∫

C

dzf ′(z) =

∫
C

df = f(“upper” end point of C)− f(“lower” end point of C)

=

∫ z2

z1

dzf ′(z) = f(z2)− f(z1). (6.2.4)

In words: the integral of f ′(z) with respect to z does not depend on the path taken, even though
the general line integral does. It turns out this path-independence also applies to the integral of
f(z) itself.

Cauchy’s integral theorem In introducing the contour integral in eq.
(6.2.1), we are not assuming any properties about the integrand f(z). However,
if the complex function f(z) is analytic throughout some simply connected region46

containing the contour C, then we are lead to one of the key results of complex
integration theory: the integral of f(z) within any closed path C there is zero.∮

C

f(z)dz = 0 (6.2.5)

For a detailed proof, the mathematically minded can consult, say, Brown and Churchill [19].

Problem 6.4. If the first derivatives of f(z) are assumed to be continuous, then a proof
of this modified Cauchy’s theorem can be carried out by starting with the view that

∮
C
f(z)dz

is a (complex) line integral around a closed loop. Then apply Stokes’ theorem followed by the
Cauchy-Riemann conditions in eq. (6.1.4). Can you fill in the details?

Path Independence Cauchy’s theorem has an important implication. Suppose we have a
contour integral

∫
C
g(z)dz, where C is some arbitrary (not necessarily closed) contour. Suppose

we have another contour C ′ whose end points coincide with those of C. If the function g(z) is
analytic inside the region bounded by C and C ′, then it has to be that∫

C

g(z)dz =

∫
C′
g(z)dz. (6.2.6)

The reason is that, by subtracting these two integrals, say (
∫
C
−
∫
C′)g(z)dz, the − sign can be

absorbed by reversing the direction of the C ′ integral. We then have a closed contour integral
(
∫
C
−
∫
C′)g(z)dz =

∮
g(z)dz and Cauchy’s theorem in eq. (6.2.5) applies. Along similar lines,

we may argue the integral of f is itself an analytic function F , defined as

F (z) ≡
∫ z

z0

f(z′)dz′; (6.2.7)

46A simply connected region is one where every closed loop in it can be shrunk to a point.
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because the result is independent of the path taken from z0 to z.
This path-independence is a very useful observation because it means, for a given contour

integral, you can deform the contour itself to a shape that would make the integral easier to
evaluate. Below, we will generalize this and show that, even if there are isolated points where
the function is not analytic, you can still pass the contour over these points, but at the cost of
incurring additional terms resulting from taking the residues there. Another possible type of
singularity is known as a branch point, which will then require us to introduce a branch cut.

Note that the simply connected requirement can often be circumvented by considering an
appropriate cut line. For example, suppose C1 and C2 were both counterclockwise (or both
clockwise) contours around an annulus region, within which f(z) is analytic. Then∮

C1

f(z)dz =

∮
C2

f(z)dz. (6.2.8)

Example I A simple but important example is the following integral, where the contour C
is an arbitrary counterclockwise closed loop that encloses the point z = 0.

I ≡
∮
C

dz

z
(6.2.9)

Cauchy’s integral theorem does not apply directly because 1/z is not analytic at z = 0. By
considering a counterclockwise circle C ′ of radius R > 0, however, we may argue∮

C

dz

z
=

∮
C′

dz

z
. (6.2.10)

47We may then employ polar coordinates, so that the path C ′ could be described as z = Reiθ,
where θ would run from 0 to 2π.∮

C

dz

z
=

∫ 2π

0

d(Reiθ)

Reiθ
=

∫ 2π

0

idθ = 2πi. (6.2.11)

Example II Let’s evaluate
∮
C
zdz and

∮
C
dz directly and by using Cauchy’s integral theorem.

Here, C is some closed contour on the complex plane. Directly:∮
C

zdz =
z2

2

∣∣∣∣z=z0
z=z0

= 0,

∮
C

dz = z|z=z0z=z0
= 0. (6.2.12)

Using Cauchy’s integral theorem – we first note that z and 1 are analytic, since they are powers
of z; we thus conclude the integrals are zero.

Problem 6.5. For some contour C, let M be the maximum of |f(z)| along it and L ≡∫
C

√
dx2 + dy2 be the length of the contour itself, where z = x + iy (for x and y real). Argue

that ∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ≤ ∫
C

|f(z)||dz| ≤M · L. (6.2.13)

47This is where drawing a picture would help: for simplicity, if C ′ lies entirely within C, the first portion of the
cut lines would begin anywhere from C ′ to anywhere to C, followed by the reverse trajectory from C to C ′ that
runs infinitesimally close to the first portion. Because they are infinitesimally close, the contributions of these two
portions cancel; but we now have a simply connected closed contour integral that amounts to 0 = (

∫
C
−
∫
C′)dz/z.

225



Note: |dz| =
√

dx2 + dy2. (Why?) Hints: Can you first argue for the triangle inequality,
|z1 + z2| ≤ |z1| + |z2|, for any two complex numbers z1,2? What about |z1 + z2 + · · · + zN | ≤
|z1| + |z2| + · · · + |zN |? Then view the integral as a discrete sum, and apply this generalized
triangle inequality to it.

Problem 6.6. Evaluate ∮
C

dz

z(z + 1)
, (6.2.14)

where C is an arbitrary contour enclosing the points z = 0 and z = −1. Note that Cauchy’s
integral theorem is not directly applicable here. Hint: Apply a partial fractions decomposition
of the integrand, then for each term, convert this arbitrary contour to an appropriate circle.

The next major result allows us to deduce f(z), for z lying within some contour C, by
knowing its values on C.

Cauchy’s integral formula If f(z) is analytic on and within some closed
counterclockwise contour C, then∮

C

dz′

2πi

f(z′)

z′ − z
= f(z) if z lies inside C

= 0 if z lies outside C. (6.2.15)

Proof If z lies outside C then the integrand is analytic within its interior and therefore
Cauchy’s integral theorem applies. If z lies within C we may then deform the contour such that
it becomes an infinitesimal counterclockwise circle around z′ ≈ z,

z′ ≡ z + ϵeiθ, 0 < ϵ≪ 1. (6.2.16)

We then have ∮
C

dz′

2πi

f(z′)

z′ − z
=

1

2πi

∫ 2π

0

ϵeiθidθ
f(z + ϵeiθ)

ϵeiθ

=

∫ 2π

0

dθ

2π
f(z + ϵeiθ). (6.2.17)

By taking the limit ϵ→ 0+, we get f(z), since f(z′) is analytic and thus continuous at z′ = z.

Problem 6.7. Cauchy’s integral as an average Let C be a circular contour of radius
R centered at z; i.e., z′ ≡ z +Reiθ. Suppose f(z′) is analytic on and within C, show that

f(z) =

∫ 2π

0

dθ

2π
f
(
z +Reiθ

)
. (6.2.18)

This informs us, the value of an analytic function at z is the average of its values on any
circle centered at z. Use this fact to explain why neither the Re or Im portion of f can be
a local minimum or maximum. This is, in fact, consistent with the fact that they satisfy the
homogeneous Laplace equation – recall eq. (6.1.34).
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Cauchy’s integral formula for derivatives By applying the limit defini-
tion of the derivative, we may obtain an analogous definition for the nth derivative
of f(z). For some closed counterclockwise contour C,∮

C

dz′

2πi

f(z′)

(z′ − z)n+1
=
f (n)(z)

n!
if z lies inside C

= 0 if z lies outside C. (6.2.19)

This implies – as already advertised earlier – once f ′(z) exists, f (n)(z) also exists for any n.
Complex-differentiable functions are infinitely smooth.

The converse of Cauchy’s integral formula is known as Morera’s theorem, which we will
simply state without proof.

Morera’s theorem If f(z) is continuous in a simply connected region and∮
C
f(z)dz = 0 for any closed contour C within it, then f(z) is analytic throughout

this region.

Now, even though f (n>1)(z) exists once f ′(z) exists (cf. (6.2.19)), f(z) cannot be infinitely
smooth everywhere on the complex z−plane.

Liouville’s theorem If f(z) is analytic and bounded – i.e., |f(z)| is less
than some positive constant M – for all complex z, then f(z) must in fact be a
constant. Apart from the constant function, analytic functions must therefore blow
up somewhere on the complex plane.

Proof To prove this result we employ eq. (6.2.19). Choose a counterclockwise circular
contour C that encloses some arbitrary point z,

|f (n)(z)| ≤ n!

∮
C

|dz′|
2π

|f(z′)|
|(z′ − z)n+1|

(6.2.20)

≤ n!
M

2πrn+1

∮
C

|dz′| = n!
M

rn
. (6.2.21)

Here, r is the radius from z to C. But by Cauchy’s theorem, the circle can be made arbitrarily
large. By sending r →∞, we see that |f (n)(z)| = 0, the nth derivative of the analytic function
at an arbitrary point z is zero for any integer n ≥ 1. This proves the theorem.

Examples The exponential ez while differentiable everywhere on the complex plane,
does in fact blow up at Re z → ∞. Sines and cosines are oscillatory and bounded on the real
line; and are differentiable everywhere on the complex plane. However, they blow up as one
move towards positive or negative imaginary infinity. Remember sin(z) = (eiz − e−iz)/(2i) and
cos(z) = (eiz + e−iz)/2. Then, for R ∈ R,

sin(iR) =
e−R − eR

2i
, cos(iR) =

e−R + eR

2
. (6.2.22)

Both sin(iR) and cos(iR) blow up as R→ ±∞.

227



Problem 6.8. Fundamental theorem of algebra. Let P (z) = p0 + p1z+ . . . pnz
n be an

nth degree polynomial, where n is an integer greater or equal to 1. By considering f(z) = 1/P (z)
in view of Liouville’s theorem, show that P (z) has at least one root. (Once a root has been
found, we can divide it out from P (z) and repeat the argument for the remaining (n− 1)-degree
polynomial. By induction, this implies an nth degree polynomial has exactly n roots – this is
the fundamental theorem of algebra.)

Taylor series The generalization of the Taylor series of a real differentiable function to
the complex case is known as the Laurent series. If the function is completely smooth in some
region on the complex plane, then we shall see that it can in fact be Taylor expanded the usual
way, except the expressions are now complex. If there are isolated points where the function
blows up, then it can be (Laurent) expanded about those points, in powers of the complex
variable – except the series begins at some negative integer power, as opposed to the zeroth
power in the usual Taylor series.

To begin, let us show that the geometric series still works in the complex case.

Problem 6.9. Complex Geometric Series By starting with the Nth partial sum,

SN ≡
N∑
ℓ=0

tℓ, (6.2.23)

prove that, as long as |t| < 1,

1

1− t
=

∞∑
ℓ=0

tℓ. (6.2.24)

Hint: You may need to consider limN→∞ |SN − (1− t)−1|.

Now pick a point z0 on the complex plane and identify the nearest point, say z1, where f
is no longer analytic. Consider some closed counterclockwise contour C that lies within the
circular region |z − z0| < |z1 − z0|. Then we may apply Cauchy’s integral formula eq. (6.2.15),
and deduce a series expansion about z0:

f(z) =

∮
C

dz′

2πi

f(z′)

z′ − z

=

∮
C

dz′

2πi

f(z′)

(z′ − z0)− (z − z0)
=

∮
C

dz′

2πi

f(z′)

(z′ − z0)(1− (z − z0)/(z′ − z0))

=
∞∑
ℓ=0

∮
C

dz′

2πi

f(z′)

(z′ − z0)ℓ+1
(z − z0)ℓ . (6.2.25)

We have used the geometric series in eq. (6.2.24) and the fact that it converges uniformly to
interchange the order of integration and summation. At this point, if we now recall Cauchy’s
integral formula for the nth derivative of an analytic function, eq. (6.2.19), we have arrived at
its Taylor series.

228



For f(z) complex analytic within the circular region |z− z0| < |z1− z0|, where z1
is the nearest point to z0 where f is no longer differentiable,

f(z) =
∞∑
ℓ=0

(z − z0)ℓ
f (ℓ)(z0)

ℓ!
, (6.2.26)

where f (ℓ)(z)/ℓ! is given by eq. (6.2.19).

Problem 6.10. Complex Binomial Theorem. For p any real number and z any complex
number obeying |z| < 1, prove the complex binomial theorem using eq. (6.2.26),

(1 + z)p =
∞∑
ℓ=0

(
p

ℓ

)
zℓ, (6.2.27)(

p

0

)
≡ 1,

(
p

ℓ

)
=
p(p− 1) . . . (p− (ℓ− 1))

ℓ!
. (6.2.28)

Explain why this, in turn, implies the generalized binomial expansion

(X + Y )p = Θ(|X/Y | − 1)Xp

∞∑
ℓ=0

(
p

ℓ

)(
Y

X

)ℓ
+Θ(|Y/X| − 1)Y p

∞∑
ℓ=0

(
p

ℓ

)(
X

Y

)ℓ
. (6.2.29)

The existence of two different expansion schemes, depending on whether |X| > |Y | or |X| < |Y |,
leads us to the following discussion of the Laurent series.

Laurent series We are now ready to derive the Laurent expansion of a function f(z) that
is analytic within an annulus, say bounded by the circles |z − z0| = r1 and |z − z0| = r2 > r1.
That is, the center of the annulus region is z0 and the smaller circle has radius r1 and larger one
r2. To start, we let C1 be a clockwise circular contour with radius r2 > r′1 > r1 and let C2 be a
counterclockwise circular contour with radius r2 > r′2 > r′1 > r1. As long as z lies between these
two circular contours, we have

f(z) =

(∫
C1

+

∫
C2

)
dz′

2πi

f(z′)

z′ − z
. (6.2.30)

Strictly speaking, we need to integrate along a cut line joining the C1 and C2 – and another one
infinitesimally close to it, in the opposite direction – so that we can form a closed contour. But
by assumption f(z) is analytic and therefore continuous; the integrals along these pair of cut
lines must cancel. For the C1 integral, we may write z′ − z = −(z − z0)(1− (z′ − z0)/(z − z0))
and apply the geometric series in eq. (6.2.24) because |(z′ − z0)/(z − z0)| < 1. Similarly, for the
C2 integral, we may write z′ − z = (z′ − z0)(1− (z − z0)/(z′ − z0)) and geometric series expand
the right factor because |(z − z0)/(z′ − z0)| < 1. These lead us to

f(z) =
∞∑
ℓ=0

(z − z0)ℓ
∫
C2

dz′

2πi

f(z′)

(z′ − z0)ℓ+1
−

∞∑
ℓ=0

1

(z − z0)ℓ+1

∫
C1

dz′

2πi
(z′ − z0)ℓf(z′). (6.2.31)

Remember complex integration can be thought of as a line integral, which reverses sign if we
reverse the direction of the line integration. Therefore we may absorb the − sign in front of
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the C1 integral(s) by turning C1 from a clockwise circle into C ′
1 = −C1, a counterclockwise one.

Moreover, note that we may now deform the contour C ′
1 into C2,∫

C′
1

dz′

2πi
(z′ − z0)ℓf(z′) =

∫
C2

dz′

2πi
(z′ − z0)ℓf(z′), (6.2.32)

because for positive ℓ the integrand (z′ − z0)ℓf(z′) is analytic in the region lying between the
circles C ′

1 and C2. At this point we have

f(z) =
∞∑
ℓ=0

∫
C2

dz′

2πi

(
(z − z0)ℓ

f(z′)

(z′ − z0)ℓ+1
+

1

(z − z0)ℓ+1
(z′ − z0)ℓf(z′)

)
. (6.2.33)

Proceeding to re-label the second series by replacing ℓ + 1 → −ℓ′, so that the summation then
runs from −1 through −∞, the Laurent series emerges.

Let f(z) be analytic within the annulus r1 < |z − z0| < r2 < |z1 − z0|, where z0
is some complex number such that f(z) may not be analytic within |z − z0| < r1;
z1 is the nearest point outside of |z − z0| ≥ r1 where f(z) fails to be differentiable;
and the radii r2 > r1 > 0 are real positive numbers. The Laurent expansion of f(z)
about z0, valid throughout the entire annulus, reads

f(z) =
∞∑

ℓ=−∞

Lℓ(z0) · (z − z0)ℓ, (6.2.34)

Lℓ(z0) ≡
∮
C

dz′

2πi

f(z′)

(z′ − z0)ℓ+1
. (6.2.35)

The C is any counterclockwise closed contour containing both z and the inner circle
|z − z0| = r1.

Uniqueness It is worth asserting that the Laurent expansion of a function, in the region
where it is analytic, is unique. That means it is not always necessary to perform the integrals
in eq. (6.2.34) to obtain the expansion coefficients Lℓ.

Problem 6.11. For complex z, a and b, obtain the Laurent expansion of

f(z) ≡ 1

(z − a)(z − b)
, a ̸= b, (6.2.36)

about z = a, in (I) the region 0 < |z − a| < |a− b|; as well as (II) in the region |z − a| > |a− b|
using eq. (6.2.34). Check your result either by writing

1

z − b
= − 1

1− (z − a)/(b− a)
1

b− a
. (6.2.37)

and employing the geometric series in eq. (6.2.24), or directly performing a Taylor expansion of
1/(z − b) about z = a.
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Problem 6.12. Schwarz reflection principle. Proof the following statement using Lau-
rent expansion. If a function f(z = x+ iy) = u(x, y) + iv(x, y) can be Laurent expanded (for x,
y, u, and v real) about some point on the real line, and if f(z) is real whenever z is real, then

f(z)∗ = u(x, y)− iv(x, y) = f(z∗) = u(x,−y) + iv(x,−y). (6.2.38)

Comment on why this is called the “reflection principle”.
There are lots of functions satisfying this f(z)∗ = f(z∗) property: sin(z), cos(z), tan(z),

Gamma Γ(z), Bessel Jν(z), etc.

Analytic continuation We now turn to an important result that allows us to extend the
definitions of complex differentiable functions beyond their original range of validity. Suppose
the function f(z = x+iy) is analytic within some region on the z−plane, and its value is specified
on some line segment (x(λ), y(λ)) lying with this region for some real parameter λ. That means
we may compute its derivatives dnf(z(λ) = x(λ) + iy(λ))/dλn for all n ≥ 1 at any fixed point
z0 on the line segment. This in turn implies, the nth derivative f (n)(z0) can be computed once
the values f(z(λ)) on a line are known. Since an analytic function is uniquely determined by
its infinite set of derivatives at any fixed point within its domain of analyticity, we arrive at the
following statement.

An analytic function f(z) is fixed uniquely throughout a given region Σ on the
complex plane, once its value is specified on a line segment lying within Σ.

This in turn means, suppose we have an analytic function f1(z) defined in a region Σ1 on the
complex plane, and suppose we found another analytic function f2(z) defined in some region Σ2

such that f2(z) agrees with f1(z) in their common region of intersection. (It is important that
Σ2 does have some overlap with Σ1.) Then we may view f2(z) as an analytic continuation of
f1(z), because this extension is unique – it is not possible to find a f3(z) that agrees with f1(z)
in the common intersection between Σ1 and Σ2, yet behave different in the rest of Σ2.

These results inform us, any real differentiable function we are familiar with can be extended
to the complex plane, simply by knowing its Taylor expansion. For example, ex is infinitely
differentiable on the real line, and its definition can be readily extended into the complex plane
via its Taylor expansion.

An example of analytic continuation is that of the geometric series. If we define

f1(z) ≡
∞∑
ℓ=0

zℓ, |z| < 1, (6.2.39)

and

f2(z) ≡
1

1− z
, (6.2.40)

then we know they agree in the region |z| < 1 and therefore any line segment within it. But
while f1(z) is defined only in this region, f2(z) is valid for any z ̸= 1. Therefore, we may view
1/(1− z) as the analytic continuation of f1(z) for the region |z| > 1. Also observe that we can
now understand why the series is valid only for |z| < 1: the series of f1(z) is really the Taylor
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expansion of f2(z) about z = 0, and since the nearest singularity is at z = 1, the circular region
of validity employed in our (constructive) Taylor series proof is in fact |z| < 1.

YZ: Example. Coincide on a line. Gamma function.
Exponential and trigonometric functions The exponential ez = exeiy, for x and

y denoting the real and imaginary parts of z, may be readily checked to be analytic – i.e., it
satisfies the Cauchy-Riemann equations and hence

(ez)′ = ∂xe
xeiy = ez. (6.2.41)

On the other hand, if we first restrict z to the real line, so that ez = ex, then

(ez)′ = ∂xe
x = ez. (6.2.42)

Since the rightmost expression may be extended to the entire complex z−plane, and since we
know (ez)′ has to exist we may ‘analytic continue’ the result and deduce

(ez)′ = ez (6.2.43)

for all z ∈ C. Along similar lines, we know that (sin z)′ = cos z, (cos z)′ = − sin z, (sinh z)′ =
cosh z, etc. on the real line. Since the right hand sides can be analytically continued to the
entire complex plane, these relations must therefore hold for all complex z.

Gamma Function The Gamma function Γ(z) – the generalization of the factorial n!
for arbitrary complex numbers – is an excellent place to demonstrate the principle of analytic
continuation. (It is also a function that shows up frequently in theoretical physics; for example,
even in quantum field theory calculations.) We start by defining it through the integral, for Re
z > 0,

Γ(z) ≡
∫ +∞

0

tz−1e−tdt. (6.2.44)

The Re z > 0 is needed because of the contribution from the lower end of the integration; for
ε < 1, ∫ ε

0

tz−1e−tdt =

∫ ε

0

tz−1

(
1− t+ t2

2
+ . . .

)
dt. (6.2.45)

We see that the (first) tz−1 term yields a divergence upon integration once Re z ≤ 0. We will
use the principle of analytic continuation to understand how to extend Γ(z) to the Re z ≤ 0
region. Hence, we may ask the question: How do we extend the definition of Γ(z) to the Re
z < 0 portion of the complex plane?

One way to do so is to first derive the recursion relation

zΓ(z) = Γ(z + 1). (6.2.46)

For the reader’s reference we also collect the identity

Γ(z)Γ(1− z) = π

sin(πz)
(6.2.47)
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and the ‘duplication formula’

22z−1Γ(z)Γ

(
z +

1

2

)
=
√
πΓ(2z). (6.2.48)

We apply integrate by parts to the definition in eq. (12.4.259).

Γ(z + 1) = −
∫ +∞

0

t(z+1)−1∂te
−tdt (6.2.49)

=
[
−tze−t

]t=∞
t=0

+ z

∫ +∞

0

tz−1e−tdt = zΓ(z). (6.2.50)

Shifting z → z − 1 in eq. (6.2.46) and dividing both sides by z − 1,

Γ(z − 1) =
Γ(z)

z − 1
. (6.2.51)

The right hand side is an analytic function for Re z > 0 except at z = 1. But for the same
domain of z, the z−1 argument of the Gamma function on the left hand side now extends to Re
z > −1. Hence, we may now recognize this relation as an analytic continuation of Γ(z) from the
Re z > 0 to the Re z > −1 region: since both Γ(z − 1) and Γ(z)/(z − 1) certainly agree in the
Re z > 0 region, we may define Γ(z − 1) uniquely in the −1 < Rez ≤ 0 region via Γ(z)/(z − 1).
We may then continue this process, by repeated application of eq. (6.2.46):

(z − 1)(z − 2) . . . (z − n+ 1)(z − n)Γ(z − n) = Γ(z). (6.2.52)

Even though this is derived with the Re z > 0 constraint, we may write

Γ(z − n) = Γ(z)

(z − 1)(z − 2) . . . (z − (n− 1))(z − n)
. (6.2.53)

The right hand side is analytic for Re z > 0 except at z = 1, 2, 3, . . . , n − 1, n. For the same
domain, the z − n argument of the Gamma function of the left hand side lies within the region
Re z > −n. Hence, this result tells us we may analytic continue Γ(z) using the recursion relation
in eq. (6.2.46) to the strip −n < Rez < 0, for any positive integer n = 1, 2, 3, . . . .

Incidentally, we may now verify that Γ(n+ 1) is the factorial n! by using eq. (6.2.46). First,
we compute from eq. (6.2.44):

Γ(1) ≡
∫ +∞

0

e−tdt = 1. (6.2.54)

Then, using eq. (6.2.46),

n! = n! · Γ(1) = n · (n− 1) · (n− 2) . . . (2) · (1) · Γ(1) (6.2.55)

= n · (n− 1) · (n− 2) . . . (2) · Γ(2) = . . . (6.2.56)

= n · (n− 1) · Γ(n− 1) = n · Γ(n) = Γ(n+ 1). (6.2.57)
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We also observe that Γ(0) must be singular. We set z = ε, for 0 < ε ≪ 1 and compute eq.
(6.2.44):

εΓ(ε) = Γ(ε+ 1) =

∫ ∞

0

tεe−tdt (6.2.58)

=

∫ ∞

0

(
1 + ε · ln t+O(ε2)

)
e−tdt. (6.2.59)

The second integral is Γ′(1) because

Γ′(z) =

∫ ∞

0

tz−1 ln(t)e−tdt. (6.2.60)

Therefore

Γ(ε) =
1

ε
+ Γ′(1) +O (ε) . (6.2.61)

Even though we have derived this with the assumption that ε > 0, since 1/ε is analytic for ε < 0,
this relation must therefore – by analytic continuation – be valid for the region around ε ≈ 0. In
the following problem, you will uncover the structure of the singularities at z = 0,−1,−2, . . . .

Problem 6.13. Poles of Γ(z) at non-positive integers Use equations (6.2.46) and
(6.2.61) to show that, for n = 0, 1, 2, . . . (non-positive integers) and |ε| ≪ 1,

Γ(ε− n) = (−)n

n!

(
1

ε
− γE + 1 +

1

2
+

1

3
+ · · ·+ 1

n
+O (ε)

)
; (6.2.62)

where γE = −Γ′(1) = 0.57721566490 . . . is the Euler–Mascheroni constant.
This result is used to regulate divergences encountered in quantum field theory calculations,

within a scheme known as dimensional regularization, where the dimension of spacetime is
d = 4− 2ε.

We will derive eq. (6.2.47) below, after discussing branch cuts; but assuming it holds we
may now deduce these z = 0,−1,−2,−3, . . . are the only singularities of Γ(z). First note that
the only singularities of the right hand side of eq. (6.2.47) occurs at the zeroes of sin(πz);
at z = 0,±1,±2,±3. However, at the positive integers z = n + 1 = 1, 2, 3, . . . , we have
already computed Γ(z) = Γ(n + 1) = n!; and therefore Γ(z)Γ(1 − z) is singular there because
of the Γ(1 − z) = Γ(−n) factor. Likewise, Γ(z)Γ(1 − z) is singular at the non-positive integers
z = 0,−1,−2,−3, . . . only because of the Γ(z) factor, as Γ(1− z) = Γ(n+ 1) = n!.

We may also observe, eq. (6.2.47) tells us Γ(z) does not go to zero for any finite |z|. The
right hand side of eq. (6.2.47) does not go to zero for any finite |z|. Hence, suppose Γ(z) has
a zero at z⋆, then Γ(1 − z⋆) must have a singularity to ‘cancel out’ the Γ(z⋆) in such a manner
so that Γ(z⋆)Γ(1 − z⋆) is finite. (Similarly, if Γ(1 − z) had a zero at z⋆, then Γ(z⋆) must blow
up.) But as we have just shown, the Gamma function can only blow up when its argument z⋆
(or, 1− z⋆) is a non-positive integer −n = 0,−1,−2,− . . . ; which means it must have a zero at
1 − z⋆ (or, z⋆) – a positive integer n + 1 = 1, 2, 3, . . . , where Γ(n + 1) = n!. This contradiction
proves there is indeed no finite |z| that yields Γ(z) = 0. As a consequence
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The reciprocal of the Gamma function 1/Γ(z) is an entire function – it is analytic
everywhere on the complex plane where |z| is finite – because Γ(z) = 0 has no
solutions there. Moreover, the only singularities of Γ(z) are those at z = −n =
0,−1,−2, . . . , and the Gamma function behaves as eq. (6.2.62) in the neighborhoods
of these non-positive integers.

There is another way we may analytically continue Γ(z), as described in Lebedev [5], by splitting
the integral in eq. (6.2.44) into two.

Γ (Re z > 0) =

(∫ 1

0

+

∫ ∞

1

)
tz−1e−tdt (6.2.63)

=
+∞∑
ℓ=0

(−)ℓ

ℓ!

∫ 1

0

tz−1+ℓdt+

∫ ∞

1

tz−1e−tdt (6.2.64)

=
+∞∑
ℓ=0

(−)ℓ

ℓ!(z + ℓ)
+

∫ ∞

1

tz−1e−tdt. (6.2.65)

The remaining integral on the last line converges for all complex z = x + iy and is an analytic
function. ∣∣∣∣∫ ∞

1

e−t

t
txtiydt

∣∣∣∣ ≤ ∫ ∞

1

∣∣∣∣e−tt txtiy
∣∣∣∣ dt ≤ ∫ ∞

1

e−ttx−1dt <∞ (6.2.66)∣∣∣∣∂z ∫ ∞

1

tz−1e−tdt

∣∣∣∣ ≤ ∫ ∞

1

∣∣(ln t)tz−1e−t
∣∣ dt ≤ ∣∣∣∣∂x ∫ ∞

1

txe−tdt

∣∣∣∣ (6.2.67)

Whereas the summation also converges for all z ̸= 0,−1,−2,−3, . . . , for the following reasons.
First note that, by picking the nearest non-negative integer n⋆ to z, the 1/(z+n⋆) must be such
that its length is the largest among all the 1/(z + n) occurring within the sum. Then∣∣∣∣∣

+∞∑
ℓ=0

(−)ℓ

ℓ!(z + ℓ)

∣∣∣∣∣ ≤
+∞∑
ℓ=0

∣∣∣∣ (−)ℓ

ℓ!(z + ℓ)

∣∣∣∣ ≤ 1

z + n⋆

+∞∑
ℓ=0

1

ℓ!
=

e

z + n⋆
. (6.2.68)

Remarkably, decomposing the
∫∞
0
tz−1e−tdt into an infinite sum plus the same integral with the

lower limit lifted from 0 to 1 allow us to analytically continue it to all z except when it is zero
or a negative integer.

Γ (z ∈ C) =
+∞∑
ℓ=0

(−)ℓ

ℓ!(z + ℓ)
+

∫ ∞

1

tz−1e−tdt. (6.2.69)

As z = ε− n for n = 0,−1,−2, . . . and |ε| ≪ 1, the sum tells us the singularity goes as

Γ (z → ε− n) = (−)n

n!ε
+ . . . ; (6.2.70)

consistent with eq. (6.2.62).
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Problem 6.14. Hypergeometric Function One key application of analytic continuation
is that, some special functions in mathematical physics admit a power series expansion that
has a finite radius of convergence. This can occur if the differential equations they solve have
singular points. Many of these special functions also admit an integral representation, whose
range of validity lies beyond that of the power series. This allows the domain of these special
functions to be extended.

The hypergeometric function 2F1(α, β; γ; z) is such an example. For |z| < 1 it has a power
series expansion

2F1(α, β; γ; z) =
∞∑
ℓ=0

Cℓ(α, β; γ)
zℓ

ℓ!
,

C0(α, β; γ) ≡ 1,

Cℓ≥1(α, β; γ) ≡
α(α + 1) . . . (α + (ℓ− 1)) · β(β + 1) . . . (β + (ℓ− 1))

γ(γ + 1) . . . (γ + (ℓ− 1))
. (6.2.71)

On the other hand, it also has the following integral representation,

2F1(α, β; γ; z) =
Γ(γ)

Γ(γ − β)Γ(β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt, (6.2.72)

Re(γ) >Re(β) > 0. (6.2.73)

(Here, Γ(z) is the Gamma function.) Show that eq. (6.2.72) does in fact agree with eq. (6.2.71)
for |z| < 1. You can apply the binomial expansion in eq. (6.2.27) to (1− tz)−α, followed by Beta
function integral representation∫ 1

0

dt(1− t)α−1tβ−1 =
Γ(α)Γ(β)

Γ(α + β)
≡ B(α, β), Re(α), Re(β) > 0. (6.2.74)

You may also need to invoke eq. (6.2.46).
To reiterate: eq. (6.2.72) therefore extends eq. (6.2.71) into the region |z| > 1.

Generating Functions One application of equations (6.2.19) and (6.2.34) is to the un-
derstanding of generating functions of ‘special functions’ in mathematical physics. For example,
the Bessel function of integer order Jn(z), for n = 0, 1, 2, 3, . . . , may be viewed as the coefficient
of tn in the expansion of

exp

[
z

2

(
t− 1

t

)]
=

+∞∑
n=−∞

tnJn(z). (6.2.75)

Viewing this as a Laurent series in t, eq. (6.2.34) informs us

Jn(z) =

∮
C

dt′

2πit′n+1
exp

[
z

2

(
t′ − 1

t′

)]
. (6.2.76)

If we choose the counter-clockwise closed contour C to be the unit circle, t′ = eiθ for 0 ≤ θ < 2π,
we arrive an integral representation of the Bessel function:

Jn(z) =

∫ 2π

0

dθ

2π
exp [iz sin(θ)− inθ] . (6.2.77)
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Since sin(x) is odd, we may also write this as

Jn(z) =

∫ π

0

dθ

π
cos [z sin(θ)− nθ] . (6.2.78)

Problem 6.15. Generating Function: Hermite Polynomials The Hermite polynomi-
als may be defined by the derivatives

Hn(x) = (−)nex2 dn

dxn
e−x

2

. (6.2.79)

Explain why

Hn(x)

n!
= (−)nex2

∮
C

dz′

2πi

e−z
′2

(z′ − x)n+1
, (6.2.80)

for some closed counterclockwise C that contains x. Use this result to prove that

∞∑
n=0

tn
Hn(x)

n!
= exp

(
−t2 + 2xt

)
. (6.2.81)

Hint: You should find the sum involves a geometric series. The integral then becomes an
application of eq. (6.2.15).

6.3 Poles and Residues

In this section we will consider the closed counterclockwise contour integral∮
C

dz

2πi
f(z), (6.3.1)

where f(z) is analytic everywhere on and within C except at isolated singular points of f(z) –
which we will denote as {z1, . . . , zn}, for (n ≥ 1)-integer. That is, we will assume there is no
other type of singularities. We will show that the result is the sum of the residues of f(z) at
these points. This case will turn out to have a diverse range of physical applications, including
the study of the vibrations of black holes.

We begin with some jargon.
Nomenclature If a function f(z) admits a Laurent expansion about z = z0 starting

from 1/(z − z0)m, for m some positive integer,

f(z) =
∞∑

ℓ=−m

Lℓ(z0) · (z − z0)ℓ, (6.3.2)

we say the function has a pole of order m at z = z0. (For example, the Γ(z) has poles of order 1,
aka simple poles, at z = 0,−1,−2,−3, . . . ; see eq. (6.2.62).) If m =∞ we say the function has
an essential singularity. The residue of a function f at some location z0 is simply the coefficient
L−1 of the negative one power (ℓ = −1 term) of the Laurent series expansion about z = z0.

The key to the result already advertised is the following.
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Problem 6.16. If n is an arbitrary integer, show that∮
C

(z′ − z)n dz
′

2πi
= 1, when n = −1,

= 0, when n ̸= −1, (6.3.3)

where C is any contour (whose interior defines a simply connected domain) that encloses the
point z′ = z.

By assumption, we may deform our contour C so that they become the collection of closed
counterclockwise contours {C ′

i|i = 1, 2, . . . , n} around each and every isolated point. This means∮
C

f(z′)
dz′

2πi
=
∑
i

∮
C′

i

f(z′)
dz′

2πi
. (6.3.4)

Strictly speaking, to preserve the full closed contour structure of the original C, we need to join
these new contours – say C ′

i to C
′
i+1, C

′
i+1 to C ′

i+2, and so on – by a pair of contour lines placed
infinitesimally apart, for e.g., one from C ′

i → C ′
i+1 and the other C ′

i+1 → C ′
i. But by assumption

f(z) is analytic and therefore continuous there, and thus the contribution from these pairs will
surely cancel. Let us perform a Laurent expansion of f(z) about zi, the ith singular point, and
then proceed to integrate the series term-by-term using eq. (6.3.3).∮

C′
i

f(z′)
dz′

2πi
=

∫
C′

i

∞∑
ℓ=−mi

Lℓ(zi) · (z′ − zi)ℓ
dz′

2πi
= L−1(zi). (6.3.5)

Residue theorem As advertised, the closed counterclockwise contour in-
tegral of a function that is analytic everywhere on and within the contour, except
at isolated points {zi|i = 1, . . . , N}, yields the sum of the residues at each of these
points. In equation form,∮

C

f(z′)
dz′

2πi
=

N∑
i=1

∮
C′

i

f(z′)
dz′

2πi
=

N∑
i=1

L−1(zi), (6.3.6)

where C ′
i is the contour that encircles only the ith singularity zi and L−1(zi) is the

residue at the same zi.

Example I Let us start with a simple application of this result. Let C be some closed
counterclockwise contour containing the points z = 0, a, b.

I =

∮
C

dz

2πi

1

z(z − a)(z − b)
. (6.3.7)

One way to do this is to perform a partial fractions expansion first.

I =

∮
C

dz

2πi

(
1

abz
+

1

a(a− b)(z − a)
+

1

b(b− a)(z − b)

)
. (6.3.8)
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In this form, the residues are apparent, because we can view the first term as some Laurent
expansion about z = 0 with only the negative one power; the second term as some Laurent
expansion about z = a; the third about z = b. Therefore, the sum of the residues yield

I =
1

ab
+

1

a(a− b)
+

1

b(b− a)
=

(a− b) + b− a
ab(a− b)

= 0. (6.3.9)

If you don’t do a partial fractions decomposition, you may instead recognize, as long as the 3
points z = 0, a, b are distinct, then near z = 0 the factor 1/((z−a)(z−b)) is analytic and admits
an ordinary Taylor series that begins at the zeroth order in z, i.e.,

1

z(z − a)(z − b)
=

1

z

(
1

ab
+O(z)

)
. (6.3.10)

Because the higher positive powers of the Taylor series cannot contribute to the 1/z term of
the Laurent expansion, to extract the negative one power of z in the Laurent expansion of the
integrand, we simply evaluate this factor at z = 0. Likewise, near z = a, the factor 1/(z(z − b))
is analytic and can be Taylor expanded in zero and positive powers of (z − a). To understand
the residue of the integrand at z = a we simply evaluate 1/(z(z − b)) at z = a. Ditto for the
z = b singularity.∮

C

dz

2πi

1

z(z − a)(z − b)
=

∑
zi=0,a,b

(
Residue of

1

z(z − a)(z − b)
at zi

)
=

1

ab
+

1

a(a− b)
+

1

b(b− a)
= 0. (6.3.11)

The reason why the result is zero can actually be understood via contour integration as well. If
you now consider a closed clockwise contour C∞ at infinity and view the integral (

∫
C
+
∫
C∞

)f(z)dz,
you will be able to convert it into a closed contour integral by linking C and C∞ via two infinitesi-
mally close radial lines which would not actually contribute to the answer. But (

∫
C
+
∫
C∞

)f(z)dz =∫
C∞

f(z)dz because C∞ does not contribute either – why? Therefore, since there are no poles
in the region enclosed by C∞ and C, the answer has to be zero.

Example II Let C be a closed counterclockwise contour around the origin z = 0. Let us
do

I ≡
∮
C

exp(1/z2)dz. (6.3.12)

We series expand the exp, and notice there is no term that goes as 1/z; i.e., the residue at z = 0
is 0. Hence,

I =
∞∑
ℓ=0

1

ℓ!

∮
C

dz

z2ℓ
= 0. (6.3.13)

A major application of contour integration is to that of integrals involving real variables.

239



6.3.1 Trigonometric integrals

If we have an integral of the form ∫ 2π

0

dθf(cos θ, sin θ), (6.3.14)

then it may help to change from θ to

z ≡ eiθ ⇒ dz = idθ · eiθ = idθ · z, (6.3.15)

and

sin θ =
z − 1/z

2i
, cos θ =

z + 1/z

2
. (6.3.16)

The integral is converted into a sum over residues:∫ 2π

0

dθf(cos θ, sin θ) = 2π

∮
|z|=1

dz

2πiz
f

(
z + 1/z

2
,
z − 1/z

2i

)

= 2π
∑
j

jth residue of
f
(
z+1/z

2
, z−1/z

2i

)
z

for |z| < 1

 . (6.3.17)

Example For a ∈ R,

I =

∫ 2π

0

dθ

a+ cos θ
=

∮
|z|=1

dz

iz

1

a+ (1/2)(z + 1/z)
=

∮
|z|=1

dz

i

1

az + (1/2)(z2 + 1)

= 4π

∮
|z|=1

dz

2πi

1

(z − z+)(z − z−)
, z± ≡ −a±

√
a2 − 1. (6.3.18)

Assume, for the moment, that |a| < 1. Then | − a ±
√
a2 − 1|2 = | − a ± i

√
1− a2|2 =

|a2 + (1 − a2)|2 = 1. Both z± lie on the unit circle, and the contour integral does not make
much sense as it stands because the contour C passes through both z±. So let us assume that
a is real but |a| > 1. When a runs from 1 to infinity, −a −

√
a2 − 1 runs from −1 to −∞;

while −a +
√
a2 − 1 = −(a −

√
a2 − 1) runs from −1 to 0 because a >

√
a2 − 1. When −a

runs from 1 to ∞, on the other hand, −a −
√
a2 − 1 runs from 1 to 0; while −a +

√
a2 − 1

runs from 1 to ∞. In other words, for a > 1, z+ = −a +
√
a2 − 1 lies within the unit circle

and the relevant residue is 1/(z+ − z−) = 1/(2
√
a2 − 1) = sgn(a)/(2

√
a2 − 1). For a < −1 it is

z− = −a −
√
a2 − 1 that lies within the unit circle and the relevant residue is 1/(z− − z+) =

−1/(2
√
a2 − 1) = sgn(a)/(2

√
a2 − 1). Therefore,∫ 2π

0

dθ

a+ cos θ
=

2πsgn(a)√
a2 − 1

, a ∈ R, |a| > 1. (6.3.19)
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6.3.2 Integrals along the real line

If you need to do
∫ +∞
−∞ f(z)dz, it may help to view it as a complex integral and “close the

contour” either in the upper or lower half of the complex plane – thereby converting the integral
along the real line into one involving the sum of residues in the upper or lower plane.

An example is the following

I ≡
∫ ∞

−∞

dz

z2 + z + 1
. (6.3.20)

Let us complexify the integrand and consider its behavior in the limit z = limρ→∞ ρeiθ, either
for 0 ≤ θ ≤ π (large semi-circle in the upper half plane) or π ≤ θ ≤ 2π (large semi-circle in the
lower half plane).

lim
ρ→∞

∣∣∣∣ idθ · ρeiθ

ρ2ei2θ + ρeiθ + 1

∣∣∣∣→ lim
ρ→∞

dθ

ρ
= 0. (6.3.21)

This is saying the integral along this large semi-circle either in the upper or lower half complex
plane is zero. Therefore I is equal to the integral along the real axis plus the contour integral
along the semi-circle, since the latter contributes nothing. But the advantage of this view is that
we now have a closed contour integral. Because the roots of the polynomial in the denominator
of the integrand are e−i2π/3 and ei2π/3, so we may write

I = 2πi

∮
C

dz

2πi

1

(z − e−i2π/3)(z − ei2π/3)
. (6.3.22)

Closing the contour in the upper half plane yields a counterclockwise path, which yields

I =
2πi

ei2π/3 − e−i2π/3
=

π

sin(2π/3)
. (6.3.23)

Closing the contour in the lower half plane yields a clockwise path, which yields

I =
−2πi

e−i2π/3 − ei2π/3
=

π

sin(2π/3)
. (6.3.24)

Of course, the two answers have to match.
Example: Fourier transform The Fourier transform is in fact a special case of the integral

on the real line that can often be converted to a closed contour integral.

f(t) =

∫ ∞

−∞
f̃(ω)eiωt

dω

2π
, t ∈ R. (6.3.25)

We will assume t is real and f̃ has only isolated singularities.48 Let C be a large semi-circular
path, either in the upper or lower complex plane; consider the following integral along C.

I ′ ≡
∫
C

f̃(ω)eiωt
dω

2π
= lim

ρ→∞

∫
f̃
(
ρeiθ

)
eiρ(cos θ)te−ρ(sin θ)t

idθ · ρeiθ

2π
(6.3.26)

48In physical applications f̃ may have branch cuts; this will be dealt with in the next section.
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At this point we see that, for t < 0, unless f̃ goes to zero much faster than the e−ρ(sin θ)t for
large ρ, the integral blows up in the upper half plane where (sin θ) > 0. For t > 0, unless f
goes to zero much faster than the e−ρ(sin θ)t for large ρ, the integral blows up in the lower half
plane where (sin θ) < 0. In other words, the sign of t will determine how you should “close the
contour” – in the upper or lower half plane.

Let us suppose |f̃ | ≤M on the semi-circle and consider the magnitude of this integral,

|I ′| ≤ lim
ρ→∞

(
ρM

∫
e−ρ(sin θ)t

dθ

2π

)
, (6.3.27)

Remember if t > 0 we integrate over θ ∈ [0, π], and if t < 0 we do θ ∈ [−π, 0]. Either case
reduces to

|I ′| ≤ lim
ρ→∞

(
2ρM

∫ π/2

0

e−ρ(sin θ)|t|
dθ

2π

)
, (6.3.28)

because ∫ π

0

F (sin(θ))dθ = 2

∫ π/2

0

F (sin(θ))dθ (6.3.29)

for any function F . The next observation is that, over the range θ ∈ [0, π/2],

2θ

π
≤ sin θ, (6.3.30)

because y = 2θ/π is a straight line joining the origin to the maximum of y = sin θ at θ = π/2.
(Making a plot here helps.) This in turn means we can replace sin θ with 2θ/π in the exponent,
i.e., exploit the inequality e−X < e−Y if X > Y > 0, and deduce

|I ′| ≤ lim
ρ→∞

(
2ρM

∫ π/2

0

e−2ρθ|t|/π dθ

2π

)
(6.3.31)

= lim
ρ→∞

(
ρM

π
π
e−ρπ|t|/π − 1

−2ρ|t|

)
=

1

2|t|
lim
ρ→∞

M (6.3.32)

As long as |f̃(ω)| goes to zero as ρ→∞, we see that I ′ (which is really 0) can be added to the

Fourier integral f(t) along the real line, converting f(t) to a closed contour integral. If f̃(ω) is
analytic except at isolated points, then I can be evaluated through the sum of residues at these
points.

To summarize, when faced with the frequency-transform type integral in eq. (6.3.25),

� If t > 0 and if |f̃(ω)| goes to zero as |ω| → ∞ on the large semi-circle path of radius |ω|
on the upper half complex plane, then we close the contour there and convert the integral
f(t) =

∫∞
−∞ f̃(ω)eiωt dω

2π
to i times the sum of the residues of f̃(ω)eiωt for Im(ω) > 0 –

provided the function f̃(ω) is analytic except at isolated points there.
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� If t < 0 and if |f̃(ω)| goes to zero as |ω| → ∞ on the large semi-circle path of radius |ω|
on the lower half complex plane, then we close the contour there and convert the integral
f(t) =

∫∞
−∞ f̃(ω)eiωt dω

2π
to −i times the sum of the residues of f̃(ω)eiωt for Im(ω) < 0 –

provided the function f̃(ω) is analytic except at isolated points there.

� A quick guide to how to close the contour is to evaluate the exponential on the imaginary
ω axis, and take the infinite radius limit of |ω|, namely lim|ω|→∞ eit(±i|ω|) = lim|ω|→∞ e∓t|ω|,
where the upper sign is for the positive infinity on the imaginary axis and the lower sign
for negative infinity. We want the exponential to go to zero, so we have to choose the
upper/lower sign based on the sign of t.

If f̃(ω) requires branch cut(s) in either the lower or upper half complex planes – branch cuts
will be discussed shortly – we may still use this closing of the contour to tackle the Fourier
integral f(t). In such a situation, there will often be additional contributions from the part of
the contour hugging the branch cut itself.

An example is the following integral

I(t) ≡
∫ +∞

−∞

dω

2π

eiωt

(ω + i)2(ω − 2i)
, t ∈ R. (6.3.33)

The denominator (ω+ i)2(ω− 2i) has a double root at ω = −i (in the lower half complex plane)
and a single root at ω = 2i (in the upper half complex plane). You can check readily that
1/((ω+ i)2(ω− 2i)) does go to zero as |ω| → ∞. If t > 0 we close the integral on the upper half
complex plane. Since eiωt/(ω + i)2 is analytic there, we simply apply Cauchy’s integral formula
in eq. (6.2.15).

I(t > 0) = i
ei(2i)t

(2i+ i)2
= −ie

−2t

9
. (6.3.34)

If t < 0 we then need form a closed clockwise contour C by closing the integral along the real
line in the lower half plane. Here, eiωt/(ω − 2i) is analytic, and we can invoke eq. (6.2.19),

I(t < 0) = i

∮
C

dω

2πi

eiωt

(ω + i)2(ω − 2i)
= −i d

dω

(
eiωt

ω − 2i

)
ω=−i

= −iet1− 3t

9
(6.3.35)

To summarize, ∫ +∞

−∞

dω

2π

eiωt

(ω + i)2(ω − 2i)
= −ie

−2t

9
Θ(t)− iet1− 3t

9
Θ(−t), (6.3.36)

where Θ(t) is the step function.
We can check this result as follows. Since I(t = 0) = −i/9 can be evaluated independently,

this indicates we should expect the I(t) to be continuous there: I(t = 0+) = I(t = −0+) = −i/9.
Also notice, if we apply a t-derivative on I(t) and interchange the integration and derivative
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operation, each d/dt amounts to a iω. Therefore, we can check the following differential equations
obeyed by I(t):(

1

i

d

dt
+ i

)2(
1

i

d

dt
− 2i

)
I(t) = δ(t), (6.3.37)(

1

i

d

dt
+ i

)2

I(t) =

∫ +∞

−∞

dω

2π

eiωt

ω − 2i
= iΘ(t)e−2t, (6.3.38)(

1

i

d

dt
− 2i

)
I(t) =

∫ +∞

−∞

dω

2π

eiωt

(ω + i)2
= −iΘ(−t)itet = Θ(−t)tet. (6.3.39)

Problem 6.17. Evaluate ∫ ∞

−∞

dz

z3 + i
. (6.3.40)

Hint: What are the roots z3 = −1? Does it matter how you ‘close-the-contour’?

Problem 6.18. Show that the integral representation of the step function Θ(t) is

Θ(t) =

∫ +∞

−∞

dω

2πi

eiωt

ω − i0+
(6.3.41)

=

∫ +∞

−∞

dω

2π

ie−iωt

ω + i0+
. (6.3.42)

The ω− i0+ means the purely imaginary root lies very slightly above 0; alternatively one would
view it as an instruction to deform the contour by making an infinitesimally small counterclock-
wise semi-circle going slightly below the real axis around the origin. Whereas the ω+ i0+ means
the purely imaginary root lies very slightly below 0.

Next, let a and b be non-zero real numbers. Evaluate

I(a, b) ≡
∫ +∞

−∞

dω

2πi

eiωa

ω + ib
. (6.3.43)

Hint: You may wish to consider a > 0 and a < 0 cases separately.

Problem 6.19. (From Arfken et al. [18]) Sometimes this “closing-the-contour” trick need
not involve closing the contour at infinity. Show by contour integration that

I ≡
∫ ∞

0

(lnx)2

1 + x2
dx =

π3

8
. (6.3.44)

Hint: Put x = z ≡ et and try to evaluate the integral now along the contour that runs along the
real line from t = −R to t = R – for R≫ 1 – then along a vertical line from t = R to t = R+ iπ,
then along the horizontal line from t = R+ iπ to t = −R+ iπ, then along the vertical line back
to t = −R; then take the R→ +∞ limit.
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Problem 6.20. Evaluate

I(a) ≡
∫ ∞

−∞

sin(ax)

x
dx, a ∈ R. (6.3.45)

Hint(s): First convert the sine into exponentials and deform the contour along the real line
into one that makes a infinitesimally small semi-circular detour around the origin z = 0. The
semi-circle can be clockwise, passing above z = 0 or counterclockwise, going below z = 0. Make
sure you justify why making such a small deformation does not affect the answer.

Problem 6.21. Evaluate

I(t) ≡
∫ +∞

−∞

dω

2π

e−iωt

(ω − ia)2(ω + ib)2
, t ∈ R; a, b > 0. (6.3.46)

Problem 6.22. Gamma Function and Complex Reciprocal Powers Justify the fol-
lowing result: ∫ ∞

0

tz−1e−µtdt =
Γ(z)

µz
, (6.3.47)

Re(z) > −1, Re(µ) > 0. (6.3.48)

Applications of eq. (6.3.47) may be found in (quantum) field theory calculations.

Counting zeros of analytic functions Within a simply connected domain D on the
complex plane, such that C denotes the counterclockwise path along its boundary, let us show
that the following integral

N =
1

2πi

∮
f ′(z)

f(z)
dz (6.3.49)

counts the number of zeros of f lying inside C – provided f is analytic there. Note that, if an
analytic function vanishes at z = z0, then in that neighborhood it can be Taylor expanded as
f(z) = cn(z − z0)n + cn+1(z − z0)n+1 + . . . . The n ≥ 1 here is an integer; and we count f(z) as
having n zeros at z = z0. The total number of zeros counts all the distinct {z0} but with each
of their associated multiplicities included. For example, f(z) = (z − 1)(z − 3)2 has three zeros
on the entire complex plane; while f(z) = z(z − π) has two.

Integral Representations of Infinite Series There are certain types of infinite series
that can be converted into a contour integral, which then allows the former to be evaluated by
deforming the contour appropriately. The four main types of infinite sums we will address here
are as follows.49 For f analytic in the region near the entire real line,

+∞∑
n=−∞

f(n) =

∮
f(z)

tan(πz)

dz

2i
(6.3.50)

49See Table 11.2 of Arfken et al [18].
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+∞∑
n=−∞

(−)nn · f(n) =
∮

f(z)

sin(πz)

dz

2i
(6.3.51)

+∞∑
n=−∞

f

(
n+

1

2

)
= −

∮
f(z) · tan(πz)dz

2i
(6.3.52)

+∞∑
n=−∞

(−)nf
(
n+

1

2

)
= −

∮
f(z)

cos(πz)

dz

2i
. (6.3.53)

These counter-clockwise closed contours wrap around the real axis, where we have assumed f
itself has no singularities.

Problem 6.23. Verify that (location of the singularities, associated residues) of π cot(πz),
π csc(πz), −π tan(πz), and−π sec(πz) are respectively (n, 1), (n, (−)nn), (n+1/2, 1) and (n, (−)n).
Here n = 0,±1,±2,±3, . . . is an arbitrary integer. Also investigate the behavior of | cot(πz)|,
| csc(πz)|, | tan(πz)| and | sec(πz)| for large |z|.

If the infinite series does not run over all integers, it is sometimes possible to massage it into
such a form. In any case, let us consider a simple example, for a ∈ R non-integer:

S(a) ≡
+∞∑

n=−∞

1

n2 + a2
. (6.3.54)

We may exploit eq. (6.3.50) by identifying F (z) = 1/(z2+a2) and choosing a contour that wraps
around the real line but does not contain the singularities at either ±i|a|. Now, by expanding
the contour to an infinite radius circle but making the appropriate detours – coming up or down
to skirt the poles at ±i|a| before returning to infinity – we may see that

S(a) =

∮
(z − i|a|)−1(z + i|a|)−1

tan(πz)

dz

2i
(6.3.55)

= −
∑
z=±ia

Res
π

(z − i|a|)(z + i|a|) tan(πz)
(6.3.56)

= − π

2ia tan(iπa)
+

π

2ia tan(−iπa)
=

π

a tanh(πa)
. (6.3.57)

Problem 6.24. Mellin-Barnes Justify the following Mellin-Barnes representation:

(X + Y )−λ =
1

Γ(λ)

∫ +i∞

−i∞

dz

2πi
Γ(z + λ)Γ(−z) Y z

Xz+λ
. (6.3.58)

Here, all the poles of Γ(z+λ) lie to the left of the otherwise vertical integration contour; whereas
all the poles of Γ(−z) lie to its right.

Iterate eq. (6.3.58) to obtain(
L∑
a=1

ua

)−σ

=
1

Γ[σ]uσL

L−1∏
a=1

(∫ i∞

−i∞

dsa
2πi

Γ[−sa]
(
ua
uL

)sa)
Γ

[
L−1∑
b=1

sb + σ

]
. (6.3.59)
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The vertical contour for the si integral, where i ∈ {1, . . . , L− 1}, lies to the right of the poles of
Γ(si + si−1 + · · ·+ s1 + σ); namely, si[left poles] = −n− σ− s1 − s2 − · · · − si−1, n = 0, 1, 2, . . . .
While it lies to the left of the poles of Γ[−si]; i.e., si[right poles] = n, n = 0, 1, 2, . . . .

These formulas has applications in (quantum) field theory calculations.
Hints: Assume the infinite arc joining the positive and negative Im ends of the vertical

contour do not contribute to the integral – this may be proved by studying the asymptotic
behavior of the Γ−function. Then show that eq. (6.3.58) is equivalent to eq. (6.2.29).

Principal Values and Hilbert Transforms When integrating 1/x over the real line,
an ambiguity occurs in the neighborhood of x ≈ 0. Depending on how we skirt the singularity,
different answers are obtained. The principal value, or Pr, is defined as follows. For a < c < b,

Pr

∫ b

a

f(x)

x− c
dx ≡ lim

ϵ→0

(∫ c−ϵ

a

+

∫ b

c+ϵ

)
f(x)

x− c
dx. (6.3.60)

If the upper and lower limits goes to +∞ and −∞ respectively,

Pr

∫ +∞

−∞

f(x)

x− c
dx ≡ lim

R→+∞
ϵ→0

(∫ c−ϵ

−R
+

∫ R

c+ϵ

)
f(x)

x− c
dx. (6.3.61)

As a simple example, let us compute

I(a) ≡ Pr

∫
R

dz

z − a
, (6.3.62)

where a ∈ R. Let us consider the I(a); plus a clockwise infinitesimal semi-circular contour
protruding into the positive Im portion of the complex z−plane; plus an infinitely large clockwise
semi-circular one joining +∞ to −∞ on the Re z−line. This forms a closed contour C, which
yields the following result via taking the residue at z = a:∮

CW

dz

z − a
= −2πi =

(
Pr

∫
+

∫
∩
+

∫
⋃
)

dz

z − a
. (6.3.63)

The integral along infinitesimal semi-circle may be computed as∫
∩

dz

z − a

∣∣∣∣
z−a=ϵeiθ,π≤θ≤0

=

∫ 0

π

ϵeiθidθ

ϵeiθ
= −iπ. (6.3.64)

Similarly, the infinitely large semi-circle yields∫
⋃ dz

z

∣∣∣∣
limR→∞ z−a=Reiθ,θ:0→−π

= lim
R→∞

∫ −π

0

Reiθidθ

Reiθ
= −iπ. (6.3.65)

Altogether,

Pr

∫
dz

z − a
= −2πi−

(∫
∩
+

∫
⋃
)

dz

z − a
= 0; (6.3.66)
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a fact that could be deduced readily by observing that 1/(z−a) is odd under (z−a)→ −(z−a).
We will now employ the Pr value integral to relate the real and imaginary parts of a complex

function f(x) evaluated on the real line (x ∈ R), when f itself is analytic and bounded in the
upper half plane. In particular, let us first consider

0 =

(
Pr

∫ +∞

−∞
+

∫
∩
+

∫
⋃
)
f(z)

z − x
dz

2πi
. (6.3.67)

Like the example above, the
∫
∩ is an infinitesimal semi-circle right above z = x, where x itself

lies on the real line; whereas
∫⋃ refers to the infinitely large semi-circle limR→∞ z = Reiθ for

0 ≤ θ ≤ π. As long as f itself is bounded, the integral over the infinite semi-circle is zero, and
we are left with

Pr

∫ +∞

−∞

f(z)

z − x
dz

2πi
= − lim

ϵ→0+

∫ 0

π

f(x+ ϵeiθ)

ϵeiθ
ϵeiθidθ

2πi
(6.3.68)

=
f (x)

2
. (6.3.69)

If f = u+ iv, where u and v are real,

u+ iv = Pr

∫ +∞

−∞

v(z)− iu(z)
z − x

dz

π
. (6.3.70)

Therefore,

Re f(x) = Pr

∫ +∞

−∞

Im f(z)

z − x
dz

π
(6.3.71)

Im f(x) = −Pr
∫ +∞

−∞

Re f(z)

z − x
dz

π
. (6.3.72)

These are known as Hilbert transform pairs.
Suppose F̃ (ω) is bounded and analytic on the upper half ω−plane; and suppose further

F̃ (ω)∗ = F̃ (−ω) for real ω – this happens, for instance, when F̃ (ω) = u(ω) + iv(ω) is the
frequency transform of a real function of time – then we may step back a little and recognize

F̃ (ω > 0) = −iPr
(∫ 0

−∞
+

∫ +∞

0

)
F̃ (x)

x− ω
dx

π
(6.3.73)

= −iPr

(∫ ∞

0

F̃ (−x)
−x− ω

dx

π
+

∫ +∞

0

F̃ (x)

x− ω
dx

π

)
(6.3.74)

= −iPr
∫ ∞

0

(
−u(x)− iv(x)

x+ ω
+
u(x) + iv(x)

x− ω

)
dx

π
(6.3.75)

u(ω) + iv(ω) = 2Pr

∫ ∞

0

(
−iω · u(x)
x2 − ω2

+
x · v(x)
x2 − ω2

)
dx

π
. (6.3.76)

That is, for real F (t), its frequency transform obeys the following Hilbert transforms.

Re F̃ (ω > 0) =
2

π
Pr

∫ ∞

0

x · Im F̃ (x)

x2 − ω2
dx (6.3.77)
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Im F̃ (ω > 0) = −2ω

π
Pr

∫ ∞

0

Re F̃ (x)

x2 − ω2
dx. (6.3.78)

This allows the results to refer only to positive (and, hence, physical) frequencies ω.

Problem 6.25. Pr and Dirac’s δ-function Notice, when we skirt the pole at x = ω
on the real line by making an infinitesimal semi-circle above it, we pick up (negative) half the
residue:

lim
ϵ→0

∫ θ=0

θ=π

f(z)

z − ω

∣∣∣∣
z−ω=ϵeiθ

dz = −iπf(ω). (6.3.79)

Keeping this in mind, explain the following identities, for x ∈ R:

1

x− ω ± i0+
= Pr

1

x− ω
∓ iπδ (x− ω) , (6.3.80)

where δ(. . . ) is the Dirac delta function.
Hints: These identities are meant to be understood under an integral sign. Moreover, x −

ω± i0+ means the pole(s) is at x = ω∓ i0+; i.e., the upper sign is displaced slightly downwards
and the lower sign upwards on the complex ω−plane.

6.4 Branch Points, Branch Cuts

Branch points and Riemann sheets A branch point of a function f(z) is a point z0 on
the complex plane such that going around z0 in an infinitesimally small circle does not give you
back the same function value. That is,

f
(
z0 + ϵ · eiθ

)
̸= f

(
z0 + ϵ · ei(θ+2π)

)
, 0 < ϵ≪ 1. (6.4.1)

Example I One example is the power zα, for α non-integer. Zero is a branch point because,
for 0 < ϵ≪ 1, we may considering circling it n ∈ Z+ times.

(ϵe2πni)α = ϵαe2πnαi ̸= ϵα. (6.4.2)

If α = 1/2, then circling zero twice would bring us back to the same function value. If α = 1/m,
where m is a positive integer, we would need to circle zero m times to get back to the same
function value. What this is teaching us is that, to define the function f(z) = z1/m properly,
we need m “Riemann sheets” of the complex plane. To see this, we first define a cut line
along the positive real line and proceed to explore the function f by sampling its values along
a continuous line. If we start from a point slightly above the real axis, z1/m there is defined
as |z|1/m, where the positive root is assumed here. As we move around the complex plane,
let us use polar coordinates to write z = ρeiθ; once θ runs beyond 2π, i.e., once the contour
circles around the origin more than one revolution, we exit the first complex plane and enter
the second. For example, when z is slightly above the real axis on the second sheet, we define
z = |z|1/mei2π/m; and anywhere else on the second sheet we have z = |z|1/mei(2π/m)+iθ, where
θ is still measured with respect to the real axis. We can continue this process, circling the
origin, with each increasing counterclockwise revolution taking us from one sheet to the next.
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On the nth sheet our function reads z = |z|1/mei(2πn/m)+iθ. It is the mth sheet that needs to be
joined with the very first sheet, because by the mth sheet we have covered all the m solutions of
what we mean by taking the mth root of a complex number. (If we had explored the function
using a clockwise path instead, we’d migrated from the first sheet to the mth sheet, then to the
(m−1)th sheet and so on.) Finally, if α were not rational – it is not the ratio of two integers – we
would need an infinite number of Riemann sheets to fully describe zα as a complex differentiable
function of z.

The presence of the branch cut(s) is necessary because we need to join one Riemann sheet to
the next, so as to construct an analytic function mapping the full domain back to the complex
plane. However, as long as one Riemann sheet is joined to the next so that the function is
analytic across this boundary, and as long as the full domain is mapped properly onto the
complex plane, the location of the branch cut(s) is arbitrary. For example, for the f(z) = zα

case above, as opposed to the real line, we can define our branch cut to run along the radial line
{ρeiθ0|ρ ≥ 0} for any 0 < θ0 ≤ 2π. All we are doing is re-defining where to join one sheet to
another, with the nth sheet mapping one copy of the complex plane {ρei(θ0+φ)|ρ ≥ 0, 0 ≤ φ < 2π}
to {|z|αeiα(θ0+φ)|ρ ≥ 0, 0 ≤ φ < 2π}. Of course, in this new definition, the 2π − θ0 ≤ φ < 2π
portion of the nth sheet would have belonged to the (n+ 1)th sheet in the old definition – but,
taken as a whole, the collection of all relevant Riemann sheets still cover the same domain as
before.

Example II ln is another example. You already know the answer but let us work out the
complex derivative of ln z. Because eln z = z, we have

(eln z)′ = eln z · (ln z)′ = z · (ln z)′ = 1. (6.4.3)

This implies,

d ln z

dz
=

1

z
, z ̸= 0, (6.4.4)

which in turn says ln z is analytic away from the origin. We may now consider making m
infinitesimal circular trips around z = 0.

ln(ϵei2πm) = ln(ϵei2πm) = ln ϵ+ i2πm ̸= ln ϵ. (6.4.5)

Just as for f(z) = zα when α is irrational, it is in fact not possible to return to the same function
value – the more revolutions you take, the further you move in the imaginary direction. ln(z)
for z = x+ iy actually maps the mth Riemann sheet to a horizontal band on the complex plane,
lying between 2π(m− 1) ≤ Im ln(z) ≤ 2πm.

Breakdown of Laurent series To understand the need for multiple Riemann sheets further,
it is instructive to go back to our discussion of the Laurent series using an annulus around the
isolated singular point, which lead up to eq. (6.2.34). For both f(z) = zα and f(z) = ln(z),
the branch point is at z = 0. If we had used a single complex plane, with say a branch cut
along the positive real line, f(z) would not even be continuous – let alone analytic – across the
z = x > 0 line: f(z = x + i0+) = xα ̸= f(z = x − i0+) = xαei2πα, for instance. Therefore the
derivation there would not go through, and a Laurent series for either zα or ln z about z = 0
cannot be justified. But as far as integration is concerned, provided we keep track of how many
times the contour wraps around the origin – and therefore how many Riemann sheets have been
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transversed – both zα and ln z are analytic once all relevant Riemann sheets have been taken into
account. For example, let us do

∮
C
ln(z)dz, where C begins from the point z1 ≡ r1e

iθ1 and loops
around the origin n times and ends on the point z2 ≡ r2e

iθ2+i2πn for (n ≥ 1)-integer. Across these
n sheets and away from z = 0, ln(z) is analytic. We may therefore invoke Cauchy’s theorem
in eq. (6.2.5) to deduce the result depends on the path only through its ‘winding number’ n.
Because (z ln(z)− z)′ = ln z,∫ z2

z1

ln(z)dz = r2e
iθ2 (ln r2 + i(θ2 + 2πn)− 1)− r1eiθ1 (ln r1 + iθ1 − 1) . (6.4.6)

Likewise, for the same integration contour C,∫ z2

z1

zαdz =
rα+1
2

α + 1
ei(α+1)(θ2+2πn) − rα+1

1

α + 1
ei(α+1)θ1 . (6.4.7)

Branches On the other hand, the purpose of defining a branch cut, is that it allows us to
define a single-valued function on a single complex plane – a branch of a multivalued function –
as long as we agree never to cross over this cut when moving about on the complex plane. For
example, a branch cut along the negative real line means

√
z =
√
reiθ with −π < θ < π; you

don’t pass over the cut line along z < 0 when you move around on the complex plane.
Another common example is given by the following branch of

√
z2 − 1:

√
z + 1

√
z − 1 =

√
r1r2e

i(θ1+θ2)/2, (6.4.8)

where z + 1 ≡ r1e
iθ1 and z − 1 ≡ r2e

iθ2 ; and
√
r1r2 is the positive square root of r1r2 > 0. By

circling the branch point you can see the function is well defined if we cut along −1 < z < +1,
because (θ1+ θ2)/2 goes from 0 to (θ1+ θ2)/2 = 2π.50 Otherwise, if the cut is defined as z < −1
(on the negative real line) together with z > 1 (on the positive real line), the branch points at
z = ±1 cannot be circled and the function is still well defined and single-valued.

Yet another example is given by the Legendre function

Q0(z) = ln

[
z + 1

z − 1

]
. (6.4.9)

The branch points, where the argument of the ln goes to zero, is at z = ±1. Qν(z) is usually
defined with a cut line along −1 < z < +1 on the real line. Let’s circle the branch points
counterclockwise, with

z + 1 ≡ r1e
iθ1 and z − 1 ≡ r2e

iθ2 (6.4.10)

as before. Then,

Q0(z) = ln

[
z + 1

z − 1

]
= ln

r1
r2

+ i (θ1 − θ2) . (6.4.11)

50Arfken et al. goes through various points along this circling-the-(z = ±1) process, but the main point is that
there is no jump after a complete circle, unlike what you’d get circling the branch point of, say z1/3. On the
other hand, you may want to use the z+1 ≡ r1eiθ1 and z− 1 ≡ r2eiθ2 parametrization here and understand how
many Riemann sheets it would take define the whole

√
z2 − 1.
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After one closed loop, we go from θ1− θ2 = 0−0 = 0 to θ1− θ2 = 2π−2π = 0; there is no jump.
When x lies on the real line between −1 and 1, Q0(x) is then defined as

Q0(x) =
1

2
Q0(x+ i0+) +

1

2
Q0(x− i0+), (6.4.12)

where the i0+ in the first term on the right means the real line is approached from the upper half
plane and the second term means it is approached from the lower half plane. What does that
give us? Approaching from above means θ1 = 0 and θ2 = π; so ln(z + i0+ + 1)/(z + i0+ − 1) =
ln |(z + 1)/(z − 1)| − iπ. Approaching from below means θ1 = 2π and θ2 = π; therefore
ln(z − i0+ + 1)/(z − i0+ − 1) = ln |(z + 1)/(z − 1)|+ iπ. Hence the average of the two yields

Q0(x) = ln

[
1 + x

1− x

]
, −1 < x < +1. (6.4.13)

because the imaginary parts cancel while |z + 1| = x+ 1 and |z − 1| = 1− x in this region.
Example I Let us exploit the following branch of natural log

ln z = ln r + iθ, z = reiθ, 0 ≤ θ < 2π (6.4.14)

to evaluate the integral encountered in eq. (6.3.44).

I ≡
∫ ∞

0

(lnx)2

1 + x2
dx =

π3

8
. (6.4.15)

To begin we will actually consider

I ′ ≡ lim
R→∞
ϵ→0

∮
C1+C2+C3+C4

(ln z)2

1 + z2
dz, (6.4.16)

where C1 runs over z ∈ (−∞,−ϵ] (for 0 ≤ ϵ≪ 1), C2 over the infinitesimal semi-circle z = ϵeiθ

(for θ ∈ [π, 0]), C3 over z ∈ [ϵ,+∞) and C4 over the (infinite) semi-circle Reiθ (for R → +∞
and θ ∈ [0, π]).

First, we show that the contribution from C2 and C4 are zero once the limits R → ∞ and
ϵ→ 0 are taken. ∣∣∣∣limϵ→0

∫
C2

(ln z)2

1 + z2
dz

∣∣∣∣ = ∣∣∣∣limϵ→0

∫ 0

π

idθϵeiθ
(ln ϵ+ iθ)2

1 + ϵ2e2iθ

∣∣∣∣
≤ lim

ϵ→0

∫ π

0

dθϵ| ln ϵ+ iθ|2 = 0. (6.4.17)

and ∣∣∣∣ limR→∞

∫
C4

(ln z)2

1 + z2
dz

∣∣∣∣ = ∣∣∣∣ limR→∞

∫ π

0

idθReiθ
(lnR + iθ)2

1 +R2e2iθ

∣∣∣∣
≤ lim

R→∞

∫ π

0

dθ| lnR + iθ|2/R = 0. (6.4.18)
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Moreover, I ′ can be evaluated via the residue theorem; within the closed contour, the integrand
blows up at z = i.

I ′ ≡ 2πi lim
R→∞
ϵ→0

∮
C1+C2+C3+C4

(ln z)2

(z + i)(z − i)
dz

2πi

= 2πi
(ln i)2

2i
= π(ln(1) + i(π/2))2 = −π

3

4
. (6.4.19)

This means the sum of the integral along C1 and C3 yields −π3/4. If we use polar coordinates
along both C1 and C2, namely z = reiθ,∫ 0

∞
dreiπ

(ln r + iπ)2

1 + r2ei2π
+

∫ ∞

0

(ln r)2

1 + r2
dr = −π

3

4
(6.4.20)∫ ∞

0

dr
2(ln r)2 + i2π ln r − π2

1 + r2
= −π

3

4
(6.4.21)

We may equate the real and imaginary parts of both sides. The imaginary one, in particular,
says ∫ ∞

0

dr
ln r

1 + r2
= 0, (6.4.22)

while the real part now hands us

2I = π2

∫ ∞

0

dr

1 + r2
− π3

4

= π2 [arctan(r)]r=∞
r=0 −

π3

4
=
π3(2− 1)

4
=
π3

4
(6.4.23)

We have managed to solve for the integral I

Problem 6.26. If x is a real number, justify the identity

ln(x+ i0+) = ln |x|+ iπΘ(−x), (6.4.24)

where Θ is the step function. Hence,

∂x ln(x+ i0+) =
1

x
− iπδ(x). (6.4.25)

These identities occurs in classical and quantum field theories.

Example II Consider the integral, where 0 < Re z < 1,

I(z) ≡
∫ ∞

0

tz−1

t+ 1
dt. (6.4.26)

This integration from 0 to ∞ may be viewed as a contour running just above the positive real
line. If we rotate the contour by 2π − 0+, notice that

dt
tz−1

t+ 1
→ ei2πdt

e2πi(z−1)tz−1

t · ei2π + 1
. (6.4.27)

253



Let us now let C be the contour that runs from 0 to ∞ just slightly above the real line, then
counter-clockwise around the infinite radius circle centered at the origin, then from ∞ back to
0 just slightly below the real line. Because the magnitude of the integral over the infinite radius
circle is bounded by

lim
R→∞

∫ 2π

0

∣∣∣∣RieiθdθRz−1ei(z−1)θ

Reiθ + 1

∣∣∣∣ ≤ lim
R→∞

∫ 2π

0

dθ
∣∣RizI−1+zRe−zIθ+i(zR−1)θ

∣∣ (6.4.28)

→ lim
R→0

RzR−1 = 0, (6.4.29)

since −1 < zR − 1 < 0. Therefore,∫
C

tz−1

t+ 1
dt = (1− e2πzi)

∫ ∞

0

tz−1

t+ 1
dt (6.4.30)

= 2πiei(z−1)π. (6.4.31)

Because 1− e2πzi = eπzi(−)2i sin(πz), we must therefore have∫ ∞

0

tz−1

t+ 1
dt =

2πiei(z−1)π

eπzi(−)2i sin(πz)
=

π

sin(πz)
. (6.4.32)

There is an application of the formula in eq. (6.4.32) in the derivation of the Gamma function
identity in eq. (6.2.47). Following Lebedev [5] we employ the following trick, by first focusing
on the range 0 < Re z < 1,

Γ(z)Γ(1− z) =
∫ +∞

0

tz−1e−tdt ·
∫ +∞

0

t′−ze−t
′
dt′. (6.4.33)

Define u ≡ t+ t′ and v ≡ t/t′; one would find

t =
uv

1 + v
, dt =

v(1 + v)du+ udv

(1 + v)2
; (6.4.34)

t′ =
u

1 + v
, dt′ =

(1 + v)du− udv
(1 + v)2

; (6.4.35)

and

Γ(z)Γ(1− z) =
∫ +∞

0

e−udu ·
∫ ∞

0

vz−1

1 + v
dv =

∫ ∞

0

vz−1

1 + v
dv. (6.4.36)

We recover eq. (6.2.47) once we invoke eq. (6.4.32) and the principle of analytic continuation.

Problem 6.27. Problem from Arfken et al. [18] For −1 < a < 1, show that∫ ∞

0

dx
xa

(x+ 1)2
=

πa

sin(πa)
. (6.4.37)

Hint: Define a branch cut along the positive real line, and follow a similar strategy as the one
employed to tackle the integral in eq. (6.4.32).
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Problem 6.28. By converting the following real integral into a complex closed loop one,
explain why

I(η; a, b) ≡
∫ b

a

dz

(η − z)
√
(b− z)(z − a)

, (6.4.38)

for positive square root
√
· and positive real numbers b > a > 0 is

I(η; a, b) =
π√

(η − a)(η − b)
(6.4.39)

when η > b > a; and

I(η; a, b) = − π√
(a− η)(b− η)

(6.4.40)

when η < a < b. Hint: First choose the branch cut to run along a straight line from a to b; and
consider the closed loop integral running just above it from a→ b and then running just below
it from b→ a.

6.5 ⋆Fourier Transforms

We have seen how the Fourier transform pairs arise within the linear algebra of states represented
in some position basis corresponding to some D dimensional infinite flat space. Denoting the
state/function as f , and using Cartesian coordinates, the pairs read

f(x⃗) =

∫
RD

dDk⃗

(2π)D
f̃(k⃗)eik⃗·x⃗ (6.5.1)

f̃(k⃗) =

∫
RD

dDx⃗f(x⃗)e−ik⃗·x⃗ (6.5.2)

51By inserting eq. (6.5.2) into eq. (6.5.1) we may obtain the integral representation of the
δ-function

δ(D)(x⃗− x⃗′) =
∫
RD

dDk

(2π)D
eik⃗·(x⃗−x⃗

′). (6.5.3)

In physical applications, almost any function residing in infinite space can be Fourier trans-
formed. The meaning of the Fourier expansion in eq. (6.5.1) is that of resolving a given profile
f(x⃗) – which can be a wave function of an elementary particle, or a component of an electro-
magnetic signal – into its basis wave vectors. Remember the magnitude of the wave vector is the
reciprocal of the wave length, |⃗k| ∼ 1/λ.52 Heuristically, this indicates the coarser features in
the profile – those you’d notice at first glance – come from the modes with longer wavelengths,
small |⃗k| values. The finer features requires us to know accurately the Fourier coefficients of the

waves with very large |⃗k|, i.e., short wavelengths.
51Always check the Fourier conventions of the literature you are reading. Here, we have a 1/(2π) for every

(inverse space) k−dimension; and no factors of (2π)s in the real space ones. This is not a universal convention.
52In older books, Fourier space is often dubbed ‘reciprocal space’.
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In many physical problems we only need to understand the coarser features, the Fourier
modes up to some inverse wavelength |⃗k| ∼ ΛUV. (This in turn means ΛUV lets us define what

we mean by coarse (≡ |⃗k| < ΛUV) and fine (≡ |⃗k| > ΛUV) features.) In fact, it is often not
possible to experimentally probe the Fourier modes of very small wavelengths, or equivalently,
phenomenon at very short distances, because it would expend too much resources to do so. For
instance, it much easier to study the overall appearance of the desk you are sitting at – its
physical size, color of its surface, etc. – than the atoms that make it up. This is also the essence
of why it is very difficult to probe quantum aspects of gravity: humanity does not currently
have the resources to construct a powerful enough accelerator to understand elementary particle
interactions at the energy scales where quantum gravity plays a significant role.

Problem 6.29. A simple example illustrating how Fourier transforms help us understand
the coarse (≡ long wavelength) versus fine (≡ short wavelength) features of some profile is to
consider a Gaussian of width σ, but with some small oscillations added on top of it.

f(x) = exp

(
−1

2

(
x− x0
σ

)2
)
(1 + ϵ sin(ωx)) , |ϵ| ≪ 1. (6.5.4)

Assume that the wavelength of the oscillations is much shorter than the width of the Gaussian,
1/ω ≪ σ. Find the Fourier transform f̃(k) of f(x) and comment on how, discarding the short
wavelength coefficients of the Fourier expansion of f(x) still reproduces its gross features, namely
the overall shape of the Gaussian itself. Notice, however, if ϵ is not small, then the oscillations
– and hence the higher |⃗k| modes – cannot be ignored.

Problem 6.30. Find the inverse Fourier transform of the “top hat” in 3 dimensions:

f̃(k⃗) ≡ Θ
(
Λ− |⃗k|

)
(6.5.5)

f(x⃗) =? (6.5.6)

Bonus problem: Can you do it for arbitrary D dimensions? Hint: You may need to know how to
write down spherical coordinates in D dimensions. Then examine eq. 10.9.4 of the NIST page
here.

Problem 6.31. Show that the Fourier transform of a Gaussian in D−dimensions

f(x⃗) = exp
(
−xiMijx

j
)
, (6.5.7)

where Mij is a real symmetric D ×D matrix with positive eigenvalues is

πD/2
(
det M̂

)− 1
2
. (6.5.8)

Your result should justify the statement:

The Fourier transform of a Gaussian is another Gaussian.

Hint: Diagonalize Mij.
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Problem 6.32. If f(x⃗) is real, show that f̃(k⃗)∗ = f̃(−k⃗). Similarly, if f(x⃗) is a real periodic
function in D-space, show that the Fourier series coefficients in eq. (5.3.31) and (5.3.32) obey

f̃(n1, . . . , nD)∗ = f̃(−n1, . . . ,−nD).
Suppose we restrict the space of functions on infinite RD to those that are even under parity,

f(−x⃗) = f(x⃗). Show that

f(x⃗) =

∫
RD

dDk⃗

(2π)D
cos
(
k⃗ · x⃗

)
f̃(|⃗k|). (6.5.9)

What’s the inverse Fourier transform? If instead we restrict to the space of odd parity functions,
f(−x⃗) = −f(x⃗), show that

f(x⃗) = i

∫
RD

dDk⃗

(2π)D
sin
(
k⃗ · x⃗

)
f̃(|⃗k|). (6.5.10)

Again, write down the inverse Fourier transform. Can you write down the analogous Fourier/inverse
Fourier series for even and odd parity periodic functions on RD?

Problem 6.33. Fourier Transforms of Derivatives One reason why Fourier transforms
are important for solving differential equations, is that, in Fourier space, derivatives become
k⃗−vectors and differential equations transform into algebraic ones. Explain the correspondence

∂xi ↔ iki (6.5.11)

by Fourier decomposing ∂if(x⃗); i.e., write down the right hand side of eq. (6.5.1) after replacing
its left hand side with ∂xif(x⃗).

Cosine and Sine Transforms In the 1D case, equations (6.5.9) and (6.5.10) can be
written as

f(x) =

∫ ∞

0

dk

π
cos(kx)f̃(k), (Even f(x)), (6.5.12)

f(x) = i

∫ ∞

0

dk

π
sin(kx)f̃(k), (Odd f(x)); (6.5.13)

and the inverse transforms as

f̃(k) =

∫ ∞

0

dx cos(kx)f(x), (Even f(x)), (6.5.14)

f̃(k) = −i
∫ ∞

0

dx sin(kx)f(x), (Odd f(x)). (6.5.15)

The corresponding completeness relations are∫ ∞

0

dk

π
cos(kx) cos(kx′) = δ(k − k′), (6.5.16)∫ ∞

0

dk

π
sin(kx) sin(kx′) = δ(k − k′). (6.5.17)
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Sine and cosine are orthogonal: ∫ ∞

0

dk

π
cos(kx) sin(kx′) = 0. (6.5.18)

Notice these integrals only involve the positive real line; i.e., all relevant variables x, x′ and k
can be taken as positive. This is due to the (anti)symmetry of the f(x) under parity x← −x.

Moreover, if we were given a function f(x) defined only on the positive real line, we may
extend it to the entire real line by defining it as an even or odd function – namely, f(x < 0) ≡
f(−x) for even or f(x < 0) ≡ −f(−x) for odd. Then, these cosine and sine transforms will
continue to apply. Since the choice of even or odd ‘continuation’ is arbitrary, such considerations
therefore indicate, either the pair of equations (6.5.12) and (6.5.14) or the pair (6.5.13) and
(6.5.15) are equally valid pair of transforms for any function defined on the half line R+.

Problem 6.34. Relation to Hankel Transform Explain why the triplet equations
(6.5.12), (6.5.14), and (6.5.16); as well as equations (6.5.13), (6.5.15), and (6.5.17) are spe-
cial cases of equations (5.4.123), (5.4.124), (5.4.130), and (5.4.131). Hint: What is Bessel Jν(z)
when ν = ±1/2?

Problem 6.35. Convolution Theorem For a complex f(x⃗), show that∫
RD

dDx|f(x⃗)|2 =
∫
RD

dDk

(2π)D
|f̃(k⃗)|2, (6.5.19)∫

RD

dDxM ij∂if(x⃗)
∗∂jf(x⃗) =

∫
RD

dDk

(2π)D
M ijkikj|f̃(k⃗)|2, (6.5.20)

where you should assume the matrix M ij does not depend on position x⃗.
Next, prove the convolution theorem: the Fourier transform of the convolution of two func-

tions F and G

f(x⃗) ≡
∫
RD

dDyF (x⃗− y⃗)G(y⃗) (6.5.21)

is the product of their Fourier transforms

f̃(k⃗) = F̃ (k⃗)G̃(k⃗). (6.5.22)

You may need to employ the integral representation of the δ-function; or invoke linear algebraic
arguments.

Problem 6.36. Yukawa Potential In 3D space, what is the Fourier transform of

V (r) ≡ exp(−m · r)
4πr

, (6.5.23)

where r ≡ |x⃗|? Hint: See Problem (7.6).
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6.5.1 Application: Damped Driven Simple Harmonic Oscillator

Many physical problems – from RLC circuits to perturbative Quantum Field Theory (pQFT)
– reduces to some variant of the driven damped harmonic oscillator.53 We will study it in the
form of the 2nd order ordinary differential equation (ODE)

m · ẍ(t) + f · ẋ(t) + k · x(t) = F (t), f, k > 0, (6.5.24)

where each dot represents a time derivative; for e.g., ẍ ≡ d2x/dt2. You can interpret this
equation as Newton’s second law (in 1D) for a particle with trajectory x(t) of mass m. The f
term corresponds to some frictional force that is proportional to the velocity of the particle itself;
the k > 0 refers to the spring constant, if the particle is in some locally-parabolic potential; and
F (t) is some other time-dependent external force. For convenience we will divide both sides by
m and re-scale the constants and F (t) so that our ODE now becomes

ẍ(t) + 2γẋ(t) + Ω2x(t) = F (t), Ω, γ > 0. (6.5.25)

We will perform a Fourier analysis of this problem by transforming both the trajectory and the
external force,

x(t) =

∫ +∞

−∞
x̃(ω)e−iωt

dω

2π
, F (t) =

∫ +∞

−∞
F̃ (ω)e−iωt

dω

2π
. (6.5.26)

I will first find the particular solution xp(t) for the trajectory due to the presence of the external
force F (t), through the Green’s function G(t−t′) of the differential operator (d/dt)2+2γ(d/dt)+
Ω2. I will then show the fundamental importance of the Green’s function by showing how you
can obtain the homogeneous solution to the damped simple harmonic oscillator equation, once
you have specified the position x(t′) and velocity ẋ(t′) at some initial time t′. (This is, of course,
to be expected, since we have a 2nd order ODE.)

First, we begin by taking the Fourier transform of the ODE itself.

Problem 6.37. Damped SHO in Frequency Space Show that, in frequency space, eq.
(6.5.25) is (

−ω2 − 2iωγ + Ω2
)
x̃(ω) = F̃ (ω). (6.5.27)

In effect, each time derivative d/dt is replaced with −iω. We see that the differential equation
in eq. (6.5.25) is converted into an algebraic one in eq. (6.5.27). This is one reason why the
Fourier transform is useful for solving differential equations.

53In pQFT the different Fourier modes of (possibly multiple) fields are the harmonic oscillators. If the equations
are nonlinear, that means modes of different momenta drive/excite each other. Similar remarks apply for different
fields that appear together in their differential equations. If you study fields residing in an expanding universe
like ours, you’ll find that the expansion of the universe provides friction and hence each Fourier mode behaves
as a damped oscillator. The quantum aspects include the perspective that the Fourier modes themselves are
both waves propagating in spacetime as well as particles that can be localized, say by the silicon wafers of the
detectors at the Large Hadron Collider (LHC) in Geneva. These particles – the Fourier modes – can also be
created from and absorbed by the vacuum.
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Inhomogeneous (particular) solution For F ̸= 0, we may infer from eq. (6.5.27) that

the particular solution – the part of x̃(ω) that is due to F̃ (ω) – is

x̃p(ω) =
F̃ (ω)

−ω2 − 2iωγ + Ω2
, (6.5.28)

which in turn implies

xp(t) =

∫ +∞

−∞

dω

2π
e−iωt

F̃ (ω)

−ω2 − 2iωγ + Ω2

=

∫ +∞

−∞
dt′G(t− t′)F (t′); (6.5.29)

where

G(t− t′) =
∫ +∞

−∞

dω

2π

e−iω(t−t
′)

−ω2 − 2iωγ + Ω2
. (6.5.30)

To get to eq. (6.5.29) we have inserted the inverse Fourier transform

F̃ (ω) =

∫ +∞

−∞
dt′e−iωt

′
F (t′). (6.5.31)

Problem 6.38. Damped SHO: Retarded Green’s Function Show that the Green’s
function in eq. (6.5.30) obeys the damped harmonic oscillator equation eq. (6.5.25), but driven
by a impulsive force (“point-source-at-time t′”)(

d2

dt2
+ 2γ

d

dt
+ Ω2

)
G(t− t′) =

(
d2

dt′2
− 2γ

d

dt′
+ Ω2

)
G(t− t′) = δ(t− t′), (6.5.32)

so that eq. (6.5.29) can be interpreted as the xp(t) sourced/driven by the superposition of
impulsive forces over all times, weighted by F (t′). Explain why the differential equation with
respect to t′ has a different sign in front of the 2γ term. By “closing the contour” appropriately,
verify that eq. (6.5.30) yields

G(t− t′) = Θ(t− t′)G(t− t′), (6.5.33)

G(t− t′) ≡ e−γ(t−t
′)
sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2

. (6.5.34)

Explain what happens when Ω2 < γ2.

Distributional Calculus We may check this Green’s function result by direct differen-
tiation, provided we invoke some δ−function identities. Firstly, if d/dt is denoted by an over-dot,
the first and second derivatives are

Ġ(t− t′) = δ(t− t′)G(t− t′) + Θ(t− t′)Ġ(t− t′); (6.5.35)
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and

G̈ = δ′(t− t′)G + 2δ(t− t′)Ġ +Θ(t− t′)G̈. (6.5.36)

The δ(t− t′) enforces t = t′, for otherwise otherwise it is zero, anything multiplying it must also
be evaluated at t = t′. Furthermore, to deal with the δ′(t− t′) term, we first recognize that – by
the same reasoning in the previous sentence – zδ(z) = 0. Differentiating this expression once,

zδ′(z) = −δ(z). (6.5.37)

Multiplying this relation by more powers of z informs us that, for n ≥ 2,

znδ′(z) = 0. (6.5.38)

As long as f(z) may be Taylor expanded about z = 0, this teaches us that

f(z)δ′(z) =
(
f(0) + z · f ′(0) + (z2/2) · f ′′(0) + . . .

)
δ′(z) (6.5.39)

= f(0)δ′(z)− f ′(0)δ(z). (6.5.40)

Altogether, we now gather(
d2

dt2
+ 2γ

d

dt
+ Ω2

)
G(t− t′)

= δ′(t− t′)G(0) + δ(t− t′)
(
2γG(0) + Ġ(0)

)
+Θ(t− t′)

(
G̈ + 2γĠ + Ω2G

)
(6.5.41)

For the Green’s function itself to obey G̈+2γĠ+Ω2G = δ(t− t′), that means the δ′(t− t′) and
Θ(t− t′) terms must both be zero; i.e.,

G(0) = 0; (6.5.42)

and G(t− t′) must be a homogeneous solution of the damped SHO equation,

G̈ + 2γĠ + Ω2G = 0. (6.5.43)

What remains is the δ(t−t′) term, which we need its coefficient to be unity. Because eq. (6.5.42)
eliminates the 2γG(0), we are left with

dG(t− t′)
dt

= −dG(t− t′)
dt′

= 1. (6.5.44)

Problem 6.39. Checking eq. (6.5.34) Verify equations (6.5.42), (6.5.43) and (6.5.44)
directly using eq. (6.5.34).

Problem 6.40. Damped SHO: Dirichlet Green’s Function Verify that

Gs(s, s
′) =

e−(f/2)(s−s′)√
Ω2 − γ2

sin
(√

Ω2 − γ2(s< − ti)
)
· sin

(√
Ω2 − γ2(s> − tf)

)
sin
(√

Ω2 − γ2(tf − ti)
) , (6.5.45)
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with s< = min(s, s′) and s> = max(s, s′), obeys the Dirichlet boundary conditions at the initial
and final times, i.e., ti and tf:

Gs(s = tf, ti, s
′) = 0 = Gs(s, s

′ = tf, ti); (6.5.46)

as well as the equations(
d2

ds2
+ 2γ

d

ds
+ Ω2

)
Gs(s, s

′) = δ(s− s′) =
(

d2

ds′2
− 2γ

d

ds′
+ Ω2

)
Gs(s, s

′). (6.5.47)

What choice of contour in eq. (6.5.30) would produce the Dirichlet Green’s function in eq.
(6.5.45)?

Causality Notice the Green’s function obeys causality. Any force F (t′) from the future
of t, i.e., t′ > t, does not contribute to the trajectory in eq. (6.5.29) due to the step function
Θ(t− t′) in eq. (6.5.33). That is,

xp(t) =

∫ t

−∞
dt′G(t− t′)F (t′). (6.5.48)

Initial value formulation and homogeneous solutions With the Green’s function
G(t− t′) at hand and the particular solution sourced by F (t) understood – let us now move on
to use G(t− t′) to obtain the homogeneous solution of the damped simple harmonic oscillator.
Let xh(t) be the homogeneous solution satisfying(

d2

dt2
+ 2γ

d

dt
+ Ω2

)
xh(t) = 0. (6.5.49)

We then start by examining the following integral

I(t, t′) ≡
∫ ∞

t′
dt′′
{
xh(t

′′)

(
d2

dt′′2
− 2γ

d

dt′′
+ Ω2

)
G(t− t′′)

−G(t− t′′)
(

d2

dt′′2
+ 2γ

d

dt′′
+ Ω2

)
xh(t

′′)
}
. (6.5.50)

Using the equations (6.5.32) and (6.5.49) obeyed by G(t − t′) and xh(t), we may immediately
infer that

I(t, t′) =

∫ ∞

t′
dt′xh(t

′′)δ(t− t′′) = Θ(t− t′)xh(t). (6.5.51)

(The step function arises because, if t lies outside of [t′,∞), and is therefore less than t′, the
integral will not pick up the δ-function contribution and the result would be zero.) On the
other hand, we may in eq. (6.5.50) cancel the Ω2 terms, and then integrate-by-parts one of the
derivatives from the G̈, Ġ, and ẍh terms.

I(t, t′) =

[
xh(t

′′)

(
d

dt′′
− 2γ

)
G(t− t′′)−G(t− t′′)dxh(t

′′)

dt′′

]t′′=∞

t′′=t′
(6.5.52)
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+

∫ ∞

t′
dt′′
(
− dxh(t

′′)

dt′′
dG(t− t′′)

dt′′
+ 2γ

dxh(t
′′)

dt′′
G(t− t′′)

+
dG(t− t′′)

dt′′
dxh(t

′′)

dt′′
− 2γG(t− t′′)dxh(t

′′)

dt′′

)
.

Observe that the integral on the second and third lines is zero because the integrands cancel.
Moreover, because of the Θ(t− t′) (namely, causality), we may assert limt′→∞G(t− t′) = G(t′ >
t) = 0. Recalling eq. (6.5.51), we have arrived at

Θ(t− t′)xh(t) = G(t− t′)dxh(t
′)

dt′
+

(
2γG(t− t′) + dG(t− t′)

dt

)
xh(t

′). (6.5.53)

Because we have not made any assumptions about our trajectory – except it satisfies the homo-
geneous equation in eq. (6.5.49) – we have shown that, for an arbitrary initial position xh(t

′)
and velocity ẋh(t

′), the Green’s function G(t− t′) can in fact also be used to obtain the homo-
geneous solution for t > t′, where Θ(t − t′) = 1. In particular, since xh(t

′) and ẋh(t
′) are freely

specifiable, they must be completely independent of each other. Furthermore, the right hand
side of eq. (6.5.53) must span the 2-dimensional space of solutions to eq. (6.5.49). Therefore,
the coefficients of xh(t

′) and ẋh(t
′) must in fact be the two linearly independent homogeneous

solutions to xh(t),

x
(1)
h (t) = G(t > t′) = e−γ(t−t

′)
sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2

, (6.5.54)

x
(2)
h (t) = 2γG(t > t′) + ∂tG(t > t′)

= e−γ(t−t
′)

γ · sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2

+ cos
(√

Ω2 − γ2(t− t′)
) . (6.5.55)

54That x
(1,2)
h must be independent for any γ > 0 and Ω2 is worth reiterating, because this is a

potential issue for the damped harmonic oscillator equation when γ = Ω. We can check directly
that, in this limit, x

(1,2)
h remain linearly independent. On the other hand, if we had solved the

homogeneous equation by taking the real (or imaginary part) of an exponential; namely, try

xh(t) = Re eiωt, (6.5.57)

we would find, upon inserting eq. (6.5.57) into eq. (6.5.49), that

ω = ω± ≡ iγ ±
√

Ω2 − γ2. (6.5.58)

54Note that

dG(t− t′)
dt

= Θ(t− t′) d
dt

e−γ(t−t′)
sin
(√

Ω2 − γ2(t− t′)
)

√
Ω2 − γ2

 = Θ(t− t′)dG(t− t
′)

dt
. (6.5.56)

Although differentiating Θ(t−t′) gives δ(t−t′), its coefficient is proportional to sin(
√

Ω2 − γ2(t−t′))/
√
Ω2 − γ2,

which is zero when t = t′, even if Ω = γ.
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This means, when Ω = γ, we obtain repeated roots and the otherwise linearly independent
solutions

x
(±)
h (t) = Re e−γt±i

√
Ω2−γ2t (6.5.59)

become linearly dependent there – both x
(±)
h (t) = e−γt.

Problem 6.41. Compute the Wronskian

Wr[x
(1)
h , x

(2)
h ] = x

(1)
h ẋ

(2)
h − ẋ

(1)
h x

(2)
h (6.5.60)

of the homogeneous solutions in equations (6.5.54) and (6.5.55), so as to confirm their linear
independence.

Problem 6.42. Explain why the real or imaginary part of a complex solution to a homo-
geneous real linear differential equation is also a solution. Now, start from eq. (6.5.57) and
verify that eq. (6.5.59) are indeed solutions to eq. (6.5.49) for Ω ̸= γ. Comment on why the
presence of t′ in equations (6.5.54) and (6.5.55) amount to arbitrary constants multiplying the
homogeneous solutions in eq. (6.5.59).

Problem 6.43. Suppose for some initial time t0, xh(t0) = 0 and ẋh(t0) = V0. There is an
external force given by

F (t) = Im
(
e−(t/τ)2eiµt

)
, for −2πn/µ ≤ t ≤ 2πn/µ, µ > 0, . (6.5.61)

and F (t) = 0 otherwise. (n is an integer greater than 1.) Solve for the motion x(t > t0) of the
damped simple harmonic oscillator, in terms of t0, V0, τ , µ and n.

Problem 6.44. Boundary Value Problem We now turn to using the Green’s function
in eq. (6.5.33) to solve the boundary value problem, as opposed to the initial value one of eq.
(6.5.53). Specifically, we now wish to solve eq. (6.5.49) but subject to the boundary conditions,
where τ > τ ′:

xh(τ
′) = xi and xh(τ) = xf. (6.5.62)

Verify that the solution xh(t) reads

xh (τ
′ ≤ t ≤ τ) = G(t− τ ′)xf + ∂τ ′G(τ − τ ′)xi

G(τ − τ ′)
− ∂τ ′G(t− τ ′)xi; (6.5.63)

where we have employed the homogeneous-solution portion of the retarded Green’s function in
eq. (6.5.34). Hints: You may find equations (6.5.42), (6.5.43) and (6.5.44) useful.

6.5.2 Causality and Analytic Properties in Frequency Space; Laplace Transform

Many physical quantities depend on other quantities through a non-local convolution. An ex-
ample is what we have just witnessed – the trajectory of a dampened harmonic oscillator x(t)
driven by an external source F (t):

x(t) =

∫ +∞

−∞
G+(t− t′)F (t′), (6.5.64)
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where G is the appropriate retarded Green’s function. Here, we will simply regard eq. (6.5.64)
as the generic relation between some signal x engendered by some source F . The time t may
thus be regarded as some ‘observation time’ and t′ is the ‘emission time’ of the signal. If we
expect cause to precede effect, then this causality requirement demands that G+ be strictly zero
when the detection time t is less than the source-emission time t′; namely,

G+(τ) = Θ(τ)G(τ), (6.5.65)

where Θ(τ > 0) = 1 and Θ(τ < 0) = 0.
Let us now recognize that causality (t > t′ is necessary for a non-zero signal) implies a certain

analyticity of the frequency transform of G+. The key reason is, the frequency transform of a
retarded function G+ of elapsed time τ ≡ t− t′ always involves an integral over only the positive
real axis:

G̃+(ω) =

∫
R
Θ(τ)G(τ)eiωτdτ =

∫ ∞

0

G(τ)eiωτdτ. (6.5.66)

For physical applications ω is real since it corresponds to the frequency of some system. But we
may attempt to analytically continue G̃(ω) off the real line using this integral representation.
In particular, if we decompose the frequency into real ωR and imaginary parts ωI; namely,
ω ≡ ωR + iωI,

G̃+(ω) =

∫ ∞

0

G(τ)eiωRτe−ωIτdτ. (6.5.67)

We see that when ωI < 0, the integral representation of G̃+(ω) will likely not converge because
e−ωIt = e|ωI|t →∞ as t→∞. On the other hand, if∫ ∞

0

|G(τ)|dτ <∞, (6.5.68)

then we are guaranteed that G̃+(ω) is analytic for Im ω ≡ ωI > 0 because its derivative converges:

|∂ωG̃+(ω)| =
∣∣∣∣i ∫ ∞

0

τ · G(τ)eiωτdτ
∣∣∣∣ (6.5.69)

≤
∫ ∞

0

|G(τ)| · τe−ωIτdτ. (6.5.70)

Any retarded object G+(τ) of the form in eq. (6.5.65) that satisfies eq. (6.5.68)

has a frequency transform G̃+(ω) that is analytic in the positive imaginary portion of
the complex ω−plane – i.e., causality in real time implies analyticity in the positive
imaginary frequency space.

If we are given the frequency transform G̃(ω) of some Green’s function G(τ), we may reconstruct
it via the Fourier decomposition

G(τ) =

∫
R

dω

2π
e−iωτ G̃(ω). (6.5.71)
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As we have argued above, if G(τ) is retarded – i.e., it vanishes for τ < 0 – then its frequency
space counterpart ought to be analytic for Im ω ≡ ωI > 0 and, moreover, should be damped
to 0 as ωI → +∞. The latter means, whenever τ < 0, we should then be able to trivially
‘close-the-contour’ for the above ω−integral by joining ±∞ on the real line with an infinitely
large semi-circle in the positive Im half of the ω−plane; namely, eωIt → 0 for ωI → +∞. Since
G̃(ω) is analytic for ωI > 0, by Cauchy’s theorem we must then have

G(τ < 0) =

∮
semi-circle
ωI>0

dω

2π
e−iωRτe−ωI|τ |G̃(ω) = 0. (6.5.72)

We may check our understanding against the damped SHO Green’s function in equations (6.5.30)
and (6.5.33), with τ ≡ t − t′. We see that G(τ) = exp(−γτ) sin(

√
Ω2 − γ2τ)/

√
Ω2 − γ2 obeys

eq. (6.5.68) for Ω, γ > 0. Hence, G̃(ωI > 0) must be analytic – indeed,

G̃(ω) =
1

−ω2 − 2iωγ + Ω2
= − 1

(ω − ω+)(ω − ω−)
, (6.5.73)

where

ω± = −iγ ±
√

Ω2 − γ2. (6.5.74)

Both poles ω± lie in the negative imaginary ω plane even if Ω < γ.
YZ: Is a complex function G̃+(ω) completely determined by poles and branch

cuts? Examples. Quasinormal modes?

6.6 ⋆Fourier Series

Consider a periodic function f(x) with period L, meaning

f(x+ L) = f(x). (6.6.1)

Then its Fourier series representation is given by

f(x) =
∞∑

n=−∞

Cne
i 2πn

L
x, (6.6.2)

Cn =
1

L

∫
one period

dx′f(x′)e−i
2πn
L
x′ .

(I have derived this in our linear algebra discussion.) The Fourier series can be viewed as the
discrete analog of the Fourier transform. In fact, one way to go from the Fourier series to the
Fourier transform, is to take the infinite box limit L → ∞. Just as the meaning of the Fourier
transform is the decomposition of some wave profile into its continuous infinity of wave modes,
the Fourier series can be viewed as the discrete analog of that. One example is that of waves
propagating on a guitar or violin string – the string (of length L) is tied down at the end points,
so the amplitude of the wave ψ has to vanish there

ψ(x = 0) = ψ(x = L) = 0. (6.6.3)
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Even though the Fourier series is supposed to represent the profile ψ of a periodic function,
there is nothing to stop us from imagining duplicating our guitar/violin string infinite number
of times. Then, the decomposition in (6.6.2) applies, and is simply the superposition of possible
vibrational modes allowed on the string itself.

Problem 6.45. (From Riley et al.) Find the Fourier series representation of the Dirac
comb, i.e., find the {Cn} in

∞∑
n=−∞

δ(x+ nL) =
∞∑

n=−∞

Cne
i 2πn

L
x, x ∈ R. (6.6.4)

Then prove the Poisson summation formula; where for an arbitrary function f(x) and its Fourier

transform f̃ ,

∞∑
n=−∞

f(x+ nL) =
1

L

∞∑
n=−∞

f̃

(
2πn

L

)
ei

2πn
L
x. (6.6.5)

Hint: Note that

f(x+ nL) =

∫ +∞

−∞
dx′f(x′)δ(x− x′ + nL). (6.6.6)

Problem 6.46. Gibbs Phenomenon The Fourier series of a discontinuous function suffers
from what is known as the Gibbs phenomenon – near the discontinuity, the Fourier series does
not fit the actual function very well. As a simple example, consider the periodic function f(x)
where within a period x ∈ [0, L),

f(x) = −1, −L/2 ≤ x ≤ 0 (6.6.7)

= 1, 0 ≤ x ≤ L/2. (6.6.8)

Find its Fourier series representation

f(x) =
∞∑

n=−∞

Cne
i 2πn

L
x. (6.6.9)

Since this is an odd function, you should find that the series becomes a sum over sines – cosine is
an even function – which in turn means you can rewrite the summation as one only over positive
integers n. Truncate this sum at N = 20 and N = 50, namely

fN(x) ≡
N∑

n=−N

Cne
i 2πn

L
x, (6.6.10)

and find a computer program to plot fN(x) as well as f(x) in eq. (6.6.7). You should see
the fN(x) over/undershooting the f(x) near the latter’s discontinuities, even for very large
N ≫ 1.55

YZ: Is there a more general way to understand this Gibbs phenomenon?

55See §5.7 of James Nearing’s Math Methods book for a pedagogical discussion of how to estimate both the
location and magnitude of the (first) maximum overshoot.
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6.7 ⋆Mellin Transform
56In eq. (5.8.25) we introduced the Mellin transform of a function f(r) defined on the positive
real line r ≥ 0:

f̃(z) ≡
∫ ∞

0

f(r′)r′z−1dr′, (6.7.1)

z = s+ 1 + iν ∈ C. (6.7.2)

We shall assume this integral converges on some open strip a < (Re(z) = s + 1) < b on the

complex z−plane; whereas ν = Im(z). In fact, f̃(z) is an analytic function of the complex

variable z; and f̃(z)→ 0 as Im(z)→ ±∞.
Previously, we obtained its inverse by linear algebraic arguments, by first deriving the basis

functions which are simultaneous eigenstates of the (Hermitian) generator of the dilatation op-
erator.57 Here, we will take a more pragmatic approach, by multiplying both sides of eq. (6.7.1)
with exp(−iν ln r), and integrating over ν.∫

R

dν

2π
f̃(z)e−iν ln r =

∫ ∞

0

dr′f(r′)

∫
R

dν

2π
r′seiν(ln r

′−ln r) (6.7.3)

= rs+1f(r). (6.7.4)

We may transform the integration variable ν to z, so that dν = dz/i, e−iν ln r = e−z ln re(s+1) ln r,
and the path of integration now runs along the vertical line Re(z) + iR. We have arrived at a
contour integral representation of the inverse Mellin transform in eq. (5.8.19):

f(r ≥ 0) =

∫ Re(z)+i∞

Re(z)−i∞

dz

2πi

f̃(z)

rz
. (6.7.5)

If we understand the analytic structure of f̃(z) – for e.g., where its poles lie – this vertical contour
may be distorted appropriately for easier evaluation of f(r).

Range of Re(z) in Mellin: An Example from [8] The range of Re(z) where the
Mellin transform converges is an crucial part of its definition. As the Handbook of Transforms
[8] explains, it is possible to obtain the same Mellin transform f̂(z) from different starting f(r)s;
i.e., the inverse Mellin transform is seemingly not unique if one is not careful about keeping track
of Re(z)’s range of validity. A simple example is to compare, for r0 > 0 and x ∈ R,

f̃1(z) ≡
∫ ∞

0

Θ(r − r0)rx · rz−1dr (6.7.6)

= − rx+z0

x+ z
, Re(z) < −x (6.7.7)

versus

f̃2(z) ≡
∫ ∞

0

(Θ(r)−Θ(r − r0))rx · rz−1dr (6.7.8)

56I benefited greatly from The Handbook of Transforms [8] while preparing this section.
57Quick recap: The real number s is defined as Ds(λ) |r⟩ = λs |λ · r⟩; while Ds(e

ϵ) = e−iϵ·E with ν being the
(real) eigenvalue of the Hermitian generator Es.
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= − rx+z0

x+ z
, Re(z) > −x. (6.7.9)

The range of validity of Re(z) for f̃1,2 do not overlap at all; yet, they are the same expression.
Let us attempt to re-construct the integrands of equations (6.7.6) and (6.7.8),

f1(r) ≡ Θ(r − r0)rx, (6.7.10)

f2(r) ≡ (Θ(r)−Θ(r − r0))rx. (6.7.11)

For f1(r), eq. (6.7.5) applied to eq. (6.7.6) now reads

f1(r) =

∫
Re(z)<−x
Im(z)∈R

d Im(z)

2πi

−rx+z0 · (x+ z)−1

rz
(6.7.12)

= −rx0
∫
Re(z)<−x
Im(z)∈R

d Im(z)

2πi

exp (z ln(r0/r))

x+ z
. (6.7.13)

Whenever r0 > r, the exponential exp(z ln(r0/r)) in the second line would blow up as Re(z)→
+∞. This prompts us to close the contour on the negative Re(z) part of the complex z−plane.
But since the original vertical line contour has Re(z) < −x, the integrand is analytic within
resulting closed contour and the result is zero. On the other hand, whenever r > r0, the
exponential exp(z ln(r0/r)) would diverge as Re(z)→ −∞. Closing the contour on the Re(z) > 0
half of the complex z−plane then yields

f1(r) = −Θ(r − r0)Resz=−x

(
− rx0
x+ z

exp (z ln(r0/r))

)
(6.7.14)

= Θ(r − r0)rx0(r0/r)−x. (6.7.15)

Problem 6.47. Re-construct f2(r) by taking the inverse transform of eq. (6.7.8).

Gamma Function Referring to eq. (6.2.44), we see that Γ(z) for Re(z) > −1 may be
viewed as the Mellin transform of the exponential f(t) ≡ exp(−t); i.e.,

Γ(z) ≡ f̃(z) =

∫ ∞

0

f(t)tz−1dt. (6.7.16)

The inversion formula in eq. (6.7.5) says, for Re(z) > 0,

e−t =

∫ Re(z)+i∞

Re(z)−i∞

dz

2πi

Γ(z)

tz
. (6.7.17)

Let us verify this statement by direct evaluation of the right hand side. Specifically, let us close
the vertical contour, joining its positive and negative Im ends via an infinitely large arc running
on the Re(z) < 0 half of the complex z−plane. (We will, in due course, justify why this infinite
arc contributes zero to the integral.) Recalling eq. (6.2.62),∫ Re(z)+i∞

Re(z)−i∞

dz

2πi

Γ(z)

tz
=

+∞∑
n=0

Resz=−n

(
Γ(z)

tz

)
(6.7.18)
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=
(−t)n

n!
, (6.7.19)

which is the Taylor series expansion of e−t.
Properties of Mellin Transforms Since eq. (6.7.1) defines an analytic function of z,

we can take its derivative readily. Recalling ∂zr
z = rz · ln r, we deduce for n = 0, 1, 2, 3, . . . ,

dnf̃(z)

dzn
=

∫ ∞

0

(ln r)nf(r)rz−1dr. (6.7.20)

Allowing us to draw the correspondence

(d/dz)n ↔ (ln r)n. (6.7.21)

Also, eq. (6.7.1) immediately implies

f̃(z1 + z2) =

∫ ∞

0

rz1f(r) · rz2−1dr (6.7.22)

=

∫ ∞

0

rz2f(r) · rz1−1dr. (6.7.23)

Multiplication of the original function f(r) by a power law (i.e., f(r)→ rz
′
f(r)) amounts to an

additive shift of the argument z in the Mellin transform (f̃(z)→ f̃(z + z′)).
Next, we perform the Mellin transform of the nth derivative of f(r). For all continuous

functions f(r = 0) that are regular at r = 0, integration-by-parts allow us to deduce – whenever
Rez > 1 – ∫ ∞

0

dnf(r)

drn
· rz−1dr = (−)n

∫ ∞

0

f(r)
dn

drn
· rz−1dr (6.7.24)

= (−)n(z − 1)(z − 2)(z − 3) . . . (z − n)f̃(z). (6.7.25)

The correspondence here is

(−)n(z − 1)(z − 2)(z − 3) . . . (z − n)↔ (d/dr)n. (6.7.26)

Problem 6.48. Justify the correspondence

(−)nzn ↔ (rd/dr)n, (6.7.27)

where n = 0, 1, 2, 3, . . . .

YZ: To be continued. Summation of series. Relation to Fourier and Laplace transform.
Radial. Variational problem: what’s the state that minimizes the variance/uncertainty? Zeta
versus Theta functions. Moments. Probability/Statistics. Inverse transform. Mellin-Barnes.
Gamma function asymptotics. Fourier and Hankel transforms. Asymptotic expansions.
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7 Special and Approximation Techniques in Calculus

Integration is usually much harder than differentiation. Any function f(x) you can build out
of powers, logs, trigonometric functions, etc., can usually be readily differentiated.58 But to
integrate a function in closed form you have to know another function g(x) whose derivative
yields f(x); that’s the essential content of the fundamental theorem of calculus.∫

f(x)dx
?
=

∫
g′(x)dx = g(x) + constant (7.0.1)

Here, I will discuss integration techniques that I feel are not commonly found in standard treat-
ments of calculus. Among them, some techniques will show how to extract approximate answers
from integrals. This is, in fact, a good place to highlight the importance of approximation tech-
niques in physics. For example, most of the predictions from quantum field theory – our funda-
mental framework to describe elementary particle interactions at the highest energies/smallest
distances – is based on perturbation theory.

7.1 Gaussian integrals

As a start, let us consider the following “Gaussian” integral:

IG(a) ≡
∫ +∞

−∞
e−ax

2

dx, (7.1.1)

where Re(a) > 0. (Why is this restriction necessary?) Let us suppose that a > 0 for now. Then,
we may consider squaring the integral, i.e., the 2-dimensional (2D) case:

(IG(a))
2 =

∫ +∞

−∞

∫ +∞

−∞
e−ax

2

e−ay
2

dxdy. (7.1.2)

You might think “doubling” the problem is only going to make it harder, not easier. But let
us now view (x, y) as Cartesian coordinates on the 2D plane and proceed to change to polar
coordinates, (x, y) = r(cosϕ, sinϕ); this yields dxdy = dϕdr · r.

(IG(a))
2 =

∫ +∞

−∞
e−a(x

2+y2)dxdy =

∫ 2π

0

dϕ

∫ +∞

0

dr · re−ar2 (7.1.3)

The integral over ϕ is straightforward; whereas the radial one now contains an additional r in
the integrand – this is exactly what makes the integral do-able.

(IG(a))
2 = 2π

∫ +∞

0

dr
1

−2a
∂re

−ar2

=

[
−π
a
e−ar

2

]r=∞

r=0

=
π

a
(7.1.4)

58The ease of differentiation ceases once you start dealing with “special functions”; see, for e.g., here for a
discussion on how to differentiate the Bessel function Jν(z) with respect to its order ν.

271

http://blog.wolfram.com/2016/05/16/new-derivatives-of-the-bessel-functions-have-been-discovered-with-the-help-of-the-wolfram-language/


Because e−ax
2
is a positive number if a is positive, we know that IG(a > 0) must be a positive

number too. Since (IG(a))
2 = π/a the Gaussian integral itself is just the positive square root∫ +∞

−∞
e−ax

2

dx =

√
π

a
, Re(a) > 0. (7.1.5)

Because both sides of eq. (7.1.5) can be differentiated readily with respect to a (for a ̸= 0),
by analytic continuation, even though we started out assuming a is positive, we may now relax
that assumption and only impose Re(a) > 0. If you are uncomfortable with this analytic
continuation argument, you can also tackle the integral directly. Suppose a = ρeiδ, with ρ > 0
and −π/2 < δ < π/2. Then we may rotate the contour for the x integration from x ∈ (−∞,+∞)
to the contour C defined by z ≡ e−iδ/2ξ, where ξ ∈ (−∞,+∞). (The 2 arcs at infinity contribute
nothing to the integral – can you prove it?)

IG(a) =

∫ ξ=+∞

ξ=−∞
e−ρe

iδ(e−iδ/2ξ)2d(e−iδ/2ξ)

=
1

eiδ/2

∫ ξ=+∞

ξ=−∞
e−ρξ

2

dξ (7.1.6)

At this point, since ρ > 0 we may refer to our result for IG(a > 0) and conclude∫ +∞

−∞
e−ax

2

dx =
1

eiδ/2

√
π

ρ
=

√
π

ρeiδ
=

√
π

a
, −π

2
< (δ ≡ arg[a]) <

π

2
. (7.1.7)

Problem 7.1. Compute, for Re(a) > 0,∫ +∞

0

e−ax
2

dx, for Re(a) > 0 (7.1.8)∫ +∞

−∞
e−ax

2

xndx, for n odd (7.1.9)∫ +∞

−∞
e−ax

2

xndx, for n even (7.1.10)∫ +∞

0

e−ax
2

xβdx, for Re(β) > −1 (7.1.11)

Hint: For the very last integral, consider the change of variables x′ ≡
√
ax, and refer to eq.

(6.2.44).

Problem 7.2. Explain why, for Im a > 0 and arbitrary complex b,∫
R
exp

[
iak2 + ibk

]
dk = exp

[
−ib

2

4a

]√
iπ

a
. (7.1.12)

Remember the square root is a multi-valued function – explain what it means here.
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Problem 7.3. Gamma function at half-integers From equations (6.2.44) and (6.2.46),
explain why for n = 0, 1, 2, 3, . . . ,

Γ

(
n+

1

2

)
=
√
π
(2n− 1)!!

2n
; (7.1.13)

where the double factorial is (2n− 1)!! = 1 · 3 · 5 · · · · · (2n− 1) with (−1)!! ≡ 1. Hint: First work
out Γ(1/2).

Problem 7.4. Solid Angle in D ≥ 2 space dimensions There are many applications
of the Gaussian integral in physics. Here, we give an application in geometry, and calculate the
solid angle in D spatial dimensions. In D-space, the solid angle ΩD subtended by a sphere of
radius r is defined through the relation

Surface area of sphere ≡ ΩD · rD−1. (7.1.14)

Since r is the only length scale in the problem, and since area in D-space has to scale as
[LengthD−1], we see that ΩD is independent of the radius r. Moreover, the volume of a spherical
shell of radius r and thickness dr must be the area of the sphere times dr. Now, argue that the
D dimensional integral in spherical coordinates becomes

(IG(a = 1))D =

∫
RD

dDx⃗e−x⃗
2

= ΩD

∫ ∞

0

dr · rD−1e−r
2

. (7.1.15)

Next, evaluate (IG(a = 1))D directly. Then use the results of the previous problem to compute
the last equality of eq. (7.1.15). At this point you should arrive at

ΩD =
2πD/2

Γ(D/2)
, (7.1.16)

where Γ is the Gamma function.

Problem 7.5. Doubling-the-integrals The technique of ‘doubling-the-integrals’ we ex-
ploited in eq. (7.1.2) to evaluate the Gaussian integral IG(a) in eq. (7.1.1) may be employed to
other integrals. In this problem, we will see how the Beta function B[µ, ν] = Γ(µ)Γ(ν)/Γ(µ+ ν)
in terms of the Gamma function Γ(z) may be evaluated in such a manner through its integral
representation in eq. (6.2.74).

� First show that ∫ 1

0

dz(1− z)µ−1zν−1 =

∫ ∞

0

dx
xµ−1

(1 + x)µ+ν
. (7.1.17)

Hint: Try putting z ≡ 1/(1 + x).

� Second, starting with the product of two Γ-functions using their integral representations
in eq. (6.2.44), show that

Γ(µ)Γ(ν) = 2

∫ π
2

0

dθ sin2µ−1[θ] cos2ν−1[θ]

∫ ∞

0

dr rµ+ν−1e−r
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= Γ[µ+ ν]

∫ ∞

0

dx
xµ−1

(1 + x)µ+ν
. (7.1.18)

Hints: To obtain the first equality, convert the e−t occurring in eq. (6.2.44) into a Gaussian;
i.e., t ≡ t′2. Then use polar coordinates to integrate over the first quadrant. To obtain the
second equality, convert to sine and cosine into tangent τ ≡ tan(θ) via sin θ = τ/

√
1 + τ 2

and cos θ = 1/
√
1 + τ 2.

We may summarize our findings as follows:

2

∫ π
2

0

dθ sin2µ−1[θ] cos2ν−1[θ] =

∫ ∞

0

dx
xµ−1

(1 + x)µ+ν
=

∫ 1

0

dz(1− z)µ−1zν−1

= B[µ, ν] = B[ν, µ]. (7.1.19)

� Finally, show that ∫ ∞

0

dλ λµ−1

(a+ 2bλ)ν+µ
=
B[µ, ν]

2νaνbµ
. (7.1.20)

7.2 Gamma Function: Integral Representation

The integral representation of the Gamma function in eq. (6.2.44) can used to convert a inverse
power law into an exponential, via

1

bz
=

1

Γ(z)

∫ +∞

0

dttz−1e−bt, (7.2.1)

for Re b > 0 and Re z > −1. (If Re b < 0 the exponential will blow up as t→∞.) This formula
finds applications, for instance, in Feynman diagram calculations.

To show this we simply assume that b > 0 first. Then it is just a matter of re-scaling t′ ≡ bt.∫ +∞

0

dttz−1e−bt =
1

bz

∫ +∞

0

d(bt)(bt)z−1e−(bt) (7.2.2)

=
1

bz

∫ +∞

0

dt′t′z−1e−t
′
. (7.2.3)

The case for Re b > 0 can simply be obtained by analytic continuation, since both left and right
hand sides exist and are analytic.

Example Let us consider the following D−dimensional integral, where we shall assume
Re z > −1,

I(x⃗) ≡
∫
RD

dDk

(2π)D
eik⃗·x⃗

(k⃗2)z
. (7.2.4)

First we re-scale q⃗ ≡ |x⃗|⃗k, denote n̂ ≡ x⃗/|x⃗|, and apply eq. (7.2.1).

I(x⃗) =
1

|x⃗|D−2z

∫
RD

dDq

(2π)D
eiq⃗·

ˆ̂n

(q⃗2)z
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=
1

Γ(z)|x⃗|D−2z

∫ ∞

0

dt tz−1

∫
RD

dDq

(2π)D
eiq⃗·n̂−tq⃗

2

(7.2.5)

Next, we recognize that the q⃗−integral may be factored into D one dimensional integrals, where
each and every may be tackled using eq. (7.1.12). That yields:

I(x⃗) =
1

Γ(z)|x⃗|D−2z

∫ ∞

0

dt tz−1

D∏
j=1

(∫
R

dqj

2π
eiq

j n̂j−t(qj)2
)

=
1

Γ(z)|x⃗|D−2z

∫ ∞

0

dt tz−1

D∏
j=1

( √
π

2πt1/2
exp

[
−(n̂j)2

4t

])
=

1

Γ(z)|x⃗|D−2z

∫ ∞

0

dt

4z−1

(4t)z−1

(4πt)D/2
exp

[
− 1

4t

]
. (7.2.6)

Finally, putting 1/4t ≡ η hands us the integral representation of the Gamma function in eq.
(6.2.44).

I(x⃗) =
1

Γ(z)|x⃗|D−2z

∫ ∞

0

dη

4zπD/2
η

D
2
−z−1e−η. (7.2.7)

We have obtained the result ∫
RD

dDk

(2π)D
eik⃗·x⃗

(k⃗2)z
=

Γ[D
2
− z]

4zπD/2Γ[z]|x⃗|D−2z
, (7.2.8)

which allows us to analytically continue z for all complex z.

Problem 7.6. Massive case As a generalization, show that∫
RD

dDk

(2π)D
eik⃗·r⃗

(k⃗2 +m2)a
=

2mD−2a

(2
√
π)DΓ(a)

(
2

mr

)D
2
−a

KD
2
−a(mr), (7.2.9)

where r ≡ |x⃗| and Kν(z) is the modified Bessel function. For a = 1 and D = 3, you should also
find that ∫

R3

d3k

(2π)3
eik⃗·r⃗

k⃗2 +m2
=

exp(−m · r)
4πr

. (7.2.10)

Hint: You may wish to utilize the following integral representation of the modified Bessel function
Kν(z):

Kν [z] =
1

2

(z
2

)ν ∫ ∞

0

dt

tν+1
exp

[
−t− z2

4t

]
. (7.2.11)

Remark For large argument |z| ≫ 1,

Kν(z) ∼
√

π

2z
exp(−z).
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Therefore the above integral carries the behavior for mr ≫ 1:∫
RD

dDk

(2π)D
eik⃗·r

(k⃗2 +m2)a
∼ 1

2D− 1
2π

D−1
2 Γ(a)

(
2m

r

)D
2
−a

exp (−mr)√
mr

. (7.2.12)

In fundamental physics, the Coulomb potential (∝ 1/rD−2) corresponds to a force mediated by
a massless m = 0 particle such as the photon. If the force carrier is massive m > 0, on the
other hand, this result yields the corresponding ‘Yukawa potential’, whose range is significantly
shorter due to the exponential suppression exp(−mr).

Problem 7.7. Show that ∫
RD

dDz

(z⃗2 +∆)σ
=
πD/2Γ

(
σ − D

2

)
Γ(σ)∆σ−D

2

. (7.2.13)

What restrictions on ∆ and σ need to be imposed?

Problem 7.8. By considering the z → 0 limit of eq. (7.2.8), justify the following result.∫
RD

dDk

(2π)D
eik⃗·x⃗ ln

k⃗2

m2
= −

Γ[D
2
]

(
√
π|x⃗|)D

; (7.2.14)

for some arbitrary constantm2 > 0, where [m2] = [⃗k2] = 1/[x⃗2]. Hint: z−ϵ = 1−ϵ ln z+O(ϵ2).

Feynman-Schwinger Parameters There is

7.3 Complexification

Sometimes complexifying the integral makes it easier. Here’s a simple example from Matthews
and Walker [15].

I =

∫ ∞

0

dxe−ax cos(λx), a > 0, λ ∈ R. (7.3.1)

If we regard cos(λx) as the real part of eiλx,

I = Re

∫ ∞

0

dxe−(a−iλ)x

= Re

[
e−(a−iλ)x

−(a− iλ)

]x=∞

x=0

= Re
1

a− iλ
= Re

a+ iλ

a2 + λ2
=

a

a2 + λ2
(7.3.2)

Problem 7.9. What is∫ ∞

0

dxe−ax sin(λx), a > 0, λ ∈ R? (7.3.3)
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7.4 Differentiation under the integral sign (Leibniz’s theorem)

Differentiation under the integral sign, or Leibniz’s theorem, is the result

d

dz

∫ b(z)

a(z)

dsF (z, s) = b′(z)F (z, b(z))− a′(z)F (z, a(z)) +

∫ b(z)

a(z)

ds
∂F (z, s)

∂z
. (7.4.1)

Problem 7.10. By using the limit definition of the derivative, i.e.,

d

dz
H(z) = lim

δ→0

H(z + δ)−H(z)

δ
, (7.4.2)

argue the validity of eq. (7.4.1).

Why this result is useful for integration can be illustrated by some examples. The art involves
creative insertion of some auxiliary parameter α in the integrand. Let’s start with

Γ(n+ 1) =

∫ ∞

0

dttne−t, n a positive integer. (7.4.3)

For Re(n) > −1 this is in fact the definition of the Gamma function. We introduce the parameter
as follows

In(α) =

∫ ∞

0

dttne−αt, α > 0, (7.4.4)

and notice

In(α) = (−∂α)n
∫ ∞

0

dte−αt = (−∂α)n
1

α

= (−)n(−1)(−2) . . . (−n)α−1−n = n!α−1−n (7.4.5)

By setting α = 1, we see that the Gamma function Γ(z) evaluated at integer values of z returns
the factorial.

Γ(n+ 1) = In(α = 1) = n!. (7.4.6)

Next, we consider a trickier example: ∫ ∞

−∞

sin(x)

x
dx. (7.4.7)

This can be evaluated via a contour integral. But here we do so by introducing a α ∈ R,

I(α) ≡
∫ ∞

−∞

sin(αx)

x
dx. (7.4.8)

Observe that the integral is odd with respect to α, I(−α) = −I(α). Differentiating once,

I ′(α) =

∫ ∞

−∞
cos(αx)dx =

∫ ∞

−∞
eiαxdx = 2πδ(α). (7.4.9)
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(cos(αx) can be replaced with eiαx because the i sin(αx) portion integrates to zero.) Remember
the derivative of the step function Θ(α) is the Dirac δ-function δ(α): Θ′(z) = Θ′(−z) = δ(z).
Taking into account I(−α) = −I(α), we can now deduce the answer to take the form

I(α) = π (Θ(α)−Θ(−α)) = πsgn(α), (7.4.10)

There is no integration constant here because it will spoil the property I(−α) = −I(α). What
remains is to choose α = 1,

I(1) =

∫ ∞

−∞

sin(x)

x
dx = π. (7.4.11)

Problem 7.11. An alternate means of obtaining this result is to first consider

I(α > 0) ≡
∫ ∞

0

e−α·x
sin(x)

x
. (7.4.12)

Differentiate I(α) with respect to α and recall the result ∂α arctan(α) = 1/(1 + α2) to arrive at
eq. (7.4.10).

Problem 7.12. Show that

I(α) =

∫ π

0

ln
[
1− 2α cos(x) + α2

]
dx = 2πΘ(|α| − 1) · lnα, |α| ≠ 1, (7.4.13)

by differentiating once with respect to α, changing variables to t ≡ tan(x/2), and then using
complex analysis. (Do not copy the solution from Wikipedia!) You may need to consider the
cases |α| > 1 and |α| < 1 separately. Here, Θ(x > 0) = 1 and Θ(x < 0) = 0.

7.5 Symmetry

You may sometimes need to do integrals in higher than one dimension. If it arises from a
physical problem, it may exhibit symmetry properties you should definitely exploit. The case of
rotational symmetry is a common and important one, and we shall focus on it here. A simple
example is as follows. In 3-dimensional (3D) space, we define

I(k⃗) ≡
∫
S2

dΩn̂

4π
eik⃗·n̂. (7.5.1)

The
∫
S2 dΩ means we are integrating the unit radial vector n̂ with respect to the solid angles on

the sphere; k⃗ · x⃗ is just the Euclidean dot product. For example, if we use spherical coordinates,
the Cartesian components of the unit vector would be

n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), (7.5.2)

and dΩ = d(cos θ)dϕ. The key point here is that we have a rotationally invariant integral. In
particular, the (θ, ϕ) here are measured with respect to some (x1, x2, x3)-axes. If we rotated
them to some other (orthonormal) (x′1, x′2, x′3)-axes related via some rotation matrix Ri

j,

n̂i(θ, ϕ) = Ri
jn̂

′j(θ′, ϕ′), (7.5.3)
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where detRi
j = 1; in matrix notation n̂ = Rn̂′ and RTR = I. Then d(cos θ)dϕ = dΩ =

dΩ′ detRi
j = dΩ′ = d(cos θ′)dϕ′, and

I(Rk⃗) =

∫
S2

dΩn̂

4π
eik⃗·(R

Tn̂) =

∫
S2

dΩ′
n̂′

4π
eik⃗·n̂

′
= I(k⃗). (7.5.4)

In other words, because R was an arbitrary rotation matrix, I(k⃗) = I(|⃗k|); the integral cannot

possibly depend on the direction of k⃗, but only on the magnitude |⃗k|. That in turn means we

may as well pretend k⃗ points along the x3-axis, so that the dot product k⃗ · n̂′ only involved the
cos θ ≡ n̂′ · ê3.

I(|⃗k|) =
∫ 2π

0

dϕ

∫ +1

−1

d(cos θ)

4π
ei|⃗k| cos θ =

ei|⃗k| − e−i|⃗k|

2i|⃗k|
. (7.5.5)

We arrive at ∫
S2

dΩn̂

4π
eik⃗·n̂ =

sin |⃗k|
|⃗k|

. (7.5.6)

Problem 7.13. With n̂ denoting the unit radial vector in 3−space, evaluate

I(x⃗) =

∫
S2

dΩn̂

|x⃗− r⃗|
, r⃗ ≡ rn̂. (7.5.7)

Note that the answer for |x⃗| > |r⃗| = r differs from that when |x⃗| < |r⃗| = r. Can you explain the
physical significance? Hint: This can be viewed as an electrostatics problem.

Problem 7.14. A problem that combines both rotational symmetry and the higher dimen-
sional version of “differentiation under the integral sign” is the (tensorial) integral∫

S2

dΩ

4π
n̂i1n̂i2 . . . n̂iN , (7.5.8)

where n̂ is the unit radial vector in 3−dimensional flat space; N is an integer greater than
or equal to 1. The answer for odd N can be understood by asking, how does the integrand
and the measure dΩn̂ transform under a parity flip of the coordinate system, namely under
n̂ → −n̂? What’s the answer for even N? Hint: consider differentiating eq. (7.5.6) with

respect to ki1 , . . . , kiN ; how is that related to the Taylor expansion of sin(|⃗k|)/|⃗k|? (There is
some combinatorics to consider here.) Also consider carrying out the calculation explicitly for
the first few cases; e.g.. for N = 1, 2, 3, 4.

Problem 7.15. Can you generalize eq. (7.5.6) to D spatial dimensions? Namely, evaluate∫
SD−1

dD−1Ωn̂e
ik⃗·n̂. (7.5.9)

The k⃗ is an arbitrary vector in D-space and n̂ is the unit radial vector in the same. Hint: You
should find ∫

SD−1

dΩn̂e
ik⃗·n̂ =

(∫
SD−2

dΩn̂

)∫ π

0

(sin θ)D−2ei|⃗k| cos θdθ. (7.5.10)
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Then refer to eq. 10.9.4 of the NIST page here. Using the results of eq. (7.5.9) or otherwise,
explain why the tensor integral involving odd powers of the radial vector is zero.∫

SD−1

dD−1Ωn̂i1 . . . n̂i2ℓn̂i2ℓ+1 = 0, ℓ = 0, 1, 2, . . . (7.5.11)

Then verify that the integral over even powers of n̂ delivers the following result:∫
SD−1

dD−1Ωn̂i1 . . . n̂i2ℓ =
π

D
2

2ℓ−1Γ[D−2
2

+ ℓ+ 1]

∑(
Full contractions of ki1 . . . ki2ℓ

)
. (7.5.12)

Here, I have defined a contraction between a pair of k’s by replacing them with the corresponding
Kronecker delta. For e.g., contraction of kikj yields δij; full contraction of ki1ki2ki3ki4 would
yield

δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3 . (7.5.13)

Hints: You may first explain why

∂2ℓ

∂ki1 . . . ∂ki2ℓ
k2ℓ = 2ℓ · ℓ!

∑(
Full contractions of ki1 . . . ki2ℓ

)
. (7.5.14)

If you work out the first few cases, you should find:

∂2

∂ki1∂ki2
k2 = 2δi1i2 , (7.5.15)

∂4

∂ki1 . . . ∂ki4
k4 = 8

(
δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3

)
, (7.5.16)

∂6

∂ki1 . . . ∂ki6
k6 = 48(δi1i2δi3i4δi5i6 + δi1i3δi2i4δi5i6 + δi1i4δi2i3δi5i6

δi1i2δi3i5δi4i6 + δi1i3δi2i5δi4i6 + δi1i5δi2i3δi4i6

δi1i2δi5i4δi3i6 + δi1i5δi2i4δi3i6 + δi1i4δi2i5δi3i6

δi1i5δi3i4δi2i6 + δi1i3δi5i4δi2i6 + δi1i4δi5i3δi2i6

δi5i2δi3i4δi1i6 + δi5i3δi2i4δi1i6 + δi5i4δi2i3δi1i6). (7.5.17)

These results could then be used to extract eq. (7.5.12) from eq. (7.5.9).

Tensor integrals Next, we consider the following integral involving two arbitrary vec-
tors a⃗ and k⃗ in 3D space.59

I
(
a⃗, k⃗
)
=

∫
S2
dΩn̂

a⃗ · n̂
1 + k⃗ · n̂

(7.5.18)

First, we write it as a⃗ dotted into a vector integral J⃗ , namely

I
(
a⃗, k⃗
)
= a⃗ · J⃗ , J⃗

(
k⃗
)
≡
∫
S2
dΩn̂

n̂

1 + k⃗ · n̂
. (7.5.19)

59This example was taken from Matthews and Walker [15].
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Let us now consider replacing k⃗ with a rotated version of k⃗. This amounts to replacing k⃗ → Rk⃗,
where R is an orthogonal 3× 3 matrix of unit determinant, with RTR = RRT = I. We shall see
that J⃗ transforms as a vector J⃗ → RJ⃗ under this same rotation. This is because

∫
dΩn̂ →

∫
dΩn̂′ ,

for n̂′ ≡ RTn̂, and

J⃗
(
Rk⃗
)
=

∫
S2
dΩn̂

R(RTn̂)

1 + k⃗ · (RTn̂)

= R

∫
S2
dΩn̂′

n̂′

1 + k⃗ · n̂′
= RJ⃗(k⃗). (7.5.20)

But the only vector that J⃗ depends on is k⃗. Therefore the result of J⃗ has to be some scalar
function f times k⃗.

J⃗ = f · k⃗, ⇒ I
(
a⃗, k⃗
)
= fa⃗ · k⃗. (7.5.21)

To calculate f we now dot both sides with k⃗.

f =
J⃗ · k⃗
k⃗2

=
1

k⃗2

∫
S2
dΩn̂

k⃗ · n̂
1 + k⃗ · n̂

(7.5.22)

At this point, the nature of the remaining scalar integral is very similar to the one we’ve en-
countered previously. Choosing k⃗ to point along the ê3 axis,

f =
2π

k⃗2

∫ +1

−1

d(cos θ)
|⃗k| cos θ

1 + |⃗k| cos θ

=
2π

k⃗2

∫ +1

−1

dc

(
1− 1

1 + |⃗k|c

)
=

4π

k⃗2

(
1− 1

2|⃗k|
ln

(
1 + |⃗k|
1− |⃗k|

))
. (7.5.23)

Therefore,

∫
S2
dΩn̂

a⃗ · n̂
1 + k⃗ · n̂

=
4π
(
k⃗ · a⃗

)
k⃗2

(
1− 1

2|⃗k|
ln

(
1 + |⃗k|
1− |⃗k|

))
. (7.5.24)

This technique of reducing tensor integrals into scalar ones find applications even in quantum
field theory calculations.

Problem 7.16. Calculate

Aij (⃗a) ≡
∫

d3k

(2π)3
kikj

k⃗2 + (k⃗ · a⃗)4
, (7.5.25)

where a⃗ is some (dimensionless) vector in 3D Euclidean space. Do so by first arguing that this
integral transforms as a tensor in D-space under rotations. In other words, if Ri

j is a rotation
matrix, under the rotation

ai → Ri
ja
j, (7.5.26)
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we have

Aij(Rk
la
l) = Ri

lR
j
kA

kl(⃗a). (7.5.27)

Hint: The only rank-2 tensors available here are δij and aiaj, so we must have

Aij = f1δ
ij + f2a

iaj. (7.5.28)

To find f1,2 take the trace and also consider Aijaiaj.

7.6 Asymptotic expansion of integrals
60Many solutions to physical problems, say arising from some differential equations, can be ex-
pressed as integrals. Moreover the “special functions” of mathematical physics, whose properties
are well studied – Bessel, Legendre, hypergeometric, etc. – all have integral representations. Of-
ten we wish to study these functions when their arguments are either very small or very large,
and it is then useful to have techniques to extract an answer from these integrals in such limits.
This topic is known as the “asymptotic expansion of integrals”.

7.6.1 Integration-by-parts (IBP)

In this section we will discuss how to use integration-by-parts (IBP) to approximate integrals.
Previously we evaluated

2√
π

∫ +∞

0

e−t
2

dt = 1. (7.6.1)

The erf function is defined as

erf(x) ≡ 2√
π

∫ x

0

dte−t
2

. (7.6.2)

Its small argument limit can be obtained by Taylor expansion,

erf(x≪ 1) =
2√
π

∫ x

0

dt

(
1− t2 + t4

2!
− t6

3!
+ . . .

)
=

2√
π

(
x− x3

3
+
x5

10
− x7

42
+ . . .

)
. (7.6.3)

But what about its large argument limit erf(x≫ 1)? We may write

erf(x) =
2√
π

(∫ ∞

0

dt−
∫ ∞

x

dt

)
e−t

2

= 1− 2√
π
I(x), I(x) ≡

∫ ∞

x

dte−t
2

. (7.6.4)

60The material in this section is partly based on Chapter 3 of Matthews and Walker’s “Mathematical Methods
of Physics” [15]; and the latter portions are heavily based on Chapter 6 of Bender and Orszag’s “Advanced
mathematical methods for scientists and engineers” [16].
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Integration-by-parts may be employed as follows.

I(x) =

∫ ∞

x

dt
1

−2t
∂te

−t2 =

[
e−t

2

−2t

]t=∞

t=x

−
∫ ∞

x

dt∂t

(
1

−2t

)
e−t

2

=
e−x

2

2x
−
∫ ∞

x

dt
e−t

2

2t2
=
e−x

2

2x
−
∫ ∞

x

dt
1

2t2(−2t)
∂te

−t2 (7.6.5)

=
e−x

2

2x
− e−x

2

4x3
+

∫ ∞

x

dt
3

4t4
e−t

2

Problem 7.17. After n integration by parts,∫ ∞

x

dte−t
2

= e−x
2

n∑
ℓ=1

(−)ℓ−11 · 3 · 5 . . . (2ℓ− 3)

2ℓx2ℓ−1
− (−)n1 · 3 · 5 . . . (2n− 1)

2n

∫ ∞

x

dt
e−t

2

t2n
. (7.6.6)

This result can be found in Matthew and Walker, but can you prove it more systematically
by mathematical induction? For a fixed x, find the n such that the next term generated by
integration-by-parts is larger than the previous term. This series does not converge – why?

If we drop the remainder integral in eq. (7.6.6), the resulting series does not converge as
n→∞. However, for large x≫ 1, it is not difficult to argue that the first few terms do offer an
excellent approximation, since each subsequent term is suppressed relative to the previous by a
1/x factor.61

Problem 7.18. Using integration-by-parts, develop a large x≫ 1 expansion for

I(x) ≡
∫ ∞

x

dt
sin(t)

t
. (7.6.7)

Hint: Consider instead
∫∞
x

dt exp(it)
t

.

What is an asymptotic series? A Taylor expansion of say ex

ex = 1 + x+
x

2!
+
x3

3!
+ . . . (7.6.8)

converges for all |x|. In fact, for a fixed |x|, we know summing up more terms of the series

N∑
ℓ=0

xℓ

ℓ!
, (7.6.9)

– the larger N we go – the closer to the actual value of ex we would get.
An asymptotic series of the sort we have encountered above, and will be doing so below, is

a series of the sort

SN(x) = A0 +
A1

x
+
A2

x2
+ · · ·+ AN

xN
. (7.6.10)

61In fact, as observed by Matthews and Walker [15], since this is an oscillating series, the optimal n to truncate
the series is the one right before the smallest.
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For a fixed |x| the series oftentimes diverges as we sum up more and more terms (N → ∞).
However, for a fixed N , it can usually be argued that as x → +∞ the SN(x) becomes an
increasingly better approximation to the object we derived it from in the first place.

As Matthews and Walker [15] further explains:

“. . . an asymptotic series may be added, multiplied, and integrated to obtain the
asymptotic series for the corresponding sum, product and integrals of the correspond-
ing functions. Also, the asymptotic series of a given function is unique, but . . .An
asymptotic series does not specify a function uniquely.”

Problem 7.19. Gaussian Distributions & Their Tails The Gaussian (or, normal)
probability distribution is defined as

P (x, x̄;σ) ≡
exp

(
−1

2

(
x−x̄
σ

)2)
σ
√
2π

, x, x̄ ∈ R, σ > 0. (7.6.11)

By probability distribution, we mean P (x, x̄;σ)dx is the probability of obtaining an outcome to
lie between x and x+ dx. It must be normalized such that the total probability is unity,∫ +∞

−∞
P (x, x̄;σ)dx = 1. (7.6.12)

Normal distributions show up prominently in statistical analysis. An example of its application is
the Central Limit Theorem, which tells us: the random errors associated with the measurements
of a given observable is expected to be Gaussian distributed, provided these errors are due to a
large number of independent factors. In what follows, we shall define

⟨f(x)⟩ ≡
∫ +∞

−∞
f(x)P (x, x̄;σ)dx. (7.6.13)

� Mean (aka Average) Show that the average value of making a large number of
measurements – i.e., the mean – is

⟨x⟩ = x̄. (7.6.14)

� Variance and Standard Deviation Next, show that the variance is

⟨(x− x̄)2⟩ = ⟨x2⟩ − x̄2 = σ2. (7.6.15)

The standard deviation is defined as the square root of the variance, and is therefore σ.

� Higher Point Functions Show that ⟨(x − x̄)n⟩ = 0, for all odd n = 1, 3, 5, . . . .
Compute ⟨(x−x̄)n⟩ for even n; (not surprisingly) you will discover that the answer depends
only on σ – the generalization of this result to perturbative Quantum Field Theory reads:
all even point functions are determined by the two point function.
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� Tails and Asymptotics Even though the tail end of a Gaussian distribution is
exponentially suppressed, and hence constitutes a small fraction of the total population,
these ‘outliers’ are often important because of their extreme characteristics. For example,
the IQ of humans are typically modeled as normal distributed. If this is accurate, that
means there are exponentially few people who are extremely smart; but because they are
significantly more intelligent than the rest of us, they will tend to stand out from the crowd
in tasks that are cognitively demanding.

Different Means, Same Variance Suppose group A has an IQ mean of x̄< and group
B has a higher IQ mean of x̄>, with x̄> > x̄<; and suppose the IQ variances of the two
groups are the same. If the total population of A is NA and that of B is NB, show that
for both (x⋆ − x̄<)/σ ≫ 1 and (x⋆ − x̄>)/σ ≫ 1,

Number of people from group A with IQ greater or equal to x⋆
Number of people from group B with IQ greater or equal to x⋆

(7.6.16)

∼ NA

NB

(
x⋆ − x̄>
x⋆ − x̄<

)
exp

(
−(2x⋆ − x̄> − x̄<)(x̄> − x̄<)

2σ2

)(
1− σ2

(x⋆ − x̄<)2
+

σ2

(x⋆ − x̄>)2
+ . . .

)
,

where ∼ means ‘asymptotic to’. Even though (x⋆ − x̄>)/(x⋆ − x̄<) is larger than one, for
a ‘cut-off’ x⋆ much larger than the means x̄< and x̄>, the exponential factor teaches us:

If the populations of two groups are comparable (NA ∼ NB) then the more
elite the selection – namely, the higher the threshold x⋆ – the more the outcome
will be exponentially dominated by the group with the higher mean.

Same Mean, Different Variances Next, suppose groups A and B have the same IQ
average x̄; but suppose the IQ standard deviation σ< of A is smaller than the IQ standard
deviation σ> of B, namely σ< < σ>. If the total population of A is NA and that of B is
NB, show that

Number of people from group A with IQ greater or equal to x⋆
Number of people from group B with IQ greater or equal to x⋆

(7.6.17)

∼ NA

NB

(
σ<
σ>

)
exp

(
−(x⋆ − x̄)2(σ2

> − σ2
<)

2σ2
>σ

2
<

)(
1− σ2

<

(x⋆ − x̄)2
+

σ2
>

(x⋆ − x̄)2
+ . . .

)
. (7.6.18)

For a ‘cut-off’ x⋆ much larger than the mean x̄, the σ</σ> multiplied by the exponential
factor teaches us:

If the populations of two groups are comparable (NA ∼ NB) then the more
elite the selection – namely, the higher the threshold x⋆ – the more the outcome
will be exponentially dominated by the group with the higher variance.

We used IQ as a specific example, but these conclusions would of course hold for any
observable whose possible outcomes are governed by the Gaussian distribution.
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7.6.2 Laplace’s Method, Method of Stationary Phase, Steepest Descent

Exponential suppression The asymptotic methods we are about to encounter in this sec-
tion rely on the fact that, the integrals we are computing really receive most of their contribution
from a small region of the integration region. Outside of the relevant region the integrand itself
is highly exponentially suppressed relative to it – a basic illustration of this is

I(α) =

∫ α

0

e−t = 1− e−α. (7.6.19)

As α → ∞ we have I(∞) = 1. Even though it takes an infinite range of integration to obtain
1, we see that most of the contribution (≫ 99%) comes from t = 0 to t ∼ O(10). For example,
e−5 ≈ 6.7 × 10−3 and e−10 ≈ 4.5 × 10−5. You may also think about evaluating this integral
numerically; what this shows is that it is not necessary to sample your integrand out to very
large t to get an accurate answer.62

Laplace’s Method We now turn to integrals of the form

I(α) =

∫ b

a

f(t)eαϕ(t)dt (7.6.20)

where both f and ϕ are real. (There is no need to ever consider the complex f case since it can
always be split into real and imaginary parts.) We will consider the α → +∞ limit and try to
extract the leading order behavior of the integral.

The main strategy goes roughly as follows. Find the location of the maximum of ϕ(t) – say
it is at t = c. This can occur in between the limits of integration a < c < b or at one of the end
points c = a or c = b. As long as f(c) ̸= 0, we may expand both f(t) and ϕ(t) around t = c.
For simplicity we display the case where a < c < b:

I(α) ∼ eαϕ(c)
∫ c+κ

c−κ
(f(c) + (t− c)f ′(c) + . . . ) exp

(
α

{
ϕ(p)(c)

p!
(t− c)p + . . .

})
dt, (7.6.21)

where we have assumed the first non-zero derivative of ϕ is at the pth order, and κ is some small
number (κ < |b− a|) such that the expansion can be justified, because the errors incurred from

switching from
∫ b
a
→
∫ c+κ
c−κ are exponentially suppressed. (Since ϕ(t = c) is maximum, ϕ′(c) is

usually – but not always! – zero.) Then, term by term, these integrals, oftentimes after a change
of variables, can be tackled using the Gamma function integral representation in eq. (6.2.44),
namely

Γ(z) ≡
∫ ∞

0

tz−1e−tdt, Re(z) > 0, (7.6.22)

62In the Fourier transform section I pointed out how, if you merely need to resolve the coarser features of your
wave profile, then provided the short wavelength modes do not have very large amplitudes, only the coefficients
of the modes with longer wavelengths need to be known accurately. Here, we shall see some integrals only
require us to know their integrands in a small region, if all we need is an approximate (but oftentimes highly
accurate) answer. This is a good rule of thumb to keep in mind when tackling difficult, apparently complicated,
problems in physics: focus on the most relevant contributions to the final answer, and often this will simplify the
problem-solving process.
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by extending the former’s limits to infinity,
∫ c+κ
c−κ →

∫ +∞
−∞ . This last step, like the expansion in

eq. (7.6.21), is usually justified because the errors incurred are again exponentially small.
Examples The first example, where ϕ′(c) ̸= 0, is related to the integral representation of

the parabolic cylinder function; for Re(ν) > 0,

I(α) =

∫ 100

0

tν−1e−t
2/2e−α·tdt. (7.6.23)

Here, ϕ(t) = −t and its maximum is at the lower limit of integration. For large t the integrand
is exponentially suppressed, and we expect the contribution to arise mainly for t ∈ [0, a few). In
this region we may Taylor expand e−t

2/2. Term-by-term, we may then extend the upper limit of
integration to infinity, provided we can justify the errors incurred are small enough for α≫ 1.

I(α→∞) ∼
∫ ∞

0

tν−1

(
1− t2

2
+ . . .

)
e−α·tdt

=

∫ ∞

0

(α · t)ν−1

αν−1

(
1− (α · t)2

2α2
+ . . .

)
e−(α·t)d(α · t)

α

=
Γ(ν)

αν
(
1 +O

(
α−2
))
. (7.6.24)

The second example is

I(α→∞) =

∫ 88

0

exp(−α cosh(t))√
sinh(t)

dt

∼
∫ ∞

0

exp
(
−α
{
1 + t2

2
+ . . .

})
√
t
√

1 + t2/6 + . . .
dt

∼ e−α
∫ ∞

0

(α/2)1/4 exp
(
−(
√
α/2t)2

)
√√

α/2t

d(
√
α/2t)√
α/2

. (7.6.25)

To obtain higher order corrections to this integral, we would have to be expand both the exp
and the square root in the denominator. But the t2/2 + . . . comes multiplied with a α whereas
the denominator is α-independent, so you’d need to make sure to keep enough terms to ensure
you have captured all the contributions to the next- and next-to-next leading corrections, etc.
We will be content with just the dominant behavior: we put z ≡ t2 ⇒ dz = 2tdt = 2

√
zdt.∫ 88

0

exp(−α cosh(t))√
sinh(t)

dt ∼ e−α

(α/2)1/4

∫ ∞

0

z(1−
1
4
− 1

2)−1e−z
dz

2

= e−α
Γ(1/4)

23/4α1/4
. (7.6.26)

In both examples, the integrand really behaves very differently from the first few terms of its
expanded version for t≫ 1, but the main point here is – it doesn’t matter! The error incurred,
for very large α, is exponentially suppressed anyway. If you care deeply about rigor, you may
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have to prove this assertion on a case-by-case basis; see Example 7 and 8 of Bender & Orszag’s
Chapter 6 [16] for careful discussions of two specific integrals.

Stirling’s formula As an example of Laplace’s method, let us use it to obtain a large
n ≫ 1 limit representation of the factorial n! = Γ(n + 1). In fact, what follows applies to any
large positive n; i.e., not necessarily integer.

Γ(n+ 1) =

∫ ∞

0

tne−tdt =

∫ ∞

0

en ln(t)−tdt. (7.6.27)

It appears here that ϕ(t) = ln(t) and the maximum is at t = ∞. Actually, let us first re-scale
t→ n · t.

Γ(n+ 1) = n

∫ ∞

0

en(ln(n·t)−t)dt = nen lnn

∫ ∞

0

en(ln(t)−t)dt. (7.6.28)

In this form, comparison with eq. (7.6.20) tells us ϕ(t) = ln(t) − t and f(t) = 1. Moreover the
maximum of ϕ(t) is at t = 1 because

ϕ′(t) =
d

dt
(ln(t)− t) = 1

t
− 1 = 0. (7.6.29)

Now let us define t = 1 + x, so that x runs from −1 to +∞. The factorial then reads

Γ(n+ 1) = nn+1

∫ ∞

−1

en(ln(1+x)−x−1)dx. (7.6.30)

Now, the exponent begins as a Gaussian near x ≈ 0 because

ln(1 + x)− x = −x
2

2
+
x3

3
+O(x4). (7.6.31)

Inserting an explicit Taylor series of exp[n(ln(1 + x) − x + x2

2
)] into our integral at hand while

by extending the lower limit to −∞ yields

Γ(n+ 1→∞) ∼ nn+1

en

∫ ∞

−∞
e−

n
2
x2 exp

[
n

(
ln(1 + x)− x+ x2

2

)]
dx; (7.6.32)

n! ∼
√
2π
nn+

1
2

en

(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+O(n−5)

)
. (7.6.33)

Problem 7.20. Fractional Error in Sterling’s Approximation Can you estimate – say,
using integration-by-parts – the fractional error incurred when extending the lower integration
limit from −1 in (7.6.30) to −∞ in eq. (7.6.32)?

Problem 7.21. What is the leading behavior of

I(α) ≡
∫ 50.12345+e

√
2+π

√
e

0

e−α·t
π

√
1 +
√
tdt (7.6.34)

in the limit α→ +∞? And, how does the first correction scale with α?
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Problem 7.22. What is the leading behavior of

I(α) =

∫ π/2

−π/2

e−α cos(t)2

(cos(t))p
dt, (7.6.35)

for 0 ≤ p < 1, in the limit α→ +∞? Note that there are two maximums of ϕ(t) here.

Method of Stationary Phase We now consider the case where the exponent is purely
imaginary,

I(α) =

∫ b

a

f(t)eiαϕ(t)dt. (7.6.36)

Here, both f and ϕ are real. As we did previously, we will consider the α→ +∞ limit and try
to extract the leading order behavior of the integral.

What will be very useful, to this end, is the following lemma.

The Riemann-Lebesgue lemma states that I(α→∞) in eq. (7.6.36) goes to

zero provided: (I)
∫ b
a
|f(t)|dt < ∞; (II) ϕ(t) is continuously differentiable; and (III)

ϕ(t) is not constant over a finite range within t ∈ [a, b].

We will not prove this result, but it is heuristically very plausible: as long as ϕ(t) is not constant,
the exp[iαϕ(t)] fluctuates wildly as α→ +∞ on the t ∈ [a, b] interval. For large enough α, f(t)
will be roughly constant over ‘each period’ of exp[iαϕ(t)], which in turn means f(t) exp[iαϕ(t)]
will integrate to zero over this same ‘period’.
Case I: ϕ(t) has no turning points The first implication of the Riemann-Lebesgue lemma is
that, if ϕ′(t) is not zero anywhere within t ∈ [a, b]; and as long as f(t)/ϕ′(t) is smooth enough
within t ∈ [a, b] and exists on the end points; then we can use integration-by-parts to show that
the integral in eq. (7.6.36) has to scale as 1/α as α→∞.

I(α) =

∫ b

a

f(t)

iαϕ′(t)

d

dt
eiαϕ(t)dt

=
1

iα

{[
f(t)

ϕ′(t)
eiαϕ(t)

]b
a

−
∫ b

a

eiαϕ(t)
d

dt

(
f(t)

ϕ′(t)

)
dt

}
. (7.6.37)

The integral on the second line within the curly brackets is one where Riemann-Lebesgue applies.
Therefore it goes to zero relative to the (boundary) term preceding it, as α → ∞. Therefore
what remains is∫ b

a

f(t)eiαϕ(t)dt ∼ 1

iα

[
f(t)

ϕ′(t)
eiαϕ(t)

]b
a

, α→ +∞, ϕ′(a ≤ t ≤ b) ̸= 0. (7.6.38)

Case II: ϕ(c) has at least one turning point If there is at least one point where the phase is
stationary, ϕ′(a ≤ c ≤ b) = 0, then provided f(c) ̸= 0, we shall see that the dominant behavior
of the integral in eq. (7.6.36) scales as 1/α1/p, where p is the lowest order derivative of ϕ that is
non-zero at t = c. Because 1/p < 1, the 1/α behavior we found above is sub-dominant to 1/α1/p

– hence the need to analyze the two cases separately.
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Let us, for simplicity, assume the stationary point is at a, the lower limit. We shall discover
the leading behavior to be∫ b

a

f(t)eiαϕ(t)dt ∼ f(a) exp

(
iαϕ(a)± i π

2p

)
Γ(1/p)

p

(
p!

α|ϕ(p)(a)|

)1/p

, (7.6.39)

where ϕ(p)(a) is first non-vanishing derivative of ϕ(t) at the stationary point t = a; while the +
sign is to be chosen if ϕ(p)(a) > 0 and − if ϕ(p)(a) < 0.

To understand eq. (7.6.39), we decompose the integral into

I(α) =

∫ a+κ

a

f(t)eiαϕ(t)dt+

∫ b

a+κ

f(t)eiαϕ(t)dt. (7.6.40)

The second integral scales as 1/α, as already discussed, since we assume there are no stationary
points there. The first integral, which we shall denote as S(α), may be expanded in the following
way provided κ is chosen appropriately:

S(α) =

∫ a+κ

a

(f(a) + . . . )eiαϕ(a) exp

(
iα

p!
(t− a)pϕ(p)(a) + . . .

)
dt. (7.6.41)

To convert the oscillating exp into a real, dampened one, let us rotate our contour. Around
t = a, we may change variables to t − a ≡ ρeiθ ⇒ (t − a)p = ρpeipθ = iρp (i.e., θ = π/(2p)) if
ϕ(p)(a) > 0; and (t− a)p = ρpeipθ = −iρp (i.e., θ = −π/(2p)) if ϕ(p)(a) < 0. Since our stationary
point is at the lower limit, this is for ρ > 0.63

S(α→∞)

∼ f(a)eiαϕ(a)e±iπ/(2p)
∫ +∞

0

exp

(
−α
p!
|ϕ(p)(a)|ρp

)
d(ρp)

p · ρp−1
(7.6.42)

∼ 1

p
f(a)eiαϕ(a)e±iπ/(2p)

(
α

p!
|ϕ(p)(a)|

)−1/p ∫ +∞

0

(
α

p!
|ϕ(p)(a)|s

) 1
p
−1

exp

(
−α
p!
|ϕ(p)(a)|s

)
d

(
α

p!
|ϕ(p)(a)|s

)
.

This establishes the result in eq. (7.6.39).

Problem 7.23. Starting from the following integral representation of the Bessel function

Jn(x) =
1

π

∫ π

0

cos (nθ − x sin θ) dθ (7.6.43)

where n = 0, 1, 2, 3, . . . , show that the leading behavior as x→ +∞ is

Jn(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

4

)
. (7.6.44)

Hint: Express the cosine as the real part of an exponential. Note the stationary point is two-
sided, but it is fairly straightforward to deform the contour appropriately.

63If p is even, and if the stationary point is not one of the end points, observe that we can choose θ =
±(π/(2p) + π) ⇒ eipθ = ±i for the ρ < 0 portion of the contour – i.e., run a straight line rotated by θ through
the stationary point – and the final result would simply be twice of eq. (7.6.39).

290



Method of Steepest Descent We now allow our exponent ϕ = u+ iv (in the eαϕ) to
be complex.

I(α) =

∫
C

f(t)eαu(t)eiαv(t)dt, (7.6.45)

The f , u and v are real; C is some contour on the complex t plane; and as before we will study
the α→∞ limit. We will assume u+ iv forms an analytic function of t.

The method of steepest descent is the strategy to deform the contour C to some C ′ such
that it lies on a constant-phase path – i.e., where the imaginary part of the exponent does not
change along it.

I(α) = eiαv
∫
C′
f(t)eαu(t)dt (7.6.46)

The reason for doing so is that the constant phase contour also coincides with the steepest descent
one of the real part of the exponent u(t) – unless the contour passes through a saddle point,
where more than one steepest descent paths can intersect. The dominant region of contribution
to a given integral will be centered around the maximum value of u(t) along a steepest descent
path joining its upper and lower limits. We may then employ Laplace’s method to obtain an
asymptotic series.

To understand this further we recall that the gradient is perpendicular to the lines of constant
potential, i.e., the gradient points along the curves of most rapid change. Assuming u+ iv is an
analytic function, and denoting t = x + iy (for x and y real), the Cauchy-Riemann equations
they obey

∂xu = ∂yv, ∂yu = −∂xv (7.6.47)

means the dot product of their gradients is zero:

∇⃗u · ∇⃗v = ∂xu∂xv + ∂yu∂yv = ∂yv∂xv − ∂xv∂yv = 0. (7.6.48)

A constant phase line – namely, the contour line where v is constant – is necessarily perpendicular
to ∇⃗v. But since ∇⃗u · ∇⃗v = 0 in the relevant region of the 2D complex (t = x+ iy)-plane where
u(t) + iv(t) is assumed to be analytic, a constant phase line must therefore be (anti)parallel to

∇⃗u, the direction of most rapid change of the real amplitude eα·u. To sum:

A constant−v(t) path on the complex t plane corresponds to a path of most-
rapid-change of u(t).

We will examine the following simple example:

I(α) =

∫ 1

0

ln(t)eiαtdt. (7.6.49)

We identify f(t) = ln(t) and ϕ(t) = it = ix − y for t = x + iy, where x and y are real and
imaginary portions of t. Constant phase would therefore mean constant x. Thus, let’s deform
the contour

∫ 1

0
so it becomes the sum of the straight lines C1, C2 and C3. C1 runs from t = 0
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along the positive imaginary axis to infinity. C2 runs horizontally from i∞ to i∞+ 1. Then C3

runs from i∞+1 back down to 1. There is no contribution from C2 because the integrand there
is ln(i∞)e−α∞, which is zero for positive α.

I(α) = i

∫ ∞

0

ln(it)e−α·tdt− ieiα
∫ ∞

0

ln(1 + it)e−α·tdt. (7.6.50)

Notice the exponents in both integrands have now zero (and therefore constant) phases. More-
over, for α ≫ 1, the dominant region contribution to the two integrals is t ∈ [0,O(few)] since
e−α·t is maximum at t = 0 and falls off rapidly for large t.

I(α) = i

∫ ∞

0

ln(i(α · t)/α)e−(α·t)d(α · t)
α

− ieiα
∫ ∞

0

ln(1 + i(α · t)/α)e−(α·t)d(α · t)
α

= i

∫ ∞

0

(ln(z)− ln(α) + iπ/2)e−z
dz

α
− ieiα

∫ ∞

0

(
i
z

α
+O(α−2)

)
e−z

dz

α
. (7.6.51)

The only integral that remains unfamiliar is the first one∫ ∞

0

e−z ln(z) =
∂

∂µ

∣∣∣∣
µ=1

∫ ∞

0

e−ze(µ−1) ln(z) =
∂

∂µ

∣∣∣∣
µ=1

∫ ∞

0

e−zzµ−1

= Γ′(1) = −γE (7.6.52)

The γE = 0.577216 . . . is known as the Euler-Mascheroni constant. At this point,∫ 1

0

ln(t)eiα·tdt ∼ i

α

(
−γE − ln(α) + i

π

2
− ieiα

α

{
1 +O(α−1)

})
, α→ +∞. (7.6.53)

Problem 7.24. Perform an asymptotic expansion of

I(k) ≡
∫ +1

−1

eikx
2

dx (7.6.54)

using the steepest descent method. Hint: Find the point t = t0 on the real line where the phase
is stationary. Then deform the integration contour such that it passes through t0 and has a
stationary phase everywhere. Can you also tackle I(k) using integration-by-parts?

7.6.3 Wronskians and Completeness of Bessel Functions

In this section we will encounter the Wronskian. It will be used in conjunction with the asymp-
totic results for Jν(z),

J±ν(z) ∼
√

2

πz
cos
(
z ∓ π

2
ν − π

4

) (
1 +O(z−1)

)
; (7.6.55)

to derive generalizations of the completeness relations of Bessel Jν(kr).
Wronskian The Wronskian Wr of two functions f and g with respect to some variable z,
is defined as

Wrz (f, g) = f · ∂zg − g · ∂zf. (7.6.56)
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This object is important in the study of the solution to ordinary differential equations. Let us
suppose the pair f1,2(z) obeys

p2(z)f
′′(z) + p1(z)f

′(z) + p0(z)f(z) = 0 (7.6.57)

We then record the following facts.

� If Wrz(f1, f2) ̸= 0, then f1,2(z) are linearly independent. Equivalently, if these f1,2 are lin-
early dependent, their Wronskian Wrz(f1(z), f2(z)) is necessarily zero. If Wrz(f1(z), f2(z))
is zero, however, it does not necessarily imply they are linearly dependent – and example
is the pair f1(x) = x|x| and f2(x) = x2.

� Furthermore, it is not difficult to verify, if eq. (7.6.57) is taken into account, the Wronskian
itself obeys the 1st order ODE

d

dz
Wrz(f1, f2) = −

p1(z)

p2(z)
Wrz(f1, f2), (7.6.58)

which immediately implies the Wronskian can be determined, up to an overall multiplica-
tive constant, without the need to know explicitly the pair of homogeneous solutions f1,2,

Wrz(f1, f2) = W0 exp

(
−
∫ z p1(z

′′)

p2(z′′)
dz′′
)
, W0 = constant. (7.6.59)

� If we “rotate” from one pair of linearly independent solutions (f1, f2) to another (g1, g2)
via a constant invertible matrix M J

I ,

fI(z) =M J
I gJ(z), I, J ∈ {1, 2}, detM J

I ̸= 0; (7.6.60)

then

Wrz(f1, f2) =
(
detM J

I

)
Wrz(g1, g2). (7.6.61)

Let us now compute the Wronskian for the pair J±ν(z). For Bessel equation in eq. (5.4.113)
with m replaced with µ, we may identify

p2 = 1 and p2 = z−1. (7.6.62)

The solution in eq. (7.6.59) indicates,

Wrz (Jν(z), J−ν(z)) ∝
1

z
. (7.6.63)

According to eq. (5.4.114), J±µ(z) is proportional to zν multiplied by an even power series.
Hence, the derivative of Jν(z) goes as z

ν−1 multiplied by an even power series. When we multiply
Jα(z) · J ′

β(z), therefore, we expect it to yield an expression that goes as zα+β−1 multiplied by an
even power series. But eq. (7.6.63) tells us that the Wronskian scales precisely as z−1. Hence,
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the contributions to the higher powers of z arising from the even power series portion of eq.
(5.4.114) must cancel out.

Wrz (Jν(z), J−ν(z)) =
(z/2)ν

ν!
· d
dz

(z/2)−ν

(−ν)!
− (z/2)−ν

(−ν)!
· d
dz

(z/2)ν

ν!
(7.6.64)

= − 2ν

z · (−ν)!ν!
. (7.6.65)

In the discussion leading up to eq. (6.2.47) below, we derive the result ν! = ν · (ν − 1)! and
(ν − 1)!(−ν)! = π/ sin(πz). This means

Wrz (Jν(z), J−ν(z)) = −
2 sin(π · ν)

zπ
. (7.6.66)

The pair J±ν(z) are linearly independent as long as ν is not an integer. This leads us to the
following problem that investigates the relationship between Jν(k · r) and J−ν(q · r).

Problem 7.25. We will now discover∫ ∞

0

dr · rJ−ν(kr)Jν(qr) = cos(πν)
δ(k − q)√

k · q
+ Pr

(
2 sin[πν]

π(q2 − k2)

( q
k

)ν)
, k, q > 0. (7.6.67)

First, verify eq. (7.6.58) and the results

Wrr
(√

rJµ(kr),
√
rJν(qr)

)
= (qr)Jµ(kr)J

′
ν(qr)− (kr)Jµ(kr)J

′
ν(qr), (7.6.68)

d

dr
Wrr

(√
rJµ(kr),

√
rJν(qr)

)
=

(
(k2 − q2)r − µ2 − ν2

r

)
Jµ(kr)Jν(qr). (7.6.69)

Can you use the second line to deduce eq. (7.6.67)? YZ: Incomplete!

7.7 JWKB solution to −ϵ2ψ′′(x) + U(x)ψ(x) = 0, for 0 < ϵ≪ 1

Many physicists encounter for the first time the following Jeffreys-Wentzel-Kramers-Brillouin
(JWKB; akaWKB) method and its higher dimensional generalization, when solving the Schrödinger
equation – and are told that the approximation amounts to the semi-classical limit where Planck’s
constant tends to zero, ℏ → 0. Here, I want to highlight its general nature: it is not just ap-
plicable to quantum mechanical problems but oftentimes finds relevance when the wavelength
of the solution at hand can be regarded as ‘small’ compared to the other length scales in the
physical setup. The statement that electromagnetic waves in curved spacetimes or non-trivial
media propagate predominantly on the null cone in the (effective) geometry, is in fact an example
of such a ‘short wavelength’ approximation.

We will focus on the 1D case. Many physical problems reduce to the following 2nd order
linear ordinary differential equation (ODE):

−ϵ2ψ′′(x) + U(x)ψ(x) = 0, (7.7.1)

where ϵ is a “small” (usually fictitious) parameter. This second order ODE is very general
because both the Schrödinger and the (frequency space) Klein-Gordon equation with some po-
tential reduces to this form. (Also recall that the first derivative terms in all second order
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ODEs may be removed via a redefinition of ψ.) The main goal of this section is to obtain its
approximate solutions.

We will use the ansatz

ψ(x) =
∞∑
ℓ=0

ϵℓαℓ(x)e
iS(x)/ϵ.

Plugging this into our ODE, we obtain

0 =
∞∑
ℓ=0

ϵℓ
(
αℓ(x)

(
S ′(x)2 + U(x)

)
− i
(
αℓ−1(x)S

′′(x) + 2S ′(x)α′
ℓ−1(x)

)
− α′′

ℓ−2(x)
)

(7.7.2)

with the understanding that α−2(x) = α−1(x) = 0. We need to set the coefficients of ϵℓ to zero.
The first two terms (ℓ = 0, 1) give us solutions to S(x) and α0(x).

0 = α0

(
S ′(x)2 + U(x)

)
⇒ S±(x) = σ0 ± i

∫ x

dx′
√
U(x′); σ0 = const.

0 = −iϵ (2α′
0(x)S

′(x) + α0(x)S
′′(x)) , ⇒ α0(x) =

C0

U(x)1/4

(While the solutions S±(x) contains two possible signs, the ± in S ′ and S ′′ factors out of the
second equation and thus α0 does not have two possible signs.)

Problem 7.26. Recursion relation for higher order terms By considering the ℓ ≥ 2
terms in eq. (7.7.2), show that there is a recursion relation between αℓ(x) and αℓ+1(x). Can you
use them to deduce the following two linearly independent JWKB solutions?

0 = −ϵ2ψ′′
±(x) + U(x)ψ±(x) (7.7.3)

ψ±(x) =
1

U(x)1/4
exp

[
∓1

ϵ

∫ x

dx′
√
U(x′)

] ∞∑
ℓ=0

ϵℓQ(ℓ|±)(x), (7.7.4)

Q(ℓ|±)(x) = ±
1

2

∫ x dx′

U(x′)1/4
d2

dx′2

(
Q(ℓ−1|±)(x

′)

U(x′)1/4

)
, Q(0|±)(x) ≡ 1 (7.7.5)

To lowest order

ψ±(x) =
1

U1/4(x)
exp

[
∓1

ϵ

∫ x

dx′
√
U [x′]

]
(1 +O[ϵ]) . (7.7.6)

Note: in these solutions, the
√
· and 4

√
· are positive roots.

JWKB Counts Derivatives In terms of the Q(n)s we see that the JWKB method is
really an approximation that works whenever each dimensionless derivative d/dx acting on some
power of U(x) yields a smaller quantity, i.e., roughly speaking d lnU(x)/dx ∼ ϵ≪ 1; this small
derivative approximation is related to the short wavelength approximation. Also notice from
the exponential exp[iS/ϵ] ∼ exp[±(i/ϵ)

∫ √
−U ] that the 1/ϵ indicates an integral (namely, an

inverse derivative). To sum:
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The ficticious parameter ϵ≪ 1 in the JWKB solution of −ϵ2ψ′′ +Uψ = 0 counts
the number of derivatives; whereas 1/ϵ is an integral. The JWKB approximation
works well whenever each additional dimensionless derivative acting on some power
of U yields a smaller and smaller quantity.

Breakdown and connection formulas There is an important aspect of JWKB that I
plan to discuss in detail in a future version of these lecture notes. From the 1/ 4

√
U(x) prefactor of

the solution in eq. (7.7.4), we see the approximation breaks down at x = x0 whenever U(x0) = 0.
The JWKB solutions on either side of x = x0 then need to be joined by matching onto a valid
solution in the region x ∼ x0. One common approach is to replace U with its first non-vanishing
derivative, U(x)→ ((x−x0)n/n!)U (n)(x0); if n = 1, the corresponding solutions to the 2nd order
ODE are Airy functions – see, for e.g., Sakurai’s Modern Quantum Mechanics for a discussion.
Another approach, which can be found in Matthews and Walker [15], is to complexify the JWKB
solutions, perform analytic continuation, and match them on the complex plane.
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8 Calculus of Variation

8.1 Fundamentals
64In single-variable calculus, the turning points {xi|i = 1, 2, 3, . . . } of a function f(x) of the real
variable x are characterized by the equations

f ′(xi) = 0. (8.1.1)

That is, the local extremum – minimum, maximum, or inflection point – occurs whenever the
first order variation df = f ′(x)dx is zero. In this section, we will study the calculus of variation,
where we will determine the equations obeyed by the function q(λ) of some real variable λ such
that the following action integral involving it and its first derivative

S[q] ≡
∫ τ

τ ′
L (λ, q(λ), q′(λ)) dλ (8.1.2)

is extremized, provided the boundary conditions

q(τ ′) = q1 and q(τ) = q2 (8.1.3)

are specified. To elaborate what it means for an action such as eq. (8.1.2) to be extremized
means, suppose we found such a trajectory q̄(λ). Then all the ‘nearby’ trajectories q(λ) =
q̄(λ)+δq(λ), for ‘small’ δq, would either yield larger (local minimum), smaller (local maximum),
or the same (local inflection) value for S.

Here, we will assume the Lagrangian L(λ, a, b) is a given differentiable function of the variables
λ, a, and b. This sort of ‘variational principle’ problems occur throughout physics; from the
Lagrangian-Hamiltonian formulation of classical mechanics and field theory, the principle of
least time in ray optics, geodesics in curved (space)time, etc.

Euler-Lagrange Equations in 1D The answer is, to extremize S in eq. (8.1.2), the
analogy to eq. (8.1.1) is the Euler-Lagrange equation

d

dλ

∂L

∂q′(λ)
− ∂L

∂q(λ)
= 0, (8.1.4)

– whose expanded form reads

∂2L

∂λ∂q′
+ q′′

∂2L

∂q′2
+ q′

∂2L

∂q∂q′
− ∂L

∂q
= 0 (8.1.5)

– subject to the boundary conditions in eq. (8.1.3). In equations (8.1.4) and (8.1.5) and the rest
of this Chapter, whenever the derivative ∂/∂λ is acting on the Lagrangian, it is carried out with
q and q′ held fixed. Likewise, whenever ∂/∂q′ is acting on L it is carried out with λ and q held
fixed; and ∂L/∂q is performed with λ and q′ held fixed.

Derivation of Euler-Lagrange eq. (8.1.4) If S is extremized by q(λ), that means upon a
slight perturbation δq(λ), where we replace in eq. (8.1.2)

q(λ)→ q(λ) + δq(λ) and (8.1.6)

64In writing this Chapter, I have consulted Arfken et al. [18], Byron and Fuller [14] and Morse and Feshbach
[13].
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q′(λ)→ q′(λ) +
dδq(λ)

dλ
, (8.1.7)

the first-order-variation of S – the portion of S linear in δq – must vanish. This is analogous to
the turning point condition in eq. (8.1.1), where the first order variation of f(x) is zero upon
replacing x → xi + dx. Note that all trajectories need to obey the boundary conditions in eq.
(8.1.3); this includes both q(λ) and the perturbed q(λ) + δq(λ). Therefore, we must have

δq(τ ′) = 0 = δq(τ). (8.1.8)

We are now ready to carry out the perturbation as a (formal) power series in q:

S[q + δq] =

∫ τ

τ ′
L (λ, q(λ) + δq(λ), q′(λ) + δq′(λ)) dλ (8.1.9)

= S[q] + δ1S[q] +O
(
δq2
)
, (8.1.10)

where

δ0S[q] ≡
∫ τ

τ ′
L (λ, q(λ), q′(λ)) dλ, (8.1.11)

δ1S[q] ≡
∫ τ

τ ′

(
∂L

∂q(λ)
δq(λ) +

∂L

∂q′(λ)

dδq(λ)

dλ

)
dλ. (8.1.12)

From this calculation, we see that the ∂L/∂q arises from varying q but holding the q′(λ) argument
of L fixed; whereas ∂L/∂q′ comes about due to the variation of q′(λ) but holding q argument of
L fixed. Next, we integrate-by-parts the derivative in dδq/dλ,

δ1S[q] =

∫ τ

τ ′
δq(λ)

(
∂L

∂q(λ)
− d

dλ

∂L

∂q′(λ)

)
dλ+

[
∂L

∂q′(λ)
δq(λ)

]λ=τ
λ=τ ′

. (8.1.13)

But the boundary terms vanish because eq. (8.1.8) reminds us the trajectory perturbation has
to be trivial there. At this juncture, we see that the first-order-variation is zero iff

δ1S[q] =

∫ τ

τ ′
δq(λ)

(
∂L

∂q(λ)
− d

dλ

∂L

∂q′(λ)

)
dλ = 0 (8.1.14)

for arbitrary small perturbations δq(τ ′ ≤ λ ≤ τ). Now, if the integral∫ τ

τ ′
δq(λ)F (λ)dλ (8.1.15)

vanishes for arbitrary small perturbations δq and if F were not exactly zero, then we may simply
choose δq to be a smoothed-out ‘top hat’ within some small λ−region where F is either strictly
positive or negative – assuming, of course, F itself is continuous. But then the integral would
necessarily produce a corresponding positive or negative number, contradicting the fact that it
has to be zero. This contradiction implies F = 0. In turn, it teaches us the factor multiplying
δq in δ1S must therefore be zero, leading us to the Euler-Lagrange equations (8.1.4).
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‘Constant-of-Motion’ Let us also note that

d

dλ

(
q′
∂L

∂q′
− L

)
= q′′

∂L

∂q′
+ q′2

∂2L

∂q′∂q
+ q′′q′

∂2L

∂q′2
+ q′

∂2L

∂q′∂λ

− q′∂L
∂q
− q′′ ∂L

∂q′
− ∂L

∂λ
(8.1.16)

= q′
(
q′
∂2L

∂q′∂q
+ q′′

∂2L

∂q′2
+

∂2L

∂q′∂λ
− ∂L

∂q

)
− ∂L

∂λ
(8.1.17)

Comparison with eq. (8.1.5) then teaches us, as long as q′ ̸= 0, the following is equivalent form
of the Euler-Lagrange equation (8.1.4):

d

dλ

(
q′
∂L

∂q′
− L

)
+
∂L

∂λ
= 0. (8.1.18)

In particular, notice if L depends on λ only through q and q′, then if q(λ) is a solution to eq.
(8.1.4) and q′ ̸= 0,

q′
∂L

∂q′
− L = E = constant. (8.1.19)

Second Order to First Order ODE The existence of a ‘constant-of-motion’ in eq.
(8.1.19) allows certain classes of second order ordinary differential equations (ODEs) to be
converted into first order ones. This, in turn, allows the solutions to be determined – albeit
sometimes only implicitly – in terms of integrals involving the expressions arising from the orig-
inal ODE. For example, consider:

q′′(λ) + U ′(q(λ)) = 0. (8.1.20)

One can readily verify that the λ−independent Lagrangian that gives rise to this equation is

L(q, q′) =
1

2
q′(λ)2 − U(q(λ)). (8.1.21)

If q(λ) is a solution then according to eq. (8.1.19) the corresponding constant E is

q′
∂L

∂q′
− L =

1

2
q′2 + U(q) = E (8.1.22)

F (q) ≡
∫

dq√
2
√
E − U(q)

= ±(λ− λ0). (8.1.23)

If the above integral can be performed, we would then have a function F (q) on the left hand
side; and if its inverse F−1 can be determined, we may then apply it on both sides to obtain
q(λ) = F−1(±(λ−λ0)). Moreover, the two constants E and λ0 are then determined by imposing
an appropriate pair of initial and/or boundary conditions.

As an example, suppose U(q) = (ω2/2)x2; i.e., we wish to solve

q′′ + ω2q = 0, (8.1.24)
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The solution is a linear combination of sin(ωq) and cos(ωq). But let us use the conserved quantity
E and integrate

F (q) =

∫
dq√

2
√
E − (ω2/2)q2

=
1

ω
arcsin

(
ωq√
2E

)
= ±(λ− λ0) (8.1.25)

q(λ) = ±
√
2E

ω
sin (ω(λ− λ0)) . (8.1.26)

Since E was arbitrary, the overall coefficient may be replaced with an arbitrary constant A:

q(λ) = A sin (ω(λ− λ0)) . (8.1.27)

Problem 8.1. Higher Derivatives Suppose we demand the action be extremized, but
now the Lagrangian depends on λ, as well as q, q′, . . . , q(n); i.e., from the zeroth through the
(n > 1)th derivative q(n) ≡ dnq/dλn. Show that the Euler-Lagrange equations now become

(−)n+1 dn

dλn
∂L

∂q(n)
+ (−)n dn−1

dλn−1

∂L

∂q(n−1)
+ · · · − d2

dλ2
∂L

∂q(2)
+

d

dλ

∂L

∂q(1)
=
∂L

∂q
. (8.1.28)

What are the appropriate boundary conditions? (Hint: You should find, 2n of them are needed.)
Explain why the highest λ−derivative that occurs in eq. (8.1.28) is q(2n). In fact, you should be
able to argue that eq. (8.1.28) is linear in q(2n).

Euler-Lagrange Equations in Arbitary Dimensions It is not difficult to generalize
the preceding discussion to arbitrary dimensions D ≥ 1. Suppose q⃗(τ ′ ≤ λ ≤ τ) joins y⃗′ to y⃗; and
suppose we have a Lagrangian built out of q⃗ and its first derivative q⃗′(λ). Then if q⃗ extremizes
the action

S =

∫ τ

τ ′
L
(
λ, q⃗, ˙⃗q

)
dλ, (8.1.29)

q⃗(λ = τ ′) = y⃗′, q⃗(λ = τ) = y⃗; (8.1.30)

with the end points y⃗′ and y⃗ held fixed, the trajectory itself obeys the D−dimensional Euler-
Lagrange equations

d

dλ

∂L

∂q̇i
=
∂L

∂qi
, (8.1.31)

q̈j
∂2L

∂q̇j∂q̇i
+ q̇j

∂2L

∂qj∂q̇i
+

∂L

∂λ∂q̇i
=
∂L

∂qi
; (8.1.32)

where q̇i ≡ dqi/dλ; and ∂L/∂ ˙⃗q is carried out with q⃗ held fixed while ˙⃗q is held fixed in ∂L/∂q⃗.
Overall Constants Don’t Matter Notice: both the 1D (8.1.4) and multi-dimensional

(8.1.31) Euler-Lagrange equations are linear in the Lagrangian L. Hence, for arbitrary constant
C ̸= 0, both the re-scaled Lagrangian C ·L and original L would yield the same equations. As far
as the Euler-Lagrange equations as concerned, we may therefore drop all overall multiplicative
constants in L.

Proof As with the 1D case, we consider perturbations of the path

q⃗(λ)→ q⃗ + δq⃗, (8.1.33)
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˙⃗q(λ)→ ˙⃗q +
d

dλ
δq⃗, (8.1.34)

but since the end points are held fixed, we shall demand the perturbations vanish at the end
points

δq⃗(τ ′) = 0⃗ = δq⃗(τ). (8.1.35)

We now examine the ensuing perturbations of the action. Denoting δn≥1S to be the part of
S[q⃗ + δq⃗] containing precisely n powers of δq⃗:

S[q⃗]→ S[q⃗ + δq⃗] = S[q⃗] + δ1S[q⃗] + δ2S[q⃗] + . . . (8.1.36)

δ1S =

∫ τ

τ ′

(
∂L

∂qi
δqi +

∂L

∂q̇i
dδqi

dλ

)
dλ (8.1.37)

=

∫ τ

τ ′
δqi
(
∂L

∂qi
− d

dλ

∂L

∂q̇i
+

d

dλ

{
∂L

∂q̇i
δqi(λ)

})
dλ (8.1.38)

=

∫ τ

τ ′
δqi
(
∂L

∂qi
− d

dλ

∂L

∂q̇i

)
dλ+

[
∂L

∂q̇i
δqi(λ)

]λ=τ
λ=τ ′

. (8.1.39)

There is an implicit sum over i = 1, 2, . . . , D; i.e., there are D independent variations from each
component of q⃗. By eq. (8.1.35) the last term of the last line is zero. Since each component
is independent from the rest, we may recall the above 1D argument – that

∫ τ
τ ′
δq · Fdλ = 0 for

arbitrary δq implies F = 0 – to infer eq. (8.1.31) has been recovered, if we demand δ1S = 0, the
action is stationary under first order in perturbations.

Min, Max or Inflection Point? Both the 1D (8.1.4) and multi-dimensional (8.1.31)
Euler-Lagrange equations are necessary and sufficient conditions for an extremum: q⃗ extremizes
its action S if and only if its corresponding eq. (8.1.31) holds. However, the solution itself does
not inform us if it provides a (local) minimum, maximum or inflection point. To answer this,
we will compute below the second order corrections to the action δ2S induced by perturbations
about the solution.

Second Order ODEs Notice, from the expanded form in eq. (8.1.31), the Euler-Lagrange
equations are second order ones because the L itself depends only on q⃗ and its first derivative.
In fact, since the only dependence on the second derivative q̈ in eq. (8.1.31) appears in its first
term, we see it must be linear in q̈. From the theory of ODEs, we know that a unique solution
exists once two distinct conditions are specified. This is consistent with the pair of boundary
conditions q⃗(τ ′) and q⃗(τ) needed to render the boundary terms zero – recall equations (8.1.35)
and (8.1.39) – so as to ensure the variation of S is zero at first order.

Perturbation Theory Physical applications often require the use of perturbation theory,
because exact closed-form solutions are hard to come by. As we will discover below, much of
dynamics is encoded via the action principle we are exploring here. To this end, let us record
the following useful observation, a corollary of sorts of equations (8.1.31) employed in (8.1.39):

If an action is perturbed away from a solution q⃗(λ) of its corresponding Euler-
Lagrange equations, namely S[q⃗]→ S[q⃗ + δq⃗] but δq⃗ is now arbitrary and no longer
needs to vanish at the end points; then – up to additive boundary terms – its first
order perturbation vanishes.
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Problem 8.2. When L is λ-independent. An important point to remember:

If the Lagrangian L(q⃗(λ), ˙⃗q(λ)) does not depend on λ explicitly, the solutions to
its Euler-Lagrange equations always admit at least one constant E.

Show that it is given by

E = q̇i · ∂L
∂q̇i
− L. (8.1.40)

This is of course the multi-dimensional generalization of eq. (8.1.19). Below, we shall see that
the right hand side of eq. (8.1.40) is the Hamiltonian. In many cases, it is simply the conserved
energy.

Problem 8.3. Cyclic (or, Ignorable) Coordinate When the Lagrangian does not de-
pend explicitly on a coordinate qk (for some fixed 1 ≤ k ≤ D) we say it is cyclic or ignorable.
Explain why, if L is independent of qk, then

pk ≡
∂L

∂q̇k
(8.1.41)

is a constant-of-motion.

Is the Lagrangian unique? Before moving on to tackle some concrete examples, we
inquire: Is the Lagrangian L(λ, q⃗, ˙⃗q) unique? Such a question arises in physics because, in many
situations – including the study of the fundamental interactions of Nature – the starting point of
any theoretical investigation begins with the specification of the Lagrangian, oftentimes guided
by symmetry requirements. The (non-)uniqueness of the Lagrangian is therefore tied to the
(non-)uniqueness of our theoretical starting point.

More specifically, suppose we have two Lagrangians, L1(λ, q⃗, ˙⃗q) and L2(λ, q⃗, ˙⃗q), and they yield
the same Euler-Lagrange equations; namely,

d

dλ

∂L1

∂q̇i
− ∂L1

∂qi
=

d

dλ

∂L2

∂q̇i
− ∂L2

∂qi
. (8.1.42)

How are L1 and L2 related?65 We will now show that, for the 1D case, two Lagrangians that
depend only on λ, q(λ) and q′(λ) (i.e., no higher derivatives) that give the same Euler-Lagrange
equations, can only differ up to an additive total time derivative:

L1(λ, q, q
′) = L2(λ, q, q

′) +
dF (λ, q)

dλ
. (8.1.43)

(The F cannot depend on q′ or higher derivatives.) The answer for the D−dimensional case is
similar, but we leave it to the reader to prove in Problem (9.76). This result also teaches us, the

65The reader may rightly object that eq. (8.1.42) is too strict of a requirement. For e.g., since both sides are
actually equal to zero, they can each be multiplied by a different non-zero factor and the resulting equations-of-
motion are still the same; i.e., we may only require (d/dλ)(∂L1/∂q̇

i)−∂L1/∂q
i = A{(d/dλ)(∂L2/∂q̇

i)−∂L2/∂q
i},

for A(λ, q⃗, ˙⃗q, ¨⃗q) ̸= 0. We leave this more general case for the reader’s analysis.
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actions constructed from L1 and L2 are extremized by the same solutions; and they differ only
by boundary terms, which are assumed to be fixed:∫ τ

τ ′
L1(λ, q, q

′)dλ =

∫ τ

τ ′
L2(λ, q, q

′)dλ+ F (τ, q(τ))− F (τ ′, q(τ ′)) . (8.1.44)

The key to this proof of the (near-)uniqueness of the Lagrangian is the Poincaré Lemma, which
we shall state for the 2 variable case here:

A two component object of two variables Vi(x, y) = (Vx, Vy) (i.e., the i refers to
either the x or y component) is a pure gradient – namely, Vi(x, y) = ∂iφ(x, y) – if
and only if ∂xVy − ∂yVx = 0.

We write L1(λ, q, q
′) = L2(λ, q, q

′)+∆L(λ, q, q′), where ∆L is defined to be the difference between
L1 and L2. Then, noting that the Euler-Lagrange operator in eq. (8.1.4) is linear, we see when
it acts on ∆L, the result must be identically zero. Using its expanded version in eq. (8.1.5),

q′′
∂2∆L

∂q′2
+ q′

∂2∆L

∂q∂q′
+
∂2∆L

∂λ∂q′
− ∂∆L

∂q
= 0. (8.1.45)

Note that this cannot depend on some specific form of q, q′, and q′′. It is identically zero due
to the form of ∆L. Since ∆L depends on q, q′ but not on q′′ or higher derivatives, the only
occurrence of the second derivative is thus in the first term. ∆L itself must in fact be at most
linear in q′; namely,

∂2∆L

∂q′2
= 0. (8.1.46)

Now we apply the Euler-Lagrange operator to

∆L = V1(λ, q) + q′V2(λ, q). (8.1.47)

Plugging this back into eq. (8.1.45) hands us

q′
∂V2
∂q

+
∂V2
∂λ
− q′∂V2

∂q
− ∂V1

∂q
= 0 (8.1.48)

∂V2
∂λ
− ∂V1

∂q
= 0. (8.1.49)

If we identify (x1, x2) ≡ (λ, q), we may re-write the second line in the form occurring in the
Poincaré Lemma; i.e.,

∂1V2 − ∂2V1 = 0. (8.1.50)

At this point, the Poincaré Lemma itself tells us (V1, V2) is a gradient:

(V1, V2) = (∂λF (λ, q), ∂qF (λ, q)) , (8.1.51)

for some scalar F that depends only on λ and q (and not on higher derivatives of q). According
to eq. (8.1.47), ∆L itself is now

∆L = ∂λF + q′∂qF =
dF (λ, q)

dλ
. (8.1.52)

In other words, our two starting Lagrangians L1 and L2 differs at most by a total time derivative.
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Problem 8.4. Verify explicitly that the Euler-Lagrange equations applied to dF (λ, q(λ))/dλ
is indeed zero: (

d

dλ

∂

∂q′
− ∂

∂q

)
dF (λ, q(λ))

dλ
= 0. (8.1.53)

This provides an explicit check that both L1 and L2 in eq. (8.1.43) do indeed produce the same
differential equations.

Problem 8.5. One of the key assumptions we have made is that the Lagrangian itself
depends on (the independent) variable λ; as well as (the dependent) variable q(λ) and its first
derivative q′(λ) – but not on its higher derivatives q′′(λ), q′′′(λ), etc. Suppose we allow L to
depend also on the second derivative; namely, L(λ, q, q′, q′′); but still require that its Euler-
Lagrange equations in eq. (8.1.28) yield second order differential equations. Argue that L can
only be linear in q′′:

L(λ, q, q′, q′′) = V1(λ, q, q
′) + q′′ · V2(λ, q, q′). (8.1.54)

How many boundary conditions would you need to ensure its action
∫ τ
τ ′
Ldλ is extremized?

Comment on its consistency with the second order nature of the differential equation. Hints:
Vary the part of the action that depends on q′′ · L1. You should find that δq(τ ′) = 0 = δq(τ) in
eq. (8.1.8) is not sufficient to render the boundary terms zero.

This problem teaches us, while it is (formally) possible to obtain second order equations
from higher order Lagrangians, the associated variational principle requires too many bound-
ary conditions – i.e., it yields an over-determined set of ODEs – and is therefore generically
inconsistent.

Example: Shortest Distance in 2D The infinitesimal distance on the (x, y) plane is
dℓ =

√
dx2 + dy2 =

√
1 + (dy/dx)2dx. Assuming y(x) is not multi-valued – i.e., assuming the

path is not too curvy so that there is more than one y value for a given x – then we may write
the total length spanned by y(x1 ≤ x ≤ x2) as

ℓ =

∫ x1

x0

√
1 + y′(x)2dx. (8.1.55)

Eq. (8.1.4) says

d

dx

∂
√
1 + y′(x)2

∂y′(x)
=
∂
√
1 + y′(x)2

∂y
, (8.1.56)

d

dx

y′(x)√
1 + y′(x)2

= 0; (8.1.57)

which tells us y′(x)/
√
1 + y′(x)2 is some x−independent constant C. Hence, the slope y′(x)

can be solved in terms of some other constant related to C, which is exactly the condition of a
straight line. If the end points are (x0, y0) and (x1, y1), the unique solution is

y(x) = y0 +
y1 − y0
x1 − x0

(x− x0). (8.1.58)
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An alternate manner to derive the same result is to appeal to the constancy of eq. (8.1.19).

y′
∂
√

1 + y′2

∂y′
−
√
1 + y′2 = −C (8.1.59)

1√
1 + y′2

= C (8.1.60)

Again, we see that y′(x) must be some constant related to C. Note that one may always make
a line longer by adding more wiggles in between, for instance; hence, there cannot be a longest
line. This straight line solution must therefore be a minimum length one.

Problem 8.6. Straight line in infinite flat D−space It is possible to remove this
restrictive assumption that y(x) cannot be multi-valued by introducing an auxiliary parameter
λ such that z⃗(λ) parametrizes some path in infinite (flat) space. In fact, what follows works for
any dimension D ≥ 2. Show that the shortest path between the fixed points y⃗0 and y⃗1 is

q⃗(0 ≤ λ ≤ 1) = y⃗0 + λ (y⃗1 − y⃗0) , (8.1.61)

by extremizing the length integral

ℓ =

∫ y⃗2

y⃗1

√
dq⃗ · dq⃗ =

∫ 1

0

√
˙⃗q2dλ (8.1.62)

using the Euler-Lagrange equations (8.1.31). Can you explain why this extremum is a minimum?
Hint: ˙⃗q2 is strictly non-negative.

Example: Ray Optics and Fermat’s Principle of Least Time In a medium, we
may postulate that the effective speed of light now depends on its location,

|dx⃗|
dt

=
c

n(x⃗)
, (8.1.63)

where c is the speed of light in vacuum and n > 1 is the refractive index; namely, the speed of
light in the medium c/n is slower than that in vacuum.

Fermat’s principle states that light rays follow paths that take the least time. In other words,
we need to minimize

c

∫
dt ≡ c ·∆t =

∫ z⃗

z⃗′
n(x⃗)|dx⃗| (8.1.64)

=

∫ τ

τ ′
n (x⃗(λ))

√
˙⃗x(λ)2dλ. (8.1.65)

The Euler-Lagrange equations are

1√
˙⃗x2

d

dλ

(
n(x⃗)√

˙⃗x2

dxi

dλ

)
=
∂n(x⃗)

∂xi
. (8.1.66)
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If we exploit the infinitesimal length as our parameter dℓ =
√

˙⃗xdλ,

d

dℓ

(
n (x⃗)

dxi

dℓ

)
=
∂n (x⃗)

∂xi
. (8.1.67)

This ray equation has an analog even in curved (static) spacetimes – see Problem (11.30) and
its eq. (11.3.117).

Is a minimum? An example We now turn to an example of a variational problem
where more than one possible solution exists, and therefore more analysis is necessary to figure
out which one is the true minimum. Consider two circular loops of radius r0 lying flat on the
(x, y) plane in 3D (flat) space, where both are centered at (0, 0). The z−coordinate of one of
them is +z0 and the other is −z0. That is, we have the two rings described by

x⃗± = r0 (cosϕ, sinϕ,±z0/r0) , 0 ≤ ϕ < 2π. (8.1.68)

Now, we ask:

If an infinitesimally thin 2D membrane joins the two rings – Arfken et al [18] calls
it a soap bubble – what is the shape that yields the minimum area? And, what is
this minimum area?

By stretching this 2D membrane, we see that there is no upper limit to how large its area can
be. Hence, no solution can be the global maximum. Also, since there cannot be a zero area
solution, there has to be a global minimum.

Next, by axial symmetry, we may view the area spanned by this membrane as the surface
of revolution gotten by rotating a curve on the (0, y, z) plane joining the two points (0, r0,±z0).
Thus, the area is given by

A = 2π

∫
y
√

dy2 + dz2

= 2π

∫ z0

−z0
y(z)

√
1 + y′(z)2dz, y(±z0) = r0. (8.1.69)

The (re-scaled) Lagrange here is L(y, y′) = y(z)
√
1 + y′(z)2, and its associated Euler-Lagrange

equation is

d

dz

∂

∂y′

(
y
√

1 + y′2
)
=

∂

∂y

(
y
√
1 + y′2

)
, (8.1.70)

1√
1 + y′2

d

dz

(
y · y′√
1 + y′2

)
=

1√
1 + y′2

d

dz

(
1

2

1√
1 + y′2

dy2

dz

)
= 1, (8.1.71)

d2y2

dℓ2
= 2; (8.1.72)

where we have defined the infinitesimal arc length dℓ via the relation

dℓ =
√

1 + y′2dz. (8.1.73)
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The general solution to d2y2/dℓ2 = 2 is

y(ℓ) =
√
C0 + C1ℓ+ ℓ2 (8.1.74)

for constants C0 and C1. If the total arc length is ℓ0, we parametrize −ℓ0/2 ≤ ℓ ≤ ℓ0/2 (so that∫ +ℓ0/2

−ℓ0/2 dℓ = ℓ0), then y(±ℓ0/2) = r0 and
√
C0 ± C1ℓ0 + ℓ20 = r0. The solution to our 2 ring setup

in terms of ℓ is therefore

y(−ℓ0/2 ≤ ℓ ≤ ℓ0/2) =
√
r20 − (ℓ0/2)2 + ℓ2. (8.1.75)

The area may, in turn, be obtained as a function of the total arc length

A = 2π

∫ ℓ0/2

−ℓ0/2
ydℓ (8.1.76)

= π

[
ℓ
√
r20 − (ℓ0/2)2 + ℓ2 + (r20 − (ℓ0/2)

2) ln

[
ℓ+

√
r20 − (ℓ0/2)2 + ℓ2

]]ℓ=+ℓ0/2

ℓ=−ℓ0/2
(8.1.77)

= π

(
r0 · ℓ0 + (r20 − (ℓ0/2)

2) ln

[
r0 + ℓ0/2

r0 − ℓ0/2

])
. (8.1.78)

Next, we turn to solving for z. From eq. (8.1.73),

dℓ

dz
=

√
1 +

(
dy

dℓ

dℓ

dz

)2

, (8.1.79)

dz

dℓ
=

√
r20 − (ℓ0/2)2

r20 − (ℓ0/2)2 + ℓ2
, (8.1.80)

z(ℓ) =
1

2

√
r20 − (ℓ0/2)2 ln

(√
r20 − (ℓ0/2)2 + ℓ2 + ℓ√
r20 − (ℓ0/2)2 + ℓ2 − ℓ

)
+ C2. (8.1.81)

For z to be real, we need

r0 ≥ ℓ0/2. (8.1.82)

The constant C2 is determined via the boundary condition z(±ℓ0/2) = ±z0.

±z0 = ±
1

2

√
r20 − (ℓ0/2)2 ln

(
r0 + ℓ0/2

r0 − ℓ0/2

)
+ C2 (8.1.83)

Thus, C2 = 0 and we arrive at the following relation between the total arc length and the two
parameters (r0, z0) of the setup.

z(−ℓ0/2 ≤ ℓ ≤ +ℓ0/2) =
1

2

√
r20 − (ℓ0/2)2 ln

(√
r20 − (ℓ0/2)2 + ℓ2 + ℓ√
r20 − (ℓ0/2)2 + ℓ2 − ℓ

)
, (8.1.84)

z0 =
√
r20 − (ℓ0/2)2arctanh

(
ℓ0
2r0

)
; (8.1.85)
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where we have recognized, whenever 0 ≤ z ≤ 1, (1/2) ln[(1 + z)/(1− z)] = arctanh(z).
If we set ξ0 ≡ z0/r0 and λ0 ≡ ℓ0/(2r0), eq. (8.1.85) is transformed into

ξ0 =
√

1− λ20 · arctanh(λ0). (8.1.86)

The maximum of eq. (8.1.86) may be obtained numerically; it occurs at λ0 ≈ 0.833556; and the
maximum itself is

max

(√
1− λ20 · arctanh(λ0)

)
≈ 0.662743 ≥ ξ0 =

z0
r0
. (8.1.87)

Furthermore, whenever z0/r0 satisfies this bound, there are two solutions for λ0 at a given ξ0.
To compare them, we first re-write eq. (8.1.78) as

A(λ0) = 2πr20
(
λ0 +

(
1− λ20

)
arctanh(λ0)

)
. (8.1.88)

This area function A(λ0) increases from 0 and maxes out when

λ0 · arctanh(λ0) = 1, (8.1.89)

which is (as can be checked readily) the same condition for maximum z(λ0) – namely, λ0 ≈
0.833556. This in turn implies

maxA = A(λ0 = 0.833556 . . . ) ≈ (1.19968 . . . )(2πr20). (8.1.90)

After maxing out, A(λ0) then plunges back to zero as λ0 → 1.
At this juncture, let us record the existence of the discontinous Goldschmidt solution: two

flat circular discs of combined area 2(πr20), one attached to each of the radius r0 rings at z = ±z0.
(Why is this a solution? Such solutions solve the homogeneous Laplace equation on the (x, y)
plane – see, e.g., the discussion enveloping eq. (9.5.26) below.) Now, the constant A = 2πr20
line intersects the A(λ0) graph at λ0 ≈ 0.584376 and at λ0 = 1. The area of the 2D membrane
A(0.584376 · · · ≤ λ0 ≤ 1) is larger than the 2πr20 whereas A(0 ≤ λ0 ≤ 0.584376 . . . ) is smaller
than 2πr20. Hence, the minimum area for 0 ≤ λ0 ≤ 0.584376 . . . is given by A(λ0); whereas for
0.584376 · · · ≤ λ0 ≤ 1 it is given by the Goldschmidt solution.

Finally, if we re-write eq. (8.1.75) as

ℓ = sgn(ℓ) ·
∣∣y2 + (ℓ0/2)

2 − r20
∣∣ 12 , (8.1.91)

this converts eq. (8.1.84) into

tanh

(
z√

r20 − (ℓ0/2)2

)
=

sgn(ℓ) · |y2 + (ℓ0/2)
2 − r20|

1
2

y
, (8.1.92)

y(z) =
√
r20 − (ℓ0/2)2 cosh

(
z√

r20 − (ℓ0/2)2

)
. (8.1.93)

To summarize: Eq. (8.1.93) provides the curve y(z) on the (0, y, z) plane whose surface of
revolution around the z−axis produces a minimal area surface. For a fixed separation 2z0
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between the two rings at the two ends of the membrane, there are actually two solutions; it is
the one with shorter total arc length ℓ0 that has the minimal area, at least for ℓ0 > 0 up to
ℓ0/(2r0) = λ0 = 0.564376 . . . , where A(λ0) = 2πr20 and z(λ0 = 0.564376 . . . )/r0 = 0.527697 . . . .
Beyond this cross-over value of λ0, the minimal area surface is given by the 2 disjoint circular
discs fixed on the rings, with area given by 2πr20.

Problem 8.7. Catenoid from ‘Constant-of-Motion’ Use the ‘constant-of-motion’ given
in eq. (8.1.19) to directly integrate the dy/dz equations arising from the Lagrangian L =
y
√

1 + y′(z)2. Upon invoking parity (z ↔ −z) arguments, you should find, for constant χ, the
solution

y(z) = χ cosh(z/χ). (8.1.94)

This route yields the shape of the minimal surface more quickly, though you still have to push
the analysis further to understand why χ =

√
r20 − (ℓ0/2)2; why there are two solutions for a

given z0; etc.

Second Variation and Normal Modes Is a given solution to the Euler-Lagrange
equations (8.1.31) a (locally) minimum, maximum or inflection ‘point’? To study this question
we now compute the second order perturbations to the action in eq. (8.1.36).

δ2S =

∫ τ

τ ′

(
1

2

∂2L

∂qi∂qj
δqiδqj +

1

2

∂2L

∂q̇i∂q̇j
dδqi

dλ

dδqj

dλ
+

∂2L

∂qi∂q̇j
δqi

dδqj

dλ

)
dλ (8.1.95)

=

∫ τ

τ ′
δqi · δ2Lij · δqjdλ. (8.1.96)

In the second line, we have integrated-by-parts the derivative acting on the dδqi/dλ term in the
middle term of the first line, using the conditions in eq. (8.1.35) to drop the boundary terms.
The δ2Lij is therefore an operator acting on δqj:

δ2Lijδq
j ≡ 1

2

∂2L

∂qi∂qj
δqj − 1

2

d

dλ

(
∂2L

∂q̇i∂q̇j
d

dλ
δqj
)
+

∂2L

∂qi∂q̇j
d

dλ
δqj. (8.1.97)

We may generalize the second order perturbation of the action to a matrix element of δ2Lij.
Let the relevant vector space be that of all deviation trajectories {δq⃗(τ ′ ≤ λ ≤ τ)} obeying the
Dirichlet boundary conditions in eq. (8.1.35).

〈
δai |δ2Lij| δbj

〉
≡
∫ τ

τ ′
δai · δ2Lij · δbjdλ (8.1.98)

The second order perturbed action itself now reads

δ2S =
〈
δqi |δ2Lij| δqj

〉
. (8.1.99)

Let us examine its adjoint. Since everything here is real by assumption,〈
δai |δ2Lij| δbj

〉
= ⟨δai |δ2Lij| δbj⟩ =

〈
δbj
∣∣∣(δ2Lij)†∣∣∣ δai〉 (8.1.100)
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=

∫ τ

τ ′
δai
{
1

2

∂2L

∂qi∂qj
δbj − 1

2

d

dλ

(
∂2L

∂q̇i∂q̇j
d

dλ
δbj
)
+

∂2L

∂qi∂q̇j
d

dλ
δbj
}
dλ (8.1.101)

=

∫ τ

τ ′
δbj (δ2Lij)

† δaidλ ≡
∫ τ

τ ′
δbjδ2L

†
jiδa

idλ; (8.1.102)

where

δ2L
†
jiδa

i ≡ 1

2

∂2L

∂qi∂qj
δai − 1

2

d

dλ

(
∂2L

∂q̇i∂q̇j
d

dλ
δai
)
− d

dλ

(
∂2L

∂qi∂q̇j
δai
)
. (8.1.103)

Whenever ∂2L/(∂qi∂q̇j) = 0 If the ∂2L/(∂qi∂q̇j) term were in fact absent, we see that δ2Lij
is in fact Hermitian. We may then proceed to expand δqi in its complete set of eigenvectors
{êiξ}, which obeys

δ2Lij(λ)ê
j
ξ(λ) = ξ · êiξ(λ), (8.1.104)∑

ξ

êiξ(λ
′)∗êjξ(λ) =

∑
ξ

êiξ(λ
′)êjξ(λ)

∗ = δijδ(λ′ − λ), (8.1.105)∫ τ

τ ′
δij ê

i
ξ′(λ)

∗êjξ(λ)dλ = δξ
′

ξ. (8.1.106)

The expansion itself proceeds as

δqi(λ) =
∑
ξ

êiξ(λ)

∫ τ

τ ′
dλ′
(
êjξ(λ

′)∗δqj(λ′)
)

(8.1.107)

≡
∑
ξ

êiξ(λ) ⟨ξ| δq⟩ (8.1.108)

δ2Lij(λ)δq
j(λ) =

∑
ξ

ξ · êiξ(λ) ⟨ξ| δq⟩ ; (8.1.109)

leading us to deduce,

δ2S =

∫ τ

τ ′
δqiδ2Lijδq

jdλ (8.1.110)

=
∑
ξ′,ξ

ξ

∫ τ

τ ′
êiξ′(λ)

∗êiξ(λ)dλ · ⟨ξ′| δq⟩ ⟨ξ| δq⟩ (8.1.111)

=
∑
ξ

ξ · | ⟨ξ| δq⟩ |2. (8.1.112)

Therefore, if all eigenvalues {ξ} of δ2Lij are positive, we have a (local) minimum. And, if all
eigenvalues of δ2Lij are negative, we have a (local) maximum.

As a simple example, we consider the case of the 2D straight line, obtained from the La-
grangian L =

√
1 + y′(x)2. Because it has dependence only on y′ and not on y, we may readily

compute

δ2L · δy = −1

2

d

dx

(
∂2

∂y′2

(√
1 + y′2

) d

dx
δy(x)

)
(8.1.113)
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= − 1

2(1 + y′2)3/2
d2

dx2
δy(x). (8.1.114)

For a straight line, y′(x) and hence the factor multiplying (d/dx)2 is constant. If the end points
are (x0, y0) and (x1, y1), we require

δy(x0) = 0 = δy(x1). (8.1.115)

Then, the (un-normalized) eigenfunctions are

δyn(x) = sin

(
nπ

x1 − x0
(x− x0)

)
. (8.1.116)

for n = 1, 2, 3, . . . ; and the corresponding eigenvalues can be read off the equation

δ2L · δyn =
1

2(1 + y′2)3/2

(
nπ

x1 − x0

)2

δyn. (8.1.117)

As expected, all of them are positive because the straight line is the minimum length line. On
the other hand, in this example, one may simply expand the action about the solution up second
order in the deviation δy without integration-by-parts. (Remember – see eq. ‘Observation’ right
after eq. (8.1.39) – the first order perturbation off the solution always vanishes, as long as δy is
zero at the end points.) One would find

δ2S =
1

2(1 + y′2)3/2

∫ x1

x0

(δy′(x))2dx, (8.1.118)

a manifestly positive quantity; without the need to compute eigenvalues of differential operators.

Problem 8.8. Simple Harmonic Oscillator To study a more nuanced example, we turn
to the simple harmonic oscillator (SHO), whose Lagrangian is given by

L
(
q⃗, ˙⃗q
)
≡ 1

2
˙⃗q(λ)2 − Ω2

2
q⃗(λ)2. (8.1.119)

Show that extremizing S ≡
∫ τ
τ ′
Ldλ leads to the SHO equation(

d2

dλ2
+ Ω2

)
q⃗(λ) = 0. (8.1.120)

Explain why δ2Lij in eq. (8.1.97) is Hermitian in this case, and demonstrate it is given by

δ2Lij · δqj = −
δij

2

(
d2

dλ2
+ Ω2

)
δqj(λ). (8.1.121)

For fixed initial and final times τ ′ and τ , explain why the eigenvalues are

λn =
Ω2

2

((
nπ

Ω(τ − τ ′)

)2

− 1

)
, (8.1.122)

where n = 1, 2, 3, . . . . Remember, for the SHO, π/Ω is the half period. Hence, whenever the
elapsed time τ − τ ′ is shorter than the half-period, then nπ/(Ω(τ − τ ′)) > 1 and all eigenvalues
are positive – the SHO solution in eq. (6.5.63) (with xh → q⃗, t → λ, xi → x⃗′ and xf → x⃗) in
fact minimizes its action. However, once τ − τ ′ is greater than π/Ω, there will necessarily be
⌊π/(Ω(τ − τ ′))⌋ ≥ 1 negative eigenvalues: the solution becomes an inflection point.
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Problem 8.9. Damped Simple Harmonic Oscillator (SHO): Version 1 Extremize
the following action, for a(t) ̸= 0.

S ≡
∫ τ

τ ′

a(t)3

2

(
˙⃗q(t)2 − Ω2q⃗(t)2

)
dt (8.1.123)

and show that it leads to ‘time-dependent’ damped SHO, as long as a(t) ̸= 0:(
d2

dt2
+ 3

ȧ(t)

a(t)

d

dt
+ Ω2

)
q⃗(t) = 0. (8.1.124)

An analogous scenario arises in cosmological applications. What does a(t) need to be in order
to recover time-independent friction? That is, solve 3(ȧ/a) = 2γ, for constant γ > 0. Hint:
a(t) = a0 exp((2/3)γ · t).

Problem 8.10. General Variation of Action Show that, under a simultaneous variation
of both the path

q⃗ → q⃗ + δq⃗ (8.1.125)

as well as the initial and final times

τ → τ + dτ, (8.1.126)

τ ′ → τ ′ + dτ ′; (8.1.127)

the general action S ≡
∫ τ
τ ′
L(s, q⃗, ˙⃗q)ds transforms as

S → S + δ1S (8.1.128)

δ1S = L(τ, q⃗(τ), ˙⃗q(τ))dτ − L(τ ′, q⃗(τ ′), ˙⃗q(τ ′))dτ ′ +
(
∂L

∂q̇i
δqi
)
s=τ

−
(
∂L

∂q̇i
δqi
)
s=τ ′

+

∫ τ

τ ′
δqi(s)

(
∂L

∂qi
− d

ds

∂L

∂q̇i

)
ds. (8.1.129)

If q⃗ actually satisfies the Euler-Lagrange equations, then this first order variation of S may be
viewed as

δ1S = ∂τSdτ + ∂τ ′Sdτ
′ +

∂S

∂qi(τ)
δqi(τ) +

∂S

∂qi(τ ′)
δqi(τ ′). (8.1.130)

The derivatives with respect to qi(τ) and qi(τ ′) are to be viewed as derivatives with respect to,
respectively, the final and initial positions.

8.2 Dealing With Constraints

Multi-Variable Calculus Review Suppose we wish to find the extremum of the function
f(x⃗), where x⃗ here is simply a shorthand for D ≥ 1 variables such that ∂if(x⃗) denotes the
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derivative with respect to ith variable xi. Suppose we also wish to simultaneously satisfy N ≤
D − 1 constraints of the following form

gI(x⃗) = 0, I ∈ {1, 2, . . . , N}. (8.2.1)

(For example, g(x⃗) = x⃗2−R2 would describe a sphere of radius R.) Then the desired extremum
{x⃗ℓ|ℓ = 1, 2, . . . } of f(x⃗) subject to the constraints in eq. (8.2.1) is provided by the following.
First introduce the function

F (x⃗) = f(x⃗)− λIgI(x⃗), (8.2.2)

where the Lagrange multipliers {λI|I = 1, 2, . . . , N} are constants; and an implicit sum over I
is implied. (Notice, when x⃗ satisfies eq. (8.2.1), F (x⃗) = f(x⃗).) Then, the extremum must
simultaneously satisfy the N equations encoded by (8.2.1) and render the D first derivatives of
F zero:

gI(x⃗ℓ) = 0 = ∂iF (x⃗ℓ). (8.2.3)

The N +D equations in eq. (8.2.3) will yield solutions for not only the turning points {x⃗ℓ|ℓ =
1, 2, . . . } – there could be more than one – but also the N Lagrange multipliers {λI}.

Note thatN < D, otherwise eq. (8.2.5) would form an over-determined system: for e.g., in 3D
space, one constraint defines a 2D surface; two constraints would defined a 1D line (intersection
of two 2D surfaces); and three constraints would yield at most a single point; beyond that, there
will generically be no solution unless some of the constraints are actually degenerate.

Variational Principle with ‘Local’ Constraints A similar strategy applies to the
calculus of variation in the presence of constraints. Suppose the equations implied by some
Lagrangian L(λ, q⃗(λ), ˙⃗q(λ)) – together with the usual boundary conditions

q⃗(τ) = y⃗ and q⃗(τ ′) = y⃗′ (8.2.4)

– are additionally subject to the N ‘local-in-λ’ constraint(s)

GI

(
λ, q⃗, ˙⃗q

)
= 0, I = 1, 2, 3, . . . , N. (8.2.5)

Then, like its multi-variable counterpart, we introduce N λ−dependent Lagrange multipliers
{ΛI(λ)|I = 1, 2, 3, . . . , N} and proceed to extremize the action

S =

∫ τ

τ ′

(
L
(
λ, q⃗(λ), ˙⃗q(λ)

)
− ΛI(λ)GI

(
λ, q⃗(λ), ˙⃗q(λ)

))
dλ. (8.2.6)

That is, we simply need to solve

d

dλ

∂LM

∂q̇i
=
∂LM

∂qi
, (8.2.7)

LM ≡ L− ΛIGI; (8.2.8)

for both {q⃗(λ)} – which has to obey eq. (8.1.35) as well as the constraint(s) (8.2.5) – and the
N Lagrange multipliers {ΛI(λ)}. There are altogether N + D equations for the N λs and D
components of q⃗.
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Variational Principle with Integral Constraints Instead of the ‘local’ constraints
eq. (8.2.5), suppose we now study the equations implied by some Lagrangian L(λ, q⃗(λ), ˙⃗q(λ)),
subject to the same boundary conditions q⃗(τ) = y⃗ and q⃗(τ ′) = y⃗′ in eq. (8.2.4) – but now apply
the following N integral constraints∫ τ

τ ′
GI

(
λ, q⃗, ˙⃗q

)
dλ = constant, I = 1, 2, 3, . . . , N. (8.2.9)

We introduce N λ−independent Lagrange multipliers {ΛI|I = 1, 2, 3, . . . , N} and proceed to
extremize the action

S =

∫ τ

τ ′

(
L
(
λ, q⃗(λ), ˙⃗q(λ)

)
− ΛI ·GI

(
λ, q⃗(λ), ˙⃗q(λ)

))
dλ. (8.2.10)

That is, we simply need to solve

d

dλ

∂LM

∂q̇i
=
∂LM

∂qi
, (8.2.11)

LM ≡ L− ΛIGI; (8.2.12)

for both {q⃗(λ)} – which has to obey eq. (8.1.35) as well as the constraint(s) (8.2.9) – and
the N Lagrange multipliers {ΛI}. There are altogether N + D equations for the N λs and D
components of q⃗.

Example: Maximum Area for Fixed Perimeter If you are given an infinitesimally
thin string that forms a closed loop of fixed length L, what is the 2D shape that yields the
largest area? If we use Cartesian coordinates r⃗ = (x(θ), y(θ), 0) on the (1, 2)−plane, the area
swept out by the trajectory is given by

A =
1

2

∫ 2π

0

dθ

(
r⃗(θ)× dr⃗(θ)

dθ

)
· ê3 (8.2.13)

=
1

2

∫ 2π

0

dθ (x · y′ − x′ · y) . (8.2.14)

(By the right hand rule, (r⃗ × dr⃗/dθ) · ê3|dθ| is a positive area.) The length swept out by this
same trajectory is, in turn,

L =

∫ 2π

0

√
x′2 + y′2dθ. (8.2.15)

Hence, we form the Lagrangian

L =
1

2
(x · y′ − x′ · y)− Λ ·

√
x′2 + y′2. (8.2.16)

The Euler-Lagrange equations are

d

dθ

∂L

∂x′
=
∂L

∂x
(8.2.17)
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1

2
(−y′)− Λ

d

dθ

x′√
x′2 + y′2

=
1

2
y′ (8.2.18)

Λ
d

dθ

x′√
x′2 + y′2

= −y′; (8.2.19)

and

d

dθ

∂L

∂y′
=
∂L

∂y
(8.2.20)

1

2
x′ − Λ

d

dθ

y′√
x′2 + y′2

= −1

2
x′ (8.2.21)

Λ
d

dθ

y′√
x′2 + y′2

= x′. (8.2.22)

Integrating them leads us to the first order equations

Λ
x′√

x′2 + y′2
= y0 − y, (8.2.23)

Λ
y′√

x′2 + y′2
= x− x0; (8.2.24)

for constants (x0, y0). Squaring both sides and adding the two equations immediately hands us
the equation of a circle centered at (x0, y0) with radius Λ.

(x− x0)2 + (y − y0)2 = Λ2 (8.2.25)

Now, since the perimeter is fixed at L = 2πΛ, that means we may re-express

Λ = L/(2π). (8.2.26)

The parametric solution is therefore

(x, y) = (x0, y0) +
L

2π
(cos θ, sin θ). (8.2.27)

Problem 8.11. Isoperimetric Problem: Maximum Area? Did we really obtain a
maximum area? Perturb the solution in eq. (8.2.27), namely

(x, y) = (x0, y0) +
L

2π
(cos θ, sin θ) + (δx, δy); (8.2.28)

and proceed to insert it into

S =

∫ 2π

0

(
1

2
(x · y′ − x′ · y)− L

2π

(√
x′2 + y′2 − L

2π

))
dθ; (8.2.29)

where we have added to the Lagrangian in eq. (8.2.16) the constant Λ ·L/(2π) so that the result
for S is the actual area. Show that, up to second order in the deviation vector δr⃗ ≡ (δx, δy, 0),

S =
L2

4π
− 1

2

∫ 2π

0

{
(δr⃗ × δr⃗′) · ê3 + (cos(θ)δx′(θ) + sin(θ)δy′(θ))

2
}
dθ +O

(
δr⃗3
)

(8.2.30)
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YZ: Wei-Hao and Jia-En got − sign in the first integrand. Note that, by the right hand
rule, (δr⃗× δr⃗′) · ê3|dθ| is a positive area. The − sign in front of the integral indicates, the circle
is indeed the maximum area for a fixed perimeter.

Problem 8.12. Fixed Area, Maximum Perimeter For a fixed 2D area A0 whose bound-
ary is a simply connected curve, prove that the boundary with the longest perimeter is that of
a circle.

Problem 8.13. Reciprocity Prove the following reciprocity relation. Extremizing the
action

A ≡
∫ τ

τ ′
LA

(
λ, q⃗, ˙⃗q

)
dλ (8.2.31)

subject to the requirement that the integral

B ≡
∫ τ

τ ′
LB

(
λ, q⃗, ˙⃗q

)
dλ (8.2.32)

be held constant is equivalent – up to a redefinition of the relevant Lagrange multiplier – to
extremizing the latter integral in eq. (8.2.32) while holding the former one in eq. (8.2.31)
fixed.

Example: Maximum Entropy with Fixed Variance If P (x)dx is the probability of
some outcome to lie within x and x+ dx, then the total probability being one means∫

R
P (x)dx = 1. (8.2.33)

(We are assuming x runs over the entire real line.) In statistical physics, the entropy of P itself
is defined as

∫
R(−P lnP )dx. Let us ask:

What is the P that maximizes entropy but yields a fixed variance (aka 2−point
function)?

This tells us we should examine the action

S ≡
∫
R
dx
(
−P (x) lnP (x)− Λ1P (x)− Λ2 · P (x) · x2

)
. (8.2.34)

The constraints are eq. (8.2.33) and∫
R
dx
(
P (x) · x2

)
= constant; (8.2.35)

while the Euler-Lagrange equations are

0 =
∂

∂P

(
−P (x) lnP (x)− Λ1 · P (x)− Λ2 · P (x) · x2

)
(8.2.36)

lnP (x) = −1− Λ1 − Λ2 · x2 (8.2.37)
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P (x) = e−Λ2·x2−Λ1−1. (8.2.38)

66We can already see P (x) must be a Gaussian, with Λ2 (which must be positive – why?) related
to its variance and Λ1 to the overall normalization to ensure total probability is unity.

1 =

∫
R
P (x)dx =

∫
R
e−Λ2·x2−Λ1−1dx =

√
π

Λ2
e−Λ1−1 (8.2.39)

Hence, P (x) =
√

Λ2/π exp(−Λ2x2) and if we define the variance as

σ2 ≡
∫
R
dx
(
P (x) · x2

)
; (8.2.40)

then a direct integration hands us

σ2 =

√
Λ2

π

∫
R
e−Λ2x2 · x2dx (8.2.41)

=
1

2Λ2
. (8.2.42)

Gathering our result, and assuming σ > 0,

P (x) =
1√
2πσ

exp

(
−1

2

(x
σ

)2)
. (8.2.43)

Problem 8.14. Maximum? Show that the Gaussian is indeed the maximum entropy
probability distribution subject to the constraints (8.2.33) and (8.2.35). Hint: Consider per-
turbing P (x)→ P (x) + δP (x). You should find, for P (x) = (

√
2πσ)−1 exp(−(1/2)(x/σ)2),

S[P + δP ] = 1− σ
√
π

2

∫
R

(
e

1
2
(x/σ)2δP (x)2

)
dx+O

(
δP 3

)
. (8.2.44)

Notice the second term on the right hand side is negative.

Problem 8.15. Fixed Mean and Variance Solve for the maximum entropy probability
distribution with both its one point (aka mean) and two point functions fixed. That is, re-do
the above analysis with the additional constraint∫

R
dx (P (x) · x) = constant. (8.2.45)

Hint: You should find

P (x) =
1√
2πσ

exp

(
−1

2

(
x− x0
σ

)2
)
, (8.2.46)

where x0 is the one point function.

66Notice, if this were a problem without constraints, i.e., if Λ1 = 0 = Λ2, the solution lnP = −1 would not
make much sense. In general, extremizing an action

∫
L(λ, q)dλ that does not involve derivatives of q merely

leads to the conclusion that L itself does not depend on q. Can you see why?
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8.3 Lagrangian Dynamics in Classical Physics

As already alluded to, one of the key reasons why the variational or (stationary) action prin-
ciple – and, hence, the calculus of variation – is so important, is because all of fundamental
physics (electroweak, strong and gravitational interactions) may be succinctly described by one.
Furthermore, Richard Feynman’s path integral extends the applicability of the action from the
classical to the quantum domain. Of course, much of non-relativistic physics may also be done
using it too.

Non-Relativistic Particle Mechanics Let us begin with the most common case oc-
curring within classical mechanics. In a flat space with Cartesian coordinates {x⃗}, choose the
Lagrangian to be the difference between kinetic T and potential energy V :

L
(
x⃗(t), ˙⃗x(t)

)
≡ T − V ≡ m

2
˙⃗x2 − V (x⃗). (8.3.1)

A short calculation indicates

∂L

∂x⃗
= −∇⃗x⃗V, (8.3.2)

d

dt

∂L

∂ ˙⃗x
≡ dp⃗

dt
= m¨⃗x. (8.3.3)

Euler-Lagrange in eq. (8.1.31) then tells us, mass times acceleration is the negative gradient
of the potential energy; namely, Newton’s second law for conservative forces is captured by the
statement L = T − V :

mẍ(t) = −∇⃗V (x⃗) ≡ Force. (8.3.4)

Noether’s Theorem: Symmetry and Conserved Quantities The Lagrangian formu-
lation of dynamics allowed Emmy Noether to elucidate the connection between symmetry and
their corresponding conserved quantities. This important relationship continues to hold even
in quantum mechanics and (quantum) field theory. As a start, let us examine Noether’s theo-
rem for the system encoded within the following Lagrangian of N particles {x⃗I|I = 1, 2, . . . , N}
expressed in Cartesian coordinates:

L =
N∑
I=1

(
MI

2
˙⃗x2I −

1

2

∑
J ̸=I

V (|x⃗I − x⃗J|)

)
. (8.3.5)

Time Translation Symmetry Apart from the time-dependence of the trajectories them-
selves {x⃗I}, notice the Lagrangian itself does not depend on time explicitly. That is, upon
replacing t→ t+ t0 for arbitrary t0, the L retains the same form – we dub this ‘time-translation
symmetry’. Let us examine its consequence for infinitesimal time displacements. Upon t→ t+dt,

x⃗I(t)→ x⃗I(t) + δx⃗I, (8.3.6)

δx⃗I(t) = ˙⃗xI(t)dt. (8.3.7)

Since the L itself is t−independent, it would therefore transform as67

L
(
{ ˙⃗xI, ˙⃗xI}

)
→ L

(
{ ˙⃗xI, ˙⃗xI}

)
+
∂L

∂xiJ
δxiJ +

∂L

∂ẋiJ

d

dt
δxiJ +O

(
δx2
)

(8.3.8)

67There is actually no need to re-do the calculation below; simply read it off eq. (8.1.38), where we were
perturbing the L by perturbing the trajectories, with the identifications q⃗ ↔ x⃗I and δq⃗ = δx⃗I.
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= L
(
{ ˙⃗xI, ˙⃗xI}

)
+

(
∂L

∂xiJ
− d

dt

∂L

∂ẋiJ

)
δxiJ +

d

dt

(
∂L

∂ẋiJ
δxiJ

)
+O

(
δx2
)
; (8.3.9)

where there is an implicit sum over both the particle label J and its spatial component index
i. At this point, we have actually not yet employed eq. (8.3.7); but if now proceed to do so,
together with the Euler-Lagrange equations (which will eliminate the middle group of terms in
eq. (8.3.9)); we will obtain:

L
(
{ ˙⃗xI, ˙⃗xI}

)
= L

(
{ ˙⃗xI, ˙⃗xI}

)
+

d

dt

(
∂L

∂ẋiJ
ẋiJ

)
dt+O

(
δx2
)
. (8.3.10)

On the other hand, L itself may simply be treated as a function of time L(t) ≡ L({x⃗I(t), ˙⃗xI(t)}),
due to its implicit dependence through the trajectories {x⃗I(t)}. Under t → t + dt, it must
transform as

L(t)→ L(t+ dt) = L(t) + dt · dL(t)
dt

+O
(
dt2
)
. (8.3.11)

Equating the right hand sides of (8.3.10) and (8.3.11), and extracting the coefficient of the dt
terms, we arrive at the following total time derivative:

d

dt

(
∂L

∂ẋiJ
ẋiJ − L

)
= 0. (8.3.12)

Below, you will verify that the quantity inside the parenthesis, (∂L/∂ẋiJ)ẋ
i
J − L, is the total

energy of the system.

Time-translation symmetry – i.e., the absence of explicit time-dependence of L –
implies total energy is conserved.

It is worth reiterating, this result is not true for any old trajectory, but only the ‘physical’ ones;
namely, those that actually satisfy the Euler-Lagrange equations.

Problem 8.16. Total Energy Verify that the conserved quantity inside the parenthesis
of eq. (8.3.12) constructed from the L of eq. (8.3.5) is in fact the total energy E:

∂L

∂ẋiJ
ẋiJ − L =

N∑
I=1

(
MI

2
˙⃗x2I +

1

2

∑
J ̸=I

V (|x⃗I − x⃗J|)

)
≡ E. (8.3.13)

Total kinetic plus potential energy is a constant because L does not depend explicitly on t.
Explicit Time Dependence Suppose L does depend on time explicitly. Show that eq.

(8.3.12) would now read instead

d

dt

(
∂L

∂ẋiJ
ẋiJ − L

)
= −

(
∂L

∂t

)
{x⃗I, ˙⃗xI}

; (8.3.14)

and, hence, is no longer a “total time derivative is zero” statement.
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Space-Translation Symmetry Next, we observe that the L in eq. (8.3.5) remains the
same under a simultaneous replacement

x⃗I → x⃗I + a⃗; (8.3.15)

for all I = 1, . . . , N and for constant but arbitrary displacement a⃗. The interpretation is that
the underlying space that these particles inhabits is homogeneous – it does not matter whether
the particles are interacting in some region D or in some other D′ displaced by a⃗ relative to D;
the particles’ mutual interactions remain identical.

A similar Taylor expansion calculation would yield eq. (8.3.9), but with δxiI = ai for all the
particles. Invoking the Euler-Lagrange equations,

L→ L+
d

dt

(∑
J

∂L

∂ẋiJ
ai

)
+O(a2). (8.3.16)

But, recall L actually remains the same under eq. (8.3.15). Therefore all the order a⃗ and higher
terms would necessarily have to vanish. And since a⃗ was arbitrary, we arrive at:

d

dt

(
N∑
J=1

∂L

∂ẋiJ

)
= 0. (8.3.17)

Below, you will verify that the quantity inside the parenthesis,
∑

J ∂L/∂ẋ
i
J, is the total momen-

tum of the system.

Space-translation symmetry – i.e., the invariance of L under a constant spatial
displacement of all N bodies – implies total momentum is conserved.

Again, this result is not true for any old trajectory, but only the ‘physical’ ones – those that
actually satisfy the Euler-Lagrange equations.

Problem 8.17. Total Momentum Verify that the conserved quantity inside the paren-
thesis of eq. (8.3.17) constructed from the L of eq. (8.3.5) is in fact the total momentum:

N∑
J=1

∂L

∂ẋiJ
=

N∑
I=1

MJ
˙⃗xJ ≡ P⃗ . (8.3.18)

‘Breaking’ Space-Translation Invariance Suppose we add an extra potential U to L in
eq. (8.3.5) that is no longer space-translation invariant.

L =
N∑
I=1

(
MI

2
˙⃗x2I −

1

2

∑
J̸=I

V (|x⃗I − x⃗J|)

)
− U ({x⃗I}) (8.3.19)

Show that eq. (8.3.17) would instead become

d

dt

(
N∑
J=1

MJ
˙⃗xJ

)
= −

N∑
J=1

∇⃗x⃗JU. (8.3.20)
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These are actually the equations obeyed by the center-of-mass of the whole system – can you
elaborate? If we wish to model a constant external force F⃗ext, show that

U = −F⃗ext · X⃗CM, (8.3.21)

where X⃗CM ≡ (
∑

JMJx⃗J)/(
∑

KMK) is the center-of-mass coordinate vector.

Problem 8.18. Rotational Symmetry and Angular Momentum Rotation is defined
as the linear transformation on position Cartesian vectors such that their lengths are preserved;
i.e., it is an orthogonal matrix. That is, for all I = 1, . . . , N , if we replace x⃗I with its rotated
version y⃗I via

xiI → R̂i
jx
j
I ≡ yiI; (8.3.22)

then for all orthogonal transformations R̂TR̂ = I,

x⃗I · x⃗J = x⃗I · R̂TR̂ · x⃗J = y⃗I · y⃗J. (8.3.23)

This immediately informs us, the Lagrangian L in eq. (8.3.5) is invariant under such a rotation

operation applied simultaneously to all {x⃗I}, as long as R̂ is t−independent.

˙⃗xI · ˙⃗xI = ˙⃗xI · R̂TR̂ · ˙⃗xI = ˙⃗yI · ˙⃗yI (8.3.24)

|x⃗I − x⃗J| = |y⃗I − y⃗J| (8.3.25)

The rotation matrix R̂i
j has been discussed in Chapter (5.5). We borrow the following result.

For infinitesimal rotations,

R̂i
j = δij + ωij +O(ω2); (8.3.26)

where ωij is anti-symmetric

ωij = ωij = −ωji = −ωji (8.3.27)

and is otherwise ‘small’ but arbitrary. Show that the corresponding conserved quantity is the
total angular momentum

J ij =
N∑
J=1

x
[i
J

(
MJẋ

j]
J

)
=

N∑
J=1

MJ

(
xiJẋ

j
J − x

j
Jẋ

i
J

)
. (8.3.28)

Hint: You should be able to explain why δxiJ = ωijx
j
J.

Remark Strictly speaking, the conserved quantities in Noether’s theorem is ambiguous
up to overall multiplicative and additive constants. In particular, they were read off as the
quantities occurring inside a total time derivative, (d/dt)(conserved quantity) = 0; but if some
X is t−independent so is αX + β for constants α and β.

2 Body Problem With Central Potential The 2 body problem plays a key role in
real world applications: from the electron orbiting a proton (i.e., the H atom); to Earth orbiting
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the Sun; to scattering experiments in atomic, nuclear and particle physics. Here, we will study
its non-relativistic version, assuming the potential energy between the two bodies – with masses
M1 and M2 located at x⃗1 and x⃗2 respectively – only depends on the distance between them
|x⃗1 − x⃗2|. The 2 body Lagrangian is

L2B =
M1

2
˙⃗x21 +

M2

2
˙⃗x22 − V (|x⃗1 − x⃗2|) . (8.3.29)

If we do a change-of-coordinates to the center-of-mass coordinate

X⃗CM ≡
M1x⃗1 +M2x⃗2
M1 +M2

, (8.3.30)

∆⃗ ≡ x⃗1 − x⃗2; (8.3.31)

the Lagrangian will transform into

L2B =
M1 +M2

2
˙⃗
X2

CM +
µ

2
˙⃗
∆2 − V (∆) ; (8.3.32)

where the reduced mass µ is given by the relation

µ ≡ M1M2

M1 +M2

. (8.3.33)

Eq. (8.3.32) teaches us, the non-relativistic 2 body problem with a central potential U can
always be reduced to a free particle with mass M1 +M2; plus a 1 body problem subject to the
same potential V . The resulting Euler-Lagrange equations are: acceleration-free motion of the
center-of-mass,

¨⃗
XCM = 0; (8.3.34)

and the reduced mass’ motion driven by the central potential,

µ
¨⃗
∆ = −V ′(∆)∆̂. (8.3.35)

On the other hand, since the problem is spherically symmetric, we may exploit spherical coor-
dinates:

∆⃗ = r (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) . (8.3.36)

Problem 8.19. Equations-of-Motion in Spherical Coordinates If we denote

U ≡ V/µ (8.3.37)

– remember Lagrangians are only defined up to overall constants – show that the Lagrangian
for ∆⃗−motion can be written as

L∆ ≡
1

2

(
ṙ2 + r2θ̇2 + r2 sin(θ)2ϕ̇2

)
− U(r). (8.3.38)
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Then show that the radial motion is governed by

r̈ − r
(
θ̇2 + sin2(θ)ϕ̇2

)
+ U ′(r) = 0; (8.3.39)

and the angular motion obeys the following equations, as long as r ̸= 0 and sin θ ̸= 0.

θ̈ + 2
ṙ

r
θ̇ − sin(θ) cos(θ)ϕ̇2 = 0 (8.3.40)

ϕ̈+ 2

(
ṙ

r
+ θ̇ cot(θ)

)
ϕ̇ = 0. (8.3.41)

Notice equations (8.3.40) and (8.3.41) arises from the (reduced) Lagrangian

LΩ ≡
1

2
r2
(
θ̇2 + sin(θ)2ϕ̇2

)
. (8.3.42)

Explain why this LΩ can be derived from eq. (8.3.36) by pretending r is t−independent while
taking time derivatives; namely, when computing LΩ = (1/2)∂t∆⃗ · ∂t∆⃗. Further explain why
this, in turn, tells us LΩ is spherically symmetric.

The spherical symmetry of eq. (8.3.40) and (8.3.41) are important because we may now
argue that, since the choice of the 3−axis is arbitrary, we may always orient the axes such that
all motion takes place on the equatorial θ = π/2 plane. First, by spherical symmetry, we may
orient our axes so that the initial velocity ∆̇(t0) at some time t0 lies on the equatorial plane.68

Therefore, we only need to show that, given an initial velocity that lies on the (1, 2) plane, it
will always remain so. To this end, notice from eq. (8.3.40) that whenever θ = π/2 and θ̇ = 0
(i.e., velocity tangent to the equatorial plane) at a given time t0, the acceleration of the altitude
angle θ is zero: θ̈ = 0. But that means over the next time step t0 → t0 + dt, the velocity will
remain confined to the equatorial plane. But since this is true for any t0, that means motion is
confined to the equatorial plane for all time. We now merely have to solve the equatorial plane
θ = π/2 versions of equations (8.3.39), (8.3.40) and (8.3.41):

r̈ − rϕ̇2 + U ′(r) = 0, (8.3.43)

ϕ̈+ 2
ṙ

r
ϕ̇ = 0. (8.3.44)

Problem 8.20. Equatorial Plane Lagrangian Since we have argued that all motion can
be assumed to take place on the equatorial plane, that means equations (8.3.43) and (8.3.44)
should be derivable from the Lagrangian eq. (8.3.38) by restricting it to θ = π/2 from the outset:

L∆ ≡
1

2

(
ṙ2 + r2ϕ̇2

)
− U(r). (8.3.45)

The reasoning is that, since motion is known to takes place strictly on the equatorial plane
anyway, when demanding the extremum of its associated action there is no need to vary θ away

68For instance, ∆⃗(t0) can be defined to be parallel to the positive 1−axis ê1; and the (2, 3) plane can then be

rotated until the component of ∂t∆⃗(t0) perpendicular to ê1 is parallel to the positive 2−axis ê2.
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from π/2 at all. Show explicitly that it is indeed the case; i.e., obtain equations (8.3.43) and
(8.3.44) from eq. (8.3.45).

Explain why the energy E and angular momentum ℓ, defined by

E ≡ 1

2

(
ṙ2 + r2ϕ̇2

)
+ U(r) and ℓ ≡ r2ϕ̇, (8.3.46)

are constants-of-motion. (Hint: Recall equations (8.1.40) and (8.1.41).) Finally, evaluate J12 in
eq. (8.3.28) for the 2−body problem at hand; and verify

J12 = r2ϕ̇. (8.3.47)

This confirms that ℓ is indeed the conserved angular momentum.

In eq. (8.3.46), we may insert ϕ̇ = ℓ/r2 into the energy conservation equation to state

E =
1

2
ṙ2 + Ueff(r), (8.3.48)

Ueff(r) ≡
ℓ2

2r2
+ U(r). (8.3.49)

This may be interpreted as a 1D setup: the total (constant) energy E is equals to the ‘kinetic’

ṙ2/2 plus ‘potential’ Ueff. Hence, for a fixed E, the motion of ∆⃗ takes place between the maximum
and minimum r is given by the intersection of the horizontal E line with the effective potential
Ueff(r). Additionally, we may perform the change-of-derivatives dr/dt = (dr/dϕ)(dϕ/dt) in eq.
(8.3.46) and deduce (

dr

dϕ

ℓ

r2

)2

= 2 (E − Ueff(r)) ; (8.3.50)

where we have again replaced ϕ̇→ ℓ/r2. Re-arranging,

dϕ

dr
=

ℓ

r2
√
2 (E − Ueff(r))

, (8.3.51)

ϕ− ϕ0 =

∫
ℓ · dr

r2
√
2 (E − Ueff(r))

. (8.3.52)

We see that this equation allows us – at least in principle – to obtain r(ϕ), the shape of the
trajectory as a function of the azimuthal angle ϕ.

Problem 8.21. Kepler Problem: Planetary Motion Consider two bodies of masses
M1 and M2 interacting through a gravitational (Newtonian) potential energy given by V =
−GNM1M2/|x⃗1 − x⃗2|. Show that the effective potential is

Ueff(r) =
ℓ2

2r2
− GN(M1 +M2)

r
, (8.3.53)

with a minimum located at r⋆ ≡ ℓ2/(GN(M1 +M2)) and

Ueff(r⋆) = −
1

2

(
GN(M1 +M2)

ℓ

)2

≡ U⋆. (8.3.54)
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Make a sketch of Ueff(r). (Hint: It should go to positive infinity as r → 0; dip below zero where
there is only one minimum; and then gradually rise back up to zero as r → ∞.) Explain why
unbound orbits exist whenever E ≥ 0; and why bound ones exist for

U⋆ ≤ E < 0. (8.3.55)

Explain why E = 0 is a ‘marginal’ case; and why E = U⋆ refers to a circular orbit.
Show that the integral in eq. (8.3.51) yields

ϕ− ϕ0 = arccos

(
1√

2
√
E − U⋆

(
ℓ

r
−
√
−2U⋆

))
(8.3.56)

and

r(ϕ) =
ℓ/
√
−2U⋆

1 +
√

1− E/U⋆ · cos(ϕ− ϕ0)
. (8.3.57)

Eccentricity Remember from eq. (8.3.54) that the minimum effective potential is negative,
U⋆ < 0. Hence, the eccentricity

e2B ≡
√

1− E/U⋆ (8.3.58)

is greater than unity for unbound orbits (e2B ≥ 1), with e2B = 1 being the marginal case; and
less than unity for bound orbits (0 ≤ e2B < 1). For circular motion E = U⋆ and the eccentricity
is zero: e2B = 0.

Problem 8.22. Kepler Problem: Laplace-Runge-Lenz Vector Assuming that New-
tonian gravity holds – namely,

˙⃗p = −GN(M1 +M2)

∆2
∆̂ (8.3.59)

– verify directly that the following Laplace-Runge-Lenz vector A⃗ is a constant-of-motion.

A⃗ ≡ p⃗

µ
×
(
∆⃗× p⃗

)
− µGN(M1 +M2)∆̂ (8.3.60)

p⃗ ≡ µ
˙⃗
∆ (8.3.61)

That this vector A⃗ is constant, is the result of the 1/r character of the Newtonian potential.
Hence, it is also constant for the corresponding classical electrodynamics problem with 1/r
Coulomb potential. Upon quantization, the Laplace-Runge-Lenz vector may be exploited to
obtain the energy levels of the (spin-less) hydrogen atom from purely algebraic means.

Constrained Particle Motion Suppose our non-relativistic particle experiences a po-
tential energy of V (x⃗) but is further constrained by the N constraints {GI(x⃗) = 0}, where x⃗ is
the position of the particle in 3D Cartesian coordinates. This means our modified Lagrangian,
with N Lagrange multipliers {ΛI}, is now

L =
m

2
˙⃗x(t)2 − V (x⃗(t))− ΛI(t) ·GI (x⃗(t)) . (8.3.62)
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For simplicity, let us focus on the case where there is only one constraint: ΛI · GI → Λ · G.
Applying the Euler-Lagrange equations now hand us

m¨⃗x = −∇⃗x⃗V (x⃗)− Λ · ∇⃗x⃗G(x⃗). (8.3.63)

Remember that ∇⃗G(x⃗) points towards the direction of most rapid change in G; whereas G is

constant in the direction perpendicular to ∇⃗G(x⃗) – i.e., ∇⃗G is normal to the constraint surface.

In detail, if ξ̂ is an arbitrary a unit vector parallel to this surface,

ξ̂ · ∇⃗G = 0. (8.3.64)

We thus see the dynamics along the constraint surface does not involve G:

m¨⃗x · ξ̂ = −∇⃗V · ξ̂ (8.3.65)

If we further normalize ∇⃗G to unit length; namely,

n̂ ≡ ∇⃗G(x⃗)/|∇⃗G(x⃗)|; (8.3.66)

then

m¨⃗x · n̂ = −∇⃗x⃗V (x⃗) · n̂− Λ|∇⃗x⃗G(x⃗)|. (8.3.67)

In other words, the normal force

F⃗normal = −Λ|∇⃗x⃗G(x⃗)| · n̂ (8.3.68)

is what keeps the particle stuck on the constant G surface.
Energy Conservation for Constrained Motion According to eq. (8.1.40), whenever

V and G are time-independent, the total energy

E = ẋi
∂L

∂ẋi
− L =

m

2
˙⃗x2 + V (x⃗) + ΛI ·GI(x⃗) (8.3.69)

is a constant-of-motion. If we further impose the constraints {GI = 0}, the total energy no
longer depends on the Lagrange multiplier terms:

E =
(m
2
˙⃗x2 + V (x⃗)

)
{GI(x⃗)=0}

. (8.3.70)

Intrinsic Coordinates Instead of implementing constraints through Lagrange multipliers
in eq. (8.3.62), we may employ the (D − N) coordinates ξ⃗ intrinsic to the constraint surface;

i.e., x⃗(ξ⃗) parametrize the (D − N)–dimensional surface. Since GI(x⃗) = 0 when the constraints
are satisfied, the Lagrangian in eq. (8.3.62) translates to

L =
1

2
gAB(ξ⃗)ξ̇

Aξ̇B − V (ξ⃗), (8.3.71)

where V (ξ⃗) ≡ V (x⃗(ξ⃗)) and by the chain rule,

gAB ≡
∂x⃗

∂ξA
· ∂x⃗
∂ξB

. (8.3.72)
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(The indices A and B run from 1 through N .) The Euler-Lagrange equations read

D2ξA

dt2
= −∂ξAV (ξ⃗), (8.3.73)

D2ξA

dt2
≡ ξ̈A + ΓA

BFξ̇
Bξ̇F, (8.3.74)

ΓA
BF ≡

1

2
gAC (∂BgFC + ∂FgBC − ∂CgBF) , (8.3.75)

where gAB is defined as the inverse matrix of gAB; namely, gACgCB = δAB.
Constraint before Variation? What we have just discovered is, there is actually no

need to introduce Lagrange multipliers if we can find generalized coordinates {ξA} intrinsic to the
constraint surface. Remember, the variational principle of non-relativistic classical mechanics
says that motion extremizes the integral of the difference between kinetic and potential energy,
with the boundary conditions fixed. But if we already know beforehand that the motion has to
take place on some constraint surface, there is no need to consider the variation of the trajectory
away from the surface.

Likewise, for the 2 body problem with a central potential V (r), we were able to argue that
all the motion had to take place on a fixed 2D plane, which we then chose to be θ = π/2 in the
spherical coordinate system. This allowed us to obtain the equatorial plane Lagrangian in eq.
(8.3.45), since there is no need to consider variation of the trajectory away from θ = π/2.

Problem 8.23. In general, however, if we do not know beforehand how the motion may
be constrained, then it is illegal to constrain the coordinates before deriving the corresponding
Euler-Lagrange equations.

As an example, in the 2 body problem with a central potential, we may apply the conservation
of angular momentum ϕ̇ = ℓ/r2 to eq. (8.3.43):

r̈ − ℓ2

r3
+ U ′(r) = 0. (8.3.76)

Now insert ϕ̇ = ℓ/r2 into the equatorial plane Lagrangian in eq. (8.3.45); then derive the
corresponding Euler-Lagrange equations. You should find

r̈ +
ℓ2

r3
+ U ′(r) = 0; (8.3.77)

where the ℓ2 term now has the wrong sign. In words: we need to consider all trajectories (r, ϕ)
and pick the ones that extremize T−V on the equatorial plane; whereas ϕ̇ = ℓ/r2 means we have
already constrained the trajectories to only a subset of all 2D motion. The analogous problem
in ordinary calculus is: do not evaluate a function at a particular value before differentiation; for
e.g., if f(z) = sin(z + a) then f ′(a) = cos(2a) ̸= ∂a sin(2a).

Example: Circular Motion Immersed in Constant Gravity In this problem we
will examine motion of a point particle confined on a vertical circle immersed in a constant
gravitational field. The coordinates of the circle are

(x(θ), y(θ)) = (0, R) +R(cos θ, sin θ), (8.3.78)
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where the positive y−direction (θ = π/2) points upwards; and the gravitational force per unit
mass is

F⃗g = −g(0, 1). (8.3.79)

If we exploit 2D polar coordinates, the Lagrangian per unit mass is therefore

L =
1

2

(
ṙ2 + r2θ̇2

)
− g(r sin(θ) +R)− λ · (r −R). (8.3.80)

We have chosen a gravitational potential so that it is zero at the bottom of the circle. Moreover,
the total conserved energy is, evaluated on the circular trajectory r = R is

E =
R2

2
θ̇2 + gR(sin(θ) + 1). (8.3.81)

At the bottom of the circle, θ = (3/2)π, and all the energy is kinetic. Hence, if we denote v as
the particle’s velocity at the bottom of the circle, E = v2/2 and

v2

2
=
R2

2
θ̇2 + gR(sin(θ) + 1). (8.3.82)

The Euler-Lagrange equations are

Rθ̇2 − g sin(θ) = λ(t) (8.3.83)

θ̈ + (g/R) cos(θ) = 0. (8.3.84)

For course, for small oscillations around the bottom, φ ≡ θ− (3π/2), the second line would yield
the SHO equation with angular frequency given by

√
g/R:

φ̈+ (g/R)φ = 0. (8.3.85)

We notice eq. (8.3.84) alone is sufficient for understanding motion on the circle itself. However,
eq. (8.3.83) in fact provides additional information. Recall that the normal force is what holds
the particle in place. If equations (8.3.62) and (8.3.80) are compared; we may identify

G = r −R; (8.3.86)

and therefore eq. (8.3.68) now reads

F⃗normal = −Λr̂. (8.3.87)

If we solve for θ̇2/2 in eq. (8.3.82),

Rθ̇2 =
2

R

(
v2

2
− gR(sin(θ) + 1)

)
, (8.3.88)

and insert this into eq. (8.3.83),

λ(t) =
v2

R
− 2g(sin(θ) + 1)− g sin(θ)
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=
v2

R
− g(3 sin(θ) + 2). (8.3.89)

Keeping in mind eq. (8.3.87), we see that at the bottom of the circle, the particle experiences
normal force of

θ =
3π

2
: F⃗normal = −r̂

(
v2

R
− g
)
. (8.3.90)

Now, if the particle were held in place by a rigid rod, say, the normal force λ(t) can be either
positive or negative. However, if the particle were moving along the inner surface of a circular
hoop, then λ > 0 on physical grounds. Eq. (8.3.89) then indicates – if we define θ ≡ ϕ+ π/2 so
that ϕ refers to the top of the circle – the particle cannot access the region

cos(ϕ) ≥ 1

3

(
v2

gR
− 2

)
. (8.3.91)

There are non-trivial solutions whenever the rightmost factor is less than unity, which in turn
is equivalent to

v ≤
√

5gR. (8.3.92)

Problem 8.24. Ellipsoidal Motion Immersed in Constant Gravity Consider a par-
ticle moving along the inner surface of the following ellipsoidal hoop immersed in a constant
gravitational force F⃗g:

(x(θ), y(θ)) = (0, ρ0) +

(√
ρ20 −R2 sin θ, ρ0 cos θ

)
, ρ0 > R > 0 (8.3.93)

F⃗g = −g(0, 1). (8.3.94)

Starting from the ellipsoidal coordinates

(x(ρ, θ), y(ρ, θ)) =
(√

ρ2 −R2 sin θ, ρ0 cos θ
)
, (8.3.95)

first argue that the appropriate Lagrangian is

L =
1

2

(
θ̇2
(
ρ2 −R2 cos2(θ)

)
+ ρ̇2

(
ρ2 sin2(θ)

ρ2 −R2
+ cos2(θ)

))
− g(ρ · cos(θ) + ρ0)− λ(ρ− ρ0). (8.3.96)

Show that, in order to reach the top of the ellipsoid at θ = 0, if the particle begins at the bottom
(θ = π) with speed v, it must be faster than v ≥

√
g ·R2/ρ0

√
5(ρ0/R)2 − 1.

Problem 8.25. Brachistochrone curve Restricting our attention to the vertical (x, y)
plane, suppose a point mass starts from (0, 0) and takes a path to (x0, z0) under the influence
of the downward gravitational force per unit mass of −gŷ, where ŷ is the unit vector pointing
(upwards) parallel to the positive y−axis. We wish to derive the path that takes the least time.
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Let us solve y in terms of x, so that the path is now (x, y) = (x, y(x)). If we set zero potential
energy at y = 0, since the mass started from rest, by the conservation of energy

0 =
1

2
(ẋ(t)2 + ẏ(t)2) + gy(t) (8.3.97)

=
1

2
ẋ2(1 + (dy/dx)2) + gy. (8.3.98)

� By recognizing that dt = dx/ẋ(t) show that the total time taken ∆t is given by the integral

∆t =

∫ y0

0

dx

√
1 + y′(x)2

−2gz(x)
. (8.3.99)

� To minimize ∆t, use the constant of motion in eq. (8.1.19) to show that

y′(x) =

√
y/ζ0

1− y/ζ0
. (8.3.100)

for some constant ζ0. Since y < 0 by assumption, we see that ζ0 < y < 0 for the square
root to be real.

� Integrate this y′(x) equation to arrive at the following relationship between y and x:

ζ0

(
arcsin

√
y

ζ0
−

√(
1− y

ζ0

)
y

ζ0

)
= x− η0, (8.3.101)

where η0 is an arbitrary constant.

� Now, put ψ = arcsin
√
y/ζ0 and argue why (x(ψ = 0), y(ψ = 0)) = (0, 0) implies the

following parametric solution in terms of ψ:

x(ψ) =
ζ0
2
(2ψ − sin(2ψ)) , (8.3.102)

y(ψ) = ζ0 sin
2(ψ). (8.3.103)

Hence, ψ = 0 is the starting point, whereas the end point involves solving for (ζ0, ψ0) in

y0 =
ζ0
2
(2ψ0 − sin(2ψ0)) , (8.3.104)

z0 = ζ0 sin
2(ψ0). (8.3.105)

It is apparently possible to solve the same problem but with kinetic friction included; see the
Wolfram MathWorld page here.
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8.4 Hamiltonian Dynamics in Classical Physics

We now turn to a different but equivalent formulation of classical mechanics: Hamiltonian
dynamics. It is also a key starting point for understanding quantum mechanics, because – as we
shall see below – the Hamiltonian H of a physical system is itself the core object governing its
time evolution.

Given a Lagrangian L(t, q⃗, ˙⃗q), the corresponding Hamiltonian is defined through the Legendre
transform

H (t, q⃗, p⃗) ≡ piq̇
i(q⃗, p⃗)− L(t, q⃗, p⃗), (8.4.1)

where the momentum conjugate to q⃗ is defined as

pi(t) ≡

(
∂L(t, q⃗, ˙⃗q)

∂q̇i

)
t,q⃗

. (8.4.2)

In terms of pi, the Euler-Lagrange equations (8.1.31) now reads

dpi(t)

dt
=

(
∂L(t, q⃗, ˙⃗q)

∂qi

)
t, ˙⃗q

. (8.4.3)

The definition for pi in eq. (8.4.2) relates the three groups of objects: {q⃗, p⃗, ˙⃗q}. This usually,
though not always, means we may also solve ˙⃗q in terms of q⃗ and p⃗. (Some jargon: When we
may solve ˙⃗q in terms of q⃗ and p⃗, then the system is dubbed non-degenerate; and, if ˙⃗q cannot be
solved in terms of q⃗ and p⃗ the system is dubbed degenerate.)

Let us vary the Hamiltonian H(t, q⃗, p⃗) to first order, by perturbing the time

t→ t+ dt; (8.4.4)

as well as the position and its conjugate momentum:

qi → qi + δqi and pi → pi + δpi. (8.4.5)

We obtain

δH =

(
∂H

∂t

)
q⃗,p⃗

dt+

(
∂H

∂qi

)
t,p⃗

δqi +

(
∂H

∂pi

)
t,q⃗

δpi. (8.4.6)

On the other hand, by varying the Legendre transform,

δH = δpiq̇
i + pi

d

dt
δqi −

(
∂L

∂t

)
q⃗, ˙⃗q

dt−
(
∂L

∂qi

)
t, ˙⃗q

δqi −
(
∂L

∂q̇i

)
t,q⃗

d

dt
δqi. (8.4.7)

If we apply the definition eq. (8.4.2), we see the (d/dt)δqi terms drop out and

δH = −
(
∂L

∂t

)
q⃗, ˙⃗q

dt−
(
∂L

∂qi

)
t, ˙⃗q

δqi + q̇iδpi. (8.4.8)
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Comparing the coefficients of dt, δqi and δpi in equations (8.4.6) and (8.4.8), we arrive at the
following relations between the first derivatives of the Hamiltonian and Lagrangian:(

∂H(t, q⃗, p⃗)

∂t

)
q⃗,p⃗

= −

(
∂L(t, q⃗, ˙⃗q)

∂t

)
q⃗, ˙⃗q

, (8.4.9)

(
∂H(t, q⃗, p⃗)

∂qi

)
t,p⃗

= −

(
∂L(t, q⃗, ˙⃗q)

∂qi

)
t, ˙⃗q

, (8.4.10)(
∂H(t, q⃗, p⃗)

∂pi

)
t,q⃗

= q̇i(t). (8.4.11)

It is worth reiterating, equations (8.4.9), (8.4.10) and (8.4.11) follow simply from the definitions
in (8.4.1) and (8.4.2). But if we now employ the dynamics as encoded in the Euler-Lagrange
equations in eq. (8.4.3), we arrive at Hamilton’s equations:

dpi(t)

dt
= −

(
∂H(t, q⃗, p⃗)

∂qi

)
t,p⃗

and
dqi(t)

dt
=

(
∂H(t, q⃗, p⃗)

∂pi

)
t,q⃗

. (8.4.12)

Example For non-relativistic classical mechanics with Lagrangian

L =
1

2
m ˙⃗x2 − V (x⃗); (8.4.13)

by identifying x⃗ ≡ q⃗, the conjugate momentum is

pi =
∂L

∂ẋi
= mẋi. (8.4.14)

The Hamiltonian is therefore

H(x⃗, p⃗) = piẋ
i − L =

p⃗2

m
−
(
p⃗2

2m
− V (x⃗)

)
(8.4.15)

=
p⃗2

2m
+ V (x⃗). (8.4.16)

Hamilton’s equations are

ṗi = −∂xiV (x⃗) (8.4.17)

and

ẋi = pi/m. (8.4.18)

Configuration versus Phase Space We witness the key distinction between the La-
grangian versus the Hamiltonian formulations. The former yields second order equations-
of-motion (provided L depends only on q⃗ and ˙⃗q) for a single set of t−dependent variables
D−component object q⃗(λ); whereas the latter yields first order ones for the pair ofD−component
phase space coordinates (q⃗(λ), p⃗(λ)). This means, to solve the dynamics encoded within these
ODEs, we need to provide 2D independent boundary and/or initial conditions for q⃗(t) within
the Lagrangian formalism in eq. (8.1.31). While, in the Hamiltonian formulation of dynamics,
only one set of initial or final conditions are needed each of the q⃗(t) and p⃗(t) in eq. (8.4.12);
yielding a total of 2D set of conditions.
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Problem 8.26. Lagrangian from Hamiltonian We have managed to derive Hamiltonian
dynamics from its Lagrangian counterpart. Now, derive Lagrangian dynamics from its Hamilto-
nian counterpart; and, hence, prove their equivalence. That is, start from some H(t, q⃗(t), p⃗(t))
and assume Hamilton’s equations in (8.4.12) hold. Then apply the definitions in equations (8.4.1)
and (8.4.2); but, for the former, in the form

L
(
t, q⃗(t), ˙⃗q(t)

)
= pi(t)q̇

i(t)−H
(
t, q⃗(t), ˙⃗q(t)

)
, (8.4.19)

where all the p⃗ has been replaced with q⃗ and ˙⃗q using the ˙⃗q equation in eq. (8.4.12) – assuming
it is non-degenerate; namely, p⃗ may be uniquely solved in terms of q⃗ and ˙⃗q.

As an example: starting from

H (q⃗, p⃗) =
p⃗2

2m
+ V (q⃗) , (8.4.20)

use Hamilton’s equations to recover eq. (8.3.4) and the definition eq. (8.4.19) to reconstruct the
Lagrangian L(q⃗, ˙⃗q) in eq. (8.3.1).

Hints: Vary L the way we varied H above – first, as a function of (t, q⃗, ˙⃗q); and second, by
varying its definition in eq. (8.4.19) with H written in terms of q⃗ and p⃗ so that Hamilton’s
equations in eq. (8.4.12) may be employed. Upon doing the latter, you should find

δL =
d

dt


(
∂L(t, q⃗, ˙⃗q)

∂q̇i

)
t,q⃗

δqi

−
(
∂H(t, q⃗, p⃗)

∂t

)
q⃗,p⃗

dt. (8.4.21)

By comparing the δL from the two routes just described, you should then be able to recover
equations (8.1.31) and (8.4.9).

Action for Hamilton’s Equations We now turn to the action whose extremum would
yield Hamilton’s equations in (8.4.12):

S[q, p] ≡
∫ t

t′

(
p(s)q̇(s)−H (s, q(s), p(s))

)
ds. (8.4.22)

That is, by treating (q, p) as independent variables, we now demand that the action be stationary
under both variations

q(t)→ q(t) + δq(t) and p(t)→ p(t) + δp(t); (8.4.23)

with the position q(t) subject to the boundary conditions in eq. (8.1.3), so that δq(t) = 0 = δq(t′).
(No boundary conditions are necessary for the momentum p.) The variation with respect to p
yields

δ0,1S[q, p] =

∫ t

t′
δp

(
q̇ −

(
∂H

∂p

)
t,q

)
dt′′. (8.4.24)

Whereas the variation with respect to q(t) hands us

δ1,0S[q, p] = −
∫ t

t′
δq

(
ṗ+

(
∂H

∂q

)
t,p

)
dt′′. (8.4.25)
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The setting to zero the coefficients of δp and δq in equations (8.4.24) and (8.4.25) indeed yields
eq. (8.4.12).

Problem 8.27. Hamilton’s Equations: Action Principle in D−dimensions Verify
that the D−dimensional version of eq. (8.4.22) is

S[q⃗, p⃗] ≡
∫ t

t′

(
pi(s)

dqi(s)

ds
−H (s, q⃗(s), p⃗(s))

)
ds. (8.4.26)

That is, vary eq. (8.4.26) with respect to q⃗ and p⃗ to recover eq. (8.4.12). Notice, the integrands
of equations (8.4.22) and (8.4.26) are nothing but the Legendre transform that yields the La-
grangian from the Hamiltonian, except it is written in terms of (q⃗, p⃗). In fact, it is these forms of
the action that appear within the path integral formulation of quantum mechanics and quantum
field theory.

Next, we turn to the types of phase space coordinate transformations – known otherwise as
canonical transformations – that would leave this S invariant up to an additive constant.

Canonical Transformations and Symmetry of Hamilton’s Equations If we write
Hamilton’s equations in (8.4.12) in the matrix form

d

dt

[
qi(t)
pa(t)

]
=

[
0 (ID×D)

i
j

− (ID×D)
b
a 0

] [
∂qb
∂pj

]
H (t, q⃗, p⃗) , (8.4.27)

where 0 and ID×D are, respectively, the zero and identity matrix in arbitrary D−dimensions.
By defining

r⃗ ≡ (q⃗, p⃗)T and Ĵ ≡
[

0 ID×D
−ID×D 0

]
; (8.4.28)

Hamilton’s equations (8.4.27) can be expressed as

ṙA = ĴAB∂rBH. (8.4.29)

The indices A and B run over the D spatial ones of qi and the D spatial ones of pi; so for e.g.,

ĴAB∂rB = ĴAiq∂qiq + ĴAip∂pip . (8.4.30)

If we now consider performing a transformation of the phase space coordinates r⃗ ≡ (qi, pa)

into say R⃗ ≡ (Qi(q⃗, p⃗), Pa(q⃗, p⃗)); while treating the Hamiltonian H as a scalar under these
transformations; then the form of Hamilton’s equations (8.4.27) is preserved; namely,

d

dt

[
Qi(t)
Pa(t)

]
=

[
0 (ID×D)

i
j

− (ID×D)
b
a 0

] [
∂Qb

∂Pj

]
H
(
t, Q⃗, P⃗

)
ṘA = ĴAB∂RBH

(
t, R⃗
)
; (8.4.31)

if the Jacobian matrix ∂R⃗/∂r⃗ itself – defined via the relation[
∂qb
∂pj

]
= ∂r⃗ =

∂RB

∂r⃗
∂RB =

[
∂Q⃗
∂q⃗

∂P⃗
∂q⃗

∂Q⃗
∂p⃗

∂P⃗
∂p⃗

][
∂Qb

∂Pj

]
(8.4.32)
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– is time-independent, invertible, and obeys(
∂R⃗

∂r⃗

)
· Ĵ ·

(
∂R⃗

∂r⃗

)T

= Ĵ ; (8.4.33)

or, equivalently,

∂RI

∂rA
· ĴAB · ∂R

J

∂rB
= Ĵ IJ. (8.4.34)

Here, the A-th row B-th column of the matrix ∂R⃗/∂r⃗ is (∂R⃗/∂r⃗)AB ≡ ∂RA/∂rB.

Some jargon: a Jacobian ∂R⃗/∂r⃗ is symplectic if eq. (8.4.33) holds. Also, a given phase-space
coordinate transformation is canonical if its Jacobian is symplectic; namely, canonical transfor-
mations yield sympletic Jacobians that leave Hamilton’s equations form invariant. Finally, the
set of all 2D × 2D real matrices {M̂} satisfying M̂ · Ĵ · M̂T = Ĵ forms the group Sp2D,R.

To understand the preceding statements more explicitly, we begin from eq. (8.4.27). The

chain rule tells us, as long as the transformations (q⃗(t), p⃗(t)) = (q⃗(Q⃗, P⃗ ), p⃗(Q⃗, P⃗ )) do not depend
explicitly on the time t; then, for instance,

d

dt
q⃗
(
Q⃗, P⃗

)
=

dQi(t)

dt

∂q⃗

∂Qi
+

dPa(t)

dt

∂q⃗

∂Pa
. (8.4.35)

Hence,

∂rA

∂RI

dRI

dt
= ĴAB∂R

J

∂rB
∂RJH. (8.4.36)

Upon recognizing that (∂RI/∂rA)(∂rA/∂RJ) = δIJ; we may therefore multiply both sides of eq.

(8.4.36) from the left by ∂R⃗/∂r⃗, and arrive at eq. (8.4.31) by imposing the symmetry condition
in eq. (8.4.33).

Poisson Brackets and Canonical Transformations If we work out the D = 1 case
of eq. (8.4.33), the Jacobian ∂R⃗/∂r⃗ is sympletic iff[

∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

] [
0 1
−1 0

][ ∂Q
∂q

∂P
∂q

∂Q
∂p

∂P
∂p

]
=

[
0 1
−1 0

]
(8.4.37)[

0 ∂Q
∂q

∂P
∂p
− ∂Q

∂p
∂P
∂q

−
(
∂Q
∂q

∂P
∂p
− ∂Q

∂p
∂P
∂q

)
0

]
=

[
0 1
−1 0

]
. (8.4.38)

We see that the transformation r⃗ → r⃗(R⃗) is canonical iff

∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
= 1. (8.4.39)

Problem 8.28. Sympletic Transformations in D-dimensions For D > 1 dimensions,
show that eq. (8.4.33) reads instead[

∂Qi

∂qa
∂Qj

∂pa
− ∂Qi

∂pa

∂Qj

∂qa
∂Qi

∂qa
∂Pj

∂pa
− ∂Qi

∂pa

∂Pj

∂qa

−
(
∂Qi

∂qa
∂Pj

∂pa
− ∂Qi

∂pa

∂Pj

∂qa

)
∂Pi

∂qa
∂Pj

∂pa
− ∂Pi

∂pa

∂Pj

∂qa

]
=

[
0 δij
−δij 0

]
. (8.4.40)
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These considerations motivate us to define, for spatial dimension D ≥ 1, the Poisson bracket of
two arbitrary scalar functions f(t, q⃗, p⃗) and g(t, q⃗, p⃗) as

{f, g}q⃗,p⃗ ≡
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (8.4.41)

so that eq. (8.4.39) now takes the form {Q,P}q,p = 1; and eq. (8.4.40)[
{Qi, Qj}q⃗,p⃗ {Qi, Pj}q⃗,p⃗
−{Qi, Pj}q⃗,p⃗ {Pi, Pj}q⃗,p⃗

]
=

[
0 ID×D

−ID×D 0

]
. (8.4.42)

which in turn is equivalent to{
Qi, Qj

}
q⃗,p⃗

= 0 = {Pi, Pj}q⃗,p⃗ and
{
Qi, Pj

}
q⃗,p⃗

= δij. (8.4.43)

Next, verify the identities{
Qi, Qj

}
Q⃗,P⃗

= 0 = {Pi, Pj}Q⃗,P⃗ and
{
Qi, Pj

}
Q⃗,P⃗

= δij. (8.4.44)

We thus conclude:

The transformation r⃗ → r⃗(R⃗) is canonical iff the 3 distinct sets of Poisson brackets

between the generalized coordinates Q⃗ and its conjugate momentum P⃗ are preserved:{
rA, rB

}
= ĴAB =

{
RA, RB

}
. (8.4.45)

The canonical Poisson bracket in eq. (8.4.43) is closely related to its linear algebra commutator
cousins [X i, Xj] = 0 = [Pi, Pj] and [X i, Pj] = iδij, where X

i is the position operator in Cartesian
coordinates and Pj is the momentum.

From equations (8.4.27) and (8.4.28), we see that the (i, j) entries of the upper-right D×D
identity matrix sub-block of Ĵ can be identified with (qi, pj) in that q̇i = Ĵ ij∂pjH = δij∂pjH;

whereas the (i, j) entries of the lower-left D×D identity matrix sub-block of Ĵ can be identified

with (pi, q
j) in that ṗi = Ĵ ij∂qjH = −δij∂qjH. We may therefore recognize that the Poisson

bracket itself may be re-expressed as

{f, g}q⃗,p⃗ =
∂f

∂rA
ĴAB ∂g

∂rB
. (8.4.46)

In this form, we may readily recognize that the Poisson bracket inherits the anti-symmetric
character of Ĵ ; i.e., Ĵ ij = −Ĵ ji implies

{f, g} = −{g, f} . (8.4.47)

Moreover, we may now recognize that the four different sub-blocks of Ĵ are in fact Poisson
brackets of q⃗s and p⃗s.

Upper Left Block
{
qa, qb

}
q⃗,p⃗

= Ĵq
aqb = 0, (8.4.48)
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Upper Right Block {qa, pb}q⃗,p⃗ = Ĵq
apb = δab, (8.4.49)

Lower Left Block
{
pa, q

b
}
q⃗,p⃗

= Ĵpaq
b

= −δ b
a , (8.4.50)

Lower Right Block {pa, pb}q⃗,p⃗ = Ĵpapb = 0. (8.4.51)

Suppressing the {q⃗, p⃗} subscript for now, we may surmise:

Ĵ =

[
{q⃗, q⃗} {q⃗, p⃗}
{p⃗, q⃗} {p⃗, p⃗}

]
=

[
0 δij
−δij 0

]
. (8.4.52)

Furthermore, for R⃗ ≡ (Q⃗, P⃗ ), if we perform the transformation r⃗ → r⃗(R⃗), the Poisson bracket
itself transforms as

∂f

∂rA
ĴAB ∂g

∂rB
= {f, g}q⃗,p⃗ =

∂f

∂RI

∂RI

∂rA
ĴAB∂R

J

∂rB
∂g

∂RJ
(8.4.53)

=
∂f

∂RI

(∂R⃗
∂r⃗

)
· Ĵ ·

(
∂R⃗

∂r⃗

)T
IJ

∂g

∂RJ
. (8.4.54)

Recall that, the form of Hamilton’s equations is left invariant iff eq. (8.4.33) holds. This, in
turn, leads to the following observation:

A given phase-space coordinate transformation r⃗ ≡ (q⃗, p⃗) → r⃗(Q⃗, P⃗ ) ≡ r⃗(R⃗) is
canonical – it leaves the form of Hamilton’s equations invariant – iff it leaves Poisson
brackets invariant: {f, g}q⃗,p⃗ = {f, g}Q⃗,P⃗ .

Of course, we should not be surprised by this statement, since we have already seen above that,
for the transformation to be canonical, (f, g) do not even need to be arbitrary functions of the

phase space coordinates; but the new phase space coordinates (Q⃗, P⃗ ) themselves.
Example: Lagrangian to Hamiltonian The Lagrangian L(t, q⃗, ˙⃗q) is a scalar under

arbitrary coordinate transformations q⃗ → q⃗(Q⃗).

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 =

d

dt

∂L

∂Q̇i
− ∂L

∂Qi
(8.4.55)

By construction, Hamilton’s equations derived from either L(t, q⃗, ˙⃗q) or L(t, Q⃗,
˙⃗
Q) must take the

same form; i.e., either

q̇i =
∂H

∂pi
and ṗi = −

∂H

∂qi
; (8.4.56)

or

Q̇i =
∂H

∂Pi
and Ṗi = −

∂H

∂Qi
. (8.4.57)

That is, the transformation bringing (q⃗, p⃗ = ∂L/∂ ˙⃗q) to (Q⃗, P⃗ = ∂L/∂
˙⃗
Q) must be canonical. To

check this explicitly, we first begin with the relation

q̇a =
d

dt
qa
(
Q⃗(t)

)
=
∂qa

∂Qj

dQj

dt
. (8.4.58)
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Therefore (
∂L

∂Q̇i

)
t,Q⃗

=

(
∂L

∂q̇a

)
t,q⃗

∂

∂Q̇i

{
∂qa

∂Qj
Q̇j

}
Q⃗

=

(
∂L

∂q̇a

)
t,q⃗

∂qa

∂Qi
; (8.4.59)

and we deduce the relation between the ‘old’ and ‘new’ momentum to be

Pi =
∂qa

∂Qi
pa. (8.4.60)

Since q⃗ → q⃗(Q⃗) depends on Q⃗ but not on p⃗, the Jacobian ∂q⃗/∂Q⃗ does not depend on p⃗ either.
This allows us to compute the following first derivatives.

∂Pi
∂pa

=
∂qa

∂Qi
and

∂Pi
∂qa

=
∂

∂qa

(
∂ql

∂Qi

)
pl =

∂Qc

∂qa
∂ql

∂Qc∂Qi
pl. (8.4.61)

Exploiting these results, we may then compute{
Qi, Qj

}
=
∂Qi

∂qa
∂Qj

∂pa
− ∂Qi

∂pa

∂Qj

∂qa
= 0 (8.4.62)

{Pi, Pj} =
∂

∂qa

(
∂ql

∂Qi

)
pl ·

∂qa

∂Qi
− (i↔ j) (8.4.63)

=
∂2ql

∂Qj∂Qi
pl − (i↔ j) = 0. (8.4.64)

Finally, {
Qi, Pj

}
=
∂Qi

∂qa
∂qa

∂Qj
− ∂Qi

∂pa

∂Pj
∂qa

(8.4.65)

=
∂Qi

∂Qj
= δij. (8.4.66)

We have thus checked that (∂RI/∂rA)ĴAB(∂RJ/∂rB) = Ĵ IJ; i.e., the (q⃗,p⃗) to (Q⃗,P⃗ ) transforma-
tion is canonical.

Problem 8.29. Example: Simple Harmonic Oscillator (SHO) The SHO is described
by the Hamiltonian

H =
p2

2m
+
mω2

2
x2. (8.4.67)

Verify the following x → x(ϕ, ρ) and p → p(ϕ, ρ) are canonical transformations, with ϕ being
‘position’ and ρ ‘momentum’:

x =

√
2ρ

mω
cosϕ and p =

√
2ρ ·mω sinϕ. (8.4.68)

‘ One way to show this is to simply verify:

{f(x, p), g(x, p)}ϕ,ρ = ∂xf∂pg − ∂pf∂xg. (8.4.69)
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In terms of the new coordinates, further verify that

H = ωρ, (8.4.70)

ϕ̇ = ω and ρ̇ = 0. (8.4.71)

These calculations tell us, the solutions to the SHO with fixed energy E sweeps out circles on the
(x, p) phase space with the angular velocity given by ω and radius proportional to

√
ρ =

√
E/ω.

The pair (ϕ, ρ) is an example of angle-action variables, where ρ the conjugate momentum to ϕ
is constant and ϕ̇ itself is ϕ−independent.

Problem 8.30. Verify the following properties of the Poisson bracket.
Linearity It is linear. For all constants α and β,

{α · f + βg, h} = α {f, h}+ β {g, h} . (8.4.72)

Product Rule It obeys the ‘product rule’:

{f · g, h} = {f, h}g + f{g, h}. (8.4.73)

Jacobi Identity Finally, it satisfies the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. (8.4.74)

Warning: This is a tedious calculation.
The properties of the Poisson bracket in equations (8.4.47), (8.4.72), (8.4.73), and (8.4.74)

have parallels to those of the commutator.

Since canonical transformations leave Hamilton’s equations form-invariant, and since Hamil-
ton’s equations follow from extremizing the action S in eq. (8.4.26), canonical transformations
must therefore leave the action S invariant up to an additive constant. Let us now show that is
indeed the case at least for D = 1 by proving that the object

∆H(q, p) ≡ pdq − PdQ (8.4.75)

is a pure gradient

∆H = ∂qΣ(q, p)dq + ∂pΣ(q, p)dp (8.4.76)

iff the Poisson bracket in eq. (8.4.43) holds. For, we may transform Q→ Q(q, p) and see that

∆H(q, p) = (p− P∂qQ)dq − P∂pQdp (8.4.77)

≡ Vqdq + Vpdp. (8.4.78)

By the 2D version of the Poincaré lemma invoked above for proving the (non-)uniqueness of the
Lagrangian, we may say that (Vq, Vp) is a pure gradient iff its ‘curl’ is zero:

∂pVq − ∂qVp = (1− ∂pP∂qQ− P∂p∂qQ) + (∂qP∂pQ+ P∂q∂pQ) (8.4.79)

⇔ 1 = ∂qQ∂pP − ∂pQ∂qP. (8.4.80)
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You will prove the D−dimensional version of this statement in Problem (9.77) below. Here, we
simply record:

pidq
i − PidQi = ∂qiΣ(q⃗, p⃗)dq

i + ∂piΣ(q⃗, p⃗)dpi (8.4.81)

iff the canonical Poisson brackets in eq. (8.4.43) is valid. Furthermore, we then have, under such
a canonical transformation,

S =

∫ t

t′

(
Pi(s)Q̇

i(s)−H
(
s, q⃗(Q⃗, P⃗ ), p⃗(Q⃗, P⃗ )

))
ds+

∫ t

t′

dΣ

dt
dt (8.4.82)

=

∫ t

t′

(
Pi(s)Q̇

i(s)−H
(
s, Q⃗, P⃗

))
ds+ [Σ(q⃗(s), p⃗(s))]s=ts=t′ ; (8.4.83)

H
(
s, Q⃗, P⃗

)
≡ H

(
s, q⃗(Q⃗, P⃗ ), p⃗(Q⃗, P⃗ )

)
. (8.4.84)

It should be possible to arrange boundary conditions such that the Σ remains a constant and
the integral itself is extremized with respect to both Q⃗ and P⃗ .

Problem 8.31. Infinitesimal Time Evolution Generates Canonical Transformations
Consider the infinitesimal time development of (q⃗, p⃗); i.e.,

(q⃗(t), p⃗(t))→
(
Q⃗(t), P⃗ (t)

)
≡ (q⃗(t+ dt), p⃗(t+ dt)) (8.4.85)

= (q⃗(t), p⃗(t)) + ( ˙⃗q(t), ˙⃗p(t))dt+O
(
dt2
)
. (8.4.86)

Assuming these (q⃗(t), p⃗(t)) obey Hamilton’s equations, prove that (Q⃗(q⃗, p⃗), P⃗ (q⃗, p⃗)) defines an
infinitesimal canonical transformation.

Problem 8.32. Space- and Momentum-Translations Verify the following ‘kinematical’
Poisson bracket results:

{pi, f(t, q⃗, p⃗)} = −∂qif(t, q⃗, p⃗), (8.4.87){
qi, f(t, q⃗, p⃗)

}
= ∂pif(t, q⃗, p⃗). (8.4.88)

The first result may be interpreted as a small displacement in momentum space; and the second
as one in position space. That is, under the phase phase displacement q⃗ → q⃗+dq⃗ and p⃗→ p⃗+dp⃗,
we may assert

f(q⃗, p⃗)→ f(q⃗, p⃗)− {pi, f(q⃗, p⃗)} dqi +
{
qi, f(q⃗, p⃗)

}
dpi +O

(
(dq)2, (dp)2, dqdp

)
. (8.4.89)

Since Poisson brackets implement differentiation, for finite but constant displacements (q⃗, p⃗)→
(q⃗+ξ⃗, p⃗+Π⃗), the ensuing Taylor expansion may be written as a sum over nested Poisson brackets:

f(t, q⃗ + ξ⃗, p⃗+ Π⃗)

= f(t, q⃗, p⃗) +
∞∑
ℓ=1

1

ℓ!

(
ξi∂qi +Πi∂pi

)ℓ
f(t, q⃗, p⃗) (8.4.90)
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= f(t, q⃗, p⃗) +
∞∑
ℓ=1

1

ℓ!

{
−ξiℓpiℓ +Πiℓqiℓ ,

{
. . .
{
−ξi1pi1 +Πi1qi1 , f(t, q⃗, p⃗)

}
. . .
}}

. (8.4.91)

In the second line, the linearity of Poisson brackets in eq. (8.4.72) was employed.
Time-Evolution Next, use Hamilton’s equations (8.4.12) to show that, for an arbitrary

function f(t, q⃗, p⃗),

d

dt
f (t, q⃗(t), p⃗(t)) =

(
∂f

∂t

)
q⃗,p⃗

+ {f,H} . (8.4.92)

In particular, if f does not depend explicitly on time, that means under finite time evolution
t→ t+∆t, the f (q⃗(t), p⃗(t)) will evolve into

f (q⃗(t+∆t), p⃗(t+∆t))

= f (q⃗(t), p⃗(t)) +
+∞∑
ℓ=1

∆tℓ

ℓ!

{
. . .
{{

f (q⃗(t), p⃗(t)) , H
}
, H
}
. . . , H

}
︸ ︷︷ ︸
ℓ Poisson brackets

. (8.4.93)

Whereas eq. (8.4.87) and (8.4.88) do not depend on H and hence are ‘kinematical’, this result
is dynamical: it tells us how f would evolve whenever the (q⃗, p⃗) satisfy Hamilton’s equations.
There is even a quantum mechanical version of eq. (8.4.92), where the (q⃗, p⃗) are promoted to
operators while the Poisson bracket {·, ·} is replaced with the commutator (1/i)[·, ·].

Conserved quantities Eq. (8.4.92) is an important result because it allows us to
identify quantities that are conserved under time evolution governed by Hamilton’s equations
(8.4.12). For a start, let us observe that since the Poisson bracket is anti-symmetric, the Poisson
bracket of H with itself must necessarily be zero: {H,H} = 0. Therefore, if H itself does not
depend explicitly on time, it must be a conserved quantity – i.e., energy itself:

d

dt
H(q⃗, p⃗) =

∂H

∂t
= 0. (8.4.94)

Furthermore, if qk is an ignorable (or, cyclic) coordinate of some Lagrangian L, then the Hamil-
tonian H = q̇i(∂L/∂q̇i)−L is necessarily independent of qk too. Thus, its conjugate momentum
must be conserved by Hamilton’s equation:

ṗk = −
∂H

∂qk
= 0. (8.4.95)

According to eq. (8.4.92) we may also express this as

ṗk = {pk, H} = 0. (8.4.96)

Observe that, if some dynamical variables A and B are constants of motion – and if H itself is
time-independent – then

{A,H} = 0 = {B,H}. (8.4.97)
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Furthermore, by the Jacobi identity in eq. (8.4.74),

{A, {B,H}}+ {B, {H,A}}+ {H, {A,B}} = {H, {A,B}} = 0. (8.4.98)

That is, if A and B are conserved; so is {A,B}.
Previously, we saw that linear momentum was conserved due to space-translation symmetry.

For the 2-body problem, for instance, a space-translation symmetric Lagrangian would have a
potential that depends only on the relative displacement ∆⃗ ≡ x⃗1 − x⃗2 and not on their sum
x⃗1 + x⃗2. In fact, referring to eq. (8.3.32), we may deduce its Hamiltonian to be

H2B =
P⃗ 2
CM

2(M1 +M2)
+
P⃗ 2
µ

2µ
+ V

(
|∆⃗|
)
. (8.4.99)

That tells us X⃗CM is a cyclic coordinate and P⃗CM is a constant-of-motion.

Problem 8.33. Angular Momentum Conservation If L⃗ ≡ ∆⃗× P⃗µ, verify that{
L⃗,H2B

}
= 0; (8.4.100)

and therefore angular momentum is conserved. You may assume that {∆i, P j
µ} = δij.

Problem 8.34. Lie Algebra of SO3 Next, verify the following analog of the Lie algebra
of SO3. If L

i is the ith Cartesian component of the angular momentum,{
La, Lb

}
= iϵabcLc, (8.4.101){

L⃗2, La
}
= 0, L⃗2 ≡ LbLb; (8.4.102)

where ϵ123 ≡ 1. Again, you may assume the canonical relation {∆i, P j
µ} = δij.

Symmetry We now define a symmetry to be one generated by a canonical transforma-
tion such that the Hamiltonian remains invariant. For example, in the H2B above, displacing
X⃗CM → X⃗CM + a⃗ for any constant a⃗ leaves the Hamiltonian invariant; so does the simultaneous
replacements P i

µ → R̂ijP j
µ and ∆i → R̂ij∆j for some time independent rotation matrix R̂.

For infinitesimal transformation

q⃗ → q⃗ + δq⃗, (8.4.103)

p⃗→ p⃗+ δp⃗; (8.4.104)

the Hamiltonian goes asH → H+δ1H+. . . , where the first order perturbation may be computed
via Taylor expansion as

δ1H = ∂qiH · δqi + ∂piH · δpi. (8.4.105)

In Problem (9.77) below, the ‘small’ displacements δq⃗ and δp⃗ are canonical transformation, up
to first order in δq⃗ and δp⃗, iff they take the following general ‘pure gradients’ form

δqi = ∂pi (A(q⃗, p⃗) + Cp(p⃗)) , (8.4.106)

342



δpi = −∂qi (A(q⃗, p⃗)− Cq(q⃗)) , (8.4.107)

where Cq and Cp only depends on q⃗ and p⃗ respectively. Therefore,

δ1H = ∂qiH∂pi (A(q⃗, p⃗) + Cp(p⃗))− ∂piH∂qi (A(q⃗, p⃗)− Cq(q⃗)) (8.4.108)

= {H,A}+ ∂qiH∂piCp(p⃗) + ∂piH∂qiCq(q⃗). (8.4.109)

If the r⃗ satisfies Hamilton’s equations,

δH = −dA

dt
− dpi

dt
∂piCp(p⃗) +

dqi

dt
∂qiCq(q⃗) (8.4.110)

= − d

dt
(A(q⃗, p⃗) + Cp(p⃗)− Cq(q⃗)) . (8.4.111)

To sum: If the canonical transformation r⃗ → r⃗ + δr⃗ (cf. equations (8.4.106) and (8.4.107))
generates an infinitesimal symmetry – it leaves H invariant up to first order – then A(q⃗, p⃗) +
Cp(p⃗)− Cq(q⃗) must be a constant-of-motion.69

Ostrogradski: Why is Newton’s 2nd Law a 2nd Order DE? Just as we considered
the higher derivatives version of the Lagrangian formulation in Problem (8.1), we may seek an
analogous one for Hamiltonian dynamics. This will lead us to an insight regarding why Newton’s
second law is a differential equation involving only up to two – but no higher – time derivatives.

The starting point for us will be the Lagrangian that now depends on q⃗, ˙⃗q, . . . , q⃗(n) ≡ dnq⃗/dtn.

S =

∫ t

t′
L
(
s, q⃗(s), ˙⃗q(s), . . . , q⃗(n)(s)

)
ds (8.4.112)

To require that the dynamics – solution to q⃗ – extremize S will require 2n boundary conditions.
The Euler-Lagrange equations now read (cf. eq. (8.1.28)):

∂L

∂q⃗
− d

dt

∂L

∂q⃗(1)
+

(
− d

dt

)2
∂L

∂q⃗(2)
+

(
− d

dt

)n−1
∂L

∂q⃗(n−1)
+

(
− d

dt

)n
∂L

∂q⃗(n)
= 0. (8.4.113)

Ostrogradski’s Hamiltonian dynamics for such a higher derivative theory is then formulated as
follows.70 First define the A-th Q⃗ variable as

Q⃗(A) ≡
dA−1q⃗(t)

dtA−1
≡ q⃗(A−1), (8.4.114)

A ∈ {1, 2, . . . , n}; (8.4.115)

so that there are n Q⃗s in total: Q⃗(1) = q⃗, Q⃗(2) = ˙⃗q, . . . , Q⃗(n) = q⃗(n−1). As for their corresponding
conjugate momentum variables,

P⃗ (A) ≡ ∂L

∂q⃗(A)
+

(
− d

dt

)
∂L

∂q⃗(A+1)
+

(
− d

dt

)2
∂L

∂q⃗(A+2)
+ · · ·+

(
− d

dt

)n−A
∂L

∂q⃗(n)
; (8.4.116)

69Actually, invariance of H under canonical transformation is a tad too strict for conserved quantities to be
found. Rather, H only needs to go as H → H + dΨ/dt for some scalar Ψ. Then, the corresponding conserved
quantity under the infinitesimal canonical transformations would be A+ Cp − Cq −Ψ.

70This section follows Woodard [20], which I recommend the reader to read for further details and examples.
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with A again running from 1 through n. For instance, the 1st and 2nd momenta are

P⃗ (1) ≡ ∂L

∂ ˙⃗q
+

(
− d

dt

)
∂L

∂ ¨⃗q
+

(
− d

dt

)2
∂L

∂q⃗(3)
+ · · ·+

(
− d

dt

)n−1
∂L

∂q⃗(n)
, (8.4.117)

P⃗ (2) ≡ ∂L

∂ ¨⃗q
+

(
− d

dt

)
∂L

∂q⃗(3)
+

(
− d

dt

)2
∂L

∂q⃗(4)
+ · · ·+

(
− d

dt

)n−2
∂L

∂q⃗(n)
; (8.4.118)

whereas the (n− 1)th and nth momenta are

P⃗ (n−1) =
∂L

∂q⃗(n−1)
− d

dt

∂L

∂q⃗(n)
(8.4.119)

and P⃗ (n) =
∂

∂q⃗(n)
L
(
t, Q⃗(1), Q⃗(2), . . . , Q⃗(n), q⃗

(n)
)
. (8.4.120)

We have used eq. (8.4.114) in eq. (8.4.120) to replace the first n− 1 derivatives of q⃗ with their

corresponding Q⃗s. This then brings us to the key ‘no degeneracy’ assumption of Ostrogradski:
that the highest time derivative q⃗(n) may be solved in terms of Q⃗(1) = q⃗, Q⃗(2) = ˙⃗q, . . . , Q⃗(n) =

q⃗(n−1) and P⃗ (n) through eq. (8.4.120). The Hamiltonian for such a higher derivative system is
then defined as

H
(
t, Q⃗(1), . . . , Q⃗(n), P⃗

(1), . . . , P⃗ (n)
)

≡ P⃗ (A) · ˙⃗Q(A) − L
(
t, Q⃗(1), . . . , Q⃗(n), q⃗

(n)
(
Q⃗(1), . . . , Q⃗(n), P⃗

(n)
))

; (8.4.121)

where the · is the usual Euclidean dot product and the A in P⃗ (A) · Q⃗(A) runs from 1 to n so that

P⃗ (A) · ˙⃗Q(A) = P⃗ (1) · Q⃗(2) + · · ·+ P⃗ (n−1) · Q⃗(n) + P⃗ (n) · q⃗(n)
(
Q⃗(1), . . . , Q⃗(n), P⃗

(n)
)
, (8.4.122)

because dQ⃗(A)/dt = dq⃗(A−1)/dt = Q⃗(A+1). Im terms of these Q⃗s and P⃗ s, Hamilton’s equations
are

dQ⃗(A)

dt
=

∂H

∂P⃗ (A)
and

dP⃗ (A)

dt
= − ∂H

∂Q⃗(A)

. (8.4.123)

Problem 8.35. Verify that the Ostrogradsky-Hamilton equations (8.4.123) implies the
Euler-Lagrange ones in eq. (8.4.113).

Ostrogradsky’s Instability One of the main observations regarding Ostrogradsky’s
Hamiltonian H in eq. (8.4.121) is that the Lagrangian on the right hand side is independent

of the first n − 1 momenta, P⃗ (1) through P⃗ (n−1), and therefore the Hamiltonian itself is in fact

linear in them due to the first group of terms P⃗ (A) · ˙⃗Q(A) – see eq. (8.4.122). Now, whenever H
itself is time-independent, as is usually the case when the system is completely isolated, then H
is a constant-of-motion when evaluated on the solutions to the Q⃗s and P⃗ s. This ‘on-shell’ H may
therefore be identified as ‘energy’. However, because H is linear in the first n− 1 momenta, this
‘energy’ no longer has a lower limit. By decreasing P⃗ (1) through P⃗ (n−1) as much as one desires,
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H can be lowered arbitrarily. If there is only one object in the system, this may not pose an
issue. But if there are two or more objects in the system, each governed by such higher momenta
Hamiltonians, this would mean one object O may increase its ‘energy’ arbitrarily by absorbing
it from others. That this may continue indefinitely is because, since there is no lower bound to
their ‘energies’, the other objects may simply lower theirs and impart it to O. This describes a
runaway situation, where infinite amount of positive energy may extracted by absorbing it from
others. Since we do not observe such unstable behavior in Nature, we expect physical systems
to admit differential equations that are at most second order in time.

Problem 8.36. Verify explicitly, that whenever L and therefore H does not depend explic-
itly on time, dH/dt = 0 when evaluated on the solutions to eq. (8.4.123).

Field Redefinitions; Use post-Coulombic L?

8.5 ⋆Dissipative Systems
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9 Differential Geometry of Curved Spaces

9.1 Preliminaries, Tangent Vectors, Metric, and Curvature

Being fluent in the mathematics of differential geometry is mandatory if you wish to understand
Einstein’s General Relativity, humanity’s current theory of gravity. But it also gives you a
coherent framework to understand the multi-variable calculus you have learned, and will allow
you to generalize it readily to dimensions other than the 3 spatial ones you are familiar with.
In this section I will provide a practical introduction to differential geometry, and will show
you how to recover from it what you have encountered in 2D/3D vector calculus. My goal here
is that you will understand the subject well enough to perform concrete calculations, without
worrying too much about the more abstract notions like, for e.g., what a manifold is.

I will assume you have an intuitive sense of what space means – after all, we live in it!
Spacetime is simply space with an extra time dimension appended to it, although the notion
of ‘distance’ in spacetime is a bit more subtle than that in space alone. To specify the (local)
geometry of a space or spacetime means we need to understand how to express distances in terms
of the coordinates we are using. For example, in Cartesian coordinates (x, y, z) and by invoking
Pythagoras’ theorem, the square of the distance (dℓ)2 between (x, y, z) and (x+dx, y+dy, z+dz)
in flat (aka Euclidean) space is

(dℓ)2 = (dx)2 + (dy)2 + (dz)2. (9.1.1)

71A significant amount of machinery in differential geometry involves understanding how to
employ arbitrary coordinate systems – and switching between different ones. For instance, we
may convert the Cartesian coordinates flat space of eq. (9.1.1) into spherical coordinates,

(x, y, z) ≡ r (sin θ · cosϕ, sin θ · sinϕ, cos θ) , (9.1.2)

and find

(dℓ)2 = dr2 + r2(dθ2 + sin(θ)2dϕ2). (9.1.3)

The geometries in eq. (9.1.1) and eq. (9.1.3) are exactly the same. All we have done is to express
them in different coordinate systems.

Conventions This is a good place to (re-)introduce the Einstein summation and the
index convention. First, instead of (x, y, z), we can instead use xi ≡ (x1, x2, x3); here, the
superscript does not mean we are raising x to the first, second and third powers. A derivative
with respect to the ith coordinate is ∂i ≡ ∂/∂xi. The advantage of such a notation is its

71In 4-dimensional flat spacetime, with time t in addition to the three spatial coordinates {x, y, z}, the in-
finitesimal distance is given by a modified form of Pythagoras’ theorem: ds2 ≡ (dt)2 − (dx)2 − (dy)2 − (dz)2.
(The opposite sign convention, i.e., ds2 ≡ −(dt)2 + (dx)2 + (dy)2 + (dz)2, is also equally valid.) Why the “time”
part of the distance differs in sign from the “space” part of the metric would lead us to a discussion of the
underlying Lorentz symmetry. Because I wish to postpone the latter for the moment, I will develop differential
geometry for curved spaces, not curved spacetimes. Despite this restriction, rest assured most of the subsequent
formulas do carry over to curved spacetimes by simply replacing Latin/English alphabets with Greek ones – see
the “Conventions” paragraph below.
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compactness: we can say we are using coordinates {xi}, where i ∈ {1, 2, 3}.72 Not only that, we
can employ Einstein’s summation convention, which says all repeated indices are automatically
summed over their relevant range. For example, eq. (9.1.1) now reads:

(dx1)2 + (dx2)2 + (dx3)2 = δijdx
idxj ≡

∑
1≤i,j≤3

δijdx
idxj. (9.1.4)

(We say the indices of the {dxi} are being contracted with those of δij.) The symbol δij is known
as the Kronecker delta, defined as

δij = 1, i = j, (9.1.5)

= 0, i ̸= j. (9.1.6)

Of course, δij is simply the ij component of the identity matrix. Already, we can see δij can
be readily defined in an arbitrary D dimensional space, by allowing i, j to run from 1 through
D. With these conventions, we can re-express the change of variables from eq. (9.1.1) and eq.
(9.1.3) as follows. First write

ξi ≡ (r, θ, ϕ); (9.1.7)

which are subject to the restrictions

r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π. (9.1.8)

Next, remember the chain rule

dxi =
∂xi

∂ξa
dξa. (9.1.9)

Then (9.1.1) becomes

δabdx
adxb = δab

∂xa

∂ξi
∂xb

∂ξj
dξidξj =

∂x⃗

∂ξi
· ∂x⃗
∂ξj

dξidξj, (9.1.10)

where in the second equality we have, for convenience, expressed the contraction with the Kro-
necker delta as an ordinary (vector calculus) dot product. At this point, let us notice, if we call
the coefficients of the quadratic form gij; for example, δijdx

idxj ≡ gijdx
idxj, we have

gi′j′(ξ⃗) =
∂x⃗

∂ξi
· ∂x⃗
∂ξj

. (9.1.11)

The primes on the indices are there to remind us this equation is not gij(x⃗) = δij, the components

written in the Cartesian coordinates, but rather the ones written in spherical coordinates ξ⃗ =

72It is common to use the English alphabets to denote space coordinates and Greek letters to denote spacetime
ones. We will adopt this convention, but note that it is not a universal one; so be sure to check the notation of
whatever you are reading.
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(r, θ, ϕ). In fact, eq. (9.1.11) really holds for transforming flat space in Cartesian coordinates to

any curvilinear coordinates {ξ⃗}. Moreover for gij(x⃗) = δij, what we are finding in eq. (9.1.10) is

gi′j′(ξ⃗) = gab(x⃗)
∂xa

∂ξi
∂xb

∂ξj
. (9.1.12)

Let’s proceed to work out the above dot products. Firstly,

∂x⃗

∂r
= (sin θ · cosϕ, sin θ · sinϕ, cos θ) ≡ r̂, (9.1.13)

∂x⃗

∂θ
= r (cos θ · cosϕ, cos θ · sinϕ,− sin θ) ≡ rθ̂, (9.1.14)

∂x⃗

∂ϕ
= r (− sin θ · sinϕ, sin θ · cosϕ, 0) ≡ r sin(θ)ϕ̂. (9.1.15)

The r̂ is the unit radial vector; the θ̂ is the unit vector tangent to the longitude lines; and ϕ̂ is
that tangent to the latitude lines.

Next, a direct calculation should return the results

grθ = gθr =
∂x⃗

∂r
· ∂x⃗
∂θ

= 0, grϕ = gϕr =
∂x⃗

∂r
· ∂x⃗
∂ϕ

= 0, gθϕ = gϕθ =
∂x⃗

∂θ
· ∂x⃗
∂ϕ

= 0; (9.1.16)

and

grr =
∂x⃗

∂r
· ∂x⃗
∂r
≡
(
∂x⃗

∂r

)2

= 1, (9.1.17)

gθθ =

(
∂x⃗

∂θ

)2

= r2, (9.1.18)

gϕϕ =

(
∂x⃗

∂ϕ

)2

= r2 sin2(θ). (9.1.19)

Altogether, these yield eq. (9.1.3).
If the gab(x⃗) in eq. (9.1.12) were not simply δab, the coordinate transformation computation

would of course not amount to merely taking dot products. Instead, we may phrase it as a matrix
multiplication. Regarding ∂xi/∂ξa as the ia component of the matrix ∂x/∂ξ, eq. (9.1.12) is then
the ij component of

ĝ(ξ⃗) =

(
∂x

∂ξ

)T

ĝ(x⃗)
∂x

∂ξ
. (9.1.20)

Problem 9.1. Verify that the Jacobian matrix ∂xi/∂(r, θ, ϕ)a encountered above can be cast as
the following product

∂xi

∂(r, θ, ϕ)a
=

 r̂ θ̂ ϕ̂

 diag (1, r, r sin θ) . (9.1.21)

The r̂, θ̂, and ϕ̂ are the unit vectors, written as 3−component columns, pointing along the
respective r, θ and ϕ coordinate lines at a given point in space. Use this result to carry out the
matrix multiplication in eq. (9.1.20), so as to verify that eq. (9.1.3) follows from eq. (9.1.1).
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General spatial metric In a generic curved space, the square of the infinitesimal
distance between the neighboring points x⃗ and x⃗+dx⃗, which we will continue to denote as (dℓ)2,
is no longer given by eq. (9.1.1) – because we cannot expect Pythagoras’ theorem to apply. But
by scaling arguments it should still be quadratic in the infinitesimal distances {dxi}. The most
general of such expression is

(dℓ)2 = gij(x⃗)dx
idxj. (9.1.22)

Since it measures distances, gij needs to be real. It is also symmetric, since any antisymmetric
portion would drop out of the summation in eq. (9.1.22) anyway. (Why?) Finally, because we
are discussing curved spaces for now, gij needs to have strictly positive eigenvalues.

Additionally, given gij, we can proceed to define the inverse metric gij in any coordinate
system, as the matrix inverse of gij:

gijgjl ≡ δil ⇔ gij ≡ (g−1)ij. (9.1.23)

Everything else in a differential geometric calculation follows from the curved metric in eq.
(9.1.22), once it is specified for a given setup:73 the ensuing Christoffel symbols, Riemann/Ricci
tensors, covariant derivatives/curl/divergence; what defines straight lines; parallel transporta-
tion; etc.
Distances If you are given a path x⃗(λ1 ≤ λ ≤ λ2) between the points x⃗(λ1) = x⃗1 and
x⃗(λ2) = x⃗2, then the distance swept out by this path is given by the integral

ℓ =

∫
x⃗(λ1≤λ≤λ2)

√
gij (x⃗(λ)) dxidxj =

∫ λ2

λ1

dλ

√
gij (x⃗(λ))

dxi(λ)

dλ

dxj(λ)

dλ
. (9.1.24)

The dxi/dλ is an example of a tangent vector; it describes the ‘velocity’ at x⃗(λ).

Problem 9.2. Affine Parameterization Show that the definition in eq. (9.1.24) yields
an infinitesimal distance that is invariant under an arbitrary change of the parameter λ, as long
as the transformation is orientation preserving. That is, suppose we replace λ→ λ(λ′) and thus
dλ = (dλ/dλ′)dλ′ – then as long as dλ/dλ′ > 0, we have

dℓ = dλ

√
gij (x⃗)

dxi

dλ

dxj

dλ
= dλ′

√
gij (x⃗)

dxi

dλ′
dxj

dλ′
; (9.1.25)

and hence

ℓ =

∫ λ′2

λ′1

dλ′
√
gij (x⃗(λ′))

dxi(λ′)

dλ′
dxj(λ′)

dλ′
, (9.1.26)

where λ(λ′1,2) = λ1,2. The parameter λ is really a coordinate of the 1D path swept out by x⃗(λ);
parameterization invariance here simply amounts to the statement that any 1D coordinate may
be used to describe distances/paths.

73As with most physics texts on differential geometry, we will ignore torsion in this Chapter, but will discuss
it briefly in the next, §(11).
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Why can we always choose λ such that√
gij (x⃗(λ))

dxi(λ)

dλ

dxj(λ)

dλ
= a (≡ constant) , (9.1.27)

i.e., the square root factor can be made constant along the entire path linking x⃗1 to x⃗2? Hint:
A key step may be to explain why we may always solve λ in terms of λ′ (or, vice versa) through
the relation

dλ

√
gij (x⃗)

dxi

dλ

dxj

dλ
= a · dλ′. (9.1.28)

(Up to a re-scaling and a 1D translation, this amounts to using the path length itself as the
parameter λ′ – can you see it?) Now, suppose eq. (9.1.27) holds, explain why the square of the
distance integral in eq. (9.1.24) may then be expressed as

ℓ2 = (λ2 − λ1)
∫ λ2

λ1

gij(z⃗(λ))
dzi

dλ

dzj

dλ
dλ. (9.1.29)

Hint: Use the constancy of the square root factor to solve λ2 − λ1 in terms of ℓ.

Tangent Vectors as Directional Derivatives In Euclidean space, we may define
vectors by drawing a directed straight line between one point to another. In curved space, the
notion of a ‘straight line’ is not straightforward, and as such we no longer try to implement such
a definition of a vector. Instead, the notion of tangent vectors, and their higher rank tensor
generalizations, now play central roles in curved space(time) geometry and physics. Imagine, for
instance, a thin layer of water flowing over an undulating 2D surface – an example of a tangent
vector on a curved space is provided by the velocity of an infinitesimal volume within the flow.

More generally, let x⃗(λ) denote the trajectory swept out by an infinitesimal volume of fluid
as a function of (fictitious) time λ, transversing through a (D ≥ 2)−dimensional space. (The x⃗
need not be Cartesian coordinates.) We may then define the tangent vector vi(λ) ≡ dx⃗(λ)/dλ.
Conversely, given a vector field vi(x⃗), i.e., a (D ≥ 2)−component object defined at every point in
space, we may find a trajectory x⃗(λ) such that dx⃗/dλ = v⃗(x⃗(λ)). (This amounts to integrating
an ODE, and in this context is why x⃗(λ) is called the integral curve of vi.) In other words,
tangent vectors do fit the mental picture that the name suggests, as ‘little arrows’ based at each
point in space, describing the local ‘velocity’ of some (perhaps fictitious) flow.

You may readily check that tangent vectors at a given point p in space do indeed form a
vector space. However, we have written the components vi but did not explain what their basis
vectors were. Geometrically speaking, v tells us in what direction and how quickly to move
away from the point p. This can be formalized by recognizing that the number of independent
directions that one can move away from p corresponds to the number of independent partial
derivatives on some arbitrary (scalar) function defined on the curved space; namely ∂if(x⃗) for
i = 1, 2, . . . , D, where {xi} are the coordinates used. Furthermore, the set of {∂i} do span a
vector space, based at p. We would thus say that any tangent vector v is a superposition of
partial derivatives:

v ≡ vi(x⃗)
∂

∂xi
≡ vi(x1, x2, . . . , xD)

∂

∂xi
≡ vi∂i. (9.1.30)
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As already alluded to, given these components {vi}, the vector v can be thought of as the
velocity with respect to some (fictitious) time λ by solving the ordinary differential equation
vi = dxi(λ)/dλ. We may now see this more explicitly; vi∂if(x⃗) is the time derivative of some
arbitrary function f along the integral curve of v⃗ because, by the chain rule,

vi∂if (x⃗(λ)) =
dxi

dλ
∂if(x⃗) =

df(λ)

dλ
. (9.1.31)

To sum: the {∂i} are the basis kets based at a given point in the curved space, allowing us to
enumerate all the independent directions along which we may compute the ‘time derivative’ of
any f at the same point. The rightmost term of eq. (9.1.31) also indicates, this notion of ‘time
derivatives’ is independent of the choice of coordinates {xi}.

Tangent Vectors: Flat Space Example In flat space we may always employ Carte-
sian coordinates {x⃗}, but for many applications may choose instead to switch to some other

curvilinear ones {ξ⃗}. Suppose now we wish to describe some trajectory ξ⃗(λ) – in classical me-
chanics λ would be the time t – and compute, say, its first and second derivatives with respect
to some λ. If we begin with x⃗ but view them as a function of ξ⃗(λ),

ẋi ≡ dxi(ξ⃗(λ))

dλ
=
∂xi

∂ξa
dξa

dλ
; (9.1.32)

and

ẍi ≡ d2xi(ξ⃗(λ))

dλ2
=
∂xi

∂ξa
d2ξa

dλ2
+

∂2xi

∂ξa∂ξb
dξa

dλ

dξb

dλ
. (9.1.33)

Now {∂xi/∂ξa|i = 1, . . . , D}, for fixed a, are simply the Cartesian components of the tangent
vector parallel to the ξa-axis. Next, define the unit-length versions of these tangent vectors as

êℓ ≡ êaℓ∂xa ≡
∣∣∣∣ ∂x⃗∂ξℓ

∣∣∣∣−1
∂xi

∂ξℓ
∂xi , (9.1.34)∣∣∂x⃗/∂ξℓ∣∣ ≡√δab(∂xa/∂ξℓ)(∂xb/∂ξℓ). (9.1.35)

For simplicity, let us further assume the curvilinear coordinates ξ⃗ are orthogonal, such that

gab(ξ⃗) =
∂x⃗

∂ξa
· ∂x⃗
∂ξb

= δab

(
∂x⃗

∂ξa

)2

, (9.1.36)

δabê
a
mê

b
n = δmn. (9.1.37)

If we expand the velocity V and acceleration A, namely

V ≡ ẋi∂xi and A ≡ ẍi∂xi , (9.1.38)

in terms of these orthonormal basis {êℓ},

V ≡ V ℓ̂(ξ⃗) · êℓ and A ≡ Aℓ̂(ξ⃗) · êℓ; (9.1.39)
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then since we are in flat space, we may extract the ℓth component of V in the ξ⃗ orthonormal
basis {êℓ} by dot product,

V ℓ̂(ξ⃗) = ẋm · δmn · ênℓ (9.1.40)

=
1

|∂x⃗/∂ξℓ|
dξa

dλ

∂x⃗

∂ξa
· ∂x⃗
∂ξℓ

=

∣∣∣∣ ∂x⃗∂ξℓ
∣∣∣∣ dξℓdλ

, (9.1.41)

where we have employed eq. (9.1.36). We see from eq. (9.1.34) that∣∣∣∣ ∂x⃗∂ξℓ
∣∣∣∣ êℓ = √gℓℓ · êℓ = ∂

∂ξℓ
; (9.1.42)

which means the velocity itself is

V (ξ⃗) = V ℓ̂ · êℓ =
D∑
ℓ=1

ξ̇ℓ
∣∣∣∣ ∂x⃗∂ξℓ

∣∣∣∣ êℓ = D∑
ℓ=1

ξ̇ℓ
√
gℓℓ · êℓ = ξ̇ℓ∂ξℓ . (9.1.43)

Similarly, the ℓth component of the acceleration in the orthonormal basis {êℓ} is given by a
similar dot product calculation,

Aℓ̂(ξ⃗) = ẍm · δmn · ênℓ =
1

|∂x⃗/∂ξℓ|

(
∂x⃗

∂ξa
· ∂x⃗
∂ξℓ

d2ξa

dλ2
+

∂2x⃗

∂ξb∂ξc
· ∂x⃗
∂ξℓ

dξb

dλ

dξc

dλ

)
(9.1.44)

=
gaℓ

|∂x⃗/∂ξℓ|

(
d2ξa

dλ2
+ gaf

∂2x⃗

∂ξb∂ξc
· ∂x⃗
∂ξf

dξb

dλ

dξc

dλ

)
(9.1.45)

=

∣∣∣∣ ∂x⃗∂ξℓ
∣∣∣∣ (d2ξℓ

dλ2
+ gℓf

∂2x⃗

∂ξb∂ξc
· ∂x⃗
∂ξf

dξb

dλ

dξc

dλ

)
. (9.1.46)

Now consider

1

2
∂ξ{bgc}f −

1

2
∂ξfgbc

=
1

2
∂ξ{b

(
∂x⃗

∂ξc}
· ∂x⃗
∂ξf

)
− 1

2
∂ξf

(
∂x⃗

∂ξb
· ∂x⃗
∂ξc

)
(9.1.47)

=
∂2x⃗

∂ξb∂ξc
· ∂x⃗
∂ξf

. (9.1.48)

Hence, we may express

gℓf (ξ⃗)
∂2x⃗

∂ξc∂ξb
· ∂x⃗
∂ξf

=
1

2
gℓf
(
∂ξ{bgc}f (ξ⃗)−

1

2
∂ξfgbc(ξ⃗)

)
≡ Γℓbc[ξ⃗]. (9.1.49)

These {Γℓbc[ξ⃗]} are known as Christoffel symbols, where the second equality holds for arbitrary
metrics and coordinate systems; whereas the leftmost expression is valid for arbitrary curvilinear
coordinates but in flat space. In Problem (9.33) below, you will provide a different proof of the
leftmost expression of eq. (9.1.49).
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At this point, the acceleration reads

ẍi∂xi = A =
D∑
ℓ=1

D2ξℓ

dλ2

∣∣∣∣ ∂x⃗∂ξℓ
∣∣∣∣ êℓ = D∑

ℓ=1

D2ξℓ

dλ2
√
gℓℓ · êℓ =

D2ξℓ

dλ2
∂ξℓ , (9.1.50)

where the

D2ξa

dλ2
≡ ξ̈a + Γabcξ̇

bξ̇c. (9.1.51)

will turn out to be the covariant acceleration vector components, transforming as a vector in
arbitrary curvilinear coordinates.

Integral Curve from Tangent Vector To obtain the integral curve – sometimes
dubbed lines of flow [13] – from its tangent vector, we note that vi(x⃗) = dxi/dλ⇔ dλ = dxi/vi

(no sum over i). This in turn implies

dx1

v1(x⃗)
=

dx2

v2(x⃗)
= · · · = dxD

vD(x⃗)
. (9.1.52)

In certain circumstances, these may be integrated to determine the integral curves. Taking a 3D
example from Morse and Feshbach’s [13] Chapter 1, if

vx = −ay, vy = ax, vz = b(x2 + y2); (9.1.53)

then we have

−dx

ay
=

dy

ax
=

dz

b(x2 + y2)
. (9.1.54)

Equating the first and second terms, −xdx = ydy, which in turn yields

d
(
x2 + y2

)
= 0 (9.1.55)

x2 + y2 = ρ2(≡ constant); (9.1.56)

whereas equating the second and third factors hand us

dy

a(sgn(x))
√
ρ2 − y2

=
dz

bρ2
. (9.1.57)

Its integral yields, for constant z0, the 2D surface arctan(y/x) = a · (z − z0)/(bρ
2), whose

intersection with the 2D cylinder x2 + y2 = ρ2 then defines a flow line for a fixed pair (ρ, z0).

Problem 9.3. Problem 1.3 of Morse & Feshbach [13] In 3D flat space parametrized
by Cartesian coordinates (x, y, z), show that the integral curves to

vi(x, y, z) =
(
2xz, 2yz, a2 + z2 − x2 − y2

)
, (9.1.58)

for constant a, are given by the intersection between the following 2D surfaces

y

x
= tanφ and

x2 + y2 + z2 + a2

2a
√
x2 + y2

= cothµ. (9.1.59)
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Hence, each flow line is labeled by the constants (φ, µ). Hints: One approach is to first re-write
vi in the spherical coordinates (r, θ, ϕ) of eq. (9.1.2). Show that

v = (a2 + r2) cos(θ)∂r +
r2 − a2

r sin(θ)
∂θ. (9.1.60)

Explain why this implies

ln
r2 + a2

r · r0
= −cos2(θ)

2
and ϕ = φ, (9.1.61)

where r0 and φ are both constants. YZ: Need to connect to the Cartesian solution.

Parallel transport and (Intrinsic) Curvature Roughly speaking, a curved space is
one where the usual rules of Euclidean (flat) space no longer apply. For example, Pythagoras’
theorem does not hold; and the sum of the angles of an extended triangle is not π.

The quantitative criteria to distinguish a curved space from a flat one, is to parallel transport
a tangent vector vi(x⃗) around a closed loop on a coordinate grid. If, upon bringing it back to the
same location x⃗, the tangent vector is the same one we started with – for all possible coordinate
loops – then the space is flat. Otherwise the space is curved. In particular, if you parallel
transport a vector around an infinitesimal closed loop formed by two pairs of coordinate lines,
starting from any one of its corners, and if the resulting vector is compared with original one,
you would find that the difference is proportional to the Riemann curvature tensor Ri

jkl. More
specifically, suppose vi is parallel transported along a parallelogram, from x⃗ to x⃗ + dy⃗; then to
x⃗+dy⃗+dz⃗; then to x⃗+dz⃗; then back to x⃗. Then, denoting the end result as v′i, we would find
that

v′i − vi ∝ Ri
jklv

jdykdzl. (9.1.62)

Therefore, whether or not a geometry is locally curved is determined by this tensor. Of course,
we have not defined what parallel transport actually is; to do so requires knowing the covariant
derivative – but let us first turn to a simple example where our intuition still holds.

2−sphere as an example A common textbook example of a curved space is that of a
2−sphere of some fixed radius, sitting in 3D flat space, parametrized by the usual spherical
coordinates (0 ≤ θ ≤ π, 0 ≤ ϕ < 2π).74 Start at the north pole with the tangent vector v = ∂θ
pointing towards the equator with azimuthal direction ϕ = ϕ0. Let us parallel transport v along
itself, i.e., with ϕ = ϕ0 fixed, until we reach the equator itself. At this point, the vector is
perpendicular to the equator, pointing towards the South pole. Next, we parallel transport v
along the equator from ϕ = ϕ0 to some other longitude ϕ = ϕ′

0; here, v is still perpendicular to
the equator, and still pointing towards the South pole. Finally, we parallel transport it back to
the North pole, along the ϕ = ϕ′

0 line. Back at the North pole, v now points along the ϕ = ϕ′
0

longitude line and no longer along the original ϕ = ϕ0 line. Therefore, v does not return to
itself after parallel transport around a closed loop: the 2−sphere is a curved surface. This same
example also provides us a triangle whose sum of its internal angles is π + |ϕ0 − ϕ′

0| > π.75

74Any curved space can in fact always be viewed as a curved surface residing in a higher dimensional flat space.
75The 2−sphere has positive curvature; whereas a saddle has negative curvature, and would support a triangle

whose angles add up to less than π. In a very similar spirit, the Cosmic Microwave Background (CMB) sky
contains hot and cold spots, whose angular size provide evidence that we reside in a spatially flat universe. See
the Wilkinson Microwave Anisotropy Probe (WMAP) pages here and here.
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Finally, notice in this 2-sphere example, the question of what a straight line means – let alone
using it to define a vector, as one might do in flat space – does not produce a clear answer.

Comparing tangent vectors at different locations That tangent vectors do not, in general,
remain the same under parallel transportation in a curved space tells us comparing tangent
vectors based at different locations is not a straightforward procedure, compared to the situation
in flat space. For, if v⃗(x⃗) is to be compared to w⃗(x⃗′) by parallel transporting the former to x⃗′;
different results may be obtained by simply choosing different paths to get from x⃗ to x⃗′.

Intrinsic vs Extrinsic Curvature A 2D cylinder (embedded in 3D flat space) formed
by rolling up a flat rectangular piece of paper has a surface that is intrinsically flat – the Riemann
tensor is zero everywhere because the intrinsic geometry of the surface is the same flat metric
before the paper was rolled up. However, the paper as viewed by an ambient 3D observer does
have an extrinsic curvature due to its cylindrical shape. To characterize extrinsic curvature
mathematically – at least in the case where we have a D − 1 dimensional surface situated in a
D dimensional space – one would erect a vector perpendicular to the surface in question and
parallel transport it along this same surface: the latter is flat if the vector remains parallel;
otherwise it is curved. In curved spacetimes, when this vector refers to the flow of time and is
perpendicular to some spatial surface, the extrinsic curvature also describes its time evolution.

9.2 Locally Flat Coordinates & Symmetries, Infinitesimal Volumes,
General Tensors, Orthonormal Basis

Locally flat coordinates76 and symmetries It is a mathematical fact that, given some
fixed point yi0 on the curved space, one can find coordinates yi such that locally the metric does
become flat:

lim
y⃗→y⃗0

gij(y⃗) = δij −
1

3
Rikjl(y⃗0) (y − y0)k(y − y0)l + . . . , (9.2.1)

with a similar result for curved spacetimes. In this “locally flat” coordinate system, the first
corrections to the flat Euclidean metric is quadratic in the displacement vector y⃗ − y⃗0, and
Rikjl(y⃗0) is the Riemann tensor – which is the chief measure of curvature – evaluated at y⃗0. In a
curved spacetime, that geometry can always be viewed as locally flat is why the mathematics you
are encountering here is the appropriate framework for reconciling gravity as a force, Einstein’s
equivalence principle, and the Lorentz symmetry of Special Relativity.

Note that under spatial rotations {R̂i
j}, which obeys R̂a

iR̂
b
jδab = δij; and translations {ai};

if we define in Euclidean space the following change-of-Cartesian coordinates (from x⃗ to x⃗′)

xi ≡ R̂i
jx

′j + ai; (9.2.2)

the flat metric would retain the same form

δijdx
idxj = δabR̂

a
iR̂

b
jdx

′idx′j = δijdx
′idx′j. (9.2.3)

A similar calculation would tell us flat Euclidean space is invariant under parity flips, i.e.,
x′k ≡ −xk for some fixed k. To sum:

76Also known as Riemann normal coordinates.
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At a given point in a curved space, it is always possible to find a coordinate system
– i.e., a geometric viewpoint/‘frame’ – such that the space is flat up to distances of
O(1/|maxRijlk(y⃗0)|1/2), and hence ‘locally’ invariant under rotations, translations,
and reflections.

This is why it took a while before humanity came to recognize we live on the curved surface of
the (approximately spherical) Earth: locally, the Earth’s surface looks flat!

‘Dot Product’ of Tangent Vectors This local flatness allows us to interpret the
contraction of tangent vectors with the metric. For two distinct vectors vi and wi, if we choose
to evaluate gijv

iwj in a locally flat region, it becomes an ordinary dot product in Euclidean
space:

gijv
iwj → δijv

iwj = v⃗ · w⃗. (9.2.4)

For instance, gijv
ivj is the square of the length of v⃗; whereas gijv

iwj/
√

(gabvavb)(gmnwmwn) is
the cosine of the angle between v⃗ and w⃗.
Coordinate-transforming the metric Note that, in the context of eq. (9.1.22), x⃗ is not
a vector in Euclidean space, but rather another way of denoting xa without introducing too
many dummy indices {a, b, . . . , i, j, . . . }. Also, xi in eq. (9.1.22) are not necessary Cartesian
coordinates, but can be completely arbitrary. The metric gij(x⃗) can viewed as a 3×3 (or D×D,
in D dimensions) matrix of functions of x⃗, telling us how the notion of distance vary as one moves
about in the space. Just as we were able to translate from Cartesian coordinates to spherical
ones in Euclidean 3-space, in this generic curved space, we can change from x⃗ to ξ⃗, i.e., one
arbitrary coordinate system to another, so that

gij (x⃗) dx
idxj = gij

(
x⃗(ξ⃗)

) ∂xi(ξ⃗)
∂ξa

∂xj(ξ⃗)

∂ξb
dξadξb ≡ gab(ξ⃗)dξ

adξb. (9.2.5)

We can attribute all the coordinate transformation to how it affects the components of the
metric:

gab(ξ⃗) = gij

(
x⃗(ξ⃗)

) ∂xi(ξ⃗)
∂ξa

∂xj(ξ⃗)

∂ξb
. (9.2.6)

The left hand side are the metric components in ξ⃗ coordinates. The right hand side consists of
the Jacobians ∂x/∂ξ contracted with the metric components in x⃗ coordinates – but now with

the x⃗ replaced with x⃗(ξ⃗), their corresponding expressions in terms of ξ⃗. Recall too, we have
already noted in eq. (9.1.20) that eq. (9.2.6) may be calculated via matrix multiplication.
Inverse metric Previously, we defined gij to be the matrix inverse of the metric tensor gij.
We can also view gij as components of the tensor

gij(x⃗)∂i ⊗ ∂j, (9.2.7)

where we have now used ⊗ to indicate we are taking the tensor product of the partial derivatives
∂i and ∂j. In gij (x⃗) dx

idxj we really should also have dxi ⊗ dxj, but I prefer to stick with the
more intuitive idea that the metric (with lower indices) is the sum of squares of distances. Just
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as we know how dxi transforms under x⃗→ x⃗(ξ⃗), we also can work out how the partial derivatives
transform.

gij(x⃗)
∂

∂xi
⊗ ∂

∂xj
= gab

(
x⃗(ξ⃗)

) ∂ξi
∂xa

∂ξj

∂xb
∂

∂ξi
⊗ ∂

∂ξj
(9.2.8)

In terms of its components, we can read off their transformation rules:

gij(ξ⃗) = gab
(
x⃗(ξ⃗)

) ∂ξi
∂xa

∂ξj

∂xb
. (9.2.9)

The left hand side is the inverse metric written in the ξ⃗ coordinate system, whereas the right
hand side involves the inverse metric written in the x⃗ coordinate system – contracted with two
Jacobian’s ∂ξ/∂x – except all the x⃗ are replaced with the expressions x⃗(ξ⃗) in terms of ξ⃗.

(Inverse) Jacobians A technical point: here and below, the Jacobian ∂xa(ξ⃗)/∂ξj can

be calculated in terms of ξ⃗ by direct differentiation if we have defined x⃗ in terms of ξ⃗, namely
x⃗(ξ⃗). But the Jacobian (∂ξi/∂xa) in terms of ξ⃗ requires a matrix inversion. For, by the chain
rule,

∂xi

∂ξl
∂ξl

∂xj
=
∂xi

∂xj
= δij, and

∂ξi

∂xl
∂xl

∂ξj
=
∂ξi

∂ξj
= δij. (9.2.10)

In other words, given x⃗→ x⃗(ξ⃗), we can compute J a
i ≡ ∂xa/∂ξi in terms of ξ⃗, with a being the

row number and i as the column number. Then find the inverse, i.e., (J −1)ai and identify it

with ∂ξa/∂xi in terms of ξ⃗.

Problem 9.4. Let xi be Cartesian coordinates and

ξi ≡ (r, θ, ϕ) (9.2.11)

be the usual spherical coordinates; see eq. (9.1.2). Calculate ∂ξi/∂xa in terms of ξ⃗ and thereby,

from the flat inverse metric δij in Cartesian coordinates, find the inverse metric gij(ξ⃗) in the
spherical coordinate system. You should find:

gij = δab
∂ξi

∂xa
∂ξj

∂xb
= diag

[
1,

1

r2
,

1

r2 sin(θ)2

]
. (9.2.12)

Hint: Compute ∂xi/∂(r, θ, ϕ)a. How do you get ∂(r, θ, ϕ)a/∂xi from it? You may also find the
form of the Jacobian matrix in eq. (9.1.21) to be useful here.

Kets and Bras Just as the {∂i} are the ket’s, the basis tangent vectors at a given point
in space, we may now identify the infinitesimal distances {dxi} as the basis dual vectors (the
bra’s) through the definition 〈

dxi
∣∣ ∂j〉 ≡ δij, ∀i, j. (9.2.13)

Why this is a useful perspective is due to the following. Let us consider an infinitesimal variation
of our arbitrary function at x⃗:

df = ∂if(x⃗)dx
i. (9.2.14)
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Then, given a vector field v, we can employ eq. (9.2.13) to construct the derivative of the latter
along the former, at some point x⃗, by

⟨df | v⟩ = vj∂if(x⃗)
〈
dxi
∣∣ ∂j〉 = vi∂if(x⃗). (9.2.15)

This describes a flux of sorts: if vi were flowing parallel to the constant f surface, ⟨df | v⟩ would
be zero, for instance.

What about the inner products ⟨dxi| dxj⟩ and ⟨∂i| ∂j⟩? They are〈
dxi
∣∣ dxj〉 = gij and ⟨∂i| ∂j⟩ = gij. (9.2.16)

This is because, for real metrics gij,

gij
∣∣dxj〉 ≡ |∂i⟩ ⇔ gij

〈
dxj
∣∣ ≡ ⟨∂i| ; (9.2.17)

or, equivalently, ∣∣dxj〉 ≡ gij |∂i⟩ ⇔
〈
dxj
∣∣ ≡ gij ⟨∂i| . (9.2.18)

In other words,

At a given point in a curved space, one may define two different vector spaces
– one spanned by the basis tangent vectors {|∂i⟩} (whose length2 is given by the
metric gij) and another by its dual ‘bras’ {|dxi⟩} (whose length2 is given by the
inverse metric gij). These two vector spaces are connected through the metric gij
and its inverse.

Incidentally, we may express the ‘dot product’ between v⃗ and w⃗ using the bra-ket notation:

⟨v⃗| w⃗⟩ = viwj ⟨∂i| ∂j⟩ = gijv
iwj. (9.2.19)

General tensor A scalar φ is an object with no indices that transforms as

φ(ξ⃗) = φ
(
x⃗(ξ⃗)

)
. (9.2.20)

That is, take φ(x⃗) and simply replace x⃗→ x⃗(ξ⃗) to obtain φ(ξ⃗). An example of a scalar field is the
temperature T (x⃗) of an uneven, hence curved, 2D surface. Perhaps somewhat less obvious, the
coordinates we endow to a given curved space(time) are also scalars – the intersections of their
‘equipotential’ surfaces are in fact the grid lines that allow us to parametrize the space(time)
itself. For instance, in 3D flat space parametrized by spherical coordinates (r, θ, ϕ), the equi-
potential surfaces of the radial coordinate are simply the surface of a sphere with radius r.
Their intersection with constant θ surfaces form latitude lines; and with constant ϕ surfaces
form longitude ones.

A vector vi(x⃗)∂i transforms as, by the chain rule,

vi(x⃗)
∂

∂xi
= vi(x⃗(ξ⃗))

∂ξj

∂xi
∂

∂ξj
≡ vj(ξ⃗)

∂

∂ξj
(9.2.21)
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If we attribute all the transformations to the components, the components in the x⃗-coordinate
system vi(x⃗) is related to those in the y⃗-coordinate system vi(ξ⃗) through the relation

vi(ξ⃗) = va(x⃗(ξ⃗))
∂ξi

∂xa
. (9.2.22)

Similarly, a 1-form Aidx
i transforms, by the chain rule,

Ai(x⃗)dx
i = Ai(x⃗(ξ⃗))

∂xi

∂ξj
dξj ≡ Aj(ξ⃗)dξ

j. (9.2.23)

If we again attribute all the coordinate transformations to the components; the ones in the
x⃗-system Ai(x⃗) is related to the ones in the ξ⃗-system Ai(ξ⃗) through

Aj(ξ⃗) = Ai(x⃗(ξ⃗))
∂xi

∂ξj
. (9.2.24)

By taking tensor products of {|∂i⟩} and {⟨dxi|}, we may define a rank
(
N
M

)
tensor T as an object

with N “upper indices” and M “lower indices” that transforms as

T i1i2...iNj1j2...jM (ξ⃗) = T a1a2...aNb1b2...bM

(
x⃗(ξ⃗)

) ∂ξi1
∂xa1

. . .
∂ξiN

∂xaN
∂xb1

∂ξj1
. . .

∂xbM

∂ξjM
. (9.2.25)

The left hand side are the tensor components in ξ⃗ coordinates and the right hand side are the
Jacobians ∂x/∂ξ and ∂ξ/∂x contracted with the tensor components in x⃗ coordinates – but now

with the x⃗ replaced with x⃗(ξ⃗), their corresponding expressions in terms of ξ⃗. This multi-indexed
object should be viewed as the components of

T i1i2...iNj1j2...jM (x⃗)

∣∣∣∣ ∂

∂xi1

〉
⊗ · · · ⊗

∣∣∣∣ ∂

∂xiN

〉
⊗
〈
dxj1

∣∣⊗ · · · ⊗ 〈dxjM ∣∣ . (9.2.26)

77Above, we only considered T with all upper indices followed by all lower indices. Suppose we
had T i kj ; it is the components of

T i kj (x⃗) |∂i⟩ ⊗
〈
dxj
∣∣⊗ |∂k⟩ . (9.2.27)

77Strictly speaking, when discussing the metric and its inverse above, we should also have respectively expressed
them as gij

〈
dxi
∣∣⊗ 〈dxj∣∣ and gij |∂i⟩ ⊗ |∂j⟩, with the appropriate bras and kets enveloping the {dxi} and {∂i}.

We did not do so because we wanted to highlight the geometric interpretation of gijdx
idxj as the square of the

distance between x⃗ and x⃗+dx⃗, where the notion of dxi as (a component of) an infinitesimal ‘vector’ – as opposed
to being a 1-form – is, in our opinion, more useful for building the reader’s geometric intuition.
It may help the physicist reader to think of a scalar field in eq. (9.2.20) as an observable, such as the temperature

T (x⃗) of the 2D undulating surface mentioned above. If you were provided such an expression for T (x⃗), together
with an accompanying definition for the coordinate system x⃗; then, to convert this same temperature field to a
different coordinate system (say, ξ⃗) one would, in fact, do T (ξ⃗) ≡ T (x⃗(ξ⃗)), because you’d want ξ⃗ to refer to the

same point in space as x⃗ = x⃗(ξ⃗). For a general tensor in eq. (9.2.26), the tensor components T i1i2...iN
j1j2...jM

may then be regarding as scalars describing some weighted superposition of the tensor product of basis vectors
and 1-forms. Its transformation rules in eq. (9.2.25) are really a shorthand for the lazy physicist who does not
want to carry the basis vectors/1-forms around in his/her calculations.
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Raising and lowering tensor indices The indices on a tensor are moved – from upper
to lower, or vice versa – using the metric tensor. For example,

Tm1...ma n1...nb
i = gijT

m1...majn1...nb , (9.2.28)

T i
m1...ma n1...nb

= gijTm1...majn1...nb
. (9.2.29)

The key observation is the upper and lower indices transform ‘oppositely’ from each other because
of eq. (9.2.10). Compare

V i(ξ⃗) =
∂ξi

∂xa
V a
(
x⃗(ξ⃗)

)
≡ J i

aV
a
(
x⃗(ξ⃗)

)
(9.2.30)

versus

Wi(ξ⃗) =
∂xa

∂ξi
Wa

(
x⃗(ξ⃗)

)
≡ Wa

(
x⃗(ξ⃗)

) (
J −1

)a
i
. (9.2.31)

Hence, vi = gijv
j automatically converts the vector vi into a tensor that transforms properly as

1−form; and similarly, vi = gijvj automatically produces a vector from a 1−form vi. In fact,
recalling the “Kets and Bras” discussion above, we have for instance:

V j |∂j⟩ = V j(gij
∣∣dxi〉) = Vi

∣∣dxi〉 = Vi(g
ij |∂j⟩). (9.2.32)

Because upper indices transform oppositely from lower indices, when we contract a upper and
lower index, it now transforms as a scalar. For example,

Ail(ξ⃗)B
lj(ξ⃗) =

∂ξi

∂xm
Ama

(
x⃗(ξ⃗)

) ∂xa
∂ξl

∂ξl

∂xc
Bcn

(
x⃗(ξ⃗)

) ∂ξj
∂xn

=
∂ξi

∂xm
Ama

(
x⃗(ξ⃗)

)
δac B

cn
(
x⃗(ξ⃗)

) ∂ξj
∂xn

=
∂ξi

∂xm
∂ξj

∂xn
Amc

(
x⃗(ξ⃗)

)
Bcn

(
x⃗(ξ⃗)

)
. (9.2.33)

Moreover, we have the following equivalent scalars

viwi = gijv
iwj = gijviwj = viw

i. (9.2.34)

Altogether, these illustrate why we use the metric gij and its inverse gij to move indices: since
they are always available in a given (curved) geometry, they provide a universal means to convert
one tensor to another through movement of its indices. In fact, we may go further.

Problem 9.5. Invariant
(
1
1

)
Tensor Suppose, in the x⃗ coordinate system, we have the

tensor T ij(x⃗) ≡ δij, which may be represented as a D ×D identity matrix ID×D. Show that, in

any other coordinate system ξ⃗, this tensor remains the same:

T ij(ξ⃗) = δij = T ij(x⃗). (9.2.35)

The placement of indices is important here. Explain why Tij(x⃗) ≡ δij and T
ij(x⃗) ≡ δij do not

remain the same under coordinate transformations x⃗→ x⃗(ξ⃗). Hint: Provide an example.
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The invariance of δij is why we may simultaneously and consistently define gij as the matrix
inverse of gij and assert that gij are the components of gij∂i ⊗ ∂j, with both indices of the gij

transforming oppositely from those of gij. For, we may simply contract any pair of indices; say,

gia(x⃗)gib(x⃗) = δab = gia(ξ⃗)gib(ξ⃗). (9.2.36)

Quotient Rule A closely related result is known as the quotient theorem, which we shall
phrase as follows. If

Ai1...iNBi1...iN (9.2.37)

transforms as a scalar for any tensor Bi1...iN , then Ai1...iN must be a tensor. For, upon the

transformation x⃗→ x⃗(ξ⃗),

Ai1...iN (x⃗(ξ⃗))
∂ξa1

∂xi1
. . .

∂ξaN

∂xiN
Ba′1...a

′
N
(ξ⃗) = Aa

′
1...a

′
N (ξ⃗)Ba′1...a

′
N
(ξ⃗). (9.2.38)

At this point, Aa
′
1...a

′
N (ξ⃗) is simply the object Ai1...iN (x⃗) written in the coordinate system {ξ⃗}

but is not necessarily a tensor. However, since Bi1...iN is arbitrary, we must have

Ai1...iN (x⃗(ξ⃗))
∂ξa1

∂xi1
. . .

∂ξaN

∂xiN
= Aa

′
1...a

′
N (ξ⃗). (9.2.39)

Problem 9.6. Prove that, if

Ai1...iSj1...jNBk1...kM j1...jN (9.2.40)

transforms as a
(
S
M

)
tensor for any Bk1...kM j1...jN that transforms as a tensor; then Ai1...iSj1...jN

must be a tensor. Here, N , M , and S are arbitrary positive integers.

Problem 9.7. Cartesian Tensors in Flat Space In D−dimensional flat space with
geometry gij = δij parametrized by Cartesian coordinates x⃗, consider the Euclidean coordinate
transformation (rotation plus spatial translation)

xi = R̂ijx′j + ai; (9.2.41)

where R̂ is an orthogonal matrix obeying R̂TR̂ = ID×D; and a⃗ is constant. For an arbitrary
tensor T i1i2...iNj1j2...jM (x⃗), derive the relationship

T
a′1a

′
2...a

′
N

b′1b
′
2...b

′
M
(x⃗′) = T i1i2...iNj1j2...jM (x⃗ = R̂x⃗′ + a⃗)R̂i1a1 . . . R̂iNaN R̂j1b1 . . . R̂jM bM ; (9.2.42)

where R̂ab = R̂ab, and T
a′1a

′
2...a

′
N

b′1b
′
2...b

′
M

are the components of the same tensor but in the x⃗′

coordinate system. Notice both upper and lower indices transform in the same manner.

General covariance Tensors are ubiquitous in physics: the electric and magnetic fields
can be packaged into one Faraday tensor Fµν ; the energy-momentum-shear-stress tensor of matter
Tµν is what sources the curved geometry of spacetime in Einstein’s theory of General Relativity;
etc. The coordinate transformation rules in eq. (9.2.25) that defines a tensor is actually the
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statement that, the mathematical description of the physical world (the tensors themselves in
eq. (9.2.26)) should not depend on the coordinate system employed. Any expression or equation
with physical meaning – i.e., it yields quantities that can in principle be measured – must be put
in a form that is generally covariant: either a scalar or tensor under coordinate transformations.78

An example is, it makes no sense to assert that your new-found law of physics depends on g11,
the 11 component of the inverse metric – for, in what coordinate system is this law expressed
in? What happens when we use a different coordinate system to describe the outcome of some
experiment designed to test this law?

Above, we have already encountered the scalar gijv
iwj, where v⃗ and w⃗ are arbitrary (tangent)

vectors. Since it is a scalar, we may evaluate it in any coordinate system we wish. This is why
it was legitimate to do so in a locally flat coordinate system so as to facilitate its interpretation
as a curved space ‘dot product’.

Below, we will show that the infinitesimal volume in curved space is given by dDx⃗
√
g(x⃗),

where g(x⃗) is the determinant of the metric in the x⃗−coordinate basis. For this to make sense
geometrically, you will show in Problem (9.8) below that it is in fact generally covariant – i.e.,
it takes the same form in any coordinate system:

dDx⃗
√
g(x⃗) = dDξ⃗

√
g(ξ⃗); (9.2.43)

where g(ξ⃗) is the determinant of the metric but in the ξ⃗−coordinate basis.
Another aspect of general covariance is that, although tensor equations should hold in any

coordinate system – if you suspect that two tensors quantities are actually equal, say

Si1i2... = T i1i2..., (9.2.44)

it suffices to find one coordinate system to prove this equality. It is not necessary to prove
this by using abstract indices/coordinates because, as long as the coordinate transformations
are invertible, then once we have verified the equality in one system, the proof in any other
follows immediately once the required transformations are specified. One common application
of this observation is to apply the fact mentioned around eq. (9.2.1), that at any given point
in a curved space(time), one can always choose coordinates where the metric there is flat. You
will often find this “locally flat” coordinate system simplifies calculations – and perhaps even
aids in gaining some intuition about the relevant physics, since the expressions usually reduce
to their more familiar counterparts in flat space. To illustrate this using a simple example, we
now answer the question: what is the curved analog of the infinitesimal volume, which we would
usually write as dDx in Cartesian coordinates?

Determinant of metric and the infinitesimal volume The determinant of the
metric transforms as

det gij(ξ⃗) = det

[
gab

(
x⃗(ξ⃗)

) ∂xa
∂ξi

∂xb

∂ξj

]
. (9.2.45)

Using the properties detA ·B = detA detB and detAT = detA, for any two square matrices A
and B,

det gij(ξ⃗) =

(
det

∂xa(ξ⃗)

∂ξb

)2

det gij

(
x⃗(ξ⃗)

)
. (9.2.46)

78You may also demand your equations/quantities to be tensors/scalars under group transformations.
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The square root of the determinant of the metric is often denoted as
√
|g|. It transforms as√∣∣∣g(ξ⃗)∣∣∣ =√∣∣∣g (x⃗(ξ⃗))∣∣∣ ∣∣∣∣∣det ∂xa(ξ⃗)∂ξb

∣∣∣∣∣ . (9.2.47)

We have previously noted that, given any point x⃗0 in the curved space, we can always choose
local coordinates {x⃗} such that the metric there is flat. This means at x⃗0 the infinitesimal
volume of space is dDx⃗ and det gij(x⃗0) = 1. Recall from multi-variable calculus that, whenever

we transform x⃗→ x⃗(ξ⃗), the integration measure would correspondingly transform as

dDx⃗ = dDξ⃗

∣∣∣∣det ∂xi∂ξa

∣∣∣∣ , (9.2.48)

where ∂xi/∂ξa is the Jacobian matrix with row number i and column number a. Comparing
this multi-variable calculus result to eq. (9.2.47) specialized to our metric in terms of {x⃗}
but evaluated at x⃗0, we see the determinant of the Jacobian is in fact the square root of the
determinant of the metric in some other coordinates ξ⃗,√∣∣∣g(ξ⃗)∣∣∣ = (√∣∣∣g (x⃗(ξ⃗))∣∣∣ ∣∣∣∣∣det ∂xi(ξ⃗)∂ξa

∣∣∣∣∣
)
x⃗=x⃗0

=

∣∣∣∣∣det ∂xi(ξ⃗)∂ξa

∣∣∣∣∣
x⃗=x⃗0

. (9.2.49)

In flat space and by employing Cartesian coordinates {x⃗}, the infinitesimal volume (at some
location x⃗ = x⃗0) is d

Dx⃗. What is its curved analog? What we have just shown is that, by going

from ξ⃗ to a locally flat coordinate system {x⃗},

dDx⃗ = dDξ⃗

∣∣∣∣∣det ∂xi(ξ⃗)∂ξa

∣∣∣∣∣
x⃗=x⃗0

= dDξ⃗

√
|g(ξ⃗)|. (9.2.50)

However, since x⃗0 was an arbitrary point in our curved space, we have argued that, in a general
coordinate system ξ⃗, the infinitesimal volume is given by

dDξ⃗

√∣∣∣g(ξ⃗)∣∣∣ ≡ dξ1 . . . dξD
√∣∣∣g(ξ⃗)∣∣∣. (9.2.51)

Problem 9.8. General Covariance of Volume Form Upon an orientation preserving
change of coordinates y⃗ → y⃗(ξ⃗), where det ∂y/∂ξ > 0, show that

dDy⃗
√
|g(y⃗)| = dDξ⃗

√∣∣∣g(ξ⃗)∣∣∣. (9.2.52)

Therefore calling dDx⃗
√
|g(x⃗)| an infinitesimal volume is a generally covariant statement.

It is worth reiterating: g(y⃗) is the determinant of the metric written in the y⃗ coordinate

system; whereas g(ξ⃗) is that of the metric written in the ξ⃗ coordinate system. The latter is not
the same as the determinant of the metric written in the y⃗-coordinates, with y⃗ replaced with
y⃗(ξ⃗); i.e., be careful that the determinant is not a scalar.
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Since dDx⃗
√
|g(x⃗)| is generally covariant – i.e., the same prescription may be

employed to compute it in all coordinate systems – and since all curved spaces are
locally flat in the Riemann normal coordinate system {yi}, we may employ the latter
to interpret dDx⃗

√
|g(x⃗)| = dDy⃗ as the infinitesimal volume.

Volume integrals If φ(x⃗) is some scalar quantity, finding its volume integral within some
domain D in a generally covariant way can be now carried out using the infinitesimal volume
we have uncovered; it reads

I ≡
∫
D

dDx⃗
√
|g(x⃗)|φ(x⃗). (9.2.53)

In other words, I is the same result no matter what coordinates we used to compute the integral
on the right hand side.

Example: Volume of sphere The sphere of radius R in flat 3D space can be described
by r ≤ R, where in spherical coordinates dℓ2 = dr2 + r2(dθ2 + sin2 θdϕ2). Therefore det gij =
r4(sin θ)2 and the sphere’s volume reads

Vol(r ≤ R) =

∫
r≤R

d3ξ⃗

√
g(ξ⃗), ξi ≡ (r, θ, ϕ) (9.2.54)

=

∫ R

0

drr2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ =
4

3
πR3. (9.2.55)

Problem 9.9. Spherical coordinates in D space dimensions. In D space dimensions,
we may denote the D-th unit vector as êD; and n̂D−1 as the unit radial vector, parametrized by
the angles {0 ≤ θ1 < 2π, 0 ≤ θ2 ≤ π, . . . , 0 ≤ θD−2 ≤ π}, in the plane perpendicular to êD. Let
r ≡ |x⃗| and n̂D be the unit radial vector in the D space. Any vector x⃗ in this space can thus be
expressed as

x⃗ = rn̂
(
θ⃗
)
= r cos(θD−1)êD + r sin(θD−1)n̂D−1, 0 ≤ θD−1 ≤ π. (9.2.56)

(Can you see why this is nothing but the Gram-Schmidt process?) Just like in the 3D case,
r cos(θD−1) is the projection of x⃗ along the êD direction; while r sin(θD−1) is that along the
radial direction in the plane perpendicular to êD.

� If dΩ2
N is the square of the infinitesimal solid angle in N spatial dimensions, where

dΩ2
N ≡

N−1∑
I,J=1

Ω
(N)
IJ dθIdθJ, Ω

(N)
IJ ≡

N∑
i,j=1

δij
∂n̂iN
∂θI

∂n̂jN
∂θJ

, (9.2.57)

first show that the Cartesian metric δij in D-space transforms to

(dℓ)2 = dr2 + r2dΩ2
D. (9.2.58)

� Then show that square of the infinitesimal solid angle in D−space is related to that in
(D − 1)−space as

dΩ2
D = (dθD−1)2 + (sin θD−1)2dΩ2

D. (9.2.59)
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� Proceed to argue that the full D-metric in spherical coordinates is

dℓ2 = dr2 + r2

(
(dθD−1)2 +

D−1∑
I=2

s2D−1 . . . s
2
D−I+1(dθ

D−I)2

)
, (9.2.60)

θ1 ∈ [0, 2π), θ2, . . . , θD−1 ∈ [0, π]. (9.2.61)

Here, sI ≡ sin θI.

� Write down the flat space metric in spherical coordinates, as well as the Cartesian coordi-
nates x⃗ as a function of their spherical counterparts, for D = 3, 4, 5.

� Show that the determinant of the angular metric Ω
(N)
IJ obeys a recursion relation

detΩ
(N)
IJ =

(
sin θN−1

)2(N−2) · detΩ(N−1)
IJ . (9.2.62)

� Explain why this implies there is a recursion relation between the infinitesimal solid angle
in D space and that in (D−1) space. Moreover, show that the integration volume measure
dDx⃗ in Cartesian coordinates then becomes, in spherical coordinates,

dDx⃗ = dr · rD−1 · dθ1 . . . dθD−1
(
sin θD−1

)D−2
√
detΩ

(D−1)
IJ . (9.2.63)

� Use these results to find the solid angle subtended by a unit sphere in D spatial dimensions.
Hint: You may find the integral representation of the Beta function useful; see here.

Symmetries (aka Isometries), infinitesimal displacements, Killing vectors In
some Cartesian coordinates {xi} the flat space metric is δijdx

idxj. Suppose we chose a different
set of axes for new Cartesian coordinates {x′i}, the metric will still take the same form, namely
δijdx

′idx′j. Likewise, on a 2-sphere the metric is dθ2 + (sin θ)2dϕ2 with a given choice of axes
for the 3D space the sphere is embedded in; upon any rotation to a new axis, so the new angles
are now (θ′, ϕ′), the 2-sphere metric is still of the same form dθ′2 + (sin θ′)2dϕ′2. All we have
to do, in both cases, is swap the symbols x⃗ → x⃗′ and (θ, ϕ) → (θ′, ϕ′). The reason why we can
simply swap symbols to express the same geometry in different coordinate systems, is because
of the symmetries present: for flat space and the 2-sphere, the geometries are respectively
indistinguishable under translation/rotation and rotation about its center.

Motivated by this observation that geometries enjoying symmetries (aka isometries) retain
their form under an active coordinate transformation – one that corresponds to an actual dis-
placement from one location to another79 – we now consider a infinitesimal coordinate transfor-
mation as follows. Starting from x⃗, we define a new set of coordinates x⃗′ through an infinitesimal
vector ξ⃗(x⃗),

x⃗′ ≡ x⃗− ξ⃗(x⃗). (9.2.64)

79As opposed to a passive coordinate transformation, which is one where a different set of coordinates are used
to describe the same location in the geometry.
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(The − sign is for technical convenience.) We shall interpret this definition as an active coor-
dinate transformation – given some location x⃗, we now move to a point x⃗′ that is displaced in-
finitesimally far away, with the displacement itself described by −ξ⃗(x⃗). On the other hand, since

ξ⃗ is assumed to be “small,” we may replace in the above equation, ξ⃗(x⃗) with ξ⃗(x⃗′) ≡ ξ⃗(x⃗→ x⃗′).
This is because the error incurred would be of O(ξ2).

x⃗ = x⃗′ + ξ⃗(x⃗′) +O(ξ2) ⇒ ∂xi

∂x′a
= δia + ∂a′ξ

i(x⃗′) +O(ξ∂ξ) (9.2.65)

How does this change our metric?

gij (x⃗) dx
idxj = gij

(
x⃗′ + ξ⃗(x⃗′) + . . .

) (
δia + ∂a′ξ

i + . . .
) (
δjb + ∂b′ξ

j + . . .
)
dx′adx′b

= (gij (x⃗
′) + ξc∂c′gij(x⃗

′) + . . . )
(
δia + ∂a′ξ

i + . . .
) (
δjb + ∂b′ξ

j + . . .
)
dx′adx′b

≡
(
gij(x⃗

′) + (£ξg)ij (x⃗
′) +O(ξ2)

)
dx′idx′j, (9.2.66)

where the first-order-in-ξ⃗ terms are

(£ξg)ij (x⃗
′) ≡ ξc(x⃗′)

∂gij(x⃗
′)

∂x′c
+ gia(x⃗

′)
∂ξa(x⃗′)

∂x′j
+ gja(x⃗

′)
∂ξa(x⃗′)

∂x′i
. (9.2.67)

A point of clarification might be helpful. In eq. (9.2.66), we are not merely asking “What is

dℓ2 at x⃗′?” The answer to that question would be (dℓ)2x⃗′ = gij(x⃗− ξ⃗(x⃗))dxidxj, with no need to
transform the dxi. Rather, here, we are performing a coordinate transformation from x⃗ to x⃗′,
induced by an infinitesimal displacement via x⃗′ = x⃗− ξ⃗(x⃗)⇔ x⃗ = x⃗′ + ξ⃗(x⃗′) + . . . – where x⃗ and
x⃗′ are infinitesimally separated. An elementary example would be to rotate the 2−sphere about
the z−axis, so θ = θ′ but ϕ = ϕ′ + ϵ for infinitesimal ϵ. Then, ξi∂i = ϵ∂ϕ.

At this point, we see that if the geometry enjoys a symmetry along the entire curve whose
tangent vector is ξ⃗, then it must retain its form gij(x⃗)dx

idxj = gij(x⃗
′)dx′idx′j and therefore,80

equations

(£ξg)ij = 0, (isometry along ξ⃗). (9.2.68)

81Conversely, if (£ξg)ij = 0 everywhere in space, then starting from some point x⃗, we can make

incremental displacements along the curve whose tangent vector is ξ⃗, and therefore find that the
metric retain its form along its entirety. Now, a vector ξ⃗ that satisfies (£ξg)ij = 0 is called a
Killing vector and eq. (9.2.68) is known as Killing’s equation. We may then summarize:

A geometry enjoys an isometry along ξ⃗ if and only if ξ⃗ is a Killing vector satisfying
eq. (9.2.68) in the given region of space.

Remark In the above ‘General covariance’ discussion, I emphasized the importance of ex-
pressing geometric or physical laws in the same form in all coordinate systems. You may therefore
ask, can equations (9.2.67) and (9.2.68) be re-phrased as tensor equations? For, otherwise, how
do we know the notion of symmetry in curved space(time) is itself a coordinate independent
concept? See Problem (9.28) for an answer.

80We reiterate, by the same form, we mean gij(x⃗) and gij(x⃗
′) are the same functions if we treat x⃗ and x⃗′ as

dummy variables. For example, g33(r, θ) = (r sin θ)2 and g3′3′(r
′, θ′) = (r′ sin θ′)2 in the 2-sphere metric.

81(£ξg)ij is known as the Lie derivative of the metric along ξ.
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Problem 9.10. Can you justify the statement: “If the metric gij is independent of one of
the coordinates, say xk, then ∂k is a Killing vector of the geometry”?

Problem 9.11. Angular momentum ‘generators’ and 2-sphere isometries The gen-
erators of rotation in 3D space are proportional to the following vectors:

J (x) = sin(ϕ)∂θ + cos(ϕ) cot(θ)∂ϕ, (9.2.69)

J (y) = − cos(ϕ)∂θ + sin(ϕ) cot(θ)∂ϕ, (9.2.70)

J (z) = ∂ϕ. (9.2.71)

(See §(5.6.2) for a discussion. Briefly: J (x) generates rotations on the (y, z) plane; J (y) on
the (x, z) plane; and J (z) on the (x, y) plane.) Verify directly that they satisfy the Killing
equation (9.2.68) on the metric of the unit 2−sphere centered at x⃗ = 0⃗ in 3D flat space: dℓ2 =
dθ2 + (sin θ)2dϕ2.

Problem 9.12. Angular Momentum Algebra from Rotation Killing Vectors If A
and B are vector fields, so that Af(x⃗) ≡ Ai∂if(x⃗) for arbitrary scalar functions {f}, show that

[A,B] f ≡ Ai∂i
(
Bj∂jf

)
−Bi∂i

(
Aj∂jf

)
(9.2.72)

=
(
Ai∂iB

j −Bi∂iA
j
)
∂jf. (9.2.73)

That is, the commutator of two vector fields A and B is a vector field whose jth component is
Ai∂iB

j −Bi∂iA
j.

[A,B]j = Ai∂iB
j −Bi∂iA

j (9.2.74)

Referring to the Killing vectors in equations (9.2.69) through (9.2.71), if we now define Li ≡
−iJ (i), where i ∈ {x, y, z}, show that these {Li} obey the angular momentum algebra[

Li, Lj
]
= iϵijkLk. (9.2.75)

Since these (J (x), J (y), J (z)) produce infinitesimal rotations, this problem is a direct verification
that the geometry of the 2−sphere is invariant under rotations.

Problem 9.13. Angular Momentum in Flat Spacetime Verify the following vector
fields written in Cartesian coordinates,

J ij ≡ xi∂j − xj∂i = x[iδj]k∂k, (9.2.76)

are Killing vectors for a fixed pair of (i, j). (In §(4) you would learn how these are proportional
to the generators of rotations.) For 3D, also verify, by switching to spherical coordinate (r, θ, ϕ),
that J ij in fact are equivalent to equations (9.2.69), (9.2.70), and (9.2.71).

The i and j run over 1 through D, and since J ij is anti-symmetric under i ↔ j inter-
change, there are (D2−D)/2 of these Killing vector fields. They correspond to ‘orbital’ angular
momentum in quantum mechanics. The D partial derivatives {∂i} are also Killing vectors be-
cause the flat metric δij is independent of all the Cartesian coordinates. Altogether, we have
(D2 −D)/2 +D = D(D + 1)/2 Killing vectors in flat space.
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Maximal Symmetry The maximum number of linearly independent Killing vectors in D
dimensions is D(D+1)/2, flat space being an example of such a maximally symmetric geometry.
See Chapter 13 of Weinberg’s Gravitation and Cosmology [23] for a discussion.
Orthonormal frame So far, we have been writing tensors in the coordinate basis – the
basis vectors of our tensors are formed out of tensor products of {dxi} and {∂i}. To interpret
components of tensors, however, we need them written in an orthonormal basis. This amounts
to using a uniform set of measuring sticks on all axes, i.e., a local set of (non-coordinate)
Cartesian axes where one “tick mark” on each axis translates to the same length. Moreover,
writing vectors V i∂i = V îêi in an orthonormal basis {êi} in flat space(time) reduces to the vector
calculus practice of using unit length mutually perpendicular basis vectors.

As an example, suppose we wish to describe some fluid’s velocity vx∂x + vy∂y on a 2 di-
mensional flat space. In Cartesian coordinates vx(x, y) and vy(x, y) describe the velocity at

some point ξ⃗ = (x, y) flowing in the x- and y-directions respectively. Suppose we used polar
coordinates, however,

ξi = r(cosϕ, sinϕ). (9.2.77)

The metric would read

(dℓ)2 = dr2 + r2dϕ2. (9.2.78)

The velocity now reads vr(ξ⃗)∂r + vϕ(ξ⃗)∂ϕ, where v
r(ξ⃗) has an interpretation of “rate of flow in

the radial direction”. However, notice the dimensions of the vϕ is not even the same as that
of vr; if vr were of [Length/Time], then vϕ is of [1/Time]. At this point we recall – just as dr
(which is dual to ∂r) can be interpreted as an infinitesimal length in the radial direction, the arc
length rdϕ (which is dual to (1/r)∂ϕ) is the corresponding one in the perpendicular azimuthal
direction. Let us introduce the following notation for the vector fields

εr̂ ≡ ε i
r̂ ∂i ≡ ∂r ⇔ ε i

r̂ = δir; (9.2.79)

and

εϕ̂ ≡ ε i

ϕ̂
∂i ≡ r−1∂ϕ ⇔ ε i

ϕ̂
= r−1δiϕ. (9.2.80)

A direct calculation now reveals their orthonormal character:

⟨εr̂| εr̂⟩ = ⟨∂r| ∂r⟩ = grr = 1 (9.2.81)〈
εϕ̂

∣∣∣ εϕ̂〉 = r−2 ⟨∂ϕ| ∂ϕ⟩ =
gϕϕ
r2

= 1 (9.2.82)

⟨εr̂| εϕ̂
〉
= ⟨∂r| r−1∂ϕ

〉
= r−1grϕ = 0. (9.2.83)

The εr̂ and εϕ̂ here may therefore be identified with, respectively, the unit vectors r̂ and ϕ̂ in
multi-variable calculus.

Using the considerations thus far as a guide, we would now express the velocity at ξ⃗ as

v = vr̂εr̂ + vϕ̂εϕ̂ (9.2.84)
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= vr
∂

∂r
+ (r · vϕ)

(
1

r

∂

∂ϕ

)
(9.2.85)

=
dr

dλ

∂

∂r
+

(
r · dϕ

dλ

)(
1

r

∂

∂ϕ

)
, (9.2.86)

so that now vϕ̂ ≡ r ·vϕ = (rdϕ)/dλ may be interpreted as the velocity in the azimuthal direction.
More formally, given a (real, symmetric) metric gij we may always find a orthogonal trans-

formation Oa
i that diagonalizes it; and by absorbing into this transformation the eigenvalues of

the metric, the orthonormal frame fields emerge:

gijdx
idxj =

∑
a,b

(
Oa

i · λaδab ·Ob
j

)
dxidxj

=
∑
a,b

(√
λaO

a
i · δab ·

√
λbO

b
j

)
dxidxj

=
(
δabε

â
iε
b̂
j

)
dxidxj = δab

(
εâidx

i
) (
εb̂
j
dxj
)
, (9.2.87)

εâi ≡
√
λaO

a
i, (no sum over a). (9.2.88)

In the first equality, we have exploited the fact that any real symmetric matrix gij can be
diagonalized by an appropriate orthogonal matrix Oa

i, with real eigenvalues {λa}; in fact, from
matrix algebra, Oa

i is the ith component of the ath eigenvector of the matrix gij. For the second
equality, we have exploited the assumption that we are working in Riemannian spaces, where
all eigenvalues of the metric are positive,82 to take the positive square roots of the eigenvalues;
in the third we have defined the orthonormal frame vector fields as εâi =

√
λaO

a
i, with no sum

over a. Finally, from eq. (9.2.87) and by defining the infinitesimal lengths

εâ ≡ εâidx
i, (9.2.89)

we arrive at the following curved space parallel to Pythagoras’ theorem in flat space:

(dℓ)2 = gijdx
idxj =

(
ε1̂
)2

+
(
ε2̂
)2

+ · · ·+
(
εD̂
)2
. (9.2.90)

The metric components are now

gij = δabε
â
iε
b̂
j
. (9.2.91)

Whereas the metric determinant reads

det gij =
(
det εâi

)2
. (9.2.92)

We say the metric on the right hand side of eq. (9.2.87) is written in an orthonormal frame,
because in this basis {εâidxi|a = 1, 2, . . . , D}, the metric components are identical to the flat

82As opposed to semi-Riemannian/Lorentzian spaces, where the eigenvalue associated with the ‘time’ direction
has a different sign from the rest.

369



Cartesian ones. We have put a ·̂ over the a-index, to distinguish from the i-index, because the
latter transforms as a tensor

εâi(ξ⃗) = εâj

(
x⃗(ξ⃗)

) ∂xj(ξ⃗)
∂ξi

. (9.2.93)

This also implies the i-index can be moved using the metric:

εâi(x⃗) = gij(x⃗)εâj(x⃗), εâi(x⃗) = gij(x⃗)ε
âj(x⃗). (9.2.94)

We may readily check that eq. (9.2.93) is the correct transformation rule because it is equivalent
to eq. (9.2.6).

ga′b′(ξ⃗) = δmnε
m̂
a′(ξ⃗)ε

n̂
b′(ξ⃗) = δmnε

m̂
i(x⃗)ε

n̂
j(x⃗)

∂xi

∂ξa
∂xj

∂ξb
= gij (x⃗)

∂xi

∂ξa
∂xj

∂ξb
. (9.2.95)

The â index does not transform under coordinate transformations. But it can be rotated by an
orthogonal matrix Râ

b̂
(x⃗), which itself can depend on the space coordinates, while keeping the

metric in eq. (9.2.87) the same object. By orthogonal matrix, we mean any R̂ that obeys

R̂â
ĉδabR̂

b̂
f̂
= δcf (9.2.96)

R̂TR̂ = I. (9.2.97)

Upon the replacement

εâi(x⃗)→ R̂â
b̂
(x⃗)εb̂

i
(x⃗), (9.2.98)

we have

gijdx
idxj →

(
δabR̂

â
ĉR̂

â
f̂

)
εĉiε

f̂

j
dxidxj = gijdx

idxj. (9.2.99)

The interpretation of eq. (9.2.98) is that the choice of local Cartesian-like (non-coordinate) axes
are not unique; just as the Cartesian coordinate system in flat space can be redefined through a
rotation R obeying RTR = I, these local axes can also be rotated freely. It is a consequence of
this OD symmetry that upper and lower orthonormal frame indices actually transform the same
way. We begin by demanding that rank-1 tensors in an orthonormal frame transform as

V â′ = R̂â
ĉV

ĉ, Vâ′ = (R̂−1)f̂
â
Vf̂ (9.2.100)

so that

V â′Vâ′ = V âVâ. (9.2.101)

But R̂TR̂ = I means R̂−1 = R̂T and thus the ath row and cth column of the inverse, namely
(R̂−1)âĉ, is equal to the cth row and ath column of R̂ itself: (R̂−1)âĉ = R̂ĉ

â.

Vâ′ =
∑
f

R̂â
f̂
Vf̂ . (9.2.102)
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In other words, Vâ transforms just like V â.
We have thus shown that the orthonormal frame index is moved by the Kronecker delta;

V â′ = Vâ′ for any vector written in an orthonormal frame, and in particular,

εâi(x⃗) = δabεb̂i(x⃗) = εâi(x⃗). (9.2.103)

Next, we also demonstrate that these vector fields are indeed of unit length.

εf̂
j
εb̂j = εf̂

j
εb̂
k
gjk = δfb, (9.2.104)

ε j

f̂
εb̂j = ε j

f̂
ε k
b̂
gjk = δfb. (9.2.105)

To understand this we begin with the diagonalization of the metric, δcfε
ĉ
iε
f̂

j
= gij. Contracting

both sides with the orthonormal frame vector εb̂j,

δcfε
ĉ
iε
f̂

j
εb̂j = εb̂

i
, (9.2.106)

(εb̂jεf̂ j)ε
f̂

i
= εb̂

i
. (9.2.107)

If we let M denote the matrix M b
f ≡ (εb̂jεf̂ j), then we have i = 1, 2, . . . , D matrix equations

M · εi = εi. As long as the determinant of gab is non-zero, then {εi} are linearly independent
vectors spanning RD (see eq. (9.2.92)). Since every εi is an eigenvector of M with eigenvalue
one, that means M = I, and we have proved eq. (9.2.104).

To summarize,

gij = δabε
â
iε
b̂
j
, gij = δabε i

â ε
j

b̂
,

δab = gijε
i
â ε

j

b̂
, δab = gijεâiε

b̂
j
. (9.2.108)

Problem 9.14. Orthonormal Frame from Inverse Metric Starting from the real and
symmetric inverse metric gij, explain why

gij =
∑

1≤a,b≤D

Oa
i√
λa
δab

Ob
j√
λb
, (9.2.109)

where the orthogonal transformation Oa
i is the same as that in eq. (9.2.87). Use ε i

â = gijεâj to
show that

ε i
â = Oa

i/
√
λa. (9.2.110)

Why is this consistent with gij = δabε i
â ε

j

b̂
in eq. (9.2.108)?

Problem 9.15. Verify the orthonormal conditions〈
εâ
∣∣ εb̂〉 = δab and ⟨εâ| εb̂

〉
= δab, (9.2.111)

where εâ ≡ εâidx
i and εâ ≡ ε i

â ∂i. (Note: εâ ̸= δabε
b̂.) What is

〈
εâ
∣∣ εb̂〉?
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Problem 9.16. Orthonormal Frame from Non-Orthogonal Coordinates In this
problem, we shall work out the orthonormal frame fields in a non-orthogonal coordinate system.
Starting from 2D flat space dℓ2 = dx2 + dy2, consider the transformation

x = x′1 and y = x′2 + ϵ · x′1. (9.2.112)

Show that

dℓ2 = (1 + ϵ2)(dx′1)2 + 2ϵ · dx′1dx′2 + (dx′2)2, (9.2.113)

gi′j′(x
′, y′)=̇

[
1 + ϵ2 ϵ
ϵ 1

]
. (9.2.114)

Treat the metric as a matrix – do not be too worried about the position (up versus down) of the
indices in this problem – and demonstrate that orthonormal eigensystem is given by

gijv
j
I = λIv

i
I ≡

2 + ϵ2 − ϵ
√
4 + ϵ2

2
viI, (9.2.115)

vjI =

√
2

4
√
4 + ϵ2

√√
4 + ϵ2 − ϵ

[
ϵ−
√
4 + ϵ2

2
, 1

]T
; (9.2.116)

and

gijv
j
II = λIIv

i
II ≡

2 + ϵ2 + ϵ
√
4 + ϵ2

2
viII, (9.2.117)

vjII =

√
2

4
√
4 + ϵ2

√√
4 + ϵ2 + ϵ

[
ϵ+
√
4 + ϵ2

2
, 1

]T
. (9.2.118)

In other words, recalling eq. (9.2.87),

gij =

([ √
λIv

1
I

√
λIv

2
I√

λIIv
1
II

√
λIIv

2
II

]T [ √
λIv

1
I

√
λIv

2
I√

λIIv
1
II

√
λIIv

2
II

])
ij

(9.2.119)

and therefore

εIi =
√
λIv

i
I (9.2.120)

εIIi =
√
λIIv

i
II. (9.2.121)

Of course, the solution to the orthonormal frame fields is not unique; but this problem steps
through the diagonalization process to illustrate the generic algorithm. In this case, an easier
method is to write down the solution – by inspection – using the original (x, y) system:

εI
′

idx
′i = dx = dx′1 (9.2.122)

εII
′

idx
′i = dy = ϵ · dx′1 + dx′2. (9.2.123)

Can you show that {εI′i, ε
II′

i} are a rotated versions of {εIi, εIIi}; i.e., find R̂A
B, for A and B

running over I and II, where εAi = R̂A
Bε

B′

i? Hint: εAiε
B
jg
ij = δAB may be useful here.
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Tensor Components in Orthonormal Basis Now, any tensor with written in a coor-
dinate basis can be converted to one in an orthonormal basis by contracting with the orthonormal
frame fields εâi in eq. (9.2.87). For example, the velocity field in an orthonormal frame is

vâ = εâiv
i. (9.2.124)

For the two dimension example above,

(dr)2 + (rdϕ)2 = δrr(dr)
2 + δϕϕ(rdϕ)

2, (9.2.125)

allowing us to read off the only non-zero components of the orthonormal frame fields are

εr̂r = 1, εϕ̂
ϕ
= r; (9.2.126)

which in turn implies

vr̂ = εr̂rv
r = vr, vϕ̂ = εϕ̂

ϕ
vϕ = r vϕ. (9.2.127)

More generally, what we are doing here is really switching from writing the same tensor in
coordinates basis {dxi} and {∂i} to an orthonormal basis {εâidxi} and {ε i

â ∂i}. For example,

T l
ijk

〈
dxi
∣∣⊗ 〈dxj∣∣⊗ 〈dxk∣∣⊗ |∂l⟩ = T l̂

îĵk̂

〈
ε̂i
∣∣∣⊗ 〈εĵ∣∣∣⊗ 〈εk̂∣∣∣⊗ ∣∣εl̂〉 (9.2.128)

ε̂i ≡ ε̂i
a
dxa ε̂i ≡ ε a

î
∂a. (9.2.129)

To sum: the formula that converts a general tensor in a coordinate basis to the same in an
orthonormal one is

T â1...âM b̂1...̂bN
= T i1...iM j1...jNε

â1
i1 . . . ε

âM
iMεb̂1

j1 . . . εb̂N
jN . (9.2.130)

Problem 9.17. Explain why the ‘inverse’ transformation of eq. (9.2.130) is

T â1...âM b̂1...̂bN
εâ1

i1 . . . εâM
iMεb̂1j1 . . . ε

b̂N
jN = T i1...iM j1...jN . (9.2.131)

Hint: Insert eq. (9.2.130) into the left hand side of (9.2.131), followed by using the appropriate
relation in eq. (9.2.108).

Even though the physical dimension of the whole tensor [T ] is necessarily consistent, because
the {dxi} and {∂i} do not have the same dimensions – compare, for e.g., dr versus dθ in
spherical coordinates – the components of tensors in a coordinate basis do not all have the same
dimensions, making their interpretation difficult. By using orthonormal frame fields as defined
in eq. (9.2.129), we see that∑

a

(
εâ
)2

= δabε
â
iε
b̂
j
dxidxj = gijdx

idxj (9.2.132)[
εâ
]
= Length; (9.2.133)
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and ∑
a

(εâ)
2 = δabε i

â ε
j

b̂
∂i∂j = gij∂i∂j (9.2.134)

[εâ] = 1/Length; (9.2.135)

which in turn implies, for instance, the consistency of the physical dimensions of the orthonormal

components T l̂

îĵk̂
in eq. (9.2.128):

[T l̂

îĵk̂
][ε̂i]3[εl̂] = [T ], (9.2.136)[
T l̂

îĵk̂

]
=

[T ]

Length2 . (9.2.137)

This consistency of physical dimensions of tensor components written in an orthonormal basis
is a key reason why it is in such a basis – and not the coordinate ones – that allows for their
physical or geometric interpretation.

(Curved) Dot Product Revisited We have already noted that the generalization of

the dot product between two (tangent) vectors U⃗ and V⃗ at some location x⃗ is U⃗(x⃗) · V⃗ (x⃗) ≡
gij(x⃗)U

i(x⃗)V j(x⃗). Previously, we have justified this interpretation by using a locally flat coordi-
nate system. Alternatively, we may also exploit the orthonormal frame:

U⃗(x⃗) · V⃗ (x⃗) = δijU
î(x⃗)V ĵ(x⃗). (9.2.138)

Problem 9.18. Find the orthonormal frame fields {εâi} in 3-dimensional Cartesian, Spher-
ical and Cylindrical coordinate systems. Hint: Just like the 2D case above, by packaging the
metric gijdx

idxj appropriately, you can read off the frame fields without further work.

Problem 9.19. Show that every component of a general
(
M
N

)
tensor T i1...iMj1...jN , when

written in an orthonormal frame, has the same physical dimension[
T î1...̂iM

ĵ1...̂jN

]
= [T ] · (Length)M−N . (9.2.139)

Equivalently, each tensor has one and only one physical scale associated with it.

Line integral The line integral that occurs in 3D vector calculus, is commonly written
as
∫
A⃗ · dx⃗ =

∫
(A⃗ · v⃗)dℓ, where v⃗(λ) ≡ dx⃗(λ)/dλ. While the dot product notation is very

convenient and oftentimes quite intuitive, there is an implicit assumption that the underlying
coordinate system is Cartesian in flat space. The integrand that actually transforms covariantly
is the tensor Aidx

i, where the {xi} are no longer necessarily Cartesian. The line integral itself
then consists of integrating this over a prescribed path x⃗(λ1 ≤ λ ≤ λ2), namely∫

x⃗(λ1≤λ≤λ2)
A ≡

∫
x⃗(λ1≤λ≤λ2)

Aidx
i =

∫ λ2

λ1

Ai (x⃗(λ))
dxi(λ)

dλ
dλ. (9.2.140)

The dot product interpretation may also be recovered by switching to an orthonormal coordinate
system. Denoting vi ≡ (dxi/dλ),∫

x⃗(λ1≤λ≤λ2)
A =

∫ λ2

λ1

δijA
îvĵdλ. (9.2.141)
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9.3 Covariant derivatives, Parallel Transport, Geodesics

Covariant Derivative How do we take derivatives of tensors in such a way that we get
back a tensor in return? To start, let us see that the partial derivative of a tensor is not a tensor.
Consider

∂Tj(ξ⃗)

∂ξi
=
∂xa

∂ξi
∂

∂xa

(
Tb

(
x⃗(ξ⃗)

) ∂xb
∂ξj

)

=
∂xa

∂ξi
∂xb

∂ξj

∂Tb

(
x⃗(ξ⃗)

)
∂xa

+
∂2xb

∂ξj∂ξi
Tb

(
x⃗(ξ⃗)

)
. (9.3.1)

The second derivative ∂2xb/∂ξi∂ξj term is what spoils the coordinate transformation rule we
desire. To fix this, we introduce the concept of the covariant derivative ∇, which is built out of
the partial derivative and the Christoffel symbols Γijk, which in turn is built out of the metric
tensor,

Γijk =
1

2
gil (∂jgkl + ∂kgjl − ∂lgjk) . (9.3.2)

Notice the Christoffel symbol is symmetric in its lower indices: Γijk = Γikj.
83For a scalar φ the covariant derivative is just the partial derivative

∇iφ = ∂iφ. (9.3.3)

For a
(
0
1

)
or
(
1
0

)
tensor, its covariant derivative reads

∇iTj = ∂iTj − ΓlijTl, (9.3.4)

∇iT
j = ∂iT

j + ΓjilT
l. (9.3.5)

Under x⃗→ x⃗(ξ⃗), we have,

∇ξiφ(ξ⃗) =
∂xa

∂ξi
∇xaφ

(
x⃗(ξ⃗)

)
, (9.3.6)

∇ξiTj(ξ) =
∂xa

∂ξi
∂xb

∂ξj
∇xaTb

(
x⃗(ξ⃗)

)
. (9.3.7)

For a general
(
N
M

)
tensor, we have

∇kT
i1i2...iN

j1j2...jM
= ∂kT

i1i2...iN
j1j2...jM

(9.3.8)

+ Γi1klT
li2...iN

j1j2...jM
+ Γi2klT

i1l...iN
j1j2...jM

+ · · ·+ ΓiNklT
i1...iN−1l

j1j2...jM

− Γlkj1T
i1...iN

lj2...jM
− Γlkj2T

i1...iN
j1l...jM

− · · · − ΓlkjMT
i1...iN

j1...jM−1l
.

83For now, we will take the practical approach, and focus on how to construct the covariant derivative given a
metric gij . In §(11.2) below, we will return to understand why the covariant derivative takes the form it does.
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84By using eq. (9.3.1) we may infer how the Christoffel symbols themselves must transform –
they are not tensors. Firstly,

∇ξiTj(ξ⃗) = ∂ξiTj(ξ⃗)− Γlij(ξ⃗)Tl(ξ⃗)

=
∂xa

∂ξi
∂xb

∂ξj
∂xaTb

(
x⃗(ξ⃗)

)
+

(
∂2xb

∂ξj∂ξi
− Γlij(ξ⃗)

∂xb(ξ⃗)

∂ξl

)
Tb

(
x⃗(ξ⃗)

)
(9.3.9)

On the other hand,

∇ξiTj(ξ⃗) =
∂xa

∂ξi
∂xb

∂ξj
∇xaTb

(
x⃗(ξ⃗)

)
=
∂xa

∂ξi
∂xb

∂ξj

{
∂xaTb

(
x⃗(ξ⃗)

)
− Γlab

(
x⃗(ξ⃗)

)
Tl

(
x⃗(ξ⃗)

)}
(9.3.10)

Comparing equations (9.3.9) and (9.3.10),(
Γlij(ξ⃗)

∂xk(ξ⃗)

∂ξl
− ∂2xk

∂ξj∂ξi

)
Tk

(
x⃗(ξ⃗)

)
=
∂xa

∂ξi
∂xb

∂ξj
Γkab

(
x⃗(ξ⃗)

)
Tk

(
x⃗(ξ⃗)

)
. (9.3.11)

Since Tk(x⃗) is arbitrary for now, this leads us to relate the Christoffel symbol written in ξ⃗

coordinates Γl ij(ξ⃗) and that written in x⃗ coordinates Γl ij(x⃗).

Γlij(ξ⃗)
∂xk(ξ⃗)

∂ξl
=

∂2xk

∂ξj∂ξi
+
∂xa

∂ξi
∂xb

∂ξj
Γkab

(
x⃗(ξ⃗)

)
(9.3.12)

As long as the coordinate transformation ∂xk/∂ξj is invertible, we may contract both sides with
∂ξs/∂xk to obtain

Γl ij(ξ⃗) = Γkmn

(
x⃗(ξ⃗)

) ∂ξl

∂xk(ξ⃗)

∂xm(ξ⃗)

∂ξi
∂xn(ξ⃗)

∂ξj
+

∂ξl

∂xk(ξ⃗)

∂2xk(ξ⃗)

∂ξj∂ξi
. (9.3.13)

On the right hand side, all x⃗ have been replaced with x⃗(ξ⃗).85

The covariant derivative, like its partial derivative counterpart, obeys the product rule. Sup-
pressing the indices, if T1 and T2 are both tensors, we have

∇ (T1T2) = (∇T1)T2 + T1(∇T2). (9.3.14)

Unlike partial derivatives, repeated covariant derivatives do not commute; hence, make sure you
keep track of the order of operations. For instance,

∇a∇bT
ij ̸= ∇b∇aT

ij. (9.3.15)

84The semi-colon and comma are sometimes used to denote, respectively, the covariant and partial derivatives.
For example, ∇l∇iT

jk ≡ T jk
;il and T

ij
,k ≡ ∂kT ij .

85We note in passing that in gauge theory – which encompasses humanity’s current description of the non-
gravitational forces (electromagnetic-weak (SU2)left-handed fermions× (U1)hypercharge and strong nuclear (SU3)color)
– the fundamental fields there {Ab

µ} transforms (in a group theory sense) in a very similar fashion as the
Christoffel symbols do (under a coordinate transformation) in eq. (9.3.13).
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Problem 9.20. Commutator of Covariant Derivatives on Scalar Show that double
covariant derivatives on a scalar field do commute: ∇i∇jφ = ∇j∇iφ. If we define

[∇i,∇j] ≡ ∇i∇j −∇j∇i, (9.3.16)

this may be expressed as [∇i,∇j]φ = 0.

As you will see below, the metric is parallel transported in all directions,

∇igjk = ∇ig
jk = 0. (9.3.17)

Combined with the product rule in eq. (9.3.14), this means when raising and lowering of indices
of a covariant derivative of a tensor, the metric may be passed in and out of the ∇. For example,

gia∇jT
kal = ∇jgia · T kal + gia∇jT

kal = ∇j(giaT
kal)

= ∇jT
k l
i . (9.3.18)

Christoffel symbols as ‘rotation coefficients’ I have introduced the Christoffel symbol
here by showing how it allows us to define a derivative operator on a tensor that returns a tensor.
I should mention here that, alternatively, it is also possible to view Γijk as ‘rotation matrices,’
describing the failure of parallel transporting the basis bras {⟨dxi|} and kets {|∂i⟩} as they are
moved from one point in space to a neighboring point infinitesimally far away. Specifically,

∇i

〈
dxj
∣∣ = −Γjik 〈dxk∣∣ and ∇i |∂j⟩ = Γlij |∂l⟩ . (9.3.19)

By projecting
〈
dxk
∣∣ on the right equality and recalling eq. (9.2.13),

Γkij =
〈
dxk |∇i| ∂j

〉
. (9.3.20)

Within this perspective, the tensor components are scalars. The product rule then yields, for
instance,

∇i (Va ⟨dxa|) = (∇iVa) ⟨dxa|+ Va∇i ⟨dxa|
= (∂iVj − VaΓaij)

〈
dxj
∣∣ . (9.3.21)

∇i (V
a |∂a⟩) = (∇iV

a) |∂a⟩+ V a∇i |∂a⟩
= (∂iV

a + ΓaijV
j) |∂a⟩ . (9.3.22)

Parallel transport Now that we have introduced the covariant derivative, we may finally
define what (invariance under) parallel transport actually is.

Let vi be a (tangent) vector field and T j1...jN be some tensor. (Here, the placement of indices
on the T is not important, but we will assume for convenience, all of them are upper indices.)
We say that the tensor T is invariant under parallel transport along the vector v when

vi∇iT
j1...jN = 0. (9.3.23)
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Problem 9.21. Christoffel symbols, Parallel Transport on 2−sphere Employ eq.
(9.3.2) to calculate the Christoffel symbols of the metric on the 2-sphere with unit radius,

(dℓ)2 = dθ2 + (sin θ)2dϕ2. (9.3.24)

That is, the non-zero components of the metric are gθθ = g11 = 1 = g11 = gθθ and gϕϕ = g22 =
(sin θ)2 = 1/g22 = 1/gθθ. For example,

Γθϕϕ =
1

2
gθi (∂ϕgϕi + ∂ϕgϕi − ∂igϕϕ) . (9.3.25)

Due to the diagonal nature of the 2−sphere metric, gθi = δiθ,

Γθϕϕ =
1

2

(
2∂ϕgϕθ − ∂θ(sin θ)2

)
= − sin θ cos θ. (9.3.26)

You should find the other non-trivial components to be

Γϕϕθ = Γϕθϕ = cot θ. (9.3.27)

In the coordinate system (θ, ϕ), define the vector vi = (vθ, vϕ) = (1, 0), i.e., v = ∂θ. This is the
vector tangent to the sphere, at a given location (0 ≤ θ ≤ π, 0 ≤ ϕ < 2π) on the sphere, such
that it points away from the North and towards the South pole, along a constant longitude line.
Show that it is parallel transported along itself, as quantified by the statement

vi∇iv
j = ∇θv

j = 0. (9.3.28)

Also calculate ∇ϕv
j and comment on the result at θ = π/2. Hint: recall our earlier 2-sphere

discussion, where we considered parallel transporting a tangent vector from the North pole to
the equator, along the equator, then back up to the North pole.

Riemann and Ricci tensors I will not use them very much in the rest of our discussion
in this section (i.e., §(9)), but I should still highlight that the Riemann and Ricci tensors are
fundamental to describing curvature. The Riemann tensor is built out of the Christoffel symbols
via

Ri
jkl = ∂kΓ

i
lj − ∂lΓikj + ΓiskΓ

s
lj − ΓislΓ

s
kj. (9.3.29)

The failure of parallel transport of some vector V i around an infinitesimally small loop, is
characterized by

[∇k,∇l]V
i ≡ (∇k∇l −∇l∇k)V

i = Ri
jklV

j, (9.3.30)

[∇k,∇l]Vj ≡ (∇k∇l −∇l∇k)Vj = −Ri
jklVi. (9.3.31)

The generalization to higher rank tensors is

[∇i,∇j]T
k1...kN

l1...lM

= Rk1
aijT

ak2...kN
l1...lM

+Rk2
aijT

k1ak3...kN
l1...lM

+ · · ·+RkN
aijT

k1...kN−1a
l1...lM

(9.3.32)
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−Ra
l1ij
T k1...kNal2...lM −R

a
l2ij
T k1...kNl1al3...lM − · · · −R

a
lM ijT

k1...kN
l1...lM−1a

.

This illustrates the point alluded to earlier – covariant derivatives commute iff space is flat; i.e.,
iff the Riemann tensor is zero.

The Riemann tensor obeys the following symmetries.

Rijab = Rabij, Rijab = −Rjiab, Rabij = −Rabji. (9.3.33)

The Riemann tensor also obeys the Bianchi identities86

Ri
[jkl] = ∇[iR

jk
lm] = 0. (9.3.34)

In D dimensions, the Riemann tensor has D2(D2−1)/12 algebraically independent components.
In particular, in D = 1 dimension, space is always flat because R1111 = −R1111 = 0.

The Ricci tensor is defined as the non-trivial contraction of a pair of the Riemann tensor’s
indices.

Rjl ≡ Ri
jil. (9.3.35)

It is symmetric

Rij = Rji. (9.3.36)

Finally the Ricci scalar results from a contraction of the Ricci tensor’s indices.

R ≡ gjlRjl. (9.3.37)

Contracting eq. (9.3.34) appropriately yields the Bianchi identities involving the Ricci tensor
and scalar

∇i
(
Rij −

gij
2
R
)
= 0. (9.3.38)

This is a good place to pause and state, the Christoffel symbols in eq. (9.3.2), covariant deriva-
tives, and the Riemann/Ricci tensors, etc., are in general very tedious to compute. If you ever
have to do so on a regular basis, say for research, I highly recommend familiarizing yourself with
one of the various software packages available that could do them for you.

Geodesics Recall the distance integral in eq. (9.1.24). If you wish to determine the
shortest path (aka geodesic) between some given pair of points x⃗1 and x⃗2, you will need to
minimize eq. (9.1.24). This is a ‘calculus of variation’ problem. The argument runs as follows.
Suppose you found the path z⃗(λ) that yields the shortest ℓ. Then, if you consider a slight
variation δz⃗ of the path, namely consider

x⃗(λ) = z⃗(λ) + δz⃗(λ), (9.3.39)

86The symbol [. . . ] means the indices within it are fully anti-symmetrized; in particular, T[ijk] = Tijk − Tikj −
Tjik + Tjki − Tkji + Tkij . We will have more to say about this operation later on.

379



we must find the contribution to ℓ at first order in δz⃗ to be zero. This is analogous to the
vanishing of the first derivatives of a function at its minimum.87 In other words, in the integrand
of eq. (9.1.24) we must replace

gij (x⃗(λ))→ gij (z⃗(λ) + δz⃗(λ)) = gij (z⃗(λ)) + δzk(λ)
∂gij (z⃗(λ))

∂zk
+O(δz2) (9.3.40)

dxi(λ)

dλ
→ dzi(λ)

dλ
+

dδzi(λ)

dλ
. (9.3.41)

Since δz⃗ was arbitrary, at first order, its coefficient within the integrand must vanish. If we
further specialize to affine parameters λ – i.e., such that√

gij(dzi/dλ)(dzj/dλ) = constant along the entire path z⃗(λ) (9.3.42)

– then one would arrive at the following second order non-linear ODE. Minimizing the distance
ℓ between x⃗1 and x⃗2 leads to the shortest path z⃗(λ) (≡ geodesic) obeying:

0 =
d2zi

dλ2
+ Γijk (gab(z⃗))

dzj

dλ

dzk

dλ
, (9.3.43)

with the boundary conditions

z⃗(λ1) = x⃗1, z⃗(λ2) = x⃗2. (9.3.44)

You will verify this discussion in Problem (9.22) below.
The converse is also true, in that – if the geodesic equation in eq. (9.3.43) holds, then

gij (dzi/dλ)(dzj/dλ) is a constant along the entire geodesic. Denoting z̈i ≡ d2zi/dλ2 and
żi ≡ dzi/dλ,

d

dλ

(
gij ż

iżj
)
= 2z̈iżjgij + żk∂kgij ż

iżj

= 2z̈iżjgij + żkżiżj (∂kgij + ∂igkj − ∂jgik) (9.3.45)

Note that the last two terms inside the parenthesis of the second equality cancels. The reason
for inserting them is because the expression contained within the parenthesis is related to the
Christoffel symbol; keeping in mind eq. (9.3.2),

d

dλ

(
gij ż

iżj
)
= 2żi

{
z̈jgij + żkżjgil

glm

2
(∂kgjm + ∂jgkm − ∂mgjk)

}
= 2gilż

i
{
z̈l + żkżjΓlkj

}
= 0. (9.3.46)

The last equality follows because the expression in the {. . . } of eq. (9.3.46) is the right hand
side of eq. (9.3.43). This constancy of gij (dzi/dλ)(dzj/dλ) is useful for solving the geodesic
equation itself.

In §(11) below, we will also see why eq. (9.3.43) is equivalent to the statement that some
unit length vector field vi(x⃗) = dxi/dλ, obeying vivjgij = 1, is parallel transported along itself:

vi∇iv
j = 0. (9.3.47)

87There is some smoothness condition being assumed here. For instance, the tip of the pyramid (or a cone) is
the maximum height achieved, but the derivative slightly away from the tip is negative in all directions.
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Problem 9.22. Noether’s theorem for Geodesics Show that the affine parameter form
of the geodesic (9.3.43) follows from demanding the distance-squared integral of eq. (9.1.29) be
extremized:

ℓ2 = (λ2 − λ1)
∫ λ2

λ1

(
gij (z⃗(λ))

dzi

dλ

dzj

dλ

)
dλ. (9.3.48)

88That is, show that eq. (9.3.43) follows from applying the Euler-Lagrange equations

d

dλ

∂Lg
∂żi

=
∂Lg
∂zi

(9.3.49)

to the Lagrangian

Lg ≡
1

2
gij ż

iżj, żi ≡ dzi

dλ
. (9.3.50)

Equivalently, you may directly perturb in eq. (9.3.48) z⃗ → z⃗ + δz⃗, and find that the first order
perturbed geodesic Lagrangian is

δ1

(
1

2
gij ż

iżj
)

=
d

dλ

(
δzigij ż

j
)
− δzigij

D2zj

dλ2
, (9.3.51)

D2zj

dλ2
≡ z̈j + Γjabż

ażb. (9.3.52)

If the geodesic equation (9.3.43) is satisfied by z⃗(λ), argue that the integral in eq. (9.3.48) yields
the square of the geodesic distance between x⃗1 ≡ z⃗(λ1) and x⃗2 ≡ z⃗(λ2). (Hints: Remember eq.
(9.1.24) and the constancy of L.) Also show that eq. (9.3.48) takes the same form under the
re-scaling

λ = a · λ′ + b (9.3.53)

for constants a and b; namely,

ℓ2 = (λ′2 − λ′1)
∫ λ′2

λ′1

(
gij (z⃗(λ

′))
dzi

dλ′
dzj

dλ′

)
dλ′. (9.3.54)

Conserved quantities from symmetries Finally, suppose ∂k is a Killing vector. Explain why

∂Lg
∂żk

is constant along the geodesic z⃗(λ). (9.3.55)

This is an example of Noether’s theorem. For example, in flat Euclidean space, since the metric in
Cartesian coordinates is a constant δij, all the {∂i|i = 1, 2, . . . , D} are Killing vectors. Therefore,
from L = (1/2)δij ż

iżj, and we have

d

dλ

dzi

dλ
= 0 ⇒ dzi

dλ
= constant. (9.3.56)

88Some jargon: In the General Relativity literature, ℓ2/2 (half of eq. (9.3.48)) is known as Synge’s world
function.
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This is, in fact, the statement that the center of mass of an isolated system obeying Newtonian
mechanics moves with a constant velocity – total momentum is conserved. By re-writing the
Euclidean metric in spherical coordinates, provide the proper definition of angular momentum
(about the D−axis) and proceed to prove that it is conserved.

More generally, suppose ξi is a Killing vector. Can you show that

ξk (z⃗)
∂Lg
∂żk

(9.3.57)

is constant along a geodesic?

How to Solve For Geodesics The algorithm for solving geodesic paths in a curved
space can thus be summarized as follows.

� Set the Lagrangian Lg in eq. (9.3.50) to a positive constant. From the freedom to re-scale
λ in eq. (9.3.53), we see that Lg may be set to any positive constant because

Lg[λ = a · λ′ + b] = Lg[λ
′]/a2. (9.3.58)

One scheme is to set Lg = 1/2 and λ1 = 0; then eq. (9.3.48) tells us ℓ = λ2. Another
scheme is to set Lg = L2

0/2, λ1 = 0, and λ2 = 1. Then the Lagrangian evaluated on the
geodesic solution is the geodesic length itself; i.e., eq. (9.3.48) becomes ℓ = L0.

� Make sure to first exploit all possible conserved quantities arising from the symmetries
present in the geometry. These will provide you with a set of first order ordinary differential
equations instead of the second order ones in eq. (9.3.43).

� Only after exploiting the constancy of Lg as well as the constant Noether charges of the
geometry’s isometries do you then turn to solving the remaining geodesic equations (9.3.43)
themselves.

Problem 9.23. Non-Affinely Parametrized Geodesics It is of course not necessary to
solve geodesics in terms of their affine parameters. We may directly minimize the length integral
in eq. (9.1.24). This implies the Euler-Lagrange equations are to be applied to the Lagrangian

L′
g ≡

√
gij żiżj, (9.3.59)

where the λ in ż ≡ dzi/dλ no longer needs to be affinely parametrized. This form of the geodesic
equation is useful if, for instance, you wish to solve the solution in terms of one of the coordinates
(say, zk, for some k). Can you write down the explicit form of (d/dλ)(∂L′

g/∂ż
i) = ∂L′

g/∂z
i?

Geodesics in Flat Space Let us start with the example of geodesics in flat space, using
Cartesian coordinates {x⃗}. The affinely parametrized geodesic Lagrangian is

Lg =
1

2
δij ż

iżj, (9.3.60)

where each overdot denotes a derivative with respect to the affine parameter λ. The geodesic
equation is

z̈ = 0. (9.3.61)
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This is just the constant acceleration problem in classical mechanics. The solution, joining x⃗1
to x⃗2 is the straight line

z⃗(0 ≤ λ ≤ 1) = x⃗1 + λ(x⃗2 − x⃗1). (9.3.62)

The square of the geodesic length, i.e., eq. (9.3.48), is therefore

ℓ(x⃗1 ↔ x⃗2)
2 = (x⃗1 − x⃗2)2 . (9.3.63)

Translation Symmetries From the symmetries point-of-view, the metric δij is independent
of all the Cartesian coordinates. Hence, we may identify the conserved momentum {pi} as

∂Lg
∂żi

= żi = pi. (9.3.64)

This immediately leads to z⃗(λ) = p⃗ · λ+ c⃗ for constant {ci}. The Lagrangian Lg is then

Lg =
p2

2
, p2 ≡ δijpipj. (9.3.65)

If we set Lg = 1/2 so that p = 1; by choosing λ1 = 0, we have z⃗(0) = c⃗ = x⃗1 and z⃗(λ2) =
λ2 · p⃗+ x⃗1 = x⃗2. Since p⃗ is now of unit length, we see that

λ2 · p⃗ = x⃗2 − x⃗1 (9.3.66)

implies

λ2 = |x⃗2 − x⃗1|. (9.3.67)

On the other hand, if we choose Lg = L2
0/2, λ1 = 0 and λ2 = 1; then z⃗(0) = c⃗ = x⃗1 whereas

z⃗(1) = p⃗+ x⃗1 = x⃗2. Hence, p⃗ = x⃗2 − x⃗1 and

L0 = p = |x⃗2 − x⃗1|. (9.3.68)

Geodesics on a 2−sphere The length of a geodesic on the 2−sphere, joining (θ1, ϕ1) and
(θ2, ϕ2), is

ℓ =

∫ θ2,ϕ2

θ1,ϕ1

√
dθ2 + sin2(θ)dϕ2 (9.3.69)

=

∫ θ2

θ1

√
1 + sin2(θ)ϕ′(θ)2dθ ≡

∫ θ2

θ1

Lgdθ. (9.3.70)

Instead of using an affinely parametrized geodesic, we may directly minimize this definition of
the length. Since the Lagrangian Lg(θ, ϕ

′(θ)) is independent of ϕ, we must have

∂Lg
∂ϕ′ =

sin2(θ) · ϕ′(θ)√
1 + sin2(θ)ϕ′(θ)2

= χ (≡ const.). (9.3.71)
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This may be solved for

ϕ′(θ) =
χ

sin(θ)
√
sin2(θ)− χ2

, (9.3.72)

which may be integrated to obtain

ϕ(θ) = arccos

(
χ√

1− χ2
cot(θ)

)
+ ϕ0, (9.3.73)

where ϕ0 is an integration constant. Since χ is an arbitrary constant, we may relabel 1/A ≡
χ/
√

1− χ2 and deduce the relationship between θ and ϕ:

cot(θ) = A · cos(ϕ− ϕ0). (9.3.74)

The two end points must satisfy cot(θ1) = A · cos(ϕ1−ϕ0) and cot(θ2) = A · cos(ϕ2−ϕ0). Hence,
the integration constant ϕ0 may be solved via

cot(θ1)

cot(θ2)
=

cos(ϕ1 − ϕ0)

cos(ϕ2 − ϕ0)
; (9.3.75)

and, in turn,

A =
cot θ1

cos(ϕ1 − ϕ0)
=

cot θ2
cos(ϕ2 − ϕ0)

. (9.3.76)

Moreover, applying cos(ϕ − ϕ0) = cos(ϕ) cos(ϕ0) + sin(ϕ) sin(ϕ0) to eq. (9.3.74), we obtain the
equation of a plane intersecting the 2−sphere that also passes through the origin:

r̂(θ, ϕ) · B⃗ = 0, (9.3.77)

r̂ = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T , (9.3.78)

B⃗ = (−A cos(ϕ0),−A sin(ϕ0), 1)
T. (9.3.79)

The following problem will guide you through solving the same system, but using the affine
parametrization.

Problem 9.24. Geodesics on a 2−sphere: Affine Parametrization Can you explain
why there are infinite number of geodesics joining any two points on the 2−sphere? How many
geodesics are there minimizing the length between this same pair of points? How many length-
minimizing paths are there joining the North and South Pole?

Solve the geodesic equation (cf. eq. (9.3.43)) on the unit 2−sphere described by

dℓ2 = dθ2 + sin(θ)2dϕ2. (9.3.80)

Hints:
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� By setting the geodesic Lagrangian Lg = L2
0/2 and making use of the constant-of-geodesic

∂Lg/∂ϕ̇ = ℓϕ – make sure you explain why ℓϕ is constant – derive the conservation equations(
ℓϕ
sin θ

)2

+ θ̇2 = L2
0, (9.3.81)

ϕ̇ =
ℓϕ

sin2(θ)
. (9.3.82)

All overdots are with respect to the affine parameter λ.

� If we agree to set, without loss of generality, θ(λ1 = 0) = θ1, integrate the θ equations to
obtain

θ(λ) = arccos

(√
1− (ℓϕ/L0)2 cos

(
L0 · λ+ arccos

(
cos θ1√

1− (ℓϕ/L0)2

)))
. (9.3.83)

� Compute θ̇ and use eq. (9.3.81) to solve 1/ sin2 θ in terms of λ. Replace this solution for
1/ sin2 θ in eq. (9.3.82). You should find

ϕ̇(λ) =
2ℓϕ

1 + (ℓϕ/L0)2 + ((ℓϕ/L0)2 − 1) cos

(
2

{
L0 · λ+ arccos

(
cos θ1√

1−(ℓϕ/L0)2

)}) . (9.3.84)

� Setting ϕ(λ1 = 0) = ϕ1, integrate this ϕ̇ equation to obtain

ϕ(λ)− ϕ1 = arctan

(
L0

ℓϕ
tan

(
L0 · λ+ arccos

(
cos θ1√

1− (ℓϕ/L0)2

)))

− arccot

(
ℓϕ
L0

cos θ1√
sin2(θ1)− (ℓϕ/L0)2

)
. (9.3.85)

At this point you may, for e.g., set L0 = 1 and solve (λ2, ℓϕ) from θ(λ2) = θ2 and ϕ(λ2) = ϕ2;
or, set λ2 = 1 and solve (L0, ℓϕ) from θ(λ2) = θ2 and ϕ(λ2) = ϕ2; etc. Unfortunately, these steps
appears to be difficult to accomplish analytically.

Christoffel symbols from Lagrangian Instead of computing the Christoffel symbols
using the formula in eq. (9.3.2), we may instead use the variational principle encoded eq.
(9.3.48) to obtain its components. That is, starting from the Lagrangian in eq. (9.3.50), one
may compute the geodesic equation (9.3.43) and read off Γiab as the coefficient of żażb for a = b;
and half of the coefficient of żażb for a ̸= b.
Example I As a first example, let us extract the Christoffel symbols of the 2D flat metric in
polar coordinates

dℓ2 = dr2 + r2dϕ2. (9.3.86)
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The Lagrangian in eq. (9.3.50) is

Lg =
1

2
ṙ2 +

1

2
r2ϕ̇2. (9.3.87)

The Euler-Lagrange equations are

d

dλ

∂Lg
∂ṙ

=
∂Lg
∂r

(9.3.88)

r̈ = rϕ̇2 (9.3.89)

r̈ − rϕ̇2 = r̈ + Γrϕϕϕ̇
2 = 0; (9.3.90)

and

d

dλ

∂Lg

∂ϕ̇
=
∂Lg
∂ϕ

(9.3.91)

d

dλ
(r2ϕ̇) = 0 (9.3.92)

ϕ̈+
2

r
ṙϕ̇ = ϕ̈+ Γϕrϕṙϕ̇+ Γϕϕrϕ̇ṙ = 0. (9.3.93)

We see that Γrϕϕ = −r; whereas, due to its symmetric character, Γϕrϕ = Γϕϕr = 1/r. The latter

is a technical point worth reiterating: for a ̸= b, the coefficient of żażb in the geodesic equation
z̈i + (. . . )żażb + · · · = 0 is twice of Γiab, because – with no sum over a and b –

Γiabż
ażb + Γibaż

bża = 2Γiabż
ażb. (9.3.94)

The rest of the Christoffel symbols of the 2D polar coordinates flat metric are zero because they
do not appear in the geodesic equation; for e.g., Γrrr = 0.
Example II Next, let us consider the following D−dimensional metric:

dℓ2 ≡ a(x⃗)2dx⃗ · dx⃗, (9.3.95)

where a(x⃗) is an arbitrary function. The Lagrangian in eq. (9.3.50) is now

L =
1

2
a2δij ż

iżj, żi ≡ dzi

dλ
. (9.3.96)

Applying the Euler-Lagrange equations,

d

dλ

∂L

∂żi
− ∂L

∂zi
= 0 (9.3.97)

d

dλ

(
a2żi

)
− a∂ia ˙⃗z2 = 0 (9.3.98)

2ażj∂ja ż
i + a2z̈i − a∂ia ˙⃗z2 = 0 (9.3.99)

z̈i +

(
∂ja

a
δil +

∂la

a
δij −

∂ia

a
δlj

)
żlżj = z̈i + Γilj ż

lżj = 0. (9.3.100)

Using {. . . } to indicate symmetrization of the indices, we have derived

Γilj =
1

a

(
∂{jaδ

i
l} − ∂iaδlj

)
=
(
δk{jδ

i
l} − δkiδlj

)
∂k ln a. (9.3.101)
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Problem 9.25. Geodesics: Hamiltonian Formulation An alternate but equivalent
manner to solve the geodesics in a given geometry, is through the Hamiltonian formulation.
Define the conjugate momentum pi to the coordinate zi as

pi ≡
∂L

∂żi
= gij ż

j, (9.3.102)

where L is the Lagrangian in eq. (9.3.50); and further define the Hamiltonian H through the
Legendre transform

H(z⃗, p⃗) ≡ piż
i(z⃗, p⃗)− L(z⃗, p⃗). (9.3.103)

This relation between H and L assumes all the {żi ≡ dzi/dλ} has been re-expressed in terms of
z⃗ and p⃗. Now demonstrate that the Hamiltonian H is equal to the Lagrangian L; in particular,
you should find that

H =
1

2
gijpipj. (9.3.104)

Can you prove via a direct calculation that H, and therefore L, is a constant of motion? (In fact,
Hamiltonian dynamics tells us, as long as L does not explicitly depend on the affine parameter
λ, the right hand side of eq. (9.3.103) is necessarily a constant of motion.)

Geodesic Equations Show that Hamilton’s equations

dzi

dλ
=
∂H

∂pi
= gijpj, (9.3.105)

dpi
dλ

= −∂H
∂zi

= −1

2
(∂ig

ab)papb (9.3.106)

are equivalent to the geodesic equation (9.3.43). Hint: You may need to use the ‘integration-by-
parts’ identity (∂ig

ab)gbc = −gab∂igbc. Why is this true?

Problem 9.26. It is always possible to find a coordinate system with coordinates y⃗ such
that, as y⃗ → y⃗0, the Christoffel symbols vanish

Γkij(y⃗0) = 0. (9.3.107)

Can you demonstrate why this is true from the equivalence principle encoded in eq. (9.2.1)? Hint:
it is important that, locally, the first deviation from flat space is quadratic in the displacement
vector (y − y0)i.

Remark That there is always an orthonormal frame where the metric is flat – recall
eq. (9.2.87) – as well as the existence of a locally flat coordinate system, is why the measure
of curvature, in particular the Riemann tensor in eq. (9.3.29), depends on first and second
derivatives of the metric. Specifically, when eq. (9.3.107) holds but space is curved, we would
have from eq. (9.3.29),

Ri
jmn(y⃗0) = ∂mΓ

i
nj(y⃗0)− ∂nΓimj(y⃗0). (9.3.108)
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Problem 9.27. Christoffel Γijk ≡ gilΓ
l
jk contains as much information as ∂igab Why

do the Christoffel symbols take on the form in eq. (9.3.2)? It comes from assuming that the
Christoffel symbol obeys the symmetry Γijk = Γikj – this is the torsion-free condition – and
demanding that the covariant derivative of a metric is a zero tensor,

∇igjk = 0. (9.3.109)

This can be expanded as

∇igjk = 0 = ∂igjk − Γlijglk − Γlikgjl. (9.3.110)

Expand also ∇jgki and ∇kgij, and show that

2Γlijglk = ∂igjk + ∂jgik − ∂kgij. (9.3.111)

Divide both sides by 2 and contract both sides with gkm to obtain Γmij in eq. (9.3.2).
Remark Incidentally, while eq. (9.3.2) tells us the Christoffel symbol can be written in

terms of the first derivatives of the metric; eq. (9.3.110) indicates the first derivative of the
metric can also always be expressed in terms of the Christoffel symbols. In other words, ∂igab
contains as much information as Γijk, provided of course that gij itself is known.

Problem 9.28. Covariant form of (£ξg)ij Show that the Lie derivative of the metric
(£ξg)ij in eq. (9.2.67) can be re-written in a more covariant looking expression

(£ξg)ij (x⃗
′) = ∇iξj +∇jξi ≡ ∇{iξj}. (9.3.112)

(£ξg)ij = 0 is known as Killing’s equation, and a vector that satisfies Killing’s equation is called
a Killing vector. Showing that (£ξg)ij is a tensor indicate such a characterization of symmetry
is a generally covariant statement.

Hint: Convert all partial derivatives into covariant ones by adding/subtracting Christoffel
symbols appropriately; for instance ∂aξ

i = ∇aξ
i − Γiabξ

b.

We may now rephrase the discussion leading up to eq. (9.2.67) as follows. Under an in-

finitesimal coordinate transformation x⃗ = x⃗′ + ξ⃗(x⃗′), where ξ⃗ is considered ‘small’, the metric
transforms as

gij (x⃗) dx
idxj =

(
gij (x⃗→ x⃗′) +∇{iξj}(x⃗→ x⃗′) +O(ξ⃗2)

)
dx′idx′j. (9.3.113)

The metric is said to enjoy a symmetry along ξ⃗ iff ∇{iξj} = 0 along its integral curve.

Problem 9.29. Argue that, if a tensor T i1i2...iN is zero in some coordinate system, it must
be zero in any other coordinate system.

Problem 9.30. Prove that the tensor T i2...iN
i1

is zero if and only if the corresponding tensor
Ti1i2...iN is zero. Then, using the product rule, explain why ∇igjk = 0 implies ∇ig

jk = 0. Hint:
start with ∇i(gajgbkg

jk).
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Problem 9.31. 3D Flat Space Christoffel Symbols in Spherical Coordinates Cal-
culate the Christoffel symbols of the 3-dimensional Euclidean metric in Cartesian coordinates
δij. Then calculate the Christoffel symbols for the same space, but in spherical coordinates:

(dℓ)2 = dr2 + r2(dθ2 + (sin θ)2dϕ2). (9.3.114)

To start you off, the non-zero components of the metric are

grr = 1, gθθ = r2, gϕϕ = r2(sin θ)2; (9.3.115)

grr = 1, gθθ = r−2, gϕϕ =
1

r2(sin θ)2
. (9.3.116)

How are these Christoffel symbols of 3D Euclidean space in spherical coordinates related to those
of the 2-sphere in equations (9.3.26) and (9.3.27)? (This should serve as an independent check of
your computations.) Hint: Relate the 2D and 3D versions of gij for i, j ∈ {θ, ϕ}; then followed

by the Γθij and Γϕij.

Problem 9.32. Christoffel Symbols: Cartesian to Curvilinear Derive the flat space
Christoffel symbols in spherical coordinates from their Cartesian counterparts using eq. (9.3.13).

That is, if x⃗ are Cartesian and ξ⃗ are curvilinear coordinates,

Γl ij(ξ⃗) =
∂ξl

∂xk(ξ⃗)

∂2xk(ξ⃗)

∂ξj∂ξi
. (9.3.117)

This lets you cross-check your results in Problem (9.31); you should also feel free to use software
to help. Answer: the non-zero components in spherical coordinates are

Γrθθ = −r, Γrϕϕ = −r(sin θ)2, (9.3.118)

Γθrθ = Γθθr =
1

r
, Γθϕϕ = − cos θ · sin θ, (9.3.119)

Γϕrϕ = Γϕϕr =
1

r
, Γϕθϕ = Γϕϕθ = cot θ. (9.3.120)

To provide an example for this latter method, let us calculate the Christoffel symbols of 2D flat
space written in cylindrical coordinates ξi ≡ (r, ϕ),

dℓ2 = dr2 + r2dϕ, r ≥ 0, ϕ ∈ [0, 2π). (9.3.121)

This means the non-zero components of the metric are

grr = 1, gϕϕ = r2, grr = 1, gϕϕ = r−2. (9.3.122)

Keeping the diagonal nature of the metric in mind, let us start with

Γrij =
1

2
grk (∂igjk + ∂jgik − ∂kgij) =

1

2
grr (∂igjr + ∂jgir − ∂rgij)

=
1

2

(
δrj∂igrr + δri ∂jgrr − δ

ϕ
i δ

ϕ
j ∂rr

2
)
= −δϕi δ

ϕ
j r. (9.3.123)
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In the third equality we have used the fact that the only gij that depends on r (and therefore
yield a non-zero r-derivative) is gϕϕ. Now for the

Γϕij =
1

2
gϕϕ (∂igjϕ + ∂jgiϕ − ∂ϕgij)

=
1

2r2

(
δϕj ∂igϕϕ + δϕi ∂jgϕϕ

)
=

1

2r2

(
δϕj δ

r
i ∂rr

2 + δϕi δ
r
j∂rr

2
)

=
1

r

(
δϕj δ

r
i + δϕi δ

r
j

)
. (9.3.124)

If we had started from Cartesian coordinates xi,

xi = r(cosϕ, sinϕ), (9.3.125)

we know the Christoffel symbols in Cartesian coordinates are all zero, since the metric compo-
nents are constant. If we wish to use eq. (9.3.13) to calculate the Christoffel symbols in (r, ϕ),
the first term on the right hand side is zero and what we need are the ∂x/∂ξ and ∂2x/∂ξ∂ξ
matrices. The first derivative matrices are

∂xi

∂ξj
=

[
cosϕ −r sinϕ
sinϕ r cosϕ

]i
j

(9.3.126)

∂ξi

∂xj
=

((
∂x

∂ξ

)−1
)i

j

=

[
cosϕ sinϕ

−r−1 sinϕ r−1 cosϕ

]i
j

, (9.3.127)

whereas the second derivative matrices are

∂2x1

∂ξiξj
=

[
0 − sinϕ

− sinϕ −r cosϕ

]
(9.3.128)

∂2x2

∂ξiξj
=

[
0 cosϕ

cosϕ −r sinϕ

]
. (9.3.129)

Therefore, from eq. (9.3.13),

Γrij(r, ϕ) =
∂r

∂xk
∂xk

∂ξi∂ξj
(9.3.130)

= cosϕ ·
[

0 − sinϕ
− sinϕ −r cosϕ

]
+ sinϕ ·

[
0 cosϕ

cosϕ −r sinϕ

]
=

[
0 0
0 −r

]
.

Similarly,

Γϕij(r, ϕ) =
∂ϕ

∂xk
∂xk

∂ξi∂ξj
(9.3.131)

= −r−1 sinϕ

[
0 − sinϕ

− sinϕ −r cosϕ

]
+ r−1 cosϕ

[
0 cosϕ

cosϕ −r sinϕ

]
=

[
0 r−1

r−1 0

]
.

Of course, the generalization of this Cartesian to Spherical method works in non-flat geometries
too, as long as we already know the Γ’s on the right hand side of (9.3.13).
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Problem 9.33. Flat Space Curvilinear Christoffel Symbols Prove eq. (9.1.49) from
eq. (9.3.117). Note that eq. (9.1.49) allows you to compute the curvilinear Christoffel symbols

in flat space using the inverse metric gab(ξ⃗) and the first and second derivatives of x⃗(ξ⃗) without
computing the inverse Jacobian ∂ξl/∂xi. Which formula is more convenient depends on whether
you know the inverse metric or the inverse Jacobian.

Problem 9.34. 2D Non-Relativistic Classical Mechanics: Polar Coordinates Show
that the components of acceleration A = ẍ(t)∂xi in 2D flat space in polar coordinates x⃗(r, ϕ) =
r(cosϕ, sinϕ) written in an orthonormal frame are

Ar̂ = r̈(t)− ϕ̇(t)2r(t), (9.3.132)

Aϕ̂ = rϕ̈(t) + 2ṙ(t)ϕ̇(t). (9.3.133)

This recovers uniform circular motion when r and ϕ̇ ≡ ω are constant: Aâêa = −(ω2r)êr.

Methods of Computing Christoffel Symbols At this juncture, we may summarize
the following methods of calculating Christoffel symbols.

� Do it by brute force, using eq. (9.3.2).

� Use the Lagrangian method: apply the Euler-Lagrangian equations to the Lagrangian
Lg = (1/2)gij ż

iżj, and read off the Christoffel symbols from the Γiabż
ażb terms of the

resulting ODEs.

� If working in flat space(time), the Christoffel symbols in a curvilinear coordinate system

ξ⃗ can be obtained through its relation to the Cartesian ones x⃗ through eq. (9.1.49) or
(9.3.117).

Variation of the metric & divergence of tensors Suppose we perturb the metric
slightly

gij → gij + hij, (9.3.134)

where the components of hij are to be viewed as “small”, and its indices are moved with the
metric; for e.g.,

hij = giahaj. (9.3.135)

The inverse metric will become

gij → gij − hij + hikh j
k +O

(
h3
)
, (9.3.136)

then the square root of the determinant of the metric will change as√
|g| →

√
|g|
(
1 +

1

2
gabhab +O(h2)

)
. (9.3.137)
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Problem 9.35. Use the matrix identity in eq. (5.6.142), where for any square matrix X,

det eX = eTr[X], (9.3.138)

to prove eq. (9.3.137). (The Tr X means the trace of the matrix X – sum over its diagonal
terms.) Hint: Start with det(gij + hij) = det(gij) · det(δij + hij). Then massage δij + hij =
exp(ln(δij + hij)).

Problem 9.36. Use eq. (9.3.137) and the definition of the Christoffel symbol to show that

∂i ln
√
|g| = 1

2
gab∂igab = Γsis. (9.3.139)

This formula is of use in understanding the generalization of ‘divergence’ in multi-variable cal-
culus to that in differential geometry of curved space(time)s.

Problem 9.37. Divergence of tensors. Verify the following formulas for the divergence
of a vector V i, a fully antisymmetric rank-(N ≤ D) tensor F i1i2...iN and a symmetric tensor
Sij = Sji,

∇iV
i =

∂i

(√
|g|V i

)
√
|g|

, (9.3.140)

∇jF
ji2...iN =

∂j

(√
|g|F ji2...iN

)
√
|g|

, (9.3.141)

∇iS
ij =

∂i

(√
|g|Sij

)
√
|g|

+ ΓjabS
ab. (9.3.142)

Note that, fully antisymmetric means, swapping any pair of indices (say, ia ↔ ib) costs a minus
sign,

F i1...ia−1iaia+1...ib−1ibib+1...iN = −F i1...ia−1ibia+1...ib−1iaib+1...iN . (9.3.143)

Comment on how these expressions, equations (9.3.140)-(9.3.142), transform under a coordinate

transformation, i.e., x⃗→ x⃗(ξ⃗).

Gradient of a scalar It is worth highlighting that the gradient of a scalar, with upper
indices, depends on the metric; whereas the covariant derivative on the same scalar, with lower
indices, does not.

∇iφ = gij∇jφ = gij∂jφ. (9.3.144)

This means, even in flat space, ∇iφ is not always equal to ∇iφ. (They are equal in Cartesian
coordinates.) For instance, in spherical coordinates (r, θ, ϕ), where

gij = diag(1, r−2, r−2(sin θ)−2); (9.3.145)
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the gradient of a scalar is

∇iφ =
(
∂rφ, r

−2∂θφ, r
−2(sin θ)−2∂ϕφ

)
. (9.3.146)

while the same object with lower indices is simply

∇iφ = (∂rφ, ∂θφ, ∂ϕφ) . (9.3.147)

Laplacian of a scalar The Laplacian of a scalar ψ can be thought of as the divergence of
its gradient. In 3D vector calculus you would write is as ∇⃗2 but in curved spaces we may also
write it as □ or ∇i∇i:

□ψ ≡ ∇⃗2ψ = ∇i∇iψ = gij∇i∇jψ. (9.3.148)

Problem 9.38. Show that the Laplacian of a scalar can be written more explicitly in terms
of the determinant of the metric and the inverse metric as

∇⃗2ψ ≡ ∇i∇iψ =
1√
|g|
∂i

(√
|g|gij∂jψ

)
. (9.3.149)

Hint: Start with the expansion ∇i∇iψ = ∂i∇iψ + Γiij∇jψ.

Remarks on Scalar ∇⃗2 on Tensor In practical computations, one may encounter
the scalar ∇⃗2(·) ≡ ∇i∇i(·) = |g|−1/2∂a(|g|1/2gab∂b·) acting a tensor. For e.g., electromagnetic
calculations often lead us to

∇⃗2Ai ≡
1√
|g|
∂a

(√
|g|gab∂bAi

)
, (9.3.150)

where Ai is the vector potential. If we recall the ‘Covariant Derivative’ discussion at the begin-
ning of this section, we would recognize that this is not a tensor under coordinate transforma-
tions. To obtain a tensor expression, we would have to add to eq. (9.3.150) terms that involve
Christoffel symbols, because the latter would transform in such a way that would cancel the non-
tensorial portion of ∇⃗2Ai expressed in a different coordinate system – i.e., the derivatives acting
on the Jacobian contracted with the vector potential. But all these do not imply we cannot
compute the Laplacian portion of ∇⃗2Ai in a different coordinate system x⃗ = x⃗(y⃗). Specifically,
if we choose to remain in the same coordinate basis {dxi} then the vector potential itself reads

Ai(x⃗)dx
i = Ai(x⃗(y⃗))dx

i (9.3.151)

– namely, the Ai(x⃗) = Ai(x⃗(y⃗)) are now treated as scalars – but if we now compute the scalar
Laplacian acting on it with respect to y⃗ instead, then we must have the relation

∇⃗2Ai =
1√
|g(x⃗)|

∂xa
(√
|g(x⃗)|gab(x⃗)∂xbAi(x⃗)

)
=

1√
|g′(y⃗)|

∂ym
(√
|g′(y⃗)|g′mn(y⃗)∂ybAi(x⃗(y⃗))

)
; (9.3.152)

where |g′(y⃗)| denotes the determinant of the metric g′mn(y⃗) = (∂xa/∂ym)(∂xb/∂yn)gab(x⃗(y⃗))
expressed in the new y⃗-coordinate system and g′mn(y⃗) is its inverse. We reiterate: that the
second equality of eq. (9.3.152) has to follow from its first, is because we are now effectively
treating Ai as scalars under coordinate transformations.

393



Problem 9.39. Example: Scalar Laplacian in Flat Space To further understand the
transformation from x⃗ → y⃗ in the first and second equalities of eq. (9.3.152), let us specialize
to flat space Cartesian coordinates: dℓ2 = δijdx

idxj. Consider transforming x⃗ to some other
coordinate system x⃗ = x⃗(y⃗). Calculus tells us,

∇⃗2Ai = δab∂xa∂xbAi(x⃗) = δab∂xa

(
∂yn

∂xb
∂ynAi

)
= δab

∂ym

∂xa
∂yn

∂xb
∂ym∂ynAi(x⃗(y⃗)) + δab

∂yn

∂xa∂xb
∂ynAi(x⃗(y⃗)). (9.3.153)

Explain why the final equality is, within this context, equivalent to the second equality of eq.
(9.3.152). Hint: Refer to equations (9.3.13) and (9.3.139).

9.4 Levi-Civita (Pseudo-)Tensor and the Hodge Dual

Levi-Civita (Pseudo-)Tensor We have just seen how to write the divergence in any
curved or flat space. We will now see that the curl from vector calculus also has a differential
geometric formulation as an antisymmetric tensor, which will allow us to generalize the former
to not only curved spaces but also arbitrary dimensions greater than 2. But first, we introduce
the Levi-Civita tensor, and with it, the Hodge dual.

In D spatial dimensions we first define a Levi-Civita symbol

ϵi1i2...iD−1iD . (9.4.1)

It is defined by the following properties.

� It is completely antisymmetric in its indices. This means swapping any of the indices
ia ↔ ib (for a ̸= b) will return

ϵi1i2...ia−1iaia+1...ib−1ibib+1...iD−1iD = −ϵi1i2...ia−1ibia+1...ib−1iaib+1...iD−1iD . (9.4.2)

� For a given ordering of the D distinct coordinates {xi|i = 1, 2, 3, . . . , D}, ϵ123...D ≡ 1.
Below, we will have more to say about this choice.

These are sufficient to define every component of the Levi-Civita symbol. From the first defini-
tion, if any of the D indices are the same, say ia = ib, then the Levi-Civita symbol returns zero.
(Why?) From the second definition, when all the indices are distinct, ϵi1i2...iD−1iD is a +1 if it
takes even number of swaps to go from {1, . . . , D} to {i1, . . . , iD}; and is a −1 if it takes an odd
number of swaps to do the same.

For example, in the (perhaps familiar) 3 dimensional case, in Cartesian coordinates (x1, x2, x3),

1 = ϵ123 = −ϵ213 = −ϵ321 = −ϵ132 = ϵ231 = ϵ312. (9.4.3)

The Levi-Civita tensor ϵ̃i1...iD is defined as

ϵ̃i1i2...iD ≡
√
|g|ϵi1i2...iD . (9.4.4)
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Let us understand why it is a (pseudo-)tensor. Because the Levi-Civita symbol is just a multi-
index array of ±1 and 0, it does not change under coordinate transformations. Equation (9.2.47)
then implies √

|g(ξ⃗)|ϵa1a2...aD =

√∣∣∣g (x⃗(ξ⃗))∣∣∣ ∣∣∣∣∣det ∂xi(ξ⃗)∂ξj

∣∣∣∣∣ ϵa1a2...aD . (9.4.5)

On the right hand side,
∣∣∣g (x⃗(ξ⃗))∣∣∣ is the absolute value of the determinant of gij written in the

coordinates x⃗ but with x⃗ replaced with x⃗(ξ⃗).
If ϵ̃i1i2...iD were a tensor, on the other hand, it must obey eq. (9.2.25),√

|g(ξ⃗)|ϵa1a2...aD
?
=

√∣∣∣g (x⃗(ξ⃗))∣∣∣ϵi1...iD ∂xi1∂ξa1
. . .

∂xiD

∂ξaD
,

=

√∣∣∣g (x⃗(ξ⃗))∣∣∣ (det ∂xi
∂ξj

)
ϵa1...aD , (9.4.6)

where in the second line we have recalled the co-factor expansion determinant of any matrix M ,

ϵa1...aD detM = ϵi1...iDM
i1
a1
. . .M iD

aD
. (9.4.7)

Comparing equations (9.4.5) and (9.4.6) tells us the Levi-Civita ϵ̃a1...aD transforms as a tensor
for orientation-preserving coordinate transformations, namely for all coordinate transformations
obeying

det
∂xi

∂ξj
= ϵi1i2...iD

∂xi1

∂ξ1
∂xi2

∂ξ2
. . .

∂xiD

∂ξD
> 0. (9.4.8)

Parity flips This restriction on the sign of the determinant of the Jacobian means the Levi-
Civita tensor is invariant under “parity”, and is why I call it a pseudo-tensor. Parity flips are
transformations that reverse the orientation of some coordinate axis, say ξi ≡ −xi (for some
fixed i) and ξj = xj for j ̸= i. For the Levi-Civita tensor,

√
g(x⃗)ϵi1...iD =

√
g(ξ⃗)

∣∣∣∣∣∣det diag[1, . . . , 1, −1︸︷︷︸
ith component

, 1, . . . , 1]

∣∣∣∣∣∣ ϵi1...iD =

√
g(ξ⃗)ϵi1...iD ; (9.4.9)

whereas, under the usual rules of coordinate transformations (eq. (9.2.25)) we would have
expected a ‘true’ tensor Ti1...iD to behave, for instance, as

T(1)(2)...(i−1)(i)(i+1)...(D)(x⃗)
∂xi

∂ξi
= −T(1)(2)...(i−1)(i)(i+1)...(D)(ξ⃗). (9.4.10)

Orientation of coordinate system What is orientation? It is the choice of how one orders
the coordinates in use, say (x1, x2, . . . , xD), together with the convention that ϵ12...D ≡ 1.

In 2D flat spacetime, for example, we may choose the ‘right-handed’ (x1, x2) as Cartesian
coordinates, ϵ12 ≡ 1, and obtain the infinitesimal volume d2x⃗ = dx1dx2. We can switch to
cylindrical coordinates

x⃗(ξ⃗) = r(cosϕ, sinϕ). (9.4.11)
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so that

∂xi

∂r
= (cosϕ, sinϕ),

∂xi

∂ϕ
= r(− sinϕ, cosϕ), r ≥ 0, ϕ ∈ [0, 2π). (9.4.12)

If we ordered (ξ1, ξ2) = (r, ϕ), we would have

ϵi1i2
∂xi1

∂r

∂xi2

∂ϕ
= det

[
cosϕ −r sinϕ
sinϕ r cosϕ

]
= r(cosϕ)2 + r(sinϕ)2 = r. (9.4.13)

If we instead ordered (ξ1, ξ2) = (ϕ, r), we would have

ϵi1i2
∂xi1

∂ϕ

∂xi2

∂r
= det

[
−r sinϕ cosϕ
r cosϕ sinϕ

]
= −r(sinϕ)2 − r(cosϕ)2 = −r. (9.4.14)

We can see that going from (x1, x2) to (ξ1, ξ2) ≡ (r, ϕ) is orientation preserving; and we should
also choose ϵrϕ ≡ 1.89

Problem 9.40. By going from Cartesian coordinates (x1, x2, x3) to spherical ones,

x⃗(ξ⃗) = r(sin θ cosϕ, sin θ sinϕ, cos θ), (9.4.15)

determine what is the orientation preserving ordering of the coordinates of ξ⃗, and is ϵrθϕ equal
+1 or −1?

Infinitesimal volume re-visited The infinitesimal volume we encountered earlier can
really be written as

d(vol.) = dDx⃗
√
|g(x⃗)|ϵ12...D = dDx⃗

√
|g(x⃗)|, (9.4.16)

so that under a coordinate transformation x⃗→ x⃗(ξ⃗), the necessarily positive infinitesimal volume

written in x⃗ transforms into another positive infinitesimal volume, but written in ξ⃗:

dDx⃗
√
|g(x⃗)|ϵ12...D = dDξ⃗

√∣∣∣g(ξ⃗)∣∣∣ϵ12...D. (9.4.17)

Below, we will see that dDx⃗
√
|g(x⃗)| in modern integration theory is viewed as a differential

D−form.

Problem 9.41. We may consider the infinitesimal volume in 3D flat space in Cartesian
coordinates

d(vol.) = dx1dx2dx3. (9.4.18)

Now, let us switch to spherical coordinates ξ⃗, with the ordering in the previous problem. Show
that it is given by

dx1dx2dx3 = d3ξ⃗

√
|g(ξ⃗)|,

√
|g(ξ⃗)| = ϵi1i2i3

∂xi1

∂ξ1
∂xi2

∂ξ2
∂xi3

∂ξ3
. (9.4.19)

89We have gone from a ‘right-handed’ coordinate system (x1, x2) to a ‘right-handed’ (r, ϕ); we could also have
gone from a ‘left-handed’ one (x2, x1) to a ‘left-handed’ (ϕ, r) and this would still be orientation-preserving.
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Can you compare

√
|g(ξ⃗)| with the volume of the parallelepiped formed by ∂ξ1x

i, ∂ξ2x
i and

∂ξ3x
i?90

Cross-Product in Flat 3D, Right-hand rule Notice the notion of orientation in 3D
is closely tied to the “right-hand rule” in vector calculus. Let X⃗ and Y⃗ be vectors in Euclidean
3-space. In Cartesian coordinates, where gij = δij, you may check that their cross product is(

X⃗ × Y⃗
)k

= ϵijkX iY j. (9.4.20)

For example, if X⃗ is parallel to the positive x1 axis and Y⃗ parallel to the positive x2-axis, so
that X⃗ = |X⃗|(1, 0, 0) and Y⃗ = |Y⃗ |(0, 1, 0), the cross product reads(

X⃗ × Y⃗
)k
→ |X⃗||Y⃗ |ϵ12k = |X⃗||Y⃗ |δk3 , (9.4.21)

i.e., it is parallel to the positive x3 axis. (Remember k cannot be either 1 or 2 because ϵijk is
fully antisymmetric.) If we had chosen ϵ123 = ϵ123 ≡ −1, then the cross product would become
the “left-hand rule”. Below, I will continue to point out, where appropriate, how this issue of
orientation arises in differential geometry.

Problem 9.42. Show that the Levi-Civita tensor with all upper indices is given by

ϵ̃i1i2...iD =
sgn det(gab)√

|g|
ϵi1i2...iD . (9.4.22)

In curved spaces, the sign of the det gab = 1; whereas in curved spacetimes it depends on the
signature used for the flat metric.91 Hint: Raise the indices by contracting with inverse metrics,
then recall the cofactor expansion definition of the determinant.

Problem 9.43. Show that the covariant derivative of the Levi-Civita tensor is zero.

∇j ϵ̃i1i2...iD = 0. (9.4.23)

(Hint: Start by expanding the covariant derivative in terms of Christoffel symbols; then go
through some combinatoric reasoning or invoke the equivalence principle.) From this, explain
why the following equalities are true; for some vector V ,

∇j

(
ϵ̃i1i2...iD−2jkVk

)
= ϵ̃i1i2...iD−2jk∇jVk = ϵ̃i1i2...iD−2jk∂jVk. (9.4.24)

Why is ∇iVj −∇jVi = ∂iVj − ∂jVi for any Vi? Hint: expand the covariant derivatives in terms
of the partial derivatives and the Christoffel symbols.

90Because of the existence of locally flat coordinates {yi}, the interpretation of
√
|g(ξ)| as the volume of

parallelepiped formed by {∂ξ1yi, . . . , ∂ξDyi} actually holds very generally.
91See eq. (9.2.92) to understand why the sign of the determinant of the metric is always determined by the

sign of the determinant of its flat counterpart.

397



Combinatorics This is an appropriate place to state how to actually construct a fully
antisymmetric tensor from a given tensor Ti1...iN . Denoting Π(i1 . . . iN) to be a permutation of
the indices {i1 . . . iN}, the antisymmetrization procedure is given by

T[i1...iN ] =
N !∑

permutations Π of {i1,i2,...,iN}

σΠ · TΠ(i1...iN ) (9.4.25)

=
∑

even permutations Π of {i1,i2,...,iN}

TΠ(i1...iN ) −
∑

odd permutations Π of {i1,i2,...,iN}

TΠ(i1...iN ).

In words: for a rank−N tensor, T[i1...iN ] consists of a sum of N ! terms. The first is Ti1...iN .
Each and every other term consists of T with its indices permuted over all the N ! − 1 distinct
remaining possibilities, multiplied by σΠ = +1 if it took even number of index swaps to get to
the given permutation, and σΠ = −1 if it took an odd number of swaps. (The σΠ is often called
the sign of the permutation Π.) For example,

T[ij] = Tij − Tji, T[ijk] = Tijk − Tikj − Tjik + Tjki + Tkij − Tkji. (9.4.26)

Can you see why eq. (9.4.25) yields a fully antisymmetric object? Consider any pair of distinct
indices, say ia and ib, for 1 ≤ (a ̸= b) ≤ N . Since the sum on its right hand side contains
every permutation (multiplied by the sign) – we may group the terms in the sum of eq. (9.4.25)
into pairs, say σΠℓ

Tj1...ia...ib...jN −σΠℓ
Tj1...ib...ia...jN . That is, for a given term σΠℓ

Tj1...ia...ib...jN there
must be a counterpart with ia ↔ ib swapped, multipled by a minus sign, because – if the first
term involved even (odd) number of swaps to get to, then the second must have involved an odd
(even) number. If we now considered swapping ia ↔ ib in every term in the sum on the right
hand side of eq. (9.4.25),

T[i1...ia...ib...iN ] = σΠℓ
Tj1...ia...ib...jN − σΠℓ

Tj1...ib...ia...jN + . . . , (9.4.27)

T[i1...ib...ia...iN ] = − (σΠℓ
Tj1...ia...ib...jN − σΠℓ

Tj1...ib...ia...jN + . . . ) . (9.4.28)

Problem 9.44. Given Ti1i2...iN , how do we construct a fully symmetric object from it, i.e.,
such that swapping any two indices returns the same object?

Problem 9.45. Explain why Ti1...iN = 0 if it is fully anti-symmetric and N > D. Hint:
Try constructing, say, a rank−3 fully anti-symmetric tensor in D = 2 dimensions; write down
its components.

Problem 9.46. If the Levi-Civita symbol is subject to the convention ϵ12...D ≡ 1, explain
why it is equivalent to the following expansion in Kronecker δs.

ϵi1i2...iD = δ1[i1δ
2
i2
. . . δD−1

iD−1
δDiD] (9.4.29)

Can you also explain why the following is true?

ϵa1a2...aD−1aD detA = ϵi1i2...iD−1iDA
i1
a1
Ai2a2 . . . A

iD−1

aD−1
AiDaD (9.4.30)
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Problem 9.47. Argue that

T[i1...iN ] = T[i1...iN−1]iN − T[iN i2...iN−1]i1 − T[i1iN i3...iN−1]i2 (9.4.31)

−T[i1i2iN i4...iN−1]i3 − · · · − T[i1...iN−2iN ]iN−1
.

In words: to construct the fully anti-symmetric combination of N indices, anti-symmetrize the
first N − 1 indices. Then swap the first and Nth index of the this first group; then swap the
second and N index; etc. Note: This identity holds even if there are other indices not being
anti-symmetrized.

Product of Levi-Civita tensors The product of two Levi-Civita tensors will be im-
portant for the discussions to come. We have

ϵ̃i1...iNk1...kD−N ϵ̃j1...jNk1...kD−N
= sgn det(gab) · ANδi1[j1 . . . δ

iN
jN ], 1 ≤ N ≤ D, (9.4.32)

ϵ̃k1...kD ϵ̃k1...kD = sgn det(gab) · A0, AN≥0 ≡ (D −N)!. (9.4.33)

(Remember 0! = 1! = 1; also, δi1[j1 . . . δ
iN
jN ] = δ

[i1
j1
. . . δ

iN ]
jN

.) For instance, in D = 2 dimensions,

ϵ̃ij ϵ̃ab = sgn det(gmn) · δi[aδ
j
b], (9.4.34)

ϵ̃isϵ̃as = sgn det(gmn) · δia, (9.4.35)

ϵ̃slϵ̃sl = sgn det(gmn) · 2; (9.4.36)

and in D = 3 dimensions,

ϵ̃ijkϵ̃abc = sgn det(gmn) · δi[aδ
j
bδ
k
c], (9.4.37)

ϵ̃ijsϵ̃abs = sgn det(gmn) · δi[aδ
j
b], (9.4.38)

ϵ̃islϵ̃asl = sgn det(gmn) · 2δia, (9.4.39)

ϵ̃slmϵ̃slm = sgn det(gmn) · 6; (9.4.40)

etc.
Proof Let us first understand why there are a bunch of Kronecker deltas on the right

hand side of eq. (9.4.31), starting from the N = D case – where no indices are contracted.

sgn det(gab)ϵ̃
i1...iD ϵ̃j1...jD = ϵi1...iDϵj1...jD = δi1[j1 . . . δ

iD
jD] (9.4.41)

(This means AD = 1.) The first equality follows from eq. (9.4.22). The second may seem a bit
surprising, because the indices {i1, . . . , iD} are attached to a completely different ϵ̃ tensor from
the {j1, . . . , jD}. However, if we manipulate

δi1[j1 . . . δ
iD
jD] = δi1[1 . . . δ

iD
D]σj = δ1[1 . . . δ

D
D]σiσj = σiσj = ϵi1...iDϵj1...jD , (9.4.42)

where σi = 1 if it took even number of swaps to re-arrange {i1, . . . , iD} to {1, . . . , D} and σi = −1
if it took odd number of swaps; similarly, σj = 1 if it took even number of swaps to re-arrange
{j1, . . . , jD} to {1, . . . , D} and σj = −1 if it took odd number of swaps. But σi is precisely the
Levi-Civita symbol ϵi1...iD and likewise σj = ϵj1...jD . The (≥ 1)-contractions between the ϵ̃s can,
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in principle, be obtained by contracting the right hand side of (9.4.41). Because one contraction
of the (N + 1) Kronecker deltas have to return N Kronecker deltas, by induction, we now see
why the right hand side of eq. (9.4.32) takes the form it does for any N .

What remains is to figure out the actual value of AN . We will do so recursively, by finding
a relationship between AN and AN−1. We will then calculate A1 and use it to generate all the
higher ANs. Starting from eq. (9.4.32), and employing eq. (9.4.31),

ϵ̃i1...iN−1σk1...kD−N ϵ̃j1...jN−1σk1...kD−N
= ANδ

i1
[j1
. . . δ

iN−1

jN−1
δσσ] (9.4.43)

= AN

(
δi1[j1 . . . δ

iN−1

jN−1]
δσσ − δ

i1
[σδ

i2
j2
. . . δ

iN−1

jN−1]
δσj1 − δ

i1
[j1
δi2σ δ

i3
j3
. . . δ

iN−1

jN−1]
δσj2 − · · · − δ

i1
[j1
. . . δ

iN−2

jN−2
δ
iN−1

σ] δσjN−1

)
= AN · (D − (N − 1))δi1[j1 . . . δ

iN−1

jN−1]
≡ AN−1δ

i1
[j1
. . . δ

iN−1

jN−1]
.

(The last equality is a definition, because AN−1 is the coefficient of δi1[j1 . . . δ
iN−1

jN−1]
.) We have the

relationship

AN =
AN−1

D − (N − 1)
. (9.4.44)

If we contract every index, we have to sum over all the D! (non-zero components of the Levi-
Civita symbol)2,

ϵ̃i1...iD ϵ̃i1...iD = sgn det(gab) ·
∑

i1,...,iD

(ϵi1...iD)
2 = sgn det(gab) ·D! (9.4.45)

That means A0 = D!. If we contracted every index but one,

ϵ̃ik1...kD ϵ̃jk1...kD = sgn det(gab)A1δ
i
j. (9.4.46)

Contracting the i and j indices, and invoking eq. (9.4.45),

sgn det(gab) ·D! = sgn det(gab)A1 ·D ⇒ A1 = (D − 1)!. (9.4.47)

That means we may use A1 (or, actually, A0) to generate all other AN≥0s,

AN =
AN−1

(D − (N − 1))
=

1

D − (N − 1)

AN−2

D − (N − 2)
= . . .

=
A1

(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))
=

(D − 1)!

(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))

=
(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))(D −N)(D − (N + 1)) . . . 3 · 2 · 1

(D − 1)(D − 2)(D − 3) . . . (D − (N − 1))

= (D −N)!. (9.4.48)

Note that 0! = 1, so AD = 1 as we have found earlier. YZ: This proof can be simplified.

Problem 9.48. Matrix determinants revisited Explain why the cofactor expansion
definition of a square matrix in eq. (3.2.1) can also be expressed as

detA = ϵi1i2...iD−1iDA1
i1
A2

i2
. . . AD−1

iD−1
ADiD (9.4.49)
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provided we define ϵi1i2...iD−1iD in the same way we defined its lower index counterpart, including
ϵ123...D ≡ 1. That is, why can we cofactor expand about either the rows or the columns of a
matrix, to obtain its determinant? What does that tell us about the relation detAT = detA?
Can you also prove, using our result for the product of two Levi-Civita symbols, that det(A·B) =
(detA)(detB)?

Problem 9.49. In 3D vector calculus, the curl of a gradient of a scalar is zero – how would
you express that using the ϵ̃ tensor? What about the statement that the divergence of a curl of
a vector field is zero? Can you also derive, using the ϵ̃ tensor in Cartesian coordinates and eq.
(9.4.32), the 3D vector cross product identity

A⃗× (B⃗ × C⃗) = (A⃗ · C⃗)B⃗ − (A⃗ · B⃗)C⃗? (9.4.50)

Hodge dual We are now ready to define the Hodge dual. Given a fully antisymmetric
rank-N tensor Ti1...iN , its Hodge dual – which I shall denote as T̃ j1...jD−N – is a fully antisymmetric
rank-(D −N) tensor whose components are

T̃ j1...jD−N ≡ 1

N !
ϵ̃j1...jD−N i1...iNTi1...iN . (9.4.51)

Invertible Note that the Hodge dual is an invertible operation, as long as we
are dealing with fully antisymmetric tensors, in that given T̃ j1...jD−N we can recover
Ti1...iN and vice versa.92 All you have to do is contract both sides with the Levi-Civita
tensor, namely

Ti1...iN = sgn(det gab)
(−)N(D−N)

(D −N)!
ϵ̃i1...iN j1...jD−N

T̃ j1...jD−N . (9.4.52)

In other words T̃ j1...jD−N and Ti1...iN contain the same amount of information.

Problem 9.50. Using eq. (9.4.32), verify the proportionality constant (−)N(D−N)sgng in
the inverse Hodge dual of eq. (9.4.52), and thereby prove that the Hodge dual is indeed invertible
for fully antisymmetric tensors.

Curl The curl of a vector field Ai can now either be defined as the antisymmetric rank-2
tensor

Fij ≡ ∂[iAj] (9.4.53)

or its rank-(D − 2) Hodge dual

F̃ i1i2...iD−2 ≡ 1

2
ϵ̃i1i2...iD−2jk∂[jAk]. (9.4.54)

92The fully antisymmetric property is crucial here: any symmetric portion of a tensor contracted with the
Levi-Civita tensor would be lost. For example, an arbitrary rank-2 tensor can always be decomposed as Tij =
(1/2)T{ij} + (1/2)T[ij]; then, ϵ̃

i1...iD−2jkTjk = ϵ̃i1...iD−2jk((1/2)T{jk} + (1/2)T[jk]) = (1/2)ϵ̃i1...iD−2jkT[jk]. The

symmetric part is lost because ϵ̃i1...iD−2jkT{jk} = −ϵ̃i1...iD−2kjT{kj}.
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(D = 3)-dimensional space is a special case where both the original vector field Ai and the

Hodge dual F̃ i are rank-1 tensors. This is usually how electromagnetism is taught: that in 3D
the magnetic field is a vector arising from the curl of the vector potential Ai:

Bi =
1

2
ϵ̃ijk∂[jAk] = ϵ̃ijk∂jAk. (9.4.55)

In particular, when we specialize to 3D flat space with Cartesian coordinates:(
∇⃗ × A⃗

)i
= ϵijk∂jAk, (Flat 3D Cartesian). (9.4.56)(

∇⃗ × A⃗
)1

= ϵ123∂2A3 + ϵ132∂3A2 = ∂2A3 − ∂3A2, etc. (9.4.57)

By setting i = 1, 2, 3 we can recover the usual definition of the curl in 3D vector calculus. But
you may have noticed from equations (9.4.53) and (9.4.54), in any other dimension, that the
magnetic field is really not a (rank−1) vector but should be viewed either as a rank−2 curl or
a rank−(D − 2) Hodge dual of this curl.

Exterior Derivative vs Curl and Divergence vs Curl We can extend the definition
of a curl of a vector field to that of a rank−N ≤ D − 1 fully antisymmetric Bi1...iN as

∇[σBi1...iN ] = ∂[σBi1...iN ]. (9.4.58)

(Can you explain why the ∇ can be replaced with ∂? Notice too, this definition of the curl does
not involve the metric.) Even though I prefer to call eq. (9.4.58) the ‘curl of B’, in differential
form nomenclature, eq. (9.4.58) is instead dubbed the exterior derivative. More specifically, for
an arbitrary fully anti-symmetric rank−N tensor B,

(dB)i0i1...iN ≡
1

N !
∂[i0Bi1...iN ]. (9.4.59)

With the Levi-Civita tensor, we can convert the curl of an antisymmetric tensor into the diver-
gence of its dual,

∇ℓB̃
j1...jD−N−1ℓ =

1

N !
ϵ̃j1...jD−N−1ℓi1...iN∇ℓBi1...iN (9.4.60)

= (N + 1) · ϵ̃j1...jD−N−1ℓi1...iN∂[ℓBi1...iN ]. (9.4.61)

In the first equality, we have used the fact that the Levi-Civita tensor is covariantly constant
(cf. eq. (9.4.23)). Since ∂[σBi1...iN ] and its Hodge dual contains the same information, we may
proceed to identify the two objects,

∇ℓB̃
j1...jD−N−1ℓ ↔ ∂[ℓBi1...iN ]. (9.4.62)

For example, in 3D, the magnetic field can be viewed as not the curl of Ai but rather as the
following divergence of its dual:

∇jÃ
ij = ϵ̃ijk∇jAk = Bi. (9.4.63)

The divergence of the dual of Ai is the (negative) curl of Ai.
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Let us take the anti-symmetric derivative of Fij ≡ ∂[iAj].

∂[iFjk] = ∂[i∂[jAk]] = 2∂[i∂jAk]

= ∂[i∂jAk] − ∂[j∂iAk] = 0. (9.4.64)

That is, the curl of Fij is zero because it involves the difference between the same pair of partial
derivatives, for e.g., ∂i∂j and ∂j∂i. Likewise, if we take the fully anti-symmetric derivative of the
1−form vi ≡ ∂iφ,

∂[ivj] = ∂[i∂j]φ

= (∂i∂j − ∂j∂i)φ = 0. (9.4.65)

Problem 9.51. In 3D vector calculus, we learn that the divergence of a curl is zero

∇⃗ ·
(
∇⃗ × A⃗

)
= 0; (9.4.66)

and the curl of a gradient is zero

∇⃗ × ∇⃗φ = 0. (9.4.67)

In 3D curved space, verify that equations (9.4.64) and (9.4.65) are simply the Hodge dual versions
of equations (9.4.66) and (9.4.67).

Problem 9.52. Prove the following D = 3 identities:(
∇⃗ ×

(
∇⃗ × A⃗

))i
= ∇i

(
∇jA

j
)
−
(
∇j∇jAi −Ri

jA
j
)
, (9.4.68)

which holds in arbitrary curved spaces. Here, Ri
j is the Ricci tensor.

Problem 9.53. Show, by contracting both sides of eq. (9.4.55) with an appropriate ϵ̃-
tensor, that

ϵ̃ijkB
k = ∂[iAj]. (9.4.69)

Assume sgn det(gab) = 1.

Problem 9.54. Explain why, any fully anti-symmetric tensor rank−D tensor inD-dimensional
space (say, B) must be proportional to the Levi-Civita tensor:

Bi1...iD = φ(x⃗)ϵ̃i1...iD (9.4.70)

Hint: How many independent components of B are there?
Is the Hodge dual of a rank-D fully antisymmetric tensor Fi1...iD invertible?
In electromagnetism, if the magnetic field is always defined as the Hodge dual of ∂[iAj], what

rank tensor is it in 2 spatial dimensions? Also explain why ∂[iAj] must be zero in 1 spatial
dimension – i.e., only electric fields can exist in 1 space dimensions.
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Problem 9.55. All 2D Metrics Are (Locally) Conformally Flat93 A metric gij is
said to be conformally flat if it is equal to the flat metric multiplied by a scalar function (which
we shall denote as Ω2 – not to be confused with the solid angle):

gij = Ω2ḡij. (9.4.71)

Here, ḡij = diag[1, 1] if we are working with a curved space; whereas (in the following Chapter)
ḡij = diag[1,−1] if we are dealing with a curved spacetime instead.

In this problem, we will prove that:

In a 2D curved space(time), it is always possible to find a set of local coordinates
such that the metric takes the conformally flat form in eq. (9.4.71).

Recall that coordinates, in this case x⃗, may be regarded as scalar fields in the curved space(time).
Now, if their gradients with respect to a different set of coordinates x⃗′ – i.e., the one forms
dx1 = (∂x1/∂x′m)dx′m and dx2 = (∂x2/∂x′m)dx′m – are required to be Hodge duals of each
other, namely,

∂x1

∂x′m
= ϵ̃ n′

m′
∂x2

∂x′n
, (9.4.72)

show that

∂x1

∂x′m
∂x2

∂x′n
gm

′n′
(x⃗′) = 0, (9.4.73)

and

∂x1

∂x′m
∂x1

∂x′n
gm

′n′
= (sgn det g)

∂x2

∂x′m
∂x2

∂x′n
gm

′n′
. (9.4.74)

Suppose we begin with the metric gi′j′(x⃗
′)dx′idx′j. Explain why the above results demonstrate

that gij(x⃗)∂xi ⊗ ∂xj is conformally flat.
Homogeneous solutions Furthermore, show that these x⃗(x⃗′) coordinates must be homo-

geneous solutions to the Laplace equation with respect to x⃗′:

∇⃗2
x⃗′x

1(x⃗′) = 0 = ∇⃗2
x⃗′x

2(x⃗′). (9.4.75)

Hint: Consider eq. (9.4.72) and its Hodge dual; then take the curl of these equations.

Remark Given some definition x2 = x2(x⃗′) obeying ∇⃗x⃗′x
2 = 0, eq. (9.4.72) defines up to

an additive constant

x1(x⃗′) =

∫
d̃x2 =

∫
ϵ̃ n′

m′
∂x2

∂x′n
dx′m. (9.4.76)

(Suppose x1(x⃗′) were given instead – can you write down the analogous integral representation
of x2?) Hence, this problem provides a constructive proof for the existence of 2D conformally
flat (and orthogonal) coordinate systems.

93This problem is based on appendix 11C of [25].
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Problem 9.56. The 2-Sphere is Conformally Flat94 This problem follows up on Prob-
lem (9.55) by showing that the 2-sphere metric

dℓ2 = dθ2 + sin(θ)2dϕ2 (9.4.77)

may be put into the conformally flat forms

dℓ2 =

(
2

1 + χ2

)2 (
(dx1)2 + (dx2)2

)
(9.4.78)

=

(
2

1 + zz̄

)2

dzdz̄ (9.4.79)

=

(
2

1 + χ2

)2 (
(dχ)2 + χ2(dϕ)2

)
, (9.4.80)

χ ≡
√
(x1)2 + (x2)2; (9.4.81)

where

(x1, x2) ≡ (tan(θ/2) cos(ϕ), tan(θ/2) sin(ϕ)) , (9.4.82)

z ≡ x1 + ix2. (9.4.83)

Begin by showing that the x⃗ satisfy Laplace’s equation in the (θ, ϕ) system:

∇⃗2
θ,ϕx

1 = 0 = ∇⃗2
θ,ϕx

2. (9.4.84)

Next, show that eq. (9.4.72) is in fact satisfied; i.e., that dx1 is the Hodge dual of dx2. Perform
the explicit coordinate transformations to verify dθ2+sin(θ)2dϕ2 does become equations (9.4.78)
through (9.4.80). The transformation from eq. (9.4.78) to eq. (9.4.80) is of course the usual
Cartesian (x1, x2) to 2D polar (χ, ϕ) coordinates, with χ being the ‘radial’ coordinate.

Problem 9.57. Curl, divergence, and all that The electromagnetism textbook by
J.D.Jackson contains on its very last page explicit forms of the gradient and Laplacian of a scalar
as well as divergence and curl of a vector – in Cartesian, cylindrical, and spherical coordinates
in 3-dimensional flat space. Can you derive them with differential geometric techniques? Note
that the vectors there are expressed in an orthonormal basis.
Cartesian coordinates In Cartesian coordinates {x1, x2, x3} ∈ R3, we have the metric

dℓ2 = δijdx
idxj. (9.4.85)

Show that the gradient of a scalar ψ is

∇⃗ψ = (∂1ψ, ∂2ψ, ∂3ψ) = (∂1ψ, ∂2ψ, ∂3ψ); (9.4.86)

the Laplacian of a scalar ψ is

∇i∇iψ = δij∂i∂jψ =
(
∂21 + ∂22 + ∂23

)
ψ; (9.4.87)

94Actually, the round sphere in any dimension 2 or greater is conformally flat.
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the divergence of a vector A is

∇iA
i = ∂iA

i; (9.4.88)

and the curl of a vector A is

(∇⃗ × A⃗)i = ϵijk∂jAk. (9.4.89)

Cylindrical coordinates In cylindrical coordinates {ρ ≥ 0, 0 ≤ ϕ < 2π, z ∈ R}, employ
the following parametrization for the Cartesian components of the 3D Euclidean coordinate
vector

x⃗ = (ρ cosϕ, ρ sinϕ, z) (9.4.90)

to argue that the flat metric is translated from gij = δij to

dℓ2 = dρ2 + ρ2dϕ2 + dz2. (9.4.91)

Show that the gradient of a scalar ψ is

∇ρ̂ψ = ∂ρψ, ∇ϕ̂ψ =
1

ρ
∂ϕψ, ∇ẑψ = ∂zψ; (9.4.92)

the Laplacian of a scalar ψ is

∇i∇iψ =
1

ρ
∂ρ (ρ∂ρψ) +

1

ρ2
∂2ϕψ + ∂2zψ; (9.4.93)

the divergence of a vector A is

∇iA
i =

1

ρ

(
∂ρ
(
ρAρ̂

)
+ ∂ϕA

ϕ̂
)
+ ∂zA

ẑ; (9.4.94)

and the curl of a vector A is

ϵ̃ρ̂jk∂jAk =
1

ρ
∂ϕA

ẑ − ∂zAϕ̂, ϵ̃ϕ̂jk∂jAk = ∂zA
ρ̂ − ∂ρAẑ,

ϵ̃ẑjk∂jAk =
1

ρ

(
∂ρ

(
ρAϕ̂

)
− ∂ϕAρ̂

)
. (9.4.95)

Spherical coordinates In spherical coordinates {r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π} the
Cartesian components of the 3D Euclidean coordinate vector reads

x⃗ = (r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)) . (9.4.96)

Show that the flat metric is now

dℓ2 = dr2 + r2
(
dθ2 + (sin θ)2dϕ2

)
; (9.4.97)

the gradient of a scalar ψ is

∇r̂ψ = ∂rψ, ∇θ̂ψ =
1

r
∂θψ, ∇ϕ̂ψ =

1

r sin θ
∂ϕψ; (9.4.98)
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the Laplacian of a scalar ψ is

∇i∇iψ =
1

r2
∂r
(
r2∂rψ

)
+

1

r2 sin θ
∂θ (sin θ · ∂θψ) +

1

r2(sin θ)2
∂2ϕψ; (9.4.99)

the divergence of a vector A reads

∇iA
i =

1

r2
∂r
(
r2Ar̂

)
+

1

r sin θ
∂θ

(
sin θ · Aθ̂

)
+

1

r sin θ
∂ϕA

ϕ̂; (9.4.100)

and the curl of a vector A is given by

ϵ̃r̂jk∂jAk =
1

r sin θ

(
∂θ(sin θ · Aϕ̂)− ∂ϕAθ̂

)
, ϵ̃θ̂jk∂jAk =

1

r sin θ
∂ϕA

r̂ − 1

r
∂r(rA

ϕ̂),

ϵ̃ϕ̂jk∂jAk =
1

r

(
∂r

(
rAθ̂

)
− ∂θAr̂

)
. (9.4.101)

Problem 9.58. Additional Orthogonal Coordinates Verify the following forms of the
metric in flat 3D space, starting from Cartesian coordinates dℓ2 = dx⃗ · dx⃗, where x⃗ are the
Cartesian components of the coordinate vector.
Elliptic Cylindrical Coordinates If we choose some fixed length scale R > 0 and

x⃗ = (R cosh(ξ) cos(ϕ), R sinh(ξ) sin(ϕ), z) ; (9.4.102)

the corresponding metric is

dx⃗ · dx⃗ = R2
(
cosh2(ξ)− cos2(ϕ)

) (
dξ2 + dϕ2

)
+ dz2. (9.4.103)

Parabolic Coordinates If

x⃗ =

(
a2 − b2

2
, a · b, z

)
; (9.4.104)

the corresponding metric is

dx⃗ · dx⃗ =
(
a2 + b2

) (
da2 + db2

)
+ dz2. (9.4.105)

Parabolic Cylindrical Coordinates If

x⃗ =

(
a · b · cosϕ, a · b · sinϕ, a

2 − b2

2

)
; (9.4.106)

the corresponding metric is

dx⃗ · dx⃗ =
(
a2 + b2

) (
da2 + db2

)
+ (a · b)2dϕ2. (9.4.107)

Prolate Spheroidal Coordinates If we choose some fixed length scale R > 0 and

x⃗ = R (sinh(ξ) sin(θ) cos(ϕ), sinh(ξ) sin(θ) sin(ϕ), cosh(ξ) cos(θ)) ; (9.4.108)
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the corresponding metric is

dx⃗ · dx⃗ = R2
{(

cosh(ξ)2 − cos(θ)2
) (

dξ2 + dθ2
)
+ sin(θ)2 sinh(ξ)2dϕ2

}
. (9.4.109)

Oblate Spheroidal Coordinates If we choose some fixed length scale R > 0 and

x⃗ = R (cosh(ξ) sin(θ) cos(ϕ), cosh(ξ) sin(θ) sin(ϕ), sinh(ξ) cos(θ)) ; (9.4.110)

the corresponding metric is

dx⃗ · dx⃗ = R2
{(

cosh(ξ)2 + cos(θ)2 − 1
) (

dξ2 + dθ2
)
+ sin(θ)2 cosh(ξ)2dϕ2

}
. (9.4.111)

Bispherical Coordinates If we choose some fixed length scale R > 0 and

x⃗ =
R

cosh(µ)− cos(θ)
(sin(θ) cos(ϕ), sin(θ) sin(ϕ), sinh(µ)) ; (9.4.112)

the corresponding metric is

dx⃗ · dx⃗ =

(
R

cosh(µ)− cos(θ)

)2 (
dµ2 + dθ2 + sin(θ)2dϕ2

)
. (9.4.113)

Toroidal Coordinates If we choose some fixed length scale R > 0 and

x⃗ =
R

cosh(µ)− cos(θ)
(sinh(µ) cos(ϕ), sinh(µ) sin(ϕ), sin(θ)) ; (9.4.114)

the corresponding metric is

dx⃗ · dx⃗ =

(
R

cosh(µ)− cos(θ)

)2 (
dµ2 + dθ2 + sinh(µ)2dϕ2

)
. (9.4.115)

Conical, Ellipsoidal, and Paraboloidal Coordinates These involve Jacobi elliptic func-
tions cn, sn and dn; see the end of Chapter 5 of Volume 1 of Morse and Feshbach [13].

Curl, divergence, and all that Next, carry out a similar analysis as in Problem
(9.57), by computing in the above coordinate systems the gradient and Laplacian on a scalar;
and divergence and curl of a vector. Express your answers in the orthonormal basis.

Problem 9.59. Translation operator in infinite curved space. When discussing the
translation operator in, say eq. (5.2.19), we were implicitly assuming that space was flat and
translation invariant. In curved space, we could still define a vector space spanned by the position
eigenkets {|x⃗⟩}, where x⃗ refers to a particular point in space. We also need to define an inner
product ⟨x⃗| x⃗′⟩; for it to be generally covariant we require that is a coordinate scalar,

⟨x⃗| x⃗′⟩ = δ(D)(x⃗− x⃗′)
4
√
|g(x⃗)g(x⃗′)|

. (9.4.116)

Argue that any state |f⟩ can now be expressed through the superposition

|f⟩ =
∫
RD

dDx⃗′
√
|g(x⃗′)| |x⃗′⟩ ⟨x⃗′| f⟩ ; (9.4.117)
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and the completeness relation is therefore

I =
∫
RD

dDx⃗′
√
|g(x⃗′)| |x⃗′⟩ ⟨x⃗′| . (9.4.118)

One way to do so is to apply ⟨x⃗| on the left from both sides and recover f(x⃗) ≡ ⟨x⃗| f⟩. Next,
show that the translation operator in this curved infinite-space context is

T (ξ⃗) =
∫
RD

dDx⃗′
√
|g(x⃗′)|

∣∣∣x⃗′ + ξ⃗
〉
⟨x⃗′| . (9.4.119)

Is this operator unitary? Comment on how translation non-invariance plays a role in the an-
swer to this question. Can you construct the ket-bra operator representation (analogous to eq.

(9.4.119)) for the inverse of T (d⃗)? What happens when ξ⃗ in eq. (9.4.119) is infinitesimal and
satisfies Killing’s equation (cf. eq. (11.3.48))? Specifically, show that

T (ξ⃗)†T (ξ⃗) = I+O
(
ξ⃗2
)
= T (ξ⃗)T (ξ⃗)†; (9.4.120)

provided we identify the x⃗′ + ξ⃗(x⃗′) as an infinitesimal change-of-coordinates x⃗′ → x⃗′ + ξ⃗(x⃗′). To

sum: if ξ⃗ is a Killing vector, the translation operator acting along ξ⃗ is unitary up to first order
in the infinitesimal displacement.

9.5 Hypersurfaces

9.5.1 Induced Metrics

There are many physical and mathematical problems where we wish to study some (N < D)-
dimensional (hyper)surface residing (aka embedded) in a D dimensional ambient space. One way
to describe this surface is to first endow it with N coordinates {ξI|I = 1, 2, . . . , N}, whose indices
we will denote with capital letters to distinguish from the D coordinates {xi} parametrizing the

ambient space. Then the position of the point ξ⃗ on this hypersurface in the ambient perspective
is given by x⃗(ξ⃗). Distances on this hypersurface can be measured using the ambient metric by
restricting the latter on the former, i.e.,

gijdx
idxj → gij

(
x⃗(ξ⃗)

) ∂xi(ξ⃗)
∂ξI

∂xj(ξ⃗)

∂ξJ
dξIdξJ ≡ HIJ(ξ⃗)dξ

IdξJ. (9.5.1)

The HIJ is the (induced) metric on the hypersurface.95

Observe that the N vectors{
Ei

A∂xi ≡
∂xi

∂ξA
∂i

∣∣∣∣A = 1, 2, . . . , N

}
, (9.5.2)

95The Lorentzian signature of curved spacetimes, as opposed to the Euclidean one in curved spaces, complicates
the study of hypersurfaces in the former. One has to distinguish between timelike, spacelike and null surfaces.
For a pedagogical discussion see Eric Poisson’s A Relativist’s Toolkit – in fact, much of the material in this
section is heavily based on its Chapter 3. Note, however, it is not necessary to know General Relativity to study
hypersurfaces in curved spacetimes.
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are tangent to this hypersurface. They form a basis set of tangent vectors at a given point x⃗(ξ⃗),
but from the ambient D-dimensional perspective. On the other hand, the ∂/∂ξI themselves
form a basis set of tangent vectors, from the perspective of an observer confined to live on this
hypersurface. Altogether, the tangent vector Ei

A is a rank-1 tensor (with one upper index i)
under ambient space coordinate transformations x⃗ = x⃗(x⃗′); namely,

∂x′j

∂xi
Ei

A

(
x⃗(ξ⃗) = x⃗(x⃗′(ξ⃗))

)
= Ej′

A

(
x⃗′(ξ⃗)

)
. (9.5.3)

It is also a rank-1 tensor (with one lower index A) under transformations of the hypersurface

coordinates ξ⃗ = ξ⃗(ξ⃗′); namely,

∂ξA

∂ξ′B
Ei

A

(
x⃗(ξ⃗(ξ⃗′))

)
= Ei

B′

(
x⃗(ξ⃗′)

)
. (9.5.4)

Example A simple example is provided by the 2-sphere of radius R embedded in 3D flat
space. We already know that it can be parametrized by two angles ξI ≡ (0 ≤ θ ≤ π, 0 ≤ ϕ < 2π),
such that from the ambient perspective, the sphere is described by

xi(ξ⃗) = R(sin θ cosϕ, sin θ sinϕ, cos θ), (Cartesian components). (9.5.5)

(Remember R is a fixed quantity here; this amounts to setting dr = 0 in eq. (9.1.3).) The
induced metric on the sphere itself, according to eq. (9.5.1), will lead us to the expected result

HIJ(ξ⃗)dξ
IdξJ = R2

(
dθ2 + (sin θ)2dϕ2

)
. (9.5.6)

Remark In the case of the round sphere, it is of course convenient to use the same angular
coordinates on the hypersurface as the ones in the ambient space. However, it is important to
keep in mind, the choice of hypersurface coordinates ξ⃗ is, in general, completely independent
from that of the ambient ones x⃗.

Area of 2D surface in 3D flat space A common vector calculus problem is to
give some function f(x, y) of two variables, where x and y are to be interpreted as Cartesian
coordinates on a flat plane; then proceed to ask what its area is for some specified domain on
the (x, y)-plane. We see such a problem can be phrased as a differential geometric one. First,
we view f as the z coordinate of some hypersurface embedded in 3-dimensional flat space, so
that

X i ≡ (x, y, z) = (x, y, f(x, y)). (9.5.7)

The tangent vectors (∂X i/∂ξI) are

∂X i

∂x
= (1, 0, ∂xf) ,

∂X i

∂y
= (0, 1, ∂yf) . (9.5.8)

The induced metric, according to eq. (9.5.1), is given by

HIJ(ξ⃗)dξ
IdξJ = δij

(
∂X i

∂x

∂Xj

∂x
(dx)2 +

∂X i

∂y

∂Xj

∂y
(dy)2 + 2

∂X i

∂x

∂Xj

∂y
dxdy

)
,
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HIJ(ξ⃗)
·
=

[
1 + (∂xf)

2 ∂xf∂yf
∂xf∂yf 1 + (∂yf)

2

]
, ξI ≡ (x, y), (9.5.9)

where on the second line the “
·
=” means it is “represented by” the matrix to its right – the

first row corresponds, from left to right, to the xx, xy components; the second row yx and yy
components. Recall that the infinitesimal volume (= 2D area) is given in any coordinate system

ξ⃗ by d2ξ

√
detHIJ(ξ⃗). That means from taking the det of eq. (9.5.9), if the domain on (x, y) is

denoted as D, the corresponding area swept out by f is given by the 2D integral∫
D

dxdy
√
detHIJ(x, y) =

∫
D

dxdy
√

(1 + (∂xf)2)(1 + (∂yf)2)− (∂xf∂yf)2

=

∫
D

dxdy
√
1 + (∂xf(x, y))2 + (∂yf(x, y))2. (9.5.10)

Normal to hypersurface Suppose the hypersurface is (D− 1) dimensional, sitting in a D
dimensional ambient space. Then it could also be described by first identifying a scalar function
of the ambient space f(x⃗) such that some constant-f (i.e., “equi-potential”) surface coincides
with the hypersurface,

f(x⃗) = C ≡ constant. (9.5.11)

For example, a 2-sphere of radius R can be defined in Cartesian coordinates x⃗ as

f(x⃗) = R2, where f(x⃗) = x⃗2. (9.5.12)

Given the function f , we now show that df = 0 can be used to define a unit normal ni through

ni ≡ ∇if√
∇jf∇jf

=
gik∂kf√

glm∇lf∇mf
. (9.5.13)

That ni is of unit length can be checked by a direct calculation. For ni to be normal to the
hypersurface means, when dotted into the latter’s tangent vectors {Ei

I ≡ ∂xi/∂ξI} from our
previous discussion, it returns zero:

Ei
Ini ∝

∂xi(ξ⃗)

∂ξI
∂if(x⃗)

∣∣∣∣∣
on hypersurface

=
∂

∂ξI
f
(
x⃗(ξ⃗)

)
= ∂If(ξ⃗) = 0. (9.5.14)

That ∂If(ξ⃗) = 0 is just a re-statement that f is constant on our hypersurface x⃗(ξ⃗). Using ni we
can also write down the induced metric on the hypersurface as

Hij = gij − ninj. (9.5.15)

By induced metric Hij on the hypersurface of one lower dimension than that of the ambient
D-space, we mean that the “dot product” of two vectors vi and wi, say, is

Hijv
iwj = gij ∥v

i
∥w

j; (9.5.16)
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where vi∥ and w
i
∥ are, respectively, v

i and wi projected along the hyper-surface at hand. In words:

Hijv
iwi is the dot product computed using the ambient metric but with the components of v

and w orthogonal to the hypersurface removed; namely,

H i
jv
j = vi −

(
vjnj

)
nj ≡ ∥v

i, (9.5.17)

H i
jw

j = wi −
(
wjnj

)
nj ≡ ∥w

i. (9.5.18)

Compare this to the Euclidean space expression

v⃗⊥ ≡ v⃗ − (v⃗ · n̂)n̂, (9.5.19)

where v⃗⊥ is now perpendicular to the unit vector n̂. Moreover, that this construction of ∥v
i and

∥w
i yields vectors perpendicular to ni – i.e., ∥v

ini = 0 and ∥w
ini = 0 – is because

Hijn
j = (gij − ninj)nj = ni − ni = 0. (9.5.20)

Since

H i
lH

l
j = H i

j, (9.5.21)

we may therefore verify

Hij ∥v
i
∥w

j = Hijv
iwj = gijH

i
aH

j
bv
awb = gij ∥v

i
∥w

j. (9.5.22)

The dot product between ∥v
i and ∥w

j in the hypersurface geometry Hij is the same as that in
the ambient space geometry gij.

Problem 9.60. For the 2-sphere in 3-dimensional flat space, defined by eq. (9.5.12), calcu-
late the components of the induced metric Hij in eq. (9.5.15) and compare it that in eq. (9.5.6).

Hint: compute d
√
x⃗2 in terms of {dxi} and exploit the constraint x⃗2 = R2; then consider what

is the −(nidxi)2 occurring in Hijdx
idxj, when written in spherical coordinates?

Problem 9.61. Area of 2D surface Consider some 2-dimensional surface parametrized by
ξI = (σ, ρ), whose trajectory inD-dimensional flat space is provided by the Cartesian coordinates
x⃗(σ, ρ). What is the formula analogous to eq. (9.5.10), which yields the area of this 2D surface
over some domain D on the (σ, ρ) plane? Hint: First ask, “what is the 2D induced metric?”
Answer:

Area =

∫
D

dσdρ
√
(∂σx⃗)2(∂ρx⃗)2 − (∂σx⃗ · ∂ρx⃗)2, (∂Ix⃗)

2 ≡ ∂Ix
i∂Ix

jδij. (9.5.23)

This is not too far from the Nambu-Goto action of string theory.

Problem 9.62. Minimal Area Refer to Problem (9.61). Imagine a 2D sheet, with ambient

D−coordinates x⃗(ξ⃗) and intrinsic 2D ones ξ⃗, held fixed at some closed loop boundary ∂D; say,
a circular ring. Show that the Euler-Lagrange equations describing the minimal area spanned
by this 2D surface is

1√
|H|

∂

∂ξA

(√
|H|HAB∂Bx

i
)
= −HAB∂Ax

m∂Bx
nΓimn[g], (9.5.24)

HAB ≡ ∂Ax
m∂Bx

ngmn(x⃗). (9.5.25)

Be sure to explain how the boundary conditions play a role in this problem.

412



2D Laplace Equation In flat D−space, if the relevant 1D boundary is orthogonal to
say the 3, 4, . . . , D−axes, then by choosing ξA = xA for x⃗ = (xA, x3, . . . , xD) Cartesian; we see
that HABdξ

AdξB = δABdx
AdxB and eq. (9.5.24) is transformed into the Laplace equation

δAB∂xA∂xBx
i =

(
∂2x1 + ∂2x2

) (
xA, x3, . . . , xD

)
= 0. (9.5.26)

The non-trivial components are those orthogonal to the 2D flat hypersurface itself, i = 3, 4, . . . , D.
Differential Forms and Volume Modern integration theory involves differential forms.

In D−space with coordinates {x⃗}, one no longer writes
∫
f(x⃗)

√
|g(x⃗)|dDx⃗, for instance, but

rather ∫
f(x⃗)

√
|g(x⃗)|dx1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dxD. (9.5.27)

The infinitesimal volume dDx⃗
√
|g(x⃗)| is now replaced with the D−form (aka volume form)

dDx⃗
√
|g(x⃗)| ≡

√
|g(x⃗)|dx1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dxD. (9.5.28)

More generally, whenever the following N−form occurs under an integral sign, we have the
definition

dξ1 ∧ dξ2 ∧ · · · ∧ dξN−1 ∧ dξN︸ ︷︷ ︸
(Differential form notation)

≡ dN ξ⃗︸︷︷︸
Physicists’ colloquial math-speak

. (9.5.29)

Here N ≤ D, where D is the dimension of the ambient space; and we have used {ξI|I = 1, . . . , N}
instead of {x⃗} to highlight that a different set of coordinates may be employed when describing
a lower dimensional hypersurface embedded in the D−space. This needs to be supplemented
with the constraint that it is a fully antisymmetric object:

dξI1 ∧ dξI2 ∧ · · · ∧ dξIN−1 ∧ dξIN = ϵI1...INdξ
1 ∧ dξ2 ∧ · · · ∧ dξN−1 ∧ dξN . (9.5.30)

The set of indices {I1, . . . , IN} is a permutation of {1, . . . , N} and ϵI1...IN is still the fully anti-
symmetric Levi-Civita with ϵ1...N ≡ 1; not to be confused with its counterpart ϵi1...iD in the

ambient D−space. The Jacobian incurred from a change-of-variables, from ξ⃗ to say ξ⃗′, comes
about through

dN ξ⃗ ≡ dξ1 ∧ · · · ∧ dξN =
∂ξ1

∂ξ′i1
. . .

∂ξ1

∂ξ′iD
dξ′i1 ∧ · · · ∧ dξ′iN (9.5.31)

= ϵi1...iD
∂ξ1

∂ξ′i1
. . .

∂ξ1

∂ξ′iN
dξ′1 ∧ · · · ∧ dξ′N (9.5.32)

=

(
det

∂ξ⃗

∂ξ⃗′

)
dξ′1 ∧ · · · ∧ dξ′N ≡

(
det

∂ξ⃗

∂ξ⃗′

)
dN ξ⃗′. (9.5.33)

For instance, the volume form of eq. (9.5.28) may now be related to the Levi-Civita (pseudo-
)tensor:

dDx⃗
√
|g(x⃗)| =

√
|g(x⃗)|dx1 ∧ dx2 ∧ · · · ∧ dxD
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=
1

D!

√
|g(x⃗)|ϵi1...iDdxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxiD

=
1

D!
ϵ̃i1...iDdx

i1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxiD . (9.5.34)

In particular, we may first begin with a locally flat (Cartesian) coordinate system {y⃗} where
dDy⃗ is the infinitesimal volume, and observe that – upon a change-of-variables to an arbitrary
system {x⃗} –

dy1 ∧ · · · ∧ dyD =

(
det

∂y⃗

∂x⃗

)
dx1 ∧ · · · ∧ dxD. (9.5.35)

We have already discussed how going from the locally flat y⃗−system to an arbitrary x⃗−system
produces an associated Jacobian whose absolute value is the square root of the determinant of
the metric in the latter’s coordinate basis:∣∣∣∣det ∂y⃗∂x⃗

∣∣∣∣ =√det gab(x⃗). (9.5.36)

Hence, as least for orientation-preserving coordinate transformations, we recover

d(vol.) = dy1 ∧ · · · ∧ dyD =
√
|g(x⃗)|dx1 ∧ · · · ∧ dxD. (9.5.37)

Problem 9.63. Forms span a vector space Verify that the superposition of rank-
(N ≤ D) differential forms spanned by {(1/N !)Fi1...iNdx

i1 ∧ · · · ∧ dxiN}, for arbitrary but fully
antisymmetric {Fi1...iN}, forms a vector space.

More generally, why differential (N ≤ D)−forms are fundamental to integration theory is
because, their fully antisymmetric property allows them to be properly defined as the volume
spanned by an N−parallelepiped. In a (D ≥ 2)−dimensional flat space, you might be familiar
with the statement that N ≤ D linearly independent vectors define a N−parallelepiped. Its
volume, in turn, is computed through the determinant of the matrix whose columns (or rows)
are these vectors. If we now consider the (N ≤ D)−form built out of N scalar fields {ΦI|I =
1, 2, . . . , N}, i.e.,

dΦ1 ∧ · · · ∧ dΦN , (9.5.38)

let us see how it defines an infinitesimal N−volume by generalizing the notion of volume-as-
determinants. In fact, these scalar fields {ΦI} can be viewed as coordinates parameterizing some
N−dimensional sub-space of the ambient D−dimensional space. Defining

(dΦI)j ≡ ∂jΦ
Idxj (No sum over j), 1 ≤ I ≤ N, 1 ≤ j ≤ D; (9.5.39)

we see that the D−component object (dΦI)j, for fixed I, is an infinitesimal displacement, if we
choose y⃗ to be a locally flat Cartesian coordinate system – cf. (11.3.15). Starting with the N = 2
case, we see that

(dΦ1)j ≡ (∂y1Φ
1dy1, . . . , ∂yDΦ

1dyD)T and (9.5.40)

(dΦ2)j ≡ (∂y1Φ
2dy1, . . . , ∂yDΦ

2dyD)T (9.5.41)
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span a 2D space; and another set of locally flat Cartesian coordinates x⃗ may thus be chosen,
such that

(dΦ1)k = (∂x1Φ
1dx1, ∂x2Φ

1dx2, 0⃗)T and (dΦ2)k = (∂x1Φ
2dx1, ∂x2Φ

2dx2, 0⃗)T. (9.5.42)

By considering the wedge product

dΦ1 ∧ dΦ2 = (∂iΦ
1dxi) ∧ (∂jΦ

2dxj) = ∂iΦ
1∂jΦ

2dxi ∧ dxj (9.5.43)

= det

[
∂x1Φ

1 ∂x1Φ
2

∂x2Φ
1 ∂x2Φ

2

]
dx1 ∧ dx2, (9.5.44)

we see that it is in fact the 2D area spanned by the parallelogram defined by (dΦ1)a and (dΦ2)b.
Generalizing to the set

{(dΦI)j|1 ≤ I ≤ N}, (9.5.45)

we see that it is a collection of N infinitesimal displacements; and the wedge product dΦ1∧· · ·∧
dΦN is simply the volume of the N−parallelepiped formed by them, since

dΦ1 ∧ · · · ∧ dΦN

= ϵJ1...JN∂xJ1Φ
1 . . . ∂xJNΦ

Ndx1 ∧ · · · ∧ dxN (9.5.46)

= det


∂x1Φ

1 ∂x1Φ
2 . . . ∂x1Φ

N−1 ∂x1Φ
N

∂x2Φ
1 ∂x2Φ

2 . . . ∂x2Φ
N−1 ∂x2Φ

N

...
... . . .

...
...

∂xN−1Φ1 ∂xN−1Φ2 . . . ∂xN−1ΦN−1 ∂xN−1ΦN

∂xNΦ
1 ∂xNΦ

2 . . . ∂xNΦ
N−1 ∂xNΦ

N

 dN x⃗. (9.5.47)

Even though we worked with a locally flat Cartesian coordinate system {x⃗} here, so as to aid
with the volume interpretation, we may of course expand the wedge product dΦ1 ∧ · · · ∧ dΦN in
any coordinate system we wish. What we are witnessing here is, the anti-symmetric character
of the wedge product allows us to generalize the notion of the determinant. Loosely speaking,
even though N may not be equal to the dimension of the ambient space, we may still compute
the ‘determinant’ of the ‘matrix’ whose Ith column is the infinitesimal displacement (dΦI)a,
because the space perpendicular to these N displacements is automatically discarded by the
wedge product – i.e., the matrix in eq. (9.5.47) can always be reduced to a N ×N one.

To sum, dΦ1 ∧ · · · ∧ dΦN is a coordinate-invariant object to define a volume on a N ≤ D
dimensional surface. This surface may be embedded in the ambient D−space, defined through
the ‘equi-potential’ functions {ΦI|I = 1, . . . , N}. Or, within certain applications – magnetohydro-
and fluid-dynamics, for instance – the associated area of some 2−form dΦ1 ∧ dΦ2 or 3−form
dΦ1 ∧ dΦ2 ∧ dΦ3 need not describe space(time) geometric volume itself but the strength of
magnetic flux (field lines per area) or particle and/or mass density (substance per volume).

Induced Tensors & Covariant Derivative Just as we did so for the metric, given an
arbitrary tensor Tabc... residing in the ambient space, we may compute the corresponding ‘induced’
tensor by restricting its basis 1−forms {dxa} to allow variation only on the hypersurface itself:
dxa = Ea

Adξ
A ≡ (∂xi/∂ξA)dξA. This amounts to the projection

∥TABC . . . = Tabc...E
a
AE

b
BE

c
C . . . . (9.5.48)
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Because Ei
A is a rank-1 vector, such a contraction produces a scalar ∥TABC . . . with respect to

ambient-space coordinate transformations; and a tensor with respect to hypersurface coordinate
transformations. Moreover, when the tensor is the metric itself, the right hand side becomes of
course the induced metric HAB. To preserve covariance on the hypersurface, the ambient space
indices (small English alphabets) are moved with the Hij, whereas the hypersurface indices
(capital English alphabets) are moved with HIJ. The same induced tensor may also be written
in the basis

∥Tabc... = Tpqr...H
p
aH

q
bH

r
c . . . . (9.5.49)

This ∥Tabc... now transforms as a tensor under ambient space coordinate transformations; and a
scalar under hypersurface coordinate transformations. Note too,

HijE
i
IE

j
J = (gij − ninj)Ei

IE
j
J = gijE

i
IE

j
J = HIJ. (9.5.50)

Next, we may define a covariant derivative of the induced tensor along the hypersurface

DA ∥VB ≡
∂xi

∂ξA
∂xj

∂ξB
∇i ∥Vj (9.5.51)

= Ei
A∇i

(
Ej

B ∥Vj
)
−
(
Ei

A∇iE
j
B

)
E C
j ∥VC (9.5.52)

= ∂A ∥VB − γCAB ∥VC, (9.5.53)

with

γCAB = E C
j

(
Ei

A∇iE
j
B

)
(9.5.54)

= E C
j

(
Ei

A∂iE
j
B + Ei

AΓ
j
ikE

k
B

)
(9.5.55)

= HajH
CK ∂x

a

∂ξK

(
∂2xj

∂ξA∂ξB
+ Γjik[g]

∂xi

∂ξA
∂xk

∂ξB

)
. (9.5.56)

Observe that eq. (9.5.51) is not merely the projection of the covariant derivative of the ambient
space 1−form, namely Ei

AE
j
B∇iVj, because Vj itself has components that do not lie along the

hypersurface. Additionally, we may check that this definition of the induced covariant derivative
– and hence the associated Christoffel symbols in eq. (9.5.56) – are compatible with Hij itself:

DAHBC = Ea
AE

b
BE

c
C∇a (gbc − nbnc) (9.5.57)

= −Ea
AE

b
BE

c
C (nc∇anb + nb∇anc) = 0. (9.5.58)

That implies

γCAB =
1

2
HCK (∂AHBK + ∂BHAK − ∂KHAB) . (9.5.59)

Problem 9.64. 2-Sphere Christoffels from 3D Flat Ones As an application of eq.
(9.5.56), relate the Christoffel symbols of the 2−sphere in eq. (9.3.24) to those of 3D flat space in
spherical coordinates described by eq. (9.3.114). (Recall: This relationship has already been re-
vealed in Problem (9.31), albeit in a ‘brute force’ manner.) Also obtain the same 2-sphere {γCAB}
from the 3D flat space metric in Cartesian basis, but with the components of the Cartesian po-
sition written in spherical coordinates – namely, x⃗ = r(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)).

Lagrange Multipliers
Classical mechanics with constraints The subject of Lagrange multipliers
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9.5.2 Fluxes, Gauss-Stokes’ theorems, Poincaré lemma

Directed surface elements What is the analog of d ⃗(Area) from vector calculus? This
question is important for the discussion of the curved version of Gauss’ theorem, as well as the
description of fluxes – rate of flow of, say, a fluid – across surface areas. If we have a (D − 1)
dimensional hypersurface with induced metric HIJ(ξ

K), determinant H ≡ detHIJ, and a unit
normal ni to it, then the answer is

dD−1Σi ≡ dD−1ξ⃗

√
|H(ξ⃗)|ni

(
x⃗(ξ⃗)

)
(9.5.60)

= dD−1ξ⃗ ϵ̃ij1j2...jD−1

(
x⃗(ξ⃗)

) ∂xj1(ξ⃗)
∂ξ1

∂xj2(ξ⃗)

∂ξ2
. . .

∂xjD−1(ξ⃗)

∂ξD−1
. (9.5.61)

The difference between equations (9.5.60) and (9.5.61) is that the first requires knowing the
normal vector beforehand, while the second description is purely intrinsic to the hypersurface
and can be computed once its parametrization x⃗(ξ⃗) is provided. Also be aware that the choice
of orientation of the {ξI} should be consistent with that of the ambient {x⃗} and the infinitesimal
volume dDx⃗

√
|g|ϵ12...D.

The dD−1ξ
√
|H| is the (scalar) infinitesimal area (= (D − 1)-volume) and ni provides the

direction. The second equality requires justification. Let’s recall the D − 1 vector fields {Ei
I ≡

∂xi/∂ξI|I = 1, 2, 3, . . . , D − 1} tangent to the hypersurface.

Problem 9.65. Show that the tensor in eq. (9.5.61),

ñi ≡ ϵ̃ij1j2...jD−1
Ej1

1 . . . E
jD−1

D−1, (9.5.62)

is orthogonal to all the D − 1 vectors {Ei
I}. Since ni is the sole remaining direction in the D

space, ñi must be proportional to ni

ñi = φ · ni. (9.5.63)

To find φ we merely have to dot both sides with ni,

φ(ξ⃗) =

√
|g(x⃗(ξ⃗))|ϵij1j2...jD−1

ni
∂xj1(ξ⃗)

∂ξ1
. . .

∂xjD−1(ξ⃗)

∂ξD−1
. (9.5.64)

Given a point of the surface x⃗(ξ⃗) we can always choose the coordinates x⃗ of the ambient space
such that, at least in a neighborhood of this point, x1 refers to the direction orthogonal to the
surface and the {x2, x3, . . . , xD} lie on the surface itself. Argue that, in this coordinate system,
eq. (9.5.13) becomes

ni =
g(i)(1)√
g(1)(1)

, (9.5.65)

and therefore eq. (9.5.64) reads

φ(ξ⃗) =

√
|g(x⃗(ξ⃗))|

√
g(1)(1). (9.5.66)
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Cramer’s rule (cf. (3.2.26)) from matrix algebra reads: the ij component (the ith row and jth
column) of the inverse of a matrix (A−1)ij is ((−)i+j/ detA) times the determinant of A with the
jth row and ith column removed. Use this and the definition of the induced metric to conclude
that

φ(ξ⃗) =

√
|H(ξ⃗)|, (9.5.67)

thereby proving the equality of equations (9.5.60) and (9.5.61).

Gauss’ theorem We are now ready to state (without proof) Gauss’ theorem. In 3D
vector calculus, Gauss tells us the volume integral, over some domain D, of the divergence of a
vector field is equal to the flux of the same vector field across the boundary ∂D of the domain.
Exactly the same statement applies in a D dimensional ambient curved space with some closed
(D − 1)-dimensional hypersurface that defines ∂D.

Let V i be an arbitrary vector field, and let x⃗(ξ⃗) describe this closed boundary sur-
face so that it has an (outward) directed surface element dD−1Σi given by equations
(9.5.60) and (9.5.61). Then∫

D

dDx
√
|g(x⃗)|∇iV

i(x⃗) =

∫
∂D

dD−1ΣiV
i
(
x⃗(ξ⃗)

)
. (9.5.68)

Flux Just as in 3D vector calculus, the dD−1ΣiV
i can be viewed as the flux of some fluid

described by V i across an infinitesimal element of the hypersurface ∂D.
Remark Gauss’ theorem is not terribly surprising if you recognize the integrand as a total
derivative, √

|g|∇iV
i = ∂i(

√
|g|V i) (9.5.69)

(recall eq. (9.3.140)) and therefore it should integrate to become a surface term (≡ (D − 1)-
dimensional integral). The right hand side of eq. (9.5.68) merely makes this surface integral

explicit, in terms of the coordinates ξ⃗ describing the boundary ∂D.
Closed surface Note that if you apply Gauss’ theorem eq. (9.5.68), on a closed surface
such as the sphere, the result is immediately zero. A closed surface is one where there are no
boundaries. (For the 2-sphere, imagine starting with the Northern Hemisphere; the boundary is
then the equator. By moving this boundary south-wards, i.e., from one latitude line to the next,
until it vanishes at the South Pole – our boundary-less surface becomes the 2-sphere.) Since
there are no boundaries, the right hand side of eq. (9.5.68) is automatically zero.

Problem 9.66. We may see this directly for the 2-sphere case. The metric on the 2-sphere
of radius R is

dℓ2 = R2(dθ2 + (sin θ)2dϕ2), θ ∈ [0, π], ϕ ∈ [0, 2π). (9.5.70)

Let V i be an arbitrary smooth vector field on the 2-sphere. Show explicitly – namely, do the
integral – that ∫

S2
d2x
√
|g(x⃗)|∇iV

i = 0. (9.5.71)

Hint: For the ϕ-integral, remember that ϕ = 0 and ϕ = 2π refer to the same point, for a fixed
θ.
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Problem 9.67. Hodge dual formulation of Gauss’ theorem in D-space. Let us
consider the Hodge dual of the vector field in eq. (9.5.68),

Ṽi1...iD−1
≡ ϵ̃i1...iD−1jV

j. (9.5.72)

First show that

ϵ̃ji1...iD−1∇jṼi1...iD−1
∝ ∂[1Ṽ23...D] ∝ ∇iV

i. (9.5.73)

(Find the proportionality factors.) Then prove the dual formulation of Gauss’ theorem:

1

(D − 1)!

∫
D

dDx∂[1Ṽ23...D] =

∫
∂D

dD−1ξṼi1...iD−1

(
x⃗(ξ⃗)

) ∂xi1(ξ⃗)
∂ξ1

· · · ∂x
iD−1(ξ⃗)

∂ξD−1
. (9.5.74)

The Ṽi1...iD−1
∂ξ1x

i1 . . . ∂ξD−1xiD−1 can be viewed as the original tensor Ṽi1...iD−1
, but projected

onto the boundary ∂D.
In passing, I should point out, what you have shown in eq. (9.5.74), is that the Hodge dual

formulation of Gauss’ theorem can be written in a compact manner using differential forms
notation, ∫

D

dṼ =

∫
∂D

Ṽ , (9.5.75)

by viewing the fully antisymmetric object Ṽ as a differential (D − 1)-form. More generally, if
ωi1...iN is a fully anti-symmetric tensor, a N−form, we define its exterior derivative (aka curl) as

(dω)i1...iN+1
≡ 1

(N − 1)!
∂[i1ωi2...iN ]. (9.5.76)

Notice, dω is a (fully anti-symmetric) N + 1 form.

Example: Coulomb potential in flat space A basic application of Gauss’ theorem is
the derivation of the (spherically symmetric) Coulomb potential of a unit point charge in D ≥ 3
spatial dimensions, satisfying

∇i∇iψ = −δ(D)(x⃗− x⃗′) (9.5.77)

in flat space. Let us consider as domain D the sphere of radius r centered at the point charge
at x⃗′. Using spherical coordinates, x⃗ = rn̂(ξ⃗), where n̂ is the unit radial vector emanating from
x⃗′, the induced metric on the boundary ∂D is simply the metric of the (D− 1)-sphere. We now
identify in eq. (9.5.68) V i = ∇iψ. The normal vector is simply ni∂i = ∂r, and so Gauss’ law
using eq. (9.5.60) reads

−1 =

∫
SD−1

dD−1ξ⃗
√
|H|rD−1∂rψ(r). (9.5.78)

The
∫
SD−1 d

D−1ξ⃗
√
|H| = 2πD/2/Γ(D/2) is simply the solid angle subtended by the (D−1)-sphere

(≡ volume of the (D − 1)-sphere of unit radius). So at this point we have

∂rψ(r) = −
Γ(D/2)

2πD/2rD−1
⇒ ψ(r) =

Γ(D/2)

4((D − 2)/2)πD/2rD−2
=

Γ(D
2
− 1)

4πD/2rD−2
. (9.5.79)
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I have used the Gamma-function identity Γ(z)z = Γ(z+1). Replacing r → |x⃗− x⃗′|, we conclude
that the Coulomb potential due to a unit strength electric charge is

ψ(x⃗) =
Γ(D

2
− 1)

4πD/2|x⃗− x⃗′|D−2
, D ≥ 3. (9.5.80)

It is instructive to also use Gauss’ law using eq. (9.5.61).

−1 =

∫
SD−1

dD−1ξ⃗ϵi1...iD−1j
∂xi1

∂ξ1
· · · ∂x

iD−1

∂ξD−1
gjk(x⃗(ξ⃗))∂kψ(r ≡

√
x⃗2). (9.5.81)

On the surface of the sphere, we have the completeness relation (cf. (4.3.23)):

gjk(x⃗(ξ⃗)) = δIJ
∂xj

∂ξI
∂xk

∂ξJ
+
∂xj

∂r

∂xk

∂r
. (9.5.82)

(This is also the coordinate transformation for the inverse metric from Cartesian to Spherical
coordinates.) At this point,

−1 =

∫
SD−1

dD−1ξ⃗ϵi1...iD−1j
∂xi1

∂ξ1
· · · ∂x

iD−1

∂ξD−1

(
δIJ
∂xj

∂ξI
∂xk

∂ξJ
+
∂xj

∂r

∂xk

∂r

)
∂kψ(r ≡

√
x⃗2)

=

∫
SD−1

dD−1ξ⃗ϵi1...iD−1j
∂xi1

∂ξ1
· · · ∂x

iD−1

∂ξD−1

∂xj

∂r

(
∂xk

∂r
∂kψ(r ≡

√
x⃗2)

)
. (9.5.83)

The Levi-Civita symbol contracted with the Jacobians can now be recognized as simply the

determinant of the D-dimensional metric written in spherical coordinates

√
|g(r, ξ⃗)|. (Note the

determinant is positive because of the way we ordered our coordinates.) That is in fact equal

to

√
|H(r, ξ⃗)| because grr = 1. Whereas (∂xk/∂r)∂kψ = ∂rψ. We have therefore recovered the

previous result using eq. (9.5.60).

Problem 9.68. Coulomb Potential in 2D Use the above arguments to show, the solution
to

∇i∇iψ = −δ(2) (x⃗− x⃗′) (9.5.84)

is

ψ(x⃗) = − ln (L−1 |x⃗− x⃗′|)
2π

. (9.5.85)

Here, L is an arbitrary length scale. Why is there is a restriction D ≥ 3 in eq. (9.5.80)?

Tensor elements Suppose we have a (N < D)-dimensional domain D parametrized by
{x⃗(ξI)|I = 1, 2, . . . , N} whose boundary ∂D is parametrized by {x⃗(θA)|A = 1, 2, . . . , N − 1}. We
may define a (D −N)-tensor element that generalizes the one in eq. (9.5.61)

dNΣi1...iD−N
≡ dNξ ϵ̃i1...iD−N j1j2...jN

(
x⃗(ξ⃗)

) ∂xj1(ξ⃗)
∂ξ1

∂xj2(ξ⃗)

∂ξ2
. . .

∂xjN (ξ⃗)

∂ξN
. (9.5.86)

We may further define the boundary surface element

dN−1Σi1...iD−Nk ≡ dN−1θ ϵ̃i1...iD−Nkj1...jN−1

(
x⃗(θ⃗)

) ∂xj1(θ⃗)
∂θ1

∂xj2(θ⃗)

∂θ2
. . .

∂xjN−1(θ⃗)

∂θN−1
. (9.5.87)
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Stokes’ theorem96 Stokes’ theorem is the assertion that, in a (N < D)-
dimensional simply connected subregion D of some D-dimensional ambient space,
the divergence of a fully antisymmetric rank (D − N + 1) tensor field Bi1...iD−Nk

integrated over the domain D can also be expressed as the integral of Bi1...iD−Nk over
its boundary ∂D. Namely,∫

D

dNΣi1...iD−N
∇kB

i1...iD−Nk =
1

D −N + 1

∫
∂D

dN−1Σi1...iD−NkB
i1...iD−Nk, (9.5.88)

N < D, B[i1...iD−Nk] = (D −N + 1)!Bi1...iD−Nk.

Problem 9.69. Hodge dual formulation of Stokes’ theorem. Define

B̃j1...jN−1
≡ 1

(D −N + 1)!
ϵ̃j1...jN−1i1...iD−NkB

i1...iD−Nk. (9.5.89)

Can you convert eq. (9.5.88) into a relationship between∫
D

dN ξ⃗∂[i1B̃i2...iN ]
∂xi1

∂ξ1
. . .

∂xiN

∂ξN
and

∫
∂D

dN−1θ⃗B̃i1...iN−1

∂xi1

∂θ1
. . .

∂xiN−1

∂θN−1
? (9.5.90)

Furthermore, explain why the Jacobians can be “brought inside the derivative”.

∂[i1B̃i2...iN ]
∂xi1

∂ξ1
. . .

∂xiN

∂ξN
=
∂xi1

∂ξ[1
∂|i1|

(
∂xi2

∂ξ2
. . .

∂xiN

∂ξN ]
B̃i2...iN

)
. (9.5.91)

The | · | around i1 indicate it is not to be part of the anti-symmetrization; only do so for the
ξ-indices.

Like for Gauss’ theorem, we point out that – by viewing B̃j1...jN−1
as components of a (N−1)-

form, the Hodge dual version of Stokes’ theorem in eq. (9.5.88) reduces to the simple expression∫
D

dB̃ =

∫
∂D

B̃, (9.5.92)

where (dB̃)i1...iN ≡ ∂[i1B̃i2...iN ]/(N − 1)!. Note: if the N − 1 form B̃ does not depend on the

metric, then dB̃ does not either. In this form, Stokes’ theorem is metric-independent.

Relation to 3D vector calculus Stokes’ theorem in vector calculus states that the flux of the
curl of a vector field A⃗ over some 2D domain D sitting in the ambient 3D space, is equal to the
line integral of the same vector field along the boundary ∂D of the domain. Specifically, d2a⃗
denotes the infinitesimal area element of D,∫

D

d2a⃗ ·
(
∇⃗ × A⃗

)
=

∮
∂D

A⃗ · dx⃗. (9.5.93)

Because eq. (9.5.88) may not appear, at first sight, to be related to the Stokes’ theorem in eq.
(9.5.93) from 3D vector calculus, we shall work it out in some detail.

96Just like for the Gauss’ theorem case, in equations (9.5.86) and (9.5.87), the ξ⃗ and θ⃗ coordinate systems need
to be defined with orientations consistent with the ambient dDx⃗

√
|g(x⃗)|ϵ12...D one.
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Problem 9.70. Consider some 2D hypersurface D residing in a 3D curved space. For
simplicity, let us foliate D with constant ρ surfaces; let the other coordinate be ϕ, so x⃗(0 ≤ ρ ≤
ρ>, 0 ≤ ϕ ≤ 2π) describes a given point on D and the boundary ∂D is given by the closed loop
x⃗(ρ = ρ>, 0 ≤ ϕ ≤ 2π). Let

Bik ≡ ϵ̃ikjAj (9.5.94)

for some vector field Aj. This implies in Cartesian coordinates,

∇kB
ik =

(
∇⃗ × A⃗

)i
. (9.5.95)

Denote ξ⃗ = (ρ, ϕ). Show that Stokes’ theorem in eq. (9.5.88) reduces to the N = 2 vector
calculus case:∫ ρ>

0

dρ

∫ 2π

0

dϕ

√
|H(ξ⃗)|n⃗ ·

(
∇⃗ × A⃗

)
=

∫ 2π

0

dϕ
∂x⃗(ρ>, ϕ)

∂ϕ
· A⃗(x⃗(ρ>, ϕ)). (9.5.96)

where the unit normal vector is given by

n⃗ =
(∂x⃗(ξ⃗)/∂ρ)× (∂x⃗(ξ⃗)/∂ϕ)∣∣∣(∂x⃗(ξ⃗)/∂ρ)× (∂x⃗(ξ⃗)/∂ϕ)

∣∣∣ . (9.5.97)

Of course, once you’ve verified Stokes’ theorem for a particular coordinate system, you know by
general covariance it holds in any coordinate system, i.e.,∫

D

d2ξ

√
|H(ξ⃗)|niϵ̃ijk∂jAk =

∫
∂D

Aidx
i. (9.5.98)

Step-by-step guide: Start with eq. (9.5.61), and show that in a Cartesian basis,

d2Σi = d2ξ

(
∂x⃗

∂ρ
× ∂x⃗

∂ϕ

)i
. (9.5.99)

The induced metric on the 2D domain D is

HIJ = δij∂Ix
i∂Jx

j. (9.5.100)

Work out its determinant. Then work out

|(∂x⃗/∂ρ)× (∂x⃗/∂ϕ)|2 (9.5.101)

using the identity

ϵ̃ijkϵ̃lmk = δilδ
j
m − δimδ

j
l . (9.5.102)

Can you thus relate

√
|H(ξ⃗)| to |(∂x⃗/∂ρ)× (∂x⃗/∂ϕ)|, and thereby verify the left hand side of

eq. (9.5.88) yields the left hand side of (9.5.96)?
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For the right hand side of eq. (9.5.96), begin by arguing that the boundary (line) element in
eq. (9.5.87) becomes

dΣki = dϕ ϵ̃kij
∂xj

∂ϕ
. (9.5.103)

Then use ϵ̃ij1j2 ϵ̃kj1j2 = 2δik to then show that the right hand side of eq. (9.5.88) is now that of
eq. (9.5.96).

Problem 9.71. Discuss how the tensor element in eq. (9.5.86) transforms under a change

of hypersurface coordinates ξ⃗ → ξ⃗(ξ⃗′). Do the same for the tensor element in eq. (9.5.87): how

does it transforms under a change of hypersurface coordinates θ⃗ → θ⃗(θ⃗′)? Hint: Are the indices
on the left hand side of equations (9.5.86) and (9.5.87) ambient space or hypersurface ones?

Poincaré Lemma In 3D vector calculus you have learned that a vector B⃗ is divergence-
less everywhere in space iff it is the curl of another vector A⃗.

∇⃗ · B⃗ = 0 ⇔ B⃗ = ∇⃗ × A⃗ (9.5.104)

And, the curl of a vector B⃗ is zero everywhere in space iff it is the gradient of scalar ψ.

∇⃗ × B⃗ = 0 ⇔ B⃗ = ∇⃗ψ (9.5.105)

Here, we shall see that these statements are special cases of the following.

In an arbitraryD dimensional curved space, letBi1...iN (x⃗) be a fully antisymmetric
rank-N tensor field, withN ≤ D. Then, everywhere within a simply connected region
of space,

Bi1...iN =
∂[i1Ci2...iN ]

(N − 1)!
, (9.5.106)

– i.e., B is the “curl” of a fully antisymmetric rank-(N − 1) tensor C – if and only if

∂[jBi1...iN ] = 0. (9.5.107)

In differential form notation, by treating C as a (N − 1)-form and B as a N -form,
Poincaré would read: throughout a simply connected region of space,

dB = 0 iff B = dC. (9.5.108)

Example I: Electromagnetism Let us recover the 3D vector calculus statement above, that
the divergence-less nature of the magnetic field is equivalent to it being the curl of some vector
field. Consider the dual of the magnetic field Bi:

B̃ij ≡ ϵ̃ijkBk. (9.5.109)

The Poincaré Lemma says B̃ij = ∂[iAj] if and only if ∂[kB̃ij] = 0 everywhere in space. We shall
proceed to take the dual of these two conditions. Via eq. (9.4.32), the first is equivalent to

ϵ̃kijB̃ij = ϵ̃kij∂[iAj],

423



= 2ϵ̃kij∂iAj. (9.5.110)

On the other hand, employing eq. (9.4.32),

ϵ̃kijB̃ij = ϵ̃kij ϵ̃ijlB
l = 2Bk; (9.5.111)

and therefore B⃗ is the curl of Ai:

Bk = ϵ̃kij∂iAj. (9.5.112)

While the latter condition dB̃ = 0 is, again utilizing eq. (9.4.32), equivalent to

0 = ϵ̃kij∂kB̃ij

= ϵ̃kij ϵ̃
ijl∇kBl = 2∇lB

l. (9.5.113)

That is, the divergence of B⃗ is zero.
Example II A simple application is that of the line integral

I(x⃗, x⃗′;P) ≡
∫
P

Aidx
i, (9.5.114)

where P is some path in D-space joining x⃗′ to x⃗. Poincaré tells us, if ∂[iAj] = 0 everywhere in
space, then Ai = ∂iφ, the Ai is a gradient of a scalar φ. Then Aidx

i = ∂iφdx
i = dφ, and the

integral itself is actually path independent – it depends only on the end points:∫ x⃗

x⃗′
Aidx

i =

∫
P

dφ = φ(x⃗)− φ(x⃗′), whenever ∂[iAj] = 0. (9.5.115)

Problem 9.72. Make a similar translation, from the Poincaré Lemma, to the 3D vector
calculus statement that a vector B⃗ is curl-less (∇⃗ × B⃗ = 0) if and only if it is a pure gradient

(B⃗ = ∇⃗ψ) within the simply connected domain of interest.

Problem 9.73. Infinitesimally Thin Solenoid Consider the vector potential, written in
3D Cartesian coordinates,

Aidx
i =

x1dx2 − x2dx1

(x1)2 + (x2)2
. (9.5.116)

Can you calculate

Fij = ∂[iAj]? (9.5.117)

Consider a 2D surface whose boundary ∂D circle around the (0, 0,−∞ < x3 < +∞) line once.
Can you use Stokes’ theorem to show that

Fij = 2πϵij3δ(x
1)δ(x2)? (9.5.118)

Hint: Convert from Cartesian to polar coordinates (x, y, z) = (r cosϕ, r sinϕ, z); the line integral
on the right hand side of eq. (9.5.98) should simplify considerably.

This problem illustrates the subtlety regarding the “simply connected” requirement of the
Poincaré lemma. The magnetic field Fij here describes that of a highly localized solenoid lying
along the z-axis; its corresponding vector potential is a pure gradient in any simply connected
3−volume not containing the z-axis, but it is no longer a pure gradient in say a solid torus region
encircling (but still not containing) it.

424



Problem 9.74. From Arfken et al [18] Problem 4.4.1 In a simply connected region of
a generic 3D curved space, show that if U and V are scalars, then

∂[iU∂j]V = 0 iff U∂kV = ∂kf. (9.5.119)

Hint: First, explain why ∂[iU∂j]V = ∂[i(U∂j]V ).
If the 3D space is flat and if Cartesian coordinates are used, then ∂[iU∂j]V can be viewed

as the cross product ∇⃗U × ∇⃗V . (Why?) This result can then be stated as: ∇⃗U × ∇⃗V = 0 iff

∇⃗f = U · ∇⃗V .

9.6 ⋆Non-Relativistic Lagrangian Mechanics

Lagrangian Dynamics: General Coordinates In flat D−space with time coordinate
t, the non-relativistic kinetic energy of a particle with mass m written in Cartesian coordinates
{z⃗(t)} is

T ≡ m

2
˙⃗z2 =

m

2
δij ż

iżj. (9.6.1)

If we perform a t−independent coordinate transformation z⃗(t) → z⃗(q⃗(t)), so that dzi/dt =
(∂zi/∂qa)(dqa/dt), then we see that the kinetic energy per unit mass is in fact the Lagrangian
of geodesic motion in some metric:

T/m =
1

2
gij(q⃗)q̇

iq̇j, (9.6.2)

gij(q⃗) =
∂z⃗

∂qi
· ∂z⃗
∂qj

. (9.6.3)

If the particle also experiences a potential energy per unit mass of U , the corresponding La-
grangian L0 will then be

L0 =
1

2
gij(q⃗)q̇

iq̇j − U(q⃗); (9.6.4)

where U is to be treated as a scalar under spatial coordinate transformations. As long as
U depends only on the q⃗ and not on its derivatives, Newton’s second law – acceleration equals
negative gradient of the potential energy per unit mass – arises from applying the Euler-Lagrange
equations:

D2qi

dt2
≡ q̈i + Γiabq̇

aq̇b = −∇iU. (9.6.5)

Constraints If we further subject our point mass to N scalar constraints of the form

GI(q⃗) = 0, (9.6.6)

for I = 1, 2, . . . , N ; the modified Lagrangian now reads instead

L =
1

2
gij(q⃗)q̇

iq̇j − U(q⃗)− ΛI(t)GI(q⃗). (9.6.7)
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In D−space, 1 constraint would define a D − 1 dimensional hypersurface; 2 constraints would
define a D − 2 dimensional hypersurface; and so on, until we have D − 1 constraints defining
a 1D line. Any more constraints than D − 1 would be overly restrictive. For the case of N
constraints, we have a D −N dimensional surface.

We may apply the Euler-Lagrange equations to eq. (9.6.7).

D2qi

dt2
= −∇i

(
U(q⃗) + λI(t)GI(q⃗)

)
; (9.6.8)

These D equations are then to be solved together with the N ones in (9.6.6); as well as 2D
appropriate boundary conditions. As long as U and {GI} do not depend on time, the total
conserved energy per unit mass E/m of the particle on the (D −N)−surface is

E

m
=

(
1

2
gij(q⃗)q̇

iq̇j + U(q⃗)

)
{GI=0}

. (9.6.9)

Now, suppose it possible to erect a coordinate system enveloping our (D − N)−surface, such
that x⃗∥ are ‘parallel’ to it and x⃗⊥ are ‘perpendicular’. The surface itself is parametrized as the
x⃗⊥ ≡ x⃗⊥,0 (constant) surface:

q⃗
(
x⃗∥, x⃗⊥

)
= q⃗

(
x⃗∥, x⃗⊥,0

)
. (9.6.10)

This (D −N)−surface must be a simultaneous solution of the ‘equi-potential’ conditions

GI(x⃗∥, x⃗⊥,0) = 0, I = 1, . . . , N ; (9.6.11)

so we must have

∂xi∥GI

(
x⃗∥, x⃗⊥,0

)
= 0. (9.6.12)

By assumption, our coordinate system is orthogonal, so the metric now reads

gijdx
idxj = g

∥
ij(x⃗∥, x⃗⊥)dx

i
∥dx

j
∥ + g⊥ij(x⃗∥, x⃗⊥)dx

i
⊥dx

j
⊥ (9.6.13)

and the Lagrangian in eq. (9.6.7) becomes

L =
1

2
g
∥
ij(x⃗∥, x⃗⊥)ẋ

i
∥ẋ

j
∥ +

1

2
g⊥ij(x⃗∥, x⃗⊥)ẋ

i
⊥ẋ

j
⊥ − U(x⃗∥, x⃗⊥)− ΛI(t)GI(x⃗∥, x⃗⊥). (9.6.14)

If we obtain from eq. (9.6.14) its Euler-Lagrangian equations, then proceed to apply the con-
straints in eq. (9.6.11), all the ˙⃗x⊥, ¨⃗x⊥ and higher derivatives would vanish. For instance, the
only first derivatives in D2(x∥, x⊥)

i/dt2 are the ˙⃗x∥s. We will discover that, for i evaluated on the
xi∥ component,

Γ
i∥
abẋ

a
∥ẋ

b
∥ = Γiab[g∥]ẋ

a
∥ẋ

b
∥, (9.6.15)

where Γiab[g∥] is the Christoffel symbol built entirely out of g
∥
ab evaluated on the constraint

hypersurface:

Γiab[g∥] =
1

2
gij∥

(
∂xa∥g

∥
bj + ∂xb∥g

∥
aj − ∂xj∥g

∥
ab

)
x⃗⊥=x⃗⊥,0

. (9.6.16)
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Also, for i evaluated on the xi⊥ component,

Γi⊥abẋ
a
∥ẋ

b
∥ = −

1

2
gij⊥∂xj⊥

g
∥
ab · ẋ

a
∥ẋ

b
∥. (9.6.17)

Collecting these results, eq. (9.6.8) is transformed into parallel-to-(D−N)−surface components

D2xi∥
dt2

= ẍi∥ + Γiab[g∥]ẋ
a
∥ẋ

b
∥ = −g

ij
∥ ∂xj∥

U
(
x⃗∥, x⃗⊥,0

)
; (9.6.18)

and perpendicular-to-(D −N)−surface components

D2xi⊥
dt2

= −1

2
gij⊥∂xj⊥

g
∥
ab · ẋ

a
∥ẋ

b
∥ = −g

ij
⊥∂xj⊥

(
U
(
x⃗∥, x⃗⊥,0

)
+ ΛIGI

(
x⃗∥, x⃗⊥ = x⃗⊥,0

))
. (9.6.19)

This tells us the normal force N i per unit mass is

N i = −ΛI∇i⊥GI = gij⊥∂xj⊥
U
(
x⃗∥, x⃗⊥,0

)
− 1

2
gij⊥∂xj⊥

g
∥
ab

(
x⃗∥, x⃗⊥ = x⃗⊥,0

)
· ẋa∥ẋb∥. (9.6.20)

To reiterate the key finding in eq. (9.6.18):

Geometrically speaking, non-relativistic motion on a constraint hypersurface re-
duces to accelerated motion driven by an external force projected along it.

Remarks Notice, the parallel components in eq. (9.6.18) are a closed set of equations that
may be solved once appropriate boundary conditions are provided. In fact, if we did not need to
solve for the normal force in eq. (9.6.20), it suffices then to simply reduce the problem to that
encoded by the already-constrained Lagrangian

Lc ≡
1

2
g
∥
ab

(
x⃗∥, x⃗⊥,0

)
ẋa∥ẋ

b
∥ − U

(
x⃗∥, x⃗⊥,0

)
. (9.6.21)

If we do wish to obtain the normal force in eq. (9.6.20), observe that once x⃗∥ is known by solving
eq. (9.6.18), the former can be determined right away.

Finally, if the N ×N object M i
I ≡ ∇i⊥GI in eq. (9.6.20) is invertible, by finding its inverse,

we may then compute the individual Lagrange multipliers {ΛI}.

Problem 9.75. Verify equations (9.6.15) and (9.6.17) by starting from the definition of the
Christoffel symbol Γiab of the full metric.

Additional problems relating differential geometry and classical mechanics
The following problems assume some familiarity with the material in §(8.3) and §(8.4). In

particular, {·, ·} denotes the Poisson bracket.

Problem 9.76. (Non-)Uniquess of Lagrangian in Higher Dimensions Prove that
the Lagrangian L(λ, q⃗, ˙⃗q) is unique up to an additive total derivative. Let q⃗ reside in arbitrary
dimensions D. Specifically, if L1 and L2 give the same equations

∂L1

∂qi
− d

dλ

∂L1

∂q̇i
=
∂L2

∂qi
− d

dλ

∂L2

∂q̇i
; (9.6.22)

427



then

L1 − L2 ≡ ∆L =
d

dt
F (λ, q⃗) . (9.6.23)

This F depends only on λ and q⃗, but not on ˙⃗q or its higher derivatives.
Hint: You may argue that, upon applying the Euler-Lagrange operator on ∆L, the coefficients

of q̈i and q̇i must be zero for all i = 1, . . . , D.

Problem 9.77. Canonical Transformations In D−dimensions, consider the following
‘1-form’ built out of the pairs of generalized coordinates q⃗ and Q⃗; and its conjugate momentum
p⃗ and P⃗ :

∆H ≡ pidq
i − PidQi. (9.6.24)

Prove that it is a pure gradient, namely

∆H = ∂qiΣ(q⃗, p⃗)dq
i + ∂piΣ(q⃗, p⃗)dpi, (9.6.25)

iff the Poisson bracket in eq. (8.4.43) is satisfied.
Hint: This problem is the D > 1 generalization of the D = 1 analysis (using the 2D Poincaré

lemma) performed after Problem (8.30).

Problem 9.78. Infinitesimal Canonical Transformations Prove that the most general
infinitesimal canonical transformation

(q⃗, p⃗)→ (Q⃗, P⃗ ) ≡ (q⃗ + δq⃗, p⃗+ δp⃗); (9.6.26)

is given by

δqi = ∂pi (A(q⃗, p⃗) + Cp(p⃗)) , (9.6.27)

δpi = −∂qi (A(q⃗, p⃗)− Cq(q⃗)) ; (9.6.28)

Hints: {Qi, Qj} = 0 plus the Poincaré lemma should allow you to deduce δqi = ∂piΦ(q⃗, p⃗) for
some arbitrary Φ; and similarly {Pi, Pj} = 0 should lead you to δpi = ∂qiΨ for some arbitrary
Ψ. Finally, {Qi, Pj} = δij will relate Φ and Ψ.

Problem 9.79. Volume form in phase space In the Hamiltonian formulation of classical
mechanics, the state of the system is described by its generalized coordinate q⃗ and the corre-
sponding conjugate momentum p⃗. We may define its corresponding infinitesimal phase space
volume to be

d2DṼ ≡
D∏
i=1

dqi ∧ dpi. (9.6.29)

Prove that d2DṼ is invariant (up to an overall sign) – namely,

D∏
i=1

dqi ∧ dpi = (±)
D∏
i=1

dQi ∧ dPi (9.6.30)
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– under canonical transformations

r⃗ ≡ (q⃗, p⃗)→ r⃗
(
R⃗ ≡ (Q⃗, P⃗ )

)
(9.6.31)

obeying eq. (8.4.33).

By exploiting the results from Problem (8.31), explain why d2DṼ remains the same over an
infinitesimal time evolution t→ t+ dt.

Hint: You may find Problem (3.7) useful in showing

(det ∂R⃗/∂r⃗)2 = (det{Qi, Pj})2 = 1, (9.6.32)

where {·, ·} are Poisson brackets.

9.7 ⋆Helmholtz Decomposition of Vectors on S2

Basis Vector Fields We have seen that the angular spherical harmonics {Y m
ℓ (x̂)} are a

complete set of functions on the 2−sphere. Let us now employ them to build the following
complete set of vector fields on the same 2−sphere, by taking their gradients (which yields a
curl-free vector) and the associated Hodge duals (which produces a divergence-free vector):{

∇iY m
ℓ (θ, ϕ) = gij∂jY

m
ℓ and ϵ̃ij∇jY

m
ℓ (θ, ϕ) = ϵ̃ij∂jY

m
ℓ (θ, ϕ)

}
, (9.7.1)

where {Y m
ℓ |ℓ = 0, 1, 2, . . . ,m = −ℓ,−ℓ+1, . . . , ℓ−1, ℓ} are the angular spherical harmonics; and

the covariant derivative ∇, inverse metric gij, and the covariant Levi-Civita tensor are all built
out of the metric

gijdx
idxj = dθ2 + sin(θ)2dϕ2, (9.7.2)

θ ∈ [0, π], ϕ ∈ (0, 2π]. (9.7.3)

That is, for any V i there must be coefficients {Amℓ } and {Bm
ℓ } corresponding to, respectively,

its curl-free and divergence-free parts:

V i(θ, ϕ) = −
∞∑
ℓ=1

+ℓ∑
m=−ℓ

1

ℓ(ℓ+ 1)

(
Amℓ · ∇iY m

ℓ −Bm
ℓ · ϵ̃ij∇jY

m
ℓ

)
. (9.7.4)

97These constants {Amℓ } and {Bm
ℓ } are uniquely given by

Amℓ =

∫
S2
dΩx̂∇iV

i(x̂)Y m
ℓ (x̂), (9.7.5)

Bm
ℓ =

∫
S2
dΩx̂ϵ̃

ij∇iVj(x̂)Y m
ℓ (x̂). (9.7.6)

97You may wonder if it is possible to have constant vector fields, since these {∇iY m
ℓ } and {ϵ̃ij∇jY

m
ℓ } are

necessarily (θ, ϕ)-dependent. The answer is provided by the hairy ball theorem (aka hedgehog theorem): every
continuous vector field on the 2−sphere must necessarily vanish somewhere. For instance, ∂θ appears to be a
constant vector field, with unit length gθθ = 1 everywhere. However, as it is moved along a longitude line across
the North or South pole, it changes direction abruptly and is therefore not continuous at these two locations.
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Proof Taking the divergence of both sides of eq. (9.7.4), recalling the eigenvalue equation
∇i∇iY m

ℓ = −ℓ(ℓ+ 1)Y m
ℓ and recognizing ∇i(ϵ̃

ij∂jY
m
ℓ ) = 0,

∇iV
i(θ, ϕ) = −

∑
1≤ℓ≤+∞
−ℓ≤m≤+ℓ

(ℓ(ℓ+ 1))−1Amℓ ∇i∇iY m
ℓ (θ, ϕ) (9.7.7)

=
∑

1≤ℓ≤+∞
−ℓ≤m≤+ℓ

Amℓ Y
m
ℓ (θ, ϕ). (9.7.8)

Taking the curl on both sides of eq. (9.7.4), and recognizing the curl of a gradient is zero
(ϵ̃ij∇i∇j = 0) while ϵ̃ij ϵ̃

jk = −δki ,

ϵ̃ij∇iV j(θ, ϕ) = −
∑

1≤ℓ≤+∞
−ℓ≤m≤+ℓ

(ℓ(ℓ+ 1))−1(−)2Bm
ℓ δ

k
i∇i∇kY

m
ℓ (θ, ϕ) (9.7.9)

=
∑

1≤ℓ≤+∞
−ℓ≤m≤+ℓ

Bm
ℓ Y

m
ℓ (θ, ϕ). (9.7.10)

We have shown the consistency of the prescription in eq. (9.7.4) with its divergence and curl.
But how do we know we have captured the full content of V i? Suppose instead

V i(θ, ϕ) = −
∑

1≤ℓ≤+∞
−ℓ≤m≤+ℓ

(ℓ(ℓ+ 1))−1
(
Amℓ ∇iY m

ℓ (θ, ϕ)−Bm
ℓ ϵ̃

ij∂jY
m
ℓ (θ, ϕ)

)
+W i, (9.7.11)

where W i is defined to be the difference between the exact V i and the summation on the right
hand side. The proof is complete once we can show W i = 0. First, we may take the curl and
divergence on both sides to deduce that

ϵ̃ij∇iWj = 0 = ∇iW
i. (9.7.12)

By the Poincaré lemma, the first equality implies Wj = ∂jφ for some scalar φ. The second
equality then implies that ∇i∇iφ = 0. But the solution to ∇i∇iφ = 0 on a 2−sphere is
φ = φ0 = constant and therefore W i = ∇iφ0 = 0.

To sum: any smooth vector field V i on the 2−sphere may be decomposed into a gradient
plus a dual gradient

V i = ∇iψ1 + ϵ̃ij∇jψ2. (9.7.13)

In particular, these gradients and dual gradients are acting on the superposition of (the complete
set of) angular spherical harmonics – respectively, the first and second terms of eq. (9.7.4), with
unique coefficients given in equations (9.7.5) and (9.7.6).
Corollary Given 4 scalar fields on the 2−sphere – A1, A2, B1 and B2 – if they obey

∇iA1 + ϵ̃ij∇jB1 = ∇iA2 + ϵ̃ij∇jB2, (9.7.14)

then both A1−A2 and B1−B2 are (different) constants. To see this result, simply take the curl
and divergence on both sides; and again recall the solution of ∇i∇iφ = 0 is a constant.
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Problem 9.80. Orthonormal basis Define the basis vector fields in eq. (9.7.1) as

Aiℓ,m ≡ ∇iY m
ℓ /
√
ℓ(ℓ+ 1) and Bi

ℓ,m ≡ ϵ̃ij∂jY
m
ℓ /
√
ℓ(ℓ+ 1). (9.7.15)

Next, define the inner product between vector fields U i and W i as

⟨U |W ⟩ ≡
∫
S2
d2Ωx̂U iWi. (9.7.16)

Show that all the Aiℓ,m are orthogonal to all the Bi
ℓ,m (and vice versa). Then show that the

{Aiℓ,m} are themselves orthonormal; and so is {Bi
ℓ,m}. Hint: Integrate-by-parts.

Problem 9.81. Most general divergence-free vector W i(r, θ, ϕ) in flat 3D In 3D flat
space, the metric in spherical coordinates may be written as

gijdx
idxj = dr2 + r2HIJdx

IdxJ, (9.7.17)

HIJdx
IdxJ = dθ2 + sin(θ)2dϕ2. (9.7.18)

Show that the most general divergence-less vector W i, obeying ∇iW
i = 0, takes the following

form. For arbitrary scalar fields φ(r, θ, ϕ) and ψ(r, θ, ϕ), its radial component reads

W r = − 1

r2
∇⃗2

S2ψ; (9.7.19)

while its angular components are

W I =
1

r2
(
ϵ̃IJ∂Jφ+H IJ∂J∂rψ

)
. (9.7.20)

Here, I and J run over {θ, ϕ}; H IJ = diag(1, 1/ sin(θ)2) is the inverse metric on the 2−sphere;
and ∇⃗2

S2 and ϵ̃IJ =
√
detHABϵIJ are respectively its Laplacian and Levi-Civita tensor.

Hints: First recall the Poincaré lemma to re-write W i as a curl of some vector field Ui. Then
perform a Helmholtz decomposition on the angular components of Ui. You may find it useful to
recognize, the 3D Levi-Civita tensor ϵ̃ijk is related to the 2-sphere one via ϵ̃rIJ = r2ϵ̃IJ. (Why is
it true?)
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10 Differential Geometry of Flat Spacetimes

In this and the following chapter, we move on to differential geometry in flat and curved
spacetimes. I assume the reader is familiar with basic elements of Special Relativity and with
the discussion in §(9) – in many instances, I will simply bring over the results from there to the
spacetime context. In this chapter, I begin with a discussion of Lorentz/Poincaré symmetry in
flat spacetime, since it is fundamental to both Special and General Relativity.

10.1 Poincaré and Lorentz Symmetry, Constancy of c

We begin in flat (aka Minkowski) spacetime written in Cartesian coordinates {xµ ≡ (t, x⃗)}. The
‘square’ of the distance between xµ and xµ+dxµ, oftentimes dubbed the ‘line element’, is given
by a modified “Pythagoras’ theorem” of sorts:

ds2 = ηµνdx
µdxν = (dx0)2 − dx⃗ · dx⃗

= (dt)2 − δijdxidxj; (10.1.1)

where the Minkowski metric tensor reads

ηµν=̇diag[1,−1, . . . ,−1]. (10.1.2)

Unlike the usual Pythagoras’ theorem, we see that the ‘square’ of the infinitesimal spacetime
distance can be either positive ds2 > 0, when dt2 > dx⃗2 (‘timelike’); negative ds2 < 0, when
dt2 < dx⃗2 (‘spacelike’); or zero ds2 = 0, when dt2 = dx⃗2 (null). We will witness the consequences
of this indefinite metric throughout the rest of this book.

The inverse metric ηµν is simply the matrix inverse, ηασησβ = δαβ ; it is numerically equal to
the flat metric itself:

ηµν=̇diag [1,−1, . . . ,−1] . (10.1.3)

Strictly speaking we should be writing eq. (10.1.1) in the ‘dimensionally-correct’ form

ds2 = c2dt2 − dx⃗ · dx⃗; (10.1.4)

where c is the speed of light and [ds2] = [Length2]. However, as explained in §(D), since the
speed of light shows up frequently in relativity and gravitational physics, it is often advantageous
to set c = 1, which in turn means all speeds are measured using c as the base unit. (v = 0.23
would mean v = 0.23c, for instance.) We shall do so throughout this section.

Notice too, we have switched from Latin/English alphabets in §(9), say i, j, k, · · · ∈ {1, 2, 3, . . . , D}
to Greek ones µ, ν, · · · ∈ {0, 1, 2, . . . , D ≡ d − 1}; the former run over the spatial coordinates
while the latter over time (0th) and space (1, . . . , D). Also note that the opposite ‘mostly plus’
sign convention ηµν = diag[−1,+1, . . . ,+1] is equally valid and, in fact, more popular in the
contemporary physics literature.

Constancy of c One of the primary motivations that led Einstein to recognize eq.
(10.1.1) as the proper geometric setting to describe physics, is the realization that the speed of
light c is constant in all inertial frames. In modern physics, the latter is viewed as a consequence
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of spacetime translation and Lorentz symmetry, as well as the null character of the trajectories
swept out by photons. That is, for transformation matrices {Λ} satisfying

ΛαµΛ
β
νηαβ = ηµν , (10.1.5)

and constant vectors {aµ} we have

ds2 = ηµνdx
µdxν = ηµνdx

′µdx′ν (10.1.6)

whenever

xα = Λαµx
′µ + aα. (10.1.7)

The physical interpretation is that the frames parametrized by {xµ = (t, x⃗)} and {x′µ = (t′, x⃗′)}
are inertial frames: compact bodies with no external forces acting on them will sweep out
geodesics d2xµ/dτ 2 = 0 = d2x′µ/dτ ′2, where the proper times τ and τ ′ are defined through the
relations

dτ = dt
√
ηαβ(dxα/dt)(dxβ/dt) = dt

√
1− (dx⃗/dt)2, (10.1.8)

dτ ′ = dt
√
ηαβ(dx′α/dt)(dx′β/dt) = dt

√
1− (dx⃗′/dt)2. (10.1.9)

To interpret physical phenomenon taking place in one frame from the other frame’s perspective,
one would first have to figure out how to translate between x and x′.

Let xµ be the spacetime Cartesian coordinates of a single photon; in a different Lorentz frame
it has Cartesian coordinates x′µ. Invoking its null character, namely ds2 = 0 – which holds in
any inertial frame – we have (dx0)2 = dx⃗ · dx⃗ and (dx′0)2 = dx⃗′ · dx⃗′. This in turn tells us the
speeds in both frames are unity:

|dx⃗|
dx0

=
|dx⃗′|
dx′0

= 1. (10.1.10)

A more thorough (and hence deeper) justification would be to recognize, it is the sign difference
between the ‘time’ part and the ‘space’ part of the metric in eq. (10.1.1) – together with its
Lorentz invariance – that gives rise to the wave equations obeyed by the photon. Equation
(10.1.10) then follows as a consequence.

Problem 10.1. Explain why eq. (10.1.5) is equivalent to the matrix equation

ΛTηΛ = η. (10.1.11)

Hint: What are ηµνΛ
ν
β and AνβBνγ in matrix notation?

Moving indices Just like in curved/flat space, tensor indices in flat spacetime are moved
with the metric ηµν and its inverse ηµν . For example,

vµ = ηµνvν , vµ = ηµνv
ν ; (10.1.12)

Tµν = ηµαηνβT
αβ, T µν = ηµαηνβTαβ. (10.1.13)
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Symmetries We shall define Poincaré transformations98 x(x′) to be the set of all coordinate
transformations that leave the flat spacetime metric invariant (cf. eq. (10.1.6)). Poincaré and
Lorentz symmetries play fundamental roles in our understanding of both classical relativistic
physics and quantum theories of elementary particle interactions; hence, this motivates us to
study it in some detail. As we will now proceed to demonstrate, the most general invertible
Poincaré transformation is in fact the one in eq. (10.1.7).

Derivation of eq. (10.1.6)99 Now, under a coordinate transformation, eq. (10.1.6) reads

ηµνdx
µdxν = ηµν

∂xµ

∂x′α
∂xν

∂x′β
dx′αdx′β = ηα′β′dx′αdx′β. (10.1.14)

Let us differentiate both sides of eq. (10.1.14) with respect to x′σ.

ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
+ ηµν

∂xµ

∂x′α
∂2xν

∂x′σ∂x′β
= 0. (10.1.15)

Next, consider symmetrizing σα and anti-symmetrizing σβ.

2ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
+ ηµν

∂xµ

∂x′α
∂2xν

∂x′σ∂x′β
+ ηµν

∂xµ

∂x′σ
∂2xν

∂x′α∂x′β
= 0 (10.1.16)

ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
− ηµν

∂2xµ

∂x′β∂x′α
∂xν

∂x′σ
= 0 (10.1.17)

Since partial derivatives commute, the second term from the left of eq. (10.1.15) vanishes upon
anti-symmetrization of σβ. Adding equations (10.1.16) and (10.1.17) hands us

3ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
+ ηµν

∂xµ

∂x′α
∂2xν

∂x′σ∂x′β
= 0. (10.1.18)

Finally, subtracting eq. (10.1.15) from eq. (10.1.18) produces

2ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
= 0. (10.1.19)

Because we have assumed Poincaré transformations are invertible, we may contract both sides
with ∂x′β/∂xκ.

ηµν
∂2xµ

∂x′σ∂x′α
∂xν

∂x′β
∂x′β

∂xκ
= ηµν

∂2xµ

∂x′σ∂x′α
δνκ = 0. (10.1.20)

Finally, we contract both sides with ηκρ:

ηµκη
κρ ∂2xµ

∂x′σ∂x′α
=

∂2xρ

∂x′σ∂x′α
= 0. (10.1.21)

In words: since the second x′-derivative of x has to vanish, the transformation from x to x′ can
at most go linearly as x′; it cannot involve higher powers of x′. This implies the form in eq.
(10.1.7). Plugging eq. (10.1.7) the latter into eq. (10.1.14), we recover the necessary definition
of the Lorentz transformation in eq. (10.1.5).

98Poincaré transformations are also sometimes known as inhomogeneous Lorentz transformations.
99This argument can be found in Weinberg [23].
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Poincaré Transformations The most general invertible coordinate trans-
formations that leave the Cartesian Minkowski metric invariant involve the (spacetime-
constant) Lorentz transformations {Λµα} of eq (10.1.5) plus constant spacetime trans-
lations.

(Homogeneous) Lorentz Transformations form a Group100 If Λµα and Λ′µ
α denotes

different Lorentz transformations, then notice the composition

Λ′′µ
α ≡ ΛµσΛ

′σ
α (10.1.22)

is also a Lorentz transformation. For, keeping in mind the fundamental definition in eq. (10.1.5),
we may directly compute

Λ′′µ
αΛ

′′ν
βηµν = ΛµσΛ

′σ
αΛ

ν
ρΛ

′ρ
βηµν

= Λ′σ
αΛ

′ρ
βησρ = ηαβ. (10.1.23)

To summarize:

The set of all Lorentz transformations {Λµα} satisfying eq. (10.1.5), together with
the composition law in eq. (10.1.22) for defining successive Lorentz transformations,
form a Group.

Proof Let Λµα, Λ
′µ
α and Λ′′µ

α denote distinct Lorentz transformations.

� Closure Above, we have just verified that applying successive Lorentz transforma-
tions yields another Lorentz transformation; for e.g., ΛµσΛ

′σ
ν and ΛµσΛ

′σ
ρΛ

′′ρ
ν are Lorentz

transformations.

� Associativity Because applying successive Lorentz transformations amount to matrix
multiplication, and since the latter is associative, that means Lorentz transformations are
associative:

Λ · Λ′ · Λ′′ = Λ · (Λ′ · Λ′′) = (Λ · Λ′) · Λ′′. (10.1.24)

� Identity δµα is the identity Lorentz transformation:

δµσΛ
σ
ν = Λµσδ

σ
ν = Λµν , (10.1.25)

and

δµαδ
ν
βηµν = ηαβ. (10.1.26)

� Inverse Let us take the determinant of both sides of eq. (10.1.5) – by viewing the
latter as matrix multiplication, we have ΛT · η · Λ = η, which in turn means

(det Λ)2 = 1 ⇒ detΛ = ±1. (10.1.27)

100Refer to §(B) for the defining axioms of a Group.
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Here, we have recalled detAT = detA for any square matrix A. Since the determinant of
Λ is strictly non-zero, what eq. (10.1.27) teaches us is that Λ is always invertible: Λ−1 is
guaranteed to exist. What remains is to check that, if Λ is a Lorentz transformation, so is
Λ−1. Starting with the matrix form of eq. (10.1.11), and utilizing (Λ−1)T = (ΛT)−1,

ΛTηΛ = η (10.1.28)

(ΛT)−1ΛTηΛΛ−1 = (ΛT)−1 · η · Λ−1 (10.1.29)

η = (Λ−1)T · η · Λ−1. (10.1.30)

Problem 10.2. Remember that indices are moved with the metric, so for example,

Λµαηµν = Λνα. (10.1.31)

First explain how to go from eq. (10.1.5) to

Λ α
σ Λσβ = δαβ (10.1.32)

and deduce the inverse Lorentz transformation(
Λ−1

)α
β
= Λ α

β = ηβνη
αµΛνµ. (10.1.33)

Recall the inverse always exists because det Λ = ±1.

Jacobians Note that under the Poincaré transformation in eq. (10.1.7),

∂xα

∂x′β
= Λαβ, (10.1.34)

∂x′α

∂xβ
= Λ α

β . (10.1.35)

This implies

dxα = Λαβdx
′β, (10.1.36)

∂

∂xα
≡ ∂α = Λ β

α ∂β′ ≡ Λ β
α

∂

∂x′β
. (10.1.37)

Problem 10.3. Explain why

ΛµαΛ
ν
βη

αβ = ηµν . (10.1.38)

Hint: Start from eq. (10.1.30).

Problem 10.4. Under the Poincaré transformation in eq. (10.1.7), show that

ηµν∂µ∂ν = ηµν∂µ′∂ν′ ; (10.1.39)

where ∂µ ≡ ∂/∂xµ and ∂µ′ ≡ ∂/∂x′µ. How does

∂µ ≡ ηµν∂ν (10.1.40)

transform under eq. (10.1.7)?
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Lorentz Covariance In a given inertial frame {xµ}, consider the following wave equation
involving a scalar field φ(x).

ηµν∂µ∂νφ(x) ≡ ∂2xφ(x) = 0. (10.1.41)

(Here, x is a short-hand for the coordinates xµ, and ∂2 is known as the wave operator in flat
spacetime.) Now, if physics were the same in all inertial frames, then we expect that in a
different inertial frame {x′µ}, with primed indices referring to these primed coordinates (e.g.,
∂µ′ ≡ ∂/∂x′µ),

ηµν∂µ′∂ν′φ(x
′) ≡ ∂2x′φ(x

′) = 0. (10.1.42)

For the wave equations (10.1.41) and (10.1.42) to be consistent with each other, we must be
able to relate them through the Lorentz transformations. Problem (10.4) shows this is indeed
the case.

Problem 10.5. (d+ 1)2 Matrix Representation of Poincaré Prove that the Poincaré
transformation in eq. (10.1.7) also defines a group. To systemize the discussion, first promote
the spacetime coordinates to d + 1 dimensional objects: xA = (xµ, 1) and x′A = (x′µ, 1), with
A = 0, 1, 2, . . . , d− 1, d. Then define the matrix

ΠA
B[Λ, a] =

[
Λµν aµ

0 . . . 0 1

]
; (10.1.43)

namely, its upper left d× d block is simply the Lorentz transformation Λµν ; while its rightmost
column is (aµ, 1)T and its bottom row is (0 . . . 0 1). First check that xA = ΠA

B[Λ, a]x
′B is

equivalent to eq. (10.1.7). You should also find that

Π[Λ1, a1] · Π[Λ2, a2] = Π[Λ1 · Λ2,Λ1 · a2 + a1]. (10.1.44)

Then proceed to verify that these set of matrices {ΠA
B[Λ, a]} for different Lorentz transforma-

tions Λ and translation vectors a, with the usual rules of matrix multiplication, together define
a group.

Lorentzian ‘inner product’ is preserved That Λ is a Lorentz transformation means
it is a linear operator that preserves the Lorentzian inner product. For suppose v and w are
arbitrary vectors, the inner product of v′ ≡ Λv and w′ ≡ Λw is that between v and w.

v′ · w′ ≡ ηαβv
′αw′β = ηαβΛ

α
µΛ

β
νv

µwν (10.1.45)

= ηµνv
µwν = v · w. (10.1.46)

This is very much analogous to rotations in RD being the linear transformations that preserve
the Euclidean inner product between spatial vectors: v⃗ · w⃗ = v⃗′ · w⃗′ for all R̂TR̂ = ID×D, where
v⃗′ ≡ R̂v⃗ and w⃗′ ≡ R̂w⃗.

Construction of Λµν We wish to study in some detail what the most general form Λµα
may take. To this end, we shall do so by examining how it acts on some arbitrary vector field
vµ. Even though this section deals with Minkowski spacetime, this vµ may also be viewed as a
vector in a curved spacetime written in an orthonormal basis.

(Λ0
0)

2η00 + ηijΛ
i
0Λ

j
0 = η00 = 1 (10.1.47)
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Λ0
0 = ±

√√√√1 +
D∑
i=1

(Λi0)
2. (10.1.48)

Rotations Let us recall that any spatial vector vi may be rotated to point along the 1−axis
while preserving its Euclidean length. That is, there is always a R̂, obeying R̂TR̂ = I such that

R̂i
jv
j=̇± |v⃗|(1, 0, . . . , 0)T, |v⃗| ≡

√
δijvivj. (10.1.49)

101Conversely, since R̂ is necessarily invertible, any spatial vector vi can be obtained by rotating
it from |v⃗|(1, 0⃗T). Moreover, in D + 1 notation, these rotation matrices can be written as

R̂µ
ν=̇

[
1 0⃗T

0⃗ R̂i
j

]
(10.1.50)

R̂0
νv

ν = v0, (10.1.51)

R̂i
νv

ν = R̂i
jv
j = (±|v⃗|, 0, . . . , 0)T. (10.1.52)

These considerations tell us, if we wish to study Lorentz transformations that are not rotations,
we may reduce their study to the (1 + 1)D case. To see this, we first observe that

Λ


v0

v1

...
vD

 = Λ

[
1 0⃗T

0⃗ R̂

] v0

±|v⃗|
0⃗

 . (10.1.53)

And if the result of this matrix multiplication yields non-zero spatial components, namely
(v′0, v′1, . . . , v′D)T, we may again find a rotation matrix R̂′ such that

Λ


v0

v1

...
vD

 =


v′0

v′1

...
v′D

 =

[
1 0⃗T

0⃗ R̂′

] v′0

±|v⃗′|
0⃗

 . (10.1.54)

At this point, we have reduced our study of Lorentz transformations to[
1 0⃗T

0⃗ R̂′T

]
Λ

[
1 0⃗T

0⃗ R̂

] v0

v1

0⃗

 ≡ Λ′

 v0

v1

0⃗

 =

 v′0

v′1

0⃗

 . (10.1.55)

Because Λ was arbitrary so is Λ′, since one can be gotten from another via rotations.
Time Reversal and Parity Flips Suppose the time component of the vector vµ were

negative (v0 < 0), we may write it as[
−|v0|
v⃗

]
= T̂

[
|v0|
v⃗

]
, T̂ ≡

[
−1 0⃗T

0⃗ ID×D

]
; (10.1.56)

where T̂ is the time reversal matrix since it reverses the sign of the time component of the vector.
You may readily check that T̂ itself is a Lorentz transformation in that it satisfies T̂TηT̂ = η.

101This R̂ is not unique: for example, by choosing another rotation matrix R̂′′ that only rotates the space
orthogonal to vi, R̂R̂′′v⃗ and R̂v⃗ both yield the same result.
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Problem 10.6. Parity flip of the ith axis Suppose we wish to flip the sign of the
ith spatial component of the vector, namely vi → −vi. You can probably guess, this may be
implemented via the diagonal matrix with all entries set to unity, except the ith component –
which is set instead to −1.

iP̂
µ
νv

ν = vµ, µ ̸= i, (10.1.57)

iP̂
i
νv

ν = −vi, (10.1.58)

iP̂ ≡ diag[1, 1, . . . , 1, −1︸︷︷︸
(i+1)th component

, 1, . . . , 1]. (10.1.59)

Define the rotation matrix R̂µ
ν such that it leaves all the axes orthogonal to the 1st and ith

invariant, namely

R̂µ
ν ê
ν
ℓ = êνℓ , (10.1.60)

êµℓ ≡ δµℓ , ℓ ̸= 1, i; (10.1.61)

while rotating the (1, i)-plane clockwise by π/2:

R̂ · ê1 = −êi, R̂ · êi = +ê1. (10.1.62)

Now argue that

iP̂ = R̂T · 1P̂ · R̂. (10.1.63)

Is iP̂ a Lorentz transformation?

Lorentz Boosts As already discussed, we may focus on the 2D case to elucidate the
form of the most general Lorentz boost. This is the transformations that would mix time and
space components, and yet leave the metric of spacetime ηµν = diag[1,−1] invariant. (Neither
time reversal, parity flips, nor spatial rotations mix time and space.) This is what revolutionized
humanity’s understanding of spacetime at the beginning of the 1900’s: inspired by the fact that
the speed of light is the same in all inertial frames, Einstein discovered Special Relativity, that
the space and time coordinates of one frame have to become intertwined when being translated
to those in another frame. We will turn this around later when discussing Maxwell’s equations:
the constancy of the speed of light in all inertial frames is in fact a consequence of the Lorentz
covariance of the former.

Problem 10.7. General Λ2×2 Transformation In this problem, we wish to find the
most general 2 × 2 matrix Λ that obeys ΛT · η · Λ = η, where ηµν = diag[1,−1]. In particular,
show that Λ is a boost matrix, possibly sandwiched between two parity and/or time reversal
transformations:

Λ =

[
σ1 0
0 1

] [
cosh(ξ) sinh(ξ)
sinh(ξ) cosh(ξ)

] [
σ2 0
0 σ3

]
. (10.1.64)

The σ1,2,3 are either +1 or −1; i.e., there are 8 choices of signs here.
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Hints: Start with the completely general ansatz:[
v0 w0

v1 w1

]
. (10.1.65)

By computing ΛT · η ·Λ, argue that the diagonal terms imply (v0, v1) = (σ′
1 cosh(ξ), σ

′
2 sinh(ξ))

T

and (w0, w1) = (σ′
3 sinh(ξ), σ

′
4 cosh(ξ))

T. (Recall that x2 − y2 = c2, for c2 > 0, describes a
hyperbola on the (x, y) plane.) The off diagonal terms will then fix the relationships between
these σ′s.

The parameter ξ occurring within the boost matrix

Λµν(ξ) =

[
cosh(ξ) sinh(ξ)
sinh(ξ) cosh(ξ)

]
(10.1.66)

is known as rapidity. Notice, Λµν(ξ = 0) = I2×2. In 2D, the rotation matrix is

R̂i
j(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
; (10.1.67)

and therefore rapidity ξ is to the Lorentz boost in eq. (10.1.66) what the angle θ is to rotation

R̂i
j(θ) in eq. (10.1.67). In fact, we shall discover below that, parallel to eq. (5.4.36),

Λµν(ξ) = exp

(
ξ ·
[
0 1
1 0

])
. (10.1.68)

Problem 10.8. Rapidities Add Show that, just as rotation angles add in 2D, R̂(ϕ)R̂(ϕ′) =

R̂(ϕ + ϕ′), rapidity parameters also add in (1+1)D; namely, Λ(ξ)Λ(ξ′) = Λ(ξ + ξ′), where Λ is
given by eq. (10.1.66).

Problem 10.9. Lorentz, Dilatations and Null Coordinates in 2D If xµ = (x0, x) are
Cartesian coordinates in 2D Minkowski, i.e., with ds2 = (dx0)2 − (dx1)2, and if we define the
(null) coordinates

x± ≡ x0 ± x1; (10.1.69)

then show that under Lorentz boosts in eq. (10.1.66)

xα → Λαβx
β, (10.1.70)

the new (null) coordinates transform as

x± → e±ξx±. (10.1.71)

Also show that the Minkowski metric in these coordinates reads

ds2 = dx+dx−, (10.1.72)

so that the Lorentz transformation in eq. (10.1.66) leaves it invariant. Also show that the wave
operator in these coordinates read

□ψ ≡ |g|−1/2∂µ
(
|g|1/2gµν∂νψ

)
= 4∂+∂−ψ. (10.1.73)

Can you see why these coordinates are dubbed ‘null’? Hint: What happens when ds2 = 0?
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2D Lorentz Group: In (1+1)D, the continuous boost in Λµν(ξ) in eq. (10.1.66)
and the discrete time reversal and spatial reflection operators

T̂ =

[
−1 0
0 1

]
and P̂ =

[
1 0
0 −1

]
; (10.1.74)

altogether form the full set of Lorentz transformations – i.e., all solutions to eq.
(10.1.5) consist of products of these three matrices.

To understand the meaning of the rapidity ξ, let us consider applying it to an arbitrary 2D
vector Uµ.

U ′ ≡ Λ · U =

[
U0 cosh(ξ) + U1 sinh(ξ)
U1 cosh(ξ) + U0 sinh(ξ)

]
. (10.1.75)

Lorentz Boost: Timelike case A vector Uµ is timelike if U2 ≡ ηµνU
µUν > 0; this often

corresponds to vector tangent to the worldline of some material object. We will now show that
it is always possible to Lorentz boost to its ‘rest frame’, namely U ′µ = ΛµνU

ν = (U ′0, 0⃗).
In 2D, U2 > 0⇒ (U0)2 > (U1)2 ⇒ |U0/U1| > 1. Then it is not possible to find a finite ξ such

that U ′0 = 0, because that would amount to solving tanh(ξ) = −U0/U1 but tanh lies between
−1 and +1 while −U0/U1 is either less than −1 or greater than +1. On the other hand, it does
mean we may solve for ξ that would set the spatial component to zero: tanh(ξ) = −U1/U0.
Recall that tangent vectors may be interpreted as the derivative of the spacetime coordinates
with respect to some parameter λ, namely Uµ ≡ dxµ/dλ. Therefore

U1

U0
=

dx1

dλ

dλ

dx0
=

dx1

dx0
≡ v < 1 (10.1.76)

is the velocity associated with Uµ in the frame {xµ}. Starting from tanh(ξ) = −v, some algebra
would then hand us (cf. eq. (10.1.66))

cosh(ξ) = γ ≡ 1√
1− v2

, (10.1.77)

sinh(ξ) = −γ · v = − v√
1− v2

, (10.1.78)

Λµν =

[
γ −γ · v

−γ · v γ

]
. (10.1.79)

This in turn yields

U ′ =
(
sgn(U0)

√
ηµνUµUν , 0

)T
; (10.1.80)

leading us to interpret the Λµν we have found in eq. (10.1.79) as the boost that bring observers
to the frame where the flow associated with Uµ is ‘at rest’. (Note that, if Uµ = dxµ/dτ , where
τ is proper time, then ηµνU

µUν = 1.)
As an important aside, we may generalize the two-dimensional Lorentz boost in eq. (10.1.79)

to D−dimensions. One way to do it, is to simply append to the 2D Lorentz-boost matrix a

441



(D−2)× (D−2) identity matrix (that leaves the 2− through D−spatial components unaltered)
in a block diagonal form:

Λµν
?
=

 γ −γ · v 0
−γ · v γ 0

0 0 I(D−2)×(D−2)

 . (10.1.81)

But this is not doing much: we are still only boosting in the 1−direction. What if we wish to
boost in vi direction, where vi is now some arbitrary spatial vector? To this end, we may promote
the (0, 1) and (1, 0) components of eq. (10.1.79) to the spatial vectors Λ0

i and Λi0 parallel to
vi. Whereas the (1, 1) component of eq. (10.1.79) is to be viewed as acting on the 1D space
parallel to vi, namely the operator vivj/v⃗2. (As a check: When vi = v(1, 0⃗), vivj/v⃗2 = δi1δ

j
1.)

The identity operator acting on the orthogonal (D − 2) × (D − 2) space, i.e., the analog of
I(D−2)×(D−2) in eq. (10.1.81), is Πij = δij − vivj/v⃗2. (Notice: Πijvj = (δij − vivj/v⃗2)vj = 0.)
Altogether, the Lorentz boost in the vi direction is given by

Λµν(v⃗)=̇

[
γ −γvi

−γvi γ v
ivj

v⃗2
+
(
δij − vivj

v⃗2

) ]
, v⃗2 ≡ δabv

avb. (10.1.82)

It may be worthwhile to phrase this discussion in terms of the Cartesian coordinates {xµ} and
{x′µ} parametrizing the two inertial frames. What we have shown is that the Lorentz boost in
eq. (10.1.82) describes

U ′µ = Λµν(v⃗)U
ν , Uµ =

dxµ

dλ
; (10.1.83)

U ′µ =
dx′µ

dλ
=
(
sgn(U0)

√
ηµνUµUν , 0

)T
. (10.1.84)

λ is the intrinsic 1D coordinate parametrizing the worldlines, and by definition does not alter
under Lorentz boost. The above statement is therefore equivalent to

dx′µ = Λµν(v⃗)dx
ν , (10.1.85)

x′µ = Λµν(v⃗)x
ν + aµ, (10.1.86)

where the spacetime translation aµ shows up here as integration constants.

Problem 10.10. Lorentz boost in (D + 1)−dimensions If vµ ≡ (1, vi), check via a
direction calculation that the Λµν in eq. (10.1.82) produces a Λµνv

ν that has no non-trivial
spatial components. Also check that eq. (10.1.82) is, in fact, a Lorentz transformation. What is
Λµσ(v⃗)Λ

σ
ν(−v⃗)?

Lorentz Boost: Spacelike case A vector Uµ is spacelike if U2 ≡ ηµνU
µUν < 0. As

we will now show, it is always possible to find a Lorentz boost so that U ′µ = ΛµνU
ν = (0, U⃗ ′)

has no time components – hence the term ‘spacelike’. This can correspond, for instance, to the
vector joining two spatial locations within a macroscopic body at a given time.

Suppose U were spacelike in 2D, U2 < 0⇒ (U0)2 < (U1)2 ⇒ |U1/U0| = |dx1/dx0| ≡ |v| > 1.
Then, recalling eq. (10.1.75), it is not possible to find a finite ξ such that U ′1 = 0, because
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that would amount to solving tanh(ξ) = −U1/U0, but tanh lies between −1 and +1 whereas
−U1/U0 = −v is either less than −1 or greater than +1. On the other hand, it is certainly
possible to have U ′0 = 0. Simply do tanh(ξ) = −U0/U1 = −1/v. Similar algebra to the timelike
case then hands us

cosh(ξ) =
(
1− v−2

)−1/2
=

|v|√
v2 − 1

, (10.1.87)

sinh(ξ) = −(1/v)
(
1− v−2

)−1/2
= − sgn(v)√

v2 − 1
, (10.1.88)

U ′ =
(
0, sgn(v)

√
−ηµνUµUν

)T
, v ≡ U1

U0
> 1. (10.1.89)

We may interpret U ′µ and Uµ as infinitesimal vectors joining the same pair of spacetime points
but in their respective frames. Specifically, U ′µ are the components in the frame where the pair
lies on the same constant-time surface (U ′0 = 0). While Uµ are the components in a boosted
frame.

Lorentz Boost: Null (aka lightlike) case The vector Uµ is null if U2 = ηµνU
µUν = 0.

If U were null in 2D, that means (U0)2 = (U1)2, which in turn implies

Uµ = ω(1,±1) (10.1.90)

for some real number ω. Upon a Lorentz boost, eq. (10.1.75) tells us

U ′ ≡ Λ · U = ω

[
cosh(ξ)± sinh(ξ)
sinh(ξ)± cosh(ξ)

]
. (10.1.91)

As we shall see below, if Uµ describes the d−momentum of a photon, so that |ω| is its frequency
in the un-boosted frame, the

U ′0

U0
= cosh(ξ)± sinh(ξ) = exp(±ξ) (10.1.92)

describes the photon’s red- or blue-shift in the boosted frame. Notice it is not possible to set
either the time nor the space component to zero, unless ξ → ±∞.

Summary Our analysis of the group of matrices {Λ} obeying ΛαµΛ
β
νηαβ =

ηµν reveals that these Lorentz transformations consists of: time reversals, parity flips,
spatial rotations and Lorentz boosts. (The first two are discrete and the last two
are continuous transformations.) A timelike vector can always be Lorentz-boosted
so that all its spatial components are zero; while a spacelike vector can always be
Lorentz-boosted so that its time component is zero.

Problem 10.11. Null, Spacelike vs. Timelike Do null vectors span a vector space?
Simiarly, do spacelike or timelike vectors span a vector space? Hint: Check for closure.

Problem 10.12. Geodesics in Inertial and Rotating Frames For a massive m > 0
point particle, its trajectory

zµ(t) = (t, z⃗(t)) (10.1.93)
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over an infinitesimal period of time dzµ = żµ(t)dt ≡ (dzµ/dt)dt is timelike, as discussed above.
This means ηµνdz

µdzν > 0; and, in particular, there must be a frame {dz′µ} related to the {dzµ}
via

dz′µ ≡ Λµνdz
ν (10.1.94)

(i.e., it must be possible to find some Lorentz transformation Λµν) such that

dz′µ =
(
dτ, 0⃗

)
. (10.1.95)

This is, of course, simply the instantaneous rest frame of the point particle and dτ is its infinites-
imal proper time – the time read off a Cesium atom attached to the point particle, say. From
equations (10.1.5), (10.1.94) and (10.1.95), what we have managed to argue is – for a timelike
worldline – the spacetime counterpart to eq. (9.1.24) reads

τ (z⃗(t1)→ z⃗(t2)) ≡
∫ t=t2

t=t1

dτ =

∫ t=t2

t=t1

√
ηµνdzµdzν (10.1.96)

=

∫ t2

t1

√
ηµν żµżνdt =

∫ t2

t1

√
1− ˙⃗z2dt; (10.1.97)

where the metric is ds2 = ηµνdx
µdxν ≡ dt2 − dx⃗ · dx⃗.

By demanding that this proper time be extremized (usually maximized), for some fixed end
points z⃗(t1) = x⃗1 and z⃗(t2) = x⃗2, show that geodesic motion in Minkowski spacetime corresponds
to the Special Relativistic version of Newton’s 2nd law for a free particle:

d

dt

(
˙⃗z√

1− ˙⃗z2

)
= 0. (10.1.98)

Proper vs ‘Global’-Inertial Time On a related note, for a generic timelike trajectory zµ(τ)
in Minkowski spacetime parametrized by Cartesian coordinates xµ = (t, x⃗), let us use its proper
time τ as the 1D coordinate parametrizing the worldline itself, namely

dτ =
(√

ηµνuµuνdλ
)
λ=τ

, uµ ≡ dzµ

dτ
. (10.1.99)

Recall
√
gµν(dzµ/dλ)(dzν/dλ)dλ =

√
gµν(dzµ/dλ′)(dzν/dλ′)dλ

′ is an object that takes the same
form no matter the 1D coordinate λ = λ(λ′) used. If we do use λ = τ , the square root in eq.
(10.1.99) must be unity. Since uµ is timelike, this tells us

ηµνu
µuν = (u0)2 − u⃗2 = +1. (10.1.100)

Because the time component of zµ(τ) = (t(τ), z⃗(τ)) is simply the global time t in the inertial
frame {xµ}, explain why – along a given timelike worldline –

dτ

dt
=
√
1− v⃗2, v⃗ ≡ dz⃗

dt
. (10.1.101)
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Rotating Frame in (3+1)D 102Next, let us see that the non-relativistic Newton’s 2nd law
of motion in a (3+1)D rotating frame may be recovered by starting from such a spacetime
perspective. For concreteness, we will let the inertial frame be xµ = (t, x⃗) and the rotating
frame be x′µ = (t, x⃗′). We will assume the rotating frame is revolving counterclockwise at an
angular frequency ω around the x3 ≡ z′ axis with respect to the inertial one; namely, x1

x2

x3

 =

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 x′1

x′2

x′3

 . (10.1.102)

(For instance, if an observer is at rest in the rotating frame on its 1−axis; i.e., x⃗′ = (1, 0, 0),
then x⃗(t) = (cos(ωt), sin(ωt), 0)T.) Denoting

x′i ≡ (x⃗′⊥, x
′3); (10.1.103)

first show that the flat spacetime metric in the rotating coordinate system is

ds2 = gµνdx
′µdx′ν =

(
1− ω2x⃗′2⊥

)
dt2 − 2dt(ω⃗ × x⃗′) · dx⃗′ − dx⃗′⊥ · dx⃗′⊥ − (dx′3)2, (10.1.104)

=
(
1− (ω⃗ × x⃗′)2

)
dt2 − 2dt(ω⃗ × x⃗′) · dx⃗′ − dx⃗′2 (10.1.105)

ω⃗ ≡ (0, 0, ω). (10.1.106)

Remember |ωx⃗′⊥| is the speed v in the inertial frame. Argue that the non-relativistic limit of the
proper time is

τ (z⃗′(t1)→ z⃗′(t2)) =

∫ t=t2

t=t1

dτ =

∫ t2

t1

√
gµν

dz′µ

dt

dz′µ

dt
dt (10.1.107)

=

∫ t2

t1

(
1− LNR +O(v3)

)
dt; (10.1.108)

where the O(v2) Lagrangian for the rotating frame is

LNR =
1

2
˙⃗z′2 +

1

2
ω2z⃗′2⊥ + (ω⃗ × z⃗′) · ˙⃗z′, (10.1.109)

=
1

2
˙⃗z′2 +

1

2
(ω⃗ × z⃗′)2 + (ω⃗ × z⃗′) · ˙⃗z′; (10.1.110)

z⃗′ ≡
(
z⃗′⊥, z

′3) . (10.1.111)

By minimizing the proper time, show that the resulting non-relativistic ‘2nd law’ is

m
d2z⃗′

dt2
= F⃗Coriolis + F⃗Centrifugal; (10.1.112)

with the Coriolis and Centrifugal forces taking, respectively, the forms

F⃗Coriolis = −2mω⃗ × ˙⃗z′ (10.1.113)

and

F⃗Centrifugal = −mω⃗ × (ω⃗ × z⃗′). (10.1.114)

Recall that ω⃗ is given in eq. (10.1.106).

102The following is a response to Kuan Nan Lin’s question regarding how to use differential geometry to describe
rotating frames in classical mechanics.
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Exponential Form Lorentz transformations have continuous parameters that tell us how
large/small a rotation and/or boost is being performed. Whenever these parameters may be
tuned to set the said Lorentz transformation Λ to the identity, we may write it in an exponential
form:

Λµν =
(
eX
)µ
ν
, (10.1.115)

where the exponential of the matrix X is defined through its power series, expX =
∑∞

ℓ=0X
ℓ/ℓ!.

Because we are moving indices with the metric ηαβ – for e.g., ηµνX
µ
α = Xνα – the position of the

indices on any object (upper or lower) is important. In particular, the Lorentz transformation
itself Λµν has one upper and one lower index; and this means the X in Λ = eX must, too, have
one upper and one lower index – for instance, the n-th term in the Taylor series reads:

1

n!
Xµ

σ1
Xσ1

σ2
Xσ2

σ3
. . . Xσn−2

σn−1
Xσn−1

ν . (10.1.116)

If we use the defining relation in eq. (10.1.5), but consider it for small X only,(
δµα +Xµ

α +O
(
X2
))
ηµν
(
δνβ +Xν

β +O
(
X2
))

(10.1.117)

= ηαβ + δµαηµνX
ν
β +Xµ

αηµνδ
ν
β +O

(
X2
)

= ηαβ +Xαβ +Xβα +O
(
X2
)
= ηαβ. (10.1.118)

The order−X terms will vanish iff Xαβ itself (with both lower indices) or Xαβ (with both upper
indices) is anti-symmetric:

Xαβ = −Xβα. (10.1.119)

The general Lorentz transformation continuously connected to the identity must therefore be
the exponential of the superposition of the basis of anti-symmetric matrices:

Λαβ =

(
exp

(
− i
2
ωµνJ

µν

))α
β

, (Boosts and Rotations), (10.1.120)

−i (Jµν)αβ = ηµαδνβ − ηναδ
µ
β = +i (Jνµ)αβ , ωµν = −ωνµ ∈ C. (10.1.121)

Some words on the indices: (Jµν)αβ is the α-th row and β-th column of the (µ, ν)-th basis
anti-symmetric matrix; with µ ̸= ν. ωµν = −ωνµ are the parameters controlling the size of the
rotations and boosts; they need to be real because Λαβ is real.

Problem 10.13. From eq. (10.1.121), write down (Jµν)
αβ and explain why these form a com-

plete set of basis matrices for the generators of the Lorentz group.

Generators To understand the geometric meaning of eq. (10.1.121), let us figure out the
form of X in eq. (10.1.115) that would generate individual Lorentz boosts and rotations in
(2 + 1)D. The boost along the 1−axis, according to eq. (10.1.66) is

Λµν(ξ) =

 cosh(ξ) sinh(ξ) 0
sinh(ξ) cosh(ξ) 0

0 0 1

 = I3×3 − iξ

 0 i 0
i 0 0
0 0 0

+O
(
ξ2
)
. (10.1.122)
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The boost along the 2−axis is

Λµν(ξ) =

 cosh(ξ) 0 sinh(ξ)
0 1 0

sinh(ξ) 0 cosh(ξ)

 = I3×3 − iξ

 0 0 i
0 0 0
i 0 0

+O
(
ξ2
)
. (10.1.123)

Equations (10.1.122) and (10.1.123) tell us the generators of Lorentz boost, assuming Λµν(ξ)
take the form exp(−iξK), is then

K1 ≡ J01 = −J10=̇

 0 i 0
i 0 0
0 0 0

 =̇i
(
ηµ0δ1ν − ηµ1δ0ν

)
, (10.1.124)

K2 ≡ J02 = −J20=̇

 0 0 i
0 0 0
i 0 0

 =̇i
(
ηµ0δ2ν − ηµ2δ0ν

)
. (10.1.125)

The counter-clockwise rotation on the (1, 2) plane, according to eq. (10.1.67), is

Λµν(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 = I3×3 − iθ

 0 0 0
0 0 −i
0 i 0

+O
(
θ2
)
. (10.1.126)

Assuming this rotation is Λµν(θ) = exp(−iθJ12), i.e., ω12 ≡ θ ∈ R, the generator is.

J12 = −J21=̇i
(
ηµ1δ2ν − ηµ2δ1ν

)
=̇

 0 0 0
0 0 −i
0 i 0

 . (10.1.127)

We may gather, from equations (10.1.124), (10.1.125), and (10.1.127), the generators of boosts
and rotations are in fact the ones in eq. (10.1.121).

Notice that K1 and K2 in equations (10.1.124) and (10.1.125) are not hermitian; while
the rotation generator J12 in eq. (10.1.127) is hermitian. This observation holds in all higher
dimensions: boost generators are non-hermitian while rotation generators are hermitian. To this
end, we record an important fact:

Non-compact groups (i.e., with infinite volume) such as the Lorentz group (where
its rapidity runs over R) do not yield finite dimensional unitary representations.
Compact groups (i.e., with finite volume) such as the rotation group (where rotation
angles run over a finite interval) do yield finite dimensional unitary representations.

Problem 10.14. Show, by a direct calculation, that exp(−iξK1) and exp(−iξK2) do indeed
yield the boosts in equations (10.1.122) and (10.1.123) respectively. Show that exp(−iθJ12) does
indeed yield the rotation in eq. (10.1.126). Hint: You may write Kj = i |0⟩ ⟨j|+ i |j⟩ ⟨0| and use
a fictitious Hilbert space where ⟨µ| ν⟩ = δµν and (Kj)µν = ⟨µ |Kj| ν⟩; then compute the Taylor
series of exp(−iξKj).

Problem 10.15. We have only seen that eq. (10.1.121) generates individual boosts and
rotations in (2 + 1)D. Explain why eq. (10.1.121) does in fact generalize to the generators of
boosts and rotations in all dimensions d ≥ 3. Hint: See previous problem.

447



Determinants, Discontinuities By taking the determinant of eq. (10.1.5), and utilizing
det(AB) = detA detB and detAT = detA,

det ΛT · det η · detΛ = det η (10.1.128)

(det Λ)2 = 1 (10.1.129)

det Λ = ±1 (10.1.130)

Notice the time reversal T̂ and parity flips { (i)P̂} matrices each has determinant −1. On the
other hand, Lorentz boosts and rotations that may be tuned to the identity transformation
must have determinant +1. This is because the identity itself has det +1 and since boosts and
rotations depend continuously on their parameters, their determinant cannot jump abruptly
between +1 and −1.

Problem 10.16. The determinant is a tool that can tell us there are certain Lorentz transfor-
mations that are disconnected from the identity – examples are[

cos θ − sin θ
− sin θ − cos θ

]
and

[
− cosh ξ sinh ξ
− sinh ξ cosh ξ

]
. (10.1.131)

You can explain why these are disconnected from I?

Group multiplication Because matrices do not commute, it is not true in general that
eXeY = eX+Y . Instead, the the Baker-Campbell-Hausdorff formula tells us

eXeY = exp

(
X + Y +

1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . .

)
, (10.1.132)

[A,B] ≡ AB −BA; (10.1.133)

where the exponent on the right hand involves sums of commutators [·, ·], commutators of com-
mutators, commutators of commutators of commutators, etc.

If the generic form of the Lorentz transformation in eq. (10.1.115) holds, we would expect
that the product of two Lorentz transformations to yield the same exponential form:

exp

(
− i
2
aµνJ

µν

)
exp

(
− i
2
bαβJ

αβ

)
= exp

(
− i
2
cδγJ

δγ

)
. (10.1.134)

Comparison with eq. (5.1.44) tells us, in order for the product of two Lorentz transformations
to return the exponential form on the right hand side, the commutators of the generators {Jµν}
ought to return linear combinations of the generators. This way, higher commutators will con-
tinue to return further linear combinations of the generators, which then guarantees the form
on the right hand side of eq. (10.1.134). More specifically, according to eq. (5.1.44), the first
commutator would yield

e−
i
2
aµνJµν

e−
i
2
bµνJµν

= exp

[
− i

2
(aµν + bµν)J

µν +
1

2

(
− i
2

)2

aµνbαβ
[
Jµν , Jαβ

]
+

1

12

(
− i
2

)3

aσρaµνbαβ
[
Jσρ,

[
Jµν , Jαβ

]]
+ . . .

]
(10.1.135)
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= exp

[
− i

2
(aµν + bµν)J

µν +
1

2

(
− i
2

)2

aµνbαβQ
µναβ

κξJ
κξ

+
1

12

(
− i
2

)3

aσρaµνbαβQ
µναβ

κξQ
σρκξ

ωλJ
ωλ + . . .

]
, (10.1.136)

for appropriate complex numbers {Qµναβ
λτ}.

This is precisely what occurs. The commutation relations between generators of a general
Lie group is known as its Lie algebra. For the Lorentz generators, a direct computation using
eq. (10.1.121) would return:

Lie Algebra for SOD,1

[Jµν , Jρσ] = i (ηνρJµσ − ηµρJνσ + ηµσJνρ − ηνσJµρ) . (10.1.137)

Problem 10.17. Verify eq. (10.1.137) using eq. (10.1.121).

Problem 10.18. Remember that linear operators acting on a Hilbert space themselves form
a vector space. Consider a collection of linearly independent linear operators {L1, L2, . . . , LN}.
Suppose they are closed under commutation, namely

[Li, Lj] =
N∑
k=1

cijkLk; (10.1.138)

for any i and j; and the cijk here are (complex) numbers. Prove that these N operators form a
vector space.

Problem 10.19. Lie Algebra for Poincaré Group

(10.1.139)

10.2 Special Relativity and Kinematics

10.3 Lorentz and Poincaré Transformations in (3+1)D

10.3.1 SO3,1 Lie Algebra

As far as we can tell, the world we live in has 3 space and 1 time dimensions. Let us now work
out the Lie Algebra in eq. (10.1.137) more explicitly. Denoting the boost generator as

Ki ≡ J0i (10.3.1)

and the rotation generators as

J i ≡ 1

2
ϵimnJmn ⇔ ϵimnJ i ≡ Jmn; (10.3.2)

with ϵ123 = ϵ123 ≡ 1. The generic Lorentz transformation continuously connected to the identity
is the exponential

D(ξ⃗, θ⃗) = exp
(
−iξjKj − iθjJ j

)
. (10.3.3)
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At this point, these {D(ξ⃗, θ⃗)} are not necessarily the 4× 4 matrices obeying ΛTηΛ = η. Rather,
they are simply linear operators, and their generators merely need to obey the same commutation
relations in eq. (10.1.137).

We may compute from eq. (10.1.137) that

[Jm, Jn] = iϵmnlJ l, (10.3.4)

[Km, Jn] = iϵmnlK l, (10.3.5)

[Km, Kn] = −iϵmnlJ l. (10.3.6)

Problem 10.20. SU(2)+⊗SU(2)− Let us next define

J i+ ≡
1

2

(
J i + iKi

)
, (10.3.7)

J i− ≡
1

2

(
J i − iKi

)
. (10.3.8)

Use equations (10.3.4) through (10.3.6) to show that[
J i+, J

j
+

]
= iϵijkJk+, (10.3.9)[

J i−, J
j
−
]
= iϵijkJk−, (10.3.10)[

J i+, J
j
−
]
= 0. (10.3.11)

Equations (10.3.9) and (10.3.10) tell us the J i± obey the same algebra as the angular momentum

ones in eq. (10.3.4); and eq. (10.3.11) says the two sets {J⃗+} and {J⃗−} commute.

Equations (10.3.9), (10.3.10), and (10.3.11) indicate, the Lie Algebra of SO3,1 is a pair of SU2

or SO3 ones. This in turn informs us, we may take the simultaneous observables

(J⃗2
+, J

3
+) and (J⃗2

−, J
3
−). (10.3.12)

and therefore label the eigenstates by |j+, j−⟩, where the j± can be integer or half integer and

J⃗2
+ |j+, j−⟩ = j+(j+ + 1) |j+, j−⟩ (10.3.13)

J⃗2
− |j+, j−⟩ = j−(j− + 1) |j+, j−⟩ . (10.3.14)

More simply, we say that these states fall in the (j+, j−) representation. Since J
i = J i+ + J i−, we

may identity the total angular momentum j as lying between |j+ − j−| and j+ + j−.

10.3.2 SL2,C Spinors: (1
2
, 0), (0, 1

2
) and (1

2
, 1
2
) representations

In the 4D Minkowski spacetime we reside in, it turns out the fundamental objects that encodes
Lorentz covariance, that physical laws should take the same form in all inertial frames, are Weyl
spinors. This is because of the need to describe spin−1/2 fermions – leptons and quarks – in
Nature. Moreover, ordinary spacetime vectors and tensors can also be built out of them. We
will see how they arise from studying the group of Special Linear 2-dimensional operators, SL2,C.

We begin by collecting the results in Problems (3.10) and (4.27) as well as the ‘Pauli matrices
from their algebra’ discussion in §(4.3.2). Next, we will define the group SL2,C, and proceed to
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describe its connection to the Lorentz group. The two inequivalent 2×2 representations of SL2,C
will be constructed and the discussion will culminate in the derivation of the Dirac equation,
which is not only Lorentz but also parity covariant.

Basic Properties of {σµ} A basis set of orthonormal 2×2 complex matrices is provided
by {σµ|µ = 0, 1, 2, 3}, the 2× 2 identity matrix

σ0 ≡ I2×2 (10.3.15)

together with the Hermitian Pauli matrices {σi}. The {σi|i = 1, 2, 3} may be viewed as arising
from the algebra

σiσj = δijI2×2 + iϵijkσk, (10.3.16)

which immediately implies the respective anti-commutator and commutator results:

{σi, σj} = 2δij and [σi, σj] = 2iϵijkσk. (10.3.17)

Dividing the equality on the right side of eq. (10.3.17) by two, followed by taking the complex
conjugate, we infer the {σi/2} and {−(σi)∗/2} obey the SO3 and SU2 Lie Algebra[

σa

2
,
σb

2

]
= iϵabc

σc

2
, (10.3.18)[

−(σa)∗

2
,
−(σb)∗

2

]
= iϵabc

−(σc)∗

2
. (10.3.19)

As a result of eq. (10.3.16), the Pauli matrices have eigenvalues ±1, namely

σi |±; i⟩ = ± |±; i⟩ ; (10.3.20)

and thus −1 determinant (i.e., product of eigenvalues) and zero trace (i.e., sum of eigenvalues):

detσi = −1, Tr σi = 0. (10.3.21)

An equivalent way of writing eq. (10.3.16) is to employ arbitrary complex vectors a⃗, b⃗ and c⃗.
Denoting a⃗ · σ⃗ ≡ aiσ

i,

(⃗a · σ⃗)(⃗b · σ⃗) = a⃗ · b⃗+ i(⃗a× b⃗) · σ⃗, (⃗a× b⃗)k = ϵijkaibj. (10.3.22)

We may multiply by (c⃗ · σ⃗) from the right on both sides:

(⃗a · σ⃗)(⃗b · σ⃗)(c⃗ · σ⃗) = i(⃗a× b⃗) · c⃗+
{
(c⃗ · b⃗)⃗a− (c⃗ · a⃗)⃗b+ (⃗a · b⃗)c⃗

}
· σ⃗. (10.3.23)

Problem 10.21. Verify eq. (10.3.23).

In the representation where σ3 is diagonal,

σ0 ≡
[
1 0
0 1

]
, σ1 ≡

[
0 1
1 0

]
, σ2 ≡

[
0 −i
i 0

]
, σ3 ≡

[
1 0
0 −1

]
. (10.3.24)
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The inner product of {σµ} is provided by the matrix trace,

⟨σµ|σν⟩ ≡ 1

2
Tr [σµσν ] = δµν . (10.3.25)

Since the {σµ} form a basis, any 2 × 2 complex matrix A may be obtained as a superposition
A = qµσ

µ by choosing the appropriate complex parameters {qµ}. In addition, we will utilize

σ̄µ ≡
(
I2×2,−σi

)
= σµ. (10.3.26)

103These {σ̄µ} form a orthogonal basis as well; i.e., ⟨σ̄µ| σ̄ν⟩ = (1/2)Tr [σ̄µσ̄ν ] = δµν . We also
need the 2D Levi-Civita symbol ϵ. Since ϵ is real and antisymmetric,

ϵ† = ϵT = −ϵ, (10.3.27)

a direct calculation would reveal it is also unitary:

ϵ · ϵ† = −ϵ2 = I. (10.3.28)

The non-zero components are

ϵ12 = ϵ12 = 1, and ϵ21 = ϵ21 = −1. (10.3.29)

According to eq. (10.3.16), because σiσi = I (for fixed i) that implies σi is its own inverse. We
may then invoke eq. (3.2.8) to state

(σi)−1 = σi = −ϵ(σ
i)Tϵ

detσi
=
ϵ(σi)Tϵ†

detσi
=
ϵ†(σi)Tϵ

detσi
. (10.3.30)

Since ϵ is real, detσi = −1 (cf. eq. (10.3.21)), and σi is Hermitian, we may take the complex
conjugate on both sides and deduce

(σi)∗ = ϵ · σi · ϵ = ϵ†
(
−σi

)
ϵ = ϵ

(
−σi

)
ϵ†. (10.3.31)

Since ϵ2 = −I, we may multiply both sides by ϵ on the left and right,

ϵ · (σi)∗ · ϵ = ϵ† · (−σi)∗ · ϵ = ϵ · (−σi)∗ · ϵ† = σi. (10.3.32)

Problem 10.22. Verify that, for a real pµ,

σ̄µσνpµpν = σµσ̄νpµpν = p2 · I2×2; (10.3.33)

where p2 ≡ pµp
µ. This result will be useful in analyzing the dispersion relations arising from the

Majorana, Weyl, and Dirac equations.

Problem 10.23. Using the notation in eq. (10.3.26), explain why

ϵ · (σ̄µ)∗ · ϵ† = ϵ† · (σ̄µ)∗ · ϵ = σµ, (10.3.34)

ϵ · (σµ)∗ · ϵ† = ϵ† · (σµ)∗ · ϵ = σ̄µ; (10.3.35)

and therefore

ϵ · σ̄µ · ϵ† = ϵ† · σ̄µ · ϵ = (σµ)∗, (10.3.36)

ϵ · σµ · ϵ† = ϵ† · σµ · ϵ = (σ̄µ)∗. (10.3.37)

Hint: Remember the properties of ϵ and σ0.

103Caution: The over-bar on σ̄ is not complex conjugation.
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Because (σµ)2 = I and σµ/ detσµ = σ̄µ = (I,−σi) = σµ, eq. (3.2.8) informs us

σµ = −ϵ · (σ̄µ)T · ϵ = −ϵ · (σµ)T · ϵ (10.3.38)

= ϵ† · (σ̄µ)T · ϵ = ϵ† · (σµ)T · ϵ. (10.3.39)

Remember, σ̄µ = σµ because lowering the spatial components costs a minus sign. Likewise,
because (σ̄µ)2 = I and σ̄µ/ det σ̄µ = σµ = σ̄µ, eq. (3.2.8) informs us

σ̄µ = −ϵ · (σµ)T · ϵ = −ϵ · (σ̄µ)T · ϵ (10.3.40)

= ϵ† · (σµ)T · ϵ = ϵ† · (σ̄µ)T · ϵ. (10.3.41)

Exponential of Pauli Matrices For any complex {ψi}, we have from eq. (3.2.23),

exp

(
− i
2
ψiσ

i

)
= cos

(
|ψ⃗|
2

)
− i ψ⃗ · σ⃗
|ψ⃗|

sin

(
|ψ⃗|
2

)
, (10.3.42)

ψ⃗ · σ⃗ ≡ ψjσ
j, |ψ⃗| ≡

√
ψiψi. (10.3.43)

One may readily check that its inverse is(
exp

(
− i
2
ψiσ

i

))−1

= exp

(
+
i

2
ψiσ

i

)
= cos

(
|ψ⃗|
2

)
+ i

ψ⃗ · σ⃗
|ψ⃗|

sin

(
|ψ⃗|
2

)
. (10.3.44)

104Observe that the relation in eq. (3.2.23) is basis independent; namely, if we found a different
representation of the Pauli matrices

σ′i = UσiU−1 ⇔ U−1σ′iU = σi (10.3.45)

then the algebra in eq. (10.3.16) and the exponential result in eq. (10.3.42) would respectively
become

U−1σ′iUU−1σ′jU = U−1
(
δij + iϵijkσ′k)U, (10.3.46)

σ′iσ′j = δij + iϵijkσ′k (10.3.47)

and

exp

(
− i
2
ψiU

−1σ′iU

)
= U−1 exp

(
− i
2
ψiσ

′i
)
U = U−1

(
cos

(
|ψ⃗|
2

)
− iψjσ

′j

|ψ⃗|
sin

(
|ψ⃗|
2

))
U,

exp

(
− i
2
ψiσ

′i
)

= cos

(
|ψ⃗|
2

)
− iψjσ

′j

|ψ⃗|
sin

(
|ψ⃗|
2

)
. (10.3.48)

Helicity Eigenstates The Pauli matrices divided by 2, {σi/2|i = 1, 2, 3}, are associated
with spin−1/2 systems. The helicity operator, in turn, is defined as the Hermitian object

p̂ · σ⃗ ≡ pi
|p⃗|
σi (10.3.49)

104We will take the
√
· in the definition of |ψ⃗| to be the positive square root. However, note that, since sine is

an odd power series, sin[|ψ⃗|/2]/|ψ⃗| is an even power series and there is actually no ambiguity.
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for real pi and |p⃗| ≡
√
δijpipj. It may be diagonalized as

pi
|p⃗|
(
σi
)
AḂ

= ξ+Aξ
+
Ḃ − ξ

−
Aξ

−
Ḃ; (10.3.50)

pi
|p⃗|
σiξ± = ±ξ±. (10.3.51)

105In the representation of the Pauli matrices in eq. (10.3.24), the unit norm helicity eigenstates
are, up to overall phases,

ξ+A(p⃗) =

(
e−iϕp cos

[
θp
2

]
, sin

[
θp
2

])T

(10.3.52)

=
1√
2

√
1− p3
|p⃗|

(
|p⃗|+ p3
p1 + ip2

, 1

)T

(10.3.53)

and

ξ−A(p⃗) =

(
−e−iϕp sin

[
θp
2

]
, cos

[
θp
2

])T

(10.3.54)

=
1√
2

√
1 +

p3
|p⃗|

(
− |p⃗| − p3
p1 + ip2

, 1

)T

. (10.3.55)

Note that we have switched to spherical coordinates in momentum space, namely

pi ≡ p (sin θp cosϕp, sin θp sinϕp, cos θp) . (10.3.56)

Also notice, under parity p⃗→ −p⃗; or in spherical coordinates,

ϕp → ϕp + π and θp → π − θp, (10.3.57)

the helicity eigenstates in equations (10.3.52) and (10.3.54) transform into each other:

ξ+ → ξ− and ξ− → ξ+. (10.3.58)

Equivalently,

ξ±(−p⃗) = ξ∓(p⃗). (10.3.59)

These orthonormal eigenstates ξ± of the Hermitian piσ
i, in equations (10.3.52) and (10.3.54),

span the 2D complex vector space, so their completeness relation is

IAḂ = ξ+Aξ
+
Ḃ + ξ−Aξ

−
Ḃ; (10.3.60)

Therefore, pµσ
µ = p0I+piσi itself must be p0 times of eq. (10.3.60) plus |p⃗| times of eq. (10.3.50).

pµ (σ
µ)AḂ ≡ pAḂ = λ+ξ

+
Aξ

+
Ḃ + λ−ξ

−
Aξ

−
Ḃ, λ± ≡ p0 ± |p⃗|, (10.3.61)

pµ (σ̄
µ)AḂ = λ+ξ

−
Aξ

−
Ḃ + λ−ξ

+
Aξ

+
Ḃ. (10.3.62)

The notation pAḂ swaps one Lorentz index µ (on pµ) for two ‘spinor’ indices AḂ. Let us note
that both µ and AḂ has the necessary 4 components to describe a vector – this suggests we
are not losing any information when switching between these two descriptions. As we will show
shortly, indeed, this is merely a novel change-of-basis.

105This dotted/un-dotted notation, due to van der Waerden, will be explained shortly.
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Problem 10.24. Lorentz from Pauli Show that both

JµνL ≡
i

4
σ[µσ̄ν] and JµνR ≡

i

4
σ̄[µσν] (10.3.63)

obey the SOD,1 algebra in eq. (10.1.137).

Problem 10.25. Parity Matrix Show that the parity operator, defined as

Pξ± = ξ∓, (10.3.64)

– recall equations (10.3.57) and (10.3.58) – takes the unique form

P (θp, ϕp) =

[
− sin(θp) e−iϕp cos(θp)
eiϕp cos(θp) sin(θp)

]
. (10.3.65)

That this parity operator P depends on the angular parameters occurring within the ξ±(θp, ϕp)
will turn out to be important for our SL2,C discussion below. In particular, it implies there is no
P such that PσiP−1 = −σi.

Non-Existence of General Parity Operator Suppose we wish to solve for P such
that

P (piσ
i)P−1 = −(piσi). (10.3.66)

for any {pi}. That means PσiP−1 = −σi for i = 1, 2, 3. However, we have just shown that there
isn’t a universal matrix P such that performs such a task – it necessarily has to depend on the
momentum pi.

Completeness of {σµ}: Spacetime vs. Spinor Indices Since the {σµ} form an
orthonormal basis, they must admit some form of the completeness relation in eq. (4.3.23).
Now, according to eq. (10.3.25), cµσ

µ ⇔ cµ = (1/2)Tr [(cνσ
ν)σµ] for any complex coefficients

{cν}. (We will not distinguish between dotted and un-dotted indices for now.) Consider the Ath
row Bth column of the matrix cνσ

ν :

cµ(σ
µ)AB =

∑
0≤µ≤3

1

2
(σµ)ABTr

[
(σµ)†cνσ

ν
]

(10.3.67)

=
∑

1≤C,D≤2

( ∑
0≤µ≤3

1

2
(σµ)AB(σµ)TDC

)
cν(σ

ν)CD (10.3.68)

=
∑

1≤C,D≤2

( ∑
0≤µ≤3

1

2
(σµ)AB(σµ)CD

)
cν(σ

ν)CD. (10.3.69)

We may view the terms in the parenthesis on the last line as an operator that acts on the
operator cνσ

ν . But since cν was arbitrary, it must act on each and every σν to return σν , since
the left hand side is cνσ

ν . And because the {σν} are the basis kets of the space of operators
acting on a 2D complex vector space, the term in parenthesis must be the identity.∑

0≤µ≤3

1

2
(σµ)AB(σµ)CD =

∑
0≤µ≤3

1

2
(σµ)AB(σ

µ)TCD = δCAδ
D
B (10.3.70)
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In the second equality we have used the Hermitian nature of σµ to deduce (σµ)†AB = (σµ)TAB =
(σµ)AB ⇔ (σµ)TAB = (σµ)∗AB. If we further employ (σµ)∗ = ϵ · σ̄µ · ϵ† = ϵ · σ̄µ · ϵT in eq. (10.3.37)
within the leftmost expression,∑

0≤µ≤3

1

2
(σµ)AB(σµ)CD =

∑
0≤µ≤3

1

2
(σµ)ABϵ

CMϵDN(σ̄µ)MN. (10.3.71)

If we now restore the dotted notation on the right index, so that

ϵCMϵḊṄ(σ̄µ)MṄ = (σ̄µ)MṄϵ
MCϵṄḊ ≡ (σ̄µ)

CḊ, (10.3.72)

then eq. (10.3.70), with Einstein summation in force, becomes

1

2
σµ

AḂ
σ̄ CḊ
µ = δCAδ

Ḋ
Ḃ
. (10.3.73)

Next, consider

(σµ)MṄ(σν)
MṄ = (σµ)MṄϵ

ṀȦϵṄḂ(σν)AḂ = (σµ)T
ṄM
ϵṀȦ(σν)AḂ(ϵ

T)ḂṄ (10.3.74)

= Tr
[
(σµ)T · ϵ · σν · ϵ†

]
= Tr

[
ϵ† · (σµ)T · ϵ · σν

]
(10.3.75)

= Tr [σ̄µσν ] = Tr [σµσν ] , (10.3.76)

where eq. (10.3.41) was used in the last line. Invoking the orthonormality of the {σµ} in eq.
(10.3.25),

1

2
(σµ)MṄ(σν)

MṄ ≡ 1

2
(σµ)MṄϵ

MAϵṄḂ(σν)AḂ = δµν . (10.3.77)

Equation (10.3.77) tell us we may view the spacetime Lorentz index µ and the pair of spinor
indices AḂ as different basis for describing tensors. For example, we may now switch between
the momentum pµ and pAḂ via:

pµσ
µ

AḂ
= pAḂ ⇔ pµ =

1

2
σ AḂ
µ pAḂ, (10.3.78)

where the relation on the right is a direct consequence of eq. (10.3.77),

pµ =
1

2
σ AḂ
µ σν

AḂ
pν = δνµpν = pµ. (10.3.79)

That a spacetime vector pµ may be described as a rank−2 spinor object is a good reason to turn
now to the study of the SL2,C group. It shall reveal how spinors are more fundamental Lorentz
covariant objects than spacetime vectors/tensors; since the latter are merely a special case of
the former.
SL2,C and Levi-Civita ‘Metric’ The SL2,C group refers to the set of complex 2×2 matrices
{L} which have unit determinant – the ‘Special’ in the SL. Employing eq. (3.2.9) or (3.2.10),
we may express this definition as

SL2,C : L A
I L

B
J ϵAB = ϵIJ, L ∈ 2× 2 complex matrices; (10.3.80)
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ϵ12 ≡ ϵ12 ≡ 1. (10.3.81)

Since detLT = detL, this definition is equivalent to

ϵABL I
A L

J
B = ϵIJ, ϵ12 ≡ 1. (10.3.82)

Since the Levi-Civita ϵ is real, we may take the complex conjugation of these equations and
deduce

(L∗) A
I (L∗) B

J ϵAB = ϵIJ and ϵAB(L∗) I
A (L∗) J

B = ϵIJ. (10.3.83)

The 2D Levi-Civita symbol is invariant under SL2,C transformations. Moreover, comparison with
the definition of Lorentz invariance, ΛµαΛ

ν
βηµν = ηαβ, suggests we may view ϵAB as the ‘metric’

and ϵBA = (ϵ†)AB as the inverse ‘metric’. Above, we have already moved the indices of σµ and
σ̄µ with the 2D Levi-Civita; below, we will justify why the indices of the Weyl spinors may be
moved with it too.

Problem 10.26. SL2,C Group Structure Prove that SL2,C in fact forms a group. See
Appendix (B) for the axioms of a Group.

Problem 10.27. Use eq. (3.2.8) to argue that, for L belonging to the SL2,C group, its
inverse obeys

L−1 = ϵ† · LT · ϵ = ϵ · LT · ϵ†. (10.3.84)

and therefore

L = ϵ† · (L−1)T · ϵ = ϵ† · (LT)−1 · ϵ. (10.3.85)

Why do these further imply the following?

L∗ = ϵ† · (L−1)† · ϵ = ϵ† · (L†)−1 · ϵ (10.3.86)

(L−1)∗ = ϵ† · L† · ϵ = ϵ† · L† · ϵ. (10.3.87)

Since ϵ†ϵ = I – i.e., Levi-Civita ϵ is unitary – these results teach us, L is equivalent to
(LT)−1 = (L−1)T; and hence L−1 is equivalent to LT; whereas (L−1)† = (L†)−1 is equivalent
to L∗. Furthermore, we shall see below that L and L∗ are inequivalent.

Construction of L We have discussed in §(5.2), any operator that is continuously
connected to the identity can be written in the form expX. Since L has unit determinant (cf.
(10.3.105)), let us focus on the case where it is continuously connected to the identity whenever
it does depend on a set of complex parameters {qµ}, say:

L = eX(q). (10.3.88)

Now, if we use eq. (5.6.142), det eX = eTr[X], we find that

detL = eTr X(q) = 1. (10.3.89)
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This implies

TrX(q) = 2πin, n = 0,±1,±2, . . . . (10.3.90)

Recalling that the {σµ} form a complete set, we may express

X(q) = qµσ
µ (10.3.91)

and using the trace properties in eq. (10.3.21), we see that Tr X(q) = 2q0 = 2πin. Since this
q0σ

0 = iπnI2×2, which commutes with all the other Pauli matrices, we have at this point

L = eiπneqjσ
j

= (−)neqjσj

(10.3.92)

= (−)n
(
cos (i|q⃗|)− iqjσ

j

|q⃗|
sin (i|q⃗|)

)
(10.3.93)

= (−)n
(
cosh (|q⃗|) + qjσ

j

|q⃗|
sinh (|q⃗|)

)
. (10.3.94)

Here, we have replaced θj → 2iqj in eq. (10.3.42); and note that
√
θiθi = 2i

√
qiqi because we

have defined the square root to be the positive one. To connect L to the identity, we need to set
the qjσ

j terms to zero, since the Pauli matrices {σi} are linearly independent and perpendicular
to the identity I2×2. This is accomplished by putting q⃗ = 0⃗. We shall also see that −I is
connected to the identity by choosing the appropriate q⃗ · σ⃗; hence we may choose n to be even.

Thus far: We have deduced that the most general unit determinant 2×2 complex
matrix that is continuously connected to the identity is, in fact, given by eq. (10.3.42)
for arbitrary complex ψj = θj + iξj, where θj and ξj are its respective Re and Im
parts:

L(ξ⃗, θ⃗) = exp

(
1

2
(ξj − iθj)σj

)
. (10.3.95)

Its inverse is

L−1(ξ⃗, θ⃗) = exp

(
−1

2
(ξj − iθj)σj

)
= L(−ξ⃗,−θ⃗). (10.3.96)

Below, we will demonstrate the {ξj} correspond to Lorentz boosts and {θj} spatial
rotations.

Spin Half Note that the presence of the generators of rotation, namely σk/2
in eq. (10.3.95), with eigenvalues ±1/2, indicates these Ls are acting on spin−1/2
systems.

Problem 10.28. SL2,C generators Consider the infinitesimal SL2,C transformation

L B
A = δ B

A + ω B
A . (10.3.97)
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Show that, by viewing ϵAB and ω B
A as matrices,

ϵ · ω = (ϵ · ω)T. (10.3.98)

From this, deduce

ω B
A =

[
α β
γ −α

]
, (10.3.99)

where α, β, and γ are arbitrary complex parameters. Notice, not only is ω B
A traceless, it contains

6 real parameters – in accordance to the 3 directions for boosts plus the 3 directions for rotations
we uncovered in eq. (10.3.95).

Lorentz Transformations and SL2,C Let us now turn to the key goal of this section: the
connection between the SL2,C group and the Lorentz group. To this end, we first consider the
following. If pµ ≡ (p0, p1, p2, p3) is a real 4-component momentum vector, one would find that
the determinant of pµσ

µ yields the Lorentz invariant p2:

det pµσ
µ = ηµνpµpν ≡ p2. (10.3.100)

106If we exploited the representation in eq. (10.3.24),

pµσ
µ =

[
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

]
, (10.3.101)

from which eq. (10.3.100) may then be readily verified. Furthermore, if we now multiply a 2× 2
complex matrix L to the left and L† to the right of the matrix pµσ

µ, namely

pµσ
µ → L · pµσµ · L†; (10.3.102)

– this transformation preserves the Hermitian nature of pµσ
µ for real pµ – then its determinant

will transform as

p2 = det[pµσ
µ]→ det

[
L·pµσ

µ · L†] = |detL|2 p2. (10.3.103)

To merely preserve the Lorentz ‘dot product’, namely p2 → p2, we may choose the determinant
to be a phase; i.e., detL = eiδ for δ ∈ [0, 2π). However, eq. (10.3.80) would then read

L A
I L

B
J ϵAB = ϵIJ · eiδ; (10.3.104)

spoiling the ‘metric’ analogy with ΛTηΛ = η. Motivated by the above SL2,C considerations,
therefore, let us choose

detL = 1, (10.3.105)

106Although we are concerned with the full Lorentz group here, note that det piσ
i = −p⃗2; so one may also

use Pauli matrices to analyze representations of the rotation group alone, i.e., all transformations that leave p⃗2

invariant.
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so that p2 → p2 and L · ϵLT = ϵ. just as a Lorentz transformation pµ would also preserve p2,
we expect the group of SL2,C matrices {L} to implement Lorentz transformations {Λνµ} via eq.
(10.3.102). For, since {σµ} are complete, we must have L · σµ ·L† = σνM µ

ν for some coefficients
M µ

ν , and hence

det(σνpν)→ det pµ(L · σµ · L†) (10.3.106)

= det p′µσ
µ = p′2 = p2, (10.3.107)

p′µ ≡M µ
ν pµ. (10.3.108)

But p′2 = (ηαβM µ
α M ν

β )pµpν = p2 means M µ
ν must be a Lorentz transformation.

L · σµpµ · L† = σνΛ µ
ν pµ ≡ σµp′µ. (10.3.109)

In other words,

p′µ = Λ ν
µ pν , (10.3.110)

L(ξ⃗, θ⃗) · σµ · L(ξ⃗, θ⃗)† = σνΛ µ
ν (ξ⃗, θ⃗). (10.3.111)

Problem 10.29. Explain why eq. (10.3.111) implies

L−1σµ(L−1)† = Λµνσ
ν = σνΛ µ

ν (−ξ⃗,−θ⃗). (10.3.112)

Next, explain why eq. (10.3.111) also leads immediately to

L∗(σµ)∗LT = (σν)∗Λ µ
ν (ξ⃗, θ⃗). (10.3.113)

Then demonstrate that

(L−1)†σ̄µL−1 = σ̄νΛ µ
ν (ξ⃗, θ⃗).; (10.3.114)

and

L†σ̄µL = Λµν σ̄
ν = σ̄νΛ µ

ν (−ξ⃗,−θ⃗). (10.3.115)

Next, employ eq. (10.3.95) to explain why

L†(ξ⃗, θ⃗) = L(ξ⃗,−θ⃗), (10.3.116)

(L−1)†(ξ⃗, θ⃗) = L(−ξ⃗, θ⃗). (10.3.117)

Why do these imply the following?

L†σµL = σνΛ µ
ν (ξ⃗,−θ⃗), (10.3.118)

L−1σ̄µ(L−1)† = σ̄νΛ µ
ν (ξ⃗,−θ⃗). (10.3.119)

(L−1)†σµL−1 = σνΛ µ
ν (−ξ⃗, θ⃗), (10.3.120)

Lσ̄µL† = σ̄νΛ µ
ν (−ξ⃗, θ⃗). (10.3.121)

Notice the equation pairs (10.3.112) and (10.3.115) lead to the same 4×4 Lorentz transformation

Λ µ
ν (−ξ⃗,−θ⃗); whereas, equation pairs (10.3.112) and (10.3.115) lead to the same 4 × 4 Lorentz

transformation Λ µ
ν (ξ⃗,−θ⃗). These will play key roles in understanding how the Dirac equation

transforms under Lorentz transformations.
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Let us witness the explicit implementation of rotations and Lorentz boosts through eq. (10.3.109).

Rotations Set ξ⃗ = 0 in eq. (10.3.95) and focus on the case

θjσ
j → θσk (10.3.122)

for a fixed 1 ≤ k ≤ 3; so that eq. (10.3.42) informs us

L = exp

(
− i
2
θσk
)

= cos(θ/2)− iσk sin(θ/2). (10.3.123)

Eq. (10.3.109), in turn, now reads

pµσ
µ → L · pµσµ · L†

= e−(i/2)θσk

p0e
(i/2)θσk

+
(
cos(θ/2)− iσk sin(θ/2)

)
piσ

i
(
cos(θ/2) + iσk sin(θ/2)

)
(10.3.124)

= p0 + p′iσ
i.

If k = 1, we have pi rotated on the (2, 3) plane:

p′i =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 j

i

pj. (10.3.125)

If k = 2, we have pi rotated on the (1, 3) plane:

p′i =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 j

i

pj. (10.3.126)

If k = 3, we have pi rotated on the (1, 2) plane:

p′i =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 j

i

pj. (10.3.127)

Problem 10.30. Verify eq. (10.3.124) for any one of the k = 1, 2, 3.

Boosts Next, we set θ⃗ = 0 in eq. (10.3.95) and focus on the case

ξjσ
j → ξσk, (10.3.128)

again for a fixed k = 1, 2, 3. Again invoking eq. (10.3.42),

L = exp

(
1

2
ξσk
)

= cosh(ξ/2) + σk sinh(ξ/2). (10.3.129)

Eq. (10.3.109) is now

pµσ
µ → L · pµσµ · L†
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=
(
cosh(ξ/2) + σk sinh(ξ/2)

)
pµσ

µ
(
cosh(ξ/2) + σk sinh(ξ/2)

)
(10.3.130)

= p′µσ
µ.

If k = 1, we have pµ boosted in the 1−direction:

p′µ =


cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0
0 0 1 0
0 0 0 1


ν

µ

pν . (10.3.131)

If k = 2, we have pµ boosted in the 2−direction:

p′µ =


cosh ξ 0 sinh ξ 0

0 1 0 0
sinh ξ 0 cosh ξ 0
0 0 0 1


ν

µ

pν . (10.3.132)

If k = 3, we have pµ boosted in the 3−direction:

p′µ =


cosh ξ 0 0 sinh ξ

0 1 0 0
0 0 1 0

sinh ξ 0 0 cosh ξ


ν

µ

pν . (10.3.133)

Problem 10.31. Verify eq. (10.3.130) for any one of the k = 1, 2, 3.

Rotations, Boosts, and SL2,C We have discovered that the group of 2× 2
matrices {L} continuously connected to the identity obeying

ϵABL I
A L

J
B = ϵIJ ⇔ L I

A L
J

B ϵIJ = ϵAB (10.3.134)

implements Lorentz transformations

L I
A L

J̇
Ḃ
σµ

IJ̇
= σν

AḂ
Λ µ
ν . (10.3.135)

In terms of matrix multiplication,

LσµL† = σνΛ µ
ν ; (10.3.136)

where the Λ µ
ν is the 4× 4 Lorentz transformations parametrized by {ξ⃗, θ⃗} satisfying

eq. (10.1.5). Other equivalent forms are

L−1σµ(L−1)† = Λµνσ
ν , (10.3.137)

L∗(σµ)∗LT = (σν)∗Λ µ
ν , (10.3.138)

(L−1)†σ̄µL−1 = σ̄νΛ µ
ν , (10.3.139)

L†σ̄µL = Λµν σ̄
ν . (10.3.140)
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Dotted and Undotted: Weyl Spinors A Weyl spinor ξA is an object that transforms
under Lorentz transformations as ξ → L · ξ, where L is an element of SL2,C. In index notation,

ξA(p)→ ξ′A(p
′
µ = Λ ν

µ pν) ≡ L B
A ξB(p). (10.3.141)

If the spinor transforms not as ξ → L · ξ but as ξ → L∗ · ξ, we put a dot on the relevant indices:

ξȦ → ξ′
Ȧ
(p′µ = Λ ν

µ pν) ≡ L∗ Ḃ
Ȧ ξḂ(p). (10.3.142)

As we shall prove shortly, L and L∗ are inequivalent – i.e., there is no change-of-basis U such
that ULU−1 = L∗. This dotted versus undotted notation therefore distinguishes between them.
For instance, we may now express eq. (10.3.61) as

L M
A L Ṅ

Ḃ
pMṄ = (σν)AḂ Λ µ

ν pµ ≡ p′
AḂ

(10.3.143)

= λ+ξ
′+
A ξ

′+
Ḃ

+ λ−ξ
′−
A ξ

′−
Ḃ
; (10.3.144)

where the ‘new’ but un-normalized eigenvectors and eigenvalues are

ξ′±A
(
p′µ = Λ ν

µ pν
)
= L B

A ξ±B (pµ) and ξ′±A
(
p′µ = Λ ν

µ pν
)
= L Ḃ

Ȧ
ξ±
Ḃ
(pµ) (10.3.145)

with the old eigenvalues

λ± ≡ p0 ± |p⃗|. (10.3.146)

Any 2-component object that transforms according to eq. (10.3.145), where the L B
A are SL2,C

matrices, is said to be a Weyl spinor. We also see the reason for the dotted and undotted
notation: the dotted spinors transform as L∗ while the undotted ones as L. Furthermore, as
already alluded to, in the context of pµσ

µ, these ξ± are also helicity eigenstates of piσ
i.

If we normalize the spinors to unity

ξ′′±A = ξ′±A

∣∣∣(ξ′±)† ξ′±∣∣∣− 1
2
; (10.3.147)

then eq. (10.3.143) now reads

L M
A L Ṅ

Ḃ
pMṄ = p′

AḂ
= λ′+ξ

′′+
A ξ′′+

Ḃ
+ λ′−ξ

′′−
A ξ′′−

Ḃ
; (10.3.148)

with the new eigenvalues

λ′± ≡ p′0 ± |p⃗′|. (10.3.149)

Problem 10.32. Rotating Spinors Derive the helicity eigenstates in equations (10.3.52)
and (10.3.54) (up to overall phases) by rotating the eigenstate of ê3 · σ⃗ = σ3. Hint: The generic
radial vector r̂ = (sin θp cosϕp, sin θp sinϕp, cos θp) can be obtained from ê3, the unit vector along
the 3−axis, by first rotating it around the ê2 axis by θp; followed by rotating it around the ê3
axis by ϕp.
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Raising and Lowering Spinor Indices Since the Levi-Civita ϵ acts like a ‘metric’, in
the sense that ϵABL

A
ML

B
N = ϵMN is analogous to ηαβΛ

α
µΛ

β
ν = ηµν , let us define the raising of

a spinor index using the Levi-Civita metric ϵAB = ϵAB via the relations

ξA ≡ ξBϵ
BA and ξȦ ≡ ξḂϵ

ḂȦ. (10.3.150)

Lowering an index is accomplished through

ξA ≡ ϵABξ
B and ξȦ ≡ ϵȦḂξ

Ḃ. (10.3.151)

It is important to remember, we contract with the right index of ϵ when lowering an index;
whereas we do so with the left index of ϵ when raising. This is to ensure a consistent result –
for e.g.,

ξA = ϵABξ
B = ϵABϵ

CBξC =
(
ϵ · ϵ†

) C

A
ξC = δ C

A ξC. (10.3.152)

We may even move the indices of ϵ; for instance, keeping in mind ϵ2 = −I,

ϵAB = ϵAMϵBNϵ
MN (10.3.153)

= −δNAϵBN = −ϵBA. (10.3.154)

Transformation of upper indices We have defined the transformation of lower spinor
indices through equations (10.3.141) and (10.3.142). For the upper indices, let us use (L−1)T =
ϵ† · L · ϵ to deduce,

ξA →
(
L C
B ξC

)
ϵBA (10.3.155)

=
(
ϵBAL C

B ϵCD

)
ξD = ξB(L−1) A

B , (10.3.156)

where (L−1) A
B ≡ ((L−1)T)AB.

Problem 10.33. Upper Dotted Index Show that, under a Lorentz transformation,

ξȦ → ((L†)−1)Ȧ
Ḃ
ξḂ = ξḂ((L∗)−1) Ȧ

Ḃ
. (10.3.157)

Hint: Remember (L†)−1 = ϵ · L∗ · ϵ†.

These results tell us, just like in tensor calculus, the upper and lower indices transform
oppositely. This means a Lorentz scalar is formed when a pair of upper and lower indices are
contracted; for instance, ξAζA or ξȦζȦ. For, under Lorentz transformations,

ξAζA → ξB(L−1) A
B L C

A ζC (10.3.158)

= ξBδ C
B ζC. (10.3.159)

Likewise,

ξȦζȦ → ξḂ((L∗)−1) Ȧ
Ḃ
L∗ Ċ

Ȧ ζĊ (10.3.160)

→ ξḂδ Ċ
Ḃ
ζĊ. (10.3.161)
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Alternately – and somewhat more directly – we may also see that

ξ · ζ → ϵIJL A
I L B

J ξAζB (10.3.162)

= (detL)ϵABξAζB = ξ · ζ. (10.3.163)

The second equality is due to the defining condition of the SL2,C group, detL = 1, as expressed
in eq. (10.3.134). Likewise,

ϵȦḂξȦζḂ → ϵİJ̇L Ȧ
İ
L Ḃ
J̇
ξȦζḂ = ϵȦḂξȦζḂ. (10.3.164)

Note that the scalar product between a dotted and un-dotted spinor ϵABξȦηB would not, in
general, be an invariant because its transformation will involve both L and L∗.

L and L∗ are inequivalent L and its complex conjugate L = L∗ are not equivalent
transformations once Lorentz boosts are included; i.e., once ξ⃗ ̸= 0. To see this, we first recall,
for any Taylor-expandable function f , Uf(A)U−1 = f(UAU−1) for arbitrary operators A and
invertible U . Remembering the form of L in (10.3.95), let us consider

UL∗U−1 = exp

(
1

2
U (ξj + iθj) (σ

j)∗U−1

)
. (10.3.165)

Suppose it were possible to find a change-of-basis such that L∗ becomes L in eq. (10.3.95), that
means we must have for a given j,

U · ρje−iϑj(σj)∗U−1 = ρje
iϑjσj, (10.3.166)

ρje
iϑj ≡ ξj − iθj, (10.3.167)

ρj =
√
ξ2j + θ2j , tanϑj = −

θj
ξj
. (10.3.168)

Taking the determinant on both sides of the first line, for a fixed j,

det
[
e−2iϑj(σj)∗

]
= det

[
σj
]

(10.3.169)

e−4iϑjdet [σj] = −e−4iϑj = det
[
σj
]
= −1. (10.3.170)

(We have used det σi = −1.) The only situation L may be mapped to L∗ and vice versa through
a change-of-basis occurs when ϑj = 2πn/4 = πn/2 for integer n. For even n, this corresponds
to pure boosts, because

ξj − iθj = ρje
iπ
2
n = ±ρj. (10.3.171)

For odd n, this corresponds to pure rotations, because

ξj − iθj = ρje
iπ
2
n = ±iρj. (10.3.172)

In fact, using ϵ(σi)∗ϵ† = −σi in eq. (10.3.32),

ϵ · L[ξ⃗ = 0] · ϵ† = ϵe+(i/2)θj(σ
j)∗ϵ† = e+(i/2)θjϵ(σ

j)∗ϵ† (10.3.173)
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= e−(i/2)θjσ
j

= L[ξ⃗ = 0]. (10.3.174)

However, as we shall show below, there is no transformation U that could bring a pure boost L∗

back to L:

U · L[θ⃗ = 0⃗]∗ · U−1 = U · e
1
2
ξj(σ

j)∗ · U−1 ̸= e
1
2
ξjσ

j

= L[θ⃗ = 0⃗]. (10.3.175)

To sum: only the complex conjugate of a pure rotation may be mapped into the same pure
rotation.

Chiral Left, Chiral Right and Vectors from SL2,C That L and L∗ are generically
inequivalent transformations is why the former corresponds to un-dotted indices and the latter
to dotted ones in eq. (10.3.143) – the notation helps distinguishes between them. To understand
this distinction further, let us write

L = exp

(
−iξji

σj

2
− iθj

σj

2

)
; (10.3.176)

and by referring to generic Lorentz transformation in eq. (10.3.3), we may identify the boost
and rotation generators as, respectively,

Ki
R = i

σi

2
and J iR =

σi

2
. (10.3.177)

In this representation, therefore, the Lie algebra in equations (10.3.7) and (10.3.8) read

J i+ =
1

4

(
σi + i2σi

)
= 0 (10.3.178)

J i− =
1

4

(
σi − i2σi

)
=
σi

2
. (10.3.179)

The J i+ generators describe spin j+ zero; whereas the J i− ones spin j− one-half (since the Pauli
matrices have eigenvalues±1). We therefore label this is as the (j+, j−) = (0, 1/2) representation.
It is dubbed by quantum field theory texts [33] as a ‘chiral right spinor’ transformation.

As for the L∗, we may express it as

L∗ = exp

(
−iξji

(σj)∗

2
− iθj

−(σj)∗

2

)
(10.3.180)

and again referring to eq. (10.3.3),

Ki = i
(σi)∗

2
and J i = −(σi)∗

2
. (10.3.181)

In this case, we may compute the Lie algebra in equations (10.3.7) and (10.3.8):

J i+ =
1

4

(
−(σi)∗ + i2(σi)∗

)
= −(σi)∗

2
(10.3.182)

J i− =
1

4

(
−(σi)∗ − i2(σi)∗

)
= 0. (10.3.183)
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This is the (j+, j−) = (1/2, 0) representation; and is dubbed by quantum field theory texts [33]
as a ‘chiral left spinor’ transformation. We may also recall eq. (10.3.31) and discover that eq.
(10.3.181) is equivalent to

Ki = ϵ†
(
− i
2
σi
)
ϵ and J i = ϵ†

(
1

2
σi
)
ϵ; (10.3.184)

which in turn implies we must also obtain an equivalent (j+, j−) = (1/2, 0) representation using

Ki
L = − i

2
σi and J iL =

1

2
σi. (10.3.185)

At this point, eq. (10.3.184) applied to eq. (10.3.180) hands us

L∗ = ϵ† exp

(
−1

2

(
ξ⃗ + iθ⃗

)
· σ⃗
)
ϵ (10.3.186)

= ϵ†(L†)−1ϵ, (10.3.187)

where the second equality follows from the hermicity of the {σi} and the fact that (exp(qiσ
i))−1 =

exp(−qiσi).
Furthermore, we may now recognize eq. (10.3.143) as the tensor product representation

(j+, j−) = (1
2
, 1
2
) giving rise to the spacetime vector.(

exp

[(
ξ⃗ − iθ⃗

)
· σ⃗
2

]
j−= 1

2

) M

A

⊗

(
exp

[(
ξ⃗ − iθ⃗

)
· σ⃗
2

]
j+= 1

2

) Ṅ

Ḃ

σµ
MṄ

= σν
AḂ

Λ µ
ν (ξ⃗, θ⃗).

(10.3.188)

For later use, we employ the notation in eq. (10.3.26) and record here that eq. (10.3.185) may
be obtained through

JµνL ≡
i

4
σ[µσ̄ν], (10.3.189)

J0i
L =

i

4

(
σ0(−)σi − σiσ0

)
(10.3.190)

= − i
2
σi = Ki

L; (10.3.191)

JabL =
i

4

(
σa(−)σb − σb(−)σa

)
(10.3.192)

= − i
4
[σa, σb] =

1

2
ϵabcσc = ϵabcJ cL. (10.3.193)

This is consistent with equations (10.3.1) and (10.3.2). Similarly, eq. (10.3.181) may be obtained
through

JµνR ≡
i

4
σ̄[µσν], (10.3.194)

J0i
R =

i

4

(
σ0σi − (−)σiσ0

)
(10.3.195)
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= +
i

2
σi = Ki

R; (10.3.196)

JabR =
i

4

(
(−)σaσb − (−)σbσa

)
(10.3.197)

= − i
4
[σa, σb] =

1

2
ϵabcσc = ϵabcJ cR. (10.3.198)

Summary: SL2,C group elements

Chiral Right For the same set of real boost {ξj} and rotation {θj} parame-
ters, the ‘chiral right’ (j+, j−) = (0, 1/2) representation of SL2,C is provided by the
transformation

ξ′A(p
′
µ = Λ ν

µ pν) ≡ L B
A (ξ⃗, θ⃗)ξB(p), (10.3.199)

where

L
(
ξ⃗, θ⃗
)
= exp

(
− i
2
ωµνJ

µν
R

)
(10.3.200)

= exp

(
1

2

(
ξ⃗ − iθ⃗

)
· σ⃗
)
, (10.3.201)

Ki
R =

i

2
σi =

i

4
σ̄[0σi] = J0i

R , (10.3.202)

J iR =
1

2
σi =

1

2
ϵimn

i

4
σ̄[mσn] =

1

2
ϵiabJabR . (10.3.203)

Chiral Left Whereas, the ‘chiral left’ inequivalent (j+, j−) = (1/2, 0) represen-
tation of SL2,C is provided by the transformation

ξ′Ȧ(p′µ = Λ ν
µ pν) ≡ ξḂ((L∗)−1) Ȧ

Ḃ
, (10.3.204)

where

L
(
ξ⃗, θ⃗
)
= ϵ† exp

(
− i
2
ωµνJ

µν
L

)
ϵ (10.3.205)

= ϵ† exp

(
−1

2

(
ξ⃗ + iθ⃗

)
· σ⃗
)
ϵ (10.3.206)

= ϵ†
(
L
(
ξ⃗, θ⃗
)†)−1

ϵ = ϵ†
(
L
(
ξ⃗, θ⃗
)−1
)†

ϵ, (10.3.207)

Ki
L = − i

2
σi =

i

4
σ[0σ̄i] = J0i

L , (10.3.208)

J iL =
1

2
σi =

1

2
ϵimn

i

4
σ̄[mσn] =

1

2
ϵiabJabL . (10.3.209)

Parity Suppose it were possible to find some P such that

PσiP−1 = −σi, (10.3.210)

then we may observe

P (L−1)†P−1 = P exp
(
−(ξ⃗ + iθ⃗) · σ⃗/2

)
P−1 = exp

(
(ξ⃗ + iθ⃗) · σ⃗/2

)
. (10.3.211)
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10.3.3 Majorana, Weyl and Dirac Equations; Clifford Algebra

This section is the sequel to the previous one. Here, the SL2,C ingredients we have introduced in
§(10.3.2) to build the Majorana, Weyl, and Dirac equations and their solutions. These, in turn,
describe the (semi-classical limits) of spin−1/2 fermions.

The primary guiding principle for building a relativistic equation is: it must take the same
form in all inertial frames. For instance, if

ηαβdx
αdxβ = ηαβdx

′αdx′β; (10.3.212)

then we have seen that the homogeneous wave equation for a relativistic scalar is

ηµν∂xµ∂xνφ(x) = 0 = ηµν∂x′µ∂x′νφ(x
′). (10.3.213)

We now turn to constructing such relativistic wave equations for spin−1/2 systems. In momen-
tum spacetime, we have found two inequivalent Lorentz transformations, λ(p) → λ′(Λ · p) =

(L−1)†λ(p) and ρ→ ρ′(Λ · p) = Lρ. Let Λ β
α (ξ⃗, θ⃗) be the Lorentz transformation occurring in eq.

(10.3.136). Then consider, for instance,

(σνpν)λ(p)→ L(ξ⃗, θ⃗) · (σνpν)λ(p) (10.3.214)

= L(σνpν)L
†(L†)−1λ(p) (10.3.215)

= (σνp′ν)λ
′(p′), (10.3.216)

where eq. (10.3.136) was employed and the Lorentz-transformed momentum is

p′α = Λ β
α (ξ⃗, θ⃗)pβ. (10.3.217)

We may also consider instead

(σ̄νpν)ρ(p)→ (L†)−1(ξ⃗, θ⃗) · (σ̄νpν)ρ(p) (10.3.218)

= (L†)−1(σ̄νpν)L
−1Lρ(p) (10.3.219)

= (σνp′ν)λ
′(p′), (10.3.220)

where, keeping in mind eq. (10.3.114), the Lorentz-transformed momentum is

p′α = Λ β
α (ξ⃗, θ⃗)pβ. (10.3.221)

(σ̄νpν)ψR(p)→ (L−1)†(σ̄νpν)ψR(pα) (10.3.222)

= (L−1)†(σ̄νpν)(L
−1L)ψR(pα) (10.3.223)

= σ̄ν(Λ µ
ν pµ)ψR

(
Λ β
α pβ

)
≡ σ̄νp′νψR (p′) ; (10.3.224)

Majorana Equation
under chiral right Lorentz transformations, let us consider applying the chiral left (L−1)†

Lorentz transformation to (σ̄νpν)ψR:
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where p′µ ≡ Λ µ
ν pν . Moreover,

(σ̄νpν)ψR(pα)→ (L†)−1L†(σ̄νpν)LψR

(
pβΛ

β
α

)
(10.3.225)

= (L†)−1σ̄µ(pνΛ
ν
µ)ψR

(
pβΛ

β
α

)
= (L†)−1(σ̄µp′ν)ψR (p′) . (10.3.226)

On the other hand, if

ψL → (L†)−1 · ψL, (10.3.227)

under chiral left Lorentz transformations, let us consider applying the chiral right L Lorentz
transformation to (σνpν)ψL:

(σνpν)ψL(pα)→ L(σνpν)ψL(pα) (10.3.228)

= L(σνpν)(L
†(L†)−1)ψL(pα) (10.3.229)

= σν(Λ µ
ν pµ)ψL

(
Λ β
α pβ

)
≡ σνp′νψL (p

′) . (10.3.230)

Moreover,

(σνpν)ψL(pα)→ L · L−1(σνpν)(L
†)−1ψL(pβΛ

β
α) (10.3.231)

→ L · (σνp′ν)ψL(p
′). (10.3.232)

To sum:

If ψL and ψR transform respectively as chiral left and right Weyl spinors, then
(σνpν)ψL(p) and (σ̄νpν)ψR(p) transform respectively as chiral right and left ones.

(σ̄νpν)ψR(p) = mLψL(p), (10.3.233)

(σνpν)ψL(p) = mRψR(p) (10.3.234)

Note:

pµpνσ
µσ̄ν = p20 − p0piσi + pip0σ

i − pipjσiσj (10.3.235)

= pµp
µ. (10.3.236)

L−1σµ(L−1)† = Λµνσ
ν , (10.3.237)

L∗(σµ)∗LT = (σν)∗Λ µ
ν , (10.3.238)

(L−1)†σ̄µL−1 = σ̄νΛ µ
ν , (10.3.239)

L†σ̄µL = Λµν σ̄
ν . (10.3.240)

Problem 10.34. Explain why

L = ϵ† · (L−1)T · ϵ = ϵ† · (LT)−1 · ϵ, (10.3.241)

L∗ = ϵ† · (L−1)† · ϵ = ϵ† · (L†)−1 · ϵ. (10.3.242)
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(Hint: Recall eq. (3.2.8).) Since L∗ is inequivalent to L, this shows that (L−1)† is also inequiva-
lent to L. Then show that

(L−1)†σ̄µL−1 = σ̄νΛ µ
ν ; (10.3.243)

followed by

L†σ̄µL = Λµν σ̄
ν . (10.3.244)

Moreover, explain why eq. (??) implies

L−1σµ(L−1)† = Λµνσ
ν . (10.3.245)

We see from equations (10.3.113), (10.3.242) and (10.3.243) that, since (L−1)† is equivalent to L∗,
and since L∗ implements the same Lorentz transformation Λ µ

ν as L, the (L†)−1 also implements
on the left-handed spinor the same Λ µ

ν . Whereas, L† implements on the left handed spinor the
inverse Lorentz transformation Λνµ.

For the same L(ξ⃗, θ⃗) in eq. (10.3.200), we would say that the spinor transforming as

κ′A
(
p′µ = Λ ν

µ pν
)
=
(
(L†)−1

) I

A
κI (pν) or (10.3.246)

κ′A
(
p′µ = pνΛ

ν
µ

)
=
(
L†) I

A
κI (pν) (10.3.247)

is a (j+, j−) = (1/2, 0) one; or ‘left-handed chiral spinor’; where the λ in eq. (??) and κ in eq.
(10.3.246) are related through the change-of-basis

κ′ = ϵ · λ′ and κ = ϵ · λ. (10.3.248)

Because det p·σ̄ = det pµσ̄
µ = p2, we see the spinor η obeying equations (10.3.246) and (10.3.247)

must yield

p̄AḂ ≡ pµσ̄
µ

AḂ
= λ+η

+
Aη

+

Ḃ
+ λ−η

−
Aη

−
Ḃ
; (10.3.249)

λ± ≡ p0 ± |p⃗|. (10.3.250)

Problem 10.35. SL2,C Covariant and Invariant Objects Suppose the spinor λ is a
left-handed spinor (i.e., subject to equations (??) and (??)) and qµ is a Lorentz spacetime tensor
that obeys

q′µ = Λ ν
µ qν ; (10.3.251)

show that

(σ̄µq′µ)(Lλ) = (L†)−1(σ̄µqµ)λ, (10.3.252)

ϵ · (Lλ)∗ = (L†)−1ϵ · λ∗. (10.3.253)

If we had a right-handed spinor ρ obeying equations (10.3.246) and (10.3.247) instead, show that

(σ̄µq′µ)(L
†)−1ρ = L(σ̄µqµ)ρ, (10.3.254)
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ϵ ·
(
(L†)−1ρ

)∗
= Lϵ · ρ∗. (10.3.255)

Likewise, suppose uµ is a Lorentz spacetime tensor that obeys

u′µ = uνΛ
ν
µ; (10.3.256)

show that show that

(σµu′µ)(L
†η) = L−1(σµuµ)η, (10.3.257)

ϵ · (L†η)∗ = L−1ϵ · η∗. (10.3.258)

Roughly speaking, (σ̄ · q)ξ and ϵ · ξ∗ transform like the left-handed spinor η; while (σ · u)η and
ϵ†η∗ transform like the right-handed spinor ξ.

Next, explain how

λ†σ̄µλ and ρ†σµρ (10.3.259)

transform under their relevant SL2,C transformations. Are

λ†λ and ρ†ρ (10.3.260)

scalars under their relevant SL2,C transformations? Are

λ†ρ and ρ†λ (10.3.261)

scalars under their relevant SL2,C transformations?

Massive particles If we define
√
pµσµ to be the solution to

√
pµσµ

√
pµσµ = pµσ

µ and√
pµσ̄µ to be the solution to

√
pµσ̄µ

√
pµσ̄µ = pµσ̄

µ, then

√
p · σ =

√
pµσµ =

√
λ+ξ

+
Aξ

+
Ḃ +

√
λ−ξ

−
Aξ

−
Ḃ, (10.3.262)

√
p · σ̄ =

√
pµσ̄µ =

√
λ−ξ

+
Aξ

+
Ḃ +

√
λ+ξ

−
Aξ

−
Ḃ, (10.3.263)

where

λ± ≡ p0 ± |p⃗|. (10.3.264)

In physical applications where pµ is the momentum of a particle with mass m, p0 ≥ |p⃗| and
p2 = m2, the

√
· will often be chosen to the positive one – in the following sense. Firstly, the λ±

in eq. (10.3.61), could have either positive or negative energy p0:

p2 = m2 ⇒ E = ±p0 ≡ ±
√
p⃗2 +m2. (10.3.265)

We shall choose, for positive energy,√
λ± =

√
p0 ± |p⃗| > 0; (10.3.266)

and, for negative energy, √
λ± = i

√
p0 ∓ |p⃗|, (10.3.267)
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where the
√
· is the positive one.

With such a choice, positive energy solutions obey

√
p · σ
√
p · σ̄ =

√
p · σ̄√p · σ =

√
λ+λ−

(
ξ+Aξ

+
Ḃ + ξ−Aξ

−
Ḃ

)
(10.3.268)

=
√
p2I2×2 = m · I2×2, (10.3.269)

where the orthonormality and completeness of the helicity eigenstates ξ± were used.
Whereas, negative energy solutions obey

√
p · σ
√
p · σ̄ =

√
p · σ̄√p · σ =

√
λ+
√
λ−
(
ξ+Aξ

+
Ḃ + ξ−Aξ

−
Ḃ

)
(10.3.270)

= i2
√
p2I2×2 = −m · I2×2. (10.3.271)

Additionally, since (
√
λ±)

∗ = −i
√
Ep⃗ ∓ |p⃗|, we have

√
p · σ†√p · σ̄ = (

√
λ+)

∗
√
λ−ξ

+
Aξ

+
Ḃ + (

√
λ−)

∗
√
λ+ξ

−
Aξ

−
Ḃ (10.3.272)

=
√
E2
p⃗ − p⃗2

(
ξ+Aξ

+
Ḃ + ξ−Aξ

−
Ḃ

)
= mI2×2, (10.3.273)

√
p · σ̄†√

p · σ = mI2×2. (10.3.274)

Massless particles For massless particles, m = 0 and p0 = ±|p⃗|.
For positive energy p0 = |p⃗|, the ξ− mode becomes a null eigenvector because λ− = 0.

Whereas, eq. (10.3.61) now reads

pAḂ = ξAξḂ, ξA ≡
√

2|p⃗|ξ+A . (10.3.275)

For negative energy p0 = −|p⃗|, the ξ+ mode becomes a null eigenvector because λ+ = 0. Whereas,
eq. (10.3.61) now reads

pAḂ = −ξAξḂ, ξA ≡
√

2|p⃗|ξ−A . (10.3.276)

Majorana Equations The first PDE we shall examine that transforms covariantly under
SL2,C (and, hence, Lorentz transformations) is the Majorana equation. Recalling the momentum
pµ dependence in the transformation rule of λ in eq. (??), we see that qµ in eq. (10.3.252) may be
replaced with it: qµ = pµ. If λ is now viewed as the Fourier coefficient of its position spacetime
counterpart, we may now recognize

(σ̄µpµ)λ (p) e
−ip·x = i(σ̄µ∂µ)

(
λ (p) e−ip·x

)
. (10.3.277)

Because the terms in equations (10.3.252) and (10.3.253) transform the same way, under λ′ = Lλ,
we may immediate write down the (0, 1/2) (Chiral) Left-Handed Majorana Equation in position
space:

iσ̄µ∂µλ(x) = m ϵ · λ(x)∗. (10.3.278)

The m here is of dimensions mass, because the left hand side involves a derivative, i.e., 1/length.
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A similar discussion will let us write down the (1/2, 0) (Chiral) Right-Handed Majorana
equation from the terms in equations (10.3.257) and (10.3.258):

iσµ∂µρ(x) = m ϵ · ρ(x)∗. (10.3.279)

Weyl Equations Setting m = 0 in equations (10.3.278) and (10.3.279) hands us the Weyl
equations

iσ̄µ∂µλ = 0 and iσµ∂µρ = 0. (10.3.280)

If we set

λ(x) = λ̃(p)e−ip·x (10.3.281)

ρ(x) = ρ̃(p)e−ip·x; (10.3.282)

the Weyl equations become

(p · σ̄)λ̃ = 0 = (p · σ)ρ̃. (10.3.283)

For positive energy p0 = |p⃗|, these equations tell us the left-handed λ̃ must be orthogonal to the
negative helicity spinor while the right-handed ρ̂ be be perpendicular to the positive one.

2|p⃗|ξ−
(
(ξ−)†λ̃

)
= 0 = 2|p⃗|ξ+

(
(ξ+)†ρ̃

)
(10.3.284)

For negative energy p0 = −|p⃗|, the same equations tell us the left-handed λ̃ must be orthogonal
to the positive helicity spinor while the right-handed ρ̂ be be perpendicular to the negative one.

−2|p⃗|ξ+
(
(ξ+)†λ̃

)
= 0 = −2|p⃗|ξ−

(
(ξ−)†ρ̃

)
. (10.3.285)

Hence, since the Weyl equations are linear, the general solutions are provided by the following
superpositions over the positive and negative helicity modes.

λ(x) =

∫
R3

d3p⃗

(2π)3
1√
2p

(
λ̃+(p⃗)ξ

+(p⃗)e−ip·x + λ̃−(p⃗)ξ
−(p⃗)eip·x

)
, p ≡ |p⃗| (10.3.286)

ρ(x) =

∫
R3

d3p⃗

(2π)3
1√
2p

(
ρ̃−(p⃗)ξ

−(p⃗)e−ip·x + ρ̃+(p⃗)ξ
+(p⃗)eip·x

)
. (10.3.287)

The {λ̃±, ρ̃±} are scalars; whereas ξ±(p⃗) are the unit norm positive (+) and negative (−) helicity
eigenstates; i.e., (p⃗ · σ⃗)ξ± = ±|p⃗|ξ±. These general solutions reflect the ‘handedness’ of their
respective Weyl spinors: they have opposite helicity for a given positive or negative energy.

Dirac Equations Under the transformation λ′ = Lλ, eq. (10.3.252) transforms as
(σ̄µq′µ)λ

′ = (L†)−1(σ̄µqµ)λ, which thus transforms in the same manner as ρ′ = (L†)−1ρ. (Recall
too, eq. (10.3.242) tells us (L†)−1 is equivalent to L∗.) In a similar vein, under the transformation
ρ′ = (L†)−1ρ, eq. (10.3.257) transforms as (σµu′µ)ρ

′ = L(σµuµ)ρ, which thus transforms in the
same manner as λ′ = Lλ. Since L and L∗ implement the same Lorentz transformation, we may
write down the following pair of Lorentz covariant PDEs:

iσ̄µ∂µλ = m · ρ and iσµ∂µρ = m · λ. (10.3.288)
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The pair of PDEs in eq. (10.3.288) is known as the Dirac equation(s).
Let us go to positive energy E = p0 ≡

√
p⃗2 +m2 > 0 momentum space:

λ = λ̃(p)e−iEt+ip⃗·x⃗ = λ̃(p)e−ip·x, (10.3.289)

ρ = ρ̃(p)e−iEt+ip⃗·x⃗ = ρ̃(p)e−ip·x; (10.3.290)

with p2 = m2. Then eq. (10.3.288) read

(σ̄ · p)λ̃ = m · ρ̃ and (σ · p)ρ̃ = m · λ̃. (10.3.291)

We re-write this in the square-root form.

√
p · σ̄(

√
p · σ̄λ̃) = m · ρ̃ and

√
p · σ(√p · σρ̃) = m · λ̃. (10.3.292)

Here, we have defined
√
· to denote the positive square root, and

√
p · σAḂ ≡

√
p0 + |p⃗|ξ+Aξ

+

Ḃ
+
√
p0 − |p⃗|ξ−Aξ

−
Ḃ
, (10.3.293)

√
p · σ̄AḂ ≡

√
p0 − |p⃗|ξ+Aξ

+

Ḃ
+
√
p0 + |p⃗|ξ−Aξ

−
Ḃ
. (10.3.294)

These objects obey

√
p · σ̄√p · σ =

√
p · σ
√
p · σ̄ =

√
p2 = m. (10.3.295)

It’s not difficult to verify, with ξ denoting an arbitrary 2−component object, the solution is

λ̃ =
√
p · σξ and ρ̃ =

√
p · σ̄ξ; (10.3.296)

because
√
p · σ̄(

√
p · σ̄√p · σ)ξ = m ·

√
p · σ̄ξ and

√
p · σ(√p · σ

√
p · σ̄)ξ = m · √p · σξ.

Next, let us go to negative energy E = −p0 ≡ −
√
p⃗2 +m2 < 0 momentum space:

λ = λ̃(p)e−iEt+ip⃗·x⃗ = λ̃(p)e+ip·x, (10.3.297)

ρ = ρ̃(p)e−iEt+ip⃗·x⃗ = ρ̃(p)e+ip·x; (10.3.298)

with p2 = m2. Then eq. (10.3.288) read

(σ̄ · p)λ̃ = −m · ρ̃ and (σ · p)ρ̃ = −m · λ̃. (10.3.299)

We may readily check, with ξ′ denoting an arbitrary 2−component object, the solutions are

λ̃ =
√
p · σξ′ and ρ̃ = −

√
p · σ̄ξ′. (10.3.300)

For,
√
p · σ̄(

√
p · σ̄√p · σξ′) = −m(−)

√
p · σ̄ξ′ and √p · σ(√p · σ(−)

√
p · σ̄ξ′) = −m√p · σξ′.

Parity Invariance of Dirac Parity may be defined as the mirror-flip of spatial coordinates,

x′i ≡ −xi ⇔ ∂i = −∂i′ ; (10.3.301)

together with the swapping of the left-handed and right-handed spinors

λ ↔ ρ. (10.3.302)

475



We see that eq. (10.3.288) become, with x′µ ≡ (t,−x⃗),

(i∂t − iσi∂i)λ = mρ ⇒ (i∂t + iσi∂i′)ρ = iσ · ∂x′ρ = mλ, (10.3.303)

(i∂t + iσi∂i)ρ = mλ ⇒ (i∂t − iσi∂i′)λ = iσ̄ · ∂x′λ = mρ. (10.3.304)

That the same mass m appears in the pair of Dirac equations in (10.3.288), can now be seen to
be intimately tied to parity invariance. Furthermore, having the same m leads to a Hermitian
Lagrangian density involving the mass terms.

Dirac Spinors Note that, if we define the 4× 4 ‘Dirac γ−matrices’ as

γµ ≡
[

0 σµ

σ̄µ 0

]
, (10.3.305)

then the equations in (10.3.288) may be written in a more compact form, as

(iγµ∂µ −m)ψ = 0, (10.3.306)

ψ ≡
[
λ
ρ

]
. (10.3.307)

The solutions we have uncovered above now may be packaged as follows. The positive energy
solutions are

u(p)e−ip·x =

[ √
p · σξ√
p · σ̄ξ

]
e−ip·x; (10.3.308)

whereas the negative solutions are

v(p)e+ip·x =

[ √
p · σξ′

−
√
p · σ̄ξ′

]
e+ip·x. (10.3.309)

The general solution are simply a superposition over the momentum modes as well as over the
independent components of ξ and ξ′. To this end, let us define the basis

ξ
(1)

A ≡
[
1
0

]
and ξ

(2)
A ≡

[
0
1

]
; (10.3.310)

so that us=1,2(p) denotes the positive energy solution in eq. (10.3.308) with the replacement
ξ → ξ(s); whereas vs=1,2(p) denotes the negative energy solution in eq. (10.3.308) with the
replacement ξ′ → ξ(s). Then, the general solution to eq. (10.3.306) is

ψ(t, x⃗) =
∑

1≤s≤2

∫
d3p⃗

(2π)3
1√
2Ep

(
as(p)u

s(p)e−ip·x + bs(p)v
s(p)e+ip·x

)
, (10.3.311)

Ep ≡
√
p⃗2 +m2, (10.3.312)

where as(p) and bs(p) are arbitrary complex coefficients of the ξ(s) basis.
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Problem 10.36. Clifford Implies Lorentz Suppose we found d ≡ D + 1 matrices in a
(d ≥ 2)−dimensional Minkowski spacetime that obey the following anti-commutation relations:

{γµ, γν} = 2ηµνId×d. (10.3.313)

This is known as the Clifford Algebra, and is in fact often the starting point for a discussion
on Dirac spinors. Let us now define the Lorentz generators using these γ−matrices via the
prescription

Jµν ≡ i

4
[γµ, γν ] . (10.3.314)

Use the Clifford algebra of eq. (10.3.313) to show that the generators in eq. (10.3.314) satisfy
the SO3,1 algebra of eq. (10.1.137).

Problem 10.37. (3+1)D Lorentz Generators Verify that {γµ} in eq. (10.3.305) satisfy
the Clifford Algebra in eq. (10.3.314) and hence may be used to construct Jµν . Proceed to do
so. You should find that

Jµν =

[
i
4
σ̄[µσν] 0
0 i

4
σ[µσ̄ν]

]
, (10.3.315)

exp

(
− i
2
ωµνJ

µν

)
=

 exp
[
−iξ⃗ · K⃗L − iθ⃗J⃗L

]
02×2

02×2 exp
[
−iξ⃗ · K⃗R − iθ⃗J⃗R

]  . (10.3.316)

Use this result to explain the Lorentz covariance of the Dirac equation (iγµ∂µ −m)ψ = 0; i.e.,
the left hand side should transform as a Dirac spinor.

Problem 10.38. Dirac Implies Klein-Gordon Apply the operator −iγµ∂µ − m both
sides of the Dirac equation (iγµ∂µ − m)ψ = 0, and show that it leads to the Klein-Gordon
equation

(∂2 +m2)ψ = 0. (10.3.317)

Hint: You may need to recognize γαγβ∂α∂β = ∂2. Why is this true?

Parity & Clifford Algebra To be continued . . .
Charge Conjugation
Time Reversal

10.3.4 Poincaré: Lorentz & Space-Time Translations

YZ: This section is only a very rough draft. The Poincaré group includes both the
Lorentz group and spacetime translations. The general group element continuously connected
to the identity takes the form

Π
(
ξ⃗, θ⃗, a

)
= Π(Λ, a) = exp

(
− i
2
ωµνJ

µν − iaµPµ
)
, (10.3.318)
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where the {Jµν} are the generators of Lorentz transformations (rotations and boosts); whereas
the momentum operators {Pµ} are the generators of spacetime translations. Altogether, the Lie
Algebra of these operators are

[Pµ, Pν ] = 0, (10.3.319)

[Jµν , P ρ] = −i (ηµρP ν − ηνρP µ) , (10.3.320)

[Jµν , Jρσ] = i (ηνρJµσ − ηµρJνσ + ηµσJνρ − ηνσJµρ) . (10.3.321)

The two operators that commute with all generators are the following.
Mass The first operator is simply P 2 ≡ PµP

µ. When applied to an eigenstate of
(relativistic) momentum, the eigenvalues are simply the mass-squared.

P 2
∣∣∣⃗k,m〉 = kµk

µ
∣∣∣⃗k,m〉 ≡ m2

∣∣∣⃗k,m〉 . (10.3.322)

The k⃗ here is the spatial momentum; note that the zeroth component k0 = k0 is not independent,
since (k0)2 − k⃗2 = m2.

� Wigner showed that the Poincaré group reps can be obtained from their little groups,
depending on whether m ̸= 0 or m = 0. The little group is the subgroup the leaves the
reference momentum invariant.

� For massive states, we may choose kµ = (m, 0⃗), and the little group is spatial rotations SO3.
Irreps are labeled by spin. Spin 1 and spin 2 massive states have, respectively, 2 + 1 = 3
and 2 · 2 + 1 = 5 spin degrees of freedom. Whereas massive spin 1/2 states have 2.

� For massless states, we may choose kµ = E(1, 0, 0, 1), and the little group is equivalent
to the Poincaré group in (2 + 1)D. The translation part would yield ‘continuous spin’.
Since we don’t see continuous spin particles, we usually focus only on the single rotation
generator. This is spin along the 3 direction (the direction of spatial momentum) – i.e.,
helicity. Note that helicity cannot be flipped for massless particles. Massless helicity states
are ±1 for photons and ±2 for gravitons. Note that massive and massless spin-1 and -2
states have different number of degrees of freedom.

Pauli-Lubanski vector The second operator is the square of the Pauli-Lubanski vector,
which in turn is defined as

W µ ≡ 1

2
ϵµαβλJαβPλ. (10.3.323)

Note that, the angular momentum Jab occurring within the zeroth component

W 0 =
1

2
ϵ0ijkJijPk (10.3.324)

= −JkPk ≡ −J⃗ · P⃗ . (10.3.325)

must be the ‘intrinsic’ one, not the orbital Lij = X iPj−XjPi one, since this latter operator will
cancel out due to the anti-symmetric character of the Levi-Civita symbol: ϵ0ijkLijPk = 0.
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Timelike momentum For timelike momentum kµ, we should be able to find a rest frame
so that kµ = (m, 0⃗).

W 0
∣∣∣⃗k = 0⃗,m > 0, s

〉
=

1

2
ϵ0abcJabPc

∣∣∣⃗k = 0⃗,m > 0, s
〉
= 0 (10.3.326)

W ℓ
∣∣∣⃗k = 0⃗,m > 0, s

〉
=

1

2

(
ϵℓab0JabP0 + 2ϵℓ0icJ0iPc

) ∣∣∣⃗k = 0⃗,m > 0, s
〉

(10.3.327)

=
m

2
ϵℓab0Jab

∣∣∣⃗k = 0⃗,m > 0, s
〉

(10.3.328)

= m · J ℓ
∣∣∣⃗k = 0⃗,m > 0, s

〉
. (10.3.329)

We see that, the W 2 ≡ W µWµ acting on such a timelike momentum state simply yields the
‘square’ of the intrinsic spin.

W 2
∣∣∣⃗k = 0⃗,m > 0, s

〉
= −mJ⃗2

∣∣∣⃗k = 0⃗,m > 0, s
〉

(10.3.330)

= −m · s(s+ 1)
∣∣∣⃗k = 0⃗,m > 0, s

〉
(10.3.331)

s = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . . (10.3.332)

Null momentum For null kµ, we may choose the spatial momentum to point along the
3−axis: kµ = (k, 0, 0, k). The zeroth component acting on a momentum eigenstate yields

W 0
∣∣∣⃗k = 0⃗,m > 0, s

〉
=

1

2
ϵ0abcJabPc

∣∣∣⃗k = 0⃗,m > 0, s
〉

(10.3.333)

= −kϵ0123J12
∣∣∣⃗k = 0⃗,m > 0, s

〉
. (10.3.334)

The J12 generates rotation on the (1, 2)−plane; i.e., the plane perpendicular to the momentum

direction k⃗. The spatial components of W µ acting on the same state yields

W ℓ
∣∣∣⃗k = 0⃗,m > 0, s

〉
=

1

2

(
ϵℓab0JabP0 + 2ϵℓ0ikJ0iPk

) ∣∣∣⃗k = 0⃗,m > 0, s
〉

(10.3.335)

=
k

2

(
−ϵ0ℓabJab + 2ϵℓ0i3J0i

) ∣∣∣⃗k = 0⃗,m > 0, s
〉
. (10.3.336)
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11 Differential Geometry of Curved Spacetimes

In this Chapter, I cover curved spacetime differential geometry proper from §(11.1) through
§(11.3), focusing on issues not well developed in §(9). These three sections, together with §(9),
are intended to form the first portion – the kinematics of curved space(time)s107 – of a course
on gravitation and physics in curved spacetimes. Following that, §(11.4) contains somewhat
specialized content regarding the expansion of geometric quantities off some fixed ‘background’
geometry; and finally, in §(11.5) we compile conformal transformation properties of geometric
objects.

11.1 Curved Metrics, Orthonormal Frames & Volume; Timelike, Space-
like vs. Null Vectors; Gravitational Time Dilation

Curved Spacetime, Spacetime Volume The generalization of the ‘distance-squared’
between xµ to xµ+dxµ, from the Minkowski to the curved case, is the following “line element”:

ds2 = gµν(x)dx
µdxν , (11.1.1)

where x is simply shorthand for the spacetime coordinates {xµ}, which we emphasize may no
longer be Cartesian. Because in a curved spacetime gµν can no longer be brought to the form ηµν
– a fact we shall examine in more detail below – note that this implies a global Lorentz inertial
frame no longer exists. Much of Special Relativity no longer applies in a curved spacetime.

We need to demand that gµν be real, symmetric, and has 1 positive eigenvalue associated
with the one ‘time’ coordinate and (d − 1) negative ones for the spatial coordinates.108 The
infinitesimal spacetime volume continues to take the form

d(vol.) = ddx
√
|g(x)|, (11.1.2)

where |g(x)| = | det gµν(x)| is now the absolute value of the determinant of the metric gµν .
Orthonormal Basis Cartesian coordinates play a basic but special role in interpreting
physics in both flat Euclidean space δij and flat Minkowski spacetime ηµν : they parametrize
time durations and spatial distances in orthogonal directions – i.e., every increasing tick mark
along a given Cartesian axis corresponds directly to a measurement of increasing length or time
in that direction. This is generically not so, say, for coordinates in curved space(time) because
the notion of what constitutes a ‘straight line’ is significantly more subtle there; or even spherical
coordinates (r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π) in flat 3D space – for the latter, only the radial
coordinate r corresponds to actual distance (from the origin).

Therefore, just like the curved space case, to interpret physics in the neighborhood of some
spacetime location xµ, we introduce an orthonormal basis {εµ̂α} through the ‘diagonalization’
process:

gµν(x) = ηαβε
α̂
µ(x)ε

β̂

ν
(x). (11.1.3)

107As opposed to the dynamics of spacetime, which involves studying General Relativity, Einstein’s field equa-
tions for the metric, and its applications.
108The opposite sign convention is more popular these days: one negative eigenvalue of gµν associated with

time; and (d−1) positive ones with space. Both sign conventions are usually equally valid; but see [34] for exotic
exceptions.
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By defining εα̂ ≡ εα̂µdx
µ, the analog to achieving a Cartesian-like expression for the spacetime

metric is

ds2 =
(
ε0̂
)2
−

D∑
i=1

(
ε̂i
)2

= ηµνε
µ̂εν̂ . (11.1.4)

This means under a local Lorentz transformation – i.e., for all

Λµα(x)Λ
ν
β(x)ηµν = ηαβ, (11.1.5)

ε′µ̂(x) = Λµα(x)ε
′α̂(x) (11.1.6)

– the metric remains the same:

ds2 = ηµνε
µ̂εν̂ = ηµνε

′µ̂ε′ν̂ . (11.1.7)

By viewing ε̂ as the matrix with the αth row and µth column given by εα̂µ, the determinant of
the metric gµν can be written as

det gµν(x) = (det ε̂)2 det ηµν . (11.1.8)

The infinitesimal spacetime volume in eq. (11.1.2) now can be expressed as

ddx
√
|g(x)| = ddx det ε̂ (11.1.9)

= ε0̂ ∧ ε1̂ ∧ · · · ∧ εd̂−1. (11.1.10)

The second equality follows because

ε0̂ ∧ · · · ∧ εd̂−1 = ε0̂
µ1
dxµ1 ∧ · · · ∧ εd̂−1

µd
dxµd

= ϵµ1...µdε
0̂
µ1
. . . εd̂−1

µd
dx0 ∧ · · · ∧ dxd−1 = (det ε̂)ddx. (11.1.11)

Of course, that gµν may be ‘diagonalized’ follows from the fact that gµν is a real symmetric
matrix:

gµν =
∑
α,β

Oα
µλαηαβO

β
ν =

∑
α,β

εα̂µηαβε
β̂

ν
, (11.1.12)

where all {λα} are positive by assumption, so we may take their positive root:

εα̂µ =
√
λαO

α
µ, {λα > 0}, (No sum over α). (11.1.13)

That ε0̂
µ
acts as ‘standard clock’ and {ε̂i

µ
|i = 1, 2, . . . , D} act as ‘standard rulers’ is because

they are of unit length:

gµνεα̂µε
β̂

ν
= ηαβ. (11.1.14)
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The ·̂ on the index indicates it is to be moved with the flat metric, namely

εα̂µ = ηαβεβ̂µ and εα̂µ = ηαβε
β̂

µ
; (11.1.15)

while the spacetime index is to be moved with the spacetime metric

εα̂µ = gµνεα̂ν and εα̂µ = gµνε
α̂ν . (11.1.16)

In other words, we view ε µ
α̂ as the µth spacetime component of the αth vector field in the

basis set {ε µ
α̂ |α = 0, 1, 2, . . . , D ≡ d − 1}. We may elaborate on the interpretation that {εα̂µ}

act as ‘standard clock/rulers’ as follows. For a test (scalar) function f(x) defined throughout
spacetime, the rate of change of f along ε0̂ is

⟨df | ε0̂⟩ = ε µ

0̂
∂µf ≡

df

dy0
; (11.1.17)

whereas that along ε̂i is

⟨df | ε̂i⟩ = ε µ
î
∂µf ≡

df

dyi
; (11.1.18)

where y0 and {yi} are to be viewed as ‘time’ and ‘spatial’ parameters along the integral curves
of {ε α

µ̂ }. That these are Cartesian-like can now be expressed as〈
d

dyµ

∣∣∣∣ d

dyν

〉
= ε α

µ̂ ε β
ν̂ ⟨∂α| ∂β⟩ = ε α

µ̂ ε β
ν̂ gαβ = ηµν . (11.1.19)

It is worth reiterating that the first equalities of eq. (11.1.12) are really assumptions, in that
the definitions of curved spaces include assuming all the eigenvalues of the metric are positive
whereas that of curved spacetimes include assuming all but one eigenvalue is negative.109

Commutators & Coordinates Note that the {d/dyµ} in eq. (11.1.19) do not, gener-
ically, commute. For instance, acting on a scalar function,[

d

dyµ
,

d

dyν

]
f(x) =

(
d

dyµ
d

dyν
− d

dyν
d

dyµ

)
f(x) (11.1.20)

=
(
ε α
µ̂ ∂αε

β
ν̂ − ε

α
ν̂ ∂αε

β
µ̂

)
∂βf(x) ̸= 0. (11.1.21)

More generally, for any two vector fields V µ and W µ, their commutator is

[V,W ]µ = V σ∇σW
µ −W σ∇σV

µ (11.1.22)

= V σ∂σW
µ −W σ∂σV

µ. (11.1.23)

(Can you explain why the covariant derivatives can be replaced with partial ones?) A theorem
in differential geometry110 tells us:

109In d−spacetime dimensions, with our sign convention in place, if there were n ‘time’ directions and (d− n)
‘spatial’ ones, then this carries with it the assumption that gµν has n positive eigenvalues and (d − n) negative
ones.
110See, for instance, Schutz [22] for a pedagogical discussion.
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A set of 1 < N ≤ d vector fields {d/dξµ} form a coordinate basis in the
d−dimensional space(time) they inhabit, if and only if they commute.

To elaborate: if these N vector fields commute, we may integrate them to find a N−dimensional
coordinate grid within the d−dimensional spacetime. Conversely, we are already accustomed
to the fact that the partial derivatives with respect to the coordinates of space(time) do, of
course, commute amongst themselves. When N = d, and if [d/dyµ, d/dyν ] = 0 in eq. (11.1.19),
we would not only have found coordinates {yµ} for our spacetime, we would have found this
spacetime is a flat one.
What are coordinates? At this juncture, it is perhaps important to clarify what a coordinate
system is. For instance, if we had in 2D [d/dy0, d/dy1] ̸= 0, this means it is not possible to vary
the ‘coordinate’ y0 (i.e., along the integral curve of d/dy0) without holding the ‘coordinate’ y1

fixed; or, it is not possible to hold y0 fixed while moving along the integral curve of d/dy1. More
generally, in a d−dimensional space(time), if xµ is a coordinate parametrizing space(time), then
it must be possible to vary it while keeping fixed the rest of its counterparts {xν |ν ̸= µ}.

Problem 11.1. Example of non-commuting vector fields on S2 (Schutz [22] Exercise
2.1) In 2D flat space, starting from Cartesian coordinates xi, we may convert to cylindrical
coordinates

(x1, x2) = r(cosϕ, sinϕ). (11.1.24)

The pair of vector fields (∂r, ∂ϕ) do form a coordinate basis – it is possible to hold r fixed while
going along the integral curve of ∂ϕ and vice versa. However, show via a direct calculation that

the following commutator involving the unit vector fields r̂ and ϕ̂ is not zero:[
r̂, ϕ̂
]
f(r, ϕ) ̸= 0; (11.1.25)

where

r̂ ≡ cos(ϕ)∂x1 + sin(ϕ)∂x2 , (11.1.26)

ϕ̂ ≡ − sin(ϕ)∂x1 + cos(ϕ)∂x2 . (11.1.27)

Therefore r̂ and ϕ̂ do not form a coordinate basis.

Timelike, Spacelike, and Null Distances/Vectors A fundamental difference be-
tween (curved) space versus spacetime, is that the former involves strictly positive distances
while the latter – because of the η00 = +1 for orthonormal ‘time’ versus ηii = −1 for the ith
orthonormal space component – involves positive, Zero, and negative ‘distance-squared’.

With our ‘mostly minus’ sign convention (cf. eq. (10.1.1)), a vector vµ is:

� Time-like if v2 ≡ ηµνv
µ̂vν̂ > 0. We have seen in §(10.1): if v2 > 0, it is always possible

to find a Lorentz transformation Λ (cf. eq. (10.1.5)) such that Λµαv
α̂ = (v′0̂, 0⃗). In flat

spacetime, if ds2 = ηµνdx
µdxν > 0 then this result indicates it is always possible to find an

inertial frame where ds2 = dt′2: hence the phrase ‘timelike’. (Also see Problem (10.12).)

More generally, for a timelike trajectory zµ(λ) in curved spacetime – i.e.,

gµν(dz
µ/dλ)(dzν/dλ) > 0, (11.1.28)
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we may identify

dτ ≡ dλ

√
gµν(z(λ))

dzµ

dλ

dzν

dλ
(11.1.29)

as the (infinitesimal) proper time, the time read by the watch of an observer whose worldline
is zµ(λ).

Suppose the timelike trajectory were – it need not always be – in ‘free-fall’, i.e., obeying the
geodesic equation. Below, the resulting Fermi normal coordinate expansion of equations
(11.3.6) through (11.3.8) teaches us, along the timelike worldline of a freely-falling observer
the geometry becomes flat, i.e., gµν → ηµν ; z

0 = s = τ is the proper time; and żi = 0:
altogether, we thus recover the above statement that gµνdz

µdzν = η00(dz
0)2 = (dτ)2.

More generally, using the orthonormal frame fields in eq. (11.1.12),

dτ = dλ

√
ηαβ

dzα̂

dλ

dzβ̂

dλ
,

dzα̂

dλ
≡ εα̂µ(z(λ))

dzµ

dλ
. (11.1.30)

Since vµ̂ ≡ dzµ̂/dλ is assumed to be timelike, it must be possible to find a local Lorentz

transformation Λµν(z) such that Λµνv
ν̂ = (v′0̂, 0⃗). Assuming dλ > 0,

dτ = dλ

√
ηµνΛ

µ
αΛνβ

dzα̂

dλ

dzβ̂

dλ
,

= dλ

√√√√(dz′0̂

dλ

)2

= |dz′0̂|. (11.1.31)

The generalization of the discussion in Problem (10.12) to timelike trajectories zµ(τ) in
generic curved spacetimes is as follows. If τ refers to its proper time and uµ ≡ dzµ/dτ ,
then u0 cannot be arbitrary but is related to the proper spatial velocity u⃗ via

g00(u
0)2 + 2g0iu

0ui + giju
iuj = +1. (11.1.32)

Multiplying throughout by 1/(u0)2 = (dτ/dx0)2,

g00 + 2g0i
dτ

dx0
dzi

dτ
+ gij

(
dτ

dx0

)2
dzi

dτ

dzj

dτ
=

(
dτ

dx0

)2

(11.1.33)

gµν
dzµ

dx0
dzν

dx0
=

(
dτ

dx0

)2

. (11.1.34)

Furthermore, if the trajectory is moving forward in time, then u0 = dx0/dτ > 0 and the
positive square root is to be chosen:

dτ

dx0
= +

√
gµν

dzµ

dx0
dzν

dx0
. (11.1.35)
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� Space-like if v2 ≡ ηµνv
µ̂vν̂ < 0. We have seen in §(10.1): if v2 < 0, it is always possible

to find a Lorentz transformation Λ such that Λµαv
α̂ = (0, v ′̂i). In flat spacetime, if ds2 =

ηµνdx
µdxν < 0 then this result indicates it is always possible to find an inertial frame

where ds2 = −dx⃗′2: hence the phrase ‘spacelike’.

More generally, for a spacelike trajectory zµ(λ) in curved spacetime – i.e., gµν(dz
µ/dλ)(dzν/dλ) <

0, we may identify

dℓ ≡ dλ

√∣∣∣∣gµν(z(λ))dzµdλ

dzν

dλ

∣∣∣∣ (11.1.36)

as the (infinitesimal) proper length, the distance read off some measuring rod whose tra-
jectory is zµ(λ). (As a check: when gµν = ηµν and dt = 0, i.e., the rod is lying on the
constant−t surface, then dℓ = |dx⃗ · dx⃗|1/2.) Using the orthonormal frame fields in eq.
(11.1.12),

dℓ = dλ

√√√√∣∣∣∣∣ηαβ dzα̂dλ

dzβ̂

dλ

∣∣∣∣∣, dzα̂

dλ
≡ εα̂µ

dzµ

dλ
. (11.1.37)

Furthermore, since vµ̂ ≡ dzµ̂/dλ is assumed to be spacelike, it must be possible to find a

local Lorentz transformation Λµν(z) such that Λµνv
ν̂ = (0, v ′̂i); assuming dλ > 0,

dℓ = dλ

√
ηµνΛ

µ
αΛνβ

dzα̂

dλ

dzβ̂

dλ
= |dz⃗′| ; (11.1.38)

dz⃗ ′̂i ≡ Λiµε
µ̂
νdz

ν . (11.1.39)

� Null if v2 ≡ ηµνv
µ̂vν̂ = 0. We have already seen, in flat spacetime, if ds2 = ηµνdx

µdxν = 0
then |dx⃗|/dx0 = |dx⃗′|/dx′0 = 1 in all inertial frames.

It is physically important to reiterate: one of the reasons why it is important to make such a
distinction between vectors, is because it is not possible to find a Lorentz transformation that
would linearly transform one of the above three types of vectors into another different type –
for e.g., it is not possible to Lorentz transform a null vector into a time-like one (a photon has
no ‘rest frame’); or a time-like vector into a space-like one; etc. This is because their Lorentzian
‘norm-squared’

v2 ≡ ηµνv
µ̂vν̂ = ηαβΛ

α
µΛ

β
νv

µ̂vν̂ = ηαβv
′α̂v′β̂ (11.1.40)

has to be invariant under all Lorentz transformations v′α̂ ≡ Λαµv
µ̂. This in turn teaches us: if v2

were positive, it has to remain so; likewise, if it were zero or negative, a Lorentz transformation
cannot alter this attribute.

Problem 11.2. Orthonormal Frames in Kerr-Schild Spacetimes A special class of
geometries, known as Kerr-Schild spacetimes, take the following form.

gµν = ḡµν +Hkµkν (11.1.41)
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Many of the known black hole spacetimes can be put in this form; and in such a context, ḡµν
usually refers to flat or de Sitter spacetime.111 The kµ is null with respect to ḡµν , i.e.,

ḡαβk
αkβ = 0, (11.1.42)

and we shall move its indices with ḡµν .
Verify that the inverse metric is

gµν = ḡµν −Hkµkν , (11.1.43)

where ḡµσ is the inverse of ḡµσ, namely ḡµσḡσν ≡ δµν . Suppose the orthonormal frame fields are
known for ḡµν , namely

ḡµν = ηαβε
α̂
µε

β̂

ν
; (11.1.44)

verify that the orthonormal frame fields are

εα̂µ = εα̂σ

(
δσµ +

1

2
Hkσkµ

)
. (11.1.45)

Can you explain why kµ is also null with respect to the full metric gµν?

Proper times and Gravitational Time Dilation Consider two observers sweeping
out their respective timelike worldlines in spacetime, yµ(λ) and zµ(λ). If we use the time coor-
dinate of the geometry to parameterize their trajectories, their proper times – i.e., the time read
by their watches – are given by

dτy ≡ dt
√
gµν(y(t))ẏµẏν , ẏµ ≡ dyµ

dt
; (11.1.46)

dτz ≡ dt
√
gµν(z(t))żµżν , żµ ≡ dzµ

dt
. (11.1.47)

In flat spacetime, clocks that are synchronized in one frame are no longer synchronized in a
different frame – chronology is not a Lorentz invariant. We see that, in curved spacetime,
the infinitesimal passage of proper time measured by observers at the same ‘coordinate time’ t
depends on their spacetime locations:

dτy
dτz

=

√
gµν(y(t))ẏµẏν

gαβ(z(t))ẏαẏβ
. (11.1.48)

Physically speaking, eq. (11.1.48) does not, in general, yield the ratio of proper times measured
by observers at two different locations. (Drawing a spacetime diagram here helps.) To do so,
one would have to specify the trajectories of both yµ(λ1 ≤ λ ≤ λ2) and z

µ(λ′1 ≤ λ′ ≤ λ′2), before

the integrals ∆τ1 ≡
∫ λ2
λ1

dλ
√
gµν ẏµẏν and ∆τ2 ≡

∫ λ′2
λ′1

dλ′
√
gµν żµżν are evaluated and compared.

111See Gibbons et al. [35] arXiv: hep-th/0404008. The special property of Kerr-Schild coordinates is that
Einstein’s equations become linear in these coordinates.
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Problem 11.3. Example The spacetime geometry around the Earth itself can be approx-
imated by the line element

ds2 =
(
1− rs,E

r

)
dt2 − dr2

1− rs,E/r
− r2

(
dθ2 + sin(θ)2dϕ2

)
, (11.1.49)

where t is the time coordinate and (r, θ, ϕ) are analogs of the spherical coordinates. Whereas
rs,E is known as the Schwarzschild radius of the Earth, and depends on the Earth’s mass ME

through the expression

rs,E ≡ 2GNME. (11.1.50)

Find the 4−beins (i.e., orthonormal frame fields) of the geometry in eq. (11.1.49). Then find
the numerical value of rs,E in eq. (11.1.50) and take the ratio rs,E/RE, where RE is the radius
of the Earth. Explain why this means we may – for practical purposes – expand the metric in
eq. (11.1.50) as

ds2 =
(
1− rs,E

r

)
dt2 − dr2

(
1 +

rs,E
r

+
(rs,E
r

)2
+
(rs,E
r

)3
+ . . .

)
− r2

(
dθ2 + sin(θ)2dϕ2

)
. (11.1.51)

Since we are not in flat spacetime, the (t, r, θ, ϕ) are no longer subject to the same interpretation.
However, use your computation of rs,E/RE to estimate the error incurred if we do continue to
interpret t and r as though they measured time and radial distances, with respect to a frame
centered at the Earth’s core.

Consider placing one clock at the base of the Taipei 101 tower and another at its tip. Denoting
the time elapsed at the base of the tower as ∆τB; that at the tip as ∆τT; and assuming for
simplicity the Earth is a perfect sphere – show that eq. (11.1.48) translates to

∆τB
∆τT

=

√
g00(RE)

g00(RE + h101)
≈ 1 +

1

2

(
rs,E

RE + h101
− rs,E
RE

)
. (11.1.52)

Here, RE is the radius of the Earth and h101 is the height of the Taipei 101 tower. Notice the
right hand side is related to the difference in the Newtonian gravitational potentials at the top
and bottom of the tower.

In actuality, both clocks are in motion, since the Earth is rotating. Can you estimate what
is the error incurred from assuming they are at rest? First arrive at eq. (11.1.52) analytically,
then plug in the relevant numbers to compute the numerical value of ∆τB/∆τT. Does the clock
at the base of Taipei 101 or that on its tip tick more slowly?

This gravitational time dilation is an effect that needs to be accounted for when setting up
a network of Global Positioning Satellites (GPS); for details, see Ashby [36].

11.2 Connections, Curvature, Geodesics

Connections & Christoffel Symbols The partial derivative on a scalar φ is a rank-1
tensor, so we shall simply define the covariant derivative acting on φ to be

∇αφ = ∂αφ. (11.2.1)
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Because the partial derivative itself cannot yield a tensor once it acts on tensor, we need to
introduce a connection Γµαβ, i.e.,

∇σV
µ = ∂σV

µ + ΓµσρV
ρ. (11.2.2)

Under a coordinate transformation of the partial derivatives and V µ, say going from x to x′,

∂σV
µ + ΓµσρV

ρ =
∂x′λ

∂xσ
∂xµ

∂x′ν
∂λ′V

ν′ +

(
∂x′λ

∂xσ
∂2xµ

∂x′λx′ν
+ Γµσρ

∂xρ

∂x′ν

)
V ν′ . (11.2.3)

On the other hand, if ∇σV
µ were to transform as a tensor,

∂σV
µ + ΓµσρV

ρ =
∂x′λ

∂xσ
∂xµ

∂x′ν
∂λ′V

ν′ +
∂x′λ

∂xσ
∂xµ

∂x′τ
Γτ

′

λ′ν′V
ν′ . (11.2.4)

112Since V ν′ is an arbitrary vector, we may read off its coefficient on the right hand sides of
equations (11.2.3) and (11.2.4), and deduce the connection has to transform as

∂x′λ

∂xσ
∂2xµ

∂x′λx′ν
+ Γµσρ(x)

∂xρ

∂x′ν
=
∂x′λ

∂xσ
∂xµ

∂x′τ
Γτ

′

λ′ν′(x
′). (11.2.5)

Moving all the Jacobians onto the connection written in the {xµ} frame,

Γτ
′

κ′ν′(x
′) =

∂x′τ

∂xµ
∂2xµ

∂x′κx′ν
+
∂x′τ

∂xµ
Γµσρ(x)

∂xσ

∂x′κ
∂xρ

∂x′ν
. (11.2.6)

All connections have to satisfy this non-tensorial transformation law. On the other hand, if we
found an object that transforms according to eq. (11.2.6), and if one employs it in eq. (11.2.2),
then the resulting ∇αV

µ would transform as a tensor.
Product rule Because covariant derivatives should reduce to partial derivatives in flat

Cartesian coordinates, it is natural to require the former to obey the usual product rule. For
any two tensors T1 and T2, and suppressing all indices,

∇(T1T2) = (∇T1)T2 + T1(∇T2). (11.2.7)

Problem 11.4. Covariant Derivative on 1-form Let us take the covariant derivative of
a 1-form:

∇αVµ = ∂αVµ + Γ′σ
αµVσ. (11.2.8)

Can you prove that this connection is negative of the vector one in eq. (11.2.2)?

Γ′σ
αµ = −Γσαµ, (11.2.9)

where Γσαµ is the connection in eq. (11.2.2) – if we define the covariant derivative of a scalar to
be simply the partial derivative acting on the same, i.e.,

∇α (V
µWµ) = ∂α (V

µWµ)? (11.2.10)

You should assume the product rule holds, namely ∇α (V
µWµ) = (∇αV

µ)Wµ + V µ (∇αWµ).
Expand these covariant derivatives in terms of the connections and argue why this leads to eq.
(11.2.9).

112All un-primed indices represent tensor components in the x-system; while all primed indices those in the x′

system.
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Suppose we found two such connections, (1)Γ
τ
κν(x) and (2)Γ

τ
κν(x). Notice their difference

does transform as a tensor because the first term on the right hand side involving the Hessian
∂2x/∂x′∂x′ cancels out:

(1)Γ
τ ′

κ′ν′(x
′)− (2)Γ

τ ′

κ′ν′(x
′) =

∂x′τ

∂xµ
(
(1)Γ

µ
σρ(x)− (2)Γ

µ
σρ(x)

) ∂xσ
∂x′κ

∂xρ

∂x′ν
. (11.2.11)

Now, any connection can be decomposed into its symmetric and antisymmetric parts in the
following sense:

Γµαβ =
1

2
Γµ{αβ} +

1

2
Γµ[αβ]. (11.2.12)

This is, of course, mere tautology. However, let us denote

(1)Γ
µ
αβ ≡

1

2
Γµαβ and (2)Γ

µ
αβ ≡

1

2
Γµβα; (11.2.13)

so that

1

2
Γµ[αβ] = (1)Γ

µ
αβ − (2)Γ

µ
αβ ≡ T µαβ. (11.2.14)

We then see that this anti-symmetric part of the connection is in fact a tensor. It is the symmetric
part (1/2)Γµ{αβ} that does not transform as a tensor. For the rest of these notes, by Γµαβ we
shall always mean a symmetric connection. This means our covariant derivative would now read

∇αV
µ = ∂αV

µ + ΓµαβV
β + T µαβV

β. (11.2.15)

As is common within the physics literature, we proceed to set to zero the torsion term: T µαβ → 0.
If we further impose the metric compatibility condition,

∇µgαβ = 0, (11.2.16)

then we have already seen in §(9) this (together with the zero torsion assumption) implies

Γµαβ =
1

2
gµσ (∂αgβσ + ∂βgασ − ∂σgαβ) . (11.2.17)

113Parallel Transport & Riemann Tensor Along a curve zµ(λ) such that one end is
zµ(λ = λ1) = x′µ and the other end is zµ(λ = λ2) = xµ, we may parallel transport some vector
V α from x′ to x, i.e., over a finite range of the λ−parameter, by exponentiating the covariant
derivative along zµ(λ). If V α(x′ → x) is the result of this parallel transport – not to be confused
with V α(x), which is simply V α evaluated at x′ – we have

V α
(
x′

z(λ)→ x
)
= exp [(λ2 − λ1)żµ(λ)∇µ]V

α(x′)|λ=λ1 . (11.2.18)

113Note that if we were to relax both the zero torsion and metric compatibility conditions, this amounts to
introducing two new tensors: (1/2)Γµ

[αβ] = Tµ
αβ and ∇µgαβ = Qµαβ . If they are of any physical relevance,

we would need to introduce dynamics for them: namely, what sort of partial differential equations do Tµ
αβ and

Qµαβ obey; and, what are they sourced by?
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This is the covariant derivative analog of the Taylor expansion of a scalar function – where,
translation by a constant spacetime vector aµ may be implemented as

f(xµ + aµ) = exp (aν∂ν) f(x
µ). (11.2.19)

Eq. (11.2.18) is also consistent with the discussion leading up to eq. (9.3.23), which in the curved
spacetime context would be: a spacetime tensor T µ1...µN is invariant under parallel transport
along some curve whose tangent vector is vµ, whenever

vσ∇σT
µ1...µN = 0 (11.2.20)

along the entire curve. For, once żµ(λ1) in eq. (11.2.18) is identified with vµ, if eq. (11.2.20) is
satisfied then

exp [(λ2 − λ1)vµ(x′)∇µ]V
α(x′) = V α(x′), (11.2.21)

since the first covariant-derivative – and hence all higher ones – in the exp-Taylor series must
yield zero.

To elucidate the definition of geometric curvature as the failure of tensors to remain invariant
under parallel transport, we may now attempt to parallel transport a vector V α around a closed
parallelogram defined by the tangent vectors A and B. We shall soon see how the Riemann
tensor itself emerges from such an analysis.

Let the 4 sides of this parallelogram have infinitesimal affine parameter length ϵ. We will
now start from one of its 4 corners, which we will denote as x. V α will be parallel transported
from x to x + ϵA; then to x + ϵA + ϵB; then to x + ϵA + ϵB − ϵA = x + ϵB; and finally back
to x + ϵB − ϵB = x. Let us first work out the parallel transport along the ‘side’ A using eq.
(11.2.18). Denoting ∇A ≡ Aµ∇µ, ∇B ≡ Bµ∇µ, etc.,

V α(x→ x+ ϵA) = exp(ϵ∇A)V
α(x),

= V α(x) + ϵ∇AV
α(x) +

ϵ2

2
∇2
AV

α(x) +O
(
ϵ3
)
. (11.2.22)

We then parallel transport this result from x+ ϵA to x+ ϵA+ ϵB.

V α(x→ x+ ϵA→ x+ ϵA+ ϵB)

= exp(ϵ∇B) exp(ϵ∇A)V
α(x),

= V α(x) + ϵ∇AV
α(x) +

ϵ2

2
∇2
AV

α(x)

+ ϵ∇BV
α(x) + ϵ2∇B∇AV

α(x)

+
ϵ2

2
∇2
BV

α(x) +O
(
ϵ3
)

= V α(x) + ϵ (∇A +∇B)V
α(x) +

ϵ2

2

(
∇2
A +∇2

B + 2∇B∇A

)
V α(x) +O

(
ϵ3
)
. (11.2.23)

Pressing on, we now parallel transport this result from x+ ϵA+ ϵB to x+ ϵB.

V α(x→ x+ ϵA→ x+ ϵA+ ϵB → x+ ϵB)
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= exp(−ϵ∇A) exp(ϵ∇B) exp(ϵ∇A)V
α(x),

= V α(x) + ϵ (∇A +∇B)V
α(x) +

ϵ2

2

(
∇2
A +∇2

B + 2∇B∇A

)
V α(x)

− ϵ∇AV
α(x)− ϵ2

(
∇2
A +∇A∇B

)
V α(x)

+
ϵ2

2
∇2
AV

α(x) +O
(
ϵ3
)

= V α(x) + ϵ∇BV
α(x) + ϵ2

(
1

2
∇2
B +∇B∇A −∇A∇B

)
V α(x) +O

(
ϵ3
)
. (11.2.24)

Finally, we parallel transport this back to x+ ϵB − ϵB = x.

V α(x→ x+ ϵA→ x+ ϵA+ ϵB → x+ ϵB → x)

= exp(−ϵ∇B) exp(−ϵ∇A) exp(ϵ∇B) exp(ϵ∇A)V
α(x),

= V α(x) + ϵ∇BV
α(x) + ϵ2

(
1

2
∇2
B +∇B∇A −∇A∇B

)
V α(x)

− ϵ∇BV
α(x)− ϵ2∇2

BV
α(x)

+
ϵ2

2
∇2
BV

α(x) +O
(
ϵ3
)

= V α(x) + ϵ2 (∇B∇A −∇A∇B)V
α(x) +O

(
ϵ3
)
. (11.2.25)

114We have arrived at the central characterization of local geometric curvature. By parallel
transporting a vector around an infinitesimal parallelogram, we see the parallel transported
vector differs from the original one by the commutator of covariant derivatives with respect to
the two tangent vectors defining the parallelogram. In the same vein, their difference is also
proportional to the area of this parallogram, i.e., it scales as O (ϵ2) for infinitesimal ϵ.

V α(x→ x+ ϵA→ x+ ϵA+ ϵB → x+ ϵB → x)− V α(x) (11.2.26)

= ϵ2 [∇B,∇A]V
α(x) +O

(
ϵ3
)
,

[∇B,∇A] ≡ ∇B∇A −∇A∇B. (11.2.27)

We shall proceed to calculate the commutator in a coordinate basis.

[∇A,∇B]V
µ ≡ Aσ∇σ (B

ρ∇ρV
µ)−Bσ∇σ (A

ρ∇ρV
µ)

= (Aσ∇σB
ρ −Bσ∇σA

ρ)∇ρV
µ + AσBρ[∇σ,∇ρ]V

µ. (11.2.28)

Let us tackle the two groups separately. Firstly,

[A,B]ρ∇ρV
µ ≡ (Aσ∇σB

ρ −Bσ∇σA
ρ)∇ρV

µ

=
(
Aσ∂σB

ρ + ΓρσλA
σBλ −Bσ∂σA

ρ − ΓρσλB
σAλ

)
∇ρV

µ

114The careful reader may complain, we should have evaluated the covariant derivatives at the
various corners of the parallelogram – namely, exp(−ϵ∇B(x+ϵA(x)+ϵB(x+ϵA(x))−ϵA(x+ϵA(x)+ϵB(x+ϵA(x)))))
exp(−ϵ∇A(x+ϵA(x)+ϵB(x+ϵA(x)))) exp(ϵ∇B(x+ϵA(x))) exp(ϵ∇A(x)) – rather than all at x, as we have done here.
Note that this would not have altered the lowest order results, i.e., the ϵ2[∇B ,∇A]V

α, since evaluating at the
corners will multiply the extant terms by (1 +O(ϵ)).
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= (Aσ∂σB
ρ −Bσ∂σA

ρ)∇ρV
µ. (11.2.29)

Next, we need AσBρ[∇σ,∇ρ]V
µ = AσBρ(∇σ∇ρ −∇ρ∇σ)V

µ. The first term is

AσBρ∇σ∇ρV
µ = AσBρ

(
∂σ∇ρV

µ − Γλσρ∇λV
µ + Γµσλ∇ρV

λ
)

= AσBρ
(
∂σ
(
∂ρV

µ + ΓµρλV
λ
)
− Γλσρ

(
∂λV

µ + ΓµλωV
ω
)
+ Γµσλ

(
∂ρV

λ + ΓλρωV
ω
))

= AσBρ
{
∂σ∂ρV

µ + ∂σΓ
µ
ρλV

λ + Γµρλ∂σV
λ − Γλσρ

(
∂λV

µ + ΓµλωV
ω
)

+ Γµσλ
(
∂ρV

λ + ΓλρωV
ω
)}

. (11.2.30)

Swapping (σ ↔ ρ) within the parenthesis {. . . } and subtract the two results, we gather

AσBρ[∇σ,∇ρ]V
µ = AσBρ

{
∂[σΓ

µ
ρ]λV

λ + Γµλ[ρ∂σ]V
λ − Γλ[σρ]

(
∂λV

µ + ΓµλωV
ω
)

+ Γµλ[σ∂ρ]V
λ + Γµλ[σΓ

λ
ρ]ωV

ω
}

(11.2.31)

= AσBρ
(
∂[σΓ

µ
ρ]ω + Γµλ[σΓ

λ
ρ]ω

)
V ω. (11.2.32)

Notice we have used the symmetry of the Christoffel symbols Γµαβ = Γµβα to arrive at this
result. Since A and B are arbitrary, let us observe that the commutator of covariant derivatives
acting on a vector field is not a different operator, but rather an algebraic operation:

[∇µ,∇ν ]V
α = Rα

βµνV
β, (11.2.33)

Rα
βµν ≡ ∂[µΓ

α
ν]β + Γασ[µΓ

σ
ν]β (11.2.34)

= ∂µΓ
α
νβ − ∂νΓαµβ + ΓασµΓ

σ
νβ − ΓασνΓ

σ
µβ. (11.2.35)

Inserting the results in equations (11.2.29) and (11.2.32) into eq. (11.2.28) – we gather, for
arbitrary vector fields A and B:(

[∇A,∇B]−∇[A,B]

)
V µ = Rµ

ναβV
νAαBβ. (11.2.36)

Moreover, we may return to eq. (11.2.26) and re-express it as

V α(x→ x+ ϵA→ x+ ϵA+ ϵB → x+ ϵB → x)− V α(x) (11.2.37)

= ϵ2
(
Rα

βµν(x)V
β(x)Bµ(x)Aν(x) +∇[B,A]V

α(x)
)
+O

(
ϵ3
)
. (11.2.38)

When A = ∂µ and B = ∂ν are coordinate basis vectors themselves, [A,B] = [∂µ, ∂ν ] = 0, and eq.
(11.2.36) then coincides with eq. (11.2.33). Earlier, we have already mentioned: if [A,B] = 0,
the vector fields A and B can be integrated to form a local 2D coordinate system; while if
[A,B] ̸= 0, they cannot form a good coordinate system. Hence the failure of parallel transport
invariance due to the∇[A,B] term in eq. (11.2.37) is really a measure of the coordinate-worthiness
of A and B; whereas it is the Riemann tensor term that appears to tell us something about the
intrinsic local curvature of the geometry itself.

Problem 11.5. Index Symmetries of the Riemann tensor Explain why, if a tensor
Σαβ is antisymmetric in one coordinate system, it has to be anti-symmetric in any other coor-
dinate system. Similarly, explain why, if Σαβ is symmetric in one coordinate system, it has to
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be symmetric in any other coordinate system. Compute the Riemann tensor in a locally flat
coordinate system115 and show that

Rαβµν =
1

2

(
∂β∂[µgν]α − ∂α∂[µgν]β

)
. (11.2.39)

From this result, argue that Riemann has the following symmetries:

Rµναβ = Rαβµν , Rµναβ = −Rνµαβ, Rµναβ = −Rµνβα. (11.2.40)

Additionally, prove the following Bianchi identity:

Rµ[ναβ] = 0. (11.2.41)

Also show that the symmetry in eq. (11.2.41) is equivalent to the following – you may find eq.
(9.4.31) useful here:

Rµναβ = Rµ[βα]ν . (11.2.42)

These index symmetries indicate the components of the Riemann tensor are not all (algebraically)
independent. (Bonus: Can you show, these are the only index symmetries of Riemann?) Below,
we shall see there are additional differential relations (aka “Bianchi identities”) between various
components of the Riemann tensor.

Finally, use these symmetries to show that

[∇α,∇β]Vν = −Rµ
ναβVµ. (11.2.43)

Hint: Start with [∇α,∇β](gνσV
σ).

Assuming equations (11.2.40) and (11.2.41) are the only index symmetries of the Riemann
tensor, we may now prove that it has d2(d2 − 1)/12 algebraically independent components in
d space(time) dimensions. First view Riemann as a 2-index object Rµναβ ≡ RAB, where A
and B refer respectively to the pair µν and αβ. In this notation, RAB = RBA because of the
Rµναβ = Rαβµν in eq. (11.2.40). Any M ×M symmetric square matrix has M + (M2−M)/2 =
M(M + 1)/2 independent components. In our case, M is the number of independent A (or
B) indices, which in turn – because µν (or αβ) are anti-symmetric – is equal to the number of
independent components of a d×d anti-symmetric matrix; namely,M = (d2−d)/2 = d(d−1)/2.
At this point, we have gathered Riemann has at most M(M +1)/2 = (1/8)d(d−1)(d(d−1)+2)
algebraically independent components. Finally, let us observe eq. (11.2.41) implies we have
additional

(
d
4

)
= d(d − 1)(d − 2)(d − 3)/24 constraint algebraic equations. This then allows us

to conclude Riemann itself has, indeed,

1

8
d(d− 1)(d(d− 1) + 2)−

(
d

4

)
=
d2(d2 − 1)

12
(11.2.44)

algebraically independent components. To prove this final assertion, note that, if any pair of
indices ναβ within the [. . . ] of eq. (11.2.41) are the same, we obtain a trivial 0 = 0. Next,

115See equations (11.3.6) through (11.3.8) below.
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if we consider, say, 0 = Rµ[µαβ] – since ναβ are already fully anti-symmetric, it suffices to set
only one of them equal to µ. Then, 0 = Rµµ[αβ] − 2Rµαµβ − 2Rµβαµ, where µ is not summed
over and equations (9.4.31) and (11.2.40) were employed. Since Rµµαβ = 0 by eq. (11.2.40),
we therefore have Rµαµβ = −Rµβαµ, which is already covered by eq. (11.2.40) itself. These
considerations teach us: eq. (11.2.41) does not yield an independent identity from those in eq.
(11.2.40) whenever any pair of indices are repeated (but not summed over). Since all 4 indices
in eq. (11.2.41) must be distinct for it to be an independent constraint, it remains to be shown
that the order of µναβ is immaterial. Again, because ναβ are already fully anti-symmetric, we
only need to consider swapping, say, µ with ν in eq. (11.2.41). But, eq. (11.2.41) is equivalent to
eq. (11.2.42). By eq. (11.2.40) Rµναβ = −Rνµαβ and by a direct calculation Rµ[βα]ν = Rν[βα]µ. In
other words, the identity Rµναβ = Rµ[βα]ν is entirely equivalent to Rνµαβ = Rν[βα]µ and therefore
the order of µναβ in eq. (11.2.41) does not matter.

Ricci tensor and scalar Because of the symmetries of Riemann in eq. (11.2.40), we
have gαβRαβµν = −gαβRβαµν = −gβαRβαµν = 0; and likewise, R µ

αβµ = 0. In fact, the Ricci
tensor is defined as the sole distinct and non-zero contraction of Riemann:

Rµν ≡ Rσ
µσν . (11.2.45)

This is a symmetric tensor, Rµν = Rνµ, because of eq. (11.2.40); for,

Rµν = gσρRσµρν = gρσRρνσµ = Rνµ. (11.2.46)

Its contraction yields the Ricci scalar

R ≡ gµνRµν . (11.2.47)

Problem 11.6. Commutator of covariant derivatives on higher rank tensor Prove
that

[∇µ,∇ν ]T
α1...αN

β1...βM

= Rα1
σµνT

σα2...αN
β1...βM

+Rα2
σµνT

α1σα3...αN
β1...βM

+ · · ·+RαN
σµνT

α1...αN−1σ
β1...βM

−Rσ
β1µν

Tα1...αN
σβ2...βM

−Rσ
β2µν

Tα1...αN
β1σβ3...βM

− · · · −Rσ
βMµνT

α1...αN
β1...βM−1σ

. (11.2.48)

Also verify that

[∇α,∇β]φ = 0, (11.2.49)

where φ is a scalar.

Problem 11.7. Bianchi identities II If [A,B] ≡ AB − BA, can you show that the
differential operator

[∇α, [∇β,∇δ]] + [∇β, [∇δ,∇α]] + [∇δ, [∇α,∇β]] (11.2.50)

is actually zero? (Hint: Just expand out the commutators.) Why does that imply

∇[αR
µν
βδ] = 0? (11.2.51)
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Using this result, show that

∇σR
σβ
µν = ∇[µR

β
ν]. (11.2.52)

The Einstein tensor is defined as

Gµν ≡ Rµν −
1

2
gµνR. (11.2.53)

From eq. (11.2.52) can you show the divergence-less property of the Einstein tensor, i.e.,

∇µGµν = ∇µ

(
Rµν −

1

2
gµνR

)
= 0? (11.2.54)

This is an important property when understanding Einstein’s equations of General Relativity,
with a non-zero cosmological constant Λ,

Gµν − Λgµν = 8πGNTµν , (11.2.55)

where Tµν encodes the energy-momentum-stress-shear of matter. By employing eq. (11.2.54)
and metric compatibility, we see that taking the divergence of eq. (11.2.55) leads us to the
conservation of energy-momentum-shear-stress: ∇µTµν = 0.

Remark: Christoffel vs. Riemann Before moving on to geodesics, I wish to emphasize
the basic facts that, given a space(time) metric:

Non-zero Christoffel symbols do not imply non-zero space(time) curvature. Non-
trivial space(time) curvature does not imply non-trivial Christoffel symbols.

The confusion that Christoffel symbols are somehow intrinsically tied to curved space(time)s is
likely linked to the fact that one often encounters them for the first time while taking a course
on General Relativity. Note, however, that while the Christoffel symbols of flat space(time) in
Cartesian coordinates are trivial; they become non-zero when written in spherical coordinates –
recall Problem (9.31). On the other hand, in a locally flat or Fermi-Normal-Coordinate system
– see equations (9.2.1) in the previous Chapter; and (11.3.6)–(11.3.8) below – the Christoffel
symbols vanish at y⃗0 in the former and along the freely falling geodesic yα = (τ, y⃗) in the latter.

Geodesics As already noted, even in flat spacetime, ds2 is not positive-definite (cf.
(10.1.1)), unlike its purely spatial counterpart. Therefore, when computing the distance along
a line in spacetime zµ(λ), with boundary values z(λ1) ≡ x′ and z(λ2) ≡ x, we need to take the
square root of its absolute value:

s =

∫ λ2

λ1

∣∣∣∣gµν (z(λ)) dzµ(λ)dλ

dzν(λ)

dλ

∣∣∣∣1/2 dλ. (11.2.56)

A geodesic in curved spacetime that joins two points x and x′ is a path that extremizes the
distance between them. Using an affine parameter to describe the geodesic, i.e., using a λ such
that

√
|gµν żµżν | = constant, this amounts to imposing the principle of stationary action on

Synge’s world function (recall eq. (9.3.48)):

σ(x, x′) ≡ 1

2
(λ2 − λ1)

∫ λ2

λ1

gαβ (z(λ))
dzα

dλ

dzβ

dλ
dλ, (11.2.57)
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zµ(λ1) = x′µ, zµ(λ2) = xµ. (11.2.58)

When evaluated on geodesics, eq. (11.2.57) is half the square of the geodesic distance between
x and x′. The curved spactime geodesic equation in affine-parameter form which follows from
eq. (11.2.57), is

D2zµ

dλ2
≡ d2zµ

dλ2
+ Γµαβ

dzα

dλ

dzβ

dλ
= 0. (11.2.59)

Problem 11.8. Choice of ‘units’ for affine parameter Show that eq. (11.2.59) takes
the same form under re-scaling and constant shifts of the parameter λ. That is, if

λ = aλ′ + b, (11.2.60)

for constants a and b, then eq. (11.2.59) becomes

D2zµ

dλ′2
≡ d2zµ

dλ′2
+ Γµαβ

dzα

dλ′
dzβ

dλ′
= 0. (11.2.61)

For the timelike and spacelike cases, this is telling us that proper time and proper length are
respectively only defined up to an overall re-scaling and an additive shift. In other words, both
the base units and its ‘zero’ may be altered at will.

The discussion in §(9.3) had already informed us, the Lagragian associated with eq. (11.2.57),

Lg ≡
1

2
gµν(z(λ))ż

µżν , żµ ≡ dzµ

dλ
, (11.2.62)

not only oftentimes provides a more efficient means of computing the Christoffel symbols, it is
a constant of motion. Unlike the curved space case, however, this Lagrangian Lg can now be
positive, zero, or negative. Because the affine parameter is only defined up to a constant shift
and re-scaling, we have for λ ≡ aλ′ (a ≡ constant),

Lg[λ] =
1

2
gµν(z(λ))

dzν

dλ

dzν

dλ
=

1

2
gµν(z(λ

′))
dzν

dλ′
dzν

dλ′
1

a2
=
Lg[λ

′]

a2
. (11.2.63)

By choosing a appropriately, we may thus deduce the following.

� If żµ is timelike, then by choosing the affine parameter to be proper time dλ
√
gµν żµżν = dτ ,

we see that the Lagrangian is then set to Lg = 1/2.

� If żµ is spacelike, then by choosing the affine parameter to be proper length dλ
√
|gµν żµżν | =

dℓ, we see that the Lagrangian is then set to Lg = −1/2.

� If żµ is null, then the Lagrangian is zero: Lg = 0. Since both sides of eq. (11.2.63) will
remain zero under re-scaling, there is always a freedom to rescale the affine parameter by
a constant:

Lg[λ] = 0 = Lg[λ
′], (11.2.64)

whenever λ = (constant)× λ′.
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Max or Min? A timelike path may be approximated as a series of jagged null paths.
(Drawing a figure here would help.) This indicates there cannot be a non-zero lower bound to the
proper time between two fixed spacetime events, since we may simply deform the timelike path
closer and closer to these jagged null ones and hence approach (from above) zero proper time.116

As long as the geodesic is unique, an extremum cannot be an inflection point because that would
mean the proper time has no maximum; but along a timelike path zµ(λ) in a metric gµν , with

spacetime coordinates xµ and orthonormal frame fields defined through gµν = ηαβε
α̂
µε

β̂

ν
, the

proper time must be bounded by∫
dτ =

∫ √
(dz0̂)2 − δijdz îdz ĵ ≤

∫
|dz0̂|, dzµ̂ ≡ εµ̂αdz

α. (11.2.65)

Therefore, at least locally:117

A timelike extremum must be a maximum proper time.

A spacelike path cannot, in fact, be approximated as a series of jagged null paths. (Drawing a
figure here would help.) But any spacelike path can be increased in length by simply adding
more wiggles to it, say. As long as the geodesic is unique, an inflection point should not exist,
since that would mean the proper length can approach zero for any two end points – a statement
that cannot be true even in flat spacetime. Therefore, at least locally:118

A spacelike extremum must be a minimum length.

Haniltonian Dynamics of Geodesics In §(9.3), we also delineated an alternate but
equivalent Hamiltonian formulation for geodesic motion. The conjugate momentum pµ to the
coordinate zµ is

pµ ≡
∂Lg
∂żµ

= gµν ż
ν . (11.2.66)

The Hamiltonian is

H(z, p) =
1

2
gαβ (z(λ)) pα(λ)pβ(λ); (11.2.67)

and the associated Hamilton’s equations are

dzµ

dλ
=
∂H

∂pµ
= gµνpν , (11.2.68)

dpµ
dλ

= −∂H
∂zµ

= −1

2
(∂µg

αβ)pαpβ. (11.2.69)

116A version of this argument may be found in Carroll’s lecture notes [26].
117Global topology matters. Minkowski spacetime may be ‘compactified’ in time by identifying (0, x⃗) with (T, x⃗);

i.e., time is now periodic, with period T . The geodesics linking (0, x⃗) to (T, x⃗) are zµ(0 ≤ λ ≤ 1) = (0, x⃗)+λ(T, 0⃗)
and zµ(0 ≤ λ ≤ 1) = (0, x⃗).
118Globally, topology matters. For instance, on a 2−sphere, the geodesic joining two points is not unique because

it can either be the smaller or larger arc. In this case, the extremums are, respectively, the local minimum and
maximum.
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Together, equations (11.2.68) and (11.2.69) are equivalent to eq. (11.2.59).
Example In flat spacetime, the Hamiltonian would read

H =
1

2
ηαβpαpβ. (11.2.70)

Since ηαβ is a constant matrix, we infer from equations (11.2.68) and (11.2.69) the conservation
of linear momentum:

żµ = ηµνpν = pµ, (11.2.71)

ṗµ = 0. (11.2.72)

Formal solution to geodesic equation We may re-write eq. (11.2.59) into an integral
equation by simply integrating both sides with respect to the affine parameter λ:

vµ(λ) = vµ(λ1)−
∫ z(λ)

z(λ1)

Γµαβv
αdzβ; (11.2.73)

where vµ ≡ dzµ/dλ; the lower limit is λ = λ1; and we have left the upper limit indefinite. The
integral on the right hand side can be viewed as an integral operator acting on the tangent
vector at vα(z(λ)). By iterating this equation infinite number of times – akin to the Born series
expansion in quantum mechanics – it is possible to arrive at a formal (as opposed to explicit)
solution to the geodesic equation.

Problem 11.9. Synge’s World Function In Minkowski Verify that Synge’s world
function (cf. (11.2.57)) in Minkowski spacetime is

σ̄(x, x′) =
1

2
(x− x′)2 ≡ 1

2
ηµν(x− x′)µ(x− x′)ν , (11.2.74)

(x− x′)µ ≡ xµ − x′µ. (11.2.75)

Hint: If we denote the geodesic zµ(0 ≤ λ ≤ 1) joining x′ to x in Minkowski spacetime, verify
that the solution is

zµ(0 ≤ λ ≤ 1) = x′µ + λ(x− x′)µ. (11.2.76)

This is, of course, the ‘constant velocity’ solution of classical kinematics if we identify λ as a
fictitious time.

Problem 11.10. Geodesic Vector Fields Let vµ(x) be a vector field defined throughout
a given spacetime. Show that the geodesic equation (11.2.59) follows from

vσ∇σv
µ = 0, (11.2.77)

i.e., vµ is parallel transported along itself – provided we recall the ‘velocity flow’ interpretation
of a vector field:

vµ (z(s)) =
dzµ

ds
. (11.2.78)
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Parallel transport preserves norm-squared The metric compatibility condition in eq. (11.2.16)
obeyed by the covariant derivative ∇α can be thought of as the requirement that the norm-
squared v2 ≡ gµνv

µvν of a geodesic vector (vµ subject to eq. (11.2.77)) be preserved under
parallel transport. Can you explain this statement using the appropriate equations?

Non-affine form of geodesic equation Suppose instead

vσ∇σv
µ = κvµ. (11.2.79)

This is the more general form of the geodesic equation, where the parameter λ is not an affine one.
Nonetheless, by considering the quantity vσ∇σ(v

µ/(vνv
ν)p), for some real number p, show how

eq. (11.2.79) can be transformed into the form in eq. (11.2.77); that is, identify an appropriate
v′µ such that

v′σ∇σv
′µ = 0. (11.2.80)

You should comment on how this re-scaling fails when vµ is null.
Starting from the finite distance integral

s ≡
∫ λ2

λ1

dλ
√
|gµν(z(λ))żµżν |, żµ ≡ dzµ

dλ
, (11.2.81)

zµ(λ1) = x′, zµ(λ2) = x; (11.2.82)

show that demanding s be extremized leads to the non-affine geodesic equation

z̈µ + Γµαβ ż
αżβ = żµ

d

dλ
ln
√
gαβ żαżβ. (11.2.83)

Geodesic Vector Fields in Cosmology An elementary example of a geodesic vector
field occurs in cosmology. There is evidence that we live in a universe described by the following
metric at the very largest length scales:

ds2 = dt2 − a(t)2dx⃗ · dx⃗. (11.2.84)

Let us demonstrate that

Uµ = δµ0 (11.2.85)

is in fact a timelike geodesic vector field. Firstly,

gµνU
µUν = g00 = 1 > 0. (11.2.86)

Next, keeping in mind eq. (11.2.85), we compute

Uµ∇µU
α = ∇0U

α = ∂0δ
α
0 + Γα00 (11.2.87)

=
1

2
gασ (∂0g0σ + ∂0g0σ − ∂σg00) = gα0∂0g00 = 0. (11.2.88)
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The interpretation is that Uµ = δµ0 is tangent to the worldlines of observers ‘at rest’ with the
expanding universe, since the spatial velocities are zero. Furthermore, we may infer that (cf. eq.
(9.5.15))

Hµν = gµν − UµUν (11.2.89)

is the metric orthogonal to Uµ itself; namely,

HµνU
ν = Uµ − Uµ(UνUν) = 0 (11.2.90)

because eq. (11.2.86) tells us UνU
ν = 1. The space orthogonal to Uµ reads

dℓ2 = −Hµνdx
µdxν = −(dt2 − a2dx⃗ · dx⃗− (Uµdx

µ)2) = a(t)2dx⃗ · dx⃗, (11.2.91)

as (Uµdx
µ)2 = (δ0µdx

µ)2 = dt2. It is expanding/contracting, with relative t−dependent size
governed by a(t).

Problem 11.11. Geodesic Flow Preserves Character Let vα be a geodesic vector
field. Prove that, if vα is timelike, null, or spacelike at a given spacetime location z, it remains
timelike, null, or spacelike along the entire integral curve passing through z. Hint: Compute
vσ∇σv

2 ≡ vσ∇σ(gαβv
αvβ). You should find that this result hold for both affinely and non-affinely

parametrized vα.

Problem 11.12. Null Geodesics and Weyl Transformations Suppose two geometries
gµν and ḡµν are related via a Weyl transformation

gµν(x) = Ω(x)2ḡµν(x). (11.2.92)

We note that, as long as Ω ̸= 0, then the null constraint ḡµνq
µqν = 0 is satisfied with respect to

ḡµν iff the constraint gµνq
µqν = Ωḡµνq

µqν = 0 is satisfied with respect to its Weyl-transformed
counterpart gµν . This suggests the null geodesics in gµν and ḡµν are related.

Consider the null geodesic equation in the geometry gµν(x),

kσ∇σk
µ = 0, gµνk

µkν = 0 (11.2.93)

where ∇ is the covariant derivative with respect to gµν ; as well as the null geodesic equation in
ḡµν(x),

k̄σ∇σk̄
µ = 0, ḡµν k̄

µk̄ν = 0; (11.2.94)

where ∇ is the covariant derivative with respect to ḡµν . Show that

k̄µ = Ω2 · kµ. (11.2.95)

Hint: First show that the Christoffel symbol Γ
µ

αβ[ḡ] built solely out of ḡµν is related to Γµαβ[g]
built out of gµν through the relation

Γµαβ[g] = Γ̄µαβ[ḡ] + δµ{β∇α} lnΩ− ḡαβ∇
µ
lnΩ. (11.2.96)

Then remember to use the constraint gµνk
µkν = 0 = ḡµν k̄

µk̄ν .
A spacetime is said to be conformally flat if it takes the form

gµν(x) = Ω(x)2ηµν . (11.2.97)

Solve the null geodesic equation explicitly in such a spacetime.
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Problem 11.13. Shapiro Time Delay in Static Newtonian Spacetimes As a simple
application of Synge’s world function, let us consider an isolated (non-relativistic) astrophysical
system centered at x⃗ = 0. We shall assume its gravity is weak, and may be described by a static
Newtonian potential Φ, through the metric

gµν = ηµν + 2Φ(x⃗)δµν . (11.2.98)

Within 4D Linearized General Relativity, we will find that the Newtonian potential is sourced
by the astrophysical energy density ρ via Poisson’s equation:

∇⃗2Φ(x⃗) = 4πGNρ(x⃗). (11.2.99)

In §(12) below, we shall solve this equation through the Euclidean Green’s function.

Φ(x⃗) = −GN

∫
R3

ρ(x⃗′)

|x⃗− x⃗′|
d3x⃗′. (11.2.100)

Let us shoot a beam of light from one side of the astrophysical system to opposite side, through
its central region where Φ is non-trivial. Assume the emitter and receiver are at rest, respectively
at x⃗ = x⃗e and x⃗ = x⃗r; and they are far away enough that Φ is negligible, so that to a good
approximation, the global time t refers to their proper times. Our primary goal is to compute
the elapsed time between receipt tr and emission te.

In §(11.4.1) below, we develop perturbation theory off a flat background spacetime. In
particular, we show that the world function up to first order in perturbation takes the form in
eq. (11.4.85). Exploit it to show that, by virtue of being a null signal,

T 2 = R2 − 2(T 2 +R2)

∫ 1

0

Φ (x⃗e + λ(x⃗r − x⃗e)) dλ+O
(
Φ2
)
. (11.2.101)

where

T ≡ tr − te and R ≡ |x⃗r − x⃗e|. (11.2.102)

According to eq. (11.2.101), T 2 goes as R2 plus an order Φ correction. Therefore, replacing the
T 2 on the right hand side of eq. (11.2.101) with R2 would incur an error of order Φ2. Explain
why the time elapsed T = tr − te is thus

T = R

(
1− 2

∫ 1

0

Φ (x⃗e + λ(x⃗r − x⃗e)) dλ
)
+O

(
Φ2
)
. (11.2.103)

Why is this a time delay? Hint: What sign is the gravitational potential Φ? You may notice
this is a time delay, because energy density is strictly positive!

This Shapiro time delay was first measured in practice by bouncing radio waves from Earth
off Mercury and Venus during their superior conjunctions; see [38, 39, 40]. To date, the most
precise Shapiro time-delay measurement is from the Doppler tracking of the Cassini spacecraft;
see §4.1.2 of [37].
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11.3 Equivalence Principles, Geometry-Induced Tidal Forces, Isome-
tries & Geometric Tensors

Weak Equivalence Principle, ‘Free-Fall’ & Gravity as a Non-Force The universal
nature of gravitation – how it appears to act in the same way upon all material bodies inde-
pendent of their internal composition – is known as the Weak Equivalence Principle. As we will
see, the basic reason why the weak equivalence principle holds is because everything inhabits the
same spacetime gµν .

Within non-relativistic physics, the acceleration of some mass M1 located at x⃗1, due to the
Newtonian gravitational ‘force’ exerted by some other mass M2 at x⃗2, is given by

M1
d2x⃗1
dt2

= −n̂GNM1M2

|x⃗1 − x⃗2|2
, n̂ ≡ x⃗1 − x⃗2

|x⃗1 − x⃗2|
. (11.3.1)

Strictly speaking the M1 on the left hand side is the ‘inertial mass’, a characterization of the
resistance – so to speak – of any material body to being accelerated by an external force. While
the M1 on the right hand side is the ‘gravitational mass’, describing the strength to which
the material body interacts with the gravitational ‘force’. Viewed from this perspective, the
equivalence principle is the assertion that the inertial and gravitational masses are the same, so
that the resulting motion does not depend on them:

d2x⃗1
dt2

= −n̂ GNM2

|x⃗1 − x⃗2|2
. (11.3.2)

Similarly, the acceleration of body 2 due to the gravitational force exerted by body 1 is inde-
pendent of M2:

d2x⃗2
dt2

= +n̂
GNM1

|x⃗1 − x⃗2|2
. (11.3.3)

This Weak Equivalence Principle119 is one of the primary motivations that led Einstein to recog-
nize gravitation as the manifestation of curved spacetime. The reason why inertial mass appears
to be equal to its gravitational counterpart, is because material bodies now follow (timelike)
geodesics zµ(τ) in curved spacetimes:

aµ ≡ D2zµ

dτ 2
≡ d2zµ

dτ 2
+ Γµαβ

dzα

dτ

dzβ

dτ
= 0; gµν (z(λ))

dzµ

dτ

dzν

dτ
> 0; (11.3.4)

so that their motion only depends on the curved geometry itself and does not depend on their
own mass. From this point of view, gravity is no longer a force. Now, if there were an external
non-gravitational force fµ, then the covariant Newton’s second law for a system of mass M
would read: MD2zµ/dτ 2 = fµ.

Note that, strictly speaking, this “gravity-induced-dynamics-as-geodesics” is actually an ide-
alization that applies for material bodies with no internal structure and whose proper sizes are
very small compared to the length scale(s) associated with the geometric curvature itself. In real-
ity, all physical systems have internal structure – non-trivial quadrupole moments, spin/rotation,

119See Will [37] arXiv: 1403.7377 for a review on experimental tests of various versions of the Equivalence
Principle and other aspects of General Relativity. See also the Eöt-Wash Group.
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etc. – and may furthermore be large enough that their full dynamics require detailed analysis
to understand properly.

Newton vs. Einstein Observe that the Newtonian gravity of eq. (11.3.1) in an instan-
taneous force, in that the force on body 1 due to body 2 (or, vice versa) changes immediately
when body 2 starts changing its position x⃗2 – even though it is located at a finite distance away.
However, Special Relativity tells us there ought to be an ultimate speed limit in Nature, i.e.,
no physical effect/information can travel faster than c. This apparent inconsistency between
Newtonian gravity and Einstein’s Special Relativity is of course a driving motivation that led
Einstein to General Relativity. As we shall see shortly, by postulating that the effects of gravi-
tation are in fact the result of residing in a curved spacetime, the Lorentz symmetry responsible
for Special Relativity is recovered in any local “freely-falling” frame.

Massless particles Finally, this dynamics-as-geodesics also led Einstein to realize – if
gravitation does indeed apply universally – that massless particles such as photons, i.e., elec-
tromagnetic waves, must also be influenced by the gravitational field too. This is a significant
departure from Newton’s law of gravity in eq. (11.3.1), which may lead one to suspect otherwise,
since Mphoton = 0. It is possible to justify this statement in detail, but we shall simply assert
here – to leading order in the JWKB approximation (i.e., in the high frequency limit) photons
in fact sweep out null geodesics zµ(λ) in curved spacetimes:

aµ ≡ D2zµ

dλ2
= 0, gµν (z(λ))

dzµ

dλ

dzν

dλ
= 0. (11.3.5)

Locally flat coordinates, Einstein Equivalence Principle & Symmetries We now
come to one of the most important features of curved spacetimes. In the neighborhood of a
timelike geodesic yµ = (τ, y⃗), one may choose Fermi normal coordinates xµ ≡ (τ, x⃗) such that
spacetime appears flat up to distances of O(1/|maxRµναβ(y = (τ, y⃗))|1/2); namely, gµν = ηµν
plus corrections that begin at quadratic order in the displacement x⃗− y⃗:

g00(τ, x⃗) = 1−R0a0b(τ) · (xa − ya)(xb − yb) +O
(
(x− y)3

)
, (11.3.6)

g0i(τ, x⃗) = −
2

3
R0aib(τ) · (xa − ya)(xb − yb) +O

(
(x− y)3

)
, (11.3.7)

gij(τ, x⃗) = ηij −
1

3
Riajb(τ) · (xa − ya)(xb − yb) +O

(
(x− y)3

)
. (11.3.8)

Here x0 = τ is the time coordinate, and is also the proper time of the observer with the trajectory
yµ(τ) = (τ, y⃗). (The y⃗ are fixed spatial coordinates; they do not depend on τ .) Suppose you
were placed inside a closed box, so you cannot tell what’s outside. Then provided the box is
small enough, you will not be able to distinguish between being in “free-fall” in a gravitational
field versus being in a completely empty Minkowski spacetime.120

As already alluded to in the ‘Newton vs. Einstein’ discussion above, just as the rotation
and translation symmetries of flat Euclidean space carried over to a small enough region of
curved spaces – the FNC expansion of equations (11.3.6) through (11.3.8) indicates that, within
the spacetime neighborhood of a freely-falling observer, any curved spacetime is Lorentz and
spacetime-translation symmetric.

120The primary difference between eq. (9.2.1) and equations (11.3.6)-(11.3.8), apart from the fact that the
former deals with curved spaces and the latter with curved spacetimes, is that the former only expresses the
metric as a flat one at a single point, whereas the latter does so along the entire geodesic.
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Summary Physically speaking, in a freely falling frame {xµ} – i.e., centered
along a timelike geodesic at x = y – physics in a curved spacetime is the same as
that in flat Minkowski spacetime up to corrections that go at least as

ϵE ≡
Length or inverse mass scale of system

Length scale of the spacetime geometric curvature
. (11.3.9)

In particular, since the Christoffel symbols on the world line vanishes, the geodesic
yµ itself obeys the free-particle version of Newton’s 2nd law: d2yµ/ds2 = 0.

More generally, because material bodies (with mass > 0) sweep out geodesics
according to eq. (11.3.4), they all fall at the same rate – independent of their gravi-
tational or inertial masses. To quip: “acceleration is zero, gravity is not a force.”

This is the essence of the equivalence principle that lead Einstein to recognize curved spacetime
to be the setting to formulate his General Theory of Relativity.

Problem 11.14. In this problem, we will understand why we may always choose the frame
where the spatial components y⃗ are time (i.e., τ−)independent.

First use the geodesic equation obeyed by yα to conclude dyα/dτ are constants. If τ refers
to the proper time of the freely falling observer at yα(τ), then explain why

ηαβ
dyα

dτ

dyβ

dτ
= 1. (11.3.10)

Since this is a Lorentz invariant condition, {yα} can be Lorentz boosted yα → Λαµy
µ to the rest

frame such that

dyα

ds
→ Λαµ

dyµ

ds
=
(
1, 0⃗
)
; (11.3.11)

where the {Λαµ} themselves are time-independent. In other words, one can always find a frame
where ẏi = 0; i.e., yi are τ−independent.

To sum: in the co-moving frame of the freely falling observer yα(τ), the only τ dependence
in equations (11.3.6), (11.3.7) and (11.3.8) occur in the Riemann tensor.

Problem 11.15. Verify that the coefficients in front of the Riemann tensor in equations (11.3.6),
(11.3.7) and (11.3.8) are independent of the spacetime dimension. That is, starting with

g00(x) = 1− A ·R0a0b(τ) · (x− y)a(x− y)b +O
(
(x− y)3

)
, (11.3.12)

g0i(x) = −B ·R0aib(τ) · (x− y)a(x− y)b +O
(
(x− y)3

)
, (11.3.13)

gij(x) = ηij − C ·Riajb(τ) · (x− y)a(x− y)b +O
(
(x− y)3

)
, (11.3.14)

where A,B,C are unknown constants, recover the Riemann tensor at x = y. Hint: the calcula-
tion of R0ijk and Rabij may require the Bianchi identity R0[ijk] = 0.

Note: This problem is not meant to be a derivation of the Fermi normal expansion in equa-
tions (11.3.6), (11.3.7), and (11.3.8) – for that, see Poisson [21] §1.6 – but merely a consistency
check.
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Fermi versus Riemann Normal Coordinates The Riemann normal coordinate sys-
tem {yα} version of eq. (9.2.1) but in curved spacetimes reads

gµν(y → y0) = ηµν −
1

3
Rµανβ(y0) · (y − y0)α(y − y0)β +O

(
(y − y0)3

)
. (11.3.15)

This is to be contrasted with equations (11.3.6), (11.3.7), and (11.3.8). The latter holds along
the entire ‘free-falling’ geodesic; where eq. (11.3.15) only holds in the neighborhood around
y ≈ y0. In particular, the Riemann tensor in eq. (11.3.15) should be viewed as a constant; while
the Riemann in equations (11.3.6), (11.3.7), and (11.3.8) is a function of time, since curvature
can change along the geodesic.

Problem 11.16. Gravitational force in a weak gravitational field Consider the fol-
lowing metric written in Cartesian xµ = (t, x⃗) coordinates.

gµν(t, x⃗)dx
µdxν = (1 + 2Φ(x⃗)) dt2 − (1− 2Φ(x⃗))dx⃗ · dx⃗+ 2Ai(x⃗)dtdx

i, (11.3.16)

where both Φ and Ai are time-independent. Assume this is a weak gravitational field, in that
|Φ|, |Ai| ≪ 1 everywhere in spacetime, and there are no non-gravitational forces. (Linearized

General Relativity reduces to the Poisson equations ∇⃗2Φ = 4πGNρ and ∇⃗2Ai = 16πGNPi,
where ρ is the mass/energy density of matter and Pi is its momentum density.) Starting from
the non-affine form of the action principle

−Ms = −M
∫ t2

t1

dt
√
gµν żµżν , żµ ≡ dzµ

dt

= −M
∫ t2

t1

dt
√

1− v⃗2 + 2Φ(1 + v⃗2) + 2Aivi, v⃗2 ≡ δij ż
iżj; (11.3.17)

expand this action to lowest order in v⃗2, Φ and Ai; and work out the geodesic equation of a ‘test
mass’ M sweeping out some worldline zµ in such a spacetime. Show that, in this non-relativistic
limit, with an overdot representing a t−derivative:

¨⃗z = E⃗ + ( ˙⃗z × B⃗), (11.3.18)

Ei = −∂iΦ, (11.3.19)

Bi = −1

2
ϵijkFjk, Fjk ≡ ∂jAk − ∂kAk (11.3.20)

Newton’s law of gravitation is captured within the ‘electric field’ term E⃗; i.e., force is negative
gradient of the gravitational potential Φ.

On the other hand, the presence of the ‘magnetic field’ term B⃗ – as the curl of Ai – has no
counterpart in Newtonian gravity, even in this non-relativistic limit. Notice the resemblance of
eq. (11.3.18) to the Lorentz force law of electromagnetism; this analogy is sometimes dubbed
gravitoelectromagnetism.

Geodesic Deviation and Tidal Forces We now turn to the derivation of the geodesic
deviation equation. Consider two geodesics that are infinitesimally close-by. Let both of them
be parametrized by λ, so that we may connect one geodesic to the other at the same λ via an
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infinitesimal vector ξµ. We will denote the tangent vector to one of geodesics to be Uµ, such
that

Uσ∇σU
µ = 0. (11.3.21)

Furthermore, we will assume that [U, ξ] = 0, i.e., U and ξ may be integrated to form a 2D
coordinate system in the neighborhood of this pair of geodesics. Then, the acceleration of the
deviation vector becomes

Uα∇α

(
Uβ∇βξ

µ
)
= UαUβ∇α∇βξ

µ

= ∇U∇Uξ
µ = −Rµ

ναβU
νξαUβ. (11.3.22)

As its name suggests, this equation tells us how the deviation vector ξµ joining two infinitesimally
displaced geodesics is accelerated by the presence of spacetime curvature through the Riemann
tensor. If spacetime were flat, the acceleration will be zero: two initially parallel geodesics will
remain so.

Moreover, for a small but macroscopic system, if Uµ is a timelike vector tangent to, say,
the geodesic trajectory of its center-of-mass, the geodesic deviation equation (11.3.22) then
describes tidal forces acting on it – via Newton’s second law. In other words, the relative
acceleration between the ‘particles’ that comprise the system – induced by spacetime curvature
– would compete with the system’s internal forces.121 That the Riemann tensor can be viewed
as the source of tidal forces, complements its closely related geometric role as the measure of the
non-invariance of parallel transport of vectors around an infinitesimal closed loop.

Derivation of eq. (11.3.22) We start by noting [ξ, U ] = (ξα∂αU
µ−Uα∂αξ

µ)∂µ = 0 translates
to

∇ξU = ∇Uξ; (11.3.23)

because ∇ξU
µ = ξσ∂σU

µ+Γµσκξ
σUκ and ∇Uξ

µ = Uσ∂σξ
µ+Γµσκξ

σUκ; i.e., the Christoffel terms
cancel due to the symmetry Γµαβ = Γµβα. We then start with the geodesic equation ∇UU

µ = 0
and act ∇ξ upon it.

∇ξ∇UU
µ = 0 (11.3.24)

∇U ∇ξU
µ︸ ︷︷ ︸

=∇U ξµ

+ [∇ξ,∇U ]U
µ = 0 (11.3.25)

∇U∇Uξ
µ = −Rµ

ναβU
νξαUβ (11.3.26)

On the last line, we have exploited the assumption that [U, ξ] = 0 to say [∇ξ,∇U ]U
µ =

Rµ
ναβU

νξαUβ – recall eq. (11.2.36).

Problem 11.17. Alternate Derivation of Geodesic Deivation Equation A less ge-
ometric but equally valid manner to derive eq. (11.3.22) is to appeal to the very definition of

121The first gravitational wave detectors were in fact based on measuring the tidal squeezing and stretching of
solid bars of aluminum. They are known as “Weber bars”, named after their inventor Joseph Weber.
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geodesic deviation. Suppose yµ(τ) and yµ(τ) + ξµ(τ) are nearby geodesics. That means the
latter obeys the geodesic equation

d2(yµ(τ) + ξµ(τ))

dτ 2
+ Γµαβ(y + ξ)

d(yα(τ) + ξα(τ))

dτ

d(yβ(τ) + ξβ(τ))

dτ
= 0. (11.3.27)

If the components ξµ may be considered ’small,’ expand the above up to linear order in ξµ and
show that

d2ξµ

dτ 2
+ 2Γµαβ(y)

dξα

dτ

dyβ

dτ
+ ξσ∂σΓ

µ
αβ(y)

dyα

dτ

dyβ

dτ
= 0. (11.3.28)

Now proceed to demonstrate that equations (11.3.22) and (11.3.28) are equivalent.

Problem 11.18. Geodesic Deviation & FNC Argue that all the Christoffel symbols
Γαµν evaluated along the free-falling geodesic in equations (11.3.6)-(11.3.8), namely when x = y,
vanish. Then argue that all the time derivatives of the Christoffel symbols vanish along y too:
∂n≥1
τ Γαµν = 0. (Hints: Recall from Problem (9.27) that, specifying the first derivatives of the

metric is equivalent to specifying the Christoffel symbols. Why is ∂n≥1
τ gαβ(x = y) = 0? Why is

∂n≥1
τ ∂igαβ(x = y) = 0?) Why does this imply, denoting Uµ ≡ dyµ/dτ , the geodesic equation

Uν∇νU
µ =

dUµ

dτ
= 0? (11.3.29)

Next, evaluate the geodesic deviation equation in these Fermi Normal Coordinates (FNC) sys-
tem. Specifically, show that

UαUβ∇α∇βξ
µ =

d2ξµ

dτ 2
= −Rµ

0ν0ξ
ν . (11.3.30)

Why does this imply, if the deviation vector is purely spatial at a given s = s0, specifically
ξ0(τ0) = 0 = dξ0/dτ0, then it remains so for all time? (Hint: In an FNC system and on the
world line of the free-falling observer, R0

0αβ = R00αβ. What do the (anti)symmetries of the
Riemann tensor say about the right hand side?)

Problem 11.19. A Common Error Eq. (11.3.30) says that the acceleration of the
deviation vector within the FNC system is simply the ordinary one: i.e.,

UαUβ∇α∇βξ
µ =

d2ξµ

dτ 2
. (11.3.31)

Thus, eq. (11.3.30) yields an intuitive interpretation, that a pair of nearby freely falling observers
would sense there is a force acting between them (provided by the Riemann tensor), as though
they were in flat spacetime. However, it appears to be a common error for gravitation textbooks
to assert that eq. (11.3.31) holds more generally than in a FNC system, particularly when
discussing how gravitational waves distort the proper distances between pairs of nearby free-
falling test masses.

To this end, let us assume the metric at hand has been put in the synchronous gauge, defined
to be the coordinate system where g00 = g00 = 1 and g0i = g0i = 0. Moreover, assume the spatial
metric is slightly perturbed from the Euclidean one; namely,

gµνdx
µdxν = dτ 2 − (δij − hij(τ, x⃗)) dxidxj, |hij| ≪ 1, Uµ = δµ0 . (11.3.32)
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Show that eq. (11.3.31) is no longer true; but up to first order in hij it reads instead

UαUβ∇α∇βξ
µ = ξ̈µ + ηµj ξ̇kḣjk +

1

2
ηµjξkḧjk +O(h2), (11.3.33)

where all the overdot(s) are partial derivative(s) with respect to proper time τ .

Problem 11.20. Tidal forces due to mass monopole of isolated body In this problem
we will consider sprinkling test masses initially at rest on the surface of an imaginary sphere
of very small radius rϵ, whose center is located far from that of a static isolated body whose
stress tensor is dominated by its mass density ρ(x⃗). We will examine how these test masses will
respond to the gravitational tidal forces exerted by ρ.

Assume that the weak field metric generated by ρ is given by eq. (11.3.16); it is possible to
justify this statement by using the linearized Einstein’s equations. Show that the vector field

Uµ(t, x⃗) ≡ δµ0 (1− Φ(x⃗))− tδµi ∂iΦ(x⃗) (11.3.34)

is a timelike geodesic up to linear order in the Newtonian potential Φ. This Uµ may be viewed
as the tangent vector to the worldline of the observer who was released from rest in the (t, x⃗)
coordinate system at t = 0. (To ensure this remains a valid perturbative solution we shall also

assume t/r ≪ 1.) Let ξµ = (ξ0, ξ⃗) be the deviation vector whose spatial components we wish
to interpret as the small displacement vector joining the center of the imaginary sphere to its
surface. Use the above Uα to show that – up to first order in Φ – the right hand sides of its
geodesic deviation equations are

UαUβ∇α∇βξ
0 = 0, (11.3.35)

UαUβ∇α∇βξ
i = Ri0j0ξ

j; (11.3.36)

where the linearized Riemann tensor reads

Ri0j0 = −∂i∂jΦ(x⃗). (11.3.37)

Assuming that the monopole contribution dominates,

Φ(x⃗) ≈ Φ(r) = −GNM

r
= − rs

2r
, (11.3.38)

show that these tidal forces have strengths that scale as 1/r3 as opposed to the 1/r2 forces of
Newtonian gravity itself – specifically, you should find

Ri0j0 ≈ −
(
δij − r̂ir̂j

) Φ′(r)

r
− r̂ir̂jΦ′′(r), r̂i ≡ xi

r
, (11.3.39)

so that the result follows simply from counting the powers of 1/r from Φ′(r)/r and Φ′′(r). By

setting ξ⃗ to be (anti-)parallel and perpendicular to the radial direction r̂, argue that the test
masses lying on the radial line emanating from the body centered at x⃗ = 0⃗ will be stretched apart
while the test masses lying on the plane perpendicular to r̂ will be squeezed together. (Hint: You
should be able to see that δij − r̂ir̂j is the Euclidean space orthogonal to r̂.)

The shape of the Earth’s ocean tides can be analyzed in this manner by viewing the Earth
as ‘falling’ in the gravitational fields of the Moon and the Sun.
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Geometric Meaning of Ricci Tensor Having discussed at some length the meaning of
the Riemann tensor, we may now ask: Is there a geometric meaning to its trace, the Ricci tensor
in eq. (11.2.46)? One such geometric meaning can be found within the Raychaudhuri equation,
which describes the rate of expansion or contraction of a bundle of integral curves; see Poisson
[21] for a discussion. Another (related) perspective is its relation to the local volume of spacetime
relative that of Minkowski. For, we may identify in equations (11.3.15),

gµν = ηµν + hµν ; (11.3.40)

where

hµν(y) = −
1

3
Rµανβ(y0) · (y − y0)α(y − y0)β +O

(
(y − y0)3

)
. (11.3.41)

This in turn implies, from eq. (11.2.46),

h(y) ≡ ηαβ(y)hαβ(y) = −
1

3
Rαβ(y0) · (y − y0)α(y − y0)β +O

(
(y − y0)3

)
. (11.3.42)

At this point, we may invoke the spacetime version of the discussion leading up to eq. (9.3.137),
to deduce the infinitesimal spacetime volume element around y = y0 is given by

ddy
√
|g(y ≈ y0)| = ddy

(
1− 1

6
Rαβ(y0) · (y − y0)α(y − y0)β +O

(
(y − y0)3

))
. (11.3.43)

This teaches us: the Ricci tensor controls the growth/shrinking of volume, relative to that in
flat spacetime, as one follows the congruence of vectors (y − y0)

α emanating from some fixed
location y0.

122

Interlude Let us pause to summarize the physics we have revealed thus far.

In a curved spacetime, where gµν ̸= ηµν , no global Lorentz inertial frame exists.
The collective motion of a system of mass M sweeps out a timelike geodesic – recall
equations (11.2.59), (11.2.77), and (11.2.83) – whose dynamics is actually indepen-
dent of M as long as its internal structure can be neglected. In the co-moving frame
of an observer situated within this same system, physical laws appear to be the same
as that in Minkowski spacetime up to distances of order 1/|maxRα̂β̂µ̂ν̂ |1/2. However,
once the finite size of the physical system is taken into account, one would find tidal
forces exerted upon it due to spacetime curvature itself – this is described by the
geodesic deviation eq. (11.3.30).

Killing Vectors A geometry is said to enjoy an isometry – or, symmetry – when we perform
a coordinate transformation induced by the following infinitesimal displacement

xµ → xµ + ξµ(x) (11.3.44)

and find that the geometry is unchanged

gµν(x)→ gµν(x) +O
(
ξ2
)
. (11.3.45)

122A shorter version of this discussion may be found on Wikipedia. A closely related explanation of the meaning
of Einstein’s equation (11.2.55) using the Raychaudhuri equation may be found in Baez and Bunn [29].
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Generically, under the infinitesimal transformation of eq. (11.3.44),

gµν(x)→ gµν(x) +∇µξν +∇νξµ. (11.3.46)

where

∇{µξν} = ξσ∂σgµν + gσ{µ∂ν}ξ
σ. (11.3.47)

If an isometry exists along the integral curve of ξµ, it has to obey Killing’s equation – recall
equations (9.2.67) and (9.2.68) –

∇{µξν} = ξσ∂σgµν + ∂{µξ
σgν}σ = 0. (11.3.48)

In fact, by exponentiating the infinitesimal coordinate transformation, it is possible to show that
– if ξµ is a Killing vector (i.e., it satisfies eq. (11.3.48)), then an isometry exists along its integral
curve. In other words,

A spacetime geometry enjoys an isometry (aka symmetry) along the integral curve
of ξµ iff it obeys ∇{µξν} = ∇µξν +∇νξµ = 0.

In a d−dimensional spacetime, there are at most d(d+1)/2 Killing vectors. A spacetime that has
d(d+ 1)/2 Killing vectors is called maximally symmetric. (See Weinberg [23] for a discussion.)

Problem 11.21. Conserved quantities along geodesics (I of II) ◦ If pµ denotes the
‘momentum’ variable of a geodesic

pµ ≡
∂Lg

∂żµ
= gµν (z(λ))

dzν(λ)

dλ
, (11.3.49)

where Lg is defined in eq. (11.2.62), and if ξµ is a Killing vector of the same geometry∇{αξβ} = 0,
show that

ξµ(z(λ))pµ(λ) = gαβ ż
α(λ)ξβ(z(λ)) (11.3.50)

is a constant along the geodesic zµ(λ). Hints: If you perturb the coordinates by the Killing
vector ξµ, namely xµ → xµ + ξµ, then you should be able to obtain – to first order in ξ –

żµ → żµ + żσ∂σξ
µ =

d

dλ
(zµ(λ) + ξµ(z(λ))) , (11.3.51)

Lg → Lg; (11.3.52)

i.e., the Lagrangian is invariant if you recall eq. (11.3.48). On the other hand, varying the
Lagrangian to first order yields

δLg =
∂Lg

∂żσ
ξ̇σ +

∂Lg

∂zσ
ξσ +O

(
ξ2
)
. (11.3.53)

(II of II) ◦ The vector field version of this result goes as follows.

If the geodesic equation vσ∇σv
µ = 0 holds, and if ξµ is a Killing vector, then ξνv

ν

is conserved along the integral curve of vµ.
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Can you demonstrate the validity of this statement?

Second Derivatives of Killing Vectors Now let us also consider the second derivatives
of ξµ. In particular, we will now explain why

∇α∇βξδ = Rλ
αβδξλ. (11.3.54)

Consider

0 = ∇δ∇{αξβ} (11.3.55)

= [∇δ,∇α]ξβ +∇α∇δξβ + [∇δ,∇β]ξα +∇β∇δξα (11.3.56)

= −Rλ
βδαξλ −∇α∇βξδ −Rλ

αδβξλ −∇β∇αξδ (11.3.57)

Because Bianchi says 0 = Rλ
[αβδ] ⇒ Rλ

αβδ = Rλ
βαδ +Rλ

δβα.

0 = −Rλ
βδαξλ −∇α∇βξδ +

(
Rλ

βαδ +Rλ
δβα

)
ξλ −∇β∇αξδ (11.3.58)

0 = −2Rλ
βδαξλ −∇{β∇α}ξδ − [∇β,∇α]ξδ (11.3.59)

0 = −2Rλ
βδαξλ − 2∇β∇αξδ (11.3.60)

This proves eq. (11.3.54).
Commutators of Killing Vectors Next, we will show that

The commutator of 2 Killing vectors is also a Killing vector.

Let U and V be Killing vectors. If ξ ≡ [U, V ], we need to verify that

∇{αξβ} = ∇{α[U, V ]β} = 0. (11.3.61)

More explicitly, let us compute:

∇α(U
µ∇µVβ − V µ∇µUβ) + (α↔ β)

= ∇αU
µ∇µVβ −∇αV

µ∇µUβ + Uµ∇α∇µVβ − V µ∇α∇µUβ + (α↔ β)

= −∇µUα∇µVβ +∇µVα∇µUβ + Uµ∇[α∇µ]Vβ + Uµ∇µ∇αVβ

− V µ∇[α∇µ]Uβ − V µ∇µ∇αUβ + (α↔ β)

= −UµRσ
βαµVσ + V µRσ

βαµUσ + (α↔ β)

= −U [µV σ]Rσ{βα}µ = 0.

The (α ↔ β) means we are taking all the terms preceding it and swapping α ↔ β. Moreover,
we have repeatedly used the Killing equations ∇αUβ = −∇βUα and ∇αVβ = −∇βVα.

Problem 11.22. Killing Vectors in Minkowski In Minkowski spacetime gµν = ηµν , with
Cartesian coordinates {xµ}, use eq. (11.3.54) to argue that the most general Killing vector takes
the form

ξµ = ℓµ + ωµνx
ν , (11.3.62)
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for constant ℓµ and ωµν . (Hint: Think about Taylor expansions; use eq. (11.3.54) to show that
the 2nd and higher partial derivatives of ξδ are zero.) Then use the Killing equation (11.3.48)
to infer that

ωµν = −ωνµ. (11.3.63)

The ℓµ corresponds to infinitesimal spacetime translation and the ωµν to infinitesimal Lorentz
boosts and rotations. Explain why this implies the following are the Killing vectors of flat
spacetime:

∂µ (Generators of spacetime translations) (11.3.64)

and

x[µ∂ν] (Generators of Lorentz boosts or rotations). (11.3.65)

There are d distinct ∂µ’s and (due to their antisymmetry) (1/2)(d2−d) distinct x[µ∂ν]’s. Therefore
there are a total of d(d+1)/2 Killing vectors in Minkowski – i.e., it is maximally symmetric.

It might be instructive to check our understanding of rotation and boosts against the 2D
case we have worked out earlier via different means. Up to first order in the rotation angle θ,
the 2D rotation matrix in eq. (10.1.67) reads

R̂i
j(θ) =

[
1 −θ
θ 1

]
+O

(
θ2
)
. (11.3.66)

In other words, R̂i
j(θ) = δij − θϵij, where ϵij is the Levi-Civita symbol in 2D with ϵ12 ≡ 1.

Applying a rotation of the 2D Cartesian coordinates xi upon a test (scalar) function f ,

f(xi)→ f
(
R̂i

jx
j
)
= f

(
xi − θϵijxj +O

(
θ2
))

(11.3.67)

= f(x⃗)− θϵijxj∂if(x⃗) +O
(
θ2
)
. (11.3.68)

Since θ is arbitrary, the basic differential operator that implements an infinitesimal rotation of
the coordinate system on any Minkowski scalar is

−ϵijxj∂i = x1∂2 − x2∂1. (11.3.69)

This is the 2D version of eq. (11.3.65) for rotations. As for 2D Lorentz boosts, eq. (10.1.66)
tells us

Λµν(ξ) =

[
1 ξ
ξ 1

]
+O

(
ξ2
)
. (11.3.70)

(This ξ is known as rapidity.) Here, we have Λµν = δµν + ξ · ϵµν , where ϵµν is the Levi-Civita
tensor in 2D Minkowski with ϵ01 ≡ 1. Therefore, to implement an infinitesimal Lorentz boost
on the Cartesian coordinates within a test (scalar) function f(xµ), we do

f(xµ)→ f
(
Λµνx

ν
)
= f

(
xµ + ξϵµνx

ν +O
(
ξ2
))

(11.3.71)
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= f(x)− ξϵνµxν∂µf(x) +O
(
ξ2
)
. (11.3.72)

Since ξ is arbitrary, to implement a Lorentz boost of the coordinate system on any Minkowski
scalar, the appropriate differential operator is

ϵµνx
µ∂ν = x0∂1 − x1∂0; (11.3.73)

which again is encoded within eq. (11.3.65).

Problem 11.23. Lie Algebra from Killing Vectors Verify that Lie Algebra of SOD,1

in (10.1.137) is recovered if we exploit eq. (11.3.65) to define

Jµν = i(xµ∂ν − xν∂µ), (11.3.74)

where ∂µ ≡ ηµν∂ν . This tells us

f(x)→ exp(−(i/2)ωµνJµν)f(x) (11.3.75)

under a Lorentz boost or rotation.

Problem 11.24. Co-moving Observers & Rulers In Cosmology We live in a universe
that, at the very largest length scales, is described by the following spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = dt2 − a(t)2dx⃗ · dx⃗; (11.3.76)

where a(t) describes the relative size of the universe. Enumerate as many constants-of-motion
as possible of this geometry. (Hint: Focus on the spatial part of the metric and try to draw a
connection with the previous problem.)

In this cosmological context, a co-moving observer is one that does not move spatially, i.e.,
dx⃗ = 0. Solve the geodesic swept out by such an observer.

Galaxies A and B are respectively located at x⃗ and x⃗′ at a fixed cosmic time t. What is their
spatial distance on this constant t slice of spacetime?

Problem 11.25. Killing identities involving Ricci Prove the following results. If ξµ is
a Killing vector and Rαβ and R are the Ricci tensor and scalar respectively, then

ξα∇βRαβ = 0 and ξα∇αR = 0. (11.3.77)

Hints: First use eq. (11.3.54) to show that

□ξδ = −Rλ
δξλ, (11.3.78)

□ ≡ gαβ∇α∇β = ∇α∇α. (11.3.79)

Then take the divergence on both sides, and commute the covariant derivatives until you obtain
the term □∇δξδ – what is ∇δξδ equal to? Argue why ξα∇βRαβ = ∇β(ξαRαβ). You may also
need to employ the Einstein tensor Bianchi identity ∇µGµν = 0 to infer that ξα∇αR = 0.
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Schwarzschild Geodesic Motion Let us now study the physically important example
of geodesic motion in the Schwarzschild spacetime, the metric of a non-rotating black hole:

ds2 =
(
1− rs

r

)
dt2 − dr2

1− rs
r

− r2
(
dθ2 + sin2(θ)dϕ2

)
. (11.3.80)

Notice this is a rotationally invariant geometry. Below, we will justify why it is therefore always
possible to assume that motion is taking place only on the equatorial plane θ = π/2. The
associated geodesic Lagrangian is therefore

Lg =
1

2

{(
1− rs

r

)
t′2 − r′2

1− rs
r

− r2ϕ′2
}
. (11.3.81)

Problem 11.26. Ricci-flat Solution Verify that the Schwarzschild metric in eq. (11.3.80)
is Ricci flat: Rµν = 0? Why is Rµν = 0 iff Gµν = 0? In General Relativity, this result implies
the Schwarzschild geometry is a vacuum (i.e., matter-free) solution.

Null geodesics in Schwarzschild Let us begin with null geodesics, where the La-
grangian is zero. (

1− rs
r

)
t′2 − r′2

1− rs
r

− r2ϕ′2 = 0 (11.3.82)

The prime is the derivative with respect to some affine parameter λ.
Let us observe that the Schwarzschild metric in eq. (11.3.80) is t− and ϕ−independent, cor-

responding respectively to time-translation and rotational symmetry. Their conserved quantities
are energy E, where

ε ≡ ∂Lg
∂t′

=
(
1− rs

r

)
t′; (11.3.83)

and angular momentum ℓ, where

ℓ ≡ −∂Lg
∂ϕ′ = r2ϕ′. (11.3.84)

The Lagrangian being zero, as well as energy and angular momentum conservation together
yields

t′ =
ε

1− rs/r
, (11.3.85)

ϕ′ =
ℓ

r2
, (11.3.86)

and

1

2
r′2 + V =

ε2

2
. (11.3.87)
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We have defined

V ≡ 1

2

(
ℓ

rs

)2((rs
r

)2
−
(rs
r

)3)
. (11.3.88)

We may view eq. (11.3.87) as the conservation of kinetic energy (1/2)r′2 plus potential energy
V . Defining

α ≡ ℓ

rs
and

r

rs
≡ ρ, (11.3.89)

we may re-express the potential as

V (ρ) =
α2

2

(
1

ρ2
− 1

ρ3

)
; (11.3.90)

which has a derivative

V ′(ρ) =
3α2

2ρ3

(
1

ρ
− 2

3

)
. (11.3.91)

This tells us there is only one turning point, which is located at

r =
3

2
rs. (11.3.92)

The potential energy V goes to −∞ as r → 0; V (r = rs) = 0; and V goes to 0 as r → ∞.
Whereas, at r = (3/2)rs, we have

V (r/rs = 3/2) =
2

27
α2 > 0. (11.3.93)

Hence eq. (11.3.92) is the global maximum and is an unstable equilibrium. For ε2/2 < (2/27)α2,
any null ray moving towards the black hole will eventually turn around and fly off to infinity.
For ε2/2 > (2/27)α2, if the zero mass particle were moving outward it will fly off to infinity;
whereas if it were moving inward it will eventually plunge into the black hole.

If ε2/2 = (2/27)α2, the photon will orbit at the radius in eq. (11.3.92). This is known as the
photon ring.

The only bound lightlike orbit is the circular one at r = 3
2
rs. It is unstable – any

small perturbations would cause it to either plunge into the black hole or escape to
infinity.

These photon trajectories are stark manifestations of the effect of strong relativistic gravity.
While in Newtonian gravity, light has no mass and therefore cannot be affected by gravity; if
gravity is in fact the manifestation of curved spacetime, we see that (high frequency) light can
in fact make circles around our central black hole; or, become deflected by it. Below, you will
solve the light deflection angle due to a weak source of gravity such as the Sun; this was in fact
one of the “classic” tests of General Relativity.

YZ: Massive particles. Runge-Lenz vector. Precession of perihelion. Gravita-
tional lensing. Kruskal-Szekeres. Riemann in orthonormal frame. Penrose diagram;
(t,r) vs (u,v). Horizon. Schutz: photon emission from collapsing star; horizon
generated by null rays. Dragging of inertial frames. Gyroscope precession/Lense-
Thirring?

515



Problem 11.27. Re-scaling the Affine Parameter Explain why it is possible to re-scale
the affine parameter such that we may choose ε = 1 in eq. (11.3.85); so that equations (11.3.85),
(11.3.86), and (11.3.87) become

t′ = (1− rs/r)−1, (11.3.94)

ϕ′ =
ℓ

r2
; (11.3.95)

and

1

2
r′2 +

1

2
V =

1

2
, (11.3.96)

V ≡ α2

((rs
r

)2
−
(rs
r

)3)
. (11.3.97)

Hint: Remember Lg = 0 for null geodesics.

Problem 11.28. Equatorial Plane In this problem, we will justify why geodesic motion
in Schwarzschild may always be taken to be confined solely on the equatorial plane θ = π/2. To
this end, first show that the angular geodesic equations for r ̸= 0, are

θ′′ − cos(θ) sin(θ)ϕ′2 = −2r
′

r
θ′ and ϕ′ =

ℓ

r2
; (11.3.98)

where the constant-of-motion ℓ may be associated with rotational symmetry, and each prime is
a derivative with respect to some affine parameter λ.

Because eq. (11.3.80) is rotation-symmetric, we may orient that axes – and, hence, the angles
(θ, ϕ) – in any manner we wish. At a given instant λ, the particle’s spatial velocity vector vi lies
on a plane that also passes through the origin r = 0. This means we may orient the coordinate
axes so that this plane is the equatorial plane. Explain why, at this instant, if θ′ = 0 then
θ′′ = 0. How does this then demonstrate the geodesic motion will remain on the equatorial
plane? Furthermore, since we have not assumed whether the geodesic is null or timelike, this
conclusion must hold for both.

Problem 11.29. Light Deflection Due To Static Mass Monopole in 4D In General
Relativity the weak field metric generated by an isolated system, of total mass M , is dominated
by its mass monopole and hence goes as 1/r (i.e., its Newtonian potential)

gµν = ηµν + 2Φδµν = ηµν −
rs
r
δµν , (11.3.99)

where we assume |Φ| = rs/r ≪ 1 and

rs ≡ 2GNM. (11.3.100)

Now, the metric of an isolated static non-rotating black hole – i.e., the Schwarzschild black hole
– in isotropic coordinates is

ds2 =

(
1− rs

4r

1 + rs
4r

)2

dt2 −
(
1 +

rs
4r

)4
dx⃗ · dx⃗, r ≡

√
x⃗ · x⃗. (11.3.101)
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The rs ≡ 2GNM here is the Schwarzschild radius; any object falling behind r < rs will not be
able to return to the r > rs region unless it is able to travel faster than light.

Expand this metric in eq. (11.3.101) up to first order rs/r and verify this yields eq. (11.3.99).
We may therefore identify eq. (11.3.99) as either the metric due to the monopole moment of
some static mass density ρ(x⃗) or the far field limit rs/r ≪ 1 of the Schwarzschild black hole.

Statement of Problem: Now consider shooting a beam of light from afar, and by solving
the appropriate null geodesic equations, figure out how much angular deflection ∆φ it suffers
due to the presence of a mass monopole. Express the answer ∆φ in terms of the coordinate
radius of closest approach r0. We shall see that the symmetries of the time-independent and
rotation-invariant geometry of eq. (11.3.99) will prove very useful to this end.

Step-by-step Guide: First, write down the affine-parameter form of the Lagrangian Lg for
geodesic motion in eq. (11.3.99) in spherical coordinates

x⃗ = r (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) . (11.3.102)

Spherical Symmetry and θ Because of the spherical symmetry of the problem, we may always
assume that all geodesic motion takes place on the equatorial plane:

θ =
π

2
. (11.3.103)

‘Energy’ Conservation Proceed to use the t−independence of the metric, together with the
invariance of the null geodesic Lagrangian Lg under constant re-scaling of its affine parameter
λ, to argue that λ itself can always be chosen such that

ṫ =
(
1− rs

r

)−1

. (11.3.104)

Angular Momentum conservation Next, use the ϕ−independence of the metric to show that
angular momentum conservation −∂Lg/∂ϕ̇ ≡ ℓ (constant) yields

ϕ̇ =
ℓ

r2

(
1 +

rs
r

)−1

. (11.3.105)

We are primarily interested in the trajectory as a function of angle, so we may eliminate all
ṙ ≡ dr/dλ as

ṙ =
dϕ

dλ
r′(ϕ) =

ℓ

r2

(
1 +

rs
r

)−1

r′(ϕ), (11.3.106)

where eq. (11.3.105) was employed in the second equality. At this point, by utilizing equations
(11.3.103), (11.3.104), (11.3.105) and (11.3.106), verify that the geodesic Lagrangian now takes
the form

Lg =
1

2

(
r

r − rs
− ℓ2

r2(1 + rs/r)

(
1 +

(
r′(ϕ)

r

)2
))

. (11.3.107)

Closest approach vs angular momentum If r0 is the coordinate radius of closest approach,
which we shall assume is appreciably larger than the Schwarzschild radius r0 ≫ rs, that means
r′(ϕ) = 0 when r = r0. Show that

ℓ = r0

√
r0 + rs
r0 − rs

. (11.3.108)
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An ODE Since null geodesics render Lg = 0, utilize eq. (11.3.108) in eq. (11.3.107), and
proceed to show that – to first order in rs –

dϕ

dr
=

1√
r2 − r20

(
r0
r
+

rs
r + r0

)
+O

(
r2s
)
. (11.3.109)

By integrating from infinity r = ∞ to closest approach r = r0 and then out to infinity again
r =∞, show that the angular deflection is

∆φ =
2rs
r0
. (11.3.110)

Note that, if the photon were undeflected, the total change in angle (
∫ r0
r=∞ dr +

∫∞
r0

dr)(dϕ/dr)
would be π. Therefore, the total deflection angle is

∆φ = 2

∣∣∣∣∫ r0

r=∞

dϕ

dr
dr

∣∣∣∣− π. (11.3.111)

Physical vs Coordinate Radius Even though r0 is the coordinate radius of closest approach,
in a weakly curved spacetime dominated by the monopole moment of the central object, estimate
the error incurred if we set r0 to be the physical radius of closest approach. What is the angular
deflection due to the Sun, if a beam of light were to just graze its surface?

Remark I For further help on this problem, consult §8.5 of Weinberg [23].
Remark II The geometry of eq. (11.1.49) is in fact the same as that in eq. (11.3.101).

More specifically,

ds2 =
(
1− rs

r′

)
dt2 − dr′2

1− rs/r′
− r′2

(
dθ2 + sin(θ)2dϕ2

)
(11.3.112)

=

(
1− rs

4r

1 + rs
4r

)2

dt2 −
(
1 +

rs
4r

)4 {
dr2 − r2

(
dθ2 + sin(θ)2dϕ2

)}
; (11.3.113)

where the dx⃗ ·dx⃗ in eq. (11.3.101) has been converted into the equivalent expression in spherical
coordinates. You may verify, identifying the coordinate transformation rule r′2 = (1+rs/(4r))

4r2

brings one from the first line to the second, or vice versa.

Problem 11.30. Fermat’s Principle and Effective Refractive Index Consider the
static weak-field Newtonian spacetime

ds2 = (1 + 2Φ(x⃗)) dt2 − (1− 2Φ(x⃗)) dx⃗2, (11.3.114)

|Φ| ≪ 1. (11.3.115)

If an over-dot denotes a derivative with respect to an affine parameter λ, explain why we may
exploit the t−independence of the metric to assert

(1 + 2Φ)ṫ = 1. (11.3.116)

Use this constraint to derive the null geodesic equation, accurate up to linear order in Φ:

d

dλ

(
(1− 2Φ(x⃗))

dxi

dλ

)
= ∂i (1− 2Φ) +O(Φ2). (11.3.117)
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Now, consider instead the (coordinate) time elapsed between emission and detection of a given
photon. Explain why, up to first order in Φ,

∆t =

∫
| ˙⃗x| (1− 2Φ(x⃗)) dλ′ +O(Φ2); (11.3.118)

where | ˙⃗x| ≡ |(dx⃗/dλ′)2|1/2. Fermat’s principle states that the null path in such a static spacetime
is one where the elapsed time ∆t is minimized. Show that, in fact, minimizing ∆t leads to eq.
(11.3.117). Explain how dλ is related to dλ′.

Refractive Index Compare equations (8.1.67) and (11.3.117). What is the effective re-
fractive index of the static Newtonian spacetime at hand?

Schwarzschild Horizon Let us now study strictly-radial motion to gain some under-
standing of the meaning of rs. From eq. (11.3.82), and assuming r ̸= rs,(

dt

dr

)2

=
(
1− rs

r

)−2

. (11.3.119)

Far away from the black hole, r → ∞, we recover the light cone in flat spacetime; i.e., dt/dr
describes the 45-degree slopes on the t versus r spacetime diagram:

lim
r→∞

dt

dr
= ±1. (11.3.120)

Problem 11.31. Massive Particles in Schwarzschild In this problem we will explore
the geodesics of massive particles around a Schwarzschild black hole in eq. (11.3.80).

By specializing to the equatorial plane θ = π/2 explain why, when evaluated on the geodesic
solutions, we may choose

1

2

{(
1− rs

r

)
t′(λ)2 − r′(λ)2

1− rs
r

− r2ϕ′(λ)2
}

=
1

2
, (11.3.121)(

1− rs
r

)
t′(λ) = ε, r2ϕ′(λ) = ℓ; (11.3.122)

where ε and ℓ are constants-of-motion respectively associated with time-translation and rota-
tional symmetry.

From these relations, deduce the conservation of ‘kinetic’ r′2/2 plus ‘potential energy’ V/2,

1

2
r′(λ)2 +

1

2
V =

ε2 − 1

2
(11.3.123)

V ≡ ℓ2

r2s

((rs
r

)2
−
(rs
r

)3)
− rs
r
. (11.3.124)

(Note that the geodesic equation for r(λ) is not ‘Newton’s 2nd law’ r′′ = −(1/2)∂rV , because
the geodesic Lagrangian does not take the non-relativistic classical mechanics form r′2/2−V/2.)
Since ℓ is arbitrary at this point, let us redefine

ℓ/rs ≡ α ≥ 0 (11.3.125)
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V ≡ α2

((rs
r

)2
−
(rs
r

)3)
− rs
r
. (11.3.126)

Show that the turning points of V , i.e., satisfying V ′(r±) = 0, as well as the zeroth and second
derivatives of V at r± are

r±
rs

= α
(
α±
√
α2 − 3

)
, (11.3.127)

1

2
V (r±) = −

1±
√
α2 − 3

(
α±
√
α2 − 3

)
2α
(
α±
√
α2 − 3

)3 , (11.3.128)

1

2
(V (r−)− V (r+)) =

2

27

(α2 − 3)
3
2

α
≥ 0, (11.3.129)

1

2
V ′′(r±) = ±

√
α2 − 3

α3
(
α−
√
α2 − 3

)4 . (11.3.130)

For the moment, let us examine the case where α >
√
3. The second derivative results tell us

V (r−) is a maximum and V (r+) is a minimum. The minimum V (r+) is strictly negative; whereas
the maximum V (r−) is negative for

√
3 ≤ α < 2. (Can you show the latter statement regarding

V (r−)?) Moreover, since V (r−) − V (r+) ≥ 0 that means the maximum is always higher than
the minimum. Therefore, we see from eq. (11.3.126) that V is zero at r/rs = +∞; goes negative
as we approach the black hole until the minimum at r+ is reached before climbing up to the
maximum at r−; then as r grows even smaller, V plunges to −∞.

Now, if α =
√
3, the two r± merges to become a single r± = 3rs. The (1/2)V = −1/18 and

V ′′ = 0 there. The potential V/2 therefore starts off at zero at r = ∞, goes negative as one
approaches the black hole, reaches an inflection point at r± = 3rs, before plunging to negative
infinity as r/rs → 0.

Can you make representative plots of V/2?
Physically, we may therefore divide orbits of massive particles in the follow manner.

� α =
√
3 : If −1 ≤ ε2 − 1 < 0 (or, in other words, 0 ≤ ε2 < 1) the particle is bound to the

black hole. Even if it were initially moving outwards, it will turn around and plunge into
the black hole. If ε2 ≥ 1, on the other hand, if the particle were moving inwards it will
plunge into the black hole; but if it were initially moving outwards instead, it will fly off
to infinity.

�
√
3 < α < 2 : If V (r+) ≤ ε2−1 < V (r−) and r > r− the particle is bound to the black hole,

but will not plunge into the black hole – can you figure out the minimum and maximum
r of the orbit as a function of ε2? If, on the other hand, V (r−) < ε2 − 1 < 0, then even if
the particle were moving outward at first, it would turn around and plunge into the black
hole. And if ε2 > 1, if the particle were moving outward, it will fly off to infinity; whereas
if it were moving inwards it will plunge into the black hole.

� α ≥ 2 : If V (r+) ≤ ε2 − 1 < 0 and r− < r < r+, the particle is bound to the black hole,
but will not plunge into the black hole – can you figure out the minimum and maximum
r of the orbit as a function of ε2? If V (r−) > ε2 − 1 > 0 and r > r−, then even if the

520



particle were moving inward at first, it will turn around and fly out to infinity. (This
is the relativistic analog of the hyperbolic unbound orbit in Newtonian gravity.) And if
ε2− 1 > V (r−), if the particle were moving outward, it will fly off to infinity; whereas if it
were moving inwards it will plunge into the black hole.

Innermost Stable Circular Orbit (ISCO) For α >
√
3, since V (r+) is a minimum, a stable

circular orbit is described by ε2 − 1 = V (r+). On the other hand, since V (r−) is a maximum,
an unstable circular orbit exists where ε2 − 1 = V (r−). But when α =

√
3, the two r± merges

into r± = 3rs and this point becomes an inflection point where V ′′ = 0. This situation allows
for a marginally stable circular orbit at r = 3rs when V = −1/9 = ε2− 1. Explain why r/rs = 3
is called the ISCO by showing that r+/rs is a strictly increasing function of α – i.e., as α is
decreased r+ is moved inwards until it merges with r− when α =

√
3.

Killing Tensors A rank−N Killing tensor Kµ1...µN is a fully symmetric object that
satisfies

∇{µKν1...νN} = 0. (11.3.131)

A motivation for this definition is the following. If vα is an affinely parametrized geodesic
vector field (such that vσ∇σv

α = 0), then a conserved quantity along its integral curve may be
constructed from Kµ1...µN via the prescription

Kµ1...µNv
µ1 . . . vµN . (11.3.132)

For, we may compute

vσ∇σ (Kµ1...µNv
µ1 . . . vµN ) = vσ (∇σKµ1...µN ) v

µ1 . . . vµN (11.3.133)

=
1

(N + 1)!
vσ
(
∇{σKµ1...µN}

)
vµ1 . . . vµN = 0. (11.3.134)

A simple example of a rank−2 Killing tensor is the metric gαβ itself. Since we are assuming ∇
to be metric compatible, Problem (11.11) tells us v2 ≡ gαβv

αvβ is in fact constant if vα is an
affinely parametrized geodesic.

Problem 11.32. Cosmological Killing Tensor For the spatially flat cosmology of

ds2 = dt2 − a(t)2dx⃗ · dx⃗, (11.3.135)

verify that

Kµν = a(t)2
(
gµν − δ0µδ0ν

)
(11.3.136)

is a Killing tensor.

Problem 11.33. Carter Constant and the Kerr Metric

Additional Problems
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Problem 11.34. Exterior Derivative, Divergence, and Poincaré Lemma In d space-
time dimensions, show that the curl of a vector contracted with the Levi-Civita tensor ϵ̃ (i.e.,
the volume form) yields its divergence multiplied by the same ϵ̃:

((d− 1)!)−1 ∂[α1

(
Jµϵ̃α2...αd]µ

)
= (−)d−1(∇σJ

σ)ϵ̃α1...αd
. (11.3.137)

Hint: Any rank d fully anti-symmetric tensor in d−dimensions must be proportional to ϵ̃; hence,
the problem reduces to the determination of its coefficient.

If ∇σJ
σ = 0, what does the Poincaré lemma tell us about eq. (11.3.137)? Find the dual of

your result and argue there must an antisymmetric tensor Σµν such that

Jµ = ∇νΣ
µν . (11.3.138)

In differential form notation, one denotes ϵ̃[J ]α2...αd
≡ Jσ ϵ̃σα2...αd

and eq. (11.3.137) is short-
handed as dϵ̃[J ] = (∇σJ

σ)ϵ̃.

Problem 11.35. Gauge-covariant derivative Let ψ be a vector under group transfor-
mations. By this we mean that, if ψǎ corresponds to the ath component of ψ, then given some
matrix U ǎ

b̌
, ψ transforms as

ψǎ
′
= U ǎ′

b̌
ψb̌ (or, ψ′ = Uψ) . (11.3.139)

Compare eq. (11.3.139) to how a spacetime vector transforms under coordinate transformations:

V µ′(x′) = J µ′

σV
σ(x), J µ

σ ≡
∂x′µ

∂xσ
. (11.3.140)

Now, let us consider taking the gauge-covariant derivative Ď of ψ such that it still transforms
‘covariantly’ under group transformations, namely

Ďαψ
′ = Ďα(Uψ) = U(Ďαψ). (11.3.141)

Crucially:

We shall now demand that the gauge-covariant derivative transforms covariantly
– i.e., eq. (11.3.141) holds – even when the group transformation U(x) depends on
spacetime coordinates.

First check that, the spacetime-covariant derivative cannot be equal to the gauge-covariant
derivative in general, i.e.,

∇αψ
′ ̸= Ďαψ

′, (11.3.142)

by showing that eq. (11.3.141) is not satisfied.
Just as the spacetime-covariant derivative was built from the partial derivative by adding

a Christoffel symbol, ∇ = ∂ + Γ, we may build a gauge-covariant derivative by adding to the
spacetime-covariant derivative a gauge potential:

(Ďµ)
ǎ
b̌
≡ δab∇µ + (Aµ)

ǎ
b̌
. (11.3.143)
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Or, in gauge-index-free notation,

Ďµ ≡ ∇µ + Aµ. (11.3.144)

With the definition in eq. (11.3.143), how must the gauge potential Aµ (or, equivalently, (Aµ)
ǎ
b̌
)

transform so that eq. (11.3.141) is satisfied? Compare the answer to the transformation proper-
ties of the Christoffel symbol in eq. (11.2.6). (Since the answer can be found in most Quantum
Field Theory textbooks, make sure you verify the covariance explicitly!)

Bonus: Here, we have treated ψ as a spacetime scalar and the gauge-covariant derivative
Ďα itself as a scalar under group transformations. Can you generalize the analysis here to the
higher-rank tensor case?

11.4 ⋆Metric Perturbation Theory

Carrying out perturbation theory about some fixed ‘background’ geometry ḡµν has important
physical applications. As such, in this section, we will in fact proceed to set up a general and
systematic perturbation theory involving the metric:

gµν = ḡµν + hµν , (11.4.1)

where ḡµν is an arbitrary ‘background’ metric and hµν is a small deviation. I will also take
the opportunity to discuss the transformation properties of hµν under infinitesimal coordinate
transformations, i.e., the gauge transformations of gravitons.

Metric inverse, Determinant Whenever performing a perturbative analysis, we shall
agree to move all tensor indices – including that of hµν – with the ḡαβ. For example,

hαβ ≡ ḡασhσβ, and hαβ ≡ ḡασḡβρhσρ. (11.4.2)

With this convention in place, let us note that the inverse metric is a geometric series. Firstly,

gµν = ḡµσ (δ
σ
ν + hσν) ≡̇ḡ · (I+ h) . (11.4.3)

(Here, h is a matrix, whose µth row and νth column is hµν ≡ ḡµσhσν .) Remember that, for
invertible matrices A and B, we have (A ·B)−1 = B−1A−1. Therefore

g−1 = (I+ h)−1 · ḡ−1. (11.4.4)

If we were dealing with numbers instead of matrices, the geometric series 1/(1+z) =
∑∞

ℓ=0(−)ℓzℓ
may come to mind. You may directly verify that this prescription, in fact, still works.

gµν =

(
δµλ +

∞∑
ℓ=1

(−)ℓhµσ1h
σ1
σ2
. . . hσℓ−2

σℓ−1
h
σℓ−1

λ

)
ḡλν (11.4.5)

= ḡµν +
∞∑
ℓ=1

(−)ℓhµσ1h
σ1
σ2
. . . hσℓ−2

σℓ−1
hσℓ−1ν (11.4.6)

= ḡµν − hµν + hµσ1h
σ1ν − hµσ1h

σ1
σ2
hσ2ν + . . . . (11.4.7)
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The square root of the determinant of the metric can be computed order-by-order in perturbation
theory via the following formula. For any matrix A,

detA = exp [Tr [lnA]] , (11.4.8)

where Tr is the matrix trace; for e.g., Tr [h] = hσσ. Taking the determinant of both sides of eq.
(11.4.3), and using the property det[A ·B] = detA · detB,

det gαβ = det ḡαβ · det [I+ h] , (11.4.9)

so that eq. (11.4.8) can be employed to state√
|g| =

√
|ḡ| · exp

[
1

2
Tr [ln[I+ h]]

]
. (11.4.10)

The first few terms read√
|g| =

√
|ḡ|
(
1 +

1

2
h+

1

8
h2 − 1

4
hσρhσρ

+
1

48
h3 − 1

8
h · hσρhσρ +

1

6
hσρhρκh

κ
σ +O[h4]

)
(11.4.11)

h ≡ hσσ. (11.4.12)

Covariance, Covariant Derivatives, Geometric Tensors Under a coordinate transfor-
mation x ≡ x(x′), the full metric of course transforms as a tensor. The full metric gα′β′ in this
new x′ coordinate system reads

gα′β′(x′) = (ḡµν(x(x
′)) + hµν(x(x

′)))
∂xµ

∂x′α
∂xν

∂x′β
. (11.4.13)

If we define the ‘background metric’ to transform covariantly; namely

ḡα′β′(x′) ≡ ḡµν(x(x
′))
∂xµ

∂x′α
∂xν

∂x′β
; (11.4.14)

then, from eq. (11.4.13), the perturbation itself can be treated as a tensor

hα′β′(x′) = hµν(x(x
′))
∂xµ

∂x′α
∂xν

∂x′β
. (11.4.15)

These will now guide us to construct the geometric tensors – the full Riemann tensor, Ricci
tensor and Ricci scalar – using the covariant derivative ∇ with respect to the ‘background
metric’ ḡµν and its associated geometric tensors. Let’s begin by considering this background
covariant derivative acting on the full metric in eq. (11.4.1):

∇αgµν = ∇α (ḡµν + hµν) = ∇αhµν . (11.4.16)

On the other hand, the usual rules of covariant differentiation tell us

∇αgµν = ∂αgµν − Γ
σ

αµgσν − Γ
σ

ανgµσ; (11.4.17)

where the Christoffel symbols here are built out of the ‘background metric’,

Γ
σ

αµ =
1

2
ḡσλ (∂αḡµλ + ∂µḡαλ − ∂λḡµα) . (11.4.18)
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Problem 11.36. Relation between ‘background’ and ‘full’ Christoffel Show that
equations (11.4.16) and (11.4.17) can be used to deduce that the full Christoffel symbol

Γαµν [g] =
1

2
gασ (∂µgνσ + ∂νgµσ − ∂σgµν) (11.4.19)

can be related to that of its background counterpart through the relation

Γαµν [g] = Γ
α

µν [ḡ] + δΓαµν . (11.4.20)

Here,

δΓαµν ≡
1

2
gασHσµν , (11.4.21)

Hσµν ≡ ∇µhνσ +∇νhµσ −∇σhµν . (11.4.22)

Notice the difference between the ‘full’ and ‘background’ Christoffel symbols, namely Γµαβ−Γ
µ

αβ,
is a tensor.

Problem 11.37. Geometric tensors With the result in eq. (11.4.20), show that for an
arbitrary 1-form Vβ,

∇αVβ = ∇αVβ − δΓσαβVσ. (11.4.23)

Use this to compute [∇α,∇β]Vλ and proceed to show that the exact Riemann tensor is

Rα
βµν [g] = R̄α

βµν [ḡ] + δRα
βµν , (11.4.24)

δRα
βµν ≡ ∇[µδΓ

α
ν]β + δΓασ[µδΓ

σ
ν]β (11.4.25)

=
1

2
∇µ

(
gαλHλνβ

)
− 1

2
∇ν

(
gαλHλµβ

)
+

1

4
gαλgσρ (HλµσHρβν −HλνσHρβµ) , (11.4.26)

where R̄α
βµν [ḡ] is the Riemann tensor built entirely out of the background metric ḡαλ.

From eq. (11.4.24), the Ricci tensor and scalars can be written down:

Rµν [g] = Rσ
µσν and R[g] = gµνRµν . (11.4.27)

From these formulas, perturbation theory can now be carried out. The primary reason why these
geometric tensors admit an infinite series is because of the geometric series of the full inverse
metric eq. (11.4.6). I find it helpful to remember, when one multiplies two infinite series which
do not have negative powers of the expansion object hµν , the terms that contain precisely n
powers of hµν is a discrete convolution: for instance, such an nth order piece of the Ricci scalar
is

δnR =
n∑
ℓ=0

δℓg
µνδn−ℓRµν , (11.4.28)

where δℓg
µν is the piece of the full inverse metric containing exactly ℓ powers of hµν and δn−ℓRµν

is that containing precisely n− ℓ powers of the same.
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Problem 11.38. Linearized geometric tensors The Riemann tensor that contains up
to one power of hµν can be obtained readily from eq. (11.4.24). The H2 terms begin at order
h2, so we may drop them; and since H is already linear in h, the g−1 contracted into it can be
set to the background metric.

Rα
βµν [g] = R̄α

βµν [ḡ] +
1

2
∇[µ

(
∇ν]h

α
β +∇|β|h

α
ν] −∇

α
hν]β

)
+O(h2) (11.4.29)

= R̄α
βµν [ḡ] +

1

2

(
[∇µ,∇ν ]h

α
β +∇µ∇βh

α
ν −∇ν∇βh

α
µ −∇µ∇

α
hνβ +∇ν∇

α
hµβ

)
+O(h2).

(The |β| on the first line indicates the β is not to be antisymmetrized.) Starting from the
linearized Riemann tensor in eq. (11.4.29), let us work out the linearized Ricci tensor, Ricci
scalar, and Einstein tensor.

Specifically, show that one contraction of eq. (11.4.29) yields the linearized Ricci tensor:

Rβν = Rβν + δ1Rβν +O(h2), (11.4.30)

δ1Rβν ≡
1

2

(
∇µ∇{βhν}µ −∇ν∇βh−∇

µ∇µhβν
)
. (11.4.31)

Contracting this Ricci tensor result with the full inverse metric, verify that the linearized Ricci
scalar is

R = R+ δ1R+O(h2), (11.4.32)

δ1R ≡ −hβνR̄βν +
(
∇µ∇ν − ḡµν∇σ∇σ

)
hµν . (11.4.33)

Now, let us define the variable h̄µν through the relation

hµν ≡ h̄µν −
ḡµν
d− 2

h̄, h̄ ≡ h̄σσ. (11.4.34)

First explain why this is equivalent to

h̄µν = hµν −
ḡµν
2
h. (11.4.35)

(Hint: First calculate the trace of h̄ in terms of h.) In (3+1)D this h̄µν is often dubbed the
“trace-reversed” perturbation – can you see why? Then show that the linearized Einstein tensor
is

Gµν = Ḡµν [ḡ] + δ1Gµν +O(h
2
), (11.4.36)

where

δ1Gµν ≡ −
1

2

(
□h̄µν + ḡµν∇σ∇ρh̄

σρ −∇{µ∇
σ
h̄ν}σ

)
+

1

2

(
ḡµν h̄

ρσR̄ρσ + h̄
σ

{µ R̄ν}σ − h̄µνR̄ − 2h̄ρσR̄µρνσ

)
. (11.4.37)

Cosmology, Kerr/Schwarzschild black holes, and Minkowski spacetimes are three physically im-
portant geometries. This result may be used to study linear perturbations about them.
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Second order Ricci For later purposes, we collect the second order Ricci tensor – see, for
e.g., equation 35.58b of [24]:123

δ2Rµν =
1

2

{
1

2
∇µhαβ∇νh

αβ + hαβ
(
∇ν∇µhαβ +∇β∇αhµν −∇β∇νhµα −∇β∇µhνα

)
(11.4.38)

+∇β
hαν

(
∇βhµα −∇αhµβ

)
−∇β

(
hαβ − 1

2
ḡαβh

)(
∇{νhµ}α −∇αhµν

)}
.

Gauge transformations: Infinitesimal Coordinate Transformations In the above
discussion, we regarded the ‘background metric’ as a tensor. As a consequence, the metric
perturbation hµν was also a tensor. However, since it is the full metric that enters any generally
covariant calculation, it really is the combination ḡµν + hµν that transforms as a tensor. As we
will now explore, when the coordinate transformation

xµ = x′µ + ξµ(x′) (11.4.39)

is infinitesimal, in that ξµ is small in the same sense that hµν is small, we may instead attribute
all the ensuing coordinate transformations to a transformation of hµν alone. This will allow us
to view ‘small’ coordinate transformations as gauge transformations, and will also be important
for the discussion of the linearized Einstein’s equations.

In what follows, we shall view the x and x′ in eq. (11.4.39) as referring to the same spacetime
point, but expressed within infinitesimally different coordinate systems. Now, transforming from
x to x′,

ds2 = gµν(x)dx
µdxν = (ḡµν(x) + hµν(x)) dx

µdxν (11.4.40)

= (ḡµν(x
′ + ξ) + hµν(x

′ + ξ)) (dx′µ + ∂α′ξµdx′α)
(
dx′ν + ∂β′ξνdx′β

)
=
(
ḡµν(x

′) + ξσ∂σ′ ḡµν(x
′) + hµν(x

′) +O
(
ξ2, ξ∂h

))
(dx′µ + ∂α′ξµdx′α)

(
dx′ν + ∂β′ξνdx′β

)
=
(
ḡµν(x

′) + ξσ(x′)∂σ′ ḡµν(x
′) + ḡσ{µ(x

′)∂ν′}ξ
σ(x′) + hµν(x

′) +O
(
ξ2, ξ∂h

))
dx′µdx′ν

≡ (ḡµ′ν′(x
′) + hµ′ν′(x

′)) dx′µdx′ν .

This teaches us that, the infinitesimal coordinate transformation of eq. (11.4.39) amounts to
keeping the background metric fixed,

ḡµν(x)→ ḡµν(x), (11.4.41)

but shifting

hµν(x)→ hµν(x) + ξσ(x)∂σḡµν(x) + ḡσ{µ(x)∂ν}ξ
σ(x), (11.4.42)

followed by replacing

xµ → x′µ and ∂µ ≡
∂

∂xµ
→ ∂

∂x′µ
≡ ∂µ′ . (11.4.43)

123I have checked that eq. (11.4.38) is consistent with the output from xAct [45].
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However, since x and x′ refer to the same point in spacetime,124 it is customary within the con-
temporary physics literature to drop the primes and simply phrase the coordinate transformation
as replacement rules:

xµ → xµ + ξµ(x), (11.4.44)

ḡµν(x)→ ḡµν(x), (11.4.45)

hµν(x)→ hµν(x) +∇{µξν}(x); (11.4.46)

where we have recognized

ξσ∂σḡµν + ḡσ{µ∂ν}ξ
σ = ∇{µξν} ≡ (£ξḡ)µν(x). (11.4.47)

Problem 11.39. Lie Derivative of a tensor If x and x′ are infinitesimally nearby coor-
dinate systems related via eq. (11.4.39), show that T µ1...µNν1...νM (x) (the components of a given

tensor in the xµ coordinate basis) and T
µ′1...µ

′
N

ν′1...ν
′
M
(x′) (the components of the same tensor but

in the x′µ coordinate basis) are in turn related via

T
µ′1...µ

′
N

ν′1...ν
′
M
(x′) = T µ1...µNν1...νM (x→ x′) + (£ξT )

µ1...µN
ν1...νM

(x→ x′); (11.4.48)

where the Lie derivative of the tensor reads

(£ξT )
µ1...µN

ν1...νM
= ξσ∂σT

µ1...µN
ν1...νM

− T σµ2...µNν1...νM∂σξ
µ1 − · · · − T µ1...µN−1σ

ν1...νM
∂σξ

µN

+ T µ1...µNσν2...νM∂ν1ξ
σ + · · ·+ T µ1...µNν1...νM−1σ

∂νM ξ
σ. (11.4.49)

The x → x′ on the right hand side of eq. (11.4.48) means, the tensor T µ1...µNν1...νM and its
Lie derivative are to be computed in the xµ-coodinate basis – but xµ is to be replaced with x′µ

afterwards.
Explain why the partial derivatives on the right hand side of eq. (11.4.49) may be replaced

with covariant ones, namely

(£ξT )
µ1...µN

ν1...νM
= ξσ∇σT

µ1...µN
ν1...νM

− T σµ2...µNν1...νM∇σξ
µ1 − · · · − T µ1...µN−1σ

ν1...νM
∇σξ

µN

+ T µ1...µNσν2...νM∇ν1ξ
σ + · · ·+ T µ1...µNν1...νM−1σ

∇νM ξ
σ. (11.4.50)

(Hint: First explain why ∂αξ
β = ∇αξ

β − Γβασξ
σ.) That the Lie derivative of a tensor can be

expressed in terms of covariant derivatives indicates the former is a tensor.
We defined the Lie derivative of the metric ḡµν with respect to ξα in eq. (11.4.47). Is it

consistent with equations (11.4.49) and (11.4.50)?

124We had, earlier, encountered very similar mathematical manipulations while considering the geometric sym-
metries that left the metric in the same form upon an active coordinate transformation – an actual displacement
from one point to another infinitesimally close by. Here, we are doing a passive coordinate transformation, where
x and x′ describe the same point in spacetime, but using infinitesimally different coordinate systems.
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Lie Derivative of Vector Note that the Lie derivative of some vector field Uµ with
respect to ξµ is, according to eq. (11.4.50),

£ξU
µ = ξσ∇σU

µ − Uσ∇σξ
µ (11.4.51)

= ξσ∂σU
µ − Uσ∂σξ

µ = [ξ, U ]µ. (11.4.52)

We have already encountered the Lie bracket/commutator of vector fields, in eq. (11.1.22).
There, we learned that [ξ, U ] = 0 iff ξ and U may be integrated to form a 2D coordinate system
(at least locally). On the other hand, we may view the Lie derivative with respect to ξ as an
active coordinate transformation induced by the displacement x→ x+ ξ. This in fact provides
insight into the above mentioned theorem: if £ξU

µ = 0 that means U remains unaltered upon a
coordinate transformation induced along the direction of ξ; that in turn indicates, it is possible
to move along the integral curve of ξ, bringing us from one integral curve of U to the next
– while consistently maintaining the same coordinate value along the latter. Similarly, since
[ξ, U ] = −[U, ξ] = −£Uξ = 0, the vanishing of the Lie bracket also informs us the coordinate
value along the integral curve of ξ may be consistently held fixed while moving along the integral
curve of U , since the former is invariant under the flow along U . Altogether, this is what makes
a set good 2D coordinates; we may vary one while keeping the other fixed, and vice versa.

Problem 11.40. Gauge transformations of a tensor Consider perturbing a spacetime
tensor

T µ1...µNν1...νM ≡ T
µ1...µN

ν1...νM
+ δT µ1...µNν1...νM , (11.4.53)

where δT µ1...µNν1...νM is small in the same sense that ξα and hµν are small. Perform the infinites-
imal coordinate transformation in eq. (11.4.39) on the tensor in eq. (11.4.53) and attribute
all the transformations to the δT µ1...µNν1...νM . Write down the ensuing gauge transformation, in
direct analogy to eq. (11.4.46). Then justify the statement:

“If the background tensor is zero, the perturbed tensor is gauge-invariant at first
order in infinitesimal coordinate transformations.”

Hint: You may work this out from scratch, or you may employ the results from Problem (11.39).

11.4.1 Perturbed Flat Spacetimes

In this subsection we shall study perturbations about flat spacetimes

gµν = ηµν + hµν , |hµν | ≪ 1. (11.4.54)

In 4D, this is the context where gravitational waves are usually studied.
Under a Poincaré transformation in eq. (10.1.7), xµ = Λµνx

′ν + aµ, where Λµν satisfies
(10.1.5), observe that the metric transforms as

gα′β′(x′) = gµν(x = Λx′ + a)ΛµαΛ
ν
β (11.4.55)

= (ηµν + hµν(x = Λx′ + a)) ΛµαΛ
ν
β ≡ ηαβ + hα′β′(x′). (11.4.56)
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Hence, as far as Poincaré transformations are concerned, we may attribute all the transformations
to those of the perturbations. In other words, hµν is a tensor under Poincaré transformations:

hα′β′(x′) = hµν(x(x
′))ΛµαΛ

ν
β, (11.4.57)

xµ = Λµνx
′ν + aµ. (11.4.58)

Since the Riemann tensor is zero when hµν = 0, that means the linearized counterpart δ1Rµναβ

must be gauge-invariant. More specifically, what we have shown thus far is, under the infinites-
imal coordinate transformation

xµ = x′µ + ξµ(x′), (11.4.59)

the linearized Riemann tensor written in the x versus x′ systems are related as

δ1Rµναβ(x) = δ1Rµ′ν′α′β′(x′) +O(h2, ξ · h, ξ2). (11.4.60)

Here, the components δ1Rµναβ are written in the x coordinate basis whereas δ1Rµ′ν′α′β′ are in
the x′ basis. But, since x and x′ differ by an infinitesimal quantity ξ, we may in fact replace
x′ → x on the right hand side:

δ1Rµναβ(x) = δ1Rµ′ν′α′β′(x′ → x) +O(h2, ξ · h, ξ2). (11.4.61)

To solve for the hµν in eq. (11.4.54), one typically has to choose a specific coordinate system.
However, eq. (11.4.61) tells us, the tidal forces encoded within the linearized Riemann tensor
yield the same expression for all infinitesimally nearby coordinate systems.

Two Common Gauges Two commonly used gauges are the synchronous and de Don-
der gauges. The former refers to the choice of coordinate system such that all perturbations are
spatial:

gµνdx
µdxν = ηµνdx

µdxν + h
(s)
ij dx

idxj (Synchronous gauge). (11.4.62)

The latter is defined by the Lorentz-covariant constraint

∂µhµν =
1

2
∂νh, h ≡ ηαβhαβ, (de Donder gauge). (11.4.63)

The de Donder gauge is particularly useful for obtaining explicit perturbative solutions to Ein-
stein’s equations. Whereas, the synchronous gauge is useful for describing proper distances
between co-moving free-falling test masses.

One may prove that both gauges always exist. According to eq. (11.4.46), the perturbation
in a Minkowski background transforms as

hµν → hµν + ∂µξν + ∂νξµ, (11.4.64)

h→ h+ 2∂σξ
σ. (11.4.65)

Hence, if h00 were not zero, we may render it so by choosing ξ0 = −(1/2)
∫ t
h00dt; since

h00 → h00 + 2∂0ξ0 (11.4.66)
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= h00 + 2∂0
−1
2

∫ t

h00dt = 0. (11.4.67)

Moreover, if h0i were not zero, an infinitesimal coordinate transformation would yield

h0i → h0i + ∂iξ0 + ∂0ξi (11.4.68)

= h0i −
1

2

∫ t

∂ih00dt+ ∂0ξi. (11.4.69)

The right hand side is zero if we choose

ξi = −
∫ t
(
h0i −

1

2

∫ t′

∂ih00dt
′′

)
dt′. (11.4.70)

That is, by choosing ξµ appropriately, h0µ = hµ0 may always be set to zero.
As for the de Donder gauge condition in eq. (11.4.63), we first re-write it using eq. (11.4.35)

h̄µν ≡ hµν −
1

2
ηµνh. (11.4.71)

Namely,

∂µh̄µν = ∂µ
(
hµν −

1

2
ηµνh

)
= 0. (11.4.72)

Utilizing eq. (11.4.64), we may deduce the gauge-transformation of h̄µν is

h̄µν → h̄µν + ∂µξν + ∂νξµ − ηµν∂ · ξ, ∂ · ξ ≡ ∂σξσ. (11.4.73)

Now, if eq. (11.4.72) were not obeyed, a gauge transformation would produce

∂µh̄µν → ∂µh̄µν + ∂µ (∂µξν + ∂νξµ)− ηµν∂µ∂ · ξ (11.4.74)

= ∂µh̄µν + ∂2ξν . (11.4.75)

Therefore, by choosing ξν to be the solution to ∂2ξν = −∂µh̄µν , we may always switch over to
the de Donder gauge of eq. (11.4.72). We also note, suppose h̄µν already obeys the de Donder
gauge condition; then notice the transformed h̄µν actually remains within the de Donder gauge
whenever ∂2ξν = 0.

Problem 11.41. Are the synchronous and de Donder gauges “infinitesimally nearby” coordinate
systems?

Problem 11.42. Co-moving geodesics in synchronous gauge Prove that

Zµ(t) = (t, Z⃗0), (11.4.76)

where Z⃗0 is time-independent, satisfies the geodesic equation in the spacetime

gµνdx
µdxν = dt2 + gij(t, x⃗)dx

idxj. (11.4.77)

This result translates to the following interpretation: each x⃗ in eq. (11.4.77) may be viewed as
the location of a test mass free-falling in the given spacetime. This co-moving test mass remains
still, for all time t, in such a synchronous gauge system. Of course, eq. (11.4.62) is a special case
of eq. (11.4.77).
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Linearized Synge’s World Function In the weak field metric of eq. (11.4.54), ac-
cording to eq. (11.2.57), half the square of the geodesic distance between x and x′ is

σ̄(x, x′) =
1

2

∫ 1

0

dλ (ηµν + hµν(Z))
dZµ

dλ

dZν

dλ
; (11.4.78)

where the trajectories obey geodesic equation (11.2.59)

d2Zµ

dλ2
+ Γµαβ

dZα

dλ

dZβ

dλ
= 0 (11.4.79)

subject to the boundary conditions

Zµ(λ = 0) = x′µ and Zµ(λ = 1) = xµ. (11.4.80)

If the perturbations were not present, hµν = 0, the geodesic equation is

d2Z̄µ

dλ2
= 0; (11.4.81)

whose solution, in turn, is

Z̄µ(λ) = x′µ + λ(x− x′)µ, (11.4.82)

˙̄Zµ(λ) = (x− x′)µ. (11.4.83)

When the perturbations are non-trivial, hµν ̸= 0, the full solution Zµ = Z̄µ+δZµ should deviate
from the zeroth order solution Z̄µ at linear order in the perturbations: δZµ ∼ O(hµν). One may
see this from eq. (11.2.73). Hence, if we insert Zµ = Z̄µ + δZµ into Synge’s world function in
eq. (11.4.78),

σ(x, x′) =
1

2

∫ 1

0

dλ
(
ηµν + hµν(Z̄)

)
(x− x′)µ(x− x′)ν

−
∫ 1

0

δZµ(λ)
(
ηµν + hµν(Z̄)

) D2Z̄ν

dλ2
dλ+O

(
(δZ)2

)
; (11.4.84)

because the zeroth order geodesic equation is satisfied, namely d2Z̄/dλ2 = 0, D2Z̄µ/dλ2 =

Γµαβ
˙̄Zα ˙̄Zβ ∼ O(hµν) and therefore the second line scales as O(h2µν) and higher. At linear order

in perturbation theory, half the square of the geodesic distance between Z(λ = 0) = x′ and
Z(λ = 1) = x is therefore Synge’s world function evaluated on the zeroth order geodesic solution
– namely, the straight line in eq. (11.4.82).125

σ(x, x′) =
1

2
(x− x′)2 + 1

2
(x− x′)µ(x− x′)ν

∫ 1

0

hµν
(
Z̄(λ)

)
dλ+O(h2) (11.4.85)

Proper Distance Between Free-Falling Masses: Synchronous Gauge Consider a
pair of free-falling test masses at (t, y⃗) and (t′, y⃗′). Within the synchronous gauge of eq. (11.4.62),

125This sort of “first-order-variation-vanishes” argument occurs frequently in field theory as well.
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where hµ0 = h0µ = 0, the square of their geodesic spatial separation at a fixed time t = t′ is
gotten from eq. (11.4.85) through

ℓ2 = −2σ(t = t′; y⃗, y⃗′) (11.4.86)

= (y⃗ − y⃗′)2 − (y − y′)i(y − y′)j
∫ 1

0

h
(s)
ij (t, y⃗′ + λ(y⃗ − y⃗′)) dλ+O(h2) (11.4.87)

Taking the square root on both sides, and using the Taylor expansion result (1 + z)1/2 = 1 +
z/2 +O(z2), we surmise that the synchronous gauge form of the metric in eq. (11.4.62) indeed
allows us to readily calculate the proper spatial geodesic distance between pairs of free-falling
test masses.

ℓ(t; y⃗ ↔ y⃗′) = |y⃗ − y⃗′|
(
1− 1

2
R̂iR̂j

∫ 1

0

h
(s)
ij

(
t, Z̄(λ)

)
dλ+O(h2)

)
, (11.4.88)

R̂ ≡ y⃗ − y⃗′

|y⃗ − y⃗′|
. (11.4.89)

(Remember Z̄ in eq. (11.4.82).)
Gravitational Wave Polarization & Oscillation Patterns We may re-phrase eq.

(11.4.88) as a fractional distortion of space δℓ/δ0 away from the flat space value of ℓ0 ≡ |y⃗− y⃗′|,
due to the presence of the perturbation h

(s)
ij ,(

δℓ

ℓ0

)
(t; y⃗ ↔ y⃗′) = −1

2
R̂iR̂j

∫ 1

0

h
(s)
ij

(
t, Z̄(λ)

)
dλ+O(h2). (11.4.90)

If we define gravitational waves to be simply the finite frequency portion of the tidal signal in
eq. (11.4.90), then we see that the fractional distortion of space due to a passing gravitational
wave could consist of up to a maximum of D(D + 1)/2 distinct oscillatory patterns, in a D + 1
dimensional weakly curved spacetime. In detail, if we decompose

h
(s)
ij

(
t, Z̄(λ)

)
=

∫
R
h̃
(s)
ij

(
ω, Z̄(λ)

)
e−iωt

dω

2π
, (11.4.91)

then eq. (11.4.90) reads(̃
δℓ

ℓ0

)
(ω; y⃗ ↔ y⃗′) = −1

2
R̂iR̂j

∫ 1

0

h̃
(s)
ij

(
ω, y⃗ + λ(y⃗′ − y⃗)

)
dλ+O(h2). (11.4.92)

Now, a direct calculation will reveal

δ1R0i0j(t, x⃗) = −
1

2
∂20h

(s)
ij (t, x⃗), (Synchronous gauge). (11.4.93)

To translate this statement to frequency space, we replace ∂0 = ∂t → −iω,

δ1R̃0i0j(ω, x⃗) =
ω2

2
h̃
(s)
ij (ω, x⃗), (Synchronous gauge). (11.4.94)
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Gravitational waves are associated with time dependent radiative processes, capable of perform-
ing dissipative work through their oscillatory tidal forces. To this end, eq. (11.4.94) teaches us it
is the finite frequency modes – i.e., the ω ̸= 0 portion – of the linearized Riemann tensor that is
to be associated with such gravitational radiation. By inserting eq. (11.4.94) into eq. (11.4.92),
we see that the finite frequency gravitational-wave-driven fractional distortion of space – namely,(̃

δℓ

ℓ0

)
(ω ̸= 0; y⃗ ↔ y⃗′) =

R̂iR̂j

ω2

∫ 1

0

δ1R̃0i0j

(
ω, y⃗ + λ(y⃗′ − y⃗)

)
dλ+O(h2) (11.4.95)

– is not only gauge-invariant (since the linearized Riemann components are); it has (D2−D)/2+

D = D(D + 1)/2 algebraically independent components, since δ1R̃0i0j is a symmetric rank−2
spatial tensor in the ij indices.

Problem 11.43. Verify eq. (11.4.93).

Problem 11.44. 4D Gravitational Wave Polarizations In 3+1 dimensional spacetime,
choose the unit vector along the 3−axis ê3 to be the direction of propagation of the finite
frequency h̃

(s)
ij in eq. (11.4.92). Then proceed to build upon Problem (5.89) to decompose the

fractional distortion of space in eq. (11.4.92) into its irreducible constituents – i.e., the spin−0,
spin−1 and spin−2 finite-frequency waves.

In 4D linearized de Donder gauge General Relativity, only null traveling waves are admitted
in vacuum. As we will see in the next problem, this implies only the helicity−2 waves are
predicted to exist. However, it is conceivable that alternate theories of gravity could allow for
the other irreducible modes to carry gravitational radiation.

Problem 11.45. Synchronous-de Donder Gauge & Null Traveling ‘TT’ Waves In
this problem we shall see how the gauge-invariant linearized Riemann tensor may be used to
relate the synchronous gauge metric perturbation to its de Donder counterpart – at least for
source-free traveling waves.

Let us begin by performing a Fourier transform in spacetime,

h
(s)
ij (t, x⃗) =

∫
R

dω

2π

∫
RD

dDk⃗

(2π)D
h̃
(s)
ij (ω, k⃗)e

−iωte+ik⃗·x⃗; (11.4.96)

so that ∂µ ↔ −i(ω, ki)µ. The associated synchronous gauge Riemann tensor components then
read

δ1R̃0i0j(ω, k⃗) = +
ω2

2
h̃
(s)
ij (ω, k⃗), (Synchronous gauge). (11.4.97)

Up to this point, we have not assumed a dispersion relation between ω and k⃗. Suppose we
impose the null condition

ω2 = k⃗2 (11.4.98)

on both the synchronous and de Donder gauge perturbations, so they are both superpositions
of traveling waves propagating at unit speed –

h
(s)
ij (t, x⃗) =

∫
RD

1

2

{
h̃
(s)
ij (k)e

−i|⃗k|t + h̃
(s)
ij (k)

∗e+i|⃗k|t
}
eik⃗·x⃗

dDk⃗

(2π)D
, kµ ≡ (|⃗k|, k⃗) (11.4.99)

534



– now, verify directly that the corresponding Riemann components are

δ1R̃0i0j(ω, k⃗) =
ω2

2

(
h̃ij + k̂{ih̃j}lk̂

l + k̂ik̂jh̃mnk̂
mk̂n

)
, (de Donder); (11.4.100)

k̂i ≡ ki/|⃗k|, ω2 = k⃗2. (11.4.101)

Next, verify δ1R̃0i0j in eq. (11.4.100) is transverse and traceless:

δijδ1R̃0i0j = 0 = k̂iδ1R̃0i0j. (11.4.102)

Finally, demonstrate that such a traveling-wave δ1R̃0i0j in de Donder gauge is simply the
transverse-traceless (TT) portion of the metric perturbation itself:

δ1R̃0i0j(ω, k⃗) =
ω2

2
P̃ijabh̃ab(ω, k⃗), (11.4.103)

where the TT projector is

P̃ijab =
1

2
P̃i{aP̃b}j −

1

D − 1
P̃ijP̃ab, (11.4.104)

P̃ij = δij − k̂ik̂j. (11.4.105)

It enjoys the following properties:

P̃ijab = P̃abij, P̃jiab = P̃ijab, δijP̃ijab = 0 = k̂iP̃ijab. (11.4.106)

Helicity−2 modes Finally, by choosing k̂ ≡ ê3, the unit vector along the 3−axis, verify the
claim in the previous problem, that the null traveling waves described by these linearized δ1R̃0i0j

are purely helicity−2 modes only.
Hint: Throughout these calculations, you would need to repeatedly employ the de Donder

gauge condition (eq. (11.4.63)) in Fourier spacetime: kµh̃µν = (1/2)kν h̃, with k
µ ≡ (ω, k⃗).

From our previous discussion, since the linearized Riemann tensor is gauge-invariant, we may
immediately equate the 0i0j components in the synchronous (eq. (11.4.97)) and de Donder (eq.

(11.4.100)) gauges to deduce: for finite frequencies |ω| = |⃗k| ̸= 0, the synchronous gauge metric
perturbation is the TT part of the de Donder gauge one.

h̃
(s)
ij [Synchronous] = P̃ijabh̃ab[de Donder] (11.4.107)

That this holds only for finite frequencies – the formulas in equations (11.4.97) and (11.4.100)
do not contain δ(ω) or δ′(ω) terms – because ω2δ(ω) = 0 = ω2δ′(ω). More specifically, since

eq. (11.4.93) involved a second time derivative on h
(s)
ij , by equating it to the (position-spacetime

version of) eq. (11.4.100), we may solve the synchronous gauge metric perturbation only up to
its initial value and time derivative:

h
(s)
ij (t, x⃗) = −2

∫ t

t0

∫ τ2

t0

δ1R0i0j(τ1, x⃗)dτ1dτ2
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+ (t− t0)ḣ(s)ij (t0, x⃗) + h
(s)
ij (t0, x⃗). (11.4.108)

Note that the initial velocity term (t− t0)ḣ(s)ij (t0, x⃗) is proportional to δ′(ω) in frequency space;

whereas the initial value h
(s)
ij (t0, x⃗) is proportional to δ(ω).

Unlike eq. (11.4.107), eq. (11.4.108) does not depend on specializing to traveling waves
obeying the null dispersion relation k2 ≡ kµk

µ = 0.126 Moreover, eq. (11.4.108) suggests, up to

the two initial condiitions, h
(s)
ij itself is almost gauge-invariant – afterall it measures something

geometrical, eq. (11.4.88), the proper distances between free-falling test masses – and we may
attempt to further understand this through the following considerations. Since the synchronous
gauge perturbation allows us to easily compute proper distances between co-moving test masses,
let us ask how much coordinate freedom is available while still remaining with the synchronous
gauge itself. For the 00 component to remain 0, we have from eq. (11.4.64)

0 = h
(s)
00 → 2∂0ξ0 = 0. (11.4.109)

That is, ξ0 needs to be time-independent. For the 0i component to remain zero,

0 = h
(s)
0i → ∂0ξi + ∂iξ0 = 0. (11.4.110)

This allows us to assert

ξi(t, x⃗) = −(t− t0)∂iξ0(x⃗) + ξi(t0, x⃗). (11.4.111)

Under such a coordinate transformation, x→ x+ ξ,

h
(s)
ij → h

(s)
ij + ∂iξj + ∂jξi (11.4.112)

= h
(s)
ij (t, x⃗)− 2(t− t0)∂i∂jξ0(x⃗) + ∂{iξj}(t0, x⃗). (11.4.113)

Comparison with eq. (11.4.108) tells us ∂i∂jξ0 may be identified with the freedom to redefine

the initial velocity of h
(s)
ij ; and ∂{iξj}(t0, x⃗) its initial value.

11.5 ⋆Conformal/Weyl Transformations

In this section, we collect the conformal transformation properties of various geometric objects.
We shall define a conformal transformation on a metric to be a change of the geometry by an
overall spacetime dependent scale. That is,

gµν(x) ≡ Ω2(x)ḡµν(x). (11.5.1)

The inverse metric is

gµν(x) = Ω(x)−2ḡµν(x), ḡµσḡσν ≡ δµν . (11.5.2)

We shall now enumerate how the geometric objects/operations built out of gµν is related to that
built out of ḡµν . In what follows, all indices on barred tensors are raised and lowered with ḡµν

126More specifically, eq. (11.4.107) holds whenever the linearized vacuum Einstein’s equations hold; whereas
eq. (11.4.108) is true regardless of the underlying dynamics of the metric perturbations.
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and ḡµν while all indices on un-barred tensors are raised/lowered with gµν and gµν ; the covariant
derivative ∇ is with respect to gµν while the ∇ is with respect to ḡµν .

Metric Determinant Since

det gµν = det
(
Ω2ḡµν

)
= Ω2d det ḡµν , (11.5.3)

we must also have

|g|1/2 = Ωd|ḡ|1/2. (11.5.4)

Scalar Gradients The scalar gradient with a lower index is just a partial derivative.
Therefore

∇µφ = ∇µφ = ∂µφ. (11.5.5)

while ∇µφ = gµν∇νφ = Ω−2ḡµν∇νφ, so

∇µφ = Ω−2∇µ
φ. (11.5.6)

Scalar Wave Operator The wave operator □ in the geometry gµν is defined as

□ ≡ gµν∇µ∇ν = ∇µ∇µ. (11.5.7)

By a direct calculation, the wave operator □ with respect to gµν acting on a scalar ψ is

□φ =
1

Ω2

(
d− 2

Ω
∇µΩ · ∇

µ
φ+□φ

)
, (11.5.8)

where □ is the wave operator with respect to ḡµν . We also have

□ (Ωsψ) =
1

Ω2

{(
sΩs−1□Ω + s (d+ s− 3)Ωs−2∇µΩ∇

µ
Ω
)
ψ

+ (2s+ d− 2)Ωs−1∇µΩ∇
µ
ψ + Ωs□ψ

}
. (11.5.9)

Christoffel Symbols A direct calculation shows:

Γµαβ[g] = Γ
µ

αβ[ḡ] +
(
∂{α lnΩ

)
δµβ} − ḡαβ ḡ

µν (∂ν lnΩ) (11.5.10)

= Γ
µ

αβ[ḡ] +
(
∇{α lnΩ

)
δµβ} − ḡαβ∇

µ
lnΩ. (11.5.11)

Riemann Tensor By viewing the difference between gµν and ḡµν as a ‘perturbation’,

gµν − ḡµν =
(
Ω2 − 1

)
ḡµν ≡ hµν , (11.5.12)

we may employ the results in §(11.4). In particular, eq. (11.4.24) may be used to infer that the
Riemann tensor is

Rα
βµν [g] = R̄α

βµν [ḡ] +∇β∇[µ lnΩδ
α
ν] − ḡβ[ν∇µ]∇

α
lnΩ

+ δα[µ∇ν] lnΩ∇β lnΩ +∇α
lnΩ∇[µ lnΩḡν]β +

(
∇ lnΩ

)2
ḡβ[µδ

α
ν]. (11.5.13)
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Ricci Tensor In turn, the Ricci tensor is

Rβν [g] = R̄βν [ḡ] + (2− d)∇β∇ν lnΩ− ḡβν□ lnΩ (11.5.14)

+ (d− 2)
(
∇β lnΩ∇ν lnΩ− ḡβν

(
∇ lnΩ

)2)
. (11.5.15)

Ricci Scalar Contracting the Ricci tensor with gβν = Ω−2ḡβν , we conclude

R[g] = Ω−2
(
R[ḡ] + 2(1− d)□ lnΩ + (d− 2)(1− d)

(
∇ lnΩ

)2)
. (11.5.16)

Weyl Tensor The Weyl tensor Cµναβ is well defined for spacetime dimensions greater than
two (d > 2): it is the completely trace-free portion of the Riemann tensor. For d = 3, Weyl is
identically zero, Cµναβ = 0. For d ≥ 4, it can be expressed as “the Riemann tensor minus its
trace parts”, where the “trace parts” are the Ricci tensor and scalar terms:

Cµναβ ≡ Rµναβ −
1

d− 2

(
Rα[µgν]β −Rβ[µgν]α

)
+

gµ[αgβ]ν
(d− 2)(d− 1)

R[g]. (11.5.17)

By a direct calculation, one may verify Cµναβ has the same index-symmetries as Rµναβ, namely

Cµναβ = Cαβµν (11.5.18)

Cµναβ = −Cνµαβ, (11.5.19)

and is indeed completely traceless: gµαCµναβ = 0. It also obeys the Bianchi identity

Cµ[ναβ] = 0. (11.5.20)

Using equations (11.5.1), (11.5.13), (11.5.14), and (11.5.16), one may then deduce the Weyl
tensor with one upper index is invariant under conformal transformations:

Cµ
ναβ[g] = Cµ

ναβ[ḡ]. (11.5.21)

If we lower the index µ on both sides,

Cµναβ[g] = Ω2Cµναβ[ḡ]. (11.5.22)

Let us also record that:

In spacetime dimensions greater than 3, i.e., d ≥ 4, a metric gµν is locally con-
formally flat – i.e., it can be put into the form gµν = Ω2ηµν – iff its Weyl tensor is
zero.127

Problem 11.46. Weyl Tensor: Construction Given that the Ricci tensor is the only
non-trivial single-contraction of Riemann, and the Ricci scalar is the only non-trivial twice-
contracted form of Riemann, argue from the (anti-)symmetries of its indices that the Weyl has
to take the form

Cµναβ ≡ Rµναβ + C1

(
Rα[µgν]β −Rβ[µgν]α

)
+ C2 gµ[αgβ]νR. (11.5.23)

By requiring the Weyl to be traceless, solve for C1,2 and obtain eq. (11.5.17).
127In d = 3 dimensions, a spacetime is locally conformally flat iff its Cotton tensor vanishes.
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Problem 11.47. Number of Algebraically Independent Components Prove that
the Weyl tensor Cµ

ναβ in d dimensions has

d(d+ 1)(d+ 2)(d− 3)

12
(11.5.24)

algebraically independent components. This tells us Weyl is zero in d = 3 dimensions – a fact
that can also be verified by brute force using eq. (11.5.17).

Hints: Weyl has the same algebraic index symmetries as Riemann. Furthermore, it has
to obey the traceless condition Cµ

νµβ = 0. How many constraints are there in this traceless
condition?

Problem 11.48. Cosmological Perturbation Theory & Gauge-Invariance Consider
a perturbed metric of the form

gµν = Ω2 (ηµν + χµν) , |χµν | ≪ 1. (11.5.25)

(Cosmological perturbation theory is a special case; where Ω describes the relative size of the
universe.) Explain why the linearized Weyl tensor δ1Cµναβ – i.e., the part of Cµναβ[g] linear in
χµν – is gauge-invariant. Hint: See Problem (11.40).

Einstein Tensor From equations (11.5.1), (11.5.14) and (11.5.16), we may also compute
the transformation of the Einstein tensor Gβν ≡ Rβν − (gβν/2)R.

Gβν [g] = Gβν [ḡ] + (2− d)
(
∇β∇ν lnΩ− ḡβν□ lnΩ

)
+ (d− 2)

(
∇β lnΩ∇ν lnΩ− ḡβν

3− d
2

(
∇ lnΩ

)2)
(11.5.26)

Notice the Einstein tensor is invariant under constant conformal transformations: Gβν [g] =
Gβν [ḡ] whenever ∂µΩ = 0. Additionally, since 2D space(time)s are always locally conformally
flat, i.e., gµν [2D] = Ω2ηµν , and since Gµν [η] = 0, we see that the Einstein tensor must be
identically zero when d = 2.

Problem 11.49. 2D Geometric Tensors YZ: Riemann is already traceless in 2D
and 3D. That relates Riemann to Ricci tensor & scalar. But Ricci tensor is related
to Ricci scalar by Einstein is zero. Hence, Riemann is related to Ricci scalar.

Explain why the Einstein tensor is zero in 2D. This implies the 2D Ricci tensor is proportional
to the Ricci scalar:

Rαβ =
1

2
gαβR. (11.5.27)

Hint: Refer to eq. (11.5.26).

Scalar Field Action In d dimensional spacetime, the following action involving the scalar
φ and Ricci scalar R[g],

S[φ] ≡
∫

ddx
√
|g|1

2

(
gαβ∇αφ∇βφ+

d− 2

4(d− 1)
Rφ2

)
, (11.5.28)

539



is invariant – up to surface terms – under the simultaneous replacements

gαβ → Ω2gαβ, gαβ → Ω−2gαβ,
√
|g| → Ωd

√
|g|, (11.5.29)

φ→ Ω1− d
2φ. (11.5.30)

The jargon here is that φ transforms covariantly under conformal transformations, with weight
s = 1 − (d/2). We see in two dimensions, d = 2, a minimally coupled massless scalar theory
automatically enjoys conformal/Weyl symmetry.

To reiterate: on the right-hand-sides of these expressions for the Riemann tensor, Ricci tensor
and scalar, all indices are raised and lowered with ḡ; for example, (∇A)2 ≡ ḡστ∇σA∇τA and
∇α

A ≡ ḡαλ∇λA. The Rα
βµν [g] is built out of the metric gαβ but the R̄α

βµν [ḡ] is built entirely
out of ḡµν , etc.

Problem 11.50. Weyl Gravity Suppose

C2[g] ≡ Cµναβ[g]C
µναβ[g] (11.5.31)

denotes the square of the Weyl tensor, where Cµναβ is built out of gµν = Ω2ḡµν , and all indices
are moved with the same metric gµν . Show that∫

ddx
√
|g|C2[g] =

∫
ddx
√
|ḡ|Ωd−4C2[ḡ]; (11.5.32)

where C2[ḡ] is now built entirely out of ḡµν and not gµν – i.e., it does not depend on Ω. Notice:
this integral object is conformally invariant in d = 4 spacetime dimensions.

Problem 11.51. de Sitter as a Maximally Symmetric Spacetime Verify that de
Sitter spacetime, with coordinates xµ ≡ (η, xi),

gµν(η, x⃗) = Ω(η)2ηµν , Ω(η) ≡ − 1

Hη
(11.5.33)

has the following Riemann tensor:

Rµναβ =
R

d(d− 1)
gµ[αgβ]ν . (11.5.34)

Also verify that the Ricci tensor and scalar are

Rµν =
R
d
gµν and R = − 2dΛ

d− 2
. (11.5.35)

de Sitter spacetime is a maximally symmetric spacetime, with d(d + 1)/2 Killing vectors.128

Verify that the following are Killing vector of eq. (11.5.33):

T µ∂µ ≡ −Hxµ∂µ (11.5.36)

128As Weinberg explains in [23], maximally symmetric spacetimes are essentially unique, in that they are
characterized by a single dimension-ful scale. We see that this scale is nothing but the cosmological constant Λ.
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and

Kµ
(i)∂µ ≡ xiT µ∂µ −Hσ̄∂xi , (11.5.37)

σ̄ ≡ 1

2

(
η2 − x⃗2

)
=

1

2
ηµνx

µxν . (11.5.38)

(Hint: It is easier to use the right hand side of eq. (11.3.47) in eq. (11.3.48).) Can you
write down the remaining Killing vectors? (Hint: Think about the symmetries on a constant-η
surface.) Using (some of) these d(d + 1)/2 Killing vectors and eq. (11.3.77), explain why the
Ricci scalar of the de Sitter geometry is a spacetime constant.

Observer time de Sitter spacetime may also be written as

ds2 = dt2 − e2Htdx⃗ · dx⃗. (11.5.39)

Can you describe the relation between η and t? Why is t dubbed the observer time? (Hint:
What is the unit timelike geodesic vector?) Now, explain why the Killing vector in eq. (11.5.36)
may also be expressed as

T µ∂µ =
1

Ω(η)
∂η −Hxi∂i = ∂t −Hxi∂i. (11.5.40)

This means we may take the flat spacetime limit by setting H → 0, and hence identify T µ∂µ as
the de Sitter analog of the generator of time translation symmetry in Minkowski spacetime.

11.6 ⋆2D Spacetimes

In this section we shall lay out the properties of two dimensional space(time)s.129 The differential
geometry of 2D spacetimes is relevant for the study of cosmic strings and (super)string theory.

Conformal Flatness In Problem (9.55), we have already seen a proof that all 2D
metrics are locally conformally flat. That is, any 2D metric

ds2 = g00(x⃗)(dx
0)2 + 2g01(x⃗)dx

0dx1 + g11(x⃗)(dx
1)2 (11.6.1)

may always be re-cast into

ds2 = f(u, v)dudv = f(t, x)
(
dt2 − dx2

)
, (11.6.2)

t− x = u and t+ x = v. (11.6.3)

Riemann and Ricci Because of the (anti)symmetry properties of Riemann’s indices, its
only algebraically independent component is R0101 = −R1001 = −R0110. This allows us to assert,
the Riemann tensor is determined completely by the Ricci scalar R:

Rµναβ =
R
2
(gµαgβν − gµβgαν) =

R
2
gµ[αgβ]ν . (11.6.4)

129Note that 1D spaces dℓ2 = g(x)dx2 are always (locally) flat, because we may also find y up to an additive
constant as y =

∫ √
g(x)dx and thereby set g(x)dx2 = dy2. To this end, we also note that the only component

of the Riemann tensor is R1111 = −R1111 = 0, since it is antisymmetric in the first two and last two indices.
Also note that, while our discussion here pertains to 2D spacetimes, much of it holds for 2D spaces as well.
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This in turn tells us the Ricci tensor is proportional to both the Ricci scalar and the metric:

Rαβ =
R
2
gαβ. (11.6.5)

Notice the right hand side of eq. (11.6.4) is antisymmetric under (µ ↔ ν) and (α ↔ β); and
symmetric under (µν) ↔ (αβ) – exactly the same (anti)symmetries of Riemann. Let us verify
eq. (11.6.4) in a ‘locally flat’ coordinate system; see, for e.g., eq. (11.3.6)–(11.3.8). As already
alluded to, the only independent component is 0101. On the left hand side, we have R0101.
Whereas on the right hand side,

R
2
(η00η11 − η01η01) = −

1

2
ηαµηβνRαβµν = −

1

2
ηβν (R0β0ν −R1β1ν) (11.6.6)

= −1

2
(−R0101 −R1010) = R0101. (11.6.7)

This completes the proof, since eq. (11.6.4) is a tensor equation and we are therefore allowed to
verify it in any coordinate system.

Weyl In 4 dimensions and higher, the ‘trace-less’ part of the Riemann tensor is non-
trivial, and is dubbed the Weyl tensor Cµναβ. Because the ‘trace’ parts of Riemann consists of
Ricci, we see from eq. (11.6.4) that Riemann is pure trace in 2D and therefore the corresponding
Weyl tensor is identically zero.

Cµναβ = 0 (11.6.8)

In other words, if we try to construct the Weyl tensor by subtracting out the trace parts of
Riemann – finding the right coefficients A1,2 in

Cµναβ = Rµναβ − A1Rµ[αgβ]ν − A2R · gµ[αgβ]ν (11.6.9)

– such that gµαCµναβ = 0, we will find a trivial result Cµναβ = 0 because Riemann is already
proportional to the Ricci scalar.

Cotton Tensor
Strings in space
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12 Linear Partial Differential Equations (PDEs)

A partial differential equation (PDE) is a differential equation involving more than one variable.
Much of fundamental physics – electromagnetism, quantum mechanics, gravitation and more
– involves PDEs. We will first examine Poisson’s equation, and introduce the concept of the
Green’s function, in order to solve it. Because the Laplacian ∇⃗2 will feature a central role in our
study of PDEs, we will study its eigenfunctions/values in various contexts. Then we will use
their spectra to tackle the heat/diffusion equation via an initial value formulation. In the final
sections we will study the wave equation in flat spacetime, and study various routes to obtain
its solutions, both in position/real spacetime and in Fourier space.

12.1 Laplacians and Poisson’s Equation

12.1.1 Poisson’s equation, uniqueness of solutions

Poisson’s equation in D-space is defined to be

−∇⃗2ψ(x⃗) = J(x⃗), (12.1.1)

where J is to be interpreted as some given mass/charge density that sources the Newtonian/electric
potential ψ. The most physically relevant case is in 3D; if we use Cartesian coordinates, Poisson’s
equation reads

−∇⃗2ψ(x⃗) = −
(

∂2ψ

∂(x1)2
+

∂2ψ

∂(x2)2
+

∂2ψ

∂(x3)2

)
= J(x⃗). (12.1.2)

We will soon see how to solve eq. (12.1.1) by first solving for the inverse of the negative Laplacian
(≡ Green’s function).
Uniqueness of solution We begin by showing that the solution of Poisson’s equation (eq.
(12.1.1)) in some domain D is unique once ψ is specified on the boundary of the domain ∂D.
As we shall see, this theorem holds even in curved spaces. If it is the normal derivative ni∇iψ
that is specified on the boundary ∂D, then ψ is unique up to an additive constant.

The proof goes by contradiction. Suppose there were two distinct solutions, ψ1 and ψ2. Let
us define their difference as

Ψ ≡ ψ1 − ψ2 (12.1.3)

and start with the integral

I ≡
∫
D

dDx⃗
√
|g|∇iΨ

†∇iΨ ≥ 0. (12.1.4)

That this is greater or equal to zero, even in curved spaces, can be seen by writing the gradients

in an orthonormal frame (cf. eq. (9.2.87)), where gij = ε i
â ε

j

b̂
δab.130 The

√
|g| is always positive,

since it describes volume, whereas ∇iΨ∇iΨ is really a sum of squares.√
|g|δab∇âΨ

†∇b̂Ψ =
√
|g|
∑
a

|∇âΨ|2 ≥ 0. (12.1.5)

130Expressing the gradients in an orthonormal frame is, in fact, the primary additional ingredient to this proof,
when compared to the flat space case. Moreover, notice this proof relies on the Euclidean (positive definite)
nature of the metric.
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We may now integrate-by-parts eq. (12.1.4) and use the curved space Gauss’ theorem in eq.
(9.5.68).

I =

∫
∂D

dD−1Σi ·Ψ†∇iΨ−
∫
D

dDx⃗
√
|g| ·Ψ†∇i∇iΨ. (12.1.6)

Remember from eq. (9.5.60) that dD−1Σi∇iΨ = dD−1ξ⃗

√
|H(ξ⃗)|ni∇iΨ, where x⃗(ξ⃗) parametrizes

the boundary ∂D; H(ξ⃗) is the determinant of the induced metric on ∂D so that dD−1ξ⃗
√
|H| is

its infinitesimal area element and ni(∂D) its unit outward normal. If either ψ(∂D) or ni∂iψ(∂D)
is specified, therefore, the first term on the right hand side of eq. (12.1.6) is zero – since
Ψ(∂D) = ψ1(∂D) − ψ2(∂D) and ni∂iΨ(∂D) = ni∂iψ1(∂D) − ni∂iψ2(∂D). The seccond term is
zero too, since

−∇i∇iΨ = −∇i∇i(ψ1 − ψ2) = J − J = 0. (12.1.7)

But we have just witnessed how I is itself the integral, over the domain, of the sum of squares
of |∇âΨ|. The only way summing squares of something is zero is that something is identically
zero.

∇âΨ = ε i
â ∂iΨ = 0, (everywhere in D). (12.1.8)

Viewing the ε i
â as a vector field, so ∇âΨ is the derivative of Ψ in the ath direction, this translates

to the conclusion that Ψ = ψ1−ψ2 is constant in every direction, all the way up to the boundary;
i.e., ψ1 and ψ2 can at most differ by an additive constant. If the normal derivative ni∇iψ(∂D)
were specified, so that ni∇iΨ = 0 there, then ψ1(x⃗)−ψ2(x⃗) = non-zero constant can still yield the
same normal derivative. However, if instead ψ(∂D) were specified on the boundary, Ψ(∂D) = 0
there, and must therefore be zero everywhere in D. In other words ψ1 = ψ2, and there cannot
be more than 1 distinct solution. This completes the proof.

12.1.2 (Negative) Laplacian as a Hermitian operator

We will now demonstrate that the negative Laplacian in some domain D can be viewed as a
Hermitian operator, if its eigenfunctions obey

{ψλ(∂D) = 0} (Dirichlet) (12.1.9)

or

{ni∇iψλ(∂D) = 0} (Neumann), (12.1.10)

or if there are no boundaries.131 The steps we will take here are very similar to those in the
uniqueness proof above. Firstly, by Hermitian we mean the negative Laplacian enjoys the prop-
erty that

I ≡
∫
D

dDx⃗
√
|g(x⃗)|ψ†

1(x⃗)
(
−∇⃗2

x⃗ψ2(x⃗)
)
=

∫
D

dDx⃗
√
|g(x⃗)|

(
−∇⃗2

x⃗ψ
†
1(x⃗)

)
ψ2(x⃗), (12.1.11)

131In this chapter on PDEs we will focus mainly on Dirichlet (and occasionally, Neumann) boundary conditions.
There are plenty of other possible boundary conditions, of course.
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for any functions ψ1,2(x⃗) spanned by the eigenfunctions of −∇⃗2, and therefore satisfy the same
boundary conditions. We begin on the left hand side and again employ the curved space Gauss’
theorem in eq. (9.5.68).

I =

∫
∂D

dD−1Σiψ
†
1

(
−∇iψ2

)
+

∫
D

dDx⃗
√
|g|∇iψ

†
1∇iψ2,

=

∫
∂D

dD−1Σi

{
ψ†
1

(
−∇iψ2

)
+
(
∇iψ†

1

)
ψ2

}
+

∫
D

dDx⃗
√
|g|
(
−∇i∇iψ

†
1

)
ψ2, (12.1.12)

We see that, if either ψ1,2(∂D) = 0, or ni∇iψ1,2(∂D) = 0, the surface integrals vanish, and the
Hermitian nature of the Laplacian is established.
Non-negative eigenvalues Let us understand the bounds on the spectrum of the neg-
ative Laplacian subject to the Dirichlet (eq. (12.1.9)) or Neumann boundary (eq. (12.1.10))
conditions, or when there are no boundaries. Let ψλ be an eigenfunction obeying

−∇⃗2ψλ = λψλ. (12.1.13)

We have previously argued that

I ′ =

∫
D

dDx⃗
√
|g|∇iψ

†
λ∇

iψλ (12.1.14)

is strictly non-negative. If we integrate-by-parts,

I ′ =

∫
∂D

dD−1Σiψ
†
λ∇

iψλ +

∫
D

dDx⃗
√
|g|ψ†

λ

(
−∇i∇iψλ

)
≥ 0. (12.1.15)

If there are no boundaries – for example, if D is a (n ≥ 2)-sphere (usually denoted as Sn) – there
will be no surface terms; if there are boundaries but the eigenfunctions obey either Dirichlet
conditions in eq. (12.1.9) or Neumann conditions in eq. (12.1.10), the surface terms will vanish.
In all three cases, we see that the corresponding eigenvalues {λ} are strictly non-negative, since∫
D
dDx⃗

√
|g||ψλ|2 ≥ 0:

I ′ = λ

∫
D

dDx⃗
√
|g||ψλ|2 ≥ 0. (12.1.16)

Problem 12.1. Instead of Dirichlet or Neumann boundary conditions, let us allow for
mixed (aka Robin) boundary conditions, namely

α · ψ + β · ni∇iψ = 0 (12.1.17)

on the boundary ∂D. Show that the negative Laplacian is Hermitian if we impose

α

α∗ =
β

β∗ . (12.1.18)

In particular, if α and β are both real, imposing eq. (12.1.17) automatically yields a Hermitian
Laplacian.
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12.1.3 Inverse of the negative Laplacian: Green’s function and reciprocity

Given the Dirichlet boundary condition in eq. (12.1.9), i.e., {ψλ(∂D) = 0}, we will now under-
stand how to solve Poisson’s equation, through the inverse of the negative Laplacian. Roughly
speaking,

−∇⃗2ψ = J ⇒ ψ =
(
−∇⃗2

)−1

J. (12.1.19)

(The actual formula, in a finite domain, will be a tad more complicated, but here we are merely
motivating the reason for defining G.) Since, given any Hermitian operator

H =
∑
λ

λ |λ⟩ ⟨λ| , {λ ∈ R}, (12.1.20)

its inverse is

H−1 =
∑
λ

|λ⟩ ⟨λ|
λ

, {λ ∈ R}; (12.1.21)

we see that the inverse of the negative Laplacian in the position space representation is the
following mode expansion involving its eigenfunctions {ψλ}.

G(x⃗, x⃗′) =

〈
x⃗

∣∣∣∣ 1

−∇⃗2

∣∣∣∣ x⃗′〉 =
∑
λ

ψλ(x⃗)ψλ(x⃗
′)†

λ
, (12.1.22)

−∇⃗2ψλ = λψλ, ψλ(x⃗) ≡ ⟨x⃗|λ⟩ . (12.1.23)

(The summation sign is schematic; it can involve either (or both) a discrete sum or/and an
integral over a continuum.) Since the mode functions are subject to {ψλ(∂D) = 0}, the Green’s
function itself also obeys Dirichlet boundary conditions:

G(x⃗ ∈ D, x⃗′) = G(x⃗, x⃗′ ∈ D) = 0. (12.1.24)

The Green’s function G satisfies the PDE

−∇⃗2
x⃗G(x⃗, x⃗

′) = −∇⃗2
x⃗′G(x⃗, x⃗

′) =
δ(D)(x⃗− x⃗′)
4
√
|g(x⃗)g(x⃗′))|

, (12.1.25)

because the negative Laplacian is Hermitian and thus its eigenfunctions obey the following
completeness relation (cf. (4.3.23))

∑
λ

ψλ(x⃗
′)ψλ(x⃗)

† = ⟨x⃗′|

(∑
λ

|λ⟩ ⟨λ|

)
|x⃗⟩

= ⟨x⃗′| x⃗⟩ = δ(D)(x⃗− x⃗′)
4
√
|g(x⃗)g(x⃗′))|

. (12.1.26)

Eq. (12.1.25) follows from −∇⃗2ψλ = λψλ and

−∇⃗2
x⃗G(x⃗, x⃗

′) =
∑
λ

−∇⃗2
x⃗ψλ(x⃗)ψλ(x⃗

′)†

λ
=
∑
λ

ψλ(x⃗)ψλ(x⃗
′)†, (12.1.27)
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−∇⃗2
x⃗′G(x⃗, x⃗

′) =
∑
λ

ψλ(x⃗)(−∇⃗2
x⃗′ψλ(x⃗

′)†)

λ
=
∑
λ

ψλ(x⃗)ψλ(x⃗
′)†. (12.1.28)

Because the δ(D)-functions on the right hand side of eq. (12.1.25) is the (position representation)
of the identity operator, the Green’s function itself is really the inverse of the negative Laplacian.

Field at x⃗ due to point source at x⃗′ Physically speaking, by comparing Poisson’s
equation with the corresponding Green’s function equation in eq. (12.1.25), the δ-functions on
the right hand side of the latter admit the interpretation that the Green’s function is the field
at x⃗ produced by a point source at x⃗′. Therefore, the Green’s function of the negative Laplacian
is the gravitational/electric potential produced by a unit strength point charge/mass.

Flat RD The example illustrating the above discussion is provided by the eigenfunctions
of the negative Laplacian in infinite D-space.

ψk⃗(x⃗) =
eik⃗·x⃗

(2π)D/2
, −∇⃗2

x⃗ψk⃗(x⃗) = k⃗2ψk⃗(x⃗). (12.1.29)

Because we know the integral representation of the δ-function, eq. (12.1.26) now reads∫
RD

dDk⃗

(2π)D
eik⃗·(x⃗−x⃗

′) = δ(D)(x⃗− x⃗′). (12.1.30)

Through eq. (12.1.22), we may write down the integral representation of the inverse of the
negative Laplacian in Euclidean D-space.

G(x⃗, x⃗′) =

∫
RD

dDk⃗

(2π)D
eik⃗·(x⃗−x⃗

′)

k⃗2
=

Γ
(
D
2
− 1
)

4πD/2|x⃗− x⃗′|D−2
. (12.1.31)

In 3D, this result simplifies to the (hopefully familiar) result

G3(x⃗, x⃗
′) =

1

4π|x⃗− x⃗′|
. (12.1.32)

Boundaries & Method of Images Suppose we now wish to solve the Green’s function
GD(D) of the negative Laplacian in a finite domain of flat space, D ⊂ RD. One may view GD(D)
as the sum of its counterpart in infinite RD plus a term that is a homogeneous solution HD(D)
in the finite domain D, such that the desired boundary conditions are achieved on ∂D. Namely,

GD(x⃗, x⃗
′;D) =

Γ
(
D
2
− 1
)

4πD/2|x⃗− x⃗′|D−2
+H(x⃗, x⃗′;D),

−∇⃗2
x⃗GD(x⃗, x⃗

′;D) = −∇⃗2
x⃗′GD(x⃗, x⃗

′;D) = δ(D) (x⃗− x⃗′) , (Cartesian coordinates)

−∇⃗2
x⃗HD(x⃗, x⃗

′;D) = −∇⃗2
x⃗′HD(x⃗, x⃗

′;D) = 0, x⃗, x⃗′ ∈ D. (12.1.33)

If Dirichlet boundary conditions are desired, we would demand

Γ
(
D
2
− 1
)

4πD/2|x⃗− x⃗′|D−2
+H(x⃗, x⃗′;D) = 0 (12.1.34)
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whenever x⃗ ∈ ∂D or x⃗′ ∈ ∂D.
The method of images, which you will likely learn about in an electromagnetism course, is a

special case of such a strategy of solving the Green’s function. We will illustrate it through the
following example. Suppose we wish to solve the Green’s function in a half-infinite space, i.e.,
for xD ≥ 0 only, but let the rest of the {x1, . . . , xD−1} run over the real line. We further want
the boundary condition

GD(x
D = 0) = GD(x

′D = 0) = 0. (12.1.35)

The strategy is to notice that the infinite plane that is equidistant between one positive and
one negative point mass/charge has zero potential, so if we wish to solve the Green’s function
(the potential of the positive unit mass) on the half plane, we place a negative unit mass on the
opposite side of the boundary at xD = 0. Since the solution to Poisson’s equation is unique, the
solution for xD ≥ 0 is therefore

GD(x⃗, x⃗
′;D) =

Γ
(
D
2
− 1
)

4πD/2|x⃗− x⃗′|D−2
−

Γ
(
D
2
− 1
)

4πD/2|ξ⃗|D−2
, (12.1.36)

|ξ⃗| ≡

√√√√D−1∑
j=1

(xj − x′j)2 + (xD + x′D)2, xD, x′D ≥ 0.

Mathematically speaking, when the negative Laplacian is applied to the second term in eq.
(12.1.36), it yields

∏D−1
j=1 δ(x

j − x′j)δ(xD + x′D), but since xD, x′D ≥ 0, the very last δ-function
can be set to zero. Hence, the second term is a homogeneous solution when attention is restricted
to xD ≥ 0.

Reciprocity We will also now show that the Green’s function itself is a Hermitian
object, in that

G(x⃗, x⃗′)† = G(x⃗′, x⃗) = G(x⃗, x⃗′). (12.1.37)

The first equality follows from the real positive nature of the eigenvalues, as well as the mode
expansion in eq. (12.1.22)

G(x⃗, x⃗′)∗ =
∑
λ

ψλ(x⃗
′)ψλ(x⃗)

†

λ
= G(x⃗′, x⃗). (12.1.38)

The second requires considering the sort of integrals we have been examining in this section.

I(x, x′) ≡
∫
D

dDx⃗′′
√
|g(x⃗′′)|

{
G (x⃗, x⃗′′) (−∇⃗2

x⃗′′)G (x⃗′, x⃗′′)−G (x⃗′, x⃗′′) (−∇⃗2
x⃗′′)G (x⃗, x⃗′′)

}
.

(12.1.39)

Using the PDE obeyed by G,

I(x, x′) = G(x⃗, x⃗′)−G(x⃗′, x⃗). (12.1.40)

We may integrate-by-parts too.

I(x, x′) =

∫
∂D

dD−1Σi′′

{
G(x⃗, x⃗′′)(−∇i′′)G(x⃗′, x⃗′′)−G(x⃗′, x⃗′′)(−∇i′′)G(x⃗, x⃗′′)

}
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+

∫
dDx⃗′′

√
|g(x⃗′′)|

{
∇i′′G(x⃗, x⃗

′′)∇i′′G(x⃗′, x⃗′′)−∇i′′G(x⃗
′, x⃗′′)∇i′′G(x⃗, x⃗′′)

}
. (12.1.41)

The terms in the last line cancel. Moreover, for precisely the same boundary conditions that
make the negative Laplacian Hermitian, we see the surface terms have to vanish too. Therefore
I(x, x′) = 0 = G(x⃗, x⃗′)−G(x⃗′, x⃗), and we have established the reciprocity of the Green’s function.

Problem 12.2. Verify directly that the Green’s function solution in eq. (12.1.36) obeys
reciprocity.

Non-invertible Laplacian We see from the mode sum in eq. (12.1.22) that a Hermitian
Laplacian has no inverse – its Green’s function does not exist – when it has an isolated zero
eigenvalue; i.e., when there are no eigenvalues continuously connected to λ = 0. There are at
least two cases where this occurs.

Neumann Boundary Conditions Within a finite domain D, we see that the Neumann
boundary conditions {ni∇iψλ(∂D) = 0} imply there must be a zero eigenvalue; for, the ψ0 =
constant is the corresponding eigenvector, whose normal derivative on the boundary is zero:

−∇⃗2ψ0 = −
∂i

(√
|g|gij∂jψ0

)
√
|g|

= 0 · ψ0. (12.1.42)

As long as this is an isolated zero, this mode will contribute a discrete term in the mode sum
of eq. (12.1.22) that yields a 1/0 infinity. That is, the inverse of the Laplacian does not make
sense if there is an isolated zero mode.132

Domain without boundary If the domain under study has no boundary – for example,
the 2D closed surface of a sphere or soap bubble – then the Green’s function eq. (12.1.25) cannot
be satisfied. For, if it could be satisfied, we may integrate both sides over the domain. The left
hand side of eq. (12.1.25), being the divergence of a gradient, would integrate to zero by Gauss’
theorem; whereas the right hand side would integrate to unity.

Discontinuous first derivatives Because it may not be apparent from the mode
expansion in eq. (12.1.22), it is worth highlighting that the Green’s function must contain
discontinuous first derivatives as x⃗ → x⃗′ in order to yield, from a second order Laplacian, δ-
functions on the right hand side of eq. (12.1.25). For Green’s functions in a finite domain D,
there are potentially additional discontinuities when both x⃗ and x⃗′ are near the boundary of the
domain ∂D.

12.1.4 Kirchhoff integral theorem and Dirichlet boundary conditions

Within a finite domain D we will now understand why the choice of boundary conditions that
makes the negative Laplacian a Hermitian operator, is intimately tied to the type of boundary
conditions imposed in solving Poisson’s equation eq. (12.1.1).

Suppose we have specified the field on the boundary ψ(∂D). To solve Poisson’s equation

−∇⃗2ψ = J , we will start by imposing Dirichlet boundary conditions on the eigenfunctions of the

132In the infinite flat RD case above, we have seen the {exp(ik⃗ · x⃗)} are the eigenfunctions and hence there is

also a zero mode, gotten by setting k⃗ → 0⃗. However the inverse does exist because the mode sum of eq. (12.1.22)

is really an integral, and the integration measure dDk⃗ ensures convergence of the integral.
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Laplacian, i.e., {ψλ(∂D) = 0}, so that the resulting Green’s function obey eq. (12.1.24). The
solution to Poisson’s equation within the domain D can now be solved in terms of G, the source
J , and its boundary values ψ(∂D) through the following Kirchhoff integral representation:

ψ(x⃗) =

∫
D

dDx⃗′
√
|g(x⃗′)|G(x⃗, x⃗′)J(x⃗′)−

∫
∂D

dD−1Σi′∇i′G(x⃗, x⃗′)ψ(x⃗′). (12.1.43)

If there are no boundaries, then the boundary integral terms in eq. (12.1.43) are zero. Similarly,
if the boundaries are infinitely far away, the same boundary terms can usually be assumed to
vanish, provided the fields involved decay sufficiently quickly at large distances. Physically,
the first term can be interpreted to be the ψ directly due to J the source (i.e., the particular
solution); whereas the surface integral terms are independent of J and thus correspond to the
homogeneous solutions.

Derivation of eq. (12.1.43) Let us now consider the following integral

I(x⃗ ∈ D) ≡
∫
D

dDx⃗′
√
|g(x⃗′)|

{
G(x⃗, x⃗′)

(
−∇⃗2

x⃗′ψ(x⃗
′)
)
−
(
−∇⃗2

x⃗′G(x⃗, x⃗
′)
)
ψ(x⃗′)

}
(12.1.44)

If we use the equations (12.1.1) and (12.1.25) obeyed by ψ and G respectively, we obtain imme-
diately

I(x⃗) =

∫
D

dDx⃗′
√
|g(x⃗′)|G(x⃗, x⃗′)J(x⃗′)− ψ(x⃗). (12.1.45)

On the other hand, we may integrate-by-parts,

I(x⃗) =

∫
∂D

dD−1Σi′

{
G(x⃗, x⃗′)

(
−∇i′ψ(x⃗′)

)
−
(
−∇i′G(x⃗, x⃗′)

)
ψ(x⃗′)

}
+

∫
D

dDx⃗′
√
|g(x⃗′)|

{
∇i′G(x⃗, x⃗

′)∇i′ψ(x⃗′)−∇i′G(x⃗, x⃗′)∇i′ψ(x⃗
′)
}
. (12.1.46)

The second line cancels. Combining equations (12.1.45) and (12.1.46) then hands us the following
Kirchhoff representation:

ψ(x⃗ ∈ D) =

∫
∂D

dD−1Σi′

{
G(x⃗, x⃗′)

(
∇i′ψ(x⃗′)

)
−
(
∇i′G(x⃗, x⃗′)

)
ψ(x⃗′)

}
+

∫
D

dDx⃗′
√
|g(x⃗′)|G(x⃗, x⃗′)J(x⃗′). (12.1.47)

(The prime on the index in ∇i′ indicates the covariant derivative is with respect to x⃗′.) If we
recall the Dirichlet boundary conditions obeyed by the Green’s function G(x⃗, x⃗′) (eq. (12.1.24)),
the first term on the right hand side of the first line drops out and we obtain eq. (12.1.43).

Problem 12.3. Dirichlet B.C. Variation Principle In a finite domain (where
∫
D
dDx⃗

√
|g| <

∞), let all fields vanish on the boundary ∂D and denote the smallest non-zero eigenvalue of the

negative Laplacian −∇⃗2 as λ0. Let ψ be an arbitrary function obeying the same boundary
conditions as the eigenfunctions of −∇⃗2. For this problem, assume that the spectrum of the
negative Laplacian is discrete. Prove that∫

D
dDx⃗

√
|g|∇iψ

†∇iψ∫
D
dDx⃗

√
|g||ψ|2

≥ λ0. (12.1.48)
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Just like in quantum mechanics, we have a variational principle for the spectrum of the negative
Laplacian in a finite volume curved space: you can exploit any trial complex function ψ that
vanishes on D to derive an upper bound for the lowest eigenvalue of the negative Laplacian.

Hint: Expand ψ as a superposition of the eigenfunctions of −∇⃗2. Then integrate-by-parts
one of the ∇i in the integrand.

Example Suppose, within a finite 1D box, x ∈ [0, L] we are provided a real field ψ obeying

ψ(x = 0) = α, ψ(x = L) = β (12.1.49)

without any external sources. You can probably solve this 1D Poisson’s equation (−∂2xψ = 0)
right away; it is a straight line:

ψ(0 ≤ x ≤ L) = α +
β − α
L

x. (12.1.50)

But let us try to solve it using the methods developed here. First, we recall the orthonormal
eigenfunctions of the negative Laplacian with Dirichlet boundary conditions,

⟨x|n⟩ =
√

2

L
sin
(nπ
L
x
)
, n ∈ {1, 2, 3, . . . },

∞∑
n=1

⟨x|n⟩ ⟨n|x′⟩ = δ(x− x′),

−∂2x ⟨x|n⟩ =
(nπ
L

)2
⟨x|n⟩ . (12.1.51)

The mode sum expansion of the Green’s function in eq. (12.1.22) is

G(x, x′) =
2

L

∞∑
n=1

(nπ
L

)−2

sin
(nπ
L
x
)
sin
(nπ
L
x′
)
. (12.1.52)

The J term in eq. (12.1.43) is zero, while the surface integrals really only involve evaluation at
x = 0, L. Do be careful that the normal derivative refers to the outward normal.

ψ(x⃗) = ∂x′G(x, x
′ = 0)ψ(x′ = 0)− ∂x′G(x, x′ = L)ψ(x′ = L)

= − 2

L

∞∑
n=1

L

nπ
sin
(nπ
L
x
) [

cos
(nπ
L
x′
)
ψ(x′)

]x′=L
x′=0

= −
∞∑
n=1

2

nπ
sin
(nπ
L
x
)
((−)n · β − α) (12.1.53)

We may check this answer in the following way. Because the solution in eq. (12.1.53) is odd
under x→ −x, let us we extend the solution in the following way:

ψ∞(−L ≤ x ≤ L) = α +
β − α
L

x, 0 ≤ x ≤ L,

= −
(
α +

β − α
L

x

)
, −L ≤ x < 0. (12.1.54)
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We will then extend the definition of ψ∞ by imposing periodic boundary conditions, ψ∞(x+2L) =
ψ∞(x). This yields the Fourier series

ψ∞(x) =
+∞∑
ℓ=−∞

Cℓe
i 2πℓ
2L

x. (12.1.55)

Multiplying both sides by exp(−i(πn/L)x) and integrating over x ∈ [−L,L].

Cn =

∫ L

−L
ψ∞(x)e−i

πn
L
x dx

2L
=

∫ L

−L
ψ∞(x)

(
cos
(πn
L
x
)
− i sin

(πn
L
x
)) dx

2L

= −i
∫ L

0

(
α +

β − α
L

x

)
sin
(πn
L
x
) dx

L

=
i

πn
((−)nβ − α) . (12.1.56)

Putting this back to into the Fourier series,

ψ∞(x) = i
+∞∑
n=1

1

πn

{
((−)nβ − α) ei

πn
L
x −

(
(−)−nβ − α

)
e−i

πn
L
x
}

= −
+∞∑
n=1

2

πn
((−)nβ − α) sin

(πn
L
x
)
. (12.1.57)

Is it not silly to obtain a complicated infinite sum for a solution, when it is really a straight line?
The answer is that, while the Green’s function/mode sum method here does appear unnecessarily
complicated, this mode expansion method is very general and is oftentimes the only known means
of solving the problem analytically.

Problem 12.4. Solve the 2D flat space Poisson equation −(∂2x + ∂2y)ψ(0 ≤ x ≤ L1, 0 ≤ y ≤
L2) = 0, up to quadrature, with the following boundary conditions

ψ(0, y) = φ1(y), ψ(L1, y) = φ2(y), ψ(x, 0) = ρ1(x), ψ(x, L2) = ρ2(x). (12.1.58)

Write the solution as a mode sum, using the eigenfunctions

ψm,n(x, y) ≡ ⟨x, y|m,n⟩ =
2√
L1L2

sin

(
πm

L1

x

)
sin

(
πn

L2

y

)
. (12.1.59)

Hint: your answer will involve 1D integrals on the 4 boundaries of the rectangle.

12.2 Laplacians and their spectra

Let us recall our discussions from both linear algebra and differential geometry. Given a (Eu-
clidean signature) metric

dℓ2 = gij(x⃗)dx
idxj, (12.2.1)
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the Laplacian acting on a scalar ψ can be written as

∇⃗2ψ ≡ ∇i∇iψ =
∂i

(√
|g|gij∂jψ

)
√
|g|

, (12.2.2)

where
√
|g| is the square root of the determinant of the metric.

Spectra Now we turn to the primary goal of this section, to study the eigenvector/value
problem

−∇⃗2ψλ(x⃗) = −∇⃗2 ⟨x⃗|λ⟩ = λ ⟨x⃗|λ⟩ . (12.2.3)

If these eigenfunctions are normalized to unit length, namely∫
D

dDx⃗ ⟨λ| x⃗⟩ ⟨x⃗|λ′⟩ = δλλ′ (12.2.4)

– where the δλλ′ on the right hand side can either be the kronecker delta (for discrete spectra) or
the Dirac delta (for continuous ones) – then we have the completeness relation

∑
λ

⟨x⃗|λ⟩ ⟨λ| x⃗′⟩ = δ(D)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

. (12.2.5)

The summation on the left hand side will become an integral for continuous spectra; and the
Dirac delta functions on the right hand side should be viewed as the identity operator in the
position representation.

12.2.1 Infinite RD in Cartesian coordinates

In infinite flat Euclidean D-space RD, we have already seen that the plane waves {exp(i⃗k · x⃗)}
are the eigenvectors of −∇⃗2 with eigenvalues {k2|−∞ < k <∞}. This is a coordinate invariant
statement, since the ψ and Laplacian in eq. (12.2.3) are coordinate scalars. Also notice that the
eigenvalue/vector equation (12.2.3) is a “local” PDE in that it is possible to solve it only in the
finite neighborhood of x⃗; it therefore requires appropriate boundary conditions to pin down the
correct eigen-solutions.

In Cartesian coordinates, moreover,

ψk⃗(x⃗) = ⟨x⃗|⃗k⟩ = eik⃗·x⃗ =
D∏
j=1

eikjx
j

, k⃗2 = δijkikj =
D∑
i=1

(ki)
2 ≡ k⃗2, (12.2.6)

with completeness relations (cf. eq. (12.1.26)) given by∫
RD

dDx⃗
〈
k⃗
∣∣∣ x⃗〉〈x⃗ ∣∣∣⃗k′〉 = (2π)Dδ(D)

(
k⃗ − k⃗′

)
, (12.2.7)∫

RD

dDk⃗

(2π)D

〈
x⃗
∣∣∣⃗k〉 〈k⃗∣∣∣ x⃗′〉 = δ(D) (x⃗− x⃗′) . (12.2.8)
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Translation symmetry and degeneracy For a fixed 1 ≤ j ≤ D, notice the translation operator
in the jth Cartesian direction, namely −i∂j ≡ −i∂/∂xj commutes with −∇⃗2. The translation
operators commute amongst themselves too. This is why one can simultaneously diagonalize
the Laplacian, and all the D translation operators.

−i∂j ⟨x⃗| k2
〉
= kj ⟨x⃗| k2

〉
(12.2.9)

In fact, we see that the eigenvector of the Laplacian |k2⟩ can be viewed as a tensor product of
the eigenstates of Pj.∣∣∣k2 = k⃗2

〉
= |k1⟩ ⊗ |k2⟩ ⊗ · · · ⊗ |kD⟩ (12.2.10)

⟨x⃗| k2
〉
=
(〈
x1
∣∣⊗ · · · ⊗ 〈xD∣∣) (|k1⟩ ⊗ · · · ⊗ |kD⟩)

=
〈
x1
∣∣ k1〉 〈x2∣∣ k2〉 . . . 〈xD∣∣ kD〉 = D∏

j=1

eikjx
j

. (12.2.11)

As we have already highlighted in the linear algebra of continuous spaces section, the spectrum
of the negative Laplacian admits an infinite fold degeneracy here. Physically speaking we may
associate it with the translation symmetry of RD.

12.2.2 1 Dimension

Infinite Flat Space In one dimension, the metric133 is

dℓ2 = dz2, (12.2.12)

for z ∈ R, and eq. (12.2.6) reduces to

−∇⃗2
1ψk(z) = −∂2zψk(z) = k2ψk(z), ⟨z| k⟩ ≡ ψk(z) = eikz; (12.2.13)

and their completeness relation (cf. eq. (12.1.26)) is∫ ∞

−∞

dk

2π
⟨z| k⟩ ⟨k| z′⟩ =

∫ ∞

−∞

dk

2π
eik(z−z

′) = δ(z − z′). (12.2.14)

Periodic infinite space If the 1D space obeys periodic boundary conditions, with period
L, we have instead

−∇⃗2
1ψm(z) = −∂2zψm(z) =

(
2πm

L

)2

ψm(z),

⟨z|m⟩ ≡ ψm(z) = L−1/2ei
2πm
L

z, m = 0,±1,±2, . . . . (12.2.15)

The orthonormal eigenvectors obey∫ L

0

dz ⟨m| z⟩ ⟨z|m′⟩ = δmm′ , ⟨z|m⟩ = L−1/2ei
2πm
L

z; (12.2.16)

133One dimensional space(time)s are always flat – the Riemann tensor is identically zero.
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while their completeness relation (eq. (12.1.26)) reads, for 0 ≤ z, z′ ≤ L,

∞∑
m=−∞

⟨z|m⟩ ⟨m| z′⟩ = 1

L

∞∑
m=−∞

e
2πm
L

i(z−z′) = δ(z − z′). (12.2.17)

Unit Circle A periodic infinite space can be thought of as a circle, and vice versa. Simply
identify L ≡ 2πr, where r is the radius of the circle as embedded in 2D space. For concreteness
we will consider a circle of radius 1. Then we may write the metric as

dℓ2 = (dϕ)2, ϕ ∈ [0, 2π). (12.2.18)

We may then bring over the results from the previous discussion.

−∇⃗2
S1ψm(ϕ) = −∂2ϕψm(ϕ) = m2ψm(ϕ),

⟨ϕ|m⟩ ≡ ψm(ϕ) = (2π)−1/2eimϕ, m = 0,±1,±2, . . . . (12.2.19)

The orthonormal eigenvectors obey∫ 2π

0

dϕ ⟨m|ϕ⟩ ⟨ϕ|m′⟩ = δmm′ , ⟨ϕ|m⟩ = (2π)−1/2eimϕ. (12.2.20)

while their completeness relation reads, for 0 ≤ z, z′ ≤ L,

∞∑
m=−∞

⟨ϕ|m⟩ ⟨m|ϕ′⟩ = 1

2π

∞∑
m=−∞

eim(ϕ−ϕ′) = δ(ϕ− ϕ′). (12.2.21)

Fourier series re-visited. Note that −i∂ϕ can be thought of as the “momentum opera-
tor” on the unit circle (in the position representation) with eigenvalues {m} and corresponding
eigenvectors {⟨ϕ|m⟩}. Namely, if we define

⟨ϕ |Pϕ|ψ⟩ = −i∂ϕ ⟨ϕ|ψ⟩ (12.2.22)

for any state |ψ⟩, we shall see it is Hermitian with discrete spectra:

Pϕ |m⟩ = m |m⟩ , m = 0,±1,±2,±3, . . . , (12.2.23)

⟨ϕ|m⟩ = eimϕ/
√
2π. (12.2.24)

Given arbitrary states |ψ1,2⟩,

⟨ψ1 |Pϕ|ψ2⟩ =
∫ 2π

0

dϕ ⟨ψ1|ϕ⟩ (−i∂ϕ ⟨ϕ|ψ2⟩) (12.2.25)

= [−i ⟨ψ1|ϕ⟩ ⟨ϕ|ψ2⟩]ϕ=2π
ϕ=0 +

∫ 2π

0

dϕ (i∂ϕ ⟨ψ1|ϕ⟩) ⟨ϕ|ψ2⟩ .

As long as we are dealing with the space of continuous functions ψ1,2(ϕ) on a circle, the boundary
terms must vanish because ϕ = 0 and ϕ = 2π really refer to the same point. Therefore,

⟨ψ1 |Pϕ|ψ2⟩ =
∫ 2π

0

dϕ (−i∂ϕ ⟨ϕ|ψ1⟩)∗ ⟨ϕ|ψ2⟩ =
∫ 2π

0

dϕ⟨ϕ |Pϕ|ψ1⟩ ⟨ϕ|ψ2⟩
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=

∫ 2π

0

dϕ
〈
ψ1

∣∣∣P †
ϕ

∣∣∣ϕ〉 ⟨ϕ|ψ2⟩ =
〈
ψ1

∣∣∣P †
ϕ

∣∣∣ψ2

〉
. (12.2.26)

We must therefore have〈
ϕ
∣∣e−iθPϕ

∣∣ψ〉 = e−iθ(−i∂ϕ) ⟨ϕ|ψ⟩ = e−θ∂ϕ ⟨ϕ|ψ⟩ = ⟨ϕ− θ|ψ⟩ . (12.2.27)

Any function on a circle can be expanded in the eigenstates of Pϕ, which in turn can be expressed
through its position representation.

|ψ⟩ =
+∞∑

m=−∞

|m⟩ ⟨m|ψ⟩ =
+∞∑

m=−∞

∫ 2π

0

dϕ |ϕ⟩ ⟨ϕ|m⟩ ⟨m|ψ⟩ =
+∞∑

m=−∞

∫ 2π

0

dϕ√
2π
|ϕ⟩ ⟨m|ψ⟩ eimϕ,

⟨m|ψ⟩ =
∫ 2π

0

dϕ′ ⟨m|ϕ′⟩ ⟨ϕ′|ψ⟩ =
∫ 2π

0

dϕ′
√
2π
e−imϕ

′
ψ(ϕ′). (12.2.28)

This is nothing but the Fourier series expansion of ψ(ϕ).

12.2.3 2 Dimensions ◦ Separation-of-Variables for PDEs

Flat Space, Cylindrical Coordinates The 2D flat metric in cylindrical coordinates reads

dℓ2 = dr2 + r2dϕ2, r ≥ 0, ϕ ∈ [0, 2π),
√
|g| = r. (12.2.29)

The negative Laplacian is therefore

−∇⃗2
2φk(r, ϕ) = −

1

r

(
∂r (r∂rφk) +

1

r
∂2ϕφk

)
(12.2.30)

= −
{
1

r
∂r (r∂rφk) +

1

r2
∂2ϕφk

}
. (12.2.31)

Our goal here is to diagonalize the negative Laplacian in cylindrical coordinates, and re-write
the plane wave using its eigenstates. In this case we will in fact tackle the latter and use the
results to do the former. To begin, note that the plane wave in 2D cylindrical coordinates is

⟨x⃗|⃗k⟩ = exp(i⃗k · x⃗) = exp(ikr cos(ϕ− ϕk)), k ≡ |⃗k|, r ≡ |x⃗|; (12.2.32)

because the Cartesian components of k⃗ and x⃗ are

ki = k (cosϕk, sinϕk) xi = r (cosϕ, sinϕ) . (12.2.33)

We observe that this is a periodic function of the angle ∆ϕ ≡ ϕ−ϕk with period L = 2π, which
means it must admit a Fourier series expansion. Referring to equations (5.3.31) and (5.3.32),

⟨x⃗|⃗k⟩ =
+∞∑

m=−∞

χm(kr)
eim(ϕ−ϕk)
√
2π

. (12.2.34)
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Setting ϕ− ϕk → ϕ′′, multiplying both sides with exp(−imϕ′′)/
√
2π, followed by integrating ϕ′′

over the unit circle,

χm(kr) =

∫ 2π

0

dϕ′′
√
2π
eikr cosϕ

′′
e−imϕ

′′
(12.2.35)

=
√
2π

∫ ϕ′′=2π

ϕ′′=0

d(ϕ′′ + π/2)

2π
eikr cos(ϕ

′′+π/2−π/2)e−im(ϕ′′+π/2−π/2)

=
√
2π

∫ 5π/2

π/2

dϕ′

2π
eikr sinϕ

′
e−imϕ

′
im = im

√
2π

∫ +π

−π

dϕ′

2π
eikr sinϕ

′
e−imϕ

′
. (12.2.36)

(In the last line, we have used the fact that the integrand is itself a periodic function of ϕ′ with
period 2π to change the limits of integration.) As it turns out, the Bessel function Jm admits
an integral representation (cf. eq. (10.9.2) of the NIST page here.)

Jm(z) =

∫ π

−π

dϕ′

2π
eiz sinϕ

′−imϕ′ , m ∈ {0,±1,±2, . . . }, (12.2.37)

J−m(z) = (−)mJm(z). (12.2.38)

As an aside, let us record that Jν(z) also has a series representation

Jν(z) =
(z
2

)ν ∞∑
k=0

(−)k(z/2)2k

k!Γ(ν + k + 1)
; (12.2.39)

and the large argument asymptotic expansion

J±ν(z ≫ ν) ∼
√

2

πz
cos
(
z ∓ π

2
ν − π

4

)
. (12.2.40)

Utilizing eq. (5.4.135) in eq. (12.2.36), we see the plane wave in eq. (12.2.34) admits the
cylindrical coordinate expansion:

⟨x⃗|⃗k⟩ = exp(i⃗k · x⃗) = exp(ikr cos(ϕ− ϕk)), k ≡ |⃗k|, r ≡ |x⃗|

=
∞∑

m=−∞

imJm(kr)e
im(ϕ−ϕk). (12.2.41)

Because the {eimϕ} are basis vectors on the circle of fixed radius r, every term in the infinite sum

is a linearly independent eigenvector of −∇⃗2
2. That is, we can now read off the basis eigenvectors

of the negative Laplacian in 2D cylindrical coordinates. To obtain orthonormal ones, however, let
us calculate their normalization using the following orthogonality relation, written in cylindrical
coordinates,

(2π)2
δ(k − k′)δ(ϕk − ϕk′)√

kk′
=

∫
R2

d2x exp(i(k⃗ − k⃗′) · x⃗) (12.2.42)

=
+∞∑

m,m′=−∞

∫ ∞

0

dr · r
∫ 2π

0

dϕ · im(−i)m′
Jm(kr)Jm′(k′r)eim(ϕ−ϕk)e−im

′(ϕ−ϕk′ )

= (2π)
+∞∑

m=−∞

∫ ∞

0

dr · rJm(kr)Jm(k′r)eim(ϕk′−ϕk).

557

http://dlmf.nist.gov/10.9


Problem 12.5. The left hand side of eq. (12.2.42) is (2π)2δ(2)(k⃗ − k⃗′) if we used Cartesian

coordinates in k⃗−space – see eq. (12.2.7). Can you explain why it takes the form it does? Hint:
Use cylindrical coordinates in k−space and refer to eq. (12.1.26).

We now replace the δ(ϕ − ϕk) on the left hand side of eq. (12.2.42) with the completeness
relation in eq. (12.2.17), where now z = ϕk, z

′ = ϕk′ and the period is L = 2π. Equating the
result to the last line then brings us to

+∞∑
m=−∞

δ(k − k′)√
kk′

eim(ϕk−ϕk′ ) =
+∞∑

m=−∞

∫ ∞

0

dr · rJm(kr)Jm(k′r)eim(ϕk′−ϕk). (12.2.43)

The coefficients of each (linearly independent) vector eim(ϕk−ϕk′ ) on both sides should be the
same. This yields the completeness relation of the radial mode functions:∫ ∞

0

dr · rJm(kr)Jm(k′r) =
δ(k − k′)√

kk′
, (12.2.44)∫ ∞

0

dk · kJm(kr)Jm(kr′) =
δ(r − r′)√

rr′
. (12.2.45)

To summarize, we have found, in 2D infinite flat space, that the eigenvectors/values of the
negative Laplacian in cylindrical coordinates (r ≥ 0, 0 ≤ ϕ < 2π) are

−∇⃗2
2 ⟨r, ϕ| k,m⟩ = k2 ⟨r, ϕ| k,m⟩ , ⟨r, ϕ| k,m⟩ ≡ Jm(kr)

exp (imϕ)√
2π

,

m = 0,±1,±2,±3, . . . . (12.2.46)

The eigenvectors are normalized as∫ ∞

0

dr · r
∫ 2π

0

dϕ ⟨k,m| r, ϕ⟩ ⟨r, ϕ| k′,m′⟩ = δmm′
δ(k − k′)√

kk′
. (12.2.47)

Rotational symmetry and degeneracy Note that −i∂ϕ is the translation operator in the
azimuthal direction (≡ rotation operator), with eigenvalue m. The spectrum here is discretely
and infinitely degenerate, which can be physically interpreted to be due to the presence of
rotational symmetry.

Bessel’s equation As a check of our analysis here, we may now directly evaluate the
2D negative Laplacian acting on the its eigenvector ⟨r, ϕ| k,m⟩, and see that we are lead to
Bessel’s equation. Starting from the eigenvector/value equation in (12.2.46), followed by using
the explicit expression in eq. (12.2.30) and the angular eigenvalue/vector equation ∂2ϕ exp(imϕ) =
−m2 exp(imϕ), this hands us

k2Jm(kr) = −
{
1

r
∂r (r∂rJm(kr))−

m2

r2
Jm(kr)

}
. (12.2.48)

Let us then re-scale ρ ≡ kr, where k ≡ |⃗k|, so that ∂r = k∂ρ.

ρ2 · J ′′(ρ) + ρ · J ′(ρ) + (ρ2 −m2)J(ρ) = 0 (12.2.49)
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Equation 10.2.1 of the NIST page here tells us we have indeed arrived at Bessel’s equation. Two
linearly independent solutions are Jm(kr) and Ym(kr). However, eq. (10.2.2) of the NIST page
here and eq. (10.8.1) of the NIST page here tell us, for small argument, Ym(z → 0) has at least
a log singularity of the form ln(z/2) and for m ̸= 0 has also a power law singularity that goes
as 1/z|m|. Whereas, Jm(z) is (z/2)

|m| times a power series in the variable (z/2)2, and is not only
smooth for small z, the power series in fact has an infinite radius of convergence. It makes sense
that our plane wave expansion only contains Jm and not Ym because it is smooth for all r.

Problem 12.6. Explain how you would modify the analysis here, if we were not dealing
with an infinite 2D space, but only a wedge of 2D space – namely, r ≥ 0 but 0 ≤ ϕ ≤ ϕ0 < 2π.
How would you modify the analysis here, if ϕ ∈ [0, 2π), but now 0 ≤ r ≤ r0 < ∞? You do not
need to carry out the calculations in full, but try to be as detailed as you can. Assume Dirichlet
boundary conditions.

2-sphere S2, Separation-Of-Variables, and the Spherical Harmonics134 The 2-
sphere of radius R can be viewed as a curved surface embedded in 3D flat space parametrized
as

x⃗(ξ⃗ = (θ, ϕ)) = R (sin θ cosϕ, sin θ sinϕ, cos θ) , x⃗2 = R2. (12.2.50)

For concreteness we will consider the case where R = 1. Its metric is therefore given by

HIJdξ
IdξJ = δijdx

idxj
∣∣
R=1

= δij∂Ix
i∂Jx

jdξIdξJ, (12.2.51)

= dθ2 + (sin θ)2dϕ2,
√
|H| = sin θ. (12.2.52)

(Or, simply take the 3D flat space metric in spherical coordinates, and set dr → 0 and r → 1.)
We wish to diagonalize the negative Laplacian on this unit radius 2−sphere. The relevant

eigenvector/value equation is

−∇⃗2
S2Y (θ, ϕ) = ν(ν + 1)Y (θ, ϕ), (12.2.53)

where for now ν is some arbitrary real number greater or equal to 0 so that ν(ν+1) itself can be
equal to any non-negative number. We have chosen the form ν(ν + 1) for technical convenience
– as we shall see, ν is actually 0 or a positive integer, with its discrete nature due to the finite
area of the 2−sphere.

To do so, we now turn to the separation of variables technique, which is a method to reduce a
PDE into a bunch of ODEs – and hence more manageable. The main idea is, for highly symmetric
problems such as the Laplacian in flat space(time)s or on the D-sphere, one postulates that a
multi-variable eigenfunction factorizes into a product of functions, each depending only on one
variable. The crux of the method then involves re-arranging the ensuing eigenvector equation
into sums of terms,

∑
i τi = 0, such that each τi depends solely on the ith variable of the system.

Once this has been done – and since no other term now depends on the ith coordinate so we
may vary it without varying others – we may then conclude that each τi has to be a constant
because upon varying this ith term the entire sum must still remain zero. This in turn leads us
to one ODE for every τi. If solutions can be found, we are assured that such an ansatz works.

134In these notes we focus solely on the spherical harmonics on S2; for spherical harmonics in arbitrary dimen-
sions, see arXiv:1205.3548.
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For the unit radius 2−sphere, we postulate

Y (θ, ϕ) = Λ(θ)Φ(ϕ). (12.2.54)

First work out the Laplacian explicitly, with s ≡ sin θ,

−
{
1

s
∂θ (s∂θY ) +

1

s2
∂2ϕY

}
= −

{
1

s
∂θ (s∂θY ) +

1

s2
∇⃗2

S1Y

}
= ν(ν + 1)Y (θ, ϕ). (12.2.55)

We have identified ∇⃗2
S1 = ∂2ϕ to be the Laplacian on the circle, from eq. (12.2.19). To reiterate,

the key step in the separation-of-variables technique is to arrange the eigenvalue equation into
sums of individual terms that depend on only one variable at a time. In the case at hand, let us
multiply the above equation throughout by s2, use the ansatz in eq. (12.2.54), and re-arrange it
into: {

s∂θ (s∂θΛ · Φ) + s2ν(ν + 1)Λ · Φ
}
+ ∂2ϕ(Λ · Φ) = 0, (12.2.56)

1

Λ

{
s∂θ (s∂θΛ) + s2ν(ν + 1)Λ

}
+
∂2ϕΦ

Φ
= 0. (12.2.57)

Notice the first term involving the {. . . } depends only on θ and not on ϕ. Whereas the second
term (∂2Φ)/Φ only depends on ϕ and not on θ. This immediately implies both terms must be
a constant. For, we may first differentiate both sides with respect to θ,

∂θ

{
1

Λ

(
s∂θ (s∂θΛ) + s2ν(ν + 1)Λ

)}
= 0 (12.2.58)

and conclude the terms in the curly brackets must be independent of θ. And since they are al-
ready independent of ϕ by assumption, these terms must be a constant. Similarly, differentiating
eq. (12.2.57) with respect to ϕ,

∂ϕ

{
∂2ϕΦ

Φ

}
= 0. (12.2.59)

At this point, we deduce

1

Λ

{
s∂θ (s∂θΛ) + s2ν(ν + 1)Λ

}
= m2, (12.2.60)

∂2ϕΦ

Φ
= −m2. (12.2.61)

Note the relative − sign on the right hand sides of equations (12.2.60) and (12.2.61): this ensures
their sum in eq. (12.2.57) is zero. At this point, m2 is an arbitrary constant, but we may see
that eq. (12.2.61) is nothing but the simple harmonic oscillator equation: ∂2ϕΦ+m2Φ = 0, whose
solutions are Φ ∝ exp(imϕ). Demanding that Φ(ϕ+ 2π) = Φ(ϕ) we obtain

Φ(ϕ) ∝ exp(imϕ), m = 0,±1,±2, . . . (12.2.62)

Notice this amounts to setting Φ to be the eigenvector of ∇⃗2
S1 , which we could have guessed from

the outset, since the only occurrence of ∂ϕ in the 2-sphere Laplacian is in the ∂2ϕΦ term.

560



Moreover, it will turn out to be very useful to change variables to c ≡ cos θ, which runs from
−1 to +1 over the range 0 ≤ θ ≤ π. Since s ≡ sin θ is strictly positive there, we have the positive
root sθ = (1− c2)1/2 and ∂θ = (∂c/∂θ)∂c = − sin θ∂c = −(1− c2)1/2∂c. Eq. (12.2.60) then reads

∂c
(
(1− c2)∂cΛ

)
+

(
ν(ν + 1)− m2

1− c2

)
Λ = 0. (12.2.63)

This is solved – see eq. 14.2.2 of the NIST page here – by the two associated Legendre functions
Pm
ν (c) and Qm

ν (c). It turns out, to obtain a solution that does not blow up over the entire range
−1 ≤ c ≤ +1, we need to choose Pm

ν (c), set ν ≡ ℓ to be 0 or a positive integer, and have m run
from −ℓ to ℓ.

Λ ∝ Pm
ℓ (cos θ), ℓ ∈ {0, 1, 2, 3, . . . }, m ∈ {−ℓ,−ℓ+ 1, . . . .ℓ− 1, ℓ}. (12.2.64)

Note that

P 0
ℓ (x) = Pℓ(x), (12.2.65)

where Pℓ(x) is the ℓth Legendre polynomial. A common phase convention that yields an or-
thonormal basis set of functions on the 2−sphere is the following definition for the spherical
harmonics

−∇⃗2
S2Y

m
ℓ (θ, ϕ) = ℓ(ℓ+ 1)Y m

ℓ (θ, ϕ),

⟨θ, ϕ| ℓ,m⟩ = Y m
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ,

ℓ ∈ {0, 1, 2, 3, . . . }, m ∈ {−ℓ,−ℓ+ 1, . . . .ℓ− 1, ℓ}. (12.2.66)

Spherical harmonics should be viewed as “waves” on the 2−sphere, with larger ℓmodes describing
the higher frequency/shorter wavelength/finer features of the state/function on the sphere. Let
us examine the spherical harmonics from ℓ = 0, 1, 2, 3. The ℓ = 0 spherical harmonic is a
constant.

Y 0
0 =

1√
4π

(12.2.67)

The ℓ = 1 spherical harmonics are:

Y −1
1 =

1

2

√
3

2π
e−iϕ sin(θ), Y 0

1 =
1

2

√
3

π
cos(θ), Y 1

1 = −1

2

√
3

2π
eiϕ sin(θ). (12.2.68)

The ℓ = 2 spherical harmonics are:

Y −2
2 =

1

4

√
15

2π
e−2iϕ sin2(θ), Y −1

2 =
1

2

√
15

2π
e−iϕ sin(θ) cos(θ), Y 0

2 =
1

4

√
5

π

(
3 cos2(θ)− 1

)
,

Y 1
2 = −1

2

√
15

2π
eiϕ sin(θ) cos(θ), Y 2

2 =
1

4

√
15

2π
e2iϕ sin2(θ). (12.2.69)
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The ℓ = 3 spherical harmonics are:

Y −3
3 =

1

8

√
35

π
e−3iϕ sin3(θ), Y −2

3 =
1

4

√
105

2π
e−2iϕ sin2(θ) cos(θ),

Y −1
3 =

1

8

√
21

π
e−iϕ sin(θ)

(
5 cos2(θ)− 1

)
, Y 0

3 =
1

4

√
7

π

(
5 cos3(θ)− 3 cos(θ)

)
,

Y 1
3 = −1

8

√
21

π
eiϕ sin(θ)

(
5 cos2(θ)− 1

)
, Y 2

3 =
1

4

√
105

2π
e2iϕ sin2(θ) cos(θ),

Y 3
3 = −1

8

√
35

π
e3iϕ sin3(θ). (12.2.70)

For later purposes, note that the m = 0 case removes any dependence on the azimuthal angle
ϕ, and in fact returns the Legendre polynomial.

⟨θ, ϕ| ℓ,m = 0⟩ = Y 0
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π
Pℓ(cos θ). (12.2.71)

Orthonormality and completeness of the spherical harmonics read, respectively,

⟨ℓ′,m′| ℓ,m⟩ =
∫
S2
d2ξ⃗
√
|H| Y m′

ℓ′ (θ, ϕ)Y m
ℓ (θ, ϕ)

=

∫ +1

−1

d(cos θ)

∫ 2π

0

dϕY m′
ℓ′ (θ, ϕ)Y m

ℓ (θ, ϕ) = δℓ
′

ℓ δ
m′

m , (12.2.72)

and

⟨θ′, ϕ′| θ, ϕ⟩ = δ(θ′ − θ)δ(ϕ− ϕ′)√
sin(θ) sin(θ′)

= δ (cos(θ′)− cos(θ)) δ(ϕ− ϕ′)

=
∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (θ′, ϕ′)Y m

ℓ (θ, ϕ). (12.2.73)

In 3D flat space, let us write the Cartesian components of the momentum vector k⃗ and the
position vector x⃗ in spherical coordinates.

ki = k (sin θk · cosϕk, sin θk · sinϕk, cos θk) ≡ kk̂ (12.2.74)

xi = r (sin θ · cosϕ, sin θ · sinϕ, cos θ) ≡ rx̂ (12.2.75)

Addition formula In terms of these variables we may write down a useful identity involving
the spherical harmonics and the Legendre polynomial, usually known as the addition formula.

Pℓ

(
k̂ · x̂

)
=

4π

2ℓ+ 1

+ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θk, ϕk) =
4π

2ℓ+ 1

+ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θk, ϕk), (12.2.76)

where k̂ ≡ k⃗/k and x̂ ≡ x⃗/r. The second equality follows from the first because the Legendre
polynomial is real.
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For a fixed direction k̂, note that Pℓ(k̂ · x̂) in eq. (12.2.76) is an eigenvector of the negative

Laplacian on the 2−sphere. For, as we have already noted, the eigenvalue equation −∇⃗2ψ = λψ
is a coordinate scalar. In particular, we may choose coordinates such that k̂ is pointing ‘North’,
so that k̂ · x̂ = cos θ, where θ is the usual altitude angle. By recalling eq. (12.2.71), we see
therefore,

−∇⃗2
x⃗,S2Pℓ

(
k̂ · x̂

)
= ℓ(ℓ+ 1)Pℓ

(
k̂ · x̂

)
. (12.2.77)

Since Pℓ(k̂ ·x̂) is symmetric under the swap k ↔ x, it must also be an eigenvector of the Laplacian

with respect to k⃗,

−∇⃗2
k⃗,S2Pℓ

(
k̂ · x̂

)
= ℓ(ℓ+ 1)Pℓ

(
k̂ · x̂

)
. (12.2.78)

Complex conjugation Under complex conjugation, the spherical harmonics obey

Y m
ℓ (θ, ϕ) = (−)mY −m

ℓ (θ, ϕ). (12.2.79)

Parity Under a parity flip, meaning if you compare Y m
ℓ evaluated at the point (θ, ϕ) to the

point on the opposite side of the sphere (π − θ, ϕ+ π), we have the relation

Y m
ℓ (π − θ, ϕ+ π) = (−)ℓY m

ℓ (θ, ϕ). (12.2.80)

The odd ℓ spherical harmonics are thus odd under parity; whereas the even ℓ ones are invariant
(i.e., even) under parity. That the Laplacian on the sphere ∇⃗2

S2 and the parity operator P share

a common set of eigenvectors is because they commute: [P, ∇⃗2
S2 ] = 0.

Poisson Equation on the 2-sphere Having acquired some familiarity of the spherical har-
monics, we can now tackle Poisson’s equation

−∇⃗2
S2ψ(θ, ϕ) = J(θ, ϕ) (12.2.81)

on the 2−sphere. Because the spherical harmonics are complete on the sphere, we may expand
both ψ and J in terms of them.

ψ =
∑
ℓ,m

Amℓ Y
m
ℓ , J =

∑
ℓ,m

Bm
ℓ Y

m
ℓ . (12.2.82)

(This means, if J is a given function, then we may calculate Bm
ℓ =

∫
S2 d

2ΩY m
ℓ (θ, ϕ)J(θ, ϕ).)

Inserting these expansions into eq. (12.2.81), and recalling the eigenvalue equation −∇⃗2
S2Y

m
ℓ =

ℓ(ℓ+ 1)Y m
ℓ , ∑

ℓ̸=0,m

ℓ(ℓ+ 1)Amℓ Y
m
ℓ =

∑
ℓ,m

Bm
ℓ Y

m
ℓ . (12.2.83)

On the left hand side, because the eigenvalue of Y 0
0 is zero, there is no longer any ℓ = 0 term.

Therefore, we see that for there to be a consistent solution, J itself cannot contain a ℓ = 0 term.
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(This is intimately related to the fact that the sphere has no boundaries.135) At this point, we
may then equate the ℓ > 0 coefficients of the spherical harmonics on both sides, and deduce

Amℓ =
Bm
ℓ

ℓ(ℓ+ 1)
, ℓ > 0. (12.2.84)

To summarize, given a J(θ, ϕ) that has no “zero mode,” such that it can be decomposed as

J(θ, ϕ) =
∞∑
ℓ=1

ℓ∑
m=−ℓ

Bm
ℓ Y

m
ℓ (θ, ϕ) ⇔ Bm

ℓ =

∫ +1

−1

d(cos θ)

∫ 2π

0

dϕY m
ℓ (θ, ϕ)J(θ, ϕ), (12.2.85)

the solution to (12.2.81) is

ψ(θ, ϕ) =
∞∑
ℓ=1

+ℓ∑
m=−ℓ

Bm
ℓ

ℓ(ℓ+ 1)
Y m
ℓ (θ, ϕ). (12.2.86)

Problem 12.7. Diagonalize the Laplacian in 2D flat space in cylindrical coodrdinates – i.e.,
obtain the results in eq. (12.2.46) – using the separation-of-variables technique. Hints: What
is the boundary condition in the ϕ direction? For the radial function, consider the appropriate
boundary conditions at r = 0; you may need to refer to here, here, and here.

12.2.4 3 Dimensions

Infinite Flat Space, Cylindrical Coordinates We now turn to 3D flat space, written
in cylindrical coordinates,

dℓ2 = dr2 + r2dϕ2 + dz2, r ≥ 0, ϕ ∈ [0, 2π), z ∈ R,
√
|g| = r. (12.2.87)

Because the negative Laplacian on a scalar is the sum of the 1D and the 2D cylindrical case,

−∇⃗2
3ψ = −∇⃗2

2ψ − ∂2zψ, (12.2.88)

we may try the separation-of-variables ansatz involving the product of the eigenvectors of the
respective Laplacians.

ψ(r, ϕ, z) = ψ2(r, ϕ)ψ1(z), ψ2(r, ϕ) ≡ Jm(kr)
eimϕ√
2π
, ψ1(z) ≡ eikzz. (12.2.89)

This yields

−∇⃗2ψ = −ψ1∇⃗2
2ψ2 − ψ2∂

2
zψ1 = (k2 + (kz)

2)ψ, (12.2.90)

To sum, the orthonormal eigenfunctions are

⟨r, ϕ, z| k,m, kz⟩ = Jm(kr)
eimϕ√
2π
eikzz (12.2.91)

135For, suppose there is a solution to −∇⃗2ψ = χ/(4π), where χ is a constant. Let us now integrate both sides
over the sphere’s surface, and apply the Gauss/Stokes’ theorem. On the left hand side we get zero because the
sphere has no boundaries. On the right hand side we have χ. This inconsistency means no such solution exist.
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∫ 2π

0

dϕ

∫ ∞

0

drr

∫ +∞

−∞
dz ⟨k′,m′, k′z| r, ϕ, z⟩ ⟨r, ϕ, z| k,m, kz⟩ = δm

′

m

δ(k − k′)√
kk′

· (2π)δ(k′z − kz).

(12.2.92)

Since we already figured out the 2D plane wave expansion in cylindrical coordinates in eq.
(12.2.41), and since the 3D plane wave is simply the 2D one multiplied by the plane wave in

the z direction, i.e., exp(i⃗k · x⃗) = exp(ikr cos(ϕ − ϕk)) exp(ikzz), we may write down the 3D
expansion immediately

⟨x⃗|⃗k⟩ = exp(i⃗k · x⃗) =
∞∑

ℓ=−∞

iℓJℓ(kr)e
iℓ(ϕ−ϕk)eikzz, (12.2.93)

where

ki = (k cosϕk, k sinϕk, kz) , xi = (r cosϕ, r sinϕ, z) . (12.2.94)

Infinite Flat Space, Spherical Coordinates We now turn to 3D flat space written in
spherical coordinates,

dℓ2 = dr2 + r2dΩ2
S2 , dΩ2

S2 ≡ dθ2 + (sin θ)2dϕ2,

r ≥ 0, ϕ ∈ [0, 2π), θ ∈ [0, π],
√
|g| = r2 sin θ. (12.2.95)

The Laplacian on a scalar is

∇⃗2ψ =
1

r2
∂r
(
r2∂rψ

)
+

1

r2
∇⃗2

S2ψ. (12.2.96)

where ∇⃗2
S2 is the Laplacian on a 2−sphere.

Plane wave With

ki = k (sin(θk) cos(ϕk), sin(θk) sin(ϕk), cos(θk)) ≡ kk̂, (12.2.97)

xi = r (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) ≡ rx̂, (12.2.98)

we have

⟨x⃗|⃗k⟩ = exp(i⃗k · x⃗) = exp
(
ikrk̂ · x̂

)
. (12.2.99)

If we view k̂ as the 3−direction, this means the plane wave has no dependence on the azimuthal
angle describing rotation about the 3−direction. This in turn indicates we should be able to
expand ⟨x⃗|⃗k⟩ using Pℓ(k̂ · x⃗).

exp
(
ikrk̂ · x̂

)
=

∞∑
ℓ=0

χℓ(kr)

√
2ℓ+ 1

4π
Pℓ

(
k̂ · x̂

)
. (12.2.100)

For convenience we have used the Y 0
ℓ in eq. (12.2.71)) as our basis. Exploiting the orthonormality

of the spherical harmonics to solve for the expansion coefficients:

χℓ(kr) = 2π

∫ +1

−1

dceikrcY 0
ℓ (θ, ϕ) =

√
(4π)(2ℓ+ 1)

1

2

∫ +1

−1

dceikrcPℓ(c). (12.2.101)
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(Even though the integral is over the entire solid angle, the azimuthal integral is trivial and
yields 2π immediately.) At this point we may refer to eq. (10.54.2) of the NIST page here for
the following integral representation of the spherical Bessel function of integer order,

iℓjℓ(z) =
1

2

∫ +1

−1

dceizcPℓ(c), ℓ = 0, 1, 2, . . . . (12.2.102)

(The spherical Bessel function jℓ(z) is real when z is positive.) We have arrived at

⟨x⃗|⃗k⟩ = exp(i⃗k · x⃗) =
∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ

(
k̂ · x̂

)
, k ≡ |⃗k| (12.2.103)

= 4π
∞∑
ℓ=0

iℓjℓ(kr)
+ℓ∑

m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θk, ϕk), (12.2.104)

where, for the second equality, we have employed the additional formula in eq. (12.2.76).
Spectrum Just as we did for the 2D plane wave, we may now read off the eigenfunctions of
the 3D flat Laplacian in spherical coordinates. First we compute the normalization.∫

R3

d3x⃗ exp(i(k⃗ − k⃗′) · x⃗) = (2π)3
δ(k − k′)
kk′

δ (cos(θk′)− cos(θk)) δ (ϕk − ϕk′) (12.2.105)

Switching to spherical coordinates within the integral on the left-hand-side, namely d3x⃗ =
d(cos θ)dϕdrr2 ≡ dΩdrr2; re-expressing exp(i⃗k · x⃗) and exp(−i⃗k′ · x⃗) using eq. (12.2.103) and its
complex conjugate; followed by using eq. (12.2.72) to integrate over the solid angle,

(4π)2
∫
S2
d2Ω

∫ ∞

0

drr2
∞∑

ℓ,ℓ′=0

iℓ(−i)ℓ′jℓ(kr)jℓ′(k′r)

×
+ℓ∑

m=−ℓ

+ℓ′∑
m′=−ℓ′

Y m
ℓ (θ, ϕ)Y m

ℓ (θk, ϕk)Y
m′

ℓ′ (θk, ϕk)Y m′
ℓ′ (θ, ϕ)

= (4π)2
∫ ∞

0

drr2
∞∑
ℓ=0

jℓ(kr)jℓ(k
′r)

+ℓ∑
m=−ℓ

Y m
ℓ (θk, ϕk)Y m

ℓ (θk, ϕk). (12.2.106)

Let us compare the right hand sides of the two preceding equations, and utilize the completeness
relation obeyed by the spherical harmonics (cf. eq. (12.2.73)):

4(2π)2
∫ ∞

0

drr2
∞∑
ℓ=0

jℓ(kr)jℓ(k
′r)

+ℓ∑
m=−ℓ

Y m
ℓ (θk, ϕk)Y m

ℓ (θk, ϕk)

= (2π)3
δ(k − k′)
kk′

∞∑
ℓ=0

+ℓ∑
m=−ℓ

Y m
ℓ (θk, ϕk)Y m

ℓ (θk, ϕk). (12.2.107)

Therefore it must be that ∫ ∞

0

drr2jℓ(kr)jℓ(k
′r) =

π

2

δ(k − k′)
kk′

. (12.2.108)
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Referring to eq. (10.47.3) of the NIST page here,

jℓ(z) =

√
π

2z
Jℓ+ 1

2
(z) (12.2.109)

we see this is in fact the same result as in eq. (12.2.44).
To sum, we have diagonalized the 3D flat space negative Laplacian in spherical coordinates

as follows.

−∇⃗2 ⟨r, θ, ϕ| k, ℓ,m⟩ = k2 ⟨r, θ, ϕ| k, ℓ,m⟩ ,

⟨r, θ, ϕ| k, ℓ,m⟩ =
√

2

π
jℓ(kr)Y

m
ℓ (θ, ϕ), (12.2.110)

⟨k′, ℓ′,m′| k, ℓ,m⟩ =
∫
S2
d2Ω

∫ ∞

0

drr2 ⟨k′, ℓ′,m′| r, θ, ϕ⟩ ⟨r, θ, ϕ| k, ℓ,m⟩ ,

=
δ(k − k′)
kk′

δℓ
′

ℓ δ
m′

m .

Problem 12.8. Prolate Ellipsoidal Coordinates in 3D Flat Space 3D Euclidean
space can be foliated by prolate ellipsoids in the following way. Let x⃗ ≡ (x1, x2, x3) be Cartesian
coordinates; ρ be the size of a given prolate ellipsoid; and the angular coordinates (0 ≤ θ ≤
π, 0 ≤ ϕ < 2π) specify a point on its 2D surface. Then,

x⃗ =
1

2

(√
ρ2 −R2 sin θ cosϕ,

√
ρ2 −R2 sin θ sinϕ, ρ cos θ

)
; (12.2.111)

ρ ≥ R, (θ, ϕ) ∈ S2. (12.2.112)

Explain the geometric meaning of the constant R. Work out the 3D flat metric in prolate
ellipsoidal coordinates (ρ, θ, ϕ) and proceed to diagonalize the associated scalar Laplacian ∇⃗2 ≡
gij∇i∇j. Hint: Work out the appropriate eigenvector equation and multiply throughout by ρ2−
R2 cos2 θ. You should find the ϕ-dependent portions separating after re-writing ρ2−R2 cos2 θ =
(ρ2 −R2) +R2 sin2 θ. Also, you may wish to look here.

12.3 Heat/Diffusion Equation

12.3.1 Definition, uniqueness of solutions

We will define the heat or diffusion equation to be the PDE

∂tψ (t, x⃗) = σ∇⃗2
x⃗ψ (t, x⃗) =

σ√
|g|
∂i

(√
|g|gij∂jψ

)
, σ > 0, (12.3.1)

where ∇⃗2
x⃗ is the Laplacian with respect to some metric gij(x⃗), which we will assume does not

depend on the time t. We will also assume the ψ(t, x⃗) is specified on the boundary of the domain
described by gij(x⃗), i.e., it obeys Dirichlet boundary conditions.

The diffusion constant σ has dimensions of length if ∇⃗2 is of dimensions 1/[Length2]. We
may set σ = 1 and thereby describe all other lengths in the problem in units of σ. As the heat
equation, this PDE describes the temperature distribution as a function of space and time. As
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the diffusion equation in flat space, it describes the probability density of finding a point particle
undergoing (random) Brownian motion. As we shall witness, the solution of eq. (12.3.1) is aided
by the knowledge of the eigenfunctions/values of the Laplacian in question.

Uniqueness of solution Suppose the following initial conditions are given

ψ(t = t0, x⃗) = φ0(x⃗), (12.3.2)

and suppose the field ψ or its normal derivative is specified on the boundaries ∂D,

ψ(t, x⃗ ∈ ∂D) = φ3(∂D), (Dirichlet), (12.3.3)

or ni∇iψ(t, x⃗ ∈ ∂D) = φ4(∂D), (Neumann), (12.3.4)

where ni(∂D) is the unit outward normal vector. Then, the solution to the heat/diffusion
equation in eq. (12.3.1) is unique.

Proof Without loss of generality, since our heat/diffusion equation is linear, we may assume
the field is real. We then suppose there are two such solutions ψ1 and ψ2; the proof is established
if we can show, in fact, that ψ1 has to be equal to ψ2. Note that the difference Ψ ≡ ψ1 − ψ2 is
subject to the initial conditions

Ψ(t = t0, x⃗) = 0, (12.3.5)

and the spatial boundary conditions

Ψ(t, x⃗ ∈ ∂D) = 0 or ni∇iΨ(t, x⃗ ∈ ∂D) = 0. (12.3.6)

Let us then consider the following (non-negative) integral

ρ(t) ≡ 1

2

∫
D

dDx⃗
√
|g(x⃗)|Ψ(t, x⃗)2 ≥ 0, (12.3.7)

as well as its time derivative

∂tρ(t) =

∫
D

dDx⃗
√
|g(x⃗)|ΨΨ̇. (12.3.8)

We may use the heat/diffusion equation on the Ψ̇ term, and integrate-by-parts one of the gra-
dients on the second term,

∂tρ(t) =

∫
D

dDx⃗
√
|g(x⃗)|Ψ∇⃗2Ψ

=

∫
∂D

dD−1ξ⃗

√
|H(ξ⃗)|Ψni∇iΨ−

∫
D

dDx⃗
√
|g(x⃗)|∇iΨ∇iΨ. (12.3.9)

By assumption either Ψ or ni∇iΨ is zero on the spatial boundary; therefore the first term on
the second line is zero. We have previously argued that the integrand in the second term on the
second line is strictly non-negative

∇iΨ∇iΨ =
∑
i

(∇îΨ)2 ≥ 0. (12.3.10)
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This implies

∂tρ(t) = −
∫
D

dDx⃗
√
|g(x⃗)|∇iΨ∇iΨ ≤ 0. (12.3.11)

However, the initial conditions Ψ(t = t0, x⃗) = 0 indicate ρ(t = t0) = 0 (cf. eq. (12.3.7)).
Moreover, since ρ(t ≥ t0) has to be non-negative from its very definition and since we have just
shown its time derivative is non-positive, ρ(t ≥ t0) therefore has to remain zero for all subsequent
time t ≥ t0; i.e., it cannot decrease below zero. And because ρ(t) is the integral of the square of
Ψ, the only way it can be zero is Ψ = 0⇒ ψ1 = ψ2. This establishes the theorem.

12.3.2 Heat Kernel, Solutions with ψ(∂D) = 0

In this section we introduce the propagator, otherwise known as the heat kernel, which will prove
to be key to solving the heat/diffusion equation. It is the matrix element

K(x⃗, x⃗′; s ≥ 0) ≡
〈
x⃗
∣∣∣es∇⃗2

∣∣∣ x⃗′〉 . (12.3.12)

It obeys the heat/diffusion equation

∂sK(x⃗, x⃗′; s) =
〈
x⃗
∣∣∣∇⃗2es∇⃗

2
∣∣∣ x⃗′〉 =

〈
x⃗
∣∣∣es∇⃗2∇⃗2

∣∣∣ x⃗′〉
= ∇⃗2

x⃗K(x⃗, x⃗′; s) = ∇⃗2
x⃗′K(x⃗, x⃗′; s), (12.3.13)

where we have assumed ∇⃗2 is Hermitian. K also obeys the initial condition

K(x⃗, x⃗′; s = 0) = ⟨x⃗| x⃗′⟩ = δ(D)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

. (12.3.14)

If we demand the eigenfunctions of ∇⃗2 obey Dirichlet boundary conditions,{
ψλ(∂D) = 0

∣∣∣−∇⃗2ψλ = λψλ

}
, (12.3.15)

then the heat kernel obeys the same boundary conditions.

K(x⃗ ∈ ∂D, x⃗′; s) = K(x⃗, x⃗′ ∈ ∂D; s) = 0. (12.3.16)

To see this we need to perform a mode expansion. By inserting in eq. (12.3.14) a complete set

of the eigenstates of ∇⃗2, the heat kernel has an explicit solution

K(x⃗, x⃗′; s ≥ 0) =
〈
x⃗
∣∣∣es∇⃗2

∣∣∣ x⃗′〉 =
∑
λ

e−sλ ⟨x⃗|λ⟩ ⟨λ| x⃗′⟩ , (12.3.17)

where the sum is schematic: depending on the setup at hand, it can consist of either a sum over
discrete eigenvalues and/or an integral over a continuum. In this form, it is manifest the heat
kernel vanishes when either x⃗ or x⃗′ lies on the boundary ∂D.

Initial value problem In this section we will focus on solving the initial value problem
when the field itself is zero on the boundary ∂D for all relevant times. This will in fact be the
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case for infinite domains; for example, flat RD, whose heat kernel we will work out explicitly
below. The setup is thus as follows:

ψ(t = t′, x⃗) ≡ ⟨x⃗|ψ(t′)⟩ (given), ψ(t ≥ t′, x⃗ ∈ D) = 0. (12.3.18)

Then ψ(t, x⃗) at any later time t > t′ is given by

ψ(t ≥ t′, x⃗) =
〈
x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣ψ(t′)〉 =

∫
dDx⃗′

√
|g(x⃗′)|

〈
x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣ x⃗′〉 ⟨x⃗′|ψ(t′)⟩
=

∫
dDx⃗′

√
|g(x⃗′)|K(x⃗, x⃗′; t− t′)ψ(t′, x⃗′). (12.3.19)

That this is the correct solution is because the right hand side obeys the heat/diffusion equation
through eq. (12.3.13). As t → t′, we also see from eq. (12.3.14) that the initial condition is
recovered.

ψ(t = t′, x⃗) = ⟨x⃗|ψ(t′)⟩ =
∫

dDx⃗′
√
|g(x⃗′)| δ

(D)(x⃗− x⃗′)
4
√
|g(x⃗′)g(x⃗)|

ψ(t′, x⃗′) = ψ(t′, x⃗). (12.3.20)

Moreover, since the heat kernel obeys eq. (12.3.16), the solution automatically maintains the
ψ(t ≥ t′, x⃗ ∈ D) = 0 boundary condition.
Decay times, Asymptotics Suppose we begin with some temperature distribution T (t′, x⃗).
By expanding it in the eigenfunctions of the Laplacian, let us observe that it is the component
along the eigenfunction with the small eigenvalue that dominates the late time temperature
distribution. From eq. (12.3.19) and (12.3.17),

T (t ≥ t′, x⃗) =
∑
λ

∫
dDx⃗′

√
|g(x⃗′)|

〈
x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣λ〉 ⟨λ| x⃗′⟩ ⟨x⃗′|T (t′)⟩
=
∑
λ

e−(t−t′)λ ⟨x⃗|λ⟩
∫

dDx⃗′
√
|g(x⃗′)| ⟨λ| x⃗′⟩ ⟨x⃗′|T (t′)⟩

=
∑
λ

e−(t−t′)λ ⟨x⃗|λ⟩ ⟨λ|T (t′)⟩ . (12.3.21)

Remember we have proven that the eigenvalues of the Laplacian are strictly non-positive. That
means, as (t− t′)→∞, the dominant temperature distribution is

T (t− t′ →∞, x⃗) ≈ e−(t−t′)λmin ⟨x⃗|λmin⟩
∫

dDx⃗′
√
|g(x⃗′)| ⟨λmin| x⃗′⟩ ⟨x⃗′|T (t′)⟩ , (12.3.22)

because all the λ > λmin become exponentially suppressed (relative to the λmin state) due to the
presence of e−(t−t′)λ. As long as the minimum eigenvalue λmin is strictly positive, we see the final
temperature is zero.

T (t− t′ →∞, x⃗) = 0, if λmin > 0. (12.3.23)

When the minimum eigenvalue is zero, λmin = 0, we have instead

T (t− t′ →∞, x⃗)→ ⟨x⃗|λ = 0⟩
∫

dDx⃗′
√
|g(x⃗′)| ⟨λ = 0| x⃗′⟩ ⟨x⃗′|T (t′)⟩ . (12.3.24)
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The exception to the dominant behavior in eq. (12.3.22) is when there is zero overlap between
the initial distribution and that eigenfunction with the smallest eigenvalue, i.e., if∫

dDx⃗′
√
|g(x⃗′)| ⟨λmin| x⃗′⟩ ⟨x⃗′|T (t′)⟩ = 0. (12.3.25)

Generically, we may say that, with the passage of time, the component of the initial distribution
along the eigenfunction corresponding to the eigenvalue λ decays as 1/λ; i.e., when t− t′ = 1/λ,
its amplitude falls by 1/e.

Static limit Another way of phrasing the (t − t′) → ∞ behavior is that – since every
term in the sum-over-eigenvalues that depends on time decays exponentially, it must be that the
late time asymptotic limit is simply the static limit, when the time derivative on the left hand
side of eq. (12.3.1) is zero and we obtain Laplace’s equation

0 = ∇⃗2ψ(t→∞, x⃗). (12.3.26)

Probability interpretation in flat infinite space In the context of the diffusion equation
in flat space, because of the δ-functions on the right hand side of eq. (12.3.14), the propagator
K(x⃗, x⃗′; t − t′) itself can be viewed as the probability density (≡ probability per volume) of
finding the Brownian particle – which was infinitely localized at x⃗′ at the initial time t′ – at a
given location x⃗ some later time t > t′. To support this probability interpretation it has to be
that ∫

RD

dDx⃗K(x⃗, x⃗′; t− t′) = 1. (12.3.27)

The integral on the left hand side corresponds to summing the probability of finding the Brownian
particle over all space – that has to be unity, since the particle has to be somewhere. We can
verify this directly, by inserting a complete set of states.∫

RD

dDx⃗
〈
x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣ x⃗′〉 =

∫
RD

dDk⃗

∫
RD

dDx⃗
〈
x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣ k⃗〉 〈k⃗∣∣∣ x⃗′〉
=

∫
RD

dDk⃗

∫
RD

dDx⃗e−(t−t′)k⃗2⟨x⃗|⃗k⟩
〈
k⃗
∣∣∣ x⃗′〉

=

∫
RD

dDk⃗

∫
RD

dDx⃗e−(t−t′)k⃗2 e
ik⃗·(x⃗−x⃗′)

(2π)D

=

∫
RD

dDk⃗e−(t−t′)k⃗2e−ik⃗·x⃗
′
δ(D)(k⃗) = 1. (12.3.28)

Heat Kernel in flat space In fact, the same technique allow us to obtain the heat kernel
in flat RD.〈

x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣ x⃗′〉 =

∫
RD

dDk⃗
〈
x⃗
∣∣∣e(t−t′)∇⃗2

∣∣∣ k⃗〉 〈k⃗∣∣∣ x⃗′〉 (12.3.29)

=

∫
RD

dDk⃗

(2π)D
e−(t−t′)k⃗2eik⃗·(x⃗−x⃗

′) =
D∏
j=1

∫ +∞

−∞

dkj
2π

e−(t−t′)(kj)2eikj(x
j−x′j).
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We may “complete the square” in the exponent by considering

−(t− t′)
(
kj − i

xj − x′j

2(t− t′)

)2

= −(t− t′)

(
(kj)

2 − ikj
xj − x′j

t− t′
−
(
xj − x′j

2(t− t′)

)2
)
. (12.3.30)

The heat kernel in flat RD is therefore〈
x⃗
∣∣∣e(t−t′)σ∇⃗2

∣∣∣ x⃗′〉 = (4πσ(t− t′))−D/2 exp
(
− (x⃗− x⃗′)2

4σ(t− t′)

)
, t > t′, (12.3.31)

where we have put back the diffusion constant σ. If you have taken quantum mechanics, you
may recognize this result to be very similar to the path integral H ⟨x⃗, t| x⃗′, t′⟩H of a free particle
– compare eq. (12.3.31) with eq. (5.2.82) and notice the former may be obtained from the latter
via the replacement m→ i/(2σ).

12.3.3 Green’s functions and initial value formulation in a finite domain

Green’s function from Heat Kernel Given the heat kernel defined with Dirichlet bound-
ary conditions, the associated Green’s function is defined as

G(t− t′; x⃗, x⃗′) ≡ Θ(t− t′)K(x⃗, x⃗′; t− t′), (12.3.32)

where we define Θ(s) = 1 for s ≥ 0 and Θ(s) = 0 for s < 0. This Green’s function G obeys(
∂t − ∇⃗2

x⃗

)
G(t− t′; x⃗, x⃗′) =

(
∂t − ∇⃗2

x⃗′

)
G(t− t′; x⃗, x⃗′) = δ(t− t′)δ

(D)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

, (12.3.33)

with the boundary condition

G(τ ; x⃗ ∈ ∂D, x⃗′) = G(τ ; x⃗, x⃗′ ∈ ∂D) = 0, (12.3.34)

as well as the causality condition

G(τ ; x⃗, x⃗′) = 0 when τ < 0. (12.3.35)

The boundary condition in eq. (12.3.34) follows directly from eq. (12.3.16); whereas eq. (12.3.33)
follows from equations (12.3.13) and (12.3.14):(

∂t − ∇⃗2
)
G(t− t′; x⃗, x⃗′) = δ(t− t′)K(x⃗, x⃗′; t− t′) + Θ(t− t′)

(
∂t − ∇⃗2

)
K(x⃗, x⃗′; t− t′)

= δ(t− t′)δ
(D)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

. (12.3.36)

Initial value problem Within a spatial domain D, suppose the initial field
configuration ψ(t′, x⃗ ∈ D) is given and suppose its value on the spatial boundary ∂D
is also provided (i.e., Dirichlet B.C.’s ψ(t ≥ t′, x⃗ ∈ ∂D) are specified). The unique
solution ψ(t ≥ t′, x⃗ ∈ D) to the heat/diffusion equation (12.3.1) is

ψ(t ≥ t′, x⃗) =

∫
D

dDx⃗′
√
|g(x⃗′)|G(t− t′; x⃗, x⃗′)ψ(t′, x⃗′) (12.3.37)
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−
∫ t

t′
dt′′
∫
∂D

dD−1ξ⃗

√
|H(ξ⃗)|ni′∇i′G

(
t− t′′; x⃗, x⃗′(ξ⃗)

)
ψ
(
t′′, x⃗′(ξ⃗)

)
,

where the Green’s function G obeys the PDE in eq. (12.3.33) and the boundary
conditions in equations (12.3.34) and (12.3.35). (Note: as long as t > t′, the G(t −
t′; x⃗, x⃗′) may be replaced with K(x⃗, x⃗′; t− t′).)

Derivation of eq. (12.3.37) We begin by multiplying both sides of eq. (12.3.33) by ψ(t′′, x⃗′)
and integrating over both space and time (from t′ to infinity).

ψ(t ≥ t′, x⃗) =

∫ ∞

t′
dt′′
∫
D

dDx⃗′
√
|g(x⃗′)|

(
∂t − ∇⃗2

x⃗′

)
G(t− t′′; x⃗, x⃗′)ψ(t′′, x⃗′) (12.3.38)

=

∫ ∞

t′
dt′′
∫
D

dDx⃗′
√
|g(x⃗′)|

(
−∂t′′Gψ +∇i′G∇i′ψ

)
−
∫ ∞

t′
dt′′
∫
∂D

dD−1ξ⃗

√
|H(ξ⃗)|ni′∇i′Gψ

=

∫
D

dDx⃗′
√
|g(x⃗′)|

{
[−Gψ]t′′=∞

t′′=t′ +

∫ ∞

t′
dt′′G

(
∂t′′ − ∇⃗2

x⃗′′

)
ψ

}
+

∫ ∞

t′
dt′′
∫
∂D

dD−1ξ⃗

√
|H(ξ⃗)|

(
G · ni′∇i′ψ − ni

′∇i′G · ψ
)
.

If we impose the boundary condition in eq. (12.3.35), we see that [−Gψ]t′′=∞
t′′=t′ = G(t− t′)ψ(t′)

because the upper limit contains G(t − ∞) ≡ limt′→−∞ Θ(t − t′)K(x⃗, x⃗′; t − t′) = 0. The
heat/diffusion eq. (12.3.1) removes the time-integral term on the first line of the last equality.
If Dirichlet boundary conditions were chosen, we may choose G(t− t′′; x⃗, x⃗′ ∈ ∂D) = 0 (i.e., eq.
(12.3.34)) and obtain eq. (12.3.37). Note that the upper limit of integration in the last line is
really t, because eq. (12.3.35) tells us the Green’s function vanishes for t′′ > t. Finally, recall
we have already in §(12.3.1) proven the uniqueness of the solution to the heat equation obeying
Dirichlet or Neumann boundary conditions.

12.3.4 Problems

Problem 12.9. In infinite flat RD, suppose we have some initial probability distribution
of finding a Brownian particle, expressed in Cartesian coordinates as

ψ(t = t0, x⃗) =
(ω
π

)D/2
exp

(
−ω(x⃗− x⃗0)2

)
, ω > 0. (12.3.39)

Solve the diffusion equation for t ≥ t0.

Problem 12.10. Suppose we have some initial temperature distribution T (t = t0, θ, ϕ) ≡
T0(θ, ϕ) on a thin spherical shell. This distribution admits some multipole expansion:

T0(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Y
m
ℓ (θ, ϕ), amℓ ∈ C. (12.3.40)
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The temperature as a function of time obeys the heat/diffusion equation

∂tT (t, θ, ϕ) = σ∇⃗2T (t, θ, ϕ), σ > 0, (12.3.41)

where ∇⃗2 is now the Laplacian on the 2−sphere. Since ∇⃗2 is dimensionless here, σ has units of
1/[Time].

1. Solve the propagator K for the heat/diffusion equation on the 2−sphere, in terms of a
spherical harmonic {Y m

ℓ (θ, ϕ)} expansion.

2. Find the solution for T (t > t0, θ, ϕ).

3. What is the decay rate of the ℓth multipole, i.e., how much time does the ℓth term in the
multipole sum take to decay in amplitude by 1/e? Does it depend on both ℓ and m? And,
what is the final equilibrium temperature distribution?

Problem 12.11. Inverse of Laplacian from Heat Kernel In this problem we want to
point out how the Green’s function of the Laplacian is related to the heat/diffusion equation.
To re-cap, the Green’s function itself obeys the D-dimensional PDE:

−∇⃗2G(x⃗, x⃗′) =
δ(D)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

. (12.3.42)

As already suggested by our previous discussions, the Green’s function G(x⃗, x⃗′) can be viewed

as the matrix element of the operator Ĝ ≡ 1/(−∇⃗2), namely136

G(x⃗, x⃗′) =
〈
x⃗
∣∣∣Ĝ∣∣∣ x⃗′〉 ≡ 〈x⃗ ∣∣∣∣ 1

−∇⃗2

∣∣∣∣ x⃗′〉 . (12.3.43)

The ∇⃗2 is now an abstract operator acting on the Hilbert space spanned by the position eigenkets
{|x⃗⟩}. Because it is Hermitian, we have

−∇⃗2
x⃗

〈
x⃗

∣∣∣∣ 1

−∇⃗2

∣∣∣∣ x⃗′〉 =

〈
x⃗

∣∣∣∣∣−∇⃗2

−∇⃗2

∣∣∣∣∣ x⃗′
〉

= ⟨x⃗| x⃗′⟩ = δ(D)(x⃗− x⃗′). (12.3.44)

Now use eq. (7.2.1) to justify

G(x⃗, x⃗′) =

∫ ∞

0

dtKG (x⃗, x⃗′; t) , (12.3.45)

KG (x⃗, x⃗′; t) ≡
〈
x⃗
∣∣∣et∇⃗2

∣∣∣ x⃗′〉 .
Notice how the integrand itself is the propagator (eq. (12.3.12)) of the heat/diffusion equation.

We will borrow from our previous linear algebra discussion that −∇⃗2 = P⃗ 2, as can be seen
from its position space representation. Now proceed to re-write this integral by inserting to both

136The perspective that the Green’s function be viewed as an operator acting on some Hilbert space was
advocated by theoretical physicist Julian Schwinger.
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the left and to the right of the operator et∇⃗
2
the completeness relation in momentum space. Use

the fact that P⃗ 2 = −∇⃗2 and eq. (7.2.1) to deduce

G(x⃗, x⃗′) =

∫ ∞

0

dt

∫
dDk⃗

(2π)D
e−tk⃗

2

eik⃗·(x⃗−x⃗
′). (12.3.46)

(Going to momentum space allows you to also justify in what sense the restriction Re(b) > 0
of the formula in eq. (7.2.1) was satisfied.) By appropriately “completing the square” in the
exponent, followed by an application of eq. (7.2.1), evaluate this integral to arrive at the Green’s
function of the Laplacian in D spatial dimensions:

G(x⃗, x⃗′) =

〈
x⃗

∣∣∣∣ 1

−∇⃗2

∣∣∣∣ x⃗′〉 =
Γ
(
D
2
− 1
)

4πD/2|x⃗− x⃗′|D−2
, (12.3.47)

where |x⃗− x⃗′| is the Euclidean distance between x⃗ and x⃗′.
Next, can you use eq. 18.12.4 of the NIST page here to perform an expansion of the Green’s

function of the negative Laplacian in terms of Gegenbauer polynomials C
(n)
ℓ , r> ≡ max(r, r′),

r< ≡ min(r, r′) and n̂ · n̂′, where r ≡ |x⃗|, r′ ≡ |x⃗′|, n̂ ≡ x⃗/r, and n̂′ ≡ x⃗′/r′? The D = 3 case
reads

1

4π|x⃗− x⃗′|
= (4πr>)

−1

∞∑
ℓ=0

Pℓ (n̂ · n̂′)

(
r<
r>

)ℓ
(12.3.48)

=
1

r>

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (n̂)Y m

ℓ (n̂′)

2ℓ+ 1

(
r<
r>

)ℓ
, (12.3.49)

where the Pℓ = C
( 1
2
)

ℓ are Legendre polynomials and in the second line the addition formula of
eq. (12.2.76) was invoked.

Note that while it is not easy to verify by direct differentiation that eq. (12.3.47) is indeed

the Green’s function 1/(−∇⃗2), one can do so by performing the integral over t in eq. (12.3.46),
to obtain

G(x⃗, x⃗′) =

∫
dDk

(2π)D
eik⃗·(x⃗−x⃗

′)

k⃗2
. (12.3.50)

We have already seen this in eq. (12.1.31).
Late Time Limit Finally, can you use the relationship between the heat kernel and the

Green’s function of the Laplacian in eq. (12.3.45), to show how in a finite domain, eq. (12.3.37)
leads to eq. (12.1.43) in the late time t → ∞ limit? (You may assume the smallest eigenvalue
of the negative Laplacian is strictly positive; recall eq. (12.1.48).)

Problem 12.12. Is it possible to solve for the Green’s function of the Laplacian on the
2-sphere? Use the methods of the last two problems, or simply try to write down the mode sum
expansion in eq. (12.1.22), to show that you would obtain a 1/0 infinity. What is the reason for
this apparent pathology? Suppose we could solve

−∇⃗2G(x⃗, x⃗′) =
δ(2)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

. (12.3.51)
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Perform a volume integral of both sides over the 2−sphere – explain the contradiction you get.
(Recall the discussion in the differential geometry section.) Hint: Apply the curved space Gauss’
law in eq. (9.5.68) and remember the 2-sphere is a closed surface.

12.4 Massless Scalar Wave Equation (Mostly) In Flat Spacetime RD,1

12.4.1 Spacetime metric, uniqueness of Minkowski wave solutions

Spacetime Metric In Cartesian coordinates (t, x⃗), it is possible associate a metric to flat
spacetime as follows

ds2 = c2dt2 − dx⃗ · dx⃗ ≡ ηµνdx
µdxν , xµ ≡ (ct, xi), (12.4.1)

where c is the speed of light in vacuum; µ ∈ {0, 1, 2, . . . , D}; and D is still the dimension of
space.137 We also have defined the flat (Minkowski) spacetime metric

ηµν ≡ diag (1,−1,−1, . . . ,−1) . (12.4.2)

The generalization of eq. (12.4.1) to curved spacetime is

ds2 = gµν(t, x⃗)dx
µdxν , xµ = (ct, xi). (12.4.3)

It is common to use the symbol □, especially in curved spacetime, to denote the spacetime-
Laplacian:

□ψ ≡ ∇µ∇µψ =
1√
|g|
∂µ

(√
|g|gµν∂νψ

)
, (12.4.4)

where
√
|g| is now the square root of the absolute value of the determinant of the metric gµν .

In Minkowski spacetime of eq. (12.4.1), we have
√
|g| = 1, ηµν = ηµν , and

□ψ = ηµν∂µ∂νψ ≡ ∂2ψ =
(
c−2∂2t − δij∂i∂j

)
ψ; (12.4.5)

where δij∂i∂j = ∇⃗2 is the spatial Laplacian in flat Euclidean space. The Minkowski “dot
product” between vectors u and v in Cartesian coordinates is now

u · v ≡ ηµνu
µvν = u0v0 − u⃗ · v⃗, u2 ≡ (u0)2 − u⃗2, etc. (12.4.6)

From here on, x, x′ and k, etc. – without an arrow over them – denotes collectively the D + 1
coordinates of spacetime. Indices of spacetime tensors are moved with gµν and gµν . For instance,

uµ = gµνuν , uµ = gµνu
ν . (12.4.7)

137In this section it is important to distinguish Greek {µ, ν, . . . } and Latin/English alphabets {a, b, i, j, . . . }.
The former run over 0 through D, where the 0th index refers to time and the 1st through Dth to space. The latter
run from 1 through D, and are thus strictly “spatial” indices. Also, be aware that the opposite sign convention,
ds2 = −dt2 +dx⃗ · dx⃗, is commonly used too. For most physical applications both sign conventions are valid; see,
however, [34].
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In the flat spacetime geometry of eq. (12.4.1), written in Cartesian coordinates,

u0 = u0, ui = −ui. (12.4.8)

Indefinite signature The subtlety with the metric of spacetime, as opposed to that of space
only, is that the “time” part of the distance in eq. (12.4.1) comes with a different sign from
the “space” part of the metric. In curved or flat space, if x⃗ and x⃗′ have zero geodesic distance
between them, they are really the same point. In curved or flat spacetime, however, x and x′

may have zero geodesic distance between them, but they could either refer to the same spacetime
point (aka “event”) – or they could simply be lying on each other’s light cone:

0 = (x− x′)2 = ηµν(x
µ − x′µ)(xν − x′ν) ⇒ (t− t′)2 = (x⃗− x⃗′)2. (12.4.9)

To understand this statement more systematically, let us work out the geodesic distance between
any pair of spacetime points in flat spacetime.

Problem 12.13. In Minkowski spacetime expressed in Cartesian coordinates, the Christof-
fel symbols are zero. Therefore the geodesic equation in (9.3.43) returns the following “acceleration-
is-zero” ODE:

0 =
d2Zµ(λ)

dλ2
. (12.4.10)

Show that the geodesic joining the initial spacetime point Zµ(λ = 0) = x′µ to the final location
Zµ(λ = 1) = xµ is the straight line

Zµ(0 ≤ λ ≤ 1) = x′µ + λ (xµ − x′µ). (12.4.11)

Use eq. (9.1.24) to show that half the square of the geodesic distance between x′ and x is

σ̄(x, x′) =
1

2
(x− x′)2. (12.4.12)

σ̄ is commonly called Synge’s world function in the gravitation literature.

Some jargon needs to be introduced here. (Drawing a spacetime diagram would help.)

� When σ̄ > 0, we say x and x′ are timelike separated. If you sit at rest in some inertial
frame, then the tangent vector to your world line is uµ = (1, 0⃗), and u = ∂t is a measure
of how fast the time on your watch is running. Or, simply think about setting dx⃗ = 0 in
the Minkowski metric: ds2 → dt2 > 0.

� When σ̄ < 0, we say x and x′ are spacelike separated. If you and your friend sit at rest in
the same inertial frame, then at a fixed time dt = 0, the (square of the) spatial distance
between the both of you is now given by integrating ds2 → −dx⃗2 < 0 between your two
locations.

� When σ̄ = 0, we say x and x′ are null (or light-like) separated. As already alluded to, in
4 dimensional flat spacetime, light travels strictly on null geodesics ds2 = 0. Consider a
coordinate system for spacetime centered at x′; then we would say x lies on the light cone
of x′ (and vice versa).
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As we will soon discover, the indefinite metric of spacetimes – as opposed to the positive definite
one of space itself – is what allows for wave solutions, for packets of energy/momentum to travel
over space and time. In Minkowski spacetime, we will show below, by solving explicitly the
Green’s function GD+1 of the wave operator, that these waves ψ, subject to eq. (12.4.16), will
obey causality: they travel strictly on and/or within the light cone, independent of what the
source J is.

Poincaré symmetry Analogous to how rotations {Ri
a|δijRi

aR
j
b = δab} and spatial

translations {ai} leave the flat Euclidean metric δij invariant,

xi → Ri
jx
j + ai ⇒ δijdx

idxj → δijdx
idxj. (12.4.13)

(The Ri
j and a

i are constants.) Lorentz transformations {Λαµ|ηαβΛαµΛ
β
ν = ηµν} and spacetime

translations {aµ} are ones that leave the flat Minkowski metric ηµν invariant.

xα → Λαµx
µ + aα ⇒ ηµνdx

µdxν → ηµνdx
µdxν . (12.4.14)

(The Λαµ and aα are constants.) This in turn leaves the light cone condition ds2 = 0 invariant
– the speed of light is unity, |dx⃗|/dt = 1, in all inertial frames related via eq. (12.4.14).
Wave Equation In Curved Spacetime The wave equation (for a minimally coupled
massless scalar) in some spacetime geometry gµνdx

µdxν is a 2nd order in time PDE that takes
the following form:

∇µ∇µψ =
1√
|g|
∂µ

(√
|g|gµν∂νψ

)
= J(x), (12.4.15)

where J is some specified external source of ψ.
Minkowski We will mainly deal with the case of infinite flat (aka “Minkowski”) spacetime

in eq. (12.4.1), where in Cartesian coordinates xµ = (ct, x⃗). This leads us to the wave equation(
∂2t − c2∇⃗2

x⃗

)
ψ(t, x⃗) = c2J(t, x⃗), ∇⃗2

x⃗ ≡ δij∂i∂j. (12.4.16)

Here, c will turn out to be the speed of propagation of the waves themselves. Because it will be
the most important speed in this chapter, I will set it to unity, c = 1.138 We will work mainly
in flat infinite spacetime, which means the ∇⃗2 is the Laplacian in flat space. This equation
describes a diverse range of phenomenon, from the vibrations of strings to that of spacetime
itself.

2D Minkowski We begin the study of the homogeneous wave equation in 2 dimensions.
In Cartesian coordinates (t, z), (

∂2t − ∂2z
)
ψ(t, z) = 0. (12.4.17)

138This is always a good labor-saving strategy when you solve problems. Understand all the distinct dimensionful
quantities in your setup – pick the most relevant/important length, time, and mass, etc. Then set them to one, so
you don’t have to carry their symbols around in your calculations. Every other length, time, mass, etc. will now
be respectively, expressed as multiples of them. For instance, now that c = 1, the speed(s) {vi} of the various
constituents of the source J measured in some center of mass frame, would be measured in multiples of c – for
instance, “v2 = 0.76” really means (v/c)2 = 0.76.
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We see that the solutions are a superposition of either left-moving ψ(z+t) or right-moving waves
ψ(z − t), where ψ can be any arbitrary function,(

∂2t − ∂2z
)
ψ(z ± t) = (±)2ψ′′(z ± t)− ψ′′(z ± t) = 0. (12.4.18)

Remark It is worth highlighting the difference between the nature of the general solutions
to 2nd order linear homogeneous ODEs versus those of PDEs such as the wave equation here. In
the former, they span a 2 dimensional vector space, whereas the wave equation admits arbitrary
functions as general solutions. This is why the study of PDEs involve infinite dimensional
(oftentimes continuous) Hilbert spaces.

Let us put back the speed c – by dimensional analysis we know [c]=[Length/Time], so x± ct
would yield the correct dimensions.

ψ(t, x) = ψL(x+ ct) + ψR(x− ct). (12.4.19)

These waves move strictly at speed c.

Problem 12.14. Let us define light cone coordinates as x± ≡ t ± z. Write down the
Minkowski metric in eq. (12.4.1)

ds2 = dt2 − dz2 (12.4.20)

in terms of x± and show that the wave equation in eq. (12.4.17) is converted to

∂2ψ = 4∂+∂−ψ = 0. (12.4.21)

By direct integration of eq. (12.4.21), argue that the most general homogeneous wave solution
in 2D is the superposition of left- and right-moving (otherwise arbitrary) profiles.

Problem 12.15. Sound waves on a drum & eigensystem of 2D Laplacian The
acoustic (i.e., sound) waves on a drum’s surface obeys the 2+1 dimensional PDE(

∂2t − c2s∇⃗2
2D

)
ψ(t, x⃗) = 0, (12.4.22)

where cs is the speed of the sound waves.
We may view ψ as the perpendicular displacement of the drum’s 2D surface from its equilib-

rium position, at a particular location x⃗. The drum’s membrane is usually pinned down at the
edges, so we require Dirichlet boundary conditions

ψ(t, x⃗ ∈ ∂D) = 0. (12.4.23)

Let us study the normal modes of the drum by focusing on a particular angular frequency ω,

ψ(t, x⃗) = Re
(
e−iωtψ̃(ω, x⃗)

)
(12.4.24)

Solve for the set of oscillation frequencies {ω} for a (A) circular, (B) rectangular, (C) triangular,
(D) elliptical drum. Can you come up with other solvable shapes?
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Uniqueness of Minkowski solutions Suppose the following initial conditions
are given

ψ(t = t0, x⃗) = φ0(x⃗), ∂tψ(t = t0, x⃗) = φ1(x⃗); (12.4.25)

and suppose the scalar field ψ or its normal derivative is specified on the spatial
boundaries ∂D,

ψ(t, x⃗ ∈ ∂D) = φ3(∂D), (Dirichlet), (12.4.26)

or ni∇iψ(t, x⃗ ∈ ∂D) = φ4(∂D), (Neumann), (12.4.27)

where ni(∂D) is the unit outward normal vector. Then, the solution to the wave
equation in eq. (12.4.16) is unique.

Proof Without loss of generality, since our wave equation is linear, we may assume the scalar
field is real. We then suppose there are two such solutions ψ1 and ψ2 obeying the same initial
and boundary conditions. The proof is established if we can show, in fact, that ψ1 has to be
equal to ψ2. Note that the difference Ψ ≡ ψ1−ψ2 is subject to the homogeneous wave equation

∂2Ψ = Ψ̈− ∇⃗2Ψ = 0 (12.4.28)

since the J cancels out when we subtract the wave equations of ψ1,2. For similar reasons the Ψ
obeys the initial conditions

Ψ(t = t0, x⃗) = 0 and ∂tΨ(t = t0, x⃗) = 0, (12.4.29)

and the spatial boundary conditions

Ψ(t, x⃗ ∈ ∂D) = 0 or ni∇iΨ(t, x⃗ ∈ ∂D) = 0. (12.4.30)

Let us then consider the following integral

T 00(t) ≡ 1

2

∫
D

dDx⃗
(
Ψ̇2(t, x⃗) + ∇⃗Ψ(t, x⃗) · ∇⃗Ψ(t, x⃗)

)
(12.4.31)

139as well as its time derivative

∂tT
00(t) =

∫
D

dDx⃗
(
Ψ̇Ψ̈ + ∇⃗Ψ̇ · ∇⃗Ψ

)
. (12.4.32)

We may use the homogeneous wave equation on the Ψ̈ term, and integrate-by-parts one of the
gradients on the second term,

∂tT
00(t) =

∫
∂D

dD−1ξ⃗

√
|H(ξ⃗)|Ψ̇ni∇iΨ+

∫
D

dDx⃗
(
Ψ̇∇⃗2Ψ− Ψ̇∇⃗2Ψ

)
. (12.4.33)

139The integrand, for Ψ obyeing the homogeneous wave equation, is in fact its energy density. Therefore T 00(t)
is the total energy stored in Ψ at a given time t.
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By assumption either Ψ or ni∇iΨ is zero on the spatial boundary; if it were the former, then
Ψ̇(∂D) = 0 too. Either way, the surface integral is zero. Therefore the right hand side vanishes
and we conclude that T 00 is actually a constant in time. Together with the initial conditions
Ψ̇(t = t0, x⃗)

2 = 0 and Ψ(t = t0, x⃗) = 0 (which implies (∇⃗Ψ(t = t0, x⃗))
2 = 0), we see that

T 00(t = t0) = 0, and therefore has to remain zero for all subsequent time t ≥ t0. Moreover, since
T 00(t ≥ t0) = 0 is the integral of the sum of (D + 1) positive terms {Ψ̇2, (∂iΨ)2}, each term
must individually vanish, which in turn implies Ψ must be a constant in both space and time.
But, since it is zero at the initial time t = t0, it must be in fact zero for t ≥ t0. That means
ψ1 = ψ2.
Remark Armed with the knowledge that the “initial value problem” for the Minkowski
spacetime wave equation has a unique solution, we will see how to actually solve it first in
Fourier space and then with the retarded Green’s function.

12.4.2 Waves, Initial value problem via Fourier, Green’s Functions

Dispersion relations, Homogeneous solutions You may guess that any function f(t, x⃗)
in flat (Minkowski) spacetime can be Fourier transformed.

f(t, x⃗) =

∫
RD+1

dD+1k

(2π)D+1
f̃(ω, k⃗)e−iωteik⃗·x⃗ (Not quite . . . ), (12.4.34)

where

kµ ≡ (ω, ki). (12.4.35)

Remember the first component is now the 0th one; so

exp(−ikµxµ) = exp(−iηµνkµxν) = exp(−iωt) exp(i⃗k · x⃗). (12.4.36)

Furthermore, these plane waves in eq. (12.4.36) obey

∂2 exp(−ikµxµ) = −k2 exp(−ikµxµ), k2 ≡ kµk
µ. (12.4.37)

This comes from a direct calculation; note that ∂µ(ikαx
α) = ikαδ

α
µ = ikµ and similarly ∂µ(ikαx

α) =
ikµ.

∂2 exp(−ikµxµ) = ∂µ∂
µ exp(−ikµxµ) = (ikµ)(ik

µ) exp(−ikµxµ). (12.4.38)

Therefore, a particular mode ψ̃e−ikαx
α
satisfies the homogeneous scalar wave equation in eq.

(12.4.16) with J = 0 – provided that

0 = ∂2
(
ψ̃e−ikαx

α
)
= −k2ψ̃e−ikαxα ⇒ k2 = 0 ⇒ ω2 = k⃗2. (12.4.39)

In other words, the two solutions are

ψ̃(k⃗) exp
(
±i|⃗k|

{
t± k̂ · x⃗

})
, k̂ ≡ k⃗

|⃗k|
. (12.4.40)
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The e+iωt waves propagate along the k̂ direction; while the e−iωt ones along −k̂.
This relationship between the zeroth component of the momentum and its spatial ones, is

often known as the dispersion relation. Moreover, the positive root

ω = |⃗k| (12.4.41)

can be interpreted as saying the energy ω of the photon – or, the massless particle associated
with ψ obeying eq. (12.4.16) – is equal to the magnitude of its momentum k⃗.

Therefore, if ψ satisfies the homogeneous wave equation, the Fourier expansion is actually
D-dimensional not (D + 1) dimensional:

ψ(t, x⃗) =

∫
RD

dDk⃗

(2π)D

(
Ã(k⃗)e−i|⃗k|t + B̃(k⃗)ei|⃗k|t

)
eik⃗·x⃗. (12.4.42)

There are two terms in the parenthesis, one for the positive solution ω = +|⃗k| and one for the

negative ω = −|⃗k|. For a real scalar field ψ, the Ã and B̃ are related.

ψ(t, x⃗)∗ = ψ(t, x⃗) =

∫
RD

dDk⃗

(2π)D

(
Ã(k⃗)∗ei|⃗k|t + B̃(k⃗)∗e−i|⃗k|t

)
e−ik⃗·x⃗

=

∫
RD

dDk⃗

(2π)D

(
B̃(−k⃗)∗e−i|⃗k|t + Ã(−k⃗)∗ei|⃗k|t

)
eik⃗·x⃗. (12.4.43)

Comparing equations (12.4.42) and (12.4.43) indicate Ã(−k⃗)∗ = B̃(k⃗) ⇔ Ã(k⃗) = B̃(−k⃗)∗.
Therefore,

ψ(t, x⃗) =

∫
RD

dDk⃗

(2π)D

(
Ã(k⃗)e−i|⃗k|t + Ã(−k⃗)∗ei|⃗k|t

)
eik⃗·x⃗. (12.4.44)

Note that Ã(k⃗) itself, for a fixed k⃗, has two independent parts – its real and imaginary portions.140

Contrast this homogeneous wave solution against the infinite Euclidean (flat) space case,

where −∇⃗2ψ = 0 does not admit any solutions that are regular everywhere (≡ does not blow
up anywhere), except the ψ = constant solution.
Initial value formulation through mode expansion Unlike the heat/diffusion equation,
the wave equation is second order in time. We therefore expect that, to obtain a unique solution
to the latter, we have to supply both the initial field configuration and its first time derivative
(conjugate momentum). It is possible to see it explicitly through the mode expansion in eq.

(12.4.44) – the need for two independent coefficients Ã and Ã∗ to describe the homogeneous
solution is intimately tied to the need for two independent initial conditions.

Suppose

ψ(t = 0, x⃗) = ψ0(x⃗) and ∂tψ(t = 0, x⃗) = ψ̇0(x⃗), (12.4.45)

where the right hand sides are given functions of space. Then, from eq. (12.4.44),

ψ0(x⃗) =

∫
RD

dDk

(2π)D
ψ̃0(k⃗)e

ik⃗·x⃗ =

∫
RD

dDk

(2π)D

(
Ã(k⃗) + Ã(−k⃗)∗

)
eik⃗·x⃗

140In quantum field theory, the coefficients Ã(k⃗) and Ã(k⃗)∗ of the Fourier expansion in (12.4.44) will become
operators obeying appropriate commutation relations.
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ψ̇0(x⃗) =

∫
RD

dDk

(2π)D
˜̇ψ0(k⃗)e

ik⃗·x⃗ =

∫
RD

dDk

(2π)D
(−i|⃗k|)

(
Ã(k⃗)− Ã(−k⃗)∗

)
eik⃗·x⃗. (12.4.46)

We have also assumed that the initial field and its time derivative admits a Fourier expansion.
By equating the coefficients of the plane waves,

ψ̃0(k⃗) = Ã(k⃗) + Ã(−k⃗)∗,
i

|⃗k|
˜̇ψ0(k⃗) = Ã(k⃗)− Ã(−k⃗)∗. (12.4.47)

Inverting this relationship tells us the Ã(k⃗) and Ã(k⃗)∗ are indeed determined by (the Fourier
transforms) of the initial conditions:

Ã(k⃗) =
1

2

(
ψ̃0(k⃗) +

i

|⃗k|
˜̇ψ0(k⃗)

)

Ã(−k⃗)∗ = 1

2

(
ψ̃0(k⃗)−

i

|⃗k|
˜̇ψ0(k⃗)

)
(12.4.48)

In other words, given the initial conditions ψ(t = 0, x⃗) = ψ0(x⃗) and ∂tψ(t = 0, x⃗) = ψ̇0(x⃗),
we can evolve the homogeneous wave solution forward/backward in time through their Fourier
transforms:

ψ(t, x⃗) =
1

2

∫
RD

dDk⃗

(2π)D

{(
ψ̃0(k⃗) +

i

|⃗k|
˜̇ψ0(k⃗)

)
e−i|⃗k|t +

(
ψ̃0(k⃗)−

i

|⃗k|
˜̇ψ0(k⃗)

)
ei|⃗k|t

}
eik⃗·x⃗

=

∫
RD

dDk⃗

(2π)D

(
ψ̃0(k⃗) cos(|⃗k|t) + ˜̇ψ0(k⃗)

sin(|⃗k|t)
|⃗k|

)
eik⃗·x⃗. (12.4.49)

We see that the initial profile contributes to the part of the field even under time reversal t→ −t;
whereas its initial time derivative contributes to the portion odd under time reversal.

Suppose the initial field configuration and its time derivative were specified at some other
time t0 (instead of 0),

ψ(t = t0, x⃗) = ψ0(x⃗), ∂tψ(t = t0, x⃗) = ψ̇0(x⃗). (12.4.50)

Because of time-translation symmetry, eq. (12.4.49) becomes

ψ(t, x⃗) =

∫
RD

dDk⃗

(2π)D

ψ̃0(k⃗) cos
(
|⃗k|(t− t0)

)
+ ˜̇ψ0(k⃗)

sin
(
|⃗k|(t− t0)

)
|⃗k|

 eik⃗·x⃗. (12.4.51)

Problem 12.16. Let’s consider an initial Gaussian wave profile with zero time derivative,

ψ(t = 0, x⃗) = exp(−(x⃗/σ)2), ∂tψ(t = 0, x⃗) = 0. (12.4.52)

If ψ satisfies the homogeneous wave equation, what is ψ(t > 0, x⃗)? Express the answer as a
Fourier integral; the integral itself may be very difficult to evaluate.
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Inhomogeneous solution in Fourier space If there is a non-zero source J , we could try
the strategy we employed with the 1D damped driven simple harmonic oscillator: first go to
Fourier space and then inverse-transform it back to position spacetime. That is, starting with,

∂2xψ(x) = J(x), (12.4.53)

∂2x

∫
RD,1

dD+1k

(2π)D+1
ψ̃(k)e−ikµx

µ

=

∫
RD,1

dD+1k

(2π)D+1
J̃(k)e−ikµx

µ

(12.4.54)∫
RD,1

dD+1k

(2π)D+1
(−k2)ψ̃(k)e−ikµxµ =

∫
RD,1

dD+1k

(2π)D+1
J̃(k)e−ikµx

µ

, k2 ≡ kµk
µ. (12.4.55)

Because the plane waves {exp(−ikµxµ)} are basis vectors, their coefficients on both sides of the
equation must be equal.

ψ̃(k) = − J̃(k)
k2

. (12.4.56)

The advantage of solving the wave equation in Fourier space is, we see that this is the par-
ticular solution for ψ – the portion that is sourced by J . Turn off J and you’d turn off (the
inhomogeneous part of) ψ.
Inhomogeneous solution via Green’s function We next proceed to transform eq.
(12.4.56) back to spacetime.

ψ(x) = −
∫
RD,1

dD+1k

(2π)D+1

J̃(k)

k2
e−ik·x = −

∫
RD,1

dD+1k

(2π)D+1

∫
RD,1

dD+1x′′
J(x′′)eik·x

′′

k2
e−ik·x

=

∫
RD,1

dD+1x′′
(∫

RD,1

dD+1k

(2π)D+1

e−ik·(x−x
′′)

−k2

)
J(x′′) (12.4.57)

That is, if we define the Green’s function of the wave operator as

GD+1(x− x′) =
∫
RD+1

dD+1k

(2π)D+1

e−ikµ(x−x
′)µ

−k2

= −
∫

dω

2π

∫
dDk⃗

(2π)D
e−iω(t−t

′)eik⃗·(x⃗−x⃗
′)

ω2 − k⃗2
, (12.4.58)

eq. (12.4.57) translates to

ψ(x) =

∫
RD+1

dD+1x′′GD+1(x− x′′)J(x′′). (12.4.59)

The Green’s function GD+1(x, x
′) itself satisfies the following PDE:

∂2xGD+1(x, x
′) = ∂2x′GD+1(x, x

′) = δ(D+1)(x− x′) = δ(t− t′)δ(D) (x⃗− x⃗′) . (12.4.60)

This is why we call it the Green’s function. Like its counterpart for the Poisson equation,
we can view GD+1 as the inverse of the wave operator. A short calculation using the Fourier
representation in eq. (12.4.58) will verify eq. (12.4.60). If ∂2 denotes the wave operator with
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respect to either x or x′, and if we recall the eigenvalue equation (12.4.37) as well as the integral
representation of the δ-function,

∂2GD+1(x− x′) =
∫
RD+1

dD+1k

(2π)D+1

∂2e−ikµ(x−x
′)µ

−k2

=

∫
RD+1

dD+1k

(2π)D+1

−k2e−ikµ(x−x′)µ

−k2
= δ(D+1)(x− x′). (12.4.61)

Relation to the Driven Simple Harmonic Oscillator If we had performed a Fourier
transform only in space, notice that eq. (12.4.53) would read

¨̃
ψ(t, k⃗) + k⃗2ψ̃(t, k⃗) = J̃(t, k⃗). (12.4.62)

Comparing this to the driven simple harmonic oscillator equation ẍ + Ω2x = f , we may thus
identify k⃗2 as the frequency-squared, and the source J̃ as the external force; even though the
wave equation is relativistic while the SHO is non-relativistic.

Problem 12.17. Each Fourier Mode as a SHO Employing the frictionless limit of eq.
(6.5.33), explain why, for each k⃗ mode,

ψ̃(t, k⃗) =

∫ t

−∞
dt′

sin (k(t− t′))
k

J̃(t′, k⃗), k ≡ |⃗k|. (12.4.63)

We see that

G̃+
SHO(t− t

′) ≡ Θ(t− t′)sin (k(t− t
′))

k
(12.4.64)

must correspond to a single Fourier mode of the retarded Green’s function in eq. (12.4.58). In
particular, by performing an inverse Fourier transform, further explain why

G+(t− t′, x⃗− x⃗′) = Θ(t− t′)
∫
Rd−1

dd−1k⃗

(2π)d−1

sin (k(t− t′))
k

eik⃗·(x⃗−x⃗
′). (12.4.65)

Below, we will recover these results by a direct evaluation of the Fourier integrals.

Observer and Source, GD+1 as a field by a point source If we compare δ(D+1)(x−
x′) in the wave equation obeyed by the Green’s function itself (eq. (12.4.60)) with that of an
external source J in the wave equation for ψ (eq. (12.4.53)), we see GD+1(x, x

′) itself admits the
interpretation that it is the field observed at the spacetime location x produced by a spacetime
point source at x′. According to eq. (12.4.59), the ψ(t, x⃗) is then the superposition of the fields
due to all such spacetime points, weighted by the physical source J . (For a localized J , it sweeps
out a world tube in spacetime – try drawing a spacetime diagram to show how its segments
contribute to the signal at a given x.)

Contour prescriptions and causality From your experience with the mode sum
expansion you may already have guessed that the Green’s function for the wave operator ∂2,
obeying eq. (12.4.60), admits the mode sum expansion in eq. (12.4.58). However, you will soon
run into a stumbling block if you begin with the k0 = ω integral, because the denominator of
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the second line of eq. (12.4.58) gives rise to two singularities on the real line at ω = ±|⃗k|. To
ensure the mode expansion in eq. (12.4.58) is well defined, we would need to append to it an
appropriate contour prescription for the ω-integral. It will turn out that, each distinct contour
prescription will give rise to a Green’s function with distinct causal properties.

On the complex ω-plane, we can choose to avoid the singularities at ω = ±|⃗k| by
1. Making a tiny semi-circular clockwise contour around each of them. This will yield the

retarded Green’s function G+
D+1, where signals from the source propagate forward in time;

observers will see signals only from the past.

2. Making a tiny semi-circular counterclockwise contour around each of them. This will yield
the advanced Green’s function G−

D+1, where signals from the source propagate backward in
time; observers will see signals only from the future.

3. Making a tiny semi-circular counterclockwise contour around ω = −|⃗k| and a clockwise

one at ω = +|⃗k|. This will yield the Feynman Green’s function GD+1,F , named after
the theoretical physicist Richard P. Feynman. The Feynman Green’s function is used
heavily in Minkowski spacetime perturbative Quantum Field Theory. Unlike its retarded
and advanced cousins – which are purely real – the Feynman Green’s function is complex.
The real part is equal to half the advanced plus half the retarded Green’s functions. The
imaginary part, in the quantum field theory context, describes particle creation by an
external source.

These are just 3 of the most commonly used contour prescriptions – there are an infinity of
others, of course. You may also wonder if there is a heat kernel representation of the Green’s
function of the Minkowski spacetime wave operator, i.e., the generalization of eq. (12.3.45) to
“spacetime Laplacians”. The subtlety here is that the eigenvalues of ∂2, the {−k2}, are not
positive definite; to ensure convergence of the proper time t-integral in eq. (12.3.45) one would
in fact be lead to the Feynman Green’s function.

For classical physics, we will focus mainly on the retarded Green’s function G+
D+1 because it

obeys causality – the cause (the source J) precedes the effect (the field it generates). We will
see this explicitly once we work out the G+

D+1 below, for all D ≥ 1.
To put the issue of contours on concrete terms, let us tackle the 2 dimensional case. Because

the Green’s function enjoys the spacetime translation symmetry of the Minkowski spacetime it
resides in – namely, under the simultaneous replacements xµ → xµ + aµ and x′µ → x′µ + aµ, the
Green’s function remains the same object – without loss of generality we may set x′ = 0 in eq.
(12.4.58).

G2 (x
µ = (t, z)) = −

∫
dω

2π

∫
dk

2π

e−iωteikz

ω2 − k2
(12.4.66)

If we make the retarded contour choice, which we will denote as G+
2 , then if t < 0 we would close

it in the upper half plane (recall e−i(i∞)(−|t|) = 0). Because there are no poles for Im(ω) > 0,
we’d get zero. If t > 0, on the other hand, we will form the closed (clockwise) contour C via
the lower half plane, and pick up the resides at both poles. We begin with a partial fractions
decomposition of 1/k2, followed by applying the residue theorem:

G+
2 (t, z) = −iΘ(t)

∮
C

dω

2πi

∫
R

dk

2π
e−iωt

eikz

2k

(
1

ω − k
− 1

ω + k

)
(12.4.67)
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= +iΘ(t)

∫
R

dk

2π

eikz

2k

(
e−ikt − eikt

)
= −iΘ(t)

∫
R

dk

2π

eikz

2k
· 2i sin(kt) = Θ(t)

∫
R

dk

2π

eikz

k
sin(kt) (12.4.68)

Let’s now observe that this integral is invariant under the replacement z → −z. In fact,

G+
2 (t,−z) = Θ(t)

∫
R

dk

2π

e−ikz

k
sin(kt) = G+

2 (t, z)∗ (12.4.69)

= Θ(t)

∫
R

dk

2π

eikz

−k
sin(−kt) = G+

2 (t, z) . (12.4.70)

Therefore not only is G+
2 (t, z) real, we can also put an absolute value around the z – the answer

for G+
2 has to be the same whether z is positive or negative anyway.

G+
2 (t, z) = Θ(t)

∫
R

dk

2π

eik|z|

k
sin(kt) (12.4.71)

Note that the integrand exp(ik|z|) sin(kt)/k is smooth on the entire real k−line. Therefore,
if we view this integral as one on the complex k−plane, we may displace the contour slightly
‘upwards’ towards the positive imaginary axis:

G+
2 (t, z) =

Θ(t)

2

∫ +∞+i0+

−∞+i0+

dk

2πi

eik|z|

k
(eikt − e−ikt) (12.4.72)

=
Θ(t)

2
(−) (Θ(−t− |z|)−Θ(t− |z|)) (12.4.73)

=
1

2
Θ (t− |z|) . (12.4.74)

Problem 12.18. Can you explain why

Θ(t)Θ(t2 − z2) = Θ(t− |z|)? (12.4.75)

Re-write Θ(−t)Θ(t2 − z2) as a single step function.

We have arrived at the solution

G+
2 (x− x′) = 1

2
Θ(t− t′)Θ(σ̄) =

1

2
Θ (t− t′ − |z − z′|) , (12.4.76)

σ̄ ≡ (t− t′)2 − (z − z′)2

2
=

1

2
(x− x′)2. (12.4.77)

While the Θ(σ̄) allows the signal due to the spacetime point source at x′ to propagate both
forward and backward in time – actually, throughout the interior of the light cone of x′ – the
Θ(t− t′) implements retarded boundary conditions: the observer time t always comes after the
emission time t′. If you carry out a similar analysis for G2 but for the advanced contour, you
would find

G−
2 (x− x′) = 1

2
Θ(t′ − t)Θ(σ̄). (12.4.78)
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Problem 12.19. From its Fourier representation , calculate G±
3 (x− x′), the retarded and

advanced Green’s function of the wave operator in 3 dimensional Minkowski spacetime. You
should find

G±
3 (x− x′) =

Θ(±(t− t′))√
2(2π)

Θ(σ̄)√
σ̄
. (12.4.79)

Bonus problem: Can you perform the Fourier integral in eq. (12.4.58) for all GD+1?
Hints: For the (2+1)D case, denoting T ≡ t− t′ and R ≡ |x⃗− x⃗′|, first show that

G+
3 (x− x′) =

∫ +∞

0

dk

2π2
sin[kT ]

∫ +1

−1

dχ
cos [kRχ]√

1− χ2
. (12.4.80)

Now, view R on the right-hand-sides of equations (12.4.79) and (12.4.80) as a real quantity.
Show that their Fourier transforms are the same; namely, demonstrate that∫

R
dReiωR

∫ +∞

0

dk

2π2
sin[kT ]

∫ +1

−1

dχ
cos [kRχ]√

1− χ2
=

∫
R
dReiωR

Θ[T ]Θ[T 2 −R2]

2π
√
T 2 −R2

(12.4.81)

=
Θ[T ]

2
J0[ωT ]; (12.4.82)

where J0 is the Bessel function. You may find this page useful. Since the Fourier transform is
invertible, explain why this proves eq. (12.4.79).

Green’s Functions From Recursion Relations With the 2 and 3 dimensional
Green’s function under our belt, I will now show how we can generate the Green’s function
of the Minkowski wave operator in all dimensions, just by differentiating G2,3. The primary
observation that allow us to do so, is that a line source in (D+2) spacetime is a point source in
(D+1) dimensions; and a plane source in (D+2) spacetime is a point source in D dimensions.141

For this purpose let’s set the notation. In (D+1) dimensional flat spacetime, let the spatial
coordinates be denoted as xi = (x⃗⊥, w

1, w2); and in (D−1) dimensions let the spatial coordinates
be the x⃗⊥. Then |x⃗− x⃗′| is a D dimensional Euclidean distance between the observer and source
in the former, whereas |x⃗⊥ − x⃗′⊥| is the D − 1 counterpart in the latter.

Starting from the integral representation for GD+1 in eq. (12.4.58), we may integrate with
respect to the Dth spatial coordinate w2:∫ +∞

−∞
dw′2GD+1(t− t′, x⃗⊥ − x⃗′⊥, w⃗ − w⃗′)

=

∫ +∞

−∞
dw′2

∫
RD+1

dωdD−2k⊥d
2k∥

(2π)D+1

e−iω(t−t
′)eik⃗⊥·(x⃗⊥−x⃗′⊥)eik∥·(w⃗−w⃗

′)

−ω2 + k⃗2⊥ + k⃗2∥

=

∫
RD+1

dωdD−2k⊥d
2k∥

(2π)D+1
(2π)δ(k2∥)

e−iω(t−t
′)eik⃗⊥·(x⃗⊥−x⃗′⊥)eik

1
∥(w

1−w′1)eik
2
∥w

2

−ω2 + k⃗2⊥ + k⃗2∥

141I will make this statement precise very soon, but you are encouraged to read Soodak and Tiersten [42] for a
pedagogical treatment.
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=

∫
RD

dωdD−2k⊥dk
1
∥

(2π)D
e−iω(t−t

′)eik⃗⊥·(x⃗⊥−x⃗′⊥)eik
1
∥(w

1−w′1)

−ω2 + k⃗2⊥ + (k1∥)
2

= GD(t− t′, x⃗⊥ − x⃗′⊥, w1 − w′1). (12.4.83)

The notation is cumbersome, but the math can be summarized as follows. Integrating GD+1

over the Dth spatial coordinate amounts to discarding the momentum integral with respect to its
D component and setting its value to zero everywhere in the integrand. But that is nothing but
the integral representation of GD. Moreover, because of translational invariance, we could have
integrated with respect to either w′2 or w2. If we compare our integral here with eq. (12.4.59),
we may identify J(x′′) = δ(t′′ − t′)δ(D−2)(x⃗′⊥ − x⃗′′⊥)δ(w1 − w′′1), an instantaneous line source of
unit strength lying parallel to the Dth axis, piercing the (D − 1) space at (x⃗′⊥, w

′1).
We may iterate this integral recursion relation once more,∫

R2

d2wGD+1 (t− t′, x⃗⊥ − x⃗′⊥, w⃗ − w⃗′) = GD−1 (t− t′, x⃗⊥ − x⃗′⊥) . (12.4.84)

This is saying GD−1 is sourced by a 2D plane of unit strength, lying in (D + 1) spacetime. On
the left hand side, we may employ cylindrical coordinates to perform the integral

2π

∫ ∞

0

dρρGD+1

(
t− t′,

√
(x⃗⊥ − x⃗′⊥)2 + ρ2

)
= GD−1 (t− t′, |x⃗⊥ − x⃗′⊥|) , (12.4.85)

where we are now highlighting the fact that, the Green’s function really has only two arguments:
one, the time elapsed t−t′ between observation t and emission t′; and two, the Euclidean distance
between observer and source. (We will see this explicitly very shortly.) For GD+1 the relevant
Euclidean distance is

|x⃗− x⃗′| =
√
(x⃗⊥ − x⃗′⊥)2 + (w⃗ − w⃗′)2. (12.4.86)

A further change of variables

R′ ≡
√
(x⃗⊥ − x⃗′⊥)2 + ρ2 ⇒ dR′ =

ρdρ

R′ . (12.4.87)

This brings us to

2π

∫ ∞

R

dR′R′GD+1(t− t′, R′) = GD−1(t− t′, R), R ≡ |x⃗⊥ − x⃗′⊥|. (12.4.88)

At this point we may differentiate both sides with respect to R (see Leibniz’s rule for differen-
tiation), to obtain the Green’s function in (D + 1) dimensions from its counterpart in (D − 1)
dimensions.

GD+1(t− t′, R) = −
1

2πR

∂

∂R
GD−1(t− t′, R). (12.4.89)

The meaning of R on the left hand side is the D-space length |x⃗− x⃗′|; on the right hand side it
is the (D − 2)-space length |x⃗⊥ − x⃗′⊥|.
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Problem 12.20. Massive Scalar Green’s Functions: Recursion Explain why the
solution to (

∂2 +m2
)
G[x− x′;m] = δ(D+1)[x− x′], (12.4.90)

for m > 0, is given by the Fourier transform

G[x− x′;m] =

∫
RD,1

dωdDk⃗

(2π)D+1

e−iω(t−t
′)eik⃗·(x⃗−x⃗

′)

−ω2 + k⃗2 +m2
. (12.4.91)

Explain why eq. (12.4.89) also applies to the massive scalar Green’s functions.

Problem 12.21. ‘Dimension-Raising’ Operator Since the Green’s functions in Minkowski
are spacetime translationally invariant, we may set (t′, x⃗′) = (0, 0⃗) and view their wave equations
as

WDGD(t, r) ≡ ∂2tGD −
∂r(r

D−1∂rGD(t, r))

rD−1
=
δ(r − 0+)

rD−1ΩD

, (12.4.92)

ΩD =
2πD/2

Γ(D/2)
. (12.4.93)

The ΩD is the solid angle subtended by a D − 1 sphere; see Problem (7.4). By applying the
operator −(2πr)−1∂r on both sides of eq. (12.4.92), show that

WD+2

(
− 1

2πr
∂rGD(t, r)

)
=
δ(r − 0+)

rD+1ΩD+2

. (12.4.94)

That is, −(2πr)−1∂rGD is the solution to the Green’s function equation in two higher dimensions
– and, hence, may be regarded (in this specific sense) as a ‘dimension-raising’ operator. This
provides an additional confirmation of the relation in eq. (12.4.89).

Green’s Functions From Extra Dimensional Line Source There is an alternate
means of obtaining the integral relation in eq. (12.4.83), which was key to deriving eq. (12.4.89).
In particular, it does not require explicit use of the Fourier integral representation. Let us
postulate that GD is sourced by a “line charge” J(w2) extending in the extra spatial dimension
of RD,1.

GD(t− t′, x⃗⊥ − x⃗′⊥, w1 − w′1)
?
=

∫ +∞

−∞
dw′2GD+1(t− t′, x⃗⊥ − x⃗′⊥, w⃗ − w⃗′)J(w′2) (12.4.95)

Applying the wave operator in the ((D − 1) + 1)-space on the right hand side, and suppressing
arguments of the Green’s function whenever convenient,

∂2D

∫ +∞

−∞
dw′2GD+1 · J

(
where ∂2D ≡ ∂2t′ −

D−1∑
i=1

∂2i′

)

=

∫ +∞

−∞
dw′2J(w′2)

(
∂2D −

(
∂

∂w′2

)2

+

(
∂

∂w′2

)2
)
GD+1(w

2 − w′2)
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=

∫ +∞

−∞
dw′2J(w′2)

(
∂2D+1 +

(
∂

∂w′2

)2
)
GD+1(w

2 − w′2)

=

∫ +∞

−∞
dw′2J(w′2)

(
δ(t− t′)δ(D−2)(x⃗⊥ − x⃗′⊥)δ(2)(w⃗ − w⃗′) +

(
∂

∂w′2

)2

GD+1(w
2 − w′2)

)
= δ(D−1)(x− x′)δ(w1 − w′1)J(w2)

+

[
J(w′2)

∂GD+1(w
2 − w′2)

∂w′2

]w′2=+∞

w′2=−∞
−
[
∂J(w′2)

∂w′2 GD+1(w
2 − w′2)

]w′2=+∞

w′2=−∞

+

∫ +∞

−∞
dw′2J ′′(w′2)GD+1(w

2 − w′2). (12.4.96)

That is, we would have verified the ((D− 1)+1) flat space wave equation is satisfied if only the
first term in the final equality survives. Moreover, that it needs to yield the proper δ-function
measure, namely δ(D−1)(x− x′)δ(w1 − w′1), translates to the boundary condition on J :

J(w2) = 1. (12.4.97)

That the second and third terms of the final equality of eq. (12.4.96) are zero, requires knowing
causal properties of the Green’s function: in particular, because the w′2 = ±∞ limits correspond
to sources infinitely far away from the observer at (x⃗⊥, w

1, w2), they must lie outside the ob-
server’s light cone, where the Green’s function is identically zero. The final term of eq. (12.4.96)
is zero if the source obeys the ODE

0 = J ′′(w′2). (12.4.98)

The solution to eq. (12.4.98), subject to eq. (12.4.97), is

J(w′2) = cos2 ϑ+
w′2

w2
sin2 ϑ. (12.4.99)

Choosing ϑ = 0 and ϑ = π/2 would return, respectively,

J(w′2) = 1 and J(w′2) =
w′2

w2
. (12.4.100)

To sum, we have deduced the Green’s function in D spacetime dimensions GD may be sourced
by a line source of a one-parameter family of charge densities extending in the extra spatial
dimension of RD+1,1:

GD(t− t′, x⃗⊥ − x⃗′⊥, w1 − w′1) =

∫ +∞

−∞
dw′2

(
cos2 ϑ+

w′2

w2
sin2 ϑ

)
(12.4.101)

×GD+1(t− t′, x⃗⊥ − x⃗′⊥, w⃗ − w⃗′). (12.4.102)

Using the simpler expressions in eq. (12.4.100), we obtain

GD(t− t′, x⃗⊥ − x⃗′⊥, w1 − w′1) =

∫ +∞

−∞
dw′2GD+1(t− t′, x⃗⊥ − x⃗′⊥, w⃗ − w⃗′) (12.4.103)
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=

∫ +∞

−∞
dw′2w

′2

w2
GD+1(t− t′, x⃗⊥ − x⃗′⊥, w⃗ − w⃗′) (12.4.104)

As a reminder, x⃗⊥ and x⃗′⊥ are D− 1 dimensional spatial coordinates; whereas w⃗ and w⃗′ are two
dimensional ones.

Problem 12.22. 2D from 3D Green’s Functions As a consistency check, show that∫
R
dx′2G±

3 (x− x′) = G±
2 (x− x′). (12.4.105)

The (1+1)D and (2+1)D Green’s functions can be found in equations (12.4.76), (12.4.78), and
(12.4.79).

G±
D+1 in all dimensions, Causal structure of physical signals At this point we

may gather G±
2,3 in equations (12.4.76), (12.4.78), and (12.4.79) and apply to them the recursion

relation in eq. (12.4.89) to record the explicit expressions of the retarded G+
D+1 and advanced

G−
D+1 Green’s functions in all (D ≥ 2) dimensions.142

� In even dimensional spacetimes, D + 1 = 2 + 2n and n = 0, 1, 2, 3, 4, . . . ,

G±
2+2n(x− x′) = Θ (±(t− t′))

(
1

2π

∂

∂σ̄

)n
Θ(σ̄)

2
. (12.4.106)

Equivalently,

G±
2+2n(T ≡ t− t′, R ≡ |x⃗− x⃗′|) =

(
− 1

2π

∂

∂R

)n
Θ(±T −R)

2
. (12.4.107)

� In odd dimensional spacetime, D + 1 = 3 + 2n and n = 0, 1, 2, 3, 4, . . . ,

G±
3+2n(x− x′) = Θ (±(t− t′))

(
1

2π

∂

∂σ̄

)n(
Θ(σ̄)

2π
√
2σ̄

)
. (12.4.108)

Equivalently,

G±
3+2n(T ≡ t− t′, R ≡ |x⃗− x⃗′|) =

(
− 1

2π

∂

∂R

)n(
Θ(±T −R)
2π
√
T 2 −R2

)
. (12.4.109)

Recall that σ̄(x, x′) is half the square of the geodesic distance between the observer at x and
point source at x′,

σ̄ ≡ 1

2
(x− x′)2 = 1

2
(t− t′)2 − 1

2
(x⃗− x⃗′)2. (12.4.110)

Hence, Θ(σ̄) = Θ(T 2 − R2) is unity inside the light cone |T | > R and zero outside |T | < R;
whereas δ(σ̄) = 2δ(T 2 − R2) and its derivatives are non-zero strictly on the light cone |T | = R.

142When eq. (12.4.89) applied to G±
2,3 in equations (12.4.76), (12.4.78), and (12.4.79), note that the (2πR)−1∂R

passes through the Θ(±(t− t′)) and because the rest of the G±
2,3 depends solely on σ̄, it becomes −(2πR)−1∂R =

(2π)−1∂σ̄.
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Note that the inside-the-light-cone portion of a signal – i.e., the Θ(σ̄) term of the Green’s function
– is known as the tail. Notice too, the Θ(±(t − t′)) multiplies an expression that is symmetric
under interchange of observer and source (x↔ x′); namely, G±(x− x′) = Θ(±(t− t′))G(x− x′).
For a fixed source at x′, we may interpret these coefficients of Θ(±(t − t′)) as the symmetric
Green’s function G(x−x′): the field due to the source at x′ travels both backwards and forward
in time. The retarded Θ(t − t′) (observer time is later than emission time) selects the future
light cone T ≥ R portion of this symmetric signal; while the advanced Θ(−(t − t′)) (observer
time earlier than emission time) selects the backward light cone T ≤ −R part of it. The last
two statements also explain why we may replace the Θ(±(t−t′)) . . .Θ(σ̄) in equations (12.4.106)
and (12.4.108) with Θ(±T −R) in equations (12.4.107) and (12.4.109).

As already advertised earlier, because the Green’s function of the scalar wave operator in
Minkowski is the field generated by a unit strength point source in spacetime – the field ψ
generated by an arbitrary source J(t, x⃗) obeys causality. By choosing the retarded Green’s
function, the field generated by the source propagates on and possibly within the forward light
cone of J . Specifically, ψ travels strictly on the light cone for even dimensions greater or equal
to 4, because GD+1=2n involves only δ(σ̄) and its derivatives. In 2 dimensions, the Green’s
function is pure tail, and is in fact a constant 1/2 inside the light cone. In 3 dimensions, the
Green’s function is also pure tail, going as σ̄−1/2 inside the light cone. For odd dimensions
greater than 3, the Green’s function has non-zero contributions from both on and inside the
light cone. However, the ∂σ̄s occurring within eq. (12.4.108) can be converted into ∂t′s and – at
least for material/timelike J – integrated-by-parts within the integral in eq. (12.4.59) to act on
the J . The result is that, in all odd dimensional Minkowski spacetimes (d ≥ 3), physical signals
propagate strictly inside the null cone, despite the massless nature of the associated particles.143

Problem 12.23. Massive Scalar Green’s Functions Employ the ansatz

G2[x− x′;m] = G2[x− x′;m = 0]F2[m
√
(x− x′)2], (12.4.111)

G3[x− x′;m] = G3[x− x′;m = 0]F3[m
√
(x− x′)2]; (12.4.112)

and show that the retarded solutions of the massive scalar Green’s functions equations

(∂2 +m2)G = δ(d)[x− x′]. (12.4.113)

are, for σ̄ ≡ (1/2)(x− x′)2 and in d = D + 1 spacetime dimensions,

G+
d=2+2n (x− x

′) =
Θ(t− t′)
2(2π)n

∂n

∂σ̄n

{
Θ(σ̄)J0

(
m
√
2σ̄
)}

, (12.4.114)

G+
d=3+2n (x− x

′) =
Θ(t− t′)
(2π)n

∂n

∂σ̄n

{
Θ(σ̄)√
2σ̄

cos
(
m
√
2σ̄
)}

. (12.4.115)

Hint: You should find that, with ξ ≡ m
√
2σ̄, and if G2 and G3 are the symmetric (retarded plus

advanced) Green’s functions in 2D and 3D respectively,

□G2 = 2δ(2)[x− x′] · F2(ξ) +
m2

2
Θ(σ̄)

(
F ′′
2 (ξ) +

F ′
2(ξ)

ξ
+ F2(ξ)

)
, (12.4.116)

143Explicit formulas for the electromagnetic and linear gravitational case can be found in appendices A and B
of arXiv: 1611.00018 [41].
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□G3 = 2δ(3)[x− x′] · F3(ξ) +
m

π
F ′
3(ξ) · δ (σ̄) +

m2 ·Θ(σ̄)

2π
√
2σ̄

(F ′′
3 (ξ) + F3(ξ)) . (12.4.117)

These results should provide ordinary differential equations and boundary conditions for F2 and
F3. Finally, recall eq. (12.4.89).

Comparison to Laplace Equation The sign difference between the ‘time component’
versus the ‘space components’ of the flat spacetime metric is responsible for the sign difference
between the time derivatives and spatial derivatives in the wave operator: ∂2ψ = (∂2t −∇⃗2

x⃗)ψ = 0.

This can be contrasted against Laplace’s equation ∇⃗2ψ = ∂i∂iψ = 0, where there are no sign
differences because the Euclidean metric is diag(+1, · · · + 1). In turn, let us recognize, this is
why non-trivial smooth solutions exist in vacuum for the former and not for the latter, at least
in infinite space(time). Physically, we may interpret this as telling us that the wave equation
allows for radiation – i.e., waves that propagate through spacetime, capable of carrying energy-
momentum to infinity – while the Laplace equation does not. To this end, let us go to Fourier
space(time).

∂2
(
ψ̃(k)e−ikµx

µ
)
= 0 = −

(
k20 − k⃗ · k⃗

)
ψ̃e−ikµx

µ

, (Wave Equation) (12.4.118)

∇⃗2
(
ψ̃(k⃗)eik⃗·x⃗

)
= 0 = −

(
k⃗ · k⃗

)
ψ̃eik⃗·x⃗ (Laplace Equation) (12.4.119)

We see that, for the wave equation, either ψ̃ = 0 or k2 = k20 − k⃗2 = 0. But ψ̃ = 0 would render

the whole solution trivial. Hence, for non-singular ψ̃ this means k0 = ±|⃗k| and we have

ψ = ψ̃(k) exp
(
i|⃗k|(k̂ · x⃗∓ t)

)
, k̂ ≡ k⃗/|⃗k|. (12.4.120)

(We have already encountered this result in eq. (12.4.42).) Whereas, for the Laplace equation

either ψ̃ = 0 or k⃗2 = 0. Again, the former would render the whole solution trivial, which tells us
we must have k⃗2 = 0. However, since k⃗2 ≥ 0 – this positive definite nature of k⃗2 is a consequence
of the analogous one of the Euclidean metric – we conclude there are simply no non-trivial
regular solutions in Fourier space.144 For the wave equation, the non-trivial solutions k0 = ±|⃗k|
are a direct consequence of the Lorentzian nature of Minkowski spacetime.

Comparison to Heat Equation The causal structure of the solutions to the wave
equation here can be contrasted against those of the infinite flat space heat equation. Referring
to the heat kernel in eq. (12.3.31), we witness how at initial time t′, the field K is infinitely
sharply localized at x⃗ = x⃗′. However, immediately afterwards, it becomes spread out over
all space, with a Gaussian profile peaked at x⃗ = x⃗′ – thereby violating causality. In other
words, the “waves” in the heat/diffusion equation of eq. (12.3.1) propagates with infinite speed.
Physically speaking, we may attribute this property to the fact that time and space are treated
asymmetrically both in the heat/diffusion eq. (12.3.1) itself – one time derivative versus two

144One could allow for singular solutions proportional to the k⃗−space δ(d−1)-function and its derivatives, such
as ψ̃0 = δ(3)(k⃗) exp(ik⃗ · x⃗) and ψ̃1 = ∂kiδ(3)(k⃗) exp(ik⃗ · x⃗) (for fixed i), so that ∇⃗2ψ = 0 because k⃗2δ(3)(k⃗) =

0 = k⃗2∂kiδ(3)(k⃗). However, the ψ0 in position space is simply a spatial constant; while the ψ1 is proportional
to xi, which blows up as xi → ±∞. In fact, there are an infinite number of linearly independent homogeneous
solutions to the Laplace equation, namely {rℓY m

ℓ (θ, ϕ)|ℓ = 0, 1, 2, 3, . . . ;m = −ℓ,−ℓ+ 1, . . . ,+ℓ− 1,+ℓ}, but for
ℓ > 0 they all blow up at spatial infinity.
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derivatives per spatial coordinate – as well as in the heat kernel solution of eq. (12.3.31). On the
other hand, the symmetric portion of the spacetime Green’s functions in equations (12.4.106)
and (12.4.108) depend on spacetime solely through 2σ̄ ≡ (t− t′)2 − (x⃗− x⃗′)2, which is invariant
under global Poincaré transformations (cf. eq. (12.4.14)).

4 Dimensions: Massless Scalar Field We highlight the 4 dimensional retarded case,
because it is most relevant to the real world. Using equations (12.4.106) and (12.4.107), the
retarded massless scalar Green’s function reads

G+
4 (x− x′) =

Θ(t− t′)δ(σ̄)
4π

=
δ (t− t′ − |x⃗− x⃗′|)

4π|x⃗− x⃗′|
. (12.4.121)

The G4 says the point source at (t
′, x⃗′) produces a spherical wave that propagates strictly on the

light cone t− t′ = |x⃗− x⃗′|, with amplitude that falls off as 1/(observer-source spatial distance)
= 1/|x⃗− x⃗′|.145

Problem 12.24. 3D Green’s function from 4D Can you use eq. (12.4.103) to com-
pute the (2+1)D massless scalar retarded Green’s function in eq. (12.4.79) from its (3+1)D
counterpart in eq. (12.4.121)?

The solution to ψ from eq. (12.4.59) is now

ψ(t, x⃗) =

∫ +∞

−∞
dt′
∫
R3

d3x⃗′G+
4 (t− t′, x⃗− x⃗′)J(t′, x⃗′)

=

∫ +∞

−∞
dt′
∫
R3

d3x⃗′
δ (t− t′ − |x⃗− x⃗′|) J(t′, x⃗′)

4π|x⃗− x⃗′|
(12.4.122)

=

∫
R3

d3x⃗′
J(tr, x⃗

′)

4π|x⃗− x⃗′|
, tr ≡ t− |x⃗− x⃗′|. (12.4.123)

The tr is called retarded time. With c = 1, the time it takes for a signal traveling at unit speed
to travel from x⃗′ to x⃗ is |x⃗− x⃗′|, and so at time t, what the observer detects at (t, x⃗) is what the
source produced at time t− |x⃗− x⃗′|. Drawing a spacetime diagram here would be useful.

4D Far Zone Let us center the coordinate system so that x⃗ = x⃗′ = 0⃗ lies within the
body of the source J itself. When the observer is located at very large distances from the source
compared to the latter’s characteristic size, we may approximate

|x⃗− x⃗′| = exp
(
−x′j∂j

)
r, r ≡ |x⃗|

= r − x⃗′ · r̂ + rO

((
r′

r

)2
)
, r̂ ≡ xi

r
, r′ ≡ |x⃗′| (12.4.124)

= r − x⃗′ · r̂ + r′O
(
r′

r

)
= r

(
1− x⃗′

r
· r̂ +O

(
(r′/r)2

))
. (12.4.125)

(By dimensional analysis, you should be able to deduce this is, schematically, a power series in
r′/r.) This leads us from eq. (12.4.123) to the following far zone scalar solution

ψ(t, x⃗) =
1

4πr

∫
R3

d3x⃗′
{
1 +

x⃗′

r
· x̂+O

(
(r′/r)

2
)}

(12.4.126)

145In the first equality of eq. (12.4.121), one may verify: δ(σ̄)/(4π) = (4π|x⃗− x⃗′|)−1(δ(t− t′ − |x⃗− x⃗′|) + δ(t−
t′ + |x⃗ − x⃗′|)) The δ(t − t′ + |x⃗ − x⃗′|)/(4π|x⃗ − x⃗′|) would be the advanced Green’s function, where the elapsed
time t− t′ = −|x⃗− x⃗′| < 0, and is eliminated by the retarded condition encoded within Θ(t− t′).
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× J (t− r + x⃗′ · r̂ + r′O(r′/r), x⃗′) .

The term in curly brackets arises from the 1/|x⃗ − x⃗′| portion of the 4D Green’s function in
eq. (12.4.121). In turn, this far zone leading order 1/r behavior teaches us, the field due to
some field always fall off as 1/(observer-source distance).146 On the other hand, by recognizing
x⃗′ · r̂ + r′O(r′/r) = x̂′ · r̂(1 +O(r′/r)), followed by Taylor expanding the time argument of the
source,

J (t− |x⃗− x⃗′|, x⃗′) = J(t− r, x⃗′) +
+∞∑
ℓ=1

(x⃗′ · r̂)ℓ

ℓ!
(1 +O(r′/r)) ∂ℓtJ(t− r, x⃗′). (12.4.127)

If we associate each time derivative acting on J to scale as

∂ℓtJ ∼
J

(characteristic timescale of source)ℓ
, (12.4.128)

then the Taylor expansion in eq. (12.4.127) becomes one in powers of the ratio r′/τJ ≡ (charac-
teristic size of the source)/(characteristic timescale of source). (Recall from eq. (12.4.122) the
x⃗′ always lies within the source.) In the c = 1 units we are employing here, this corresponds to a
non-relativistic expansion, since the characteristic size of the source is the time it takes for light
to traverse it. Furthermore, at each order in this non-relativistic expansion, there is a further
‘finite size’ correction that begins at order r′/r ∼ (characteristic size of source)/(observer-source
distance).
Relativistic Far Zone To sum, if we take the far zone limit – i.e., neglect all (characteristic
size of source)/(observer-source distance) ≪ 1 corrections – but allow for a fully relativistic
source, eq. (12.4.126) now reads

ψ(t, x⃗) ≈ 1

4πr

∫
R3

d3x⃗′J (t− r + x⃗′ · r̂, x⃗′) , r ≡ |x⃗|. (12.4.129)

Non-relativistic Far Zone If we further assume the source is non-relativistic, namely (char-
acteristic size of source)/(timescale of source) ≪ 1,

ψ(t, x⃗) ≈ A(t− r)
4πr

, (12.4.130)

A(t− r) ≡
∫
R3

d3x⃗′J(t− r, x⃗′). (12.4.131)

In the far zone the amplitude of the wave falls off with increasing distance as 1/(observer-source
spatial distance); and the time-dependent portion of the wave A(t − r) is consistent with that
of an outgoing wave, one emanating from the source J .147

Problem 12.25. Spherical s−Waves The A(t − r)/r in eq. (12.4.130) turns out to be
an exact solution, despite our arrival at it via a non-relativistic and far zone approximation.

146In Quantum Field Theory, this 1/r is attributed to the massless-ness of the ψ−particles.
147Even for the relativistic case in eq. (12.4.129), we see from eq. (12.4.127) that it consists of an infinite series of

various rank amplitudes that are functions of retarded time t− r: ψ(t, x⃗) = (4πr)−1
∑+∞

ℓ=0 r̂
i1 . . . r̂iℓAi1...iℓ(t− r).

596



Referring to eq. (12.4.122), identify the form of J(t′, x⃗′) that would yield the following exact
solution to ∂2ψ = J :

ψ(t, x⃗) =
A(t− r)

4πr
, r ≡ |x⃗|. (12.4.132)

Hint: J describes a point charge sitting at the spatial origin, but with a time dependent strength.

Problem 12.26. Spherical s−Waves vs Plane Waves In this problem, we will compare
the homogeneous plane wave solutions in eq. (12.4.40) with the spherical wave in eq. (12.4.132).
We will assume the amplitude A in eq. (12.4.132) admits a Fourier transform:

A(ξ) =
∫
R

dω

2π
e−iωξÃ(ω). (12.4.133)

Then each frequency mode must itself be a solution to the wave equation:

ψ = Re

(
Ã(ω)

e−iω(t−r)

4πr

)
. (12.4.134)

Throughout this analysis, we shall assume the high frequency and far zone limit to hold:

ωr ≫ 1. (12.4.135)

First show that the Minkowski metric in spherical coordinates is

gµνdx
µdxν = dt2 − dr2 − r2

(
dθ2 + sin2 θdϕ2

)
. (12.4.136)

Then verify that

gµν∇µ∇ν

(
e−iω(t−r)

4πr

)
= 0, (12.4.137)

as long as r ̸= 0; as well as the null character of the constant-phase surfaces, in that

gµν∇µ (ω(t− r))∇ν (ω(t− r)) = 0. (12.4.138)

This latter condition is consistent with the property that the spherical wave is traveling radially
outwards from the source at the speed of light. Now, since exp(−iω(t − r)) is the ‘fast’ part
of the spherical wave (at least for ωr ≫ 1) whereas 1/r ≪ ω is the ’slow’ part, we see that

exp(−iω(t − r)) in eq. (12.4.134) may be identified with exp(−ik(t − k̂ · x⃗)) in eq. (12.4.40) if

we identify the propagation direction r̂ in the former with the the propagation direction k̂ in the
latter:

r̂ ↔ k̂ and ω ↔ k. (12.4.139)

Afterall, as the radius of curvature grows (r →∞), we expect the constant phase surfaces of the
spherical wave to appear locally flatter – and hence, to a good approximation, behaving more
like plane waves, at least within a region whose extent is much smaller than r itself.
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To further support this identification, we recognize that, each t or r derivative on e−iω(t−r)

yields a factor of ω ∼ 1/(period of wave). So one might have expected that □ = gµν∇µ∇ν

applied to the same should scale as □ ∼ ω2. However, show that – due to the null condition in
eq. (12.4.138),

□e−iω(t−r) = −2iω
r
e−iω(t−r) (12.4.140)

instead. Thus, relative to the expectation that □ ∼ ω2, the actual result scales as 1/(ωr) relative
to it.

□[Actual]

□[Expectation based on first derivatives]
∼ 1

ωr
≪ 1. (12.4.141)

To sum:

In the high-frequency and far zone limit, namely ωr ≫ 1, a single frequency
mode of the spherical wave approximates that of a plane wave, as r →∞, in a given
region whose size is much smaller than r itself. The slowly varying amplitude of the
spherical wave scales as 1/r.

We will see below, the spherical wave exp(−iω(t− r))/r can also be viewed as a special case of
the JWKB solution of wave equations.

4D photons In 4 dimensional flat spacetime, the vector potential of electromagnetism,
in the Lorenz gauge

∂µA
µ = 0 (Cartesian coordinates), (12.4.142)

obeys the wave equation

∂2Aµ = Jµ. (12.4.143)

Here, ∂2 is the scalar wave operator, and Jµ is a conserved electromagnetic current describing
the motion of some charge density

∂µJ
µ = ∂tJ

t + ∂iJ
i = 0. (12.4.144)

The electromagnetic fields are the “curl” of the vector potential

Fµν = ∂µAν − ∂νAµ. (12.4.145)

In particular, for a given inertial frame, the electric E and magnetic B fields are, with i, j, k ∈
{1, 2, 3},

Ei = F i0 = ∂iA0 − ∂0Ai = −∂iA0 + ∂0Ai = −Fi0, (12.4.146)

Bk = −ϵijk∂iAj = −
1

2
ϵijkFij, ϵ123 ≡ 1. (12.4.147)
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Problem 12.27. Lorenz Gauge, Relativity & Current Conservation Comparison of
equations (12.4.129) and (12.4.143) indicates, in the far zone,

Aµ(t, x⃗) ≈ 1

4πr

∫
d3x⃗′Jµ (t− r + x⃗′ · r̂, x⃗′) . (12.4.148)

If one takes the non-relativistic limit too (cf. eq. (12.4.130)),

Aµ(t, x⃗) ≈ 1

4πr

∫
d3x⃗′Jµ (t− r, x⃗′) . (12.4.149)

Compute ∂µA
µ using equations (12.4.148) and (12.4.149) to leading order in 1/r. Hint: a key

step is to recognize, for a conserved current obeying eq. (12.4.144),

∂tJ
0(τ, x⃗′) = −

(
∂i′J

i(τ, x⃗′)
)
t
+ r̂i∂tJ

i(τ, x⃗′); (12.4.150)

τ ≡ t− r + x⃗′ · r̂, ∂i′ ≡
∂

∂x′i
; (12.4.151)

where the subscript t on the first term on the right-hand-side of eq. (12.4.150) means the spatial
derivatives are carried out with the observation time t held fixed – which is to be distinguished
from doing so but with τ held fixed.

You should find that the Lorenz gauge in eq. (12.4.142) is respected only by the relativistic
solution in eq. (12.4.148), and not by the non-relativistic one in eq. (12.4.149). This is an
important point because, even though the Lorenz gauge in eq. (12.4.142) was a mathematical
choice, once we have chosen it to solve Maxwell’s equations, violating it may lead to a violation
of current conservation: to see this, simply take the 4−divergence of eq. (12.4.143) to obtain
∂2(∂µA

µ) = ∂µJ
µ.

Problem 12.28. Electromagnetic Radiation Refer to eq. (12.4.148), the solution of Aµ

in terms of Jµ in the far zone. Like the scalar case, take the far zone limit. In this problem we
wish to study some basic properties of Aµ in this limit. Throughout this analysis, assume that
J i is sufficiently localized that it vanishes at spatial infinity; and assume J i is a non-relativistic
source.

1. Using ∂tJ
t = −∂iJ i, the conservation of the current, show that A0 is independent of time

in the far zone and non-relativistic limit. Is there a difference between taking the time
derivative of the non-relativistic limit of the far zone A0 and taking the non-relativistic
limit of its time derivative?

2. Now define the dipole moment as

I i(s) ≡
∫
R3

d3x⃗′x′iJ0(s, x⃗′). (12.4.152)

Can you show its first time derivative is

İ i(s) ≡ dI i(t)

ds
=

∫
R3

d3x⃗′J i(s, x⃗′)? (12.4.153)
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Hint: Use current conservation and integration-by-parts.

Compute the spatial derivative of the far zone A0. Compare the result of acting ∂i on the
non-relativistic A0 versus taking the non-relativistic limit of ∂iA0. You should find that
the latter yields the correct answer:

∂iA0(t, x⃗)
Far zone→ − r̂

ir̂j

4πr
Ïj[t− r]

= r̂ir̂j
(
∂tA

j(t, x⃗)
)
Non-relativistic, far zone

. (12.4.154)

3. From the above results, we shall infer it is the ‘transverse’ part of the ‘velocity’ ∂tA
i that

contains radiative effects. First show that in the far zone, i.e., to leading order in 1/r,

Ei(t, x⃗)→ − 1

4πr

d2I i(t)(t− r, r̂)
dt2

(12.4.155)

≡ P ij
(
∂tA

j(t, x⃗)
)
Non-relativistic, far zone

Bi(t, x⃗)→ − 1

4πr
ϵijkr̂j

d2Ik(t)(t− r, r̂)
dt2

= ϵijkr̂jEk, (12.4.156)

I i(t)(s, r̂) ≡ P ij(r̂)Ij(s), P ij ≡ δij − r̂ir̂j, r̂i ≡ xi

|x⃗|
. (12.4.157)

The subscript ‘(t)’ stands for ‘transverse’; the projector, which obeys r̂iP ij = 0, ensures
the I i(t) now consists only of the ‘transverse’ portion of the dipole moment: r̂iI i(t) = 0.
Moreover, this result indicates, not only the electric and magnetic fields are mutually
perpendicular, they are also orthogonal to the radial direction and hence transverse to the
propagation direction of (far zone) electromagnetic radiation. Finally, from eq. (12.4.154),
notice we would have incorrectly concluded that the electric field in eq. (12.4.155) is not
built solely from the transverse acceleration of the dipole, if the non-relativistic limit were
taken too early.

Origin-independence Can you explain whether the results in equations (12.4.155) and

(12.4.156) would change if we had shifted by a constant vector b⃗ the origin of integration

in the definition of the dipole moment in eq. (12.4.152)? That is, what becomes of E⃗ and

B⃗ if instead of eq. (12.4.152), we defined

I i(τ) ≡
∫
R3

d3x⃗′(x′i − bi)J0(τ, x⃗′)? (12.4.158)

4. Use the above results in equations (12.4.155) and (12.4.156) to compute the far zone

Poynting vector S⃗ ≡ E⃗ × B⃗, which describes the direction and rate of flow of momentum
carried by electromagnetic waves. (The energy density E is the average (E⃗2+ B⃗2)/2.) Also
verify the following projector property of P ij in eq. (12.4.157):

P iaP ib = P ab (12.4.159)

and show that the dot product of the Poynting vector with the unit radial vector is

1

r2
d3E

dtdΩ
≡ S⃗ · r̂ = 1

(4π)2r2

(
¨⃗
I2 −

(
r̂ · ¨⃗I

)2)
(12.4.160)
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≡ sin2(θ)

(4π)2r2

∣∣∣∣∣d2I⃗(t− r)
dt2

∣∣∣∣∣
2

. (12.4.161)

For an arbitrary unit vector n̂, the dot product S⃗(t, x⃗) · n̂(t, x⃗) is the energy per unit time
per unit area passing through the infinitesimal plane orthogonal to the vector n̂ based at
(t, x⃗). The quantity in eq. (12.4.160), if integrated over the 2-sphere, therefore describes
the rate of loss of total energy to infinity as r →∞.

4D gravitational waves In a 4D weakly curved spacetime, the metric can be written
as one deviating slightly from Minkowski,

gµν = ηµν + hµν (Cartesian coordinates), (12.4.162)

where the dimensionless components of hµν are assumed to be much smaller than unity.
The (trace-reversed) graviton

h̄µν ≡ hµν −
1

2
ηµνη

αβhαβ, (12.4.163)

in the de Donder gauge

∂µh̄µν = ∂th̄tν − δij∂ih̄jν = 0, (12.4.164)

obeys the wave equation148

∂2h̄µν = −16πGNTµν (Cartesian coordinates). (12.4.165)

(The GN is the same Newton’s constant you see in Newtonian gravity ∼ GNM1M2/r
2; both h̄µν

and Tµν are symmetric.) The Tµν is a 4×4 matrix describing the energy-momentum-shear-stress
density of matter, and has zero divergence – i.e., it is conserved – whenever the matter is held
together primarily by non-gravitational forces:149

∂µT
µν = ∂tT

tν + ∂iT
iν = 0. (12.4.166)

Problem 12.29. de Donder Gauge, Relativity & Energy-Momentum Conservation
Comparison of equations (12.4.129) and (12.4.143) indicates, in the far zone,

h̄µν(t, x⃗) ≈ −4GN

r

∫
d3x⃗′T µν (t− r + x⃗′ · r̂, x⃗′) . (12.4.167)

If one takes the non-relativistic limit too (cf. eq. (12.4.130)),

h̄µν(t, x⃗) ≈ −4GN

r

∫
d3x⃗′T µν (t− r, x⃗′) . (12.4.168)

148The following equation is only approximate; it comes from linearizing Einstein’s equations about a flat
spacetime background, i.e., where all terms quadratic and higher in hµν are discarded.
149For systems held together primarily by gravity, such as the Solar System or compact binary black

hole(s)/neutron star(s) emitting gravitational radiation, the corresponding matter stress tensor will not be
divergence-less.
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Compute ∂µh̄
µν using equations (12.4.167) and (12.4.168) to leading order in 1/r. Hint: a key

step is to recognize, for a conserved energy-momentum-stress tensor obeying eq. (12.4.166),

∂tT
0µ(τ, x⃗′) = −

(
∂i′T

iµ(τ, x⃗′)
)
t
+ r̂i∂tT

iµ(τ, x⃗′); (12.4.169)

τ ≡ t− r + x⃗′ · r̂, ∂i′ ≡
∂

∂x′i
; (12.4.170)

where the subscript t on the first term on the right-hand-side of eq. (12.4.169) means the spatial
derivatives are carried out with the observation time t held fixed – which is to be distinguished
from doing so but with τ held fixed.

You should find that the de Donder gauge in eq. (12.4.164) is respected only by the relativistic
solution in eq. (12.4.167), and not by the non-relativistic one in eq. (12.4.168). This is an
important point because, even though the de Donder gauge in eq. (12.4.164) was a mathematical
choice, once we have chosen it to solve the linearized Einstein’s equations, violating it may lead to
a violation of stress-energy-momentum conservation: to see this, simply take the 4−divergence
of eq. (12.4.165) to obtain ∂2(∂µh̄µν) = −16πGN∂

µTµν .

Problem 12.30. Gravitational Radiation YZ: This problem needs to be updated
/ revised. Can you carry out a similar analysis in Problem (12.28), but for gravitational
radiation? Using G+

4 in eq. (12.4.121), write down the solution of h̄µν in terms of T µν . Then
take the far zone limit. Throughout this analysis, assume that T µν is sufficiently localized that
it vanishes at spatial infinity; and assume T µν is a non-relativistic source.

1. Using ∂tT
tν = −∂iT iν , the conservation of the stress-tensor, show that h̄ν0 = h̄0ν is inde-

pendent of time in the far zone limit.

2. Now define the quadrupole moment as

I ij(τ) ≡
∫
R3

d3x⃗′x′ix′jT 00(τ, x⃗′). (12.4.171)

Can you show its second time derivative is

Ï ij(τ) ≡ d2I ij(τ)

dτ 2
= 2

∫
R3

d3x⃗′T ij(τ, x⃗′)? (12.4.172)

and from it infer that the (trace-reversed) gravitational wave form in the far zone is pro-
portional to the acceleration of the quadrupole moment evaluated at retarded time:

h̄ij(t, x⃗)→ −2GN

r

d2I ij(t− r)
dt2

, r ≡ |x⃗|. (12.4.173)

Origin-Independence Can you explain what would become of this result if, instead of
the quadrupole moment defined in eq. (12.4.171), we had shifted its integration origin by

a constant vector b⃗, namely

I ij(t) ≡
∫
R3

d3x⃗′(x′i − bi)(x′j − bj)T 00(t, x⃗′)? (12.4.174)
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3. Note that the transverse-traceless portion of this (trace-reversed) gravitational wave h̄ij(t, x⃗)
can be detected by how it squeezes and stretches arms of a laser interferometer such as
aLIGO and VIRGO.

httij = Pijabh̄ab, (12.4.175)

Pijab ≡
1

2
(PiaPjb + PibPja − PijPab) , (cf. eq. (12.4.157)), (12.4.176)

r̂ihttij = 0 (Transverse) δijhttij = 0 (Traceless). (12.4.177)

Averaged over multiple wavelengths, the energy-momentum-stress tensor of gravitational
waves takes the form

⟨tµν [htt]⟩ =
1

32πGN

⟨∂µhttij∂νhttij⟩. (12.4.178)

Can you work out the energy density E ≡ ⟨t00⟩ and the momentum flux P i ≡ ⟨t0i⟩ =
−⟨t0i⟩ (the gravitational analog to the electromagnetic Poynting vector) in terms of the
quadrupole moment?

Problem 12.31. Waves Around Schwarzschild Black Hole. The geometry of a non-
rotating black hole is described by

ds2 =
(
1− rs

r

)
dt2 − dr2

1− rs
r

− r2
(
dθ2 + sin(θ)2dϕ2

)
, (12.4.179)

where xµ = (t ∈ R, r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π), and rs (proportional to the mass of the black
hole itself) is known as the Schwarzschild radius – nothing can fall inside the black hole (r < rs)
and still get out.

Consider the (massless scalar) homogeneous wave equation in this black hole spacetime,
namely

□ψ(t, r, θ, ϕ) = ∇µ∇µψ = 0. (12.4.180)

Consider the following separation-of-variables ansatz

ψ(t, r, θ, ϕ) =

∫ +∞

−∞

dω

2π
e−iωt

+∞∑
ℓ=0

+ℓ∑
m=−ℓ

Rℓ(ωr∗)

r
Y m
ℓ (θ, ϕ), (12.4.181)

where {Y m
ℓ } are the spherical harmonics on the 2-sphere and the “tortoise coordinate” is

r∗ ≡ r + rs ln

(
r

rs
− 1

)
. (12.4.182)

Show that the wave equation is reduced to an ordinary differential equation for the ℓth radial
mode function

R′′
ℓ (ξ∗) +

(
ξ2s
ξ4

+
(ℓ(ℓ+ 1)− 1) ξs

ξ3
− ℓ(ℓ+ 1)

ξ2
+ 1

)
Rℓ(ξ∗) = 0, (12.4.183)
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where ξ ≡ ωr, ξs ≡ ωrs and ξ∗ ≡ ωr∗.
An alternative route is to first perform the change-of-variables

x ≡ 1− ξ

ξs
, (12.4.184)

and the change of radial mode function

Rℓ(ξ∗)

r
≡ Zℓ(x)√

x(1− x)
. (12.4.185)

Show that this returns the ODE

Z ′′
ℓ (x) +

(
1

4(x− 1)2
+

1 + 4ξ2s
4x2

+ ξ2s +
2ℓ(ℓ+ 1) + 1− 4ξ2s

2x
− 2ℓ(ℓ+ 1) + 1

2(x− 1)

)
Zℓ(x) = 0.

(12.4.186)

You may useMathematica or similar software to help you with the tedious algebra/differentiation;
but make sure you explain the intermediate steps clearly.

The solutions to eq. (12.4.186) are related to the confluent Heun function. For a recent
discussion, see for e.g., §I of arXiv: 1510.06655. The properties of Heun functions are not as
well studied as, say, the Bessel functions you have encountered earlier. This is why it is still a
subject of active research – see, for instance, the Heun Project.

12.4.3 Frequency Space, Static Limit & Discontinuous First Derivatives in Flat 4D

Wave Equation in Frequency Space We begin with eq. (12.4.57), and translate it to
frequency space.

ψ(t, x⃗) =

∫ +∞

−∞

dω

2π
ψ̃(ω, x⃗)e−iωt

=

∫ +∞

−∞
dt′′
∫
RD

dDx⃗′′GD+1(t− t′′, x⃗− x⃗′′)
∫ +∞

−∞

dω

2π
J̃(ω, x⃗′′)e−iωt

′′

=

∫ +∞

−∞

dω

2π

∫ +∞

−∞
d(t− t′′)eiω(t−t′′)e−iωt

∫
RD

dDx⃗′′GD+1(t− t′′, x⃗− x⃗′′)J̃(ω, x⃗′′)

=

∫ +∞

−∞

dω

2π
e−iωt

∫
RD

dDx⃗′′G̃+
D+1(ω, x⃗− x⃗

′′)J̃(ω, x⃗′′). (12.4.187)

Equating the coefficients of e−iωt on both sides,

ψ̃(ω, x⃗) =

∫
RD

dDx⃗′′G̃+
D+1(ω, x⃗− x⃗

′′)J̃(ω, x⃗′′); (12.4.188)

G̃+
D+1(ω, x⃗− x⃗

′′) ≡
∫ +∞

−∞
dτeiωτGD+1(τ, x⃗− x⃗′′). (12.4.189)

Equation (12.4.188) tells us that the ω-mode of the source is directly responsible for that of the

field ψ̃(ω, x⃗). This is reminiscent of the driven harmonic oscillator system, except now we have
one oscillator per point in space x⃗′ – hence the integral over all of them.
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4D Retarded Green’s Function in Frequency Space Next, we focus on the (D +
1) = (3 + 1) case, and re-visit the 4D retarded Green’s function result in eq. (12.4.121), but

replace the δ-function with its integral representation. This leads us to G̃+
4 (ω, x⃗ − x⃗′), the

frequency space representation of the retarded Green’s function of the wave operator.

G+
4 (x− x′) =

∫ +∞

−∞

dω

2π

exp (−iω(t− t′ − |x⃗− x⃗′|))
4π|x⃗− x⃗′|

≡
∫ +∞

−∞

dω

2π
e−iω(t−t

′)G̃+
4 (ω, x⃗− x⃗′), (12.4.190)

where

G̃+
4 (ω, x⃗− x⃗′) ≡

exp (iω|x⃗− x⃗′|)
4π|x⃗− x⃗′|

. (12.4.191)

As we will see, ω can be interpreted as the frequency of the source of the waves. In this section
we will develop a multipole expansion of the field in frequency space by performing one for the
source as well. This will allow us to readily take the non-relativistic/static limit, where the
motion of the sources (in some center of mass frame) is much slower than 1.

Because the (3 + 1)-dimensional case of eq. (12.4.60) in frequency space reads(
∂20 − ∇⃗2

)∫ +∞

−∞

dω

2π

exp (−iω(t− t′ − |x⃗− x⃗′|))
4π|x⃗− x⃗′|

= δ(t− t′)δ(3) (x⃗− x⃗′) , (12.4.192)∫ +∞

−∞

dω

2π
e−iω(t−t

′)
(
−ω2 − ∇⃗2

) exp (iω|x⃗− x⃗′|)
4π|x⃗− x⃗′|

=

∫ +∞

−∞

dω

2π
e−iω(t−t

′)δ(3) (x⃗− x⃗′) , (12.4.193)

– where ∂20 can be either ∂2t or ∂2t′ ; ∇⃗2 can be either ∇⃗x⃗ or ∇⃗x⃗′ ; and we have replaced δ(t − t′)
with its integral representation – we can equate the coefficients of the (linearly independent)
functions {exp(−iω(t− t′))} on both sides to conclude, for fixed ω, the frequency space Green’s
function of eq. (12.4.191) obeys the PDE(

−ω2 − ∇⃗2
)
G̃+

4 (ω, x⃗− x⃗′) = δ(3) (x⃗− x⃗′) . (12.4.194)

Problem 12.32. Far Zone In Frequency Space Show that the frequency transform of
the far zone wave in eq. (12.4.129) is

ψ̃(ω, x⃗) ≈ eiωr

4πr
J̃ (ω, ωr̂) , r ≡ |x⃗|, (12.4.195)

where

J̃(ω, k⃗) ≡
∫
R
dt

∫
R3

d3x⃗e+iωte−ik⃗·x⃗J (t, x⃗) . (12.4.196)

We will re-derive this result below, but as a multi-pole expansion.
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Static Limit Equals Zero Frequency Limit In any (curved) spacetime that enjoys
time translation symmetry – which, in particular, means there is some coordinate system where
the metric gµν(x⃗) depends only on space x⃗ and not on time t – we expect the Green’s function
of the wave operator to reflect the symmetry and take the form G+(t − t′; x⃗, x⃗′). Furthermore,
the wave operator only involves time through derivatives, i.e., eq. (12.4.15) now reads

∇µ∇µG = gtt∂t∂tG+ gti∂t∂iG+
∂i

(√
|g|gti∂tG

)
√
|g|

+
1√
|g|
∂i

(√
|g|gij∂jG

)
=
δ(t− t′)δ(D) (x⃗− x⃗′)

4
√
g(x⃗)g(x⃗′)

; (12.4.197)

since
√
|g| and gµν are time-independent. In such a time-translation-symmetric situation, we

may perform a frequency transform

G̃+(ω; x⃗, x⃗′) =

∫ +∞

−∞
dτeiωτG+ (τ ; x⃗, x⃗′) , (12.4.198)

and note that solving the static equation

∇µ∇µG(static) (x⃗, x⃗′) =
∂i

(√
|g(x⃗)|gij(x⃗)∂jG(static) (x⃗, x⃗′)

)
√
|g(x⃗)|

=
∂i′
(√
|g(x⃗′)|gij(x⃗′)∂j′G(static) (x⃗, x⃗′)

)
√
|g(x⃗′)|

=
δ(D)(x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

, (12.4.199)

amounts to taking the zero frequency limit of the frequency space retarded Green’s function.
Note that the static equation still depends on the full (D + 1) dimensional metric, but the
δ-functions on the right hand side is D-dimensional.

The reason is the frequency transform of eq. (12.4.197) replaces ∂t → −iω and the δ(t− t′)
on the right hand side with unity.

gtt(−iω)2G̃+ gti(−iω)∂iG̃+
∂i

(√
|g|gti(−iω)G

)
√
|g|

+
1√
|g|
∂i

(√
|g|gij∂jG̃

)
=
δ(D) (x⃗− x⃗′)
4
√
g(x⃗)g(x⃗′)

(12.4.200)

In the zero frequency limit (ω → 0) we obtain eq. (12.4.199). And since the static limit is the
zero frequency limit,

G(static)(x⃗, x⃗′) = lim
ω→0

∫ +∞

−∞
dτeiωτG+ (τ ; x⃗, x⃗′) , (12.4.201)

=

∫ +∞

−∞
dτG+ (τ ; x⃗, x⃗′) =

∫ +∞

−∞
dτ

∫
dDx⃗′′

√
|g(x⃗′′)|G+ (τ ; x⃗, x⃗′′)

δ(D)(x⃗′ − x⃗′′)√
|g(x⃗′)g(x⃗′′)|

.
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This second line has the following interpretation: not only is the static Green’s function the zero
frequency limit of its frequency space retarded counterpart, it can also be viewed as the field
generated by a point “charge/mass” held still at x⃗′ from past infinity to future infinity.150

4D Minkowski Example We may illustrate our discussion here by examining the 4D
Minkowski case. The field generated by a charge/mass held still at x⃗′ is nothing but the
Coulomb/Newtonian potential 1/(4π|x⃗ − x⃗′|). Since we also know the 4D Minkowski retarded
Green’s function in eq. (12.4.121), we may apply the infinite time integral in eq. (12.4.201).

G(static)(x⃗, x⃗′) =

∫ +∞

−∞
dτ
δ(τ − |x⃗− x⃗′|)
4π|x⃗− x⃗′|

=
1

4π|x⃗− x⃗′|
, (12.4.202)

−δij∂i∂jG(static)(x⃗, x⃗′) = −∇⃗2G(static)(x⃗, x⃗′) = δ(3)(x⃗− x⃗′). (12.4.203)

On the other hand, we may also take the zero frequency limit of eq. (12.4.191) to arrive at the
same answer.

lim
ω→0

exp (iω|x⃗− x⃗′|)
4π|x⃗− x⃗′|

=
1

4π|x⃗− x⃗′|
. (12.4.204)

Problem 12.33. Discontinuous first derivatives of the radial Green’s function In
this problem we will understand the discontinuity in the radial Green’s function of the frequency
space retarded Green’s function in 4D Minkowski spacetime. We begin by switching to spherical
coordinates and utilizing the following ansatz

G̃+
4 (ω, x⃗− x⃗′) =

∞∑
ℓ=0

g̃ℓ(r, r
′)

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′)∗,

x⃗ = r(sin θ cosϕ, sin θ sinϕ, cos θ), x⃗′ = r′(sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (12.4.205)

Show that this leads to the following ODE(s) for the ℓth radial Green’s function g̃ℓ:

1

r2
∂r
(
r2∂rg̃ℓ

)
+

(
ω2 − ℓ(ℓ+ 1)

r2

)
g̃ℓ = −

δ(r − r′)
rr′

, (12.4.206)

1

r′2
∂r′
(
r′2∂r′ g̃ℓ

)
+

(
ω2 − ℓ(ℓ+ 1)

r′2

)
g̃ℓ = −

δ(r − r′)
rr′

. (12.4.207)

Because G̃+
4 (ω, x⃗ − x⃗′) = G̃+

4 (ω, x⃗
′ − x⃗), i.e., it is symmetric under the exchange of the spatial

coordinates of source and observer, it is reasonable to expect that the radial Green’s function is
symmetric too: g̃(r, r′) = g̃(r′, r). That means the results in §(12.7) may be applied here. Show
that

g̃ℓ(r, r
′) = iωjℓ(ωr<)h

(1)
ℓ (ωr>), (12.4.208)

where jℓ(z) is the spherical Bessel function and h
(1)
ℓ (z) is the Hankel function of the first kind.

Then check that the static limit in eq. (12.7.47) is recovered, by taking the limits ωr, ωr′ → 0.

150Note, however, that in curved spacetimes, holding still a charge/mass – ensuring it stays put at x⃗′ – requires
external forces. For example, holding a mass still in a spherically symmetric gravitational field of a star requires
an outward external force, for otherwise the mass will move towards the center of the star.
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Some useful formulas include

jℓ(x) = (−x)ℓ
(
1

x

d

dx

)ℓ
sinx

x
, h

(1)
ℓ (x) = −i(−x)ℓ

(
1

x

d

dx

)ℓ
exp(ix)

x
, (12.4.209)

their small argument limits

jℓ(x≪ 1)→ xℓ

(2ℓ+ 1)!!

(
1 +O(x2)

)
, h

(1)
ℓ (x≪ 1)→ −i(2ℓ− 1)!!

xℓ+1
(1 +O(x)) , (12.4.210)

as well as their large argument limits

jℓ(x≫ 1)→ 1

x
sin

(
x− πℓ

2

)
, h

(1)
ℓ (x≫ 1)→ (−i)ℓ+1 e

ix

x
. (12.4.211)

Their Wronskian is

Wrz

(
jℓ(z), h

(1)
ℓ (z)

)
=

i

z2
. (12.4.212)

Hints: First explain why

g̃ℓ(r, r
′) = A1

ℓjℓ(ωr)jℓ(ωr
′) + A2

ℓh
(1)
ℓ (ωr)h

(1)
ℓ (ωr′) + Gℓ(r, r′), (12.4.213)

Gℓ(r, r′) ≡ F
{
(χℓ − 1)jℓ(ωr>)h

(1)
ℓ (ωr<) + χℓ · jℓ(ωr<)h(1)ℓ (ωr>)

}
, (12.4.214)

where A1,2
ℓ , F and χℓ are constants. Fix F by ensuring the “jump” in the first r-derivative at

r = r′ yields the correct δ-function measure. Then consider the limits r → 0 and r ≫ r′. For
the latter, note that

|x⃗− x⃗′| = e−x⃗
′·∇⃗x⃗ |x⃗| = |x⃗|

(
1− (r′/r)n̂ · n̂′ +O((r′/r)2)

)
, (12.4.215)

where n̂ ≡ x⃗/r and n̂′ ≡ x⃗′/r′.

We will now proceed to understand the utility of obtaining such a mode expansion of the
frequency space Green’s function.
Localized source(s): Static Multipole Expansion In infinite flat R3, Poisson’s equation

−∇⃗2ψ(x⃗) = J(x⃗) (12.4.216)

is solved via the static limit of the 4D retarded Green’s function we have been discussing. This
static limit is given in eq. (12.7.47) in spherical coordinates, which we will now exploit to display
its usefulness. In particular, assuming the source J is localized in space, we may now ask:

What is the field generated by J and how does it depend on the details of its
interior?
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Let the origin of our coordinate system lie at the center of mass of the source J , and let R be
its maximum radius, i.e., J(r > R) = 0. Therefore we may replace r< → r′ and r> → r in eq.
(12.7.47), and the exact solution to ψ now reads

ψ(x⃗; r > R) =

∫
R3

d3x⃗′G(x⃗− x⃗′)J(x⃗′) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

ρmℓ
2ℓ+ 1

Y m
ℓ (θ, ϕ)

rℓ+1
, (12.4.217)

where the multipole moments {ρmℓ } are defined

ρmℓ ≡
∫
S2
d(cos θ′)dϕ′

∫ ∞

0

dr′r′ℓ+2 Y m
ℓ (θ′, ϕ′)J(r′, θ′, ϕ′). (12.4.218)

It is worthwhile to highlight the following.

� The spherical harmonics can be roughly thought of as waves on the 2−sphere. Therefore,
the multipole moments ρmℓ in eq. (12.4.218) with larger ℓ andm values, describe the shorter
wavelength/finer features of the interior structure of J . (Recall the analogous discussion
for Fourier transforms.)

� Moreover, since there is a Y m
ℓ (θ, ϕ)/rℓ+1 multiplying the (ℓ,m)-moment of J , we see that

the finer features of the field detected by the observer at x⃗ is not only directly sourced
by finer features of J , it falls off more rapidly with increasing distance from J . As the
observer moves towards infinity, the dominant part of the field ψ is the monopole which
goes as 1/r times the total mass/charge of J .

� We see why separation-of-variables is not only a useful mathematical technique to reduce
the solution of Green’s functions from a PDE to a bunch of ODE’s, it was the form of
eq. (12.7.47) that allowed us to cleanly separate the contribution from the source (the
multipoles {ρmℓ }) from the form of the field they would generate, at least on a mode-by-
mode basis.

Localized source(s): General Multipole Expansions, Far Zone Let us generalize the
static case to the fully time dependent one, but in frequency space and in the far zone. By the
far zone, we mean the observer is located very far away from the source J , at distances (from

the center of mass) much further than the typical inverse frequency of J̃ , i.e., mathematically,
ωr ≫ 1. We begin with eq. (12.4.208) inserted into eq. (12.4.205).

G̃+
4 (ω, x⃗− x⃗′) = exp (iω|x⃗− x⃗′|)

4π|x⃗− x⃗′|
(12.4.219)

= iω
∞∑
ℓ=0

jℓ(ωr<)h
(1)
ℓ (ωr>)

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′)∗ (12.4.220)

Our far zone assumptions means we may replace the Hankel function in eq. (12.4.208) with its
large argument limit in eq. (12.4.211).

G̃+
4 (ωr ≫ 1) =

eiωr

r

(
1 +O

(
(ωr)−1

)) ∞∑
ℓ=0

(−i)ℓjℓ(ωr′)
ℓ∑

m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′)∗. (12.4.221)
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Applying this limit to the general wave solution in eq. (12.4.188),

ψ̃(ω, x⃗) =

∫
R3

d3x⃗′′G̃+
4 (ω, x⃗− x⃗′′)J̃(ω, x⃗′′), (12.4.222)

ψ̃(ωr ≫ 1) ≈ eiωr

r

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)

2ℓ+ 1
Ω̃m
ℓ (ω), (12.4.223)

where now the frequency dependent multipole moments are defined as

Ω̃m
ℓ (ω) ≡ (2ℓ+ 1)(−i)ℓ

∫
S2
d(cos θ′)dϕ′

∫ ∞

0

dr′r′2jℓ(ωr
′)Y m

ℓ (θ′, ϕ′)J̃(ω, r′, θ′, ϕ′). (12.4.224)

Problem 12.34. Far zone in position/real space Use the plane wave expansion in eq.
(12.2.104) to show that eq. (12.4.223) is equivalent to eq. (12.4.195).

Low frequency limit equals slow motion limit How are the multipole moments {ρmℓ } in eq.

(12.4.218) (which are pure numbers) related to the frequency dependent ones {Ω̃m
ℓ (ω)} in eq.

(12.4.224)? The answer is that the low frequency limit is the slow-motion/non-relativistic limit.
To see this in more detail, we take the ωr′ ≪ 1 limit, which amounts to the physical assumption
that the object described by J is localized so that its maximum radius R (from its center of
mass) is much smaller than the inverse frequency. In other words, in units where the speed of
light is unity, the characteristic size R of the source J is much smaller than the time scale of its
typical time variation. Mathematically, this ωr′ ≪ 1 limit is achieved by replacing jℓ(ωr

′) with
its small argument limit in eq. (12.4.210).

Ω̃m
ℓ (ωR≪ 1) ≈ (−iω)ℓ

(2ℓ− 1)!!

(
1 +O(ω2)

) ∫
S2
d(cos θ′)dϕ′

∫ ∞

0

dr′r′2+ℓY m
ℓ (θ′, ϕ′)J̃(ω, r′, θ′, ϕ′)

(12.4.225)

Another way to see this “small ω equals slow motion limit” is to ask: what is the real time
representation of these {Ω̃m

ℓ (ωR≪ 1)}? By recognizing every −iω as a t-derivative,

Ωm
ℓ (t) ≡

∫
R

dω

2π
e−iωtΩ̃m

ℓ (ω)

≈ ∂ℓt
(2ℓ− 1)!!

∫ +∞

−∞

dω

2π
e−iωt

∫
S2
d(cos θ′)dϕ′

∫ ∞

0

dr′r′2+ℓY m
ℓ (θ′, ϕ′)J̃(ω, r′, θ′, ϕ′),

≡ ∂ℓtρ
m
ℓ (t)

(2ℓ− 1)!!
. (12.4.226)

We see that the ωR≪ 1 is the slow motion/non-relativistic limit because it is in this limit that
time derivatives vanish. This is also why the only 1/r piece of the static field in eq. (12.4.217)
comes from the monopole.

Spherical waves in small ω limit In this same limit, we may re-construct the real time
scalar field, and witness how it is a superposition of spherical waves exp(iω(r − t))/r. The
observer detects a field that depends on the time derivatives of the multipole moments evaluated
at retarded time t− r.

ψ(t, x⃗) =

∫ +∞

−∞

dω

2π
e−iωtψ̃(ω, x⃗)
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≈
∫ +∞

−∞

dω

2π

eiω(r−t)

r

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)

2ℓ+ 1
Ω̃m
ℓ (ω), (Far zone spherical wave expansion)

≈ 1

r

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)

(2ℓ+ 1)!!

dℓρmℓ (t− r)
dtℓ

, (Slow motion limit). (12.4.227)

12.4.4 Frequency Space Green’s Functions of Wave Equations in Flat D + 1 ≥ 3

In the previous section, §(12.4.3), we have witnessed how the 4D frequency space Green’s function
of the wave operator was very useful in

YZ: For now, I copied and pasted from my paper arXiv: 2107.14744 [gr-qc].
Need to edit very heavily.

Because the radiation formulas of equations (??) and (??) involve the far zone r →∞ limits,
the main objective of this section is to provide a step-by-step guide to lead the reader from the
exact Green’s functions in equations (??) and (??) to their respective leading order 1/r(d/2)−1

and next-to-leading order 1/rd/2 far zone radiative limits in equations (12.4.258) and (12.4.261)
below. I shall then use the results to first solve explicitly the massless scalar wave equation in
eq. (??). As we will witness in the next two sections, the Lorenz gauge vector potential and the
linear de Donder gauge gravitational perturbation can be directly obtained from eq. (??). Since
these solutions are already in the far zone C1/r

(d/2)−1+C2/r
d/2+ . . . form, the desired radiation

formulas in equations (??) and (??) then follow readily.
Driven SHO First, we shall see that re-writing the Green’s functions in equations (??)

and (??) in frequency space would allow us to perform a clean separation-of-variables, which
will then facilitate this 1/r expansion.

Gd[x− x′] =
∫
R

dω

2π
e−iωT G̃d[ωR]. (12.4.228)

T ≡ t− t′, R ≡ |x⃗− x⃗′|. (12.4.229)

Referring to eq. (??), obtained by integrating J against eq. (12.4.228) tells us ω corresponds to
the angular frequency of the source producing these waves:

ψ[t, x⃗] =

∫
R

dω

2π
e−iωt

∫
Rd−1

dd−1x⃗′G̃[ωR]J̃ [ω, x⃗′], (12.4.230)

where J̃ [ω, x⃗′] =
∫
R dt

′eiωt
′
J [t′, x⃗′]. The field ψ in eq. (12.4.230) is simply the sum over harmonic

oscillators, driven by J̃ ; and analogous statements apply for the Lorenz gauge vector potential Aν
and the de Donder gauge gravitational perturbation h̄µν just by replacing ψ → Aν and J → Jν ;
or ψ → h̄µν and J → −16πGNTµν .

Frequency Space and Separation-of-Variables In even dimensions d ≥ 4, we first
employ the Fourier integral representation of the Dirac delta function

δ[T −R] =
∫
R

dω

2π
e−iω(T−R) (12.4.231)
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on eq. (??), followed by recalling that the Hankel function of the first kind with order one-half
is

H
(1)
1
2

[z] = −i
√

2

πz
eiz, (12.4.232)

to deduce

G̃even d ≥ 4[ωR] =
iω

4
√
2π

(
− 1

2πR

∂

∂R

) d−4
2 H

(1)
1
2

[ωR]
√
ωR

. (12.4.233)

In odd dimensions d ≥ 3, upon multiplying eq. (??) by eiωT and integrating over T ∈ R, we
may first recognize the integral representation of the Hankel function

H
(1)
0 [x > 0] = −2i

π

∫ ∞

1

eixt√
t2 − 1

dt, (12.4.234)

followed by analytic continuation to all x ∈ R, to infer

G̃odd d ≥ 3[ωR] =
i

4

(
− 1

2πR

∂

∂R

) d−3
2

H
(1)
0 [ωR]. (12.4.235)

Finally, let us utilize the identity, for non-negative integers n = 0, 1, 2, 3, . . . ,(
1

z

d

dz

)n
H

(1)
ν [z]

zν
= (−)nH

(1)
ν+n[z]

zν+n
(12.4.236)

to arrive at the following frequency space Green’s functions for all d ≥ 3.

G̃d=4+2n[ωR] =
iω2n+1

4(2π)
1
2
+n

H
(1)
1
2
+n

[ωR]

(ωR)
1
2
+n

(12.4.237)

G̃d=3+2n[ωR] =
iω2n

4(2π)n
H

(1)
n [ωR]

(ωR)n
(12.4.238)

The factor H
(1)
ν [ωR]/(ωR)ν obeys addition formulas that separates the r ≡ |x⃗| and r′ ≡ |x⃗′|

dependence in R = |x⃗− x⃗′|. Denoting r< ≡ min[r, r′], r> ≡ max[r, r′], r̂ ≡ x⃗/r and r̂′ ≡ x⃗′/r′,

H
(1)
0 [ωR] =

+∞∑
ℓ=−∞

Jℓ[ωr<]H
(1)
ℓ [ωr>]e

iℓϕ, (12.4.239)

H
(1)
ν [ωR]

(ωR)ν
= 2νΓ[ν]

+∞∑
ℓ=0

(ν + ℓ)
Jν+ℓ[ωr<]

(ωr<)ν
H

(1)
ν+ℓ[ωr>]

(ωr>)ν
C

(ν)
ℓ [r̂ · r̂′], ν ̸= 0,−1,−2,−3, . . . .

(12.4.240)

For all even dimensions d = 4 + 2n ≥ 4, therefore,

G̃4+2n[ωR] =
iω1+2n

4(2π)
1
2
+n

2
1
2
+nΓ

[
1

2
+ n

]
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×
+∞∑
ℓ=0

(
ℓ+

1

2
+ n

)
J 1

2
+n+ℓ[ωr<]

(ωr<)
1
2
+n

H
(1)
1
2
+n+ℓ

[ωr>]

(ωr>)
1
2
+n

C
( 1
2
+n)

ℓ [r̂ · r̂′] , n = 0, 1, 2, 3, . . . ;

(12.4.241)

where Jν [z] is the Bessel function, C
(ν)
ℓ [z] is Gegenbauer’s polynomial. (For the 4D case, recog-

nizing C
( 1
2
)

ℓ to be Pℓ, the Legendre polynomial, would recover the familiar result found in most
advanced electromagnetism textbooks.) And for odd dimensions d = 3 + 2n ≥ 3,

G̃+
3 [ωR] =

i

4

+∞∑
ℓ=−∞

Jℓ[ωr<]H
(1)
ℓ [ωr>]e

iℓϕ, r̂ · r̂′ ≡ cosϕ, (12.4.242)

G̃+
3+2n[ωR] =

iω2n

4(2π)n
2nΓ[n]

+∞∑
ℓ=0

(n+ ℓ)
Jn+ℓ[ωr<]

(ωr<)n
H

(1)
n+ℓ[ωr>]

(ωr>)n
C

(n)
ℓ [r̂ · r̂′] , n = 1, 2, 3, . . . .

(12.4.243)

Far Zone: Frequency Space For our radiation calculations, r the observer-source distance
is always much larger than r′, which is at most the size of the source itself, since we will be
integrating x⃗′ against the electromagnetic current or the stress-energy tensor of matter. (Recall:
we will always place 0⃗ inside the source.) The ωr dependence therefore occurs in the factor

H
(1)
ν [ωr]/(ωr)ν in equations (12.4.241) through (12.4.243). If we then replace these H

(1)
ν [ωr]

with their large argument expansions – a finite power series for ν = 1
2
+ ℓ+ n (even dimensions)

and an asymptotic one for ν = n+ ℓ (odd dimensions) –

H(1)
ν [ωr] =

2√
2πωr

ei(ωr−
π
2
ν−π

4
)

(
1 +

i

2

(
ν − 1

2

) (
ν + 1

2

)
ωr

+O[(ωr)−2]

)
, (12.4.244)

the even dimensional result in eq. (12.4.241) may now evaluated in the far zone ωr →∞ as

G̃4+2n≥4[ωR] =
(−iω)n

2(2πr)1+n
2

1
2
+nΓ

[
1

2
+ n

]
eiωr (12.4.245)

×
+∞∑
ℓ=0

(−i)ℓ
(
ℓ+

1

2
+ n

)
J 1

2
+n+ℓ[ωr

′]

(ωr′)
1
2
+n

(
1 +

i

2

n(n+ 1) + ℓ(ℓ+ 2n+ 1)

ωr
+O[(ωr)−2]

)
C
( 1
2
+n)

ℓ [r̂ · r̂′] .

Whereas the same ωr →∞ far zone limit of the odd dimensional results in eq. (12.4.242), with
r̂ · r̂′ ≡ cosϕ, becomes

G̃3[ωR] =
i

2
√
2πωr

ei(ωr−
π
4
)

+∞∑
ℓ=−∞

(−i)ℓJℓ[ωr′]
(
1 +

i

2

(−1
4
+ ℓ2

ωr

)
+O[(ωr)−2]

)
eiℓϕ; (12.4.246)

and that in eq. (12.4.243) turns into

G̃3+2n≥5[ωR] =
(−i)n−1ω2n(n− 1)!

4πn
√
2π(ωr)

1
2
+n

ei(ωr−
π
4
) (12.4.247)
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×
+∞∑
ℓ=0

(−i)ℓ(2n+ 2ℓ)
Jn+ℓ[ωr

′]

(ωr′)n

(
1 +

i

2

n2 − 1
4
+ ℓ(ℓ+ 2n)

ωr
+O[(ωr)−2]

)
C

(n)
ℓ [r̂ · r̂′] .

Next, we recognize the ℓ(ℓ + 2n + 1), ℓ2, and ℓ(ℓ + 2n) occurring within the summations in
equations (12.4.245) through (12.4.247) as the eigenvalue ℓ(ℓ+ d− 3) of the negative Laplacian
on the (d − 2)−sphere, for all d ≥ 3. Specifically, we may replace them with the negative

Laplacian acting on the eiℓϕ or Gegenbauer polynomial C
( d−3

2
)

ℓ because

−∇⃗2
S1e

iℓϕ = ℓ2eiℓϕ, (d = 3); (12.4.248)

−∇⃗2
Sd−2C

( d−3
2 )

ℓ [r̂ · r̂′] = ℓ(ℓ+ d− 3)C
( d−3

2 )
ℓ [r̂ · r̂′], (d ≥ 4). (12.4.249)

Upon the replacement ℓ(ℓ + d − 3) → −∇⃗2
Sd−2 in equations (12.4.245) through (12.4.247), we

will recognize the remaining summations to be nothing but the Bessel function expansion of the
plane wave. In d− 1 = 2 spatial dimensions,

eik⃗·x⃗ =
+∞∑
ℓ=−∞

iℓJℓ[kr]e
iℓϕ; (12.4.250)

and in three and higher spatial dimensions, d− 1 ≥ 3,

eik⃗·x⃗ = 2
d−3
2 Γ

[
d− 3

2

] ∞∑
ℓ=0

(
d− 3

2
+ ℓ

)
iℓ
J d−3

2
+ℓ[kr]

(kr)
d−3
2

C
( d−3

2 )
ℓ [r̂ · r̂′]. (12.4.251)

Results We have arrived at the far zone ωr → ∞ frequency space Green’s functions. The
even (d ≥ 4) and odd (d ≥ 3) dimensional Green’s functions are, respectively,

G̃4+2n≥4[ωR] =
(−iω)n

2(2πr)1+n

(
1 +

i

2

n(n+ 1)− ∇⃗2
S2n+2

ωr
+O[(ωr)−2]

)
eiω(r−r̂·x⃗

′), (12.4.252)

G̃3+2n≥3[ωR] =
(−iω)n

2(2πr)n
√
2π
√
−iωr

(
1 +

n2 − 1
4
− ∇⃗2

S2n+1

2(−iωr)
+O[(ωr)−2]

)
eiω(r−r̂·x⃗

′). (12.4.253)

To carry out the derivatives associated with ∇⃗2
Sd−2 , let us record that: the Laplacian on Sd−2

acting on a function that depends on angles solely through the object c ≡ r̂ · r̂′ is, for all d ≥ 3,

∇⃗2
Sd−2ψ [r̂ · r̂′] = 1

(1− c2) d−4
2

∂c

(
(1− c2)

d−2
2 ∂cψ [r̂ · r̂′]

)
(12.4.254)

= (1− c2)ψ′′[c]− (d− 2)cψ′[c]. (12.4.255)

The expanded forms of equations (12.4.252) and (12.4.253) then read

G̃4+2n≥4[ωR] =
(−iω)n

2(2πr)1+n
(12.4.256)

×
(
1 +

1

2

n(n+ 1) + (2n+ 2)(−iω)(r̂ · x⃗′)− (−iω)2(r′2 − (r̂ · x⃗′)2)
−iωr

+O[(ωr)−2]

)
eiω(r−r̂·x⃗

′),
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G̃3+2n≥3[ωR] =
(−iω)n

2(2πr)n+
1
2

√
−iω

(12.4.257)

×
(
1 +

1

2

n2 − 1
4
+ (2n+ 1)(−iω)(r̂ · x⃗′)− (−iω)2(r′2 − (r̂ · x⃗′)2)

(−iωr)
+O[(ωr)−2]

)
eiω(r−r̂·x⃗

′).

Relativistic corrections Before moving on, I wish to highlight the presence of the −r̂ · x⃗′ in
the exponential ei(ωr−r̂·x⃗

′) as a relativistic correction. By examining the e−iωT G̃ in eq. (12.4.228),
we see that the combination e−iω(t−t

′−r) arising from the expressions in equations (12.4.256) and
(12.4.257) describes an outgoing spherical wave, with angular frequency ω associated with that
of the source. Since −r̂ · x⃗′ scales as the characteristic size of the source rs, it does not produce
an appreciable phase shift as long as ω · (r̂ · x⃗′) ≡ (2πf)(r̂ · x⃗′) is much less than 2π. Physically,
this indicates: as long as the characteristic timescale of the source (ts ∼ 1/f) is much slower
than its characteristic size – namely, ωrs ∼ 2π(rs/ts) ≪ 2π – then this factor is negligible. To
further corroborate this relativistic correction interpretation, also observe that rs is, in natural
c = 1 units, the light-crossing time of the source; i.e., the non-relativistic limit is simply the
situation where the light-crossing time is much shorter than the characteristic time scale of the
source itself.

Far Zone: Real-time The real-time far zone radiative Green’s function requires that
we perform the Fourier integral in eq. (12.4.228). To this end, we recognize all positive powers
of −iω to be time derivatives: namely, (−iω)ne−iωT = ∂nt e

−iωT . Note that the n(n+ 1)/(−iωr)
term in eq. (12.4.256) is non-zero only for n ≥ 1, so together with the (−iω)n pre-factor, we
see that it contains n − 1 time derivatives for d = 4 + 2n > 4. We then arrive at the far zone
(radiation) Green’s function in even dimensions d = 4 + 2n ≥ 4:

G4+2n[x− x′] =
1

2(2πr)1+n

(
∂nt +

1

2

n(n+ 1)

r
∂n−1
t (12.4.258)

+
1

2

(r̂ · x⃗′)(2n+ 2)− (x⃗′2 − (r̂ · x⃗′)2)∂t
r

∂nt +O[r−2]

)
δ[t− t′ − r + r̂ · x⃗′].

The odd dimensional case in eq. (12.4.257) requires the following manipulation due to the

presence of the inverse fractional powers of frequencies, 1/(−iω) 1
2 at order 1/r

1
2
+n and 1/(−iω) 3

2

at order 1/r
3
2
+n. By invoking the representation of the Gamma function – for Re[z] > 0 and

Im[α] > 0 –

1

(−iα)z
=

1

Γ[z]

∫ ∞

0

dµµz−1 exp [iµ · α] , (12.4.259)

where z = 1
2
, 3
2
, . . . ; and replacing α→ ω + i0+, eq. (12.4.257) is transformed into

G̃3+2n[ωR] =
(−iω)n

2
√
π(2πr)n+

1
2

∫ ∞

0

dµe−µ·0
+

(
µ− 1

2 + µ
1
2
n2 − 1

4
− ∇⃗2

S2n+1

r
+O[r−1]

)
eiω(r−r̂·x⃗

′+µ).

(12.4.260)

Here, we have replaced (2n+1)(−iω)(r̂ · x⃗′)−(−iω)2(r′2−(r̂ · x⃗′)2) with −∇⃗2
S2n+1 for compactness

of notation. Multiplying eq. (12.4.260) by e−iωT , replacing (−iω)n → ∂nt , and integrating over
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T ∈ R hands us the far zone (radiation) Green’s function in odd dimensions d = 3 + 2n ≥ 3:

G3+2n[x− x′] =
1

√
2(2π)n+1 · rn+ 1

2

∂nt

∫ ∞

0

dµ exp
[
−µ · 0+

]
(12.4.261)

×
(
µ− 1

2 + µ
1
2
n2 − 1

4
+ (r̂ · x⃗′)(2n+ 1)∂t − (r′2 − (r̂ · x⃗′)2)∂2t

r
+O[r−2]

)
δ [t− t′ − r − µ+ r̂ · x⃗′] .

Massless Scalar in Even Dimensions Plugging eq. (12.4.258) into eq. (??) tells us the far
zone massless scalar solution in even d = 4 + 2n takes the form

ψ[t, x⃗] =
1

2(2πr)1+n

∫
R3+2n

d3+2nx⃗′

(
∂nt J [t− r + r̂ · x⃗′, x⃗′] (12.4.262)

+
1

2

n(n+ 1)∂n−1
t + (r̂ · x⃗′)(2n+ 2)∂nt − (r′2 − (r̂ · x⃗′)2)∂n+1

t

r
J [t− r + r̂ · x⃗′, x⃗′] +O[r−2]

)
;

and its first and second derivatives are

∂αψ[t, x⃗] (12.4.263)

=
1

2(2πr)1+n

∫
R3+2n

d3+2nx⃗′

((
δ0α − δlαr̂l

)
∂n+1
t J [t− r + r̂ · x⃗′, x⃗′]

+ δaαP
abx

′b

r
∂n+1
t J [t− r + r̂ · x⃗′, x⃗′]− n+ 1

r
δlαr̂

l∂nt J [t− r + r̂ · x⃗′, x⃗′]

+
1

2

n(n+ 1)∂n−1
t + (r̂ · x⃗′)(2n+ 2)∂nt − (r′2 − (r̂ · x⃗′)2)∂n+1

t

r

(
δ0α − δlαr̂l

)
J [t− r + r̂ · x⃗′, x⃗′] +O[r−2]

)

and

∂α∂βψ[t, x⃗] (12.4.264)

=
1

2(2πr)1+n

∫
R3+2n

d3+2nx⃗′

((
δ0α − δlαr̂l

) (
δ0β − δkβ r̂k

)
∂n+2
t J [t− r + r̂ · x⃗′, x⃗′]− δlα

P lk

r
δkβ∂

n+1
t J [t− r + r̂ · x⃗′, x⃗′]

+ δa{αP
abx

′b

r

(
δ0β} − δkβ}r̂k

)
∂n+2
t J [t− r + r̂ · x⃗′, x⃗′]− n+ 1

r
δl{αr̂

l
(
δ0β} − δkβ}r̂k

)
∂n+1
t J [t− r + r̂ · x⃗′, x⃗′]

+
1

2

n(n+ 1)∂nt + (r̂ · x⃗′)(2n+ 2)∂n+1
t − (r′2 − (r̂ · x⃗′)2)∂n+2

t

r

(
δ0α − δlαr̂l

) (
δ0β − δkβ r̂k

)
J [t− r + r̂ · x⃗′, x⃗′] +O[r−2]

)
.

We have defined

P ab ≡ δab − r̂ar̂b, (12.4.265)

which is orthogonal to the unit radial vector r̂ and also acts as a projector,

r̂aPab = 0 and PabPbc = Pac. (12.4.266)
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Massless Scalar in Odd Dimensions Along similar lines as the even dimensional case, plug-
ging eq. (12.4.261) into eq. (??) tells us the far zone massless scalar solution in odd d = 3+ 2n
takes the form

ψ[t, x⃗] =
1

√
2(2π)n+1 · rn+ 1

2

∫
R2+2n

d2+2nx⃗′
∫ ∞

0

dµ exp
[
−µ · 0+

](
µ− 1

2∂nτ J [τ, x⃗′] (12.4.267)

+
µ

1
2

r

((
n2 − 1

4

)
∂nτ J [τ, x⃗′] + (r̂ · x⃗′)(2n+ 1)∂n+1

τ J [τ, x⃗′]− (r′2 − (r̂ · x⃗′)2)∂n+2
τ J [τ, x⃗′]

)
+O[r−2]

)
,

τ ≡ t− r − µ+ r̂ · x⃗′;

and its first derivative is

∂αψ[t, x⃗]

=
1

√
2(2π)n+1 · rn+ 1

2

∫
R2+2n

d2+2nx⃗′
∫ ∞

0

dµ exp
[
−µ · 0+

]
(12.4.268)

×

{
µ− 1

2

(
δ0α − δjαr̂j

)
∂n+1
τ J [τ, x⃗′] +

µ− 1
2

r

(
δaαP

abx′b∂n+1
τ J [τ, x⃗′]−

(
n+

1

2

)
r̂lδlα∂

n
τ J [τ, x⃗′]

)

+
µ− 1

2

2r

((
n2 − 1

4

)
∂nτ J [τ, x⃗′] + (r̂ · x⃗′)(2n+ 1)∂n+1

τ J [τ, x⃗′]− (r′2 − (r̂ · x⃗′)2)∂n+2
τ J [τ, x⃗′]

)(
δ0α − δjαr̂j

)
+O[r−2]

}
.

In the last line of eq. (12.4.268), we have converted one of the τ derivatives into a negative µ
derivative (i.e., ∂/∂τ = −∂/∂µ), and integrated it by parts. The surface term at µ =∞ is zero
because of e−µ·0

+
and that at µ = 0 is zero because of µ1/2.

Finally, the second derivative of eq. (12.4.267) is

∂α∂βψ[t, x⃗] =
1

√
2(2π)n+1 · rn+ 1

2

∫
R2+2n

d2+2nx⃗′
∫ ∞

0

dµ exp
[
−µ · 0+

]
(12.4.269)

×

{
µ− 1

2

(
δ0α − δjαr̂j

) (
δ0β − δkβ r̂k

)
∂n+2
τ J [τ, x⃗′]− µ− 1

2

r
δaαP

abδbβ∂
n+1
τ J [τ, x⃗′]

+
µ− 1

2

r

(
δa{αP

abx′b∂n+2
τ J [τ, x⃗′]−

(
n+

1

2

)
r̂lδl{α∂

n+1
τ J [τ, x⃗′]

)(
δ0β} − δkβ}r̂k

)
+
µ− 1

2

2r

((
n2 − 1

4

)
∂n+1
τ J [τ, x⃗′] + (r̂ · x⃗′)(2n+ 1)∂n+2

τ J [τ, x⃗′]

− (r′2 − (r̂ · x⃗′)2)∂n+3
τ J [τ, x⃗′]

)(
δ0α − δjαr̂j

) (
δ0β − δkβ r̂k

)
+O[r−2]

}
.

12.4.5 Initial value problem via Kirchhoff representation

Massless scalar fields Previously we showed how, if we specified the initial conditions for
the scalar field ψ – then via their Fourier transforms – eq. (12.4.49) tells us how they will evolve
forward in time. Now we will derive an analogous expression that is valid in curved spacetime,
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using the retarded Green’s function G+
D+1. To begin, the appropriate generalization of equations

(12.4.16) and (12.4.60) are

□xψ(x) = J(x),

□xG
+
D+1(x, x

′) = □x′G
+
D+1(x, x

′) =
δ(D+1)(x− x′)
4
√
|g(x)g(x′)|

. (12.4.270)

The derivation is actually very similar in spirit to the one starting in eq. (12.1.44). Let us
consider some ‘cylindrical’ domain of spacetime D with spatial boundaries ∂Ds that can be
assumed to be infinitely far away, and ‘constant time’ hypersurfaces ∂D(t>) (final time t>) and
∂D(t0) (initial time t0). (These constant time hypersurfaces need not correspond to the same
time coordinate used in the integration.) We will consider an observer residing (at x) within
this domain D.

I(x ∈ D) ≡
∫
D

dD+1x′
√
|g(x′)| {GD+1(x, x

′)□x′ψ(x
′)−□x′GD+1(x, x

′) · ψ(x′)}

=

∫
∂D

dDΣα′

{
GD+1(x, x

′)∇α′
ψ(x′)−∇α′

GD+1(x, x
′) · ψ(x′)

}
(12.4.271)

−
∫
D

dD+1x′
√
|g(x′)|

{
∇α′GD+1(x, x

′)∇α′
ψ(x′)−∇α′GD+1(x, x

′)∇α′
ψ(x′)

}
.

The terms in the very last line cancel. What remains in the second equality is the surface
integrals over the spatial boundaries ∂Ds, and constant time hypersurfaces ∂D(t>) and ∂D(t0)
– where we have used the Gauss’ theorem in eq. (9.5.68). Here is where there is a significant
difference between the curved space setup and the curved spacetime one at hand. By causality,
since we have G+

D+1 in the integrand, the constant time hypersurface ∂D(t>) cannot contribute
to the integral because it lies to the future of x. Also, if we assume that G+

D+1(x, x
′), like its

Minkowski counterpart, vanishes outside the past light cone of x, then the spatial boundaries at
infinity also cannot contribute.151 (Drawing a spacetime diagram here helps.)

Within eq. (12.4.271), if we now proceed to invoke the equations obeyed by ψ and GD+1 in
eq. (12.4.270), what remains is

− ψ(x) +
∫
D

dD+1x′
√
|g(x′)|GD+1(x, x

′)J(x′) (12.4.272)

= −
∫
∂D(t0)

dDξ⃗

√
|H(ξ⃗)|

{
GD+1

(
x, x′(ξ⃗)

)
nα

′∇α′ψ
(
x′(ξ⃗)

)
− nα′∇α′GD+1

(
x, x′(ξ⃗)

)
· ψ
(
x′(ξ⃗)

)}
.

Here, we have assumed there are D coordinates ξ⃗ such that x′µ(ξ⃗) parametrizes our initial time
hypersurface ∂D(t0). The

√
|H| is the square root of the determinant of its induced metric.

More specifically,

Hij(ξ⃗)dξ
idξj =

(
gµν(x(ξ⃗))

∂xµ

∂ξi
∂xν

∂ξj

)
dξidξj. (12.4.273)

151In curved spacetimes where any pair of points x and x′ can be linked by a unique geodesic, this causal
structure of G+

D+1 can be readily proved for the 4 dimensional case.
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Also, remember in Gauss’ theorem (eq. (9.5.68)), the unit normal vector dotted into the gradient
∇α′ is the outward one (see equations (9.5.60) and (9.5.61)), which in our case is therefore
pointing backward in time: this is our −nα′

, we have inserted a negative sign in front so that nα
′

itself is the unit timelike vector pointing towards the future:

dDΣα′ = dDξ⃗

√
|H(ξ⃗)|

(
−nα′(ξ⃗′)

)
. (12.4.274)

With all these clarifications in mind, we gather from eq. (12.4.272):

ψ(x;x0 > t0) =

∫
D

dD+1x′
√
|g(x′)|GD+1(x, x

′)J(x′) (12.4.275)

+

∫
∂D(t0)

dDξ⃗

√
|H(ξ⃗)|

{
GD+1

(
x, x′(ξ⃗)

)
nα

′∇α′ψ
(
x′(ξ⃗)

)
− nα′∇α′GD+1

(
x, x′(ξ⃗)

)
· ψ
(
x′(ξ⃗)

)}
.

In Minkowski spacetime, we may choose t0 to be the constant t surface of ds2 = dt2−dx⃗2. Then,
expressed in these Cartesian coordinates,

ψ(t > t0, x⃗) =

∫
t′≥t0

dt′
∫
RD

dDx⃗′GD+1 (t− t′, x⃗− x⃗′) J(t′, x⃗′) (12.4.276)

+

∫
RD

dDx⃗′ {GD+1(t− t0, x⃗− x⃗′)∂t0ψ(t0, x⃗′)− ∂t0GD+1(t− t0, x⃗− x⃗′) · ψ(t0, x⃗′)} .

We see in both equations (12.4.275) and (12.4.276), that the time evolution of the field ψ(x)
can be solved once the retarded Green’s function G+

D+1, as well as ψ’s initial profile and first
time derivative is known at t0. Generically, the field at the observer location x is the integral
of the contribution from its initial profile and first time derivative on the t = t0 surface from
both on and within the past light cone of x. (Even in flat spacetime, while in 4 and higher
even dimensional flat spacetime, the field propagates only on the light cone – in 2 and all odd
dimensions, we have seen that scalar waves develop tails.)

Let us also observe that the wave solution in eq. (12.4.59) is in fact a special case of eq.
(12.4.276): the initial time surface is the infinite past t0 → −∞, upon which it is further assumed
the initial field and its time derivatives are trivial – the signal detected at x can therefore be
entirely attributed to J .

Problem 12.35. In 4 dimensional infinite flat spacetime, let the initial conditions for the
scalar field be given by

ψ(t = 0, x⃗) = eik⃗·x⃗, ∂tψ(t = 0, x⃗) = −i|⃗k|eik⃗·x⃗. (12.4.277)

Use the Kirchhoff representation in eq. (12.4.276) to find ψ(t > 0, x⃗). You can probably guess
the final answer, but this is a simple example to show you the Kirchhoff representation really
works.

Problem 12.36. Connection to Fourier Space Starting from the Kirchhoff represen-
tation in eq. (12.4.276), derive eq. (12.4.51) for the case where J = 0. Hint: Employ the
representation in eq. (12.4.65).
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Problem 12.37. Two Dimensions In 1+1 dimensional flat spacetime, suppose ∂2ψ =
(∂2t − ∂2x)ψ = 0 and

ψ(t = 0, x) = Q(x), ∂tψ(t = 0, x) = P (x). (12.4.278)

Explain why

ψ(t > 0, x) =
1

2
Q(x+ t) +

1

2
Q(x− t) + 1

2

∫ x+t

x−t
P (x′)dx′. (12.4.279)

Hint: Remember eq. (12.4.76). Note that, if t > 0, the δ(t− |z|) implies z = t and z = −t.

12.4.6 Helmholtz Wave Equation in Isotropic Non-conducting Media

The scalar analog of the electromagnetic wave equation in a frequency-dependent medium is
given by the following Helmholtz wave equation in (3+1)-dimensions:(

∇⃗2 + ω2ñ(ω)2
)
ψ̃(ω, x⃗) = −J̃(ω, x⃗), (12.4.280)

where

ψ̃(ω, x⃗) ≡
∫
R
ψ̃(ω, x⃗)eiωtdt. (12.4.281)

We see that the corresponding retarded Green’s function – recall equations (12.4.191) and
(12.4.194) – is

G̃+ (ωñ(ω)R) =
exp (iωñ(ω)R)

4πR
, (12.4.282)(

∇⃗2 + ω2ñ(ω)2
)
G̃+ (ωñ(ω)R) = −δ(3)(x⃗− x⃗′). (12.4.283)

The solution to the wave equation in frequency space is

ψ̃(ω, x⃗) =

∫
R3

d3x⃗′G̃+ (ωñ(ω)R) J̃(ω, x⃗′), (12.4.284)

R ≡ |x⃗− x⃗′|. (12.4.285)

Multiplying both sides by e−iωt and integrating over frequency, we then obtain the position
spacetime wave solution as

ψ(t, x⃗) =

∫
R3

d3x⃗′
∫
R

dω

2π

exp (−iω(t− ñ(ω)R))
4πR

J̃ (ω, x⃗′) . (12.4.286)

152The physical interpretation of eq. (12.4.286) is: there are spherical waves emitted from every
point x⃗′ within the source; and at each driving frequency ω, these waves propagate at speed
1/ñ(ω) since

exp (−iω(t− ñ(ω)R)) = exp

(
+iωñ(ω)

(
R− t

ñ(ω)

))
. (12.4.287)

152Note: The wave equation for ψ is not ∂2ψ = J ; its form will not concern us here.
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In other words, ñ(ω) may be viewed as the refractive index of the medium at frequency ω.
Analyticity Implies Causality Let us study the causal properties of the ψ signal

sourced by J̃ . To this end, let us suppose J(t, x⃗) is not only spatially localized, but also of finite
duration:

J(t, x⃗) ̸= 0 t1 ≤ t ≤ t2 (12.4.288)

= 0 Otherwise. (12.4.289)

Because of its finite duration, it is reasonable to suppose∫ +∞

−∞
|J(t, x⃗′)|dt <∞. (12.4.290)

This guarantees its frequency ω−transform

J̃(ω, x⃗) =

∫ +∞

−∞
J(t, x⃗′)e+iωtdt (12.4.291)

= e+iωt2
∫ 0

t1−t2
J(t+ t2, x⃗

′)e+iωtdt ≡ e+iωt2 J̃ ′(ω, x⃗; t1, t2). (12.4.292)

to be necessarily analytic in the ω ≡ ωR + iωI because its ω−derivative converges:

∂ωJ̃(ω, x⃗) = i

∫ t2

t1

J(t, x⃗′) · t e+iωtdt, (12.4.293)

|∂ωJ̃(ω, x⃗)| ≤
∫ t2

t1

|J(t, x⃗′) · t|e−ωItdt <∞. (12.4.294)

Note that if t2 is sent to +∞ – namely, if the source of the ψ waves is turned off only at future
infinity – then this integral may not converge unless Im ω ≡ ωI is strictly greater than zero; i.e.,
limt→∞ e−ωIt = 0 at large positive t. In such a case, J̃(ω, x⃗) is analytic only for ωI > 0. However,
because we wish to examine the causal structure of the ψ signal, we have used a finite t2 to
obtain a clear result.

Let us now assume ñ is not only analytic everywhere on the negative imaginary portion of
the complex ω−plane, but also tends to some constant

ñ(|ω| → +∞) = ñ∞ (12.4.295)

for ωI < 0. (Remember, it is not possible for a function to be entire and not blow up somewhere at

infinity.) Since both ñ and J̃ are analytic for ωI < 0, we may deform the contour in eq. (12.4.284)
from running along the real line to the infinite-radius semi-circle that tends to |ω| → ∞ in the
lower half ω−plane. Using polar coordinates ω = ρeiθ for ρ ≥ 0 and 0 ≤ θ < 2π,

ψ(t, x⃗) =

∫
R3

d3x⃗′

4πR
lim
ρ→∞

∫
π≤θ≤2π

iρeiθdθ

2π
J̃ ′ (ω = ρeiθ, x⃗′; t1, t2

)
× exp [ρ(sin(θ)− i cos(θ))(t− t2 − ñ∞R)] . (12.4.296)
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Because the J̃ ′ has its time domain integration shifted relative to the original J̃ so that it runs
over strictly negative values, it does not blow up as ωI → −∞, since

J̃ ′ (ω = ρeiθ, x⃗′; t1, t2
)
=

∫ 0

−|t2−t1|
J(t+ t2, x⃗

′)e+iρ cos(θ)t exp (+ρ| sin(θ)|t) dt (12.4.297)

contains a exp (+ρ| sin(θ)|t) for π < θ < 2π that actually tends to zero in this limit. Therefore,
for a ψ−detector located at the event (t, x⃗) and time elapsed satisfying

t− t2
ñ∞

> |x⃗− x⃗′|, (12.4.298)

the ψ is strictly zero because

lim
ρ→∞

ieiθ

2π
J̃ ′ (ω = ρeiθ, x⃗′; t1, t2

)
ρ exp [ρ(sin(θ)− i cos(θ))(t− t2 − ñ∞R)] = 0. (12.4.299)

Eq. (12.4.298) determines the wave front emanating from the source J̃(ω, x⃗′) at x⃗′ for arbitrary
sources, and also allows us to identify 1/ñ∞ as the wavefront speed. To sum:

The reciprocal of the refractive index 1/ñ(ω) evaluated at frequencies with infinite
magnitudes – assuming ñ(ω) is analytic and ñ(|ω| → ∞, ωI < 0) = ñ∞ is a constant
– yields the wavefront speed of waves obeying the Helmholtz wave equation in eq.
(12.4.280).

Problem 12.38. Since the source J(t, x⃗) was only switched on at t = t1, it is intuitively clear
there should be no ψ waves at all for t < t1. On the other hand, can you show directly from eq.
(12.4.286) that ψ(t < t1, x⃗) is indeed zero for all x⃗? Hints: You may find it useful to define a

different shifted J̃ ′ through the relation

J̃(ω, x⃗) = e+iωt1
∫ t2−t1

0

J(t+ t1, x⃗
′)e+iωtdt ≡ e+iωt1 J̃ ′(ω, x⃗; t1, t2). (12.4.300)

Then perform the appropriate contour deformation of eq. (12.4.286) that parallels eq. (12.4.296)
– should you push the contour ‘downwards’ or ‘upwards’ on the ω−plane?

Problem 12.39. Vibrations of a Drum’s Surface Frequencies. Normal modes. Eigen-
functions.

Diffraction from Kirchhoff Representation We now use the Helmholtz Green’s function
to study time-independent wave phenomenon around obstacles, but in an otherwise source-free
region D. (

∇⃗2 + ω2ñ(ω)2
)
ψ̃ = 0 (12.4.301)

A telescope, with a circular aperture of diameter 2R is a good example of such a physical
problem. We will in fact consider a infinite 2D opaque flat screen in 3D space, with an opening
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O with an arbitrary shape. We will consider a closed surface, with one side flushed against the
screen S containing the opening. The starting point is∫

D

d3x⃗′
(
G̃+ · (∇⃗2

x⃗′ + ω2ñ2)ψ̃(x⃗′)− ψ̃(x⃗′) · (∇⃗2
x⃗′ + ω2ñ2)G̃+

)
= ψ̃(x⃗ ∈ D). (12.4.302)

Let us notice the ω2ñ2 terms cancel out; and carry out integrate-by-parts on the remaining ones.

ψ̃(x⃗ ∈ D) =

∫
∂D

d2Σ⃗′ ·
(
G̃+ · ∇⃗x⃗′ψ̃(x⃗

′)− ψ̃(x⃗′) · ∇⃗x⃗′G̃
+
)

(12.4.303)

−
∫
D

d3x⃗′
(
∇⃗x⃗′ψ̃(x⃗

′) · ∇⃗x⃗′G̃
+ − ∇⃗x⃗′G̃

+ · ∇⃗x⃗′ψ̃(x⃗
′)
)
.

The volume integral is actually zero. Moreover, we may now split the surface integral into two
pieces: one over the screen S – really over the opening O, since the rest of the screen is opaque
and should have zero signal – and the other over the rest of the boundary ∂D−S. Furthermore,
if we now push ∂D− S to infinity, and recognize the 1/R in eq. (12.4.282) would go to zero, we
are then left with the following Kirchhoff representation of the fixed frequency ω signal expressed
using the boundary signal at the aperture O:

lim
∂D−S→∞

ψ̃(x⃗ ∈ D) =

∫
O

d2Σ⃗′ ·
(
G̃+(R)∇⃗x⃗′ψ̃(x⃗

′)− ψ̃(x⃗′)∇⃗x⃗′G̃
+(R)

)
, (12.4.304)

R ≡ |x⃗− x⃗′|. (12.4.305)

Diffraction: Plane Wave Input Let us suppose a plane wave

ψ̃(x⃗) = exp (iωñẑ · x⃗) = exp (iωñ · z) (12.4.306)

– which satisfies eq. (12.4.301) – is impinging upon O. Here, the ẑ denotes the unit vector
parallel to the z−axis; i.e., the screen is therefore lying on the x⃗⊥ ≡ (x, y)−plane, where we
shall define z = 0.

ψ̃(x⃗⊥, z > 0) = −
∫
O

d2x⃗⊥
4π

(
iωñ(ω)− ∂

∂z′

)(
eiωñ(ω)|x⃗−x⃗

′|

|x⃗− x⃗′|

)
z′=0

(12.4.307)

= −iωñ(ω)
∫
O

d2x⃗⊥
4π

(
1 +

z

R
+

i

ωñ(ω)R

z

R

)
eiωñ(ω)R

R
(12.4.308)

R ≡
√

(x− x′)2 + (y − y′)2 + z2. (12.4.309)

Remember that d2Σ⃗ points outwards – in this case, when evaluated on O, it is −ẑ. This is why
there is an overall − sign.

Far Zone For simplicity, let us make a further far zone (FZ) approximation, defined by
the conditions

r′ ≡
√
x′2 + y′2 ≪ r ≡

√
x2 + y2 + z2 and ωñ · r ≫ 1. (12.4.310)

The first condition amounts to the assumption that the signal is measured at distances much
larger than the size of the aperture O itself; whereas the second condition asserts the signal is
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measured at distances much larger than the inverse frequency of the input plane wave. These
conditions render the 1/(ωñR) term much smaller than the one to its immediate left; and,
moreover, allow us to approximate z/R ≈ z/r ≡ cos θ. We also expand

|x⃗− x⃗′| = r − x⃗′ · ∇⃗x⃗r + . . . (12.4.311)

= r

(
1− x⃗′⊥

r
· r̂ +O

(
(r′/r)2

))
. (12.4.312)

Defining AO to be the area of the opening,

ψ̃(x⃗ ∈ FZ) = −iωñ(ω)AO ·
eiωñr

4πr
(1 + cos θ)

(
1 +O

(
r′

r

))
×
∫
O

d2x⃗⊥
AO

exp

[
−iωñx⃗′⊥ · r̂

(
1 +O

(
r′

r

))]
. (12.4.313)

Neglecting the O(r′/r) corrections, therefore, the FZ signal is

ψ̃(x⃗) ≈ −iωñ(ω)AO ·
eiωñr

4πr
(1 + cos θ)M (ωñr̂) ; (12.4.314)

where the screen-dependent modulation factor is

M (ωñr̂) ≡
∫
O

d2x⃗′⊥
AO

exp [−iωñ(ω)x⃗′⊥ · r̂(θ, ϕ)] . (12.4.315)

To leading order in the FZ approximation, we see the signal is simply a spherical wave emanating
from O, modulated by 1+cos θ dependence: (1+cos θ) ·eiωñr/(4πr). We kept the first non-trivial
dependence of the phase exp(iωñR) on x⃗′⊥ in order to capture the impact on the FZ signal due
to the details of O – its shape, size, etc. In particular, it yields a Fourier transform of O as
a function of ‘wave vector’ ωñr̂. For very low frequencies, where ωñr′ ≪ 1, the exponential is
approximately unity and theM≈ 1. A high enough frequency, ωñr′ ≳ 1, is needed to obtain a
non-trivial modulation factorM.

Filter or Lens at O Up to this point we have assumed the medium is homogeneous and
isotropic. We may consider placing a filter or lens at O to modify the trajectory of the incoming
plane wave. For instance, a telescope to leading order is simply such a device, focusing the rays
instead of allowing them to spread out as (1 + cos θ):

ψ̃telescope(x⃗) ≈ −iωñ(ω)AO ·
eiωñr

4πr
f(θ, ϕ)M (ωñr̂) ; (12.4.316)

where f(θ, ϕ) is non-zero only for very small deflection angles θ ≪ 1.
Circular Aperture For a circular aperture of radius RO, we may employ polar coordinates

for the x⃗′⊥ = r′(cosϕ′, sinϕ′, 0), so that

x⃗′⊥(r
′, ϕ′) · r̂(θ, ϕ) = r′ (cosϕ′, sinϕ′, 0) · (sin θ cosϕ, sin θ sinϕ, cos θ)T

= r′ sin θ cos(ϕ− ϕ′) ≡ r′ sin θ cos(φ). (12.4.317)
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Thus the screen modulation factor itself is

M (ωñr̂) = 2

∫ RO

0

dr′ · r′

πR2
O

∫ 2π

0

dϕ exp [−iωñ(ω)r′ sin θ cosφ]

= 4π

∫ RO

0

dr′ · r′

πR2
O

J0 (|ωñ(ω)|r′ sin θ)

=
4

(|ωñ(ω)|RO sin θ)2

∫ |ωñ(ω)|RO sin θ

0

dz · zJ0 (z)

= 4 · J1 (|ωñ(ω)|RO sin θ)

|ωñ(ω)|RO sin θ
. (12.4.318)

Problem 12.40. Telescope Resolving Power Consider the light from a star placed at
the center of the field-of-view of a telescope. Its light can be approximated as a superposition of
plane waves exp(−ik(t−z)), involving different frequencies k ≡ ωñ, impinging upon the circular
aperture of a telescope at z = 0. The ideal telescope would then focus the star light into as
small a spot as allowed by the modulation factor M, onto a distant screen (or, your retina).
The Bessel J1(. . . ) in eq. (12.4.318) then tells us – making a plot here will help – most of the
signal is concentrated within the first peak. The smaller the angular width of this first peak,
the greater the ability to resolve fine details, since they will be better separated.

For a fixed wavelength λ, we may identify

k = ωñ =
2π

λ
. (12.4.319)

Given that the first zero of Bessel J1(z) lies at z ≈ 3.83171, show that the width of the FZ
signal’s first peak also corresponds to an angular width of

θ ≈ 1.21967
λ

DO

, (12.4.320)

where DO ≡ 2RO is the diameter of the telescope. This is known as the Rayleigh criterion.

Problem 12.41. Central Obstruction Many telescope designs involve a central obstruc-
tion – usually a secondary mirror. Suppose the central obstruction is circular and completely
opaque; and suppose it is centered at the center of the telescope’s aperture and its diameter is
0 ≤ ξ < 1 that of the telescope’s. Compute the analog to eq. (12.4.318) and, by plottingM for
different ξs, discuss its effect on resolving power.

Hint: You should find that larger central obstructions yield lower resolution because the
signal gets distributed over a larger angular width.

Problem 12.42. Gaussian Apodization Up till now, we have assumed the transparency
of the telescope’s aperture at O is uniform across its entire diameter. Let us now apply a
Gaussian modulation, i.e., assume that, upon exp(iωñz) hitting the aperture, its amplitude is
multiplied by a factor that falls off with radius from the center as a Gaussian. This modifies eq.
(12.4.315) into the expression

M (ωñr̂) ≡ F0

∫
O

d2x⃗′⊥
AO

exp

[
−|x⃗

′
⊥|2

2σ2

]
exp [−iωñ(ω)x⃗′⊥ · r̂(θ, ϕ)] , (12.4.321)
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where F0 is a dimensionless constant. Show that thisM (ωñr̂) is approximately

M (ωñr̂) ≈ 4πF0

(
σ

RO

)2

exp

[
−1

2
ω2ñ(ω)2σ2 sin2(θ)

]
. (12.4.322)

by assuming RO/σ ≫ 1.
Notice the diffraction patterns due to the Bessel function J1 in eq. (12.4.318) are now gone

due to this Gaussian ‘filter’. By adjusting σ appropriately, one may attempt to increase the
resolving power of the telescope – focus the star’s light into a smaller spot – without losing too
much signal due to the exponential damping.

Problem 12.43. Young’s Double Slit Model Young’s double slit experiment as follows.
For 0 < ε ≪ a ≪ L, the two slits – each of width ε and height L – are parallel to the y−axis
and separated by distance a along the x−axis.

x⃗′⊥(slit 1) =

(
−ε
2
≤ x′1 − a

2
≤ ε

2
,−L

2
≤ x′2 ≤ L

2

)
, (12.4.323)

x⃗′⊥(slit 2) =

(
−ε
2
≤ x′1 +

a

2
≤ ε

2
,−L

2
≤ x′2 ≤ L

2

)
. (12.4.324)

Compute the approximate interference pattern near the z−axis but in the far zone.

12.5 Linear Wave Equations in Curved Spacetimes

12.5.1 JWKB (Short Wavelength) Approximation and Null Geodesics

YZ: For now, copied+pasted from Physics in Curved Spacetime notes. Plan: modify
it to discuss scalars. In this section we will apply the JWKB (more commonly dubbed WKB)
approximation to study the vacuum (i.e., Jµ = 0 limit of) Maxwell’s equations in eq. (??).
At leading orders in perturbation theory, we will argue – in the limit where the wavelength of
the photons are much shorter than that of the background geometric curvature – that photons
propagate on the light cone and their polarization tensors are largely parallel transported along
their null geodesics. We will also see that the photon’s phase S would allow us to define its
frequency as the number density of constant-S surfaces piercing the timelike worldline of the
observer. This also leads us to recognize that, not only is kµ ≡ ∇µS null it obeys the geodesic
equation kσ∇σk

µ = 0.
Eikonal/Geometric Optics/JWKB Ansatz We will begin by postulating that the

vector potential can be modeled as the (real part of) a slowly varying amplitude aµ multiplied
by a rapidly oscillating phase exp(iS):

Aµ = Re {aµ exp(iS/ϵ)} . (12.5.1)

153The {aµ} can be complex but S is real. We shall also allow the amplitude itself to be a power
series in ϵ:

aµ =
∞∑
ℓ=0

ϵℓ ℓaµ. (12.5.2)

153Recall that this ansatz becomes an exact solution in Minkowski spacetime, where S = ±kµxµ and both kµ
and aµ are constant.
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The 0 < ϵ ≪ 1 is a fictitious parameter that reminds us of the hierarchy of length scales in
the problem – specifically, ϵ should be viewed as the ratio between the short wavelength of the
photon to the long wavelength of the background geometric curvature. To this end, we shall
re-write the vacuum version of the Lorenz-gauge Maxwell’s equation (??) with ϵ2 multiplying
the wave operator □:

□Aµ − ϵ2R σ
µ Aσ = 0. (12.5.3)

In a locally freely-falling frame (i.e., flat coordinate system), this equation takes the schematic
form

∂2A− ϵ2(∂2g)A = 0. (12.5.4)

The first term from the left goes asA/(wavelength of A)2 while the second asA/(wavelength of g)2,
and as thus already advertised ϵ2 is a power counting parameter reminding us of the relative
strength of the two terms.

Wave Equation Plugging the ansatz of eq. (12.5.1) into eq. (12.5.3):

0 = (□aµ − ϵ2R σ
µ aσ)e

iS/ϵ + 2∇σaµ
i

ϵ
∇σS · eiS/ϵ + aµ∇σ

(
i(∇σS/ϵ)eiS/ϵ

)
= (□aµ − ϵ2R σ

µ aσ)e
iS/ϵ + 2∇σaµ

i

ϵ
(∇σS) · eiS/ϵ + aµ

(
i(□S/ϵ)eiS/ϵ + (i∇S/ϵ)2eiS/ϵ

)
. (12.5.5)

Employing the power series of eq. (12.5.2),

0 = □ 0aµ + ϵ□ 1aµ + ϵ2□ 2aµ + . . .

−R σ
µ

(
ϵ2 0aσ + ϵ3 1aσ + . . .

)
+ 2iϵ−1(∇ 0aµ · ∇S) + 2iϵ0(∇ 1aµ · ∇S) + 2iϵ(∇ 2aµ · ∇S) + . . .

+ iϵ−1
0aµ□S + iϵ0 1aµ□S + iϵ 2aµ□S + . . .

− (∇S)2
(
ϵ−2

0aµ + ϵ−1
1aµ + ϵ0 2aµ + ϵ 3aµ + . . .

)
. (12.5.6)

Negative Two Setting the coefficient of ϵ−2 to zero

kµk
µ = 0, kµ ≡ ∇µS. (12.5.7)

Because S is a scalar, ∇νkµ = ∇ν∇µS = ∇µ∇νS = ∇µkν and hence

0 = ∇ν(k
2) = 2kµ∇νkµ = 2kµ∇µkν . (12.5.8)

That is, the gradient of the phase S sweeps out null geodesics in spacetime:

(k · ∇)kµ = 0. (12.5.9)

Negative One Setting the coefficient of ϵ−1 to zero:

0 = 0aµ□S + 2∇σS∇σ 0aµ, (12.5.10)

0 = 0aµ□S + 2∇σS∇σ 0aµ, (12.5.11)
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where the second line is simply the complex conjugate of the first. Note that ∇|a|2 = (∇a)ā +
a(∇ā). Guided by this, we may multiply the first equation by 0aµ and the second equation by

0a
µ, followed by adding them.

0 = | 0a|2□S + 2 0aµ∇σS∇σ 0aµ (12.5.12)

0 = | 0a|2□S + 2 0a
µ∇σS∇σ 0aµ (12.5.13)

0 = 2| 0a|2□S + 2∇σS∇σ| 0a|2, | 0a|2 ≡ 0aµ 0aµ. (12.5.14)

The right hand side of the final equation can be expressed as a divergence.

0 = ∇σ

(
| 0a|2∇σS

)
= ∇σ

(
| 0a|2kσ

)
(12.5.15)

Up to an overall normalization constant, we may interpret nσ ≡ | 0a|2kσ as a photon number
current, and this equation as its conservation law.

We turn to examining the derivative along k ≡ ∇S the normalized leading order photon
amplitude 0aµ/

√
| 0a|2:

∇σS∇σ

(
0aµ√
| 0a|2

)
=
∇σS∇σ 0aµ√
| 0a|2

− 0aµ
2(| 0a|2)3/2

∇σS∇σ| 0a|2. (12.5.16)

Eq. (12.5.15) says ∇S · ∇| 0a|2 = −| 0a|2□S, while eq. (12.5.10), in turn, states 0aµ□S =
−2∇σS∇σ 0aµ.

∇σS∇σ

(
0aµ√
| 0a|2

)
=
∇σS∇σ 0aµ√
| 0a|2

+
| 0a|2

2(| 0a|2)3/2
0aµ□S

=
∇σS∇σ 0aµ√
| 0a|2

− ∇
σS∇σ 0aµ√
| 0a|2

= 0. (12.5.17)

To summarize, we have worked out the first two orders of the Lorenz gauge vacuum Maxwell’s
equations in the JWKB/eikonal/geometric optics limit. Up to this level of accuracy, perturbation
theory teaches us:

� The gradient of the phase of the photon field kµ ≡ ∇µS – which we may interpret as its
dominant direction of propagation – follows null geodesics in the curved spacetime.

� The photon number current is covariantly conserved.

� The normalized polarization vector is parallel transported along kµ.

� This same wave vector is orthogonal to the polarization of the photon at leading order;
and the first deviation to non-orthogonality occurring at the next order is proportional to
the divergence of the polarization vector itself.
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12.6 Variational Principle in Field Theory

You may be familiar with the variational principle – or, the principle of stationary action – from
classical mechanics. Here, we will write down one for the classical field theories leading to the
Poisson and wave equations.

Poisson equation Consider the following action for the real field ψ sourced by some
externally prescribed J(x⃗).

SPoisson[ψ] ≡
∫
D

dDx⃗
√
|g(x⃗)|

(
1

2
∇iψ(x⃗)∇iψ(x⃗)− ψ(x⃗)J(x⃗)

)
(12.6.1)

We claim that the action SPoisson is extremized iff ψ is a solution to Poisson’s equation (eq.
(12.1.1)), provided the field at the boundary ∂D of the domain is specified and fixed.

Given a some field ψ̄, not necessarily a solution, let us consider some deviation from it;
namely,

ψ(x⃗) = ψ̄(x⃗) + δψ(x⃗). (12.6.2)

(δψ is one field; the δ is pre-pended as a reminder this is a deviation from ψ̄.) A direct calculation
yields

SPoisson[ψ̄ + δψ] =

∫
D

dDx⃗
√
|g(x⃗)|

(
1

2
∇iψ̄∇iψ̄ − ψ̄J

)
+

∫
D

dDx⃗
√
|g(x⃗)|

(
∇iψ̄∇iδψ − Jδψ

)
+

∫
D

dDx⃗
√
|g(x⃗)|

(
1

2
∇iδψ∇iδψ

)
. (12.6.3)

We may integrate-by-parts, in the second line, the gradient acting on δψ.

SPoisson[ψ̄ + δψ] =

∫
D

dDx⃗
√
|g(x⃗)|

(
1

2
∇iψ̄∇iψ̄ − ψ̄J +

1

2
∇iδψ∇iδψ + δψ

{
−∇⃗2ψ̄ − J

})
+

∫
∂D

dD−1ξ⃗

√
|H(ξ⃗)|δψni∇iψ̄ (12.6.4)

Provided Dirichlet boundary conditions are specified and not varied, i.e., ψ(∂D) is given, then by
definition δψ(∂D) = 0 and the surface term on the second line is zero. Now, suppose Poisson’s

equation is satisfied by ψ̄, then −∇⃗2ψ̄ − J = 0 and because the remaining quadratic-in-δψ is
strictly positive (as argued earlier) we see that any deviation increases the value of SPoisson and
therefore the solution ψ̄ yields a minimal action.

Conversely, just as we say a (real) function f(x) is extremized at x = x0 when f ′(x0) = 0,
we would say SPoisson is extremized by ψ̄ if the first-order-in-δψ term∫

D

dDx⃗
√
|g(x⃗)|δψ

{
−∇⃗2ψ̄ − J

}
(12.6.5)

vanishes for any deviation δψ. But if this were to vanish for any deviation δψ(x⃗), the terms in
the curly brackets must be zero, and Poisson’s equation is satisfied.
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Wave equation in infinite space Assuming the fields fall off sufficiently quickly at
spatial infinity and suppose the initial ψ(ti, x⃗) and final ψ(tf, x⃗) configurations are specified and
fixed, we now discuss why the action

SWave ≡
∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

{
1

2
∇µψ(t

′′, x⃗)∇µψ(t′′, x⃗) + J(t′′, x⃗)ψ(t′′, x⃗)

}
(12.6.6)

(where x ≡ (t′′, x⃗)) is extremized iff the wave equation in eq. (12.4.15) is satisfied.
Just as we did for SPoisson, let us consider adding to some given field ψ̄, a deviation δψ. That

is, we will consider

ψ(x) = ψ̄(x) + δψ(x), (12.6.7)

without first assuming ψ̄ solves the wave equation. A direct calculation yields

SWave[ψ̄ + δψ] =

∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

(
1

2
∇µψ̄∇µψ̄ + ψ̄J

)
+

∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

(
∇µψ̄∇µδψ + Jδψ

)
+

∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

(
1

2
∇µδψ∇µδψ

)
. (12.6.8)

We may integrate-by-parts, in the second line, the gradient acting on δψ. By assuming that the
fields fall off sufficiency quickly at spatial infinity, the remaining surface terms involve the fields
at the initial and final time hypersurfaces.

SWave[ψ̄ + δψ] =

∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

(
1

2
∇µψ̄∇µψ̄ + ψ̄J +

1

2
∇µδψ∇µδψ + δψ

{
−∇µ∇µψ̄ + J

})
+

∫
RD

dDx⃗
√
|g(x)|δψ(t = tf, x⃗)g

0µ∂µψ̄(t = tf, x⃗)

−
∫
RD

dDx⃗
√
|g(x)|δψ(t = ti, x⃗)g

0µ∂µψ̄(t = ti, x⃗)

+

∫ tf

ti

dt′′
∫
SD−1

dD−1ξ⃗

√
|H(ξ⃗)|δψnµ∇µψ̄

=

∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

(
1

2
∇µψ̄∇µψ̄ + ψ̄J +

1

2
∇µδψ∇µδψ + δψ

{
−∇µ∇µψ̄ + J

})
+

[∫
RD

dDx⃗
√
|g(x)|δψ(t, x⃗)g0µ∂µψ̄(t, x⃗)

]t=f

t=ti

. (12.6.9)

The second and third lines of the first equality (and the second line of the second equality)
come from the time derivative part of∫ tf

ti

dt′′
∫
RD

dDx⃗
√
g(x)∇µ

(
δψ∇µψ̄

)
=

∫ t

t′
dt′′
∫
RD

dDx⃗∂µ

(√
g(x)δψgµν∇νψ̄

)
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=

[∫
RD

dDx⃗
√
g(x)δψg0ν∂νψ̄

]t′′=tf
t′′=ti

+ . . . (12.6.10)

Provided the initial and final field values are specified and not varied, then δψ(t′′ = ti,f) = 0 and
the surface terms are zero. In eq. (12.6.9), we see that the action is extremized, i.e., when the
term ∫ tf

ti

dt′′
∫
RD

dDx⃗
√
|g(x)|

(
δψ
{
−∇µ∇µψ̄ + J

})
(12.6.11)

is zero for all deviations δψ, iff the terms in the curly brackets vanish, and the wave equation
eq. (12.4.15) is satisfied. Note that, unlike the case for SPoisson, because ∇µψ∇µψ may not be
positive definite, it is not possible to conclude from this analysis whether all solutions minimize,
maximize, or merely extremizes the action SWave.

Why? Why bother coming up with an action to describe dynamics, especially if we
already have the PDEs governing the fields themselves? Apart from the intellectual inter-
est/curiosity in formulating the same physics in different ways, having an action to describe
dynamics usually allows the symmetries of the system to be made more transparent. For in-
stance, all of the currently known fundamental forces and fields in Nature – the Standard Model
(SM) of particle physics and gravitation – can be phrased as an action principle, and the math-
ematical symmetries they exhibit played key roles in humanity’s attempts to understand them.
Furthermore, having an action for a given theory allows it to be quantized readily, through the
path integral formulation of quantum field theory due to Richard P. Feynman. In fact, our
discussion of the heat kernel in, for e.g. eq. (12.3.17), is in fact an example of Norbert Wiener’s
version of the path integral, which was the precursor of Feynman’s.

Problem 12.44. Euler-Lagrange Equations Let us consider a more general action built
out of some field ψ(x) and its first derivatives ∇µψ(x), for x

µ ≡ (t′′, x⃗).

S[ψ] ≡
∫ tf

ti

dt′′
∫
D

dDx⃗
√
|g|L (ψ,∇ψ) (12.6.12)

Show that, demanding the action to be extremized leads to the Euler-Lagrange equations

∂L
∂ψ

= ∇µ
∂L

∂∇µψ
. (12.6.13)

What sort of boundary conditions are sufficient to make the variational principle well-defined?
What happens when D no longer has an infinite spatial extent (as we have assumed in the
preceding above)? Additionally, make sure you check that the Poisson and wave equations are
recovered by applying the appropriate Euler-Lagrange equations.

12.7 Appendix to linear PDEs discourse:
Symmetric Green’s Function of a real 2nd Order ODE

Setup In this section we wish to write down the symmetric Green’s function of the most
general 2nd order real linear ordinary differential operator D, in terms of its homogeneous
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solutions. We define such as differential operator as

Dzf(z) ≡ p2(z)
d2f(z)

dz2
+ p1(z)

df(z)

dz
+ p0(z)f(z), a ≤ z ≤ b, (12.7.1)

where p0,1,2 are assumed to be smooth real functions and we are assuming the setup at hand is
defined within the domain z ∈ [a, b]. By homogeneous solutions f1,2(z), we mean they both obey

Dzf1,2(z) = 0. (12.7.2)

Because this is a 2nd order ODE, we expect two linearly independent solutions f1,2(z). What
we wish to solve here is the symmetric Green’s function G(z, z′) = G(z′, z) equation

DzG(z, z
′) = λ(z)δ(z − z′), and Dz′G(z, z

′) = λ(z′)δ(z − z′), (12.7.3)

where δ(z − z′) is the Dirac δ-function and λ is a function to be determined. With the Green’s
function G(z, z′) at hand we may proceed to solve the particular solution fp(z) to the inhomo-
geneous equation, with some prescribed external source J ,

Dzfp(z) = J(z) ⇒ fp(z) =

∫ b

a

dz′

λ(z′)
G(z, z′)J(z′). (12.7.4)

Of course, for a given problem, one needs to further impose appropriate boundary conditions to
obtain a unique solution. Here, we will simply ask: what’s the most general ansatz that would
solve eq. (12.7.3) in terms of f1,2?
Discontinuous first derivative at z = z′ The key observation to solving the symmetric
Green’s function is that, as long as z ̸= z′ then the δ(z − z′) = 0 in eq. (12.7.3). Therefore
G(z, z′) has to obey the homogeneous equation

DzG(z, z
′) = Dz′G(z, z

′) = 0, z ̸= z′. (12.7.5)

For z > z′, if we solve DzG = 0 first,

G(z, z′) = αI(z′)fI(z), (12.7.6)

i.e., it must be a superposition of the linearly independent solutions {fI(z)} (in the variable z).
Because G(z, z′) is a function of both z and z′, the coefficients of the superposition must depend
on z′. If we then solve

Dz′G(z, z
′) = Dz′α

I(z′)fI(z) = 0, (12.7.7)

(for z ̸= z′), we see that the {αI(z′)} must in turn each be a superposition of the linearly
independent solutions in the variable z′.

αI(z′) = AIJ
>fJ(z

′). (12.7.8)

(The {AIJ
>} are now constants, because αI(z′) has to depend only on z′ and not on z.) What we

have deduced is that G(z > z′) is a sum of 4 independent terms:

G(z > z′) = AIJ
>fI(z)fJ(z

′), AIJ
> = constant. (12.7.9)
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Similar arguments will tell us,

G(z < z′) = AIJ
<fI(z)fJ(z

′), AIJ
< = constant. (12.7.10)

This may be summarized as

G(z, z′) = Θ(z − z′)AIJ
>fI(z)fJ(z

′) + Θ(z′ − z)AIJ
<fI(z)fJ(z

′). (12.7.11)

Now we examine the behavior of G(z, z′) near z = z′. Suppose G(z, z′) is discontinuous at
z = z′. Then its first derivative there will contain δ(z− z′) and its second derivative will contain
δ′(z− z′), and G itself will thus not satisfy the right hand side of eq. (12.7.3). Therefore we may
impose the continuity conditions

AIJ
<fI(z)fJ(z) = AIJ

>fI(z)fJ(z), (12.7.12)

A11
< f1(z)

2 + A22
< f2(z)

2 + (A12
< + A21

< )f1(z)f2(z) = A11
> f1(z)

2 + A22
> f2(z)

2 + (A12
> + A21

> )f1(z)f2(z).

Since this must hold for all a ≤ z ≤ b, the coefficients of f1(z)
2, f2(z)

2 and f1(z)f2(z) on both
sides must be equal,

A11
< = A11

> ≡ A1, A22
< = A22

> ≡ A2, A12
< + A21

< = A12
> + A21

> . (12.7.13)

Now let us integrate DzG(z, z
′) = λ(z)δ(z − z′) around the neighborhood of z ≈ z′; i.e., for

0 < ϵ≪ 1, and a prime denoting ∂z,∫ z′+ϵ

z′−ϵ
dzλ(z)δ(z − z′) =

∫ z′+ϵ

z′−ϵ
dz {p2G′′ + p1G

′ + p0G}

λ(z′) = [p2G
′ + p1G]

z′+ϵ
z′−ϵ +

∫ z′+ϵ

z′−ϵ
dz {−p′2G′ − p′1G+ p0G}

= [(p1(z)− ∂zp2(z))G(z, z′) + p2(z)∂zG(z, z
′)]z=z

′+ϵ
z=z′−ϵ (12.7.14)

+

∫ z′+ϵ

z′−ϵ
dz {p′′2(z)G(z, z′)− p′1(z)G(z, z′) + p0(z)G(z, z

′)} .

Because p0,1,2(z) are smooth and because G is continuous at z = z′, as we set ϵ → 0, only the
G′ remains on the right hand side.

lim
ϵ→0

{
p2(z

′ + ϵ)
∂G(z = z′ + ϵ, z′)

∂z
− p2(z′ − ϵ)

∂G(z = z′ − ϵ, z′)
∂z

}
= λ(z′) (12.7.15)

We can set z′ ± ϵ→ z′ in the p2 because it is smooth; the error incurred would go as O(ϵ). We
have thus arrived at the following “jump” condition: the first derivative of the Green’s function
on either side of z = z′ has to be discontinuous and their difference multiplied by p2(z

′) is equal
to the function λ(z′), the measure multiplying the δ(z − z′) in eq. (12.7.3).

p2(z
′)

{
∂G(z = z′+, z′)

∂z
− ∂G(z = z′−, z′)

∂z

}
= λ(z′) (12.7.16)
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This translates to

p2(z
′)
(
AIJ
>f

′
I(z

′)fJ(z
′)− AIJ

<f
′
I(z

′)fJ(z
′)
)
= λ(z′). (12.7.17)

By taking into account eq. (12.7.13),

p2(z
′)
(
(A12

> − A12
< )f ′

1(z
′)f2(z

′) + (A21
> − A21

< )f ′
2(z

′)f1(z
′)
)
= λ(z′), (12.7.18)

Since A12
< + A21

< = A12
> + A21

> ⇔ A12
> − A12

< = −(A21
> − A21

< ),

p2(z
′)(A21

> − A21
< )Wrz′(f1, f2) = λ(z′),

p2(z
′)(A21

> − A21
< )W0 exp

(
−
∫ z′

b

p1(z
′′)

p2(z′′)
dz′′

)
= λ(z′), (12.7.19)

where eq. (7.6.59) was employed in the second line. We see that, given a differential operator
D of the form in eq. (12.7.1), this amounts to solving for the measure λ(z′): it is fixed, up to
an overall multiplicative constant (A21

> − A21
< )W0, by the p1,2. (Remember the Wronskian itself

is fixed up to an overall constant by p1,2; cf. eq. (7.6.59).) Furthermore, note that A21
> − A21

<

can be absorbed into the functions f1,2, since the latter’s normalization has remained arbitrary
till now. Thus, we may choose A21

> − A21
< = 1 = −(A12

> − A12
< ). At this point,

G(z, z′) = A1f1(z)f1(z
′) + A2f2(z)f2(z

′)

+ Θ(z − z′)((A12
< − 1)f1(z)f2(z

′) + A21
> f2(z)f1(z

′))

+ Θ(z′ − z)(A12
< f1(z)f2(z

′) + (A21
> − 1)f2(z)f1(z

′)). (12.7.20)

Because we are seeking a symmetric Green’s function, let us also consider

G(z′, z) = A1f1(z
′)f1(z) + A2f2(z

′)f2(z)

+ Θ(z′ − z)((A12
< − 1)f1(z

′)f2(z) + A21
> f2(z

′)f1(z))

+ Θ(z − z′)(A12
< f1(z

′)f2(z) + (A21
> − 1)f2(z

′)f1(z)). (12.7.21)

Comparing the first lines of equations (12.7.20) and (12.7.21) tells us the A1,2 terms are automat-
ically symmetric; whereas the second line of eq. (12.7.20) versus the third line of eq. (12.7.21),
together with the third line of eq. (12.7.20) versus second line of eq. (12.7.21), says the terms
involving A12

≶ are symmetric iff A12
< = A21

> ≡ χ. We gather, therefore,

G(z, z′) = A1f1(z)f1(z
′) + A2f2(z)f2(z

′) + G(z, z′;χ), (12.7.22)

G(z, z′;χ) ≡ (χ− 1) {Θ(z − z′)f1(z)f2(z′) + Θ(z′ − z)f1(z′)f2(z)}
+ χ {Θ(z − z′)f2(z)f1(z′) + Θ(z′ − z)f2(z′)f1(z)} . (12.7.23)

The terms in the curly brackets can be written as (χ− 1)f1(z>)f2(z<) + χ · f1(z<)f2(z>), where
z> is the larger and z< the smaller of the pair (z, z′). Moreover, we see it is these terms that
contributes to the ‘jump’ in the first derivative across z = z′. The terms involving A1 and A2

are smooth across z = z′ provided, of course, the functions f1,2 themselves are smooth; they are
also homogeneous solutions with respect to both z and z′.
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Summary Given any pair of linearly independent solutions to

Dzf1,2(z) ≡ p2(z)
d2f1,2(z)

dz2
+ p1(z)

df1,2(z)

dz
+ p0(z)f1,2(z) = 0, a ≤ z ≤ b, (12.7.24)

we may solve the symmetric Green’s function equation(s)

DzG(z, z
′) = p2(z)W0 exp

(
−
∫ z

b

p1(z
′′)

p2(z′′)
dz′′
)
δ(z − z′), (12.7.25)

Dz′G(z, z
′) = p2(z

′)W0 exp

(
−
∫ z′

b

p1(z
′′)

p2(z′′)
dz′′

)
δ(z − z′), (12.7.26)

G(z, z′) = G(z′, z), (12.7.27)

by using the general ansatz

G(z, z′) = G(z′, z) = A1f1(z)f1(z
′) + A2f2(z)f2(z

′) + G(z, z′;χ), (12.7.28)

G(z, z′;χ) ≡ (χ− 1)f1(z>)f2(z<) + χ f2(z>)f1(z<), (12.7.29)

z> ≡ max(z, z′), z< ≡ min(z, z′). (12.7.30)

Here W0, A
1,2, and χ are arbitrary constants. However, once W0 is chosen, the f1,2 needs to be

normalized properly to ensure the constant W0 is recovered. Specifically,

Wrz(f1, f2)(z) = f1(z)f
′
2(z)− f ′

1(z)f2(z) =

(
∂G(z = z′+, z′)

∂z
− ∂G(z = z′−, z′)

∂z

)∣∣∣∣
z′→z

= W0 exp

(
−
∫ z

b

p1(z
′′)

p2(z′′)
dz′′
)
. (12.7.31)

We also reiterate, up to the overall multiplicative constantW0, the right hand side of eq. (12.7.25)
is fixed once the differential operator D (in eq. (12.7.24)) is specified; in particular, one may not
always be able to set the right hand side of eq. (12.7.25) to δ(z − z′).

Problem 12.45. Hermitian Case

3D Green’s Function of Laplacian As an example of the methods described here, let us
work out the radial Green’s function of the Laplacian in 3D Euclidean space. That is, we shall
employ spherical coordinates

xi = r(sθcϕ, sθsϕ, cθ), (12.7.32)

x′i = r′(sθ′cϕ′ , sθ′sϕ′ , cθ′); (12.7.33)

and try to solve

−∇⃗2
x⃗G(x⃗− x⃗′) = −∇⃗2

x⃗′G(x⃗− x⃗′) =
δ(r − r′)
rr′

δ(cθ − cθ′)δ(ϕ− ϕ′). (12.7.34)

Because of the rotation symmetry of the problem – we know, in fact,

G (x⃗− x⃗′) = 1

4π|x⃗− x⃗′|
= (4π)−1

(
r2 + r′2 − 2rr′ cos γ

)−1/2
(12.7.35)
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depends on the angular coordinates through the dot product cos γ ≡ x⃗ · x⃗′/(rr′) = x̂ · x̂′. This
allows us to postulate the ansatz

G(x⃗− x⃗′) =
∞∑
ℓ=0

g̃ℓ(r, r
′)

2ℓ+ 1

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′). (12.7.36)

By applying the Laplacian in spherical coordinates (cf. eq. (12.2.96)) and using the completeness
relation for spherical harmonics in eq. (12.2.73), eq. (12.7.34) becomes

∞∑
ℓ=0

g̃′′ℓ + (2/r)g̃′ℓ − ℓ(ℓ+ 1)r−2g̃ℓ
2ℓ+ 1

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′)

= −δ(r − r
′)

rr′

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′), (12.7.37)

with each prime representing ∂r. Equating the (ℓ,m) term on each side,

Drg̃ℓ ≡ g̃′′ℓ +
2

r
g̃′ℓ −

ℓ(ℓ+ 1)

r2
g̃ℓ = −(2ℓ+ 1)

δ(r − r′)
rr′

. (12.7.38)

We already have the δ-function measure – it is −(2ℓ + 1)/r2 – but it is instructive to check its
consistency with the right hand side of (12.7.25); here, p1(r) = 2/r and p2(r) = 1, and

W0 exp

(
−2
∫ r

dr′′/r′′
)

= W0e
−2 ln r = W0r

−2. (12.7.39)

Now, the two linearly independent solutions to Drf1,2(r) = 0 are

f1(r) =
F1

rℓ+1
, f2(r) = F2r

ℓ, F1,2 = constant. (12.7.40)

The radial Green’s function must, according to eq. (12.7.28), take the form

g̃ℓ(r, r
′) =

A1
ℓ

(rr′)ℓ+1
+ A2

ℓ(rr
′)ℓ + Gℓ(r, r′), (12.7.41)

Gℓ(r, r′) ≡ F

{
χℓ − 1

r>

(
r<
r>

)ℓ
+
χℓ
r<

(
r>
r<

)ℓ}
, (12.7.42)

r> ≡ max(r, r′), r< ≡ min(r, r′), (12.7.43)

where A1,2
ℓ , F , and χℓ are constants. (What happened to F1,2? Strictly speaking F1F2 should

multiply A1,2
ℓ but since the latter is arbitrary their product(s) may be assimilated into one

constant(s); similarly, in Gℓ(r, r′), F = F1F2 but since F1,2 occurs as a product, we may as well
call it a single constant.) To fix F , we employ eq. (12.7.31).

−2ℓ+ 1

r2
= F Wrr

(
r−ℓ−1, rℓ

)
=
∂G(r = r′+)

∂r
− ∂G(r = r′−)

∂r
. (12.7.44)
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Carrying out the derivatives explicitly,

−2ℓ+ 1

r2
= F

{
∂

∂r

(
1

r′

( r
r′

)ℓ)
r=r′−

− ∂

∂r

(
1

r

(
r′

r

)ℓ)
r=r′+

}

= F

{
ℓ · rℓ−1

rℓ+1
+

(ℓ+ 1)rℓ

rℓ+2

}
= F

2ℓ+ 1

r2
. (12.7.45)

Thus, F = −1. We may take the limit r → 0 or r′ → 0 and see that the terms involving A1
ℓ

and (χℓ/r<)(r>/r<)
ℓ in eq. (12.7.41) will blow up for any ℓ; while 1/(4π|x⃗− x⃗′|)→ 1/(4πr′) or

→ 1/(4πr) does not. This implies A1
ℓ = 0 and χℓ = 0. Next, by considering the limits r → ∞

or r′ →∞, we see that the A2
ℓ term will blow up for ℓ > 0, whereas, in fact, 1/(4π|x⃗− x⃗′|)→ 0.

Hence A2
ℓ>0 = 0. Moreover, the ℓ = 0 term involving A2

0 is a constant in space because Y m
ℓ=0 =

1/
√
4π and does not decay to zero for r, r′ →∞; therefore, A2

0 = 0 too. Equation (12.7.41) now
stands as

g̃ℓ(r, r
′) =

1

r>

(
r<
r>

)ℓ
, (12.7.46)

which in turn means eq. (12.7.36) is

G(x⃗− x⃗′) = 1

4π|x⃗− x⃗′|
=

1

r>

∞∑
ℓ=0

1

2ℓ+ 1

(
r<
r>

)ℓ ℓ∑
m=−ℓ

Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′). (12.7.47)

If we use the addition formula in eq. (12.2.76), we then recover eq. (12.3.48).

Problem 12.46. Can you perform a similar “jump condition” analysis for the 2D Green’s
function of the negative Laplacian? Your answer should be proportional to eq. (2.0.41). Hint:
Start by justifying the ansatz

G2(x⃗− x⃗′) =
+∞∑
ℓ=−∞

g̃ℓ(r, r
′)eiℓ(ϕ−ϕ

′), (12.7.48)

where x⃗ ≡ r(cosϕ, sinϕ) and x⃗′ ≡ r′(cosϕ′, sinϕ′). Carry out the jump condition analysis,
assuming the radial Green’s function g̃ℓ is a symmetric one. You should be able to appeal to
the solution in eq. (9.5.85) to argue there are no homogeneous contributions to this 2D Green’s
function; i.e., the A1 = A2 = 0 in eq. (12.7.28) are zero in this case.

12.8 ⋆Covariant Helmholtz Decomposition of 3-Vectors

Consider an infinite curved 3-dimensional space

dℓ2 = gij(x⃗)dx
idxj (12.8.1)

such that ∇⃗2ψ = δD(x⃗− x⃗′)/ 4
√
|g(x⃗)g(x⃗′)| admits a well-defined solution. (A closed space such

a sphere would not admit a solution, because the volume integral of ∇⃗2ψ on the left hand side
is always zero; while that of the right hand side would have to yield 1.) Then the Helmholtz
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decomposition of a vector states that any arbitrary V i may always be written as the sum of a
gradient and a curl,

V i = ∇iψ − ϵ̃ijk∇jUk, (12.8.2)

where

ψ(x⃗) =

∫
d3x⃗′

√
|g(x⃗′)|G(x⃗, x⃗′)∇i′V

i′(x⃗′), (12.8.3)

Ui(x⃗) = σg

∫
d3x⃗′

√
|g(x⃗′)|Gij′(x⃗, x⃗

′)ϵ̃j
′a′b′∂a′Vb′(x⃗

′), (12.8.4)

σg ≡ sign det gab. (12.8.5)

The vector is divergence-free, ∇iU
i = 0, whereas the Green’s functions obey

∇⃗2
x⃗G(x⃗, x⃗

′) = ∇⃗2
x⃗′G(x⃗, x⃗

′) =
δ(3)(x⃗− x⃗′)
4
√
|g(x⃗)g(x⃗′)|

(12.8.6)

and

∇⃗2
x⃗Gij′ −R l

i (x⃗)Glj′ = ∇⃗2
x⃗′Gij′ −R l′

j′ (x⃗
′)Gil′ = gij′(x⃗, x⃗

′)
δ(3)(x⃗− x⃗′)
4
√
|g(x⃗)g(x⃗′)|

. (12.8.7)

The ∇⃗2 = ∇i∇i is the Laplacian; R l
i the Ricci tensor; and gij′(x⃗, x⃗

′) the parallel propagator,
whose coincidence limit returns the metric, gij′(x⃗→ x⃗′) = gi′j′(x⃗

′).
The divergence of the vector Green’s function Gij′ with respect to x⃗ is the gradient of the

scalar one with respect to x⃗′,

∇iGij′(x⃗, x⃗
′) = −∇j′G(x⃗, x⃗

′). (12.8.8)

Curl and Divergence To understand eq. (12.8.2), we start by checking its consistency
with the curl and divergence of V i. Via a direct calculation, the curl of V i yields (cf. eq. (9.4.68))

ϵ̃ijk∂jVk = σg

(
∇⃗2U i −Ri

jU
j
)

(12.8.9)

= σ2
g

∫
d3x⃗′

√
|g(x⃗′)|

(
∇⃗2
x⃗G

i
j′ −Ril(x⃗)Glj′

)
ϵ̃j

′a′b′∂a′Vb′ (12.8.10)

= ϵ̃iab∂aVb(x⃗). (12.8.11)

Since the divergence of the second term on the right hand side of eq. (12.8.2) is identically zero,
the divergence of V i is simply the Laplacian of ψ.

∇iV
i =

∫
d3x⃗′

√
|g(x⃗′)|∇⃗2

x⃗G(x⃗, x⃗
′)∇a′V

a′ (12.8.12)

= ∇aV
a(x⃗). (12.8.13)

Let us put

V i = ∇iψ − ϵ̃ijk∇jUk +W i, (12.8.14)
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where W i is arbitrary for now. Taking the divergence and curl on both sides would teach us,
W i itself must be curl and divergence free:

ϵ̂ijk∇jWk = 0 = ∇iWi. (12.8.15)

Curl free implies W i = ∇iφ for some scalar φ and divergence free, in turn, tell us ∇⃗2φ = 0.
Provided φ itself does not blow up at infinity, the only solution is φ = φ0 = constant. That in
turn says W i = ∇iφ0 = 0.

Scalar and Vector Green’s Functions
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A Copyleft

You should feel free to re-distribute these notes, as long as they remain freely available. Please
do not post on-line solutions to the problems I have written here! I do have solutions to some
of the problems.

B Group Theory

What is a group? A group is a collection of objects {a, b, c, . . . } with a well defined
multiplication · rule, with the following axioms.

� Closure If a and b are group elements, so is a · b.

� Associativity The multiplication is always associative: a · b · c = (a · b) · c = a · (b · c).

� Identity There is an identity e, which obeys a · e = a for any group element a.

� Inverse For any group element b, there is always an inverse b−1 which obeys b ·b−1 = e.

Basic facts The left and right inverse of a group element is the same b−1 · b = b · b−1 = e.
The identity is its own inverse e−1 = e; and the left identity is the same as that of the right,
namely e · a = a · e = a for all a.

Problem B.1. Group elements & Linear operators Prove that invertible linear op-
erators acting on a given vector space themselves form a vector space. (Hint: In §(4) we have
already seen that the space of all linear operators form a vector space; so you merely need to
refer to the discussion at the end of §(4.1).)

Suppose {Xi|i = 1, . . . , N} is a collection of such invertible linear operators that are closed
under multiplication, namely

XiXj = cijkXk (B.0.1)

for any i, j, k ∈ {1, 2, . . . , N}; where cijk are complex numbers. Prove that these {Xi} form a
group. This result is the basis of group representation theory – turning the study of groups to
that of linear operators.

Group representations A representation of a group is a map from its elements {g1, g2, . . . }
to a set of invertible linear operators {D(g1), D(g2), . . . } which are closed under multiplication,
in such a way that preserves the group multiplication rules. In other words, the linear operators
are functions of the group elements D(g), such that

D(g1)D(g2) = D(g1g2). (B.0.2)

The identity maps to the identity

D(e) = I. (B.0.3)

because D(e)D(g) = D(e · g) = D(g) = I ·D(g) for all g. Also,

D(g−1) = D(g)−1 (B.0.4)

because D(g−1)D(g) = D(g−1g) = I = D(g)−1D(g).
Examples & Motivation Examples of groups representations can be found in §(5.4).

Quantum mechanical motivation for group representations can be found in §(5.5).
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C Conventions

Function argument There is a notational ambiguity whenever we write “f is a function of
the variable x” as f(x). If you did not know f were meant to be a function, what is f(x+sin(θ))?
Is it some number f times x+ sin θ? For this reason, in my personal notes and research papers
I reserve square brackets exclusively to denote the argument of functions – I would always write
f [x + sin[θ]], for instance. (This is a notation I borrowed from the software Mathematica.)
However, in these lecture notes I will stick to the usual convention of using parenthesis; but I
wish to raise awareness of this imprecision in our mathematical notation.

Einstein summation and index notation Repeated indices are always summed over,
unless otherwise stated:

ξipi ≡
∑
i

ξipi. (C.0.1)

Often I will remain agnostic about the range of summation, unless absolutely necessary.
In such contexts when the Einstein summation is in force – unless otherwise stated – both

the superscript and subscript are enumeration labels. ξi is the ith component of (ξ1, ξ2, ξ3, . . . ),
not some variable ξ raised to the ith power. The position of the index, whether it is super- or
sub-script, usually represents how it transforms under the change of basis or coordinate system
used. For instance, instead of calling the 3D Cartesian coordinates (x, y, z), we may now denote
them collectively as xi, where i = 1, 2, 3. When you rotate your coordinate system xi → Ri

jy
j,

the derivative transforms as ∂i ≡ ∂/∂xi → (R−1)ji∂j.
Dimensions Unless stated explicitly, the number of space dimensions is D; it is an arbi-

trary positive integer greater or equal to one. Unless stated explicitly, the number of spacetime
dimensions is d = D + 1; it is an arbitrary positive integer greater or equal to 2.

Spatial vs. spacetime indices I will employ the common notation that spatial indices
are denoted with Latin/English alphabets whereas spacetime ones with Greek letters. Spacetime
indices begin with 0; the 0th index is in fact time. Spatial indices start at 1. I will also use
the “mostly minus” convention for the metric; for e.g., the flat spacetime geometry in Cartesian
coordinates reads

ηµν = diag [1,−1, . . . ,−1] , (C.0.2)

where “diag[a1, . . . , aN ]” refers to the diagonal matrix, whose diagonal elements (from the top
left to the bottom right) are respectively a1, a2, . . . , aN . Spatial derivatives are ∂i ≡ ∂/∂xi;
and spacetime ones are ∂µ ≡ ∂/∂xµ. The scalar wave operator in flat spacetime, in Cartesian
coordinates, read

∂2 = □ = ηµν∂µ∂ν . (C.0.3)

The Laplacian in flat space, in Cartesian coordinates, read instead

∇⃗2 = δij∂i∂i, (C.0.4)

where δij is the Kronecker delta, the unit D ×D matrix I:

δij = 1, i = j
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= 0, i ̸= j. (C.0.5)

Index (anti-)symmetrization The symbols [. . . ] and {. . . } denote anti-symmetrization
and symmetrization respectively. In particular,

T[i1...iN ] =
∑

even permutations Π

TΠ[i1,...iN ] −
∑

odd permutations Π

TΠ[i1,...iN ], (C.0.6)

T{i1...iN} =
∑

all permutations Π

TΠ[i1,...iN ]. (C.0.7)

For example,

T[ijk] = Tijk − Tikj − Tjik + Tjki − Tkji + Tkij (C.0.8)

T{ijk} = Tijk + Tikj + Tjik + Tjki + Tkji + Tkij. (C.0.9)

Caution Beware that many relativity texts define their (anti-)symmetrization with a division
by a factorial; namely,

T[i1...iN ] =
1

N !

( ∑
even permutations Π

TΠ[i1,...iN ] −
∑

odd permutations Π

TΠ[i1,...iN ]

)
, (C.0.10)

T{i1...iN} =
1

N !

∑
all permutations Π

TΠ[i1,...iN ]. (C.0.11)

I prefer not to do so, because of the additional baggage incurred by these numerical factors when
performing concrete computations.

D Physical Constants and Dimensional Analysis

In much of these notes we will set Planck’s reduced constant and the speed of light to unity:
ℏ = c = 1. (In the General Relativity literature, Newton’s gravitational constant GN is also
often set to one.) What this means is, we are using ℏ as our base unit for angular momentum;
and c for speed.

Since [c] is Length/Time, setting it to unity means

[Length] = [Time] .

In particular, since in SI units c = 299, 792, 458 meters/second, we have

1 second = 299, 792, 458 meters, (c = 1). (D.0.1)

Einstein’s E = mc2, once c = 1, becomes the statement that

[Energy] = [Mass] .

Because [ℏ] is Energy × Time, setting it to unity means

[Energy] = [1/Time] .
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In SI units, ℏ ≈ 1.0545718× 10−34 Joules second – hence,

1 second ≈ 1/(1.0545718× 10−34 Joules) (ℏ = 1). (D.0.2)

Altogether, with ℏ = c = 1, we may state

[Mass] = [Energy] = [1/Time] = [1/Length] .

Physically speaking, the energy-mass and time-length equivalence can be attributed to relativ-
ity (c); whereas the (energy/mass)-(time/length)−1 equivalence can be attributed to quantum
mechanics (ℏ).

High energy physicists prefer to work with eV (or its multiples, such as MeV or GeV); and
so it is useful to know the relation

ℏc ≈ 197.326, 98MeV fm (D.0.3)

where fm = femtometer = 10−15 meters. Hence,

10−15 meters ≈ 1/(197.326, 98 MeV), (ℏc = 1). (D.0.4)

Using these ‘natural units’ ℏ = c = 1 is a very common practice throughout the physics literature.
One key motivation behind setting to unity physical constants occurring frequently in your

physics analysis, is that it allows you to focus on the quantities that are more specific (and hence
more important) to the problem at hand. Carrying these physical constants around clutter your
calculation, and increases the risk of mistakes due to this additional burden. For instance, in
the Bose-Einstein or Fermi-Dirac statistical distribution 1/(exp(E/(kBT )) ± 1) – where E, kB
and T are respectively the energy of the particle(s), kB is the Boltzmann constant, and T is
the temperature of the system – what’s physically important is the ratio of the energy scales,
E versus kBT . The Boltzmann constant kB is really a distraction, and ought to be set to
one, so that temperature is now measured in units of energy: the cleaner expression now reads
1/(exp(E/T )± 1).

Another reason why one may want to set a physical constant to unity is because, it could be
such an important benchmark in the problem at hand that it should be employed as a base unit.
For instance, most down-to-Earth engineering problems may not benefit from using the speed
of light c as their basic unit for speed. In non-relativistic astrophysical systems bound by their
mutual gravity, however, it turns out that General Relativistic corrections to the Newtonian
law of gravity will be akin to a series in v/c, where v is the typical speed of the bodies that
comprise the system. The expansion parameter then becomes 0 ≤ v < 1 if we set c = 1 – i.e.,
if we measure all speeds relative to c – which in turn means this ‘post-Newtonian’ expansion
is a series in the gravitational potential GNM/r through the virial theorem (kinetic energy ∼
potential energy) v ∼

√
GNM/r.

Newton’s gravitational constant takes the form

GN ≈ 6.7086× 10−39ℏc(GeV/c2)−2. (D.0.5)

Just from this dimensional analysis alone, when ℏ = c = 1, one may form a mass-energy scale
(‘Planck mass’)

Mpl ≡
1√

32πGN

. (D.0.6)
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(The 32π is for technical convenience.) This suggests – sinceMpl appears to involve relativity (c),
quantum mechanics (ℏ) and gravitation (GN) – that the energy scale required to probe quantum
aspects of gravity is roughly Mpl. Therefore, it may be useful to set Mpl = 1 in quantum gravity
calculations, so that all other energy scales in a given problem, say the quantum amplitude of
scattering gravitons, are now measured relative to it.

I recommend the following resource for physical and astrophysical constants, particle physics
data, etc.:

Particle Data Group: http://pdg.lbl.gov .

Problem D.1. Let ℏ = c = 1.

� If angular momentum is 3.34, convert it to SI units.

� What is the mass of the Sun in MeV? What is its mass in parsec?

� If Pluto is orbiting roughly 40 astronomical units from the Sun, how many seconds is this
orbital distance? How many GeV is it?

� Work out the Planck mass in eq. (D.0.6) in seconds, meters, and GeV.

Problem D.2. In (3 + 1)−dimensional Quantum Field Theory, an exchange of a massless
(integer spin) boson between two objects results in a 1/r Coulomb-like potential, where r is the
distance between them. (For example, the Coulomb potential between two point charges in fact
arises from an exchange of a virtual photon.) When a boson of mass m > 0 is exchanged, a short
range Yukawa potential V (r) ∼ e−mr/r is produced instead. Restore the appropriate factors of
ℏ and c in the exponential exp(−mr). Hint: I find it convenient to remember the dimensions of
ℏc; see eq. (D.0.3).

Problem D.3. Consider the following wave operator for a particle of mass m > 0,

W ≡ ∂µ∂
µ +m2, xµ ≡ (t, x⃗). (D.0.7)

� In W , put back the ℏs only.

� In W , put back the cs only.

� In W , put back both the ℏs and cs.

Assume that W has dimensions of 1/[Length2].
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