Analytical Solid Geometry

$>$ Distance formula(without proof)
> Division Formula
$>$ Direction cosines
$>$ Direction ratios
> Planes
$>$ Straight lines

Books

* Higher Engineering Mathematics

By B S Grewal

* Higher Engineering Mathematics

By H K Das

Coordinates and Direction cosines

- One position of a point in a plane is usually specified by two real numbers, x and y depend upon the chosen system of reference.
- But the position of a point in space is specified by three numbers x, y and z.

Here the ' P ' is located by three Cartesian coordinates x, y and z , the axes Ox, Oy and Oz are mutually perpendicular to each other.

Types of Coordinate System

- Rectangular Coordinate system:

Here ' P ' is located by the coordinates (x, y) and z which are called Rectangular coordinates.

- Curvilinear Coordinate System

There are two type of curvilinear coordinate system,
(i) Spherical polar coordinate system (ρ, θ, φ)

$$
x=\rho \sin \theta \cos \varphi=\rho \sin \theta \sin \varphi \quad z=\rho \cos \varphi y
$$

(ii) Cylindrical Polar Coordinate system (ρ, θ, Z)

$$
x=\rho \cos \theta \quad y=\rho \sin \theta \quad z=z
$$

Distance between two points

- Let $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q \quad\left(x_{2}, y_{2}, \mathrm{z}_{2}\right)$ be the two given points, $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

Ratio formula (section formula)

- Let $P(x, y, z)$ and $Q(x, y, z)$ be the two given points, $P Q$ divides internally in the ration $m_{1}: m_{2}$, let $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be the dividing point
$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, z=\frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}$
- If R is the midpoint, $\mathrm{m}_{1}=\mathrm{m}_{2}$
$R(x, y, z)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
- If , $\mathrm{m}_{1}: \mathrm{m}_{2}=\lambda: 1$
$R(x, y, z)=\left(\frac{\lambda x_{1}+x_{2}}{2}, \frac{\lambda y_{1}+y_{2}}{2}, \frac{\lambda z_{1}+z_{2}}{2}\right)$
- If $R(x, y, z)$ divides externally $m_{1}=m_{2}$,
$R(x, y, z)=\left(\frac{m_{1} x_{1}-m_{2} x_{2}}{2}, \frac{m_{1} y_{1}-m_{2} y_{2}}{2}, \frac{m_{1} z_{1}-m_{2} z_{2}}{2}\right)$

Centroid of a triangle whose vertices are given

Let A, B, C be the vertices of the triangle $A B C$. If D be the mid point of the $B C$ then, then G - Centroid, which divides AD in the ratio 2:1
$G(x, y, z)=\left(\frac{x_{1}+x_{2}+x_{3}}{2}, \frac{y_{1}+y_{2}+y_{3}}{2}, \frac{z_{1}+z_{2}+z_{3}}{2}\right)$

Centroid of a tetrahedron whose vertices are given

A tetrahedron is a solid bounded by four triangular faces at six edges and has four vertices A, B, C, D. Let G be the centroid of the tetrahedron $A B C D$ divides $A G$ in 3:1 then,

$$
\begin{aligned}
& \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{4}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}+\mathrm{z}_{4}}{2}\right) \\
& \text { OR } \quad \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{\sum \mathrm{x}}{4}, \frac{\sum \mathrm{y}}{4}, \frac{\sum \mathrm{z}}{4}\right)
\end{aligned}
$$

Direction cosines of a line ($\mathbf{l}, \mathrm{m}, \mathrm{n}$)

The cosines of the angles made by any line with the positive directions of the coordinate axes are called the Direction cosines of a line.

Let α, β, γ be the angles with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes then,
Then $; \mathrm{l}=\cos \alpha, \mathrm{m}=\cos \beta, \mathrm{n}=\cos \gamma$ are direction cosines

Coordinates of a point on a line whose direction cosines are given,

$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{lr}, \mathrm{mr}, \mathrm{nr})$

Relation between Direction Cosines, 1,m,n or a line

$\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1 \quad ; \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 ; \quad \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

Direction Ratios (proportional Direction cosines)

A set of three numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ to which D.C's of a line are proportional are called Direction Ratios.

Direction cosines from the Direction ratios

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the D.R's whose D.C's are $1, \mathrm{~m}, \mathrm{n}$ then,
$\mathrm{l}=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}} ; \mathrm{m}=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}} \quad ; \quad \mathrm{n}=\frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}}$
D.C's of line joining ($\mathbf{x}_{1}, y_{1}, z_{1}$) and (x_{2}, y_{2}, z_{2})

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ be the given points. PQ makes α, β, γ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively, then,
$\mathrm{l}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{PQ}} ; \mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{PQ}} ; \mathrm{n}=\frac{\mathrm{z}_{2}-\mathrm{z}_{1}}{\mathrm{PQ}}$

Angle between two lines having give D.C's.

Let AB and CD be two lines whose D.C's are $1_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ respectively, θ be the angle. Through 'OP' draw OP and OQ parallel to AB and CD.

Therefore, $\quad \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$
Note: if $\cos \theta$ is $-\mathrm{ve}, \theta$ between the two lines is oblique angle and acute at $(180-\theta)$

Expression for $\sin \theta$ and $\tan \theta$

Expression for $\sin \theta$ is given by
$\sin \theta=\sqrt{\sum\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)^{2}}$
Expression for $\tan \theta$ is given by
$\tan \theta=\frac{\sqrt{\sum\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)^{2}}}{11 \mathrm{l} 2+\mathrm{m} 1 \mathrm{~m} 2+\mathrm{n} 1 \mathrm{n} 2}$

Condition for three points to be collinear

Let Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ be three given points which are collinear if the D.C's of AB and BC are equal or their D.R's are proportional .

Therefore required condition for co linearity is
$\frac{x_{2}-x_{1}}{x_{3}-x_{2}}=\frac{y_{2}-y_{1}}{y_{3}-y_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}$

Condition for three concurrent lines to be coplanar

Let OP, OQ, OR be three concurrent lines with $1_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ and $\mathrm{l}_{3}, \mathrm{~m}_{3}, \mathrm{n}_{3}$ as D.C's respectively. If these are coplanar if there exists a straight line perpendicular to OA then, $\left|\begin{array}{lll}\mathrm{l}_{1} & \mathrm{~m}_{1} & \mathrm{n}_{1} \\ \mathrm{l}_{2} & \mathrm{~m}_{2} & \mathrm{n}_{2} \\ \mathrm{l}_{3} & \mathrm{~m}_{3} & \mathrm{n}_{3}\end{array}\right|=0$

Projection of the line joining two points on line
Let $A B$ be the given line with D.C's $1, m, n$. Let $P\left(x_{1}, y_{1}, z_{1}\right)$ and $R\left(x_{2}, y_{2}, z_{2}\right)$ be the given points. Let θ be the angle between $A B$ and $P R$, then

Projection of PR on $\mathrm{AB}=1\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{m}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\mathrm{n}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)$

Problems:

1. Find the direction cosines of a line whose direction ratios are $3,-4,5$.

Soln: Given D.R's are $3,-4,5 \Leftrightarrow \mathrm{a}, \mathrm{b}, \mathrm{c}$
\therefore We have the relations between D.C's and D.R's as,
$\mathrm{l}=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}} ; \mathrm{m}=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}} ; \quad \mathrm{n}=\frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}}$
$\mathbf{l}=\frac{3}{\sqrt{3^{2}+(-4)^{2}+5^{2}}}=\frac{3}{\sqrt{50}}=\frac{3}{5 \sqrt{2}}, \mathbf{m}=\frac{-4}{5 \sqrt{2}}, \mathbf{n}=\frac{1}{\sqrt{2}}$
which are also called as actual D.C's
2. Obtain the D.C's of a line equally inclined to the axes.

Soln. For equally inclined, $\alpha=\beta=\gamma \Rightarrow \cos \alpha=\cos \beta=\cos \gamma$
$\Rightarrow \mathrm{l}=\mathrm{m}=\mathrm{n}, \quad \mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1, \Rightarrow \mathrm{l}^{2}+\mathrm{l}^{2}+\mathrm{l}^{2}=1 \Rightarrow 1=\frac{1}{\sqrt{3}}$
\therefore D.C's are $\mathbf{l}, \mathrm{m}, \mathrm{n} \Rightarrow \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$
3. Find the coordinates of the point which divides the join the $(1,-2,3)$ and $(3,4,-5)$ in the ration $2: 3$ internally and in the 2:3 externally.

Soln. From the section formula, we have internal division,
$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, z=\frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}$
$x=\frac{2 \times 3+3 \times 1}{2+3}=\frac{\mathbf{9}}{\mathbf{5}} ; \mathbf{y}=\frac{\mathbf{2}}{\mathbf{5}} ; \mathbf{z}=\frac{\mathbf{- 1}}{\mathbf{5}}$
For external division,
$x=\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, y=\frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}, z=\frac{m_{1} z_{2}-m_{2} z_{1}}{m_{1}-m_{2}}$
$\mathbf{x}=\frac{2 \times 3-3 \times 1}{2-3}=-\mathbf{3} ; \mathbf{y}=-14 ; \mathbf{z}=\mathbf{1 9}$
4. Find the coordinates of the midpoint of the points $(1,2,3$,$) and (3,-6,7)$.

Soln. For midpoint, $\mathrm{m}=\mathrm{n}$;

$$
\mathrm{x}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \quad \mathrm{y}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \quad \mathrm{z}=\frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}
$$

$\mathrm{x}=2 \quad, \quad \mathrm{y}=-\mathbf{2} \quad, \quad \mathrm{z}=5$
5. Find the ratio in which the line joining the points $(3,1,5),(-2,4,-3)$ is divided by the xy -plane and also the coordinates of the pint of intersection.

Soln. General coordinates of any points on the line joining the given two points,
$\frac{\lambda \mathrm{x}_{1}+\mathrm{x}_{2}}{\lambda+1}, \frac{\lambda \mathrm{y}_{1}+\mathrm{y}_{2}}{\lambda+1}, \frac{\lambda \mathrm{z}_{1}+\mathrm{z}_{2}}{\lambda+1}$
$\Rightarrow \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{-2 \lambda+3}{\lambda+1}, \frac{4 \lambda+1}{\lambda+1}, \frac{-3 \lambda+5}{\lambda+1}$
Since the line is divided by $x y-$ plane, $z=0$, then,

$$
\begin{aligned}
& \frac{-3 \lambda+5}{\lambda+1}=0 \Rightarrow \lambda=\frac{5}{3} \Rightarrow \mathbf{m}: \mathbf{n}=\mathbf{5 : 3} \\
& \Rightarrow \mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\left(\frac{-\mathbf{1}}{\mathbf{8}}, \frac{\mathbf{2 3}}{\mathbf{8}}, \mathbf{0}\right)
\end{aligned}
$$

6. The D.C's are $1, m, n$ are connected by the relational $1+m+n=0,21 m+2 \ln -m n=0$. Find them.

Soln. Given $1+m+n=0,2 l m+2 \ln -m n=0$.
We solve the equations, $\Rightarrow \mathrm{n}=-1-\mathrm{m}$.
$21 m+2 l(-1-m)-m(-1-m)=0$.
Solving we get, $\mathbf{l}_{1}=\frac{1}{\sqrt{6}} ; \mathbf{m}_{1}=\frac{1}{\sqrt{6}} ; \mathbf{n}_{1}=\frac{-2}{\sqrt{6}}$ and $\mathbf{l}_{2}=\frac{1}{\sqrt{6}} ; \mathbf{m}_{2}=\frac{-2}{\sqrt{6}} ; \mathbf{n}_{2}=\frac{1}{\sqrt{6}}$
7. Prove that the three points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ whose coordinates are (3, 2,-, 4), (5,4,-6) and respectively are collinear, find the ratio in which the point Q dividing PR.

Soln. For co linearity, $\frac{x_{2}-x_{1}}{x_{3}-x_{2}}=\frac{y_{2}-y_{1}}{y_{3}-y_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}$
Let Q divides PR in the ratio, $\lambda: 1, \Rightarrow\left(\frac{9 \lambda+3}{\lambda+1}, \frac{8 \lambda+2}{\lambda+1}, \frac{-10 \lambda-4}{\lambda+1}\right)$,
Comparing with Q (any point)
Let $\frac{9 \lambda+3}{\lambda+1}=5 \Rightarrow \lambda=\frac{1}{2}, \therefore \lambda: \mathbf{1}=\frac{1}{2}: 1 \Rightarrow \mathbf{1}: \mathbf{2}$
8. A line makes angles α, β, γ and δ with the four diagonals of a cube, show that (1) $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{4}{3}$ (2) $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\frac{8}{3}$

Soln. Length of the cube be 'a' units AA', BB', CC' , OP be the diagonals $0(0,0,0), \mathrm{A}(\mathrm{a}, 0,0)$, $A^{\prime}(0, a, a), B(0, a, 0), B^{\prime}(a, 0, a), C(0,0, a), C^{\prime}(a, a, 0), \mathrm{P}(a, a, a)$ are the coordinates of the vertices,
D.R's of $\mathrm{AA}^{1}, \mathrm{BB}^{1}, \mathrm{CC}^{1}$, OP are $(-\mathrm{a}, \mathrm{a}, \mathrm{a}),(\mathrm{a},-\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{a},-\mathrm{a})$ and $(\mathrm{a}, \mathrm{a}, \mathrm{a})$

Therefore, D.C's of AA ${ }^{1}=-\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}=-\frac{1}{\sqrt{3}}=1, m=\frac{1}{\sqrt{3}}, \mathrm{n}=\frac{1}{\sqrt{3}}$
D.C's of $B^{1}=\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} ; C^{1}=\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}$ and OP are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

If $1, m, n$ are the C.C's of the given line we have $l^{2}+m^{2}+n^{2}=1$
$\cos \alpha=\frac{-1+m+n}{\sqrt{3}}, \cos \beta=\frac{1-m+\mathrm{r}_{1}}{\sqrt{3}}, \cos \gamma=\frac{1+\mathrm{m}-\mathrm{n}}{\sqrt{3}}, \cos \delta:=\frac{1+\mathrm{m}+\mathrm{n}}{\sqrt{3}}$
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{1}{3}\left(4 l^{2}+4 m^{2}+4 n^{2}\right)=\frac{4}{3}$
$\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma+\sin ^{2} \delta=\frac{8}{3}$
9. Find the coordinates of the point which divides the line joining the points $(2,-3,4)$ and $(0,-1,3)$ in the ratio 3:2 and also find the midpoint.

Soln. $(x, y, z) \equiv(2,-3,4),(x, y, z) \equiv(0,-1,3)$ and $m_{1}: m_{2} \equiv 3: 2$
$P(x, y, z)=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}$

$$
P(x, y, z)=\frac{4}{5}, \frac{-9}{5}, \frac{17}{5}
$$

Midpoint is

$$
\mathbf{R}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)=(1,-2,7 / 2)
$$

10 . Find the perimeter (length) of the triangle whose vertices are $(1,1,1),(1,-2,1)$ and ($-1,0,-2$) and also find the coordinates of the Centroid of the triangle.

Soln. Let A, B, C be the vertices of a triangle, then, $A B=3, B C=\sqrt{17}, A C=\sqrt{14}$
Perimeter $=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=\mathbf{3}+\sqrt{\mathbf{1 7}}+\sqrt{\mathbf{1 4}}$.
Centroid $=\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}=\frac{\mathbf{1}}{3}, \frac{-1}{3}, \mathbf{0}$
11. Find the coordinates of the foot the perpendicular from $(1,2,3)$ on the line joining $(1,3,7)$ and $(4,3,10)$.

Soln. Let ' L ' be the foot of perpendicular AL, which divides BC in the ratio $\lambda: 1$

$$
=\left(\frac{4 \lambda+1}{\lambda+1}, \frac{3 \lambda+3}{\lambda+1}, \frac{10 \lambda+7}{\lambda+1}\right) \text {, Also D.R's of the BC and AL are, }
$$

D.R's of BC; 4-1,3-3,10-7=(3,0,3)
D.R's of AL ; $\left(\frac{4 \lambda+1}{\lambda+1}-1, \frac{3 \lambda+3}{\lambda+1}-2, \frac{10 \lambda+7}{\lambda+1}-3\right)$ since AL is perpendicular to BC
$\operatorname{Cos} 90=0 \rightarrow \mathrm{BC}, \mathrm{QL}$ are the lines with D.R's as magnitudes
$(\mathrm{BC})(\mathrm{AL})=\left(\left(\frac{4 \lambda+1}{\lambda+1}-1\right) 3,\left(\frac{3 \lambda+3}{\lambda+1}-2\right) 0,\left(\frac{10 \lambda+7}{\lambda+1}-3\right) 3\right)$

$$
\lambda=-2 / 5, \mathrm{~L}=(-1,3,5)
$$

12. Show that pair of lines whose direction cosines are given by the equations

$$
21-m+2 n=
$$ $0, \mathrm{mn}+\mathrm{nl}+\mathrm{lm}=0$ are perpendicular.

Soln. Given $21-m+2 n=0 \quad \Rightarrow m=2 l+2 n$, substituting in
$\mathrm{mn}+\mathrm{nl}+\mathrm{lm}=0 \Rightarrow(2 \mathrm{l}+2 \mathrm{n}) \mathrm{n}+\mathrm{nl}+\mathrm{l}(2 \mathrm{l}+2 \mathrm{n})=0$, solving we get,
$\Rightarrow 21^{2}+5 \ln +2 \mathrm{n}^{2}=0$ which is quadratic equation
When,

$$
\begin{array}{l|l}
1=-n / 2 & 1=-2 n \\
m=-n / 2 \times 2+2 n=n & m=-4 n+2 n=\mathbf{- 2 n}
\end{array}
$$

The D.C's are , $1=-n / 2, m=n, n=n$ are one set of D.C's
and $\quad l_{1}=-2 n, m_{1}=-2 n, n_{1}=n$ are second set of D.C's
since the two lines are perpendicular then, $\mathrm{ll}_{1}+\mathrm{mm}_{1}+\mathrm{nn}_{1}=0$ then,
$n^{2}-2 n^{2}+n^{2}=0$ is satisfied.
13. Prove that the lines whose D.C's are given the relations $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$ and

(i) perpendicular if $1 / \mathrm{a}+1 / \mathrm{b}+1 / \mathrm{c}=0$

(ii) parallel if $a^{1 / 2}+b^{1 / 2}+c^{1 / 2}=0$

Soln. $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0 \Rightarrow \mathrm{n}=-(\mathrm{al}+\mathrm{bm}) / \mathrm{c}$, substituting, divided by m^{2}, we get, $\mathrm{a}(\mathrm{l} / \mathrm{m})^{2}+(\mathrm{c}-\mathrm{a}-\mathrm{b})(1 / \mathrm{m})+\mathrm{b}=0$ which is quadratic in $(1 / \mathrm{m})$,
then solution is given by
$\frac{\mathrm{l}_{1} \mathrm{l}_{2}}{\frac{1}{\mathrm{a}}}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\frac{1}{\mathrm{~b}}}=\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\frac{1}{\mathrm{c}}}=\mathrm{k} \Rightarrow \mathrm{l}_{1} \mathrm{l}_{2}=\frac{\mathrm{k}}{\mathrm{a}}, \mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{k}}{\mathrm{b}}, \mathrm{n}_{1} \mathrm{n}_{2}=\frac{\mathrm{k}}{\mathrm{c}}$
For perpendicular, $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=k(1 / a+1 / b+1 / c) i f f, l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
$\Rightarrow 1 / a+1 / b+1 / c=0$
If the lines are parallel,
$\mathrm{l}_{1}=\mathrm{l}_{2}, \mathrm{~m}_{1}=\mathrm{m}_{2}, \mathrm{n}_{1}=\mathrm{n}_{2}$
we have the condition for parallel roots the discriminant
$\Delta=\mathrm{b}^{2}-4 \mathrm{ac}$ here $\mathrm{b}=-(-\mathrm{a}-\mathrm{b})$, hence, $\mathrm{a}=\mathrm{a}, \mathrm{c}=\mathrm{b}$
$b^{2}-4 a c=(c-a-b)^{2}-4 a b$ solving we get,
$a^{1 / 2}+b^{1 / 2}+c^{1 / 2}=0$
14. A straight line is inclined to the axes y and z at angles 45° and 60°. Find the inclination the x - axis.

Soln. Let α be the inclination to $\mathrm{x}-$ axis, then $\beta=45^{\circ}$ and $\gamma=60^{\circ}$
We have, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$, substituting we get, $\boldsymbol{\alpha}=\mathbf{6 0}^{\boldsymbol{0}}$
15. Find the angle between the lines whose D.C's are $(1,-2,3)$ and $((2,4,2)$.

Soln. $\mathrm{l}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}=(1,-2,3)$ and $\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}=((2,4,2)$, we have
$\cos \theta=1_{1} 1_{2}+m_{1} m_{2}+n_{1} n_{2}$, Substituting we get $\boldsymbol{\theta}=\mathbf{9 0}^{\boldsymbol{0}}$
16. If the two lines have D.C's proportional $(1,2,3)$ and $(-2,1,3)$ respectively. Find the D.C's of a line perpendicular to the both of the line.

Soln. D.C's of the given line are $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ and $\frac{-2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
Let $1, m, n$ be the D.C's of a line perpendicular to between of them,
$\frac{1}{\sqrt{14}}, \frac{2 \mathrm{~m}}{\sqrt{14}}, \frac{3 \mathrm{n}}{\sqrt{14}}=0 \Rightarrow 1+2 \mathrm{~m}+3 n=0$ and $\frac{-2 l}{\sqrt{14}},-\frac{m}{\sqrt{14}}, \frac{3 n}{\sqrt{14}}=0 \Rightarrow-2 l+m+3 n=0$
Solving by cross multiplication, we get $\frac{1}{\left|\begin{array}{ll}2 & 3 \\ 1 & 3\end{array}\right|}=\frac{m}{\left|\begin{array}{cc}3 & 3 \\ -2 & 3\end{array}\right|}=\frac{n}{\left|\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right|}$
$(1, \mathrm{~m}, \mathrm{n}) \equiv(3,-9,5)$
17. Find the projection of the line joining $A(1,-2,2)$ and $B(-1,2,0)$ on aline which makes an angle 30° with AB .

Soln. projection of line on $\mathrm{AB}=\mathrm{AB} \cos 30^{\circ}$

$$
\sqrt{(1+1)^{2}+(-2-1)^{2}+(2-0)^{2}}=\frac{\sqrt{5}}{2}
$$

18. Find the projection of the line joining the points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(-1,1,0)$ on the line whose $\mathrm{D} . \mathrm{C}$'s are (2,3,-1)

Soln. Projection of AB on the line with D.C's $(2,3,-1)$
$=1\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{m}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\mathrm{n}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)=2(-1-1)+3(1-2) \pm 1(0-3)=-\mathbf{4}$
19. Set the points $\mathrm{A}(1,2,3), \mathrm{B}(-1,3,4)$ and $\mathrm{C}(3,1,2)$ are collinear.

Soln. Condition for three points are collinear is $\frac{x_{2}-x_{1}}{x_{3}-x_{2}}=\frac{y_{2}-y_{1}}{y_{3}-y_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=-\frac{\mathbf{1}}{\mathbf{2}}$
20. Set $\mathrm{A}(2,3,5), \mathrm{B}(-1,5,1)$ and $\mathrm{C}(4,-3,2)$ form an isosceles right angled triangle.

Soln. $\mathrm{AB}^{2}=49, \mathrm{BC}^{2}=98, \mathrm{CA}^{2}=49 \Rightarrow \mathrm{AB}=\mathrm{CA}, \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{CA}^{2}$
Therefore $\mathrm{A}=90^{\circ}$, triangle ABC is isosceles right angled triangle.
21. Find the coordinates of the foot of the perpendicular from $\mathrm{A}(0,9,6)$ on the line joining $\mathrm{B}(1,2,3)$ and $\mathrm{C}(7,-2,5)$.
22. Find the D.C's of the line which is perpendicular to the lines with D.C's proportional to $(1,-2,-2)$ and $(2,2,1)$
23. Find the D.R's of a line perpendicular to the two lines whose direction rations are $(-1,2,3)$ and $(2,3,2)$.

Soln. Let L_{1} and L_{2} are the given lines with $L_{1}=(-1,2,3)=\left(a_{1}, b_{1}, c_{1}\right)$ and

$$
\mathrm{L}_{2}=(2,3,2)=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)
$$

Let L_{3} be the line perpendicular to L_{1} and L_{2} has the D.R.'s a, b, c. Also $L 3$ is perpendicular to L_{1} and L_{2}, then $\theta=90^{\circ}, \cos 90=0$,
$\mathrm{aa}_{1}+\mathrm{bb}_{1}+\mathrm{cc}_{1}=0=-\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}=0$
$\mathrm{aa}_{2}+\mathrm{bb}_{2}+\mathrm{cc}_{2}=0=2 \mathrm{a}+3 \mathrm{~b}-2 \mathrm{c}=0$
by cross multiplication method, $a=\mathbf{- 1 3}, b=4, c=-7$
24. Find the coordinates of the foot the perpendicular drawn from $A(-3,-16,6)$ to the line joining $B(4,-$ $1,3), \mathrm{C}(0,5,-2)$.
25. Find the angle between the lines whose D.C's are given by the equation $31+m+5 n=0,6 m n-2 n l$ $+5 \operatorname{lm}=0$.
26. Find the D.Cs of the line which is perpendicular to the lines whose D.C's are proportional to $(1,-2,-$ $2)$, and ($(0,2,1)$.
27. Set the lines whose D.C's are given by the relations, $\mathbf{I}+\mathbf{m}+\mathbf{n}=\mathbf{0}$ and $\mathrm{al}^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}$ $=\mathbf{0}$ are perpendicular of $\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}$ and parallel of $\mathbf{1} / \mathbf{a}+\mathbf{1} / \mathbf{b}+\mathbf{1} / \mathbf{c}=\mathbf{0}$.
28. If $\mathrm{A}(1,4,2), \mathrm{B}(-2,1,2), \mathrm{C}(2,-3,4)$ be the points. Find the angles of triangle ABC. Find the D.R's of $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$.
29.

PLANE

Defn : - A plane is surface such that straight line joinng any two points lies entirely in the surface. OR An equation which involves one or more of the current coordinates of a variable point in moving space is said to represent a surface which may be either plane or curved. OR A plane is a surface in which the straight line joining any two points on it lies wholly on it.

General equation of a plane:

It is of the form $\mathbf{a x}+\mathbf{b y}+\mathbf{c z}+\mathbf{d}=\mathbf{0}$.

One point from of plane:

Let the general form is $a x+b y+c z+d=0$. Since it passes through (x, y, z), $+\mathrm{cz}_{1}+\mathrm{d}=0$, subtracting, $\mathbf{a}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)+\mathbf{b}\left(\mathbf{y}-\mathbf{y}_{\mathbf{1}}\right)+\mathbf{c}\left(\mathbf{z}-\mathbf{z}_{\mathbf{1}}\right)+\mathbf{d}=\mathbf{0}$ is called as "one point form of the plane"

Three point form of the plane through $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$.
Let the general form be $a x+b y+c z+d=0$ through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$.

| $a x_{1}+b y_{1}+c z_{1}+d=0$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| $a x_{2}+b y_{2}+c z_{2}+d=0$ | | | |
| $a x_{3}+b y_{3}+c z_{3}+d=0$ | | | |
| , | y | z | 1 |
| x_{1} | y_{1} | z_{1} | 1 |
| x_{2} | y_{2} | z_{2} | 1 |
| x_{3} | y_{3} | z_{3} | 1 |$|=0$

Condition for four point to be coplanar

Let the general form be ax $+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ and $\left(\mathrm{x}_{4}, \mathrm{y}_{4}, \mathrm{z}_{4}\right)$

$$
\left|\begin{array}{llll}
\mathrm{x}_{1} & \mathrm{y}_{1} & \mathrm{z}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & \mathrm{z}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & \mathrm{z}_{3} & 1 \\
\mathrm{x}_{4} & \mathrm{y}_{4} & \mathrm{z}_{4} & 1
\end{array}\right|
$$

$=0$

Intercept form equation of a plane having intercepts $\mathbf{a}, \mathrm{b}, \mathbf{c}$ on the axis

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the intercepts with the equation of plane be
$\alpha x+\beta y+\gamma z+d=0$ \qquad
Plane passes through $\mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0), \mathrm{C}(0,0, \mathrm{c})$.
Through

$$
\begin{array}{lll}
\mathrm{A}(\mathrm{a}, 0,0), & \alpha \mathrm{x}+0+0+\mathrm{d}=0, & \alpha=-\mathrm{d} / \mathrm{a} \\
\mathrm{~B}(0, \mathrm{~b}, 0), & 0+\beta \mathrm{y}+0+\mathrm{d}=0, & \beta=-\mathrm{d} / \mathrm{b} \\
\mathrm{C}(0,0, \mathrm{c}) . & 0+0+\gamma \mathrm{z}+\mathrm{d}=0, & \gamma=-\mathrm{d} / \mathrm{c}
\end{array}
$$

Therefore equation (1) becomes
$(-d / a) x-(-d / b) y-(-d / c) z+d=0$
$\mathbf{x} / \mathbf{a}+\mathbf{y} / \mathbf{b}+\mathbf{z} / \mathbf{c}=\mathbf{1}$ is the intercept form
Normal form of the plane having ' \mathbf{P} ' (perpendicular) from the origin and $1, m, n$ as Direction Cosine's.
$\mathrm{OL}=\mathrm{OP}=$ projection of OP on OL . Also $\mathrm{OL}=$ projection of the line joining $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on OL with D.C's l,m,n.

Therefore, $\quad \mathrm{P}=\mathrm{l}(\mathrm{x}-0)+\mathrm{m}(\mathrm{y}-0)+\mathrm{n}(\mathrm{z}-0)$

$$
\mathbf{P}=\mathbf{l} \mathbf{x}+\mathbf{m y}+\mathbf{n z} \text { be the normal form. } \mathrm{P} \text { is always positive. }
$$

Note : 1. An equation of the plane will be in normal form is
$(\text { Coeff. of } x)^{2}+(\text { Coeff. of } y)^{2}+(\text { Coeff, of } z)^{2}=1$.
2. $x \cos \alpha+y \cos \beta+z \cos \gamma=P$
3. Normal form of plane from General form,

$$
\frac{a x}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}}+\frac{\mathrm{by}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}}+\frac{\mathrm{cz}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}}=-\frac{\mathrm{d}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{C}^{2}}}
$$

4. D.C's of the normal to the plane are proportional the coefficients of the $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Plane through the intersection of the two planes
Let $\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+\mathrm{d}_{1}=0$ and $\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}_{2}=0$ be two planes, then equation of the plane is given by,

$$
\left(a x_{1}+b y_{1}+c z_{1}+d_{1}\right)+\lambda\left(a x_{2}+b y_{2}+c z_{2}+d_{2}\right)=0
$$

Angle between two planes

Let the two planes be $a x_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+\mathrm{d}_{1}=0$ and $a x_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}_{2}=0$, hence, D.R's are a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}.

Let $\boldsymbol{\theta}$ be the angle between two planes, then,
$\cos \theta= \pm \frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{a^{2}+b^{2}+c^{2}}}$
Note :1. If the planes are perpendicular then $\theta=90^{\circ}, \cos 90=0$

$$
\mathbf{a}_{1} \mathbf{a}_{2}+\mathbf{b}_{1} \mathbf{b}_{2}+\mathbf{c}_{1} \mathbf{c}_{2}=\mathbf{0}
$$

2. Two planes are parallel $\theta=0^{\circ}$ or $180^{\circ}, \cos 0=1$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow$ point of intersection is zero
3. Any plane parallel to the plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ is $\mathbf{a x}+\mathbf{b y}+\mathbf{c z}+\mathbf{k}=\mathbf{0}$, where k is to be evaluated.

Perpendicular distance of point from a plane.

If ax $+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ is $\quad \mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\frac{\mathbf{a x}_{\mathbf{1}}+\mathbf{b y}_{\mathbf{1}}+\mathbf{\mathbf { c z } _ { \mathbf { 1 } } + \mathbf { d }}}{ \pm \sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{C}^{2}}}$

Equations of the bisectors of the angles between two planes.

Let $\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+\mathrm{d}_{1}=0$ and $\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}_{2}=0$ be two planes, $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point at any one of the planes bisecting the angle between two given planes.

Perpendicular distance from $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from each plane is same.

$$
\mathbf{P}(x, y, z)=\frac{\mathbf{a x}_{1}+b y_{1}+\mathbf{c z}_{1}+d_{1}}{ \pm \sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{C}^{2}}}= \pm \frac{\mathbf{a x}_{2}+\mathbf{b y}_{2}+\mathbf{c z _ { 2 } + d _ { 2 }}}{ \pm \sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{C}^{2}}}
$$

Volume of a tetrahedron having given its vertices.

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ and $\mathrm{D}\left(\mathrm{x}_{4}, \mathrm{y}_{4}, \mathrm{z}_{4}\right)$ be the vertices of tetrahedron ABCD , Volume is given by,

$$
\left|\begin{array}{llll}
\mathrm{x}_{1} & \mathrm{y}_{1} & \mathrm{z}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & \mathrm{z}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & \mathrm{z}_{3} & 1 \\
\mathrm{x}_{4} & \mathrm{y}_{4} & \mathrm{z}_{4} & 1
\end{array}\right|
$$

PROBLEMS

1.Find the equation of the plane passes through he points $(0,1,1),(1,1,2)$ and $(-1,2,-2)$.

Soln. Let the equation of the plane be is $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$. If it passes through $(0,1,1)$,

$$
\begin{equation*}
\mathrm{a}(\mathrm{x}-0)+\mathrm{b}(\mathrm{y}-1)+\mathrm{c}(\mathrm{z}-1)=0 \tag{1}
\end{equation*}
$$

If eq.(1) passing through ($1,1,2$) and ($-1,2,-2$).then, solving we get,

$$
x-2 y-z+3=0
$$

2.Find the equation of the plane which passes through the point $(3,-3.1)$ and is
i) Parallel to the plane $2 x+3 y+5 z+6=0$
ii) Normal to the line joining the points $(3,2,-1)$ and $(2,-1,5)$.
iii) Perpendicular to the planes $7 x+y+2 z=6$ and $3 x+5 y-6 z=8$

Soln. Given plane is $2 x+3 y+5 z+6=0$,
i) Any plane parallel to it is $2 \mathrm{x}+3 \mathrm{y}+5 \mathrm{z}+\mathrm{k}=0$, through $(3,-3.1)$ is $6-9+\mathrm{k}=0, \mathbf{k}=\mathbf{- 2}$

Hence required plane is $\mathbf{2 x}+\mathbf{3 y}+\mathbf{5 z - 2}=\mathbf{0}$
ii) Any plane through $(3,-3.1)$ is, $a(x-3)+b(y+3)+c(z-1)=0$.
D.C's of the line joining $(3,2,-1)$ and $(2,-1,5)$ are proportional to
$\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right),\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right),\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)=(1,3,-6)$
Line is normal to the plane, $=\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=-6$
Therefore, $1(x-3)+3(y+3)-6(z-1)=0,=\mathbf{x}+\mathbf{3 y} \mathbf{- 6 z + 1 2}=\mathbf{0}$
iii) Any plane through (3,-3.1) is, $\mathrm{a}(\mathrm{x}-3)+\mathrm{b}(\mathrm{y}+3)+\mathrm{c}(\mathrm{z}-1)=0$.

This is perpendicular to the planes $7 x+y+2 z=6$ and $3 x+5 y-6 z=8$,
We know that $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$, therefore, $a=1, b=-3, c=-2$,
$\mathbf{x}-\mathbf{3 y}-\mathbf{2 z} \mathbf{- 1 0}=0$
3. Find the ratio in which the line joining of $(4,-2,-3)$ and $(-2,1,4)$ is divided by the plane $2 x-3 y-z$ $+3=0$.
Soln. Given eqn. is $2 x-3 y-z+3=0$. Let $\mathrm{A}(4,-2,-3)$ and $\mathrm{B}(-2,1,4)$ be the given points.
Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be the point divides in $\lambda: 1$ then, $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{-2 \lambda+4}{\lambda+1}, \frac{\lambda-2}{\lambda+1}, \frac{4 \lambda-3}{\lambda+1}\right)$
Substituting in plane we get $\lambda=5 / 2=\lambda: 1=5: 2$
4. Find the equation plane through the point $(1,1,1)$ and through the intersection of the planes $x+$ $2 y+3 z+4=0$ and $4 x+3 y+2 z+1=0$
5. Find the equation of the plane which passes through the line of cross-section of the planes $2 x+y$ $-z=2$ and $x-y+2 z=3$ and perpendicular to the plane $x+y+z=9$.
6. Find the equation of the plane passing through the line of cross-section of the planes $2 x-y+5 z$ $=-3$ and $4 x+2 y-z+7=0$ and parallel to the $z-a x i s$.
7.Find the intercepts made by the plane $2 x+3 y-z=-1$ on the coordinate axes and also find the D.C's of the normal to the plane.
8. Verify tha t the points $(1,-1,0),(2,1,-1),(-1,3,1)$ and $(-2,1,1)$ for coplanar and find the equation of the common plane.
9.Show that the Four points $(0,4,3),(-1,-5,-3),(-2,-2,1)$ and $(1,1,-1)$ are coplanar , find the equation of common plane.
10. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$.
11. Find the intercepts made by the plane $3 x+4 y-z=-6$ on the coordinate axes and find the D.C's of the normal to the plane.
12. Find the equation of the bisector of the angle between the planes $2 x+y+2 z-5=0$ and $3 x-$ $4 y+1=0$.

STRAIGHT LINE

STRAIGHT LINE

Definition: A plane cuts another plane in a line, therefore a straight line in a space is represented by two equation of the first degree in x, y, z

General form:

Let the points of cross-section of the two lines on the cross-section of two planes represents straight line i.e.

$$
\begin{aligned}
& \mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+\mathrm{d}_{1}=0 \text { and } \\
& \mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}_{2}=0
\end{aligned}
$$

together represents straight line.

Symmetrical form of the equations of a straight line

$A B$ is a line with D.C's 1 , m, n. $P(x, y, z)$ is a point on the line $A B$, AP - r.
$\mathrm{RS}=\mathrm{x}-\mathrm{x}_{1}=\mathrm{AP} \cos \alpha=\mathrm{rl}$
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$

Therefore equations of a line AB are
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$
is called as symmetrical form.

Note:

Coordinates of any point on the line, we have
$\frac{x-x_{1}}{l}=r \Rightarrow x=x_{1}+l r$, similarly $y=y_{1}+m r, z=z_{1}+n r$
$\mathbf{P}(\mathbf{x}, \mathbf{y}, \mathrm{z})=\left(\mathbf{x}_{\mathbf{1}}+\mathbf{l r}, \mathbf{y}_{1}+\mathbf{m r}, \mathrm{z}_{\mathbf{1}}+\mathrm{nr}\right)$
Equation of a line through ($x . y, z$) and having D.R's a,b,c.
Since the D.C's of a line are proportional to D.R's a,b,c. i.e., l,m,n $\equiv a, b, c$
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Equation (1),i.e., symmetrical form, r will be distances from $P(x, y, z)$ from $A\left(x_{1}, y_{1}, z_{1}\right)$ if and only if $1, \mathrm{~m}, \mathrm{n}$ are the actual D.C's.

Equation of the line passing through the two given points:

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ be the two points.
Therefore D.R's are $\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right),\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right),\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \equiv \mathrm{a}, \mathrm{b}, \mathrm{c}$
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$

INTERSECTION OF A LINE AND A PLANE

Let the lines $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ and plane be ax $+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$.
Coordinates of any point on the line be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\mathrm{x}_{1}+\mathrm{lr}, \mathrm{y}_{1}+\mathrm{mr}, \mathrm{z}_{1}+\mathrm{nr}\right)$ which lies on the plane ax $+b y+c z+d=0$,
$\mathrm{a}\left(\mathrm{x}_{1}+\mathrm{lr}\right)+\mathrm{b}\left(\mathrm{y}_{1}+\mathrm{mr}\right)+\mathrm{c}\left(\mathrm{z}_{1}+\mathrm{nr}\right)+\mathrm{d}=0, \Rightarrow r=\frac{a x_{1}+b y_{1}+c z_{1}+d}{a l+b m+c n}$
substituting this on $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ we get point of cross-section.

PERPENDICULAR DISTANCE OF A POINT FORM A LINE:

Let $\mathrm{P}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ be the given point, AB is the line
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$
$\left(x_{1}, y_{1}, z_{1}\right)$ is fixed point, $1, m, n$ be the D.C. s. PM is perpendicular to $A B$ i.e., $P M=d$.

$$
A P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

$\mathrm{AM}=$ projection of AP on AB. (By projection formula)
$M P^{2}=A P^{2}-A M^{2}=d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-$ $\left[\left(x_{2}-x_{1}\right) l+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n\right]^{2}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

