DAIMLERCHRYSLER DaimlerChrysler Powersystems

Analytical Tool Development for Aftertreatment Sub-Systems Integration

B. Bolton, A. Fan, K. Goney, Z. Pavlova-MacKinnon, K. Sisken, H. Zhang

Detroit Diesel Corporation

- Engine and Sub-System Integration Strategy
- Aftertreatment Model Development Strategy
- Model Applications for System Integration and Control Strategy Development

Conclusions

System Development Methodology

Aftertreatment Model Philosophy

- Plug & Play
 - » Simulink and Fortran Based Models
 - » Common Framework
 - » Can Be Combined Freely
- Variable Resolution Adaptable
 - » Prime Path A.T. Models are 1D
 - » 0D and 3D Also Developed
- Common Framework
 - » Sub-Models for
 - ✓ Flow
 - Chemical Kinetics
 - Thermal Modeling
 - ✓ Storage

DDC's Tool Box Description

Engine

- » Mapped Data
- » Mean Value (MV) Model
- » Cycle Simulation
- » Multi-Dimensional Models
- Vehicle Model
 - » Simple
 - » Complex
- Aftertreatment Models
 - » DPF
 - » SCR
 - » LNT
 - » DOC

Individual Models Have Been Extensively Validated

- Engine System Integration Strategy
- Aftertreatment Model Development Strategy
- Model Applications to System Integration and Control Strategy Development
- Conclusions

Integrated Emissions Reduction Roadmap Light Truck / SUV Platform

DAIMLERCHRYSLER Integrated Emissions Reduction Roadmap Light Truck / SUV Platform

Integrated Emissions Reduction Roadmap Light Truck / SUV Platform

DaimlerChrysler Powersvstems

550

Urea Injection Mixing and Spray Development

DaimlerChrysler Powersvstems

3

Urea Injection Control Issue Hole-to-Hole Flow Rate Variation

Before Optimization

3D CFD for NH3 Distribution

Urea Injection Control Strategy Development

Urea Control Strategies over Hot 505 Transient Cycle Using 1D SCR Model

Urea Injection Control Strategies on SCR Performance for a Hot 505 Cycle Using 1D SCR Model

System Integration Experimental Validation Urea Injection Control Strategy Development

Technical Challenges and Issues

- Reduce AT System Complexity
 - » Require Multiple AT Model Integrations
 - ✓ Model Fidelity when They are Integrated Together
- Sophisticated Controls Technology Integration
 - » Soot Filter Regeneration Strategy
 - Model Fidelity to Different Types of Soot Oxidation Mechanisms
 - Kinetic Data
 - » Urea Injection and Mixing Improvement
 - Small Urea Flow Rate Control
 - Uniform Urea Distribution
 - » Virtual Sensors and Control (Soot Loading, NH3 Slip)
 - How Can a Complicated 1D System Model Be Simplified to a 0D for On-board Virtual Sensor?
- Effect of Aging on Aftertreatment Performance
 - » How Modeling Can Capture Aging Effects?
 - Correlation Type or Physical Type?
- More/Better Kinetic Data Is Required
 - Industry, Catalyst Suppliers, National Laboratories, and Universities Can Work Together To Fill This Pre-Competitive Void

Concluding Remarks

- Modeling Framework Has Been Further Enhanced.
- Individual Models Have Been Developed and Validated.
- Models Have Been Applied to System Integration, and Control Strategy Development, Providing Valuable Design and Testing Directions.
 - » Tier 2 Milestone Results Have Been Achieved
 - Significant Challenges are Ahead

Acknowledgments

- DOE-Freedom Car and Vehicle Technologies
- DDC Engineering Technologies Team
- Engelhard Corporation
- Michigan Tech University
- Adapco, Gamma Technologies, Ricardo
- DCX Research & Technology

