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Abstract

Host compromise is a serious computer security
problem today. To better protect hosts, several Manda-
tory Access Control systems, such as Security Enhanced
Linux (SELinux) and AppArmor, have been introduced.
In this paper we propose an approach to analyze and
compare the quality of protection offered by the poli-
cies of different mechanisms. We introduce the notion
of vulnerability surfaces under attack scenarios as the
measurement of protection quality, and implement a tool
called VulSAN for analyzing and comparing protection
quality of these MAC systems for Linux. In VulSAN,
we encode security policies, system states, and system
rules using logic programs. Given an attack scenario,
VulSAN computes a host attack graph and the vulner-
ability surface. We apply our approach to compare
SELinux and AppArmor policies in several Linux dis-
tributions and discuss the results. Our tool can also be
used by Linux system administrators as a system hard-
ening tool. Because of its ability to analyze SELinux as
well as AppArmor policies, it can be used for most en-
terprise Linux distributions and home user distributions.

1 Introduction

Host compromise is one of the most serious computer
security problems today. A key reason why hosts can
be easily compromised is that the Discretionary Access
Control (DAC) mechanism in today’s operating systems
is vulnerable to Trojan horses and the exploitation of
buggy software. Recognizing this limitation of exist-
ing DAC mechanisms, in the past decade there have

been a number of efforts aiming at adding some form
of Mandatory Access Control (MAC) to Commercial-
Off-The-Shelf (COTS) operating systems. Examples in-
clude Low Water-Mark Access Control (LOMAC) [6,
7], Security Enhanced Linux (SELinux) [19], AppAr-
mor [5, 1], and Usable Mandatory Integrity Protection
(UMIP) [16]. Some of these systems have been widely
deployed. For example, SELinux is supported in a num-
ber of Linux distributions, including Fedora, Debian,
Gentoo, EnGarde and Ubuntu [3], and AppArmor is sup-
ported in Linux distributions including SUSE, PLD, Par-
dus Linux, Annvix, Ubuntu and Mandriva [2].

Given the existence of these protection systems, a
natural desire is to understand and compare the qual-
ity of protection (QoP) offered by them. A system ad-
ministrator would want to know the QoP offered by the
MAC system he is using. Note that by an MAC system,
we mean both the mechanism (e.g., SELinux or AppAr-
mor) and the specific policy being used in the system,
because the QoP is determined by both. More specif-
ically, it would be very useful for an administrator to
know: What kinds of attacks are prevented by the MAC
system my host is using? What does it take for an at-
tacker to penetrate the defense of the system, e.g., to
install a rootkit on my host? Can the attacker leave a
Trojan horse program on my host such that when the
program is later accidentally executed by a user, my host
is taken over by the attacker? Would it be more secure
if I use a competing distribution which has a different
MAC mechanism or different MAC policy?

In this paper, we develop a tool called Vulnerability
Surface ANalyzer (VulSAN) for answering these ques-
tions. We analyze the QoP by measuring the vulnera-
bility surface for attack scenarios. An attack scenario is
defined by an attack objective and the attacker’s initial



resources. For example, “remote to full control” is an
attack scenario in which a remote attacker wants to fully
control the system. Other attack scenarios can be “re-
mote to leaving a trojan”, “local to full control”, etc. A
vulnerability surface of a system is a list of minimal at-
tack paths. Each attack path consists of a set of programs
such that by compromising those programs the attack
scenario can be realized. Vulnerability surface is related
to attack surface [11] which is a concept in Microsoft
Security Development Lifecycle (SDL). Attack surface
uses the resources that might be used to attack a system
to measure the attackability of the system (details are
discussed in Section 2). They are different in that vulner-
ability surface provides potential multi-step attack paths
of a system while attack surface considers potential en-
trypoints of attacks. VulSAN computes the vulnerability
surfaces for attack scenarios under SELinux and AppAr-
mor. VulSAN encodes the MAC policy, the DAC policy
and the state of the host into Prolog facts, and generates
a host attack graph for each attack scenario, from which
it generates minimal attack paths which constitute the
vulnerability surface.

VulSAN can be used by Linux system administrators
as a system hardening tool. A system administrator can
use VulSAN to compute the host attack graphs for at-
tack scenarios that are of concern. By analyzing these
graphs, the administrator can try to harden the system by
tweaking the system and policy configurations. For ex-
ample, the administrator can disable some network dea-
mon programs, remove some unnecessary setuid-root
programs, or tweak the MAC (SELinux or AppArmor)
policies to better confine these programs. After mak-
ing these changes, the system administrator can re-run
the analysis to see whether it achieves the desired objec-
tive. Because VulSAN uses intermediate representation
of the system state and policy, it is possible to make the
changes in the representation and to perform analysis,
before actually deploying the changes to the real system.
Because VulSAN can handle both SELinux and AppAr-
mor, which are the two MAC systems used by major
Linux distributions, it can be used for most enterprise
Linux distributions and home user distributions.

VulSAN can also be used to compare the QoP of poli-
cies between different systems. Such comparison helps
system hardening. If an administrator knows that an-
other Linux distribution with the same services does not
have a particular vulnerability path, then the administra-
tor knows that it is possible to remove such a path while
providing the necessary services, and can invest the time
and effort to do so.

We have applied VulSAN to analyze the QoP of sev-

eral Linux distributions with SELinux and AppArmor.
Comparing the default policies of SELinux and AppAr-
mor for the same Linux distribution (namely Ubuntu
8.04 Server Edition), we find that AppArmor offers
significantly smaller vulnerability surface, while the
SELinux policy with Ubuntu 8.04 offers only slightly
smaller vulnerability surface compared with the case
when no MAC is used. More specifically, when no MAC
is used, the system has seven length-1 attack paths in
the scenario when a remote attacker wants to install a
rootkit. They correspond to the seven network-facing
daemon programs running as root, namely apache2,
cupsd, nmbd, rpc.mountd, smbd, sshd, and vsftpd.
Among them, the SELinux policy confines only cupsd.
This shows that the often claimed strong protection of
SELinux is not realized, at least in some popular Linux
distributions. We also note policies in different distribu-
tions offer different levels of protection even when they
use the same mechanism. For example, the SELinux
policy in Fedora 8, which is a version of the targeted
policy, offers tighter protection than that in Ubuntu 8.04,
which is a version of the reference policy. We also
observe that Ubuntu 8.04 and SUSE Linux Enterprise
Server 10 expose different vulnerability surfaces when
they both use AppArmor. Also, one attack scenario that
neither SELinux nor AppArmor offers strong protection
is when a remote attacker leaves a malicious executable
program somewhere in the system and waits for it to be
accidentally executed by users, at which point the pro-
cess would not be confined by the MAC system. This
attack is possible for two reasons. First, both SELinux
and AppArmor confine only a subset of the known pro-
grams and leave any program not explicitly identified as
unconfined. Second, as neither SELinux nor AppArmor
performs information flow tracking, the system cannot
tell a program left by a remote attacker from one origi-
nally in the system.

The rest of the paper is organized as follows: Sec-
tion 2 presents the background and related work. Sec-
tion 3 discusses our analysis approach. Section 4 talks
about the implementation of VulSAN. Section 5 presents
the results of comparing SELinux with AppArmor in
several Linux distributions. Section 6 concludes the pa-
per.

2 Background and Related Work

Security-Enhanced Linux [19] (SELinux) is a secu-
rity mechanism in Linux that has been developed to sup-
port a wide range of security policies. SELinux has been
integrated into Linux Kernel since 2.6. In SELinux, ev-



ery process has a domain and every object has a type.
Objects are categorized into object security classes, such
as files, folders, sockets, etc. A set of operations are de-
fined over each object security class (e.g., read, write,
execute, lock, create, rename, etc for a file). A SELinux
policy defines processes of which domains can access
objects of which types with which operations. A policy
also defines how to determine the domain of a process
and how the domain changes when a process executes
another program.

AppArmor [1] is an access control system that con-
fines the access permissions on a per program basis. It
confines programs that are likely to be attacked, e.g.,
server programs that face network and setuid root pro-
grams. For every protected program, AppArmor defines
a program profile. A profile is a list of permitted ac-
cesses, including file accesses and capabilities. The pro-
files of all protected programs constitute an AppArmor
policy. If a program does not have a profile, it is by de-
fault not confined. If a program has a profile, it only has
permissions specified in the profile.

Previous approaches for analyzing SELinux security
policies include Gokyo [14, 13], SLAT [8], PAL [21],
APOL [24, 10], SELAC [25], NETRA [18], and
PALMS [9]. Gokyo [14, 13] identifies a set of domains
and types as the implicit Trusted Computing Base (TCB)
of a SELinux policy. Integrity of the TCB holds if no
type in it can be written by a domain outside the TCB.
SLAT [8] verifies if a SELinux policy satisfies certain
information flow goals. It answers questions such as:
Is it true that all information flow paths in a system
from a starting security context to a final security con-
text go through a series of specific steps? PAL [21] pro-
vides similar functionalities to SLAT. It differs in that
it is implemented in XSB, a logic programming sys-
tem. This enables PAL to handle other kinds of queries.
APOL [24] is a tool to analyze the relationships between
domains and types in a SELinux policy. In [10] the au-
thors augment APOL to find paths from susceptible do-
mains to security sensitive domains. The selection of
susceptible and security sensitive domains is manually
done. The query language is less flexible than SLAT or
PAL, but it provides a graphical user interface to display
the results. SELAC [] is a formal model to describe the
semantics of a SELinux policy. The authors develop an
algorithm based on SELAC to verify if a given subject
can access a given object in a given mode. NETRA [18]
is a another tool for analyzing explicit information flow
relationships in access control configurations. It has
been applied to analyze Windows XP and SELinux poli-
cies. PALMS [9] is a tool for analyzing SELinux MLS

policy, and was used to verify that the SELinux MLS ref-
erence policy satisfies the simple security property and
the *-property defined by Bell and LaPadula [4].

Our work is different in the following ways. First,
VulSAN supports analyzing AppArmor in addition to
SELinux. Second, VulSAN utilizes the current system
state (such as which files exist in the system) as well as
DAC policies (such as which users can write to a file
according to the DAC permission bits) in addition to
the MAC policies. As shown in Section 5.2, consider-
ing DAC is necessary to obtain accurate analysis results.
Third, our goal, which is to compute the vulnerability
surface under different attack scenarios, is different from
that of existing tools. In particular we need to be con-
cerned with more than just providing a policy analysis
tool; we need to also come up with appropriate ways of
querying the tool and analyzing the result.

Comparing the QoP offered by different systems is
challenging because different policy models are used.
For example, SELinux uses Type Enforcement (TE), and
AppArmor confines security-critical programs with pro-
files. Currently there exists no tool to compare the secu-
rity of systems protected using different technologies.
There is an ongoing debate about which of SELinux
and AppArmor is a better system, but such debate often
centers on the mechanism and lacks actual comparison
of the security offered by the standard policies shipped
with these protection systems. As a result, such com-
parison tends to become rhetoric wars. In [15] Cowan
from Novell and Riek from Red Hat debated about us-
ability, simplicity, and policy implementation (labels vs.
pathnames) between AppArmor and SELinux. QoP is
not discussed in details. We believe that comparisons
involving actual deployed policies are necessary. It may
be theoretically possible to configure a MAC system to
offer very strong protection, but it is the shipped stan-
dard policy that determines the QoP in reality, since very
few people change the shipped policy. In our approach,
we perform a concrete measurement of QoP for both
mechanisms using shipped policies.

Attack surface is proposed as a metric to measure the
attackability of a system [11, 12]: “The attack surface of
an app is the union of code, interfaces, services, proto-
cols, and practices available to all users, with a strong fo-
cus on what is accessible to unauthenticated users.” The
heuristic is that a larger attack surface indicates a less
secure system. Reducing the attack surface is part of the
Microsoft Security Development Lifecycle (SDL) [11].
In [17], Manadhata et al. propose to measure a system’s
attack surface in terms of three kinds of resources used
in attacks on the system: methods, channels and data.
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Figure 1. Solution Overview

Two IMAP and two FTP programs are evaluated using
this method.

Attack graph is used to analyze the security of net-
works in existing works [22, 20]. Our approach also
computes a graph similar to an attack graph. However,
our problem space is different, as we consider control
of processes under different access control restrictions,
rather than control of network-connected hosts. Also,
we perform additional analysis on the resulted graph to
generate all minimal attack paths for analysis and com-
parison purposes.

3 Overview of Our Approach

To analyze and compare the QoP of MAC systems,
we need a way to define the QoP first. Lacking such a
definition prevents debates about the virtues of different
systems to go beyond subjective and rhetoric arguments.
In this paper, we present a first attempt at coming up
with a pragmatic definition.

The MAC systems are motivated by the threats and
attacks facing today’s operating systems, thus they
should be evaluated by their ability to defend against
these attacks. Our approach generates all possible at-
tack paths that can lead an attacker to control of the sys-
tem. We analyze the QoP under multiple attack scenar-
ios. Each attack scenario has two aspects. One is the
objective of the attacker (e.g., load a kernel module or
plant a trojan horse). The other is the initial resources
the attacker has (e.g., can connect to the machine from
network, or has a local account). Based on the scenario,
VulSAN gives all possible attack paths.

Our approach consists of following steps:

1. Establish a running server as the analysis target.

2. Translate policy rules and system state information
into Prolog facts. We write parsers for SELinux

and AppArmor policies. We write scripts to collect
information of the file system and running services.

3. Encode what the attacker can do to break into a sys-
tem and escalate privileges in one or more steps.
For each security-enhanced mechanism, we define
the notion of attack states to describe the attacker’s
current privileges. For each MAC system we write
a library of system rules that describe how an at-
tacker exploits a program to cause state transition
under the MAC system.

4. Encode an attack scenario into a query, and use the
query to generate the host attack graph. A host at-
tack graph is a directed graph. The graph nodes are
attack states, and graph edges correspond to state
transitions. Edges are marked by programs, and by
compromising marked programs the attacker can
cause state transitions. We call the nodes of the
graph that represent the attacker’s initial resources
initial attack states, and we call the nodes of the
graph that represent the attack objective goal attack
states.

5. Analyze the host attack graph. What we care about
are the paths from initial attack states to goal attack
states. The most interesting paths are the ones that
are “minimal”. VulSAN generates all the minimal
attack paths.

Figure 1 shows the overview of our approach.
The interesting result from the host attack graph is the

attack paths. An attack path is a path that starts from an
initial attack state and ends with a goal attack state. Sup-
pose there are two attack paths p1 and p2, and we have
V (p1) ⊂ V (p2) (V (p) represents the set of edge labels
along the path). Then we are not interested in p2 since it
is easier to realize p1 than to realize p2. An attack path p
is desirable when there does not exist another attack path



p′ such that V (p′) ⊂ V (p). We call such paths minimal
paths.

We define the vulnerability surface of a protection
system as the set of all minimal attack paths. Each path
includes the programs that must be exploited to realize
the attack objective.

When we compare two protection systems A and B
under the same attack scenario, we first generate the sets
of all minimal attack paths of the two protection sys-
tems, called PA and PB . For any path p ∈ PA, we say:

• p is a strong path if there exists a path p′ ∈ PB such
that V (p) ⊂ V (p′).

• p is a weak path if there exists a path p′ ∈ PB such
that V (p) ⊃ V (p′).

• p is a common path if there exists a path p′ ∈ PB

such that V (p) = V (p′).

• p is a unique path otherwise.

When comparing A and B, a common path shows a
common way to exploit both systems. A strong path p
of system A suggests that, if the attacker compromises
the same programs in p under system B, she will need to
compromise more programs to achieve the attack objec-
tive in B. A weak path p of A suggests that, compromis-
ing a subset of the programs in p under B already helps
the attacker to achieve the objective in B. A unique path
p of A suggests that A is more vulnerable than B be-
cause by realizing p, an attacker can compromise A but
not B. By examining the strong, weak, common, and
unique attack paths in details, we can better understand
the differences of QoP between two systems.

There are two approaches to use the sets of minimal
attack paths to compare the QoP of two systems. In one
approach, one makes no assumption about whether one
program is easier to compromise than another program.
In this approach, one could only partially order the QoP
as measured by the host vulnerability surfaces of dif-
ferent systems. PA has higher QoP than PB when all
minimal attack paths for PA are either common paths or
weak paths. That is, for every minimal attack path p for
PA, either PB has the same path, or there exists a path
p′ for PB that contains a strict subset of the programs in
p, which means that p′ is easier to exploit than p. The
strength of this approach is that the comparison result re-
mains valid even when some programs are significantly
easier to exploit than other programs. The drawback is
that often times two protection systems are not directly
comparable. Most of the analysis in this paper use this
approach.

In the second approach, one views each program
as one unit, implicitly assuming that all programs are
equal. By making this assumption, it is possible to
come up with a total order among all protection sys-
tems. However, the drawback is that the validity of the
assumption is questionable. In a few head-to-head com-
parisons in this paper, we use this approach. Whenever
we do so, we will explicitly state the assumption that all
programs are considered equal.

The ideal solution is to be able to quantify the efforts
needed to exploit different programs. However, this is
a challenging open problem that appears unlikely to be
solved anytime soon.

4 Our Tool

VulSAN consists of the following components: the
Fact Collector, the Host Attack Graph Generator, and
the Attack Path Analyzer.

4.1 Fact Collector

Fact Collector retrieves information about the system
state and security policy, and encodes the information as
facts in Prolog.

The information about file system consists of facts of
all relevant files, system users, system groups and run-
ning processes. Several sample Prolog facts are depicted
in Figure 2. We only consider system facts that are rel-
evant to our security analysis. Irrelevant information,
like CPU/memory consumption of a process, is not con-
sidered. Whether a piece of system information is rele-
vant to our analysis depends on the system rules (which
will be discussed later), and the MAC system to be ana-
lyzed. Some facts are security-relevant under all protec-
tion mechanisms, like uid/gid of a process; while some
facts are unique to a particular mechanism, like security
contexts in SELinux and process profiles in AppArmor.

The encoding of Prolog facts for security policies
vary for different security mechanisms. For example, in
SELinux policies, there are several kinds of statements,
e.g., Type Enforcement Access Vector Rules and Type
Enforcement Transition Rules. We also define all the
domains and types. Figure 3 gives several sample Pro-
log facts which are generated based on a SELinux pol-
icy. Our parser for SELinux policy is based on the tool
checkpolicy.

In AppArmor, a profile defines the privileges of a
certain program. A privilege can be a capability, or a
set of permissions over a file or file pattern. Figure 4



(1) file_info(path(’/usr/bin/passwd’),
type(regular), owner(0), group(0),
uper(1,1,1), gper(1,0,1), oper(1,0,1),
setuid(1), setgid(0), sticky(0),
se_user(’system_u’), se_role(’object_r’),
se_type(’bin_t’)).

(2) user_info(’root’, 0, 0).
(3) group_info(’mail’, 8, [dovecot]).
(4) process_running(4412, 0, 0,

’/usr/lib/postfix/master’,
system_u, system_r, initrc_t).

(5) process_networking(4412).

(1) is the fact for file /usr/bin/passwd. The fact encodes the
file name, type, owner, group, user/group/world permissions, se-
tuid/setguid/sticky bit, and security context of the file. (2) is the fact
for root user, which includes the user name, user id and group id. (3)
is the fact for mail group, which includes the group name, group id
and group members. (4) is the fact for the postfix master process. The
fact contains the process id(pid), user id(uid), group id(gid), executed
program, and the security context of the process. (5) is the fact for the
same process as (4), denoting that the process is open to network.

Figure 2. Sample Facts of System State

(1) dom_priv(’user_ssh_t’, ’bin_t’, ’file’,
[’ioctl’, ’read’, ’getattr’, ’lock’,
’execute’, ’execute_no_trans’]).

(2) se_typetrans(old_dom(’user_ssh_t’),
new_dom(’user_xauth_t’),
type(’xauth_exec_t’)).

(3) se_domain(’user_ssh_t’).
(4) se_type(’bin_t’).

(1) says a process running under domain ‘user ssh t’ has the following
permissions over a file with type ‘bin t’: ioctl, read, getattr, etc. The
fact is derived from a TE Access Vector Rule. (2) says if a process run-
ning under domain ‘user ssh t’ executes an executable file with type
‘xauth exec t’, the domain of the process should transition to domain
‘user xauth t’. The fact is derived from a TE Type Transition Rule. (3)
says ‘user ssh t’ is a SELinux domain. (4) says ‘bin t’ is a SELinux
type. Facts like (3) and (4) are used to enumerate SELinux domains
and types.

Figure 3. Sample Facts of SELinux Policy

(1) aa_capability(’/usr/lib/postfix/master’,
’net_bind_service’).

(2) aa_access_mode(’/usr/lib/postfix/master’,
’/etc/samba/smb.conf’, r(1), w(0),
ux(0), px(0), ix(0), m(0), l(0)).

(1) says the program /usr/lib/postfix/master has the capability of
net bind service. (2) says the program can read samba configure file
/etc/samba/smb.conf. Facts like (2) define the privileges of a program
over a certain file or file pattern.

Figure 4. Sample Facts of AppArmor Policy

gives some sample Prolog facts of an AppArmor pol-
icy. Our parser for AppArmor policy is based on appar-
mor parser.

4.2 Host Attack Graph Generator

Host Attack Graph Generator takes system facts, a
library of system rules and the attack scenario as input,
and generates the host attack graph. We first discuss how
to define attack states.

In our analysis, the basic unit is a process. The
attack state of a process consists of process attributes
that are related to access control enforcement. Uid
and gid of a process are used in Linux DAC mech-
anism, which is the default mechanism. MAC sys-
tems give additional process attributes. In SELinux,
the current domain of a process is a security related at-
tribute. Hence the attack state of a process is described
as proc(uid, gid, domain). In AppArmor, an attack state
is represented as proc(uid, gid, profile) where profile is
the profile that confines the process.

Given the attack state of a process controlled by the
attacker, the privileges available to the attacker is defined
by the policy. For example, under SELinux, a process
with a certain domain can only have a certain set of per-
missions. Permissions also depend on the uid and gid.
Figure 5 gives some relevant predicates to describe such
enforcement.

Suppose the attacker controls a process p, she may
exploit or launch a program prog to further control an-
other attack state. We are interested in all the potential
attack states that might be controlled by an attacker.

In SELinux, we represent the fact that the
attacker can control a certain attack state as
se node(proc(uid, gid, domain)). If the attacker
controls attack state s1, and after exploiting a program
prog she can control attack state s2, the transition is
represented as se edge(s1, s2, prog). Here se node(·)
and se edge(·, ·, ·) are both dynamic predicates in
Prolog. The state transition depends on the current
attack state, the compromised program and the policy.

As one example of system rules, we now discuss how
to encode domain transition under SELinux. The logic
to decide domain transition is described in [23], and is
non-trivial. Suppose the current domain is OldDom, the
type of the executable is Type and the new domain is
NewDom. We summarize the logic as follows:

1. If OldDom doesn’t have file execute permission on
Type, the access is denied.

2. If there is a type transition rule: ‘type transition



dac can execute(Uid, Gid, Program) : Decide if a process with
certain uid and gid can execute a program.

dac execve(Uid, Gid, NewUid, NewGid, Program) : Decide the
new uid and gid of a process after executing a program.

se can execute prog(Domain, Program, NewDomain) : Decide if a
process with certain domain can execute a program, and what the new
domain is after execution.

aa file privilege(Profile, File, Mode) : Decide if a process with a
certain profile can access a file with a certain mode, e.g., read, write,
execute.

aa new profile(Profile, Program, NewProfile) : Get the new profile
of a process after executing a program. A profile can be ‘none’
meaning there is no profile confining the process.

Figure 5. Sample System Rules

se_can_execute_type(Domain, Type, NewDomain) :-
se_typetrans(old_dom(Domain),

new_dom(NewDomain), type(Type)),
!,
se_domain_privilege(domain(Domain),

type(Type), class(file), op(execute)),
se_domain_privilege(domain(Domain),

type(NewDomain), class(process),
op(transition)),

se_domain_privilege(domain(NewDomain),
type(Type), class(file), op(entrypoint)).

se_can_execute_type(Domain, Type, NewDomain) :-
se_domain_privilege(domain(Domain),

type(Type), class(file), op(execute)),
se_domain_privilege(domain(Domain), type(Type),

class(file), op(execute_no_trans)),
NewDomain = Domain.

Figure 6. Rules for Domain Transition

OldDom Type: process NewDom’, the access is
granted only when OldDom has process transition
permission on Type and NewDom has file entry-
point permission on Type. Otherwise the access is
denied. If the access is granted, the process runs on
the domain NewDom after executing the program.

3. If there isn’t such a type transition rule, the ac-
cess is granted only when OldDom has file exe-
cute no trans permission on Type. Otherwise the
access is denied. If the access is granted, the pro-
cess runs on the original domain OldDom after ex-
ecuting the program.

Using logic programming the domain transition logic
can be encoded naturally. Related Prolog code is shown
in Figure 6.

The initial resources of the attacker can be repre-
sented as a set of initial attack states. Suppose the at-
tacker can connect to the machine from the network, the
initial attack states are encoded in Figure 7(a). Simi-

net_init(proc(Uid,Gid,Domain), [Program]) :-
process_networking(Pid),
process_running(Pid, Uid, Gid, Program,

_, _, Domain).

(a) Initial resources: the attacker can connect to the machine from
network

load_module_goal(proc(0, _Gid, Domain)) :-
se_domain_privilege(domain(Domain), _,

class(capability), op(sys_module)).

(b) Attack objective: to load a kernel module

Figure 7. Predicates for Initial Attack
States and Goal Attack States

1: function GENERATE GRAPH NODE(s)
2: if s is already a graph node then
3: return
4: Add s as a graph node
5: if s is a goal attack state then
6: return
7: for all program prog that s can execute do
8: s′ ← the attack state after executing prog
9: Add (s, s′) as a graph edge with label prog

10: Generate Graph Node(s′)

1: function GENERATE HOST ATTACK GRAPH
2: for all Initial attack state s do
3: Generate Graph Node(s)

Figure 8. Algorithm for Host Attack Graph
Generation

larly, we use a set of goal attack states to represent the
objective of the attacker. The encoding of the objective
to load a kernel module is depicted in Figure 7(b).

Given the initial attack states and the goal attack
states, we can generate the host attack graph that con-
tains all the potential states that the attacker can control.
The pseudo code is depicted in Figure 8.

4.3 Attack Path Analyzer

Attack Path Analyzer finds all the minimal attack
paths in a host attack graph. Figure 9 describes the it-
erative algorithm used by Attack Path Analyzer. The al-
gorithm repeatedly updates a set of paths for each node
until all the sets are stablized.



1: function GENERATE MINIMAL ATTACK PATHS
2: V ← V ∪ vg
3: for all goal attack state node v do
4: add an edge from v to vg ,
5: the exploited program for the edge is empty
6: for all v ∈ V do
7: MP(v)← φ
8: for all initial attack state node v do
9: MP(v)← {φ}

10: repeat
11: stable← true
12: for all e ∈ E do
13: for all p ∈ MP(e.v1) do
14: p′ ← append(p, e)
15: if ∃p0 ∈ MP(e.v2) s.t. V (p′) ⊂ V (p0) then
16: Remove all such paths from MP(e.v2)

17: if not ∃p1 ∈ MP(e.v2) s.t. V (p′) ⊃ V (p1) then
18: MP(e.v2)←MP(e.v2) ∪ {p′}
19: stable← false
20: until stable
21: return MP(vg)

Symbols Meaning
V The set of host attack graph nodes
E The set of host attack graph edges
vg The virtual “goal” node added such that each goal

attack state has an edge to vg
MP MP(v) stores the set of minimal attack paths to

node v
e.v1, e.v2 The starting node and ending node of an edge e
V (p) The set of all exploited programs along the path p
append(p, e) Append edge e to the end of path p

Figure 9. Minimal Attack Paths Generation

4.4 Tool Status

We have implemented VulSAN in Linux. VulSAN
has been used to evaluate SELinux and AppArmor in
several Linux distributions. We plan to further improve
the tool and release it to the public in the future (possi-
bly under the terms and conditions of the GNU General
Public License (GPL)).

5 Comparing SELinux with AppArmor

We use three attack scenarios to evaluate our ap-
proach. The first is for a remote attacker to install a
rootkit. We assume the rootkit is installed by loading
a kernel module. The second is for a remote attacker to
plant a Trojan horse. We use two definitions of trojan
attacks: (1) the attacker can create an executable in a
folder on the executable search path or user’s home di-
rectory (2) the attacker can create an executable in any
folder such that a normal user process (with a user’s uid
and runs under unconfined domain in SELinux or is not
confined by any profile in AppArmor) can execute. In

both cases, after the trojan program is executed the pro-
cess should be unconfined. We call (1) a strong trojan
case and (2) a weak trojan case. The third is for a local
attacker to install a rootkit.

We analyze the QoP under several configurations:

1. Ubuntu 8.04 (we use the Server Edition for all the
test cases) with SELinux and Ubuntu 8.04 with Ap-
pArmor. To understand what additional protec-
tion MAC offers on top of DAC, we also evalu-
ate Ubuntu 8.04 with DAC protection only (without
MAC protection).

2. Fedora 8 with SELinux and SUSE Linux Enterprise
Server 10 with AppArmor. We compare the results
with Ubuntu 8.04/SELinux and Ubuntu 8.04/Ap-
pArmor to show that different distributions with the
same mechanism provide different levels of protec-
tion.

3. Ubuntu 8.04 with SELinux. In the evaluation, we
only analyze the SELinux policy. We use the result
to show that only considering MAC policy without
DAC policy and system state is not sufficient.

The active services include: sshd, vsftp, apache2,
samba, mysql-server, postfix, nfsd, named, etc. In Fe-
dora 8, the SELinux policy is the targeted policy that
shipped with the distribution. In Ubuntu 8.04, the
SELinux policy is the reference policy that comes with
the selinux package. The AppArmor policy is the one
that comes with the apparmor-profiles package.

5.1 SELinux vs. AppArmor vs. DAC only on
Ubuntu 8.04

Ubuntu 8.04 Server Edition supports both SELinux
and AppArmor. This offers an opportunity for us to
compare the QoP of SELinux and AppArmor head to
head. We also include the case in which only DAC is
used in the comparison.

A Remote Attacker to Install a Rootkit In this attack
scenario, the attacker has network access to the host, and
the objective is to install a rootkit via loading a kernel
module. The host attack graphs for DAC only, AppAr-
mor and SELinux are shown in Figure 10, Figure 11 and
Figure 12, respectively. The comparison of minimal at-
tack paths between SELinux and AppArmor is shown in
Figure 13.

Among the three cases, AppArmor has the small-
est vulnerability surface. SELinux has all the minimal
attack paths AppArmor has and some additional ones.
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Figure 10. Host Attack Graph for a Remote Attacker to Install a Rootkit (Ubuntu 8.04 with DAC
only)
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Figure 11. Host Attack Graph for a Remote Attacker to Install a Rootkit (Ubuntu 8.04 with
AppArmor)
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Figure 12. Host Attack Graph for a Remote
Attacker to Install a Rootkit (Ubuntu 8.04
with SELinux)

The DAC only case has all the attack paths SELinux
has, and has one additional minimal attack path. More
specifically, AppArmor has 3 length-1 minimal attack
paths and 34 length-2 minimal attack paths. In addition
to these, SELinux has 3 more length-1 minimal attack
paths and 63 more length-2 minimal attack paths.

Attack paths common to all three cases are mainly
due to daemon programs that run in unconfined domain
under SELinux (meaning that the program is not con-
strained by SELinux) and are not confined by profiles
under AppArmor. The length-1 paths are due to the
daemon programs apache2, rpc.mountd and sshd which
run as root. (Although sshd is running in sshd t under
SELinux and confined by a profile in AppArmor, the
domain and the profile both allow the process to load a
kernel module directly or indirectly). The length-2 paths
are due to unprivileged daemon programs mysqld and
named. After compromising one of them, the attacker
needs to do another local privilege escalation.

The minimal attack paths that SELinux has but Ap-
pArmor doesn’t have are due to three reasons: (1) Some
programs are running in the unconfined t domain under
this version of SELinux policy, while AppArmor has
profiles for them; these include, e.g., nmbd, smbd, vs-
ftpd, portmap, and rpc.statd. (2) Some programs are
confined by SELinux domains, but the confinements are
not as tight as corresponding AppArmor profiles. Two
programs, cupsd and dhclient, fall into this category.
For example, domain dhcpc t is allowed to load a ker-
nel module while the profile /sbin/dhclient doesn’t allow
kernel module loading. (3) Some programs (named and
mysqld) are not confined either in SELinux or AppAr-
mor. However, because they run with unprivileged ac-
counts (as opposed to the root) under DAC, compromis-
ing them do not enable the attacker to load a kernel mod-
ule. There are unique attack paths for SELinux because
of the confinement of some setuid root programs. Ping
and passwd are unconfined in SELinux but confined in
AppArmor, therefore they can be used to further esca-
late the attackers’ privileges after compromising named
or mysqld.

Somewhat surprisingly, the DAC only case has only
one additional (strong) length-1 minimal attack path
compared to SELinux. The path is /usr/sbin/cupsd. The
cupsd daemon runs as root and is confined by the cups t
domain of SELinux. When the attacker exploits cupsd
with SELinux enabled, she has to additionally exploit
the setuid root program /bin/unix chkpwd to gain the
privilege to install a rootkit.

Our analysis shows that among the seven network-
facing programs running as root in Ubuntu 8.04 Server



SELinux compared to AppArmor
common /usr/sbin/apache2

/usr/sbin/rpc.mountd
/usr/sbin/named SUID*
/usr/sbin/mysqld SUID*
/usr/sbin/sshd

unique /usr/sbin/nmbd
/usr/sbin/smbd
/usr/sbin/vsftpd
/sbin/portmap SUID**
/sbin/rpc.statd SUID**

/usr/sbin/cupsd /sbin/unix chkpwd
/sbin/dhclient SUID**
/sbin/dhclient /lib/dhcp3-client/call-
dhclient-script

/usr/sbin/named /bin/ping
/usr/sbin/named /usr/bin/passwd
/usr/sbin/mysqld /bin/ping
/usr/sbin/mysqld /usr/bin/passwd

SUID* represents a set of setuid root programs:
/bin/ping6
/bin/su
/sbin/mount.nfs
/usr/bin/arping
/usr/bin/chfn
/usr/bin/chsh
/usr/bin/gpasswd
/usr/bin/mtr
/usr/bin/newgrp
/usr/bin/sudo
/usr/bin/sudoedit
/usr/bin/traceroute6.iputils
/usr/lib/eject/dmcrypt-get-device
/usr/lib/openssh/ssh-keysign
/usr/lib/pt chown
/bin/mount
/bin/umount

SUID** includes all programs in SUID* and also
/bin/ping and /usr/bin/passwd

Figure 13. Minimal Attack Paths Comparison for a Remote Attacker to Install a Rootkit

Edition, namely apache2, cupsd, nmbd, rpc.mountd,
smbd, sshd, and vsftpd, only one of them is confined in
any meaningful way by the SELinux policy. Hence one
can argue that the additional protection provided by the
SELinux reference policy in Ubuntu 8.04 is quite lim-
ited.

Remote Attacker to Leave a Trojan Horse
We consider a scenario in which the attacker is re-

mote and wants to leave a Trojan horse. We consider
both the strong Trojan horse case and the weak Trojan
horse case. We observe that performing a strong trojan
attack is always not more difficult than installing a ker-
nel module.

For Ubuntu 8.04 with AppArmor, compared to load-
ing kernel module, there is one extra attack path in
strong trojan attack: /usr/sbin/smbd. For Ubuntu 8.04
with SELinux, the host attack graph is the same as the
graph for a remote attacker to install a rootkit.

It’s significantly easier to perform weak trojan at-
tacks. Figure 14 shows the host attack graph to leave
a weak trojan in Ubuntu 8.04 with SELinux. Every net-
work faced program, if compromised, can be used di-
rectly to leave a weak Trojan horse. This is so due to
two reasons. First, both SELinux and AppArmor con-
fine only a subset of the known programs and leave any
program not explicitly identified as confined. Second,

as neither SELinux nor AppArmor performs informa-
tion flow tracking, the system cannot tell a program left
by a remote attacker from one originally in the system.

A Local Attacker to Install a Rootkit
In the third attack scenario, the attacker has a local ac-

count. The objective is to install a rootkit (load a kernel
module). Figure 15 and Figure 16 shows the host attack
graphs for Ubuntu 8.04 with SELinux and AppArmor,
respectively.

Again, AppArmor has a smaller vulnerability
surface. All minimal exploit paths in AppArmor
also occur in SELinux, which has some additional
exploit paths. There are 19 common minimal attack
paths, they are all of length 1. They are due to 19
setuid root programs that have sufficient privileges.
These programs are /bin/fusermount, /bin/ping6,
/bin/su, /sbin/mount.nfs, /usr/bin/arping, /usr/bin/chfn,
/usr/bin/chsh, /usr/bin/gpasswd, /usr/bin/mtr,
/usr/bin/newgrp, /usr/bin/sudo, /usr/bin/sudoedit,
/usr/bin/traceroute6.iputils, /usr/lib/eject/dmcrypt-get-
device, /usr/lib/openssh/ssh-keysign, /usr/lib/pt chown,
/usr/sbin/pppd, /bin/mount, /bin/umount.

The programs in the common paths are setuid root
programs. The result shows that the way for a local
user to load a kernel module is to exploit one of the se-
tuid root programs. SELinux has 2 unique minimal at-
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Figure 14. Host Attack Graph for a Remote Attacker to Leave a Weak Trojan (Ubuntu 8.04 with
SELinux)
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Figure 15. Host Attack Graph for a Local
Attacker to Install a Rootkit (Ubuntu 8.04
with SELinux)

tack paths for SELinux: /bin/ping and /usr/bin/passwd.
They are due to the same reason in the first scenario,
that SELinux does not confine ping and passwd while
AppArmor confines them.

5.2 Other Comparisons

In this subsection we compare the QoP offered by
different Linux distributions with a same MAC mech-
anism. We also discuss why considering MAC policy
alone is not enough.

Different Versions of SELinux
We have found that the SELinux policy in Fedora 8,
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Figure 16. Host Attack Graph for a Local
Attacker to Install a Rootkit (Ubuntu 8.04
with AppArmor)

which is the SELinux targeted policy, offers signifi-
cantly better protection than the SELinux in Ubuntu 8.04
Server Edition, which uses a version of the SELinux ref-
erence policy. In addition, the most current version of
the SELinux reference policy is also tighter than the pol-
icy shipped with Ubuntu 8.04.

Figure 17 shows the host attack graph for a remote
attacker to install a rootkit in Fedora 8 with SELinux.
The vulnerability surface is not directly comparable with
that of Ubuntu 8.04 (shown in Figure 12) because each
has some unique attack paths. If we assume that all
programs are equal, the vulnerability surface of Fe-
dora 8/SELinux is smaller because there is 1 length-
1 minimal attack path and 13 length-2 minimal attack



paths in Fedora 8/SELinux, while there are 6 length-
1 minimal attack paths and 97 length-2 minimal attack
paths in Ubuntu 8.04/SELinux.
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Figure 17. Host Attack Graph for a Remote
Attacker to Install a Rootkit (Fedora 8 with
SELinux)

Figure 18 shows the host attack graph for a remote at-
tacker to leave a strong trojan in Fedora 8 with SELinux.
Compared to the kernel module loading scenario, tro-
jan attack scenario has three additional minimal attack
paths:

/usr/sbin/rpc.mountd
/usr/sbin/smbd
/usr/sbin/sendmail /usr/bin/procmail

Two paths are related to file sharing and the other is due
to sendmail. Those programs are confined, but they have
privileges to write to the user’s home directory or di-
rectories in the executable search path. Under the as-
sumption that all programs are equal, the vulnerabil-
ity surface of Fedora 8/SELinux is smaller than that of
Ubuntu 8.04/SELinux for the remote trojan attack sce-
nario.

init

proc(0, 0, nfsd_t)

/usr/sbin/rpc.mountd

proc(0, 0, smbd_t)

/usr/sbin/smbd

proc(0, 0, initrc_t)

/usr/sbin/rpc.rquotadproc(0, 51, sendmail_t)

/usr/sbin/sendmail

proc(0, 0, sshd_t)

/usr/sbin/sshd

proc(0, 0, dhcpc_t)

/sbin/dhclient

proc(0, 51, procmail_t)

/usr/bin/procmail

proc(0, 0, unconfined_t)

/bin/bash

/bin/zsh
/etc/rc.d/init.d/ntpd

Figure 18. Host Attack Graph for a Remote
Attacker to Leave a Strong Trojan (Fedora
8 with SELinux)

Different Versions of AppArmor

We have analyzed the vulnerability surface of SUSE
Linux Enterprise Server 10 (SLES 10) with AppArmor
protection. To keep the services in SLES 10 the same as
in Ubuntu 8.04, some services that are up by default in
SLES 10 are turned off, e.g., slpd and zmd.

The vulnerability surface of SLES 10/AppArmor un-
der the scenario that a remote attacker wants to install
a rootkit (as shown in Figure 19) is not directly com-
parable with that of Ubuntu 8.04/AppArmor. The two
distributions expose different vulnerability surfaces.
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Figure 19. Host Attack Graph for a Remote
Attacker to Install a Rootkit (SUSE Linux
Enterprise Server 10 with AppArmor)

The common attack paths are through sshd and
rpc.mountd (NFS mount daemon). The unique paths for
Ubuntu 8.04 are through apache2, mysqld and named,
due to that those programs are not confined. The unique
paths for SLES 10 are through cupsd since cupsd is not
confined. Sshd also contributes to some unique paths
since there are more shells installed in SLES 10.

In SLES 10, the host attack graph for a remote at-
tacker to plant a strong Trojan horse is the same as the
graph for a remote attacker to install a rootkit. For a lo-
cal attacker to install a rootkit, the host attack graph for
SLES 10 is shown in Figure 20. There are 10 common
attack paths due to unconfined set uid root programs.
There are 9 unique attack paths for Ubuntu 8.04 and 20
unique attack paths for SLES 10.

The Need to Consider DAC Policy
Our approach considers both the MAC policy and
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Figure 20. Host Attack Graph for a Local
Attacker to Install a Rootkit (SUSE Linux
Enterprise Server 10 with AppArmor)

the DAC policy. If we only consider MAC policy, e.g.,
SELinux policy, the result may not be accurate. Fig-
ure 21 shows the host attack graph for a remote attacker
to install a rootkit, when we only consider SELinux pol-
icy but not DAC policy. Compared to the host attack
graph that considers both DAC and MAC policy (shown
in Figure 12), we observe that without considering
DAC policies, there are following extra length-1 attack
paths: /sbin/portmap, /sbin/rpc.statd, /usr/sbin/mysqld,
/usr/sbin/named, /sbin/dhclient. They are not accurate.
For example, mysqld is running with uid 110 and un-
confined t. By compromising mysqld the attacker can
control unconfined t, but she still cannot load a kernel
module because the uid is unprivileged. To control root
uid the attacker needs to do another exploit, e.g., by ex-
ploiting a setuid root program.
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Figure 21. Host Attack Graph for a Remote
Attacker to Install a Rootkit (Ubuntu 8.04
with SELinux – only Considering SELinux
Policy)

5.3 Performance

In our experiments, the targeted operating systems
(Ubuntu, Fedora and SUSE Linux) are installed in vir-
tual machines using VMWare. The host attack graph
generation and attack path analysis are performed on a
laptop with Intel(R) Pentium(R) M processor 1.80GHz
and 1G memory. The Prolog engine is swi-prolog
5.6.14.

The running time for the fact collector is less than 10
minutes for every test case. The running time for the
host attack graph generation and analysis is less than 10
minutes for every test case.

6 Conclusions

In this paper, we propose an approach to analyze
and compare the protection quality offered by policies
of different Mandatory Access Control mechanisms in
security-enhanced operating systems. Our analysis is
based on the security policy, system state and system
configuration. We develop a tool to generate the host at-
tack graph for a given attack scenario. We propose to
use vulnerability surface to measure the protection qual-
ity of a system. We evaluate our approach by analyz-
ing and comparing SELinux and AppArmor in several
Linux distributions.
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