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Overview

• Comparison of traditional and modern methods

• Data file structures

• Time-varying and time-invariant covariates 

• Modeling nonlinearity and interactions

• Modeling treatment effects

• Error covariance structures

• Models with random coefficients



A Comparison of Traditional and Modern Methods

Traditional Methods

paired-samples t-test and repeated measures ANOVA

MANOVA/MANCOVA

trend analysis

Advantages

tests and confidence intervals are “exact” in small samples

easy to use in SPSS, SAS and R

Disadvantages
requires equally spaced time intervals (trend analysis)

list-wise deletion is required with missing data

cannot accommodate time-varying covariates



A Comparison of Traditional and Modern Methods

Modern Methods

covariance pattern (CP) models

random coefficient (RC) models

Advantages
will use all available data

can handle unequally spaced time intervals

not all participants must be measured at all time periods

can accommodate time-varying covariates

can describe variability in model parameters (RC)

Disadvantages
computer programs are more difficult to use

tests and confidence intervals are only approximate in small samples



Data File Structure for CP and RC Models

CP and RC analyses require the data to be in a “long” format.

Suppose we have data for 30 participants who are each measured at 3
time points. The traditional “wide” format would have the following form
and would have 30 rows and 3 columns (the Participant column is not

analyzed). If data are in a wide format, the Restructure option in SPSS
(under Data tab) can be used to convert the data file into a long format.

Participant    Time 1   Time 2   Time 3

1                 24          29           30

2                 16          15           18

…                  …            …            …

30                 20          21           25   



Data File Structure for CP and RC Models

For a CP or RC analysis, these data would be entered in a “long” format
as shown below. The data file has 90 rows and 3 columns. The
Participant variable is used in a CP and RC model specification.

Participant   Time    Score

1                1            24

1                2            29

1                3            30

2                1            16

2                2            15

2                3            18

…              …            …

30                1   20

30                2   21

30                3   25



Time Invariant and Time Varying Covariates 

Participant   DV    Grade     Sex     TEE    

1            54         1     1        17                  - Sex is a time-invariant covariate

1            56         2     1          8

1           67         3     1          4                  - TEE (Teacher Emotional Exhaustion)

1            60         4            1        10                     is a time-varying covariate  

2            47         1        0          9 

2           42         2       0        14

2           48         3        0        12

2            49         4            0          5

…           …         …          …        …



Modeling Nonlinearity

Participant    DV    Day     Day2   Day3

1            54        -2          4         -8

1            56        -1          1         -1                 

1            67         0          0           0             Time for linear trend

1            60         1          1           1             Time2  for quadratic trend

1            64         2          4           8             Time3 for cubic trend

2            47        -2          4          -8

2            42        -1          1          -1              Note: Mean centering the Time

2            48         0          0           0              variable reduces multicollinearity

2            49         1          1           1 

2            52         2          4           8

…         …         …   …   …   



Modeling Interaction Effects

Participant    DV    Grade     Sex    Grade x Sex    

1            54         -2            1        -2

1            56         -1            1          -1

1            67         0            1          0 

1            60         1            1        1

1            51          2            1               2

2            47         -2            0          0 

2            42         -1            0        0

2            48         0            0        0             Note: Mean centering the Grade

2            49         1            0         0 variable reduces multicollinearity

2            54          2            0               0

…           …    …          …   …



Modeling Treatment Effects

Example:  2-group repeated measured design

Participant    DV    Month   Treatment    

1            54         1        1  

1            56         2           1            

1            67         3           1  

1            60         4           1      

2            47         1            0                

2            42         2           0               

2            48         3           0               

2            49         4            0               

…           …        …     …              



Modeling Treatment Effects (continued)

Example:  one-sample multiple pretest-posttest design

Participant    DV    Month   Treatment    

1            54         1        0  

1            56         2           0            

1            67         3           1  

1            60         4           1      

2            47         1            0                

2            42         2           0               

2            48         3           1               

2            49         4            1               

…           …        …     …              



Modeling Treatment Effects (continued)

Example:  two-sample multiple pretest-posttest design

Participant    DV    Month   Treatment    

1            54         1        0  

1            56         2           0            

1            67         3           1                         Participant 1 is in treatment group

1            60         4           1                         Participant 2 is in control group

2            47         1            0                

2            42         2           0               

2            48         3           0               

2            49         4            0               

…           …        …     …              



The General Covariance Pattern (CP) Model 

A CP model for participant i measured at t time periods:

𝑦𝑖𝑗 = 𝑏0 + 𝑏1𝑡𝑖𝑗 + 𝑏2𝑥2𝑖𝑗 +⋯+ 𝑏𝑞𝑥𝑞𝑖𝑗 + 𝑒𝑖𝑗

for j = 1 to t.

Unlike the traditional multiple regression model, it is not reasonable to
assume that the prediction errors (ei1, ei2, … , eit) are uncorrelated and

have equal variances. With longitudinal data, the errors will be usually

be correlated and could also have unequal variances.



CP Model Error Covariance Structures

Unstructured (t = 4)
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This error structure allows the t = 4 prediction error variances (diagonal

elements) to be unequal and the covariances (off-diagonal elements) to

be unequal.



CP Model Error Covariance Structures (continued)

Compound Symmetric   (t = 4)
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This error structure assumes that the t = 4 prediction error variances

(𝜎2) are all equal and that all covariances (𝜌𝜎2) are equal.



CP Model Error Covariance Structures (continued)

AR(1) (t = 4)
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This error structure assumes that the t = 4 prediction error variances

(𝜎2) are all equal and that the correlation between two prediction errors

becomes smaller as the time separation increases.



CP Model Error Covariance Structures (continued)

ARMA(1,1) (t = 4)
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This error structure assumes that the t = 4 prediction error variances

(𝜎2) are all equal and that the correlation between two prediction errors

becomes smaller as the time separation increases, but the decreases

are more gradual than in an AR(1) structure.



CP Model Error Covariance Structures (continued)

Toeplitz (t = 4)
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This error structure assumes that the t = 4 prediction error variances

(𝜎2) are all equal and that the correlations are equal only within each

band that is parallel to the main diagonal.



CP Model Error Covariance Structures (continued)

Heteroscedastic AR(1) has an AR(1) correlation structure but does not

assume equal variances.

Heteroscedastic Toeplitz has a Toeplitz correlation structure but does

not assume equal variances.

The AR(1), ARMA(1,1) and Toeplitz structures (with or without the equal

variance assumption) both assume the time periods are approximately

equally spaced. The Unstructured form does not require equally spaced

time periods.



Choosing a CP Model Error Covariance Structure

If there are no missing data and the number of participants is greater

than the number of time periods plus number of model parameters, then

the Unstructured or Heteroscedastic Toeplitz can be used. These two

structures provide the most realistic description of the true error

covariance structure. The Heteroscedastic AR(1) error structure might

also be a realistic option.

If the number of time periods is greater than the number of participants

and there is substantial missing data, then it might be necessary to use

a very simple error covariance structure such as AR(1), ARMA(1,1), or

Compound Symmetric.



SPSS Example

A mood questionnaire was given to a sample of 30 assembly line

workers on Monday, Wednesday and Friday (t = 3).

The Mixed Model – Linear option in SPSS will be used to analyze the

data using a CP model with an Unstructured error covariance matrix

and day of week as a predictor of mood.

SPSS will be used to estimate the intercept and slope of the following

CP model:

𝑦𝑖𝑗 = 𝑏0 + 𝑏1𝑡𝑗 + 𝑒𝑖𝑗



RC Models for Longitudinal Data

Consider the following “level-1” model for participant i

𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗

where the prediction errors (𝑒𝑖𝑗 ) are assumed to have equal variances

and be uncorrelated.

The n participants are assumed to be randomly sampled from some

population. This implies that the coefficients 𝑏0𝑖 and 𝑏1𝑖 can be treated

as random variables.



RC Models for Longitudinal Data (continued)

We can write a “level-2” statistical model for each of these random
coefficients.

𝑏0𝑖 = 𝑔00 + 𝑟0𝑖
𝑏1𝑖 = 𝑔01 + 𝑟1𝑖

Substituting these equations into 𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 gives the
following “composite model”

𝑦𝑖𝑗 = 𝑔00 + 𝑔01𝑡𝑖𝑗 + 𝑟0𝑖 + 𝑡𝑖𝑗𝑟1𝑖 + 𝑒𝑖𝑗

𝑟0𝑖 and 𝑟1𝑖 are the random effects and 𝑔00 and 𝑔01 are the fixed
effects, hence the name “mixed-effects models”.



RC Models for Longitudinal Data (continued)

The composite model can be written as

𝑦𝑖𝑗 = 𝑔00 + 𝑔01𝑡𝑖𝑗 + 𝑒𝑖𝑗
∗

where 𝑒𝑖𝑗
∗ = 𝑟0𝑖 + 𝑡𝑖𝑗𝑟1𝑖 + 𝑒𝑖𝑗 is the composite prediction error.

After some covariance algebra, it can be shown that 

var(𝑒𝑖𝑗
∗ ) = var(𝑟0) + var(𝑟1)𝑡𝑗

2 + 2cov(𝑟0, 𝑟1)𝑡𝑗 + var(𝑒0) 

cov(𝑒𝑖𝑗
∗ , 𝑒𝑖𝑗′

∗ ) = var(𝑟0) + var(𝑟1)𝑡𝑗𝑡𝑗′ + cov(𝑟0, 𝑟1)(𝑡𝑗 + 𝑡𝑗′)



RC Models for Longitudinal Data (continued)

We started with the model 𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 where 𝑒𝑖𝑗 were

assumed to be uncorrelated and have equal variances. But if 𝑏0𝑖 and

𝑏1𝑖 are random coefficients, we obtain the following model

𝑦𝑖𝑗 = 𝑔00 + 𝑔01𝑡𝑖𝑗 + 𝑒𝑖𝑗
∗

where the prediction errors are not assumed to be uncorrelated or have

equal variances.

The variances and covariances of the prediction errors (𝑒𝑖𝑗
∗ ) are not

completely unrestricted but are specific functions of time.



RC Models with Interaction Effects 

Consider again the model 𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1i𝑡𝑖𝑗 + 𝑒𝑖𝑗 where 𝑏0𝑖 and

𝑏1𝑖 are random coefficients, but suppose that these random
coefficients are believed to be related to a predictor variable (x).

For example, if y represents a “social skills” measurement of preschool

children taken four times during the school year, we might suspect that

the intercept value and slope value for a child is related to that child’s
vocabulary size (x) at the beginning of the year.



RC Models with Interaction Effects (continued)

The level-2 models for the two random coefficients are now 

𝑏0𝑖 = 𝑔00 + 𝑔10𝑥𝑖 + 𝑟0𝑖
𝑏1𝑖 = 𝑔01 + 𝑔11𝑥𝑖 + 𝑟1𝑖

Substituting these equations into 𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 gives

𝑦𝑖𝑗 = 𝑔0 + 𝑔10𝑥𝑗 + 𝑔01𝑡𝑖𝑗 + 𝑔11(𝑥𝑗𝑡𝑖𝑗) + 𝑒𝑖𝑗
∗

where the prediction errors (𝑒𝑖𝑗
∗ ) will be correlated and have unequal

variances. Note that 𝑔11 describes the interaction effect of time and

vocabulary.



RC Models with Interaction Effects (continued)

When the random slope for the time variable (t) is assumed to be

predictable from some other variable (x), this implies an interaction

between t and x.

When analyzing a RC model using a mixed-effect statistical program,

product variables are entered as predictor variables in exactly the same

way they would have been specified in a CP model.



General RC Models

A more general level-1 RC model for participant i measured at t time 

periods is:

𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑏2𝑖𝑥2𝑖𝑗 +⋯+ 𝑏𝑞𝑖𝑥𝑞𝑖𝑗 + 𝑒𝑖𝑗

where 𝑏0𝑖 and 𝑏1𝑖 are assumed to be random coefficients, but now we

also allow the prediction errors of the level-1 model (𝑒𝑖𝑗) to be

correlated and have unequal variances. As in a CP model, the predictor

variables can be polynomial functions of time, product variables, time-

varying covariates, or time-invariant covariates.



General RC Models (continued)

In theory, the prediction errors of the level-1 RC model can have any of

the covariance structures defined above for the CP model.

In practice, the parameters of these covariance structures can be so

highly correlated with the variances and covariances of the random

coefficients that they cannot be estimated. In these situations, SPSS will

give a “Hessian matrix not positive definite” error message.



SPSS Random Coefficient Example

Let’s reanalyze the longitudinal mood study in SPSS using the

following RC model

𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑗 + 𝑒𝑖𝑗

where the intercept (𝑏0) and slope (𝑏1𝑖) coefficients are assumed to
be random (i = 1 to n; j = 1 to t).

y = mood

t = day of week



Issues in Using CP and RC Models

CP and RC statistical packages provide options for maximum likelihood

estimation (MLE) and restricted maximum likelihood estimation (RMLE).

RMLE gives more accurate standard errors and is the recommended

method.

MLE is needed to perform certain nested model comparison tests where

the models differ in their error structures and the number of predictor

variables.

CP models with AR(1), ARMA(1,1), and Toeplitz error structures require

approximate equal spacing of time periods. Time periods can be unequally

spaced with RC models or CP models with an Unstructured error

covariance matrix.



Issues in Using CP and RC Models (continued)

RC models can handle studies where the number of time periods

exceeds the number of participants and not all participants are

measured at every time point. CP models can also handle this kind of

data if a very simple error structure such as AR(1), ARMA(1,1), or

Compound Symmetry is used.

RC models provide useful information about the variance of person-level

intercept and slope coefficients in the population – however, if the

number of participants is small, the confidence intervals can be

uselessly wide.



Issues in Using CP and RC Models (continued)

Recall that a random intercept and a random slope implies the following

error covariance structure:

var(𝑒𝑖𝑗
∗ ) = var(𝑟0) + var(𝑟1)𝑡𝑗

2 + 2cov(𝑟0, 𝑟1)𝑡𝑗 + var(𝑒0) 

cov(𝑒𝑖𝑗
∗ , 𝑒𝑖𝑗′

∗ ) = var(𝑟0) + var(𝑟1)𝑡𝑗𝑡𝑗′ + cov(𝑟0, 𝑟1)(𝑡𝑗 + 𝑡𝑗′)

This covariance error structure is parsimonious (a function of only 4

parameters) but it might not be realistic. A CP model with a similarly

parsimonious but more realistic error structure could be a better choice.



Suggested Readings
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Singer, J.D. & Willett, J.B. (2003).  Applied Longitudinal Data Analysis: 

Modeling change and event occurrence.  New York: Oxford.

(Chapters 1 – 8)

Heck, R.H., Thomas, S.L., Tabata, L.N. (2014). Multilevel and longitudinal 

modeling with IBM SPSS, 2nd ed.  New York: Routedge. 

(Chapters 5 & 6)



Related Topics for Future Seminars

- Latent growth curve models

- Analyzing longitudinal binary responses

- Survival models

- Analyzing longitudinal data using R



Self-study Materials on CSASS Website

• PowerPoint slides

• Step-by step SPSS instructions for analyzing three different types of 

longitudinal studies 

• SPSS .sav file for each example

• SPSS syntax for each example



Thank you.

Questions or comments?


