Anatomy of the nervous system 2

07/10/21

Arrangement of Grey Matter

Rexed's Laminae

Anterior (ventral)

Arrangement of White Matter

Spinal tracts

- Ascending tracts: Carry information to the brain from the periphery (sensory)
- Descending tracts: Carry information from the brain to the periphery (motor)

Spinal Tracts

Ascending tracts

Descending tracts

(Crossman & Neary, 2019)

Ascending tracts

Spinothalamic tracts

lateral ventral

Dorsal columns

fasiculus gracilis fasciculus cuneatus

Sensory Pathway

10

1st order neurone – remains ipsilateral and terminates in spinal cord or medulla

2nd order neurone arises in spinal cord or medulla, it decussates and terminates in the contralateral thalamus

3rd order neurone arises in thalamus and terminates in sensory cortex

Spinothalamic Tract

Dorsal Columns

Descending Tracts

Corticospinal

lateral ventral

Somatic Motor Pathway

brain upper motor neurone lower motor neurone SC

Upper motor neurone arises in primary motor cortex, decussates in brainstem or spinal cord and terminates by synapsing with the lower motor neurone in spinal cord

Lower motor neurone arises in spinal cord, axon projects to skeletal muscle

Cranial Nerve Pathways

How do they compare to those of the spinal nerves?

Nerve cell nuclei located in brain stem

Sensory Pathway

General Sensory Pathways of Cranial Nerves

1st order - NCB in periphery Trigeminal Ganglion – CN V Geniculate Ganglion – CN VII Superior & Inferior Ganglia – CN IX & X

2nd order - NCB in trigeminal sensory nucleus of brainstem, fibres decussate

3rd order - NCB in VP thalamus, axons project to primary sensory cortex

Trigeminal sensory nucleus

3 subnuclei

Chief sensory nucleus (touch & pressure)

Spinal nucleus (pain & temperature)

Mesencephalic** (proprioception)

(Crossman & Neary, 2005)

Corticobulbar Tract

Corticobulbar Tract

Contralateral

Hypoglossal (CN XII)

Bilateral

Oculomotor (CN III) Trochlear (CN IV) Trigeminal (CN V) Abducens (CN VI) Glossopharyngeal (CN IX) Vagus (CN X) Accessory (CN XI)

Oculomotor (CN III) Trochlear (CN IV) Trigeminal (CN V) Abducens (CN VI) Glossopharyngeal (CN IX) Vagus (CN X) Accessory (CN XI)

Facial nerve

The facial motor nucleus is made up of two parts superior part -supplies muscles on upper half of the face

inferior part supplies the muscles on lower half of the face

Facial nerve

superior part of nucleus is bilaterally innervated

inferior part of nucleus is contralaterally innervated

What would be the effect of an upper motor neurone lesion?

Autonomic Nervous System

Sympathetic Nervous System

• 2 lower motor neurones

Parasympathetic

Sympathetic

NB postganglionic sympathetic neurones acting on sweat glands release ACh which binds to muscarinic receptors

Sympathetic Chain

(Paravertebral Ganglion)

lies either side of the vertebral column

Sympathetic outflow T1-L2

Sympathetic Chain grey ramus communicates ventral ramus paravertebral ganglionwhite ramus communicantes

Sympathetic Chain

- Nerve cell bodies of preganglionic neurones located in lateral horn of grey matter
- Axon passes in ventral root
- \rightarrow spinal nerve \rightarrow ventral rami
- \rightarrow white ramus communicantes

Then takes one of 3 options

1. Synapses in the paravertebral ganglion. The postganglionic neurone enters the grey ramus communicates and returns to the ventral ramus in order to pass to the periphery.

2. Travels up the chain to synapse in a paravertebral ganglion in the neck or down the chain to synapse in a paravertebral ganglion in the pelvis.

The postganglionic neurone enters the grey ramus communicates at the new level. It passes to the periphery via the adjacent ventral ramus.

3. Passes straight through the chain to synapse in a prevertebral ganglion (e.g. superior mesenteric ganglion).

The preganglionc neurone is termed a splanchnic nerve.

The postganglionic neurone passes directly to the effector organ.

Summary of fate of sympathetic preganglionic neurones

- 1. Synapses in paravertebral ganglion at own spinal level
- 2. Passes up/down the chain to synapse in cervical or pelvic paravertebral ganglion.
- 3. Passes straight through chain to synapse in prevertebral gangion.

Good text book for understanding tracts

