Test and Measurement Challenges for 3D IC Development

R. Robertazzi IBM Research

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Acknowledgements

- Bill Price.
- Pete Sorce.
- John Ott.
- David Abraham.
- Pavan Samudrala

Digital Test

– Kevin Stawaisz.

TEL P12 Prober

– Glen Lansman, TEL USA.

Probing

– Jerry Broz

Outline

- Motivation For 3D Integration
- **3D** Technology

3D Test in a Research Environment

- Instrumentation
- Supporting Test at Different Stages in The Build
- Probing Challenges
- Probe Over Active for KGD Screen
- Diced Chip Test

Conclusions

Moore's Law

June 10 - 13, 2012

Why 3D?

Scaling of transistors and other circuit elements is becoming more difficult.

 Approaching fundamental physical limitations on device size.

Interconnect latency is beginning to limit IC performance.

- Vertical connections allow shorter connections (50 μm vs. 10 mm).
- Expansion of numbers of interconnects through compact vertical connections.

Easier to include disparate technologies.

 Logic, EDRAM, opto-electronics, nonsilicon based...

Challenges For 3D Integrated Circuits

Design

- Timing analysis, clocking.
- DFT.

Process

- Functionality / yield at single stratum.
- Characterization of 3D building blocks (TSV, bonding process).

Test

- Definition of test points: Where and what to set, KGD strategy.
- How to test, probing.

3D Technology Test Site

Stacked Chip Nomenclature

Face to back stacking scheme.
 Cu TSV on small pitch, μ–C4 inter-strata interconnect.
 Package pitch Std. C4 for

Package pitch Std C4 for package interconnect and final SP layer probing.

June 10 - 13, 2012

IEEE Workshop

Test Site Probing

Reticule

June 10 - 13, 2012

IEEE Workshop

Interfacing To The Probe Card

June 10 - 13, 2012

IEEE Workshop

Test Points During Build

(Probe Options & Risk Assessment)

Build Level	VLSI	Technology	DUT
S _P (Thick)			_
S _P (Thin)			
S _N			
Assembled, pre-packaged			
Assembled, packaged			
 Cantilever probes Pointed vertical, probe over active Flat vertical, chip tray No loss of yield observed PFA in progress Assumed OK 			

SWIW

June 10 - 13, 2012

Single Stratum Probing Options

□ Single stratum test required:

- Design verification.
- Known good die (KGD) prior to 3D stacking.
- Current injection over full area of the chip for cache.
- Major issues for area array probing for single layer:
 - No qualified probe technology for fine pitch uC4 probing.

Drives choice to area array probe card, pointed probes contacting AI TD landing pads.

Areas of concern:

- Pad placement, where to probe.
- Damage introduced through probing process.

Option #1

Al Pad Probing, Pointed Probes

June 10 - 13, 2012

IEEE Workshop

Probing / Damage Experiments: Test Vehicle

Top level film stacks similar to 3D test chips.

- Area array probe card used with 4/9 image.
 - ~ 100 Power/ground contacts measured in parallel for leakage.
 - ~ 40 signal contacts measured individually.
 - ~ 100 sites probed/die.

Contactor

- 5 mil Palinaey-7 probe.
- Probe tip diameter 10 μ m
- Overdrive 0-160 μm (0-6.5 mils).
- Electrical leakage and SEM cross-sections evaluated after probing.

Probe Image

June 10 - 13, 2012

IEEE Workshop

Probing / Damage Experiments: Test Vehicle Top Layer Dielectric Investigations

Stack "A" dielectric fails at first probe contact.
 Stack "A" + "B" dielectric fails after 120 μm – 170 μm overdrive.

June 10 - 13, 2012

Probe Scratch Test

Probing / Damage Experiments: Test Vehicle Full Pad Stack

3D Test Site Probe Pads

- S_n: No μ -C4 on probe pad, full pad available for probing.
- S_p: Std. C4 on each probe pad, probing... zone offset from contact via / C4 attachment zone.
- □ 3 mil probes.

June 10 - 13, 2012

SWIW VVV

Top Down SEM on Pads

- 2. Cu/Dielectric.
- 3. Adhesion Layer/Dielectric.
- Top down SEM reveals some disturbance of interfacial region.

AFM On Probe Marks

AFM reveals 30 nm depression in top adhesion layer.

June 10 - 13, 2012

IEEE Workshop

TEM Cross Sections on Probed Pads

No evidence of damage or crack propagation in top insulating layer stack.

SWTW

June 10 - 13, 2012

IEEE Workshop

Screen Yield, Design "B", Using Probe Over Active

Wafer screen data shows no increased yield fallout over standard C4 probing using pointed probe over active probing strategy. June 10-13, 2012 [JUNE 10-13, 2012]
Page 21

Diced Chip Test

- In the research environment, we employed a chip to chip bonding strategy for 3D IC assembly.
- Supporting single die test of complex area array chips has always been problematic:
 - Vision systems in advanced probers not designed to work with single die efficiently.
 - Chip transfer to chuck requires attachment to handler wafer, with adhesive.
- 3D chip bonding process development greatly benefits from pre-packaged test:
 - Does the chip work, is it worth packaging?
 - Does the packaging process affect chip yield?
 - What does the chip look like visually after test?

Double Layer, 3D Chip

IEEE Workshop

Diced Chip Tray

- TEL custom build chip tray for diced chip designs "B" &"C".
- Clean, vacuum hold down technology which works with standard "Table Load" P12 wafer transfer procedure.
- Two piece design allows easily changing to another chip size, requires only replacing top guide.
- Alignment marks included for automated load, alignment and wafer scan.

Chip Tray

June 10 - 13, 2012

- □ Thermal resistance (R_T) measurements for chips in tray show resistance $R_T \sim 4.6$ x higher than measured with full wafer in contact with a Cu chuck.
- □ For VLSI designs "B" & "C", no problem encountered in running low speed functional screen tests, or performance tests for brief periods.

 June 10 13, 2012
 June 10 13, 2012
 Page 24

Conclusions

3D introduces a number of new challenges in chip test, probing in particular.

- A hierarchical test strategy has proven essential in 3D bonding process development learning.
 - Accessibility of test at all points in the build.
 - Access to on-board parametrics.
 - Ability to test diced, bonded chips, pre-packaged.

Fine pitch vertical probe/prober technology required to support current and future 3D fabrication technologies.

