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Abstract—To sustainably provide low-latency communication4
and edge computing for connected vehicles, a promising solution5
is using Solar-powered Roadside Units (SRSUs), which consist6
of small cell base stations and Mobile Edge Computing servers.7
However, due to the intermittent nature of solar power, SRSUs8
may suffer from a high risk of power deficiency, which will lead to9
severe disruption of vehicular edge computing applications. In this10
paper, we aim to address this challenge of Quality of Service (QoS)11
loss (i.e., edge computing service outage for vehicle users (VUs)).12
We formulate a QoS optimization problem for VUs and solve it in13
two phases: an offline solar energy scheduling phase, and an online14
user association and SRSU resource allocation phase. We simulate15
our proposed technique in a dense SRSU network environment16
with real-world urban vehicular traffic data and solar generation17
profile. The simulation results show that our proposed approach18
can significantly reduce QoS loss of vehicular edge computing ap-19
plications using SRSUs, compared to existing techniques. Further,20
the results are beneficial to service providers and city planners to21
identify adequate SRSU configurations for expected solar energy22
generation and edge computing service demands.23

Index Terms—Solar energy, Multiuser channels, Mobile edge24
computing, Roadside unit.25

I. INTRODUCTION26

ROADSIDE Units (RSUs) equipped with small cell base27

stations (SBSs) are evolving as a key infrastructure to28

support connected vehicles. Due to the low latency and high29

throughput, communications provided by SBSs to connected30

vehicles, RSUs can enable or extend various vehicular appli-31

cations, such as autonomous driving, road safety, infotainment,32

and collaboration services [2]. Further, when augmented with33

Mobile Edge Computing (MEC) servers, the RSUs can ful-34

fill the computation-intensive needs of vehicular applications,35

while maintaining low latency, through offloading vehicle users’36

(VUs’) computing tasks to RSUs. The scenario has been defined37

in literature as Vehicular Edge Computing (VEC) [3], [4].38

In 2020, SBSs are projected to consume 4.4 TWh of energy39

and emit 2.3 million tons of carbon dioxide equivalent (CO2e)40

[5], [6]. Furthermore, dense deployments of RSUs are expected41

Manuscript received December 26, 2019; revised April 16, 2020; accepted
June 8, 2020. This work was supported by the National Science Foundation under
Grant CNS-1619184. This work was presented in part at the 27th International
Conference on Computer Communication and Networks (ICCCN) [1]. The
review of this article is coordinated by Dr. Kaigui Bian. (Corresponding author:
Yu-Jen Ku.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California, San Diego, La Jolla, CA 92037 USA (e-mail:
yuku@ucsd.edu; pochiang@ucsd.edu; dey@ece.ucsd.edu).

Digital Object Identifier 10.1109/TVT.2020.3007640

in order to support the massive growth of emerging connected 42

vehicles and their high throughput requirements [7], leading to 43

further power consumption and carbon emissions. One promis- 44

ing solution is the use of renewable energy (RE) in wireless 45

communications [8]. In order to enhance the sustainability of 46

RSUs by easing their grid power consumption, we proposed the 47

idea of Solar-powered Roadside Units (SRSUs) in [1], which 48

consist of SBS, MEC, and a self-sustained solar system. 49

The main challenge of adopting RE in an SRSU network is 50

the intermittent and fluctuating nature of RE (i.e., solar energy) 51

generation [9]. RE-powered VEC must consider the SRSU’s 52

communication and computing resources as opportunistic due to 53

the intermittent harvested RE. Further, RE-powered VEC must 54

also consider the VU’s high mobility and low application latency 55

requirement. 56

In this work, we consider that VUs offload their applications 57

(e.g., object recognition and collision prediction using camera or 58

lidar data) to the MEC server of the associated SRSU. For these 59

time-sensitive and computation-intensive applications, VUs will 60

send the raw data to SRSU and receive the processed results with 61

ultra-low latency. Such applications will inevitably suffer from 62

service degradation when the communication and/or computing 63

capacity of SRSU is limited. In this work, we aim to mini- 64

mize Quality of Service (QoS) loss in a dense SRSU network. 65

We define QoS loss as a weighted sum of instances of (i) service 66

outage (when no SRSU can serve the VU) and (ii) service 67

disruption (when the VU is handed over to another SRSU), over 68

total number of VUs. 69

In our preliminary work [1], we proposed an offline QoS 70

Loss Minimization Algorithm (QLM) to heuristically minimize 71

the weighted QoS loss using SRSUs. However, QLM assumes 72

accurate predictions of SRSUs’ solar generations and VUs’ of- 73

floading demands. The impact of prediction error on the perfor- 74

mance of QLM was not discussed. Moreover, the offline solution 75

provided by QLM cannot adapt to dynamic solar generation and 76

offloading demands. Finally, QLM assumes unlimited battery 77

capacity in order to provide an analytic solution, which is not 78

viable in real-world SRSU deployment. 79

In this work, given: (i) predictions of SRSUs’ solar gener- 80

ations and power consumptions, (ii) current VUs’ locations, 81

wireless channel conditions, and offloading demands, and (iii) 82

current SRSUs’ stored energy, communication, and computing 83

resources, we propose to jointly solve solar energy schedul- 84

ing, VU-SRSU association, and SRSU resource allocation 85

problems. We propose to solve this problem in two phases: 86

(i) solar energy scheduling phase, which determines battery 87
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charging/discharging for SRSUs in advance in order to schedule88

the available solar energy in each time slot, and (ii) user associ-89

ation and resource allocation phase, which decides VU-SRSU90

association and SRSU resource allocation in real-time to mini-91

mize the weighted QoS loss, based on the available energy de-92

termined from the first phase. Compared to QLM, the proposed93

solution adapts the solar generations and offloading demands94

dynamically in real-time. Our simulation results show that this95

approach produces up to a 54% reduction in the weighted QoS96

loss compared to our preliminary work in [1].97

The contributions of this paper are summarized as follows:98

1) To the best of our knowledge, this is the first work to99

address the problem of using SRSUs in vehicular edge100

computing. Specifically, the paper considers the problem101

of SRSU edge computing and small cell communication102

resource allocation problems given the real-time offload-103

ing demands of the fast moving VUs as well as the limited104

solar energy availabilities of SRSUs.105

2) For the first time, service outage incurred when no SRSU106

can serve a VU and service disruption caused by VU han-107

dover between SRSUs are considered in defining QoS. We108

propose a weighted QoS objective function to incorporate109

preference between these two factors.110

3) To optimize the weighted QoS, we propose a two-phase111

approach consisting of an offline solar energy scheduling112

(battery charging/discharging scheduling) phase and an113

online user association and SRSU resource allocation114

phase. The proposed approach is real-time adaptive to115

offloading demands, locations, and channel conditions of116

VUs, as well as SRSU resource availabilities.117

4) To demonstrate the feasibility and effectiveness of the118

proposed technique, we develop a simulation framework119

consisting of real-world solar generation [10], urban traffic120

profiles [11], and offloading demands. The simulation121

results show that the proposed approach significantly122

reduces the weighted QoS loss compared to existing123

techniques.124

The rest of the paper is organized as follows. We review125

the related work in Section II. In Section III, the overview of126

our system model and problem formulation is presented. In127

Section IV we introduce the proposed two-phase approach. The128

simulation results are presented in Section V and we conclude129

in Section VI.130

II. RELATED WORK131

There have been various studies addressing either RE-132

powered wireless communication system [12]– [14] or RE-133

powered edge and cloud server network [15], [16]. However,134

they do not jointly consider both wireless communication and135

edge computing resources. For RE-powered MEC system, to136

jointly consider these resources while using RE as the only137

power supply, Mao et al. [17] address the fluctuating RE138

challenges for computation task offloading between a single139

BS-user link. Xu et al. [18], [19] characterize multiple as-140

pects of RE-powered MEC system by Markov Decision Process141

(MDP) states and propose an online learning-based algorithm to142

minimize system delay, battery depreciation, and backup power 143

supply cost. The above techniques only consider single-BS 144

scenario, while our work considers load-balancing and intercell 145

interference in the multi-BS scenario. 146

[20]–[22] address the challenges of RE-powered multi-BS 147

system, where each BS is equipped with a MEC server. [20] and 148

[21] provide online solutions to control MEC capacity based on 149

Lyapunov optimization [23]. In [20], Chen et al. aim at mini- 150

mizing system delay through workload balancing among BSs 151

under their long-term energy availability constraint, which does 152

not consider the real-time availability of RE. In [21], Wu et al. 153

minimize the drop rate of computation task and downlink data 154

traffic due to excessive delay or lack of RE. The authors propose a 155

workload balancing and data traffic admission control solution. 156

However, they model the computation task and the downlink 157

data traffic separately. In VEC, delay constraint of vehicular 158

applications usually jointly constrains both task execution and 159

data transmission delay. Therefore, in this work, we consider a 160

joint delay constraint consisting of execution and transmission 161

delay. In [22], Gou et al. maximize the number of offloading 162

users by an algorithm that iteratively decides SBS coverage, 163

channel allocation, and MEC computing allocation. However, 164

compared to our proposed technique, the iterative nature of the 165

solution is not real-time adaptive to the current RE availability, 166

VU traffic, and offloading demand. 167

The above studies do not consider challenges specific to 168

characteristics of VUs, such as high mobility, fast-changing 169

channel condition, and ultra-low delay constraint. On the con- 170

trary, RE-powered Vehicle-to-Everything (V2X) studies [24]– 171

[26] take these VU characteristics into consideration. Yang et al. 172

[24] and Atoui et al. [25], [26] both consider a straight stretch 173

of road with RE-powered RSU deployed along it. Based on 174

vehicles’ locations and velocities, they schedule the uplink [24] 175

and downlink [25], [26] data transmission between BSs and 176

vehicles to maximize both network throughput [24] and the 177

number of served vehicles [25], [26]. These studies focus on data 178

transmission and do not consider the challenges for computation 179

task offloading in VEC. Also, these studies require vehicle to 180

buffer the data and transmit at the scheduled time slot, which 181

is not feasible for time-sensitive vehicular applications that our 182

research considers. 183

Without the use of RE, there are a few papers integrating both 184

MEC and V2X with in-grid RSUs [3], [4]. In [4], Zhang et al. 185

leverage vehicle-to-vehicle (V2V) technology and propose a 186

predictive task offloading scheme to address the communication 187

overhead when a vehicle is moving between different RSUs. 188

In [3], Dai et al. balance the offloading tasks from vehicles by 189

jointly considering vehicle mobility, transmission rate, and MEC 190

computing capacity to minimize task completion delay. These 191

two studies do not consider RE and how to utilize the opportunis- 192

tic MEC computing and V2X communication resources given 193

limited RE power supply is not discussed. 194

III. SYSTEM MODEL AND PROBLEM FORMULATION 195

In this section, we will first introduce our system model. Then 196

we define the weighted QoS loss and formulate a QoS loss 197
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TABLE I
SUMMARY OF KEY NOTATIONS AND ABBREVIATION

t(superscript): at the tth time slot

minimization problem. For ease of reference, we list the key198

notations of our system model in Table I.199

A. Network and Channel Model200

We consider an SRSU network with a set of SRSUs B. Each201

SRSU consists of a communication module SBS and a compu-202

tation module MEC server. For the sake of notation brevity, we203

will use SBS b and MEC b to represent the SBS and MEC server204

in SRSU b ∈ B, respectively. The total operation time is equally205

divided into T time slots. The duration of each time slot is τ .206

At the tth time slot, there is a set of VUs It = {1, 2, . . . , �t} in207

the network, where �t = |It| is the number of VUs in It. We208

denote the location of VU i ∈ It as ati.209

At the tth time slot, let ηtD,bi be the signal-to-interference-210

noise ratio (SINR) of downlink transmission from SBS b to VU211

i. ηtD,bi is given by,212

ηtD,bi =
pbg

t
bi

N0 +
∑

b′ �=b pbg
t
b′i

(1)

where gtbi denotes the downlink channel gain, pb is the transmit213

power of SBS b and N0 is the noise level. b′ is the interfering214

SBS, which operates the same frequency bands as SBS b.215

Let rtD,bi be the achievable downlink transmission rate from216

SBS b to VU i per subcarrier,217

rtD,bi = W log2

(
1 + ηtD,bi

)
, (2)

whereW is the bandwidth per subcarrier. Similarly, we denotepi218

as the transmit power of VU i and ht
ib as the uplink channel gain.219

The uplink transmission rate from VU i to SBS b per subcarrier220

can thus be represented as,221

rtU,bi = W log2

(
1 +

pih
t
ib

N0

)
, (3)

where the interference from other VUs is negligible with fre-222

quency reuse and bandwidth allocation techniques [27].223

Note that in vehicular communication, the channel condition224

between SRSU and VU changes rapidly due to mobility of VU.225

Therefore, we assume the duration of time slot τ to be small226

enough so that the channel condition is unchanged within the 227

time slot. 228

B. Workload Model 229

In this work, we consider the case that VU has no spare 230

computing capacity, which is the case for current vehicles and 231

will be so for a vast majority of vehicles in the near future. 232

Therefore, each VU will offload all the computation tasks of 233

its vehicular applications. We refer to these tasks as workloads. 234

At the tth time slot, each VU will generate a workload to be 235

offloaded, which is modeled by the following parameters. First, 236

ωt
i is the data generation rate of the on-board sensor (e.g., camera 237

or Lidar) on VU i, which will be uplink transmitted to the 238

MEC server. Second, cti is the computing resource required for 239

processing the uploaded data, which is quantized as number of 240

machine instructions. Third, δti is the processing result (e.g., an 241

alert/guidance message), which will be downloaded by VU i. 242

Fourth, dti is the delay requirement from MEC server receives 243

the data to VU i receives the result. Finally, VU may request to 244

download extra information from the MEC server or the Internet, 245

which has data size εti and delay constraint θti . Note that the 246

MEC processing result is critical to driving safety and needs 247

low latency, therefore, dti is much smaller than θti . We refer to 248

the MEC processed data as delay sensitive downlink data, and 249

the extra information as delay tolerant downlink data. 250

C. SRSU Association and Resource Utilization 251

Let xt
bi = {0, 1} be the user association indicator at the tth 252

time slot. xt
bi = 1 if VU i is associate with SRSU b (its data 253

processing tasks are thus offloaded to SRSU b), and xt
bi = 0 254

otherwise. At each time slot, we assume each VU can only 255

associate with one SRSU. A MEC server, on the other hand, can 256

serve workloads from different VUs by using techniques like 257

Virtual Machine (VM) [28]. Also note that workload cannot be 258

offloaded between different SRSUs. 259

To satisfy the workload demand, SRSU needs to allocate 260

adequate amounts of computing and communication resources 261

to each associated VU. In our case, the connection between VU 262

and SBS will create two bearers, one default bearer and one 263
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Guaranteed Bit Rate (GBR) bearer (i.e., dedicated bearer) [29].264

Note that the delay tolerant downlink data is transmitted through265

the default bearer, we let ktDT,bi be the number of downlink266

subcarriers allocated to VU i by SBS b for this bearer at the267

tth time slot. On the other hand, the offloaded data and the268

delay sensitive downlink data are transmitted through the GBR269

bearer. We denote ktU,bi and ktDS,bi as the number of uplink270

and downlink subcarriers, respectively, used for the GBR bearer271

between VU i by SBS b. We also denote ut
bi as the computing272

speed, which is quantized as machine instructions per second,273

of the VM server created for VU i by MEC b.274

To ensure that the data generated by the on-board sensor will275

not be dropped due to VU’s memory buffer overflowing, the276

average uplink transmission rate of VU i should be greater than277

(or equal to) the data generation rate ωt
i of the on-board sensor.278

The uplink subcarriers allocated to VU i, henceforth, should279

satisfy the following constraint,280 ∑
b∈B

xt
bir

t
U,bik

t
U,bi ≥

∑
b∈B

xt
biω

t
i . (4)

To satisfy the downlink delay constraint, the number of sub-281

carriers allocated to VU i for the delay tolerant downlink data282

should satisfy,283 ∑
b∈B

xt
bir

t
D,bik

t
DT,bi ≥

∑
b∈B

xt
bi

εti
θti
. (5)

Note that the delay sensitive downlink data need to be pro-284

cessed and transmitted in low latency. Hence, the computing285

speed of VM server and downlink subcarriers allocated to VU i286

by SRSU b should satisfy the following,287

∑
b∈B

xt
bi

(
cti
ut
bi

+
δti

rtD,bik
t
DS,bi

)
≤
∑
b∈B

xt
bid

t
i. (6)

On the other hand, the computing and communication re-288

sources of each SRSU are limited, which is constrained by the289

following three equations,290 ∑
iεIt

xt
biu

t
bi ≤ Ub, (7)

∑
iεIt

xt
bik

t
U,bi ≤ KU,b, (8)

∑
iεIt

xt
bi

(
ktDS,bi + ktDT,bi

) ≤ KD,b, (9)

where Ub is the maximum number of machine instructions the291

processor of MEC b can execute per second [30]. KU,b and292

KD,b are SBS b’s maximum number of available sub-carriers293

for uplink and downlink transmission, respectively.294

D. Power Consumption Model295

Power consumption of each SRSU is modeled by the power296

consumption of MEC plus the power consumption of SBS. At297

the tth time slot, we denote P t
S,b as the power consumption of298

MEC b, which linearly increases with the overall processor’s299

computing speed [28]. Let pM,b be the idle power of MEC b and300

pC,b be the power consumption for each unit utilization of the301

processor’s speed of MEC b. P t
S,b can then be represented by 302

the following equation, 303

P t
S,b = τpM,b + τpC,b

∑
iεIt

xt
biu

t
bi. (10)

Besides, power consumption of SRSU also includes energy 304

consumed by the SBS. The energy consumption of SBS is the en- 305

ergy consumed by operating uplink and downlink transmissions. 306

Power consumption of uplink transmission is the circuit power 307

for demodulation and baseband processing. It increases linearly 308

with the number of active subcarriers [31]. Secondly, operating 309

downlink transmission consumes circuit and RF related power; 310

both are linearly increasing with the number of active downlink 311

subcarriers [32]. Hence, the power consumption of SBS at the 312

tth time slot can be expressed as: 313

P t
X,b = τ

∑
iεIt

xt
bi

(
pD,b

(
δti

rtD,bi

+ ktDT,bi

)
+ pU,bk

t
U,bi

)

+ τpN,b, (11)

where pN,b is the idle power of SBS b, pU,b is the circuit power 314

consumption per active uplink subcarrier, and pD,b is the joint 315

circuit and transmission power consumption per active downlink 316

subcarrier. The overall power consumption of SRSU b at the tth 317

time slot can, therefore, be represented as, P t
b = P t

S,b + P t
X,b. 318

E. Solar Generation and Battery Model 319

At the tth time slot, let St
b be the amount of energy harvested 320

from the solar panel of SRSU b. We assume St
b is available at 321

the beginning of the tth time slot and will be immediately stored 322

without any loss of energy. The battery level of SRSU b is de- 323

noted asEt
b, which is constrained by energy causality and battery 324

capacity. We assume battery is lossless and let Emax ∈ (0,∞) 325

denote the battery capacity. Therefore, the battery level Et
b 326

should satisfy, 327

0 ≤ Et
b = Et−1

b + St
b − P t

b ≤ Emax. (12)

F. QoS Model 328

The evaluation of QoS in this paper is defined according to the 329

instance of service outage and service disruption on workloads. 330

1) Service Outage: Because the energy, computing, and 331

communication resources are limited, SRSUs may not be able 332

to serve a VU while satisfying this VU’s workload requirements 333

(4)-(6). Because there is no computing capacity in a VU, service 334

outage happens when its workload cannot be offloaded to any 335

SRSU in the network. We denote the number of VUs experienc- 336

ing service outage at the tth time slot as Ct
drop, which can be 337

calculated as, 338

Ct
drop =

∑
iεIt

(
1−

∑
b∈B

xt
bi

)
, (13)

and the service outage rate is
Ct

drop

�t , where �t = |It| is the total 339

number of VUs in the network at the tth time slot. 340
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Fig. 1. Two dimensions that are involved in solving P1: offline solar energy scheduling (temporal dimension), and online user association and resource allocation
(spatial dimension); also showing two scenarios describing the impact of energy scheduling (a) left, the condition with the absence of not performing energy
scheduling at SRSU A and (b) right, the condition when performing energy scheduling at SRSU A.

2) Service Disruption: Service disruption happens to a VU341

when an SRSU hands it to another SRSU. The handover can342

take place when a VU is leaving an SRSU’s coverage or when343

we actively change its associated SRSU. During the handover,344

the VU’s workload cannot be offloaded, leading to service345

disruption. We denote the number of VUs experiencing service346

disruption at the tth time slot as Ct
handover, which can be347

calculated as348

Ct
handover =

∑
iεIt

(∑
b∈B

xt
bi

)(
1−

∑
b∈B

xt
bix

t−1
bi

)
. (14)

and the service disruption rate is Ct
handover

�t .349

The level of impact of the above two cases, service outage and350

service disruption, on driving experience is different. In the first351

case, the VU will be left unserved during the whole time slot.352

However, in the second case, the duration of handover disruption353

may be small. Once the VU is successfully associated with the354

next SRSU, it can then be served by the MEC server during the355

remaining period of the current time slot.356

Therefore, we introduce a weighted factor κ < 1 on the ser-357

vice disruption rate to capture the different impacts on VUs358

between these cases. We then define the weighted QoS loss of359

the tth time slot as Lt = (Ct
drop + κCt

handover)/�
t, and the360

weighted QoS loss of the total operation time as,361

L =

∑T
t=1

(
Ct

drop + κCt
handover

)
∑T

t=1 �
t

. (15)

By properly adjusting κ, solving P1 can effectively optimize362

QoS for VUs, depending on the network policy.363

G. Problem Formulation364

Our objective is to determine the user association xt
bi, and the365

resource allocation ut
bi, k

t
U,bi, k

t
DS,bi, and ktDT,bi for VU i to366

minimize the weighted QoS loss of the total operation time. The367

decision is made at the beginning of each time slot based on the368

current SRSUs’ available energy, computing, and computation369

resources, as well as VUs’ locations, workload demands, and370

wireless channel conditions.371

The optimization problem is formulated as, 372

P1 : min
xt
bi,k

t
U,bi,k

t
DT,bi,k

t
DS,bi,u

t
bi ∀i∈It, ∀t

L

s.t. (4)–(9), (12)∑
b∈B

xt
bi ≤ 1, ∀i ∈ It, t ∈ [1, T ] ,

(16)

xt
bi = {0, 1} , ∀i ∈ It, t ∈ [1, T ] , (17)∑

b∈B
xt
biη

t
D,bi ≥

∑
b∈B

xt
biγ, ∀i ∈ It, t ∈ [1, T ] . (18)

Constraint (16), together with (17), state that the workload 373

is not separable and cannot be offloaded to multiple SRSUs 374

simultaneously. Moreover, constraint (18) limits a VU to only 375

offload its workload to the SRSU that provides enough downlink 376

SINR, with the threshold being set by γ. 377

Furthermore, we assume to have the knowledge of the pre- 378

dicted profiles of SRSU’s solar energy generation and power 379

consumption in advance. These data will help us plan the uti- 380

lization of solar energy (i.e., the battery charging/discharging 381

scheduling strategy) for each SRSU. SRSU power consumption 382

and solar generation profiles are shown to be predictable in [10], 383

[33]. We will list the prediction performance in Section V-B and 384

further discuss the effect of prediction error on the optimization 385

problem. 386

IV. SOLUTION METHODOLOGY 387

The solution of P1 involves decisions in two dimensions, as 388

shown in Fig. 1. In the spatial dimension, feasible solutions of 389

user association and resource allocation at each time slot should 390

be decided to minimize the weighted QoS loss. However, the 391

decision at each time slot is coupled with the temporal solar 392

energy availability. As an example, if SRSU A in Fig. 1(a) uses 393

most of its solar energy (shown in the blue bar) in the tth time slot 394

to serve as many VU as possible, 3 VUs at the t+ 2th time slot 395

will experience service outage due to the lack of solar energy. But 396

if SRSU A reserves some energy and lets SRSU B serve more 397

VUs than it served in Fig. 1(a), SRSU A will have enough energy 398

to serve all its VUs at the t+ 2th time slot, as Fig. 1(b) shows. 399

Based on this observation, we follow the logic of [14], [34], and 400

[35] to schedule the utilization of renewable energy for each time 401
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Fig. 2. The proposed two-phase approach, TQMA, to solve P1.

slot in advance so that multiple BSs will not run out of renewable402

energy simultaneously. We therefore propose a two-phase QoS403

loss Minimization Algorithm (TQMA). TQMA solves P1 in two404

phases corresponding to the two dimensions: (i) solar energy405

scheduling phase (temporal dimension), and (ii) user association406

and resource allocation phase (spatial dimension). The process407

flow of TQMA is depicted in Fig. 2. Note that Phase 1 is408

executed offline based on the predicted profiles of SRSUs’ solar409

generations and power consumptions, and Phase 2 is executed410

online based on current (i) VUs’ workloads, locations, and411

transmission rates, and (ii) SRSUs’ available communication,412

computing, and scheduled solar energy resources.413

Fig. 3 shows the overview of the SRSU-assisted vehicular414

edge computing network and the information flows for Phase 2415

of TQMA. At the beginning of each time slot, each VU will416

send the workload offloading request (blue arrows), including all417

the workload parameters, to the SRSU it associated with. Each418

SRSU will then send all the required information for Phase 2419

decision to the SRSU network coordinator (green arrow). The420

SRSU network coordinator will make the Phase 2 decision421

and forward the resulting user association and SRSU resource422

allocation decisions back to SRSUs (purple arrows). Note that423

while the offloaded tasks are executed on the MECs associated424

with the SRSUs, the network coordinator and hence the proposed425

TQMA algorithm will be run in a separate server.426

A. Phase 1 and Solar Energy Scheduling Algorithm (SESA)427

We denote Lt
b as the scheduled solar energy of SRSU b at the428

tth time slot, which will be regarded as the maximum allowable429

amount of energy for SRSU b to utilize at the tth time slot.430

We also define πt
b = Lt

b/P̂
t
b as SRSU b’s Solar Utilization Ratio431

(SUR) for the tth time slot, where P̂ t
b is the predicted SRSU432

power consumption. For SRSU b, the objective of Phase 1 is433

to maximize the minimum value of SUR within the whole op-434

eration time by optimally arranging the value of Lt
b, t ∈ [1, T ].435

Note that Lt
b needs to follow the energy causality constraint,436

0 ≤∑t
t′=1 Ŝ

t
b −

∑t
t′=1 L

t
b ≤ Emax, t ∈ [1, T ], where Ŝt

b is the437

predicted solar generation profile for SRSU b.438

The rationale is to distribute the solar energy at each time439

slot proportional to the SRSU’s expected power consumption.440

This will prevent all SRSUs from having energy surplus and441

deficit at the same time. Therefore, neighboring SRSUs can442

better balance their power consumption based on their energy443

availability in Phase 2. Moreover, this can also prevent SRSUs444

Fig. 3. Overview of the SRSU-assisted vehicular edge computing system,
including request and decision flows.

from fully depleting their batteries during the hours when solar 445

energy is not being generated. 446

It is inevitable that imperfect predictions will lead to a non- 447

optimal Lt
b, t ∈ [1, T ] when applied to actual solar generation 448

and SRSU power consumption. We will discuss the effect of 449

prediction error on performance in Section V-B. 450

To arrange Lt
b, we propose the algorithm, SESA, which is 451

shown in Algorithm 1. To begin with, we initialize Lt
b as Ŝt

b for 452

each time slot t ∈ [1, T ]. Let βt
b be the expected battery level of 453

SRSU b at the tth time slot, which is initialized as zero. Let tf be 454

the last time slot that we can schedule the solar energy to. tf is 455

initialized as T in line 2 of SESA. To satisfy the energy causality 456

constraint, we will start to schedule the solar energy iteratively 457

from the last time slot to the beginning. At each iteration, we 458

execute Procedure DistributeEnergy in SESA for the current 459

time slot t. In Procedure DistributeEnergy, we will decide how 460

much energy to be scheduled to each future time slot of t. We 461

will first calculate the SUR πt
b for t and the average SUR π̄ for 462

the time slots between t and tf . If πt
b > π̄, we will decrease the 463

value of Lt
b until the new πt

b equals π̄. The remaining energy 464

will be distributed to time slots t′ ∈ (t, tf ]. Each time slot t′ will 465

receive εt
′
amount of energy that will be added toLt′

b . We assume 466

εt
′
is proportional to the required energy for πt′

b to reach π̄ for t′. 467

The above steps are listed in lines 1-6 of DistributeEnergy. 468

However, during the scheduling process, the expected bat- 469

tery level may achieve the maximum capacity at any time slot 470

between t and tf . Assume the maximum capacity is achieved 471

at t′′, no more energy can be stored and scheduled from t to 472

any time slot after t′′. Let t∗ ∈ (t, tf ] be the earliest time slot 473

that achieves the maximum battery capacity after εt
′

is added 474

to each time slot t′ ∈ (t, tf ]. We then set its expected battery 475

level βt∗
b to full and add the corresponding solar energy to Lt∗

b . 476

After that, we split (t, tf ] into two segments: (t, t∗] and (t∗, tf ], 477

and recursively apply DistributeEnergy to these segments. The 478

recursive process, which is shown in lines 13-17 of Distribu- 479

teEnergy, ends when t∗ doesn’t exist within the new segment. 480

Finally, we update the value of tf and βt, t ∈ [1, T ] in lines 15 481

and 19 of DistributeEnergy, then proceed to the next iteration. 482

SESA will returnLt
b, t ∈ [1, T ], until the solar energy scheduling 483

process is executed for all the time slots. 484

Therefore, at each time slot, SRSU b will drain Lt
b − Ŝt

b 485

amount of energy from the battery if Lt
b − Ŝt

b ≥ 0, or store 486

Ŝt
b − Lt

b amount of energy to the battery, otherwise. 487
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The complexity of SESA is O(T 3), where T is the number488

of time slots. Since SESA is executed offline before the whole489

operation time starts, the complexity will not affect the real-time490

feasibility of our technique.491

B. Phase 2 and the MRGAP Problem492

In Phase 2, we formulate a user association and SRSU re-493

source allocation problem to minimize the weighted QoS loss494

Lt at each time slot. At the tth time slot, the above problem can495

be formulated as496

P2 : min
χt, ψt

Ct
drop+κCt

handover

�t

s.t. (4)–(9)∑
b∈B

xt
bi ≤ 1, ∀iεIt,

(19)

xt
bi = {0, 1} , ∀iεIt, ∀b ∈ B (20)∑
b∈B

xt
biη

t
D,bi ≥

∑
b∈B

xt
biγ, ∀iεIt, (21)

P t
b ≤ min

(
Lt
b, E

t−1
b + St

b

) ∀b ∈ B (22)

where ψt = {ktU,bi, k
t
DT,bi, k

t
DS,bi, u

t
bi|iεIt, b ∈ B} and χt =497

{xt
bi|iεIt, b ∈ B }. Constraints (19) and (20) state that the498

workload is not separable and can only be offloaded to one499

SRSU. Constraint (21) limits a VU to only associate with the500

SRSU which provides enough signal strength (with the SINR501

threshold be γ). Due to prediction error, it is possible that502

an SRSU’s available energy is less than Lt
b. Therefore, the503

power consumption of SRSU should be limited by the minimum504

between actual available energy St
b + Et−1

b and scheduled solar505

energy Lt
b, in (22).506

We next show that P2 can be formulated as a variant of507

Multi-Resource Generalized Assignment Problem (MRGAP)508

[36]. MRGAP is originally proposed to minimize a total cost509

when assigning items to containers under multiple resource510

constraints. GivenN is a set of items,M is a set of containers,511

and K is a set of multiple resources provided by containers to512

the items, MRGAP is formulated as513

MRGAP : min
xmn,n∈N ,m∈M

∑
n∈N

∑
m∈M

zmnxmn

s.t.
∑

m∈M
xmn = 1 , ∀n ∈N (23)

xmn = {0, 1} , ∀n ∈N , m ∈M (24)∑
n∈N

vmnkxmn , ∀m ∈M , k ∈K. (25)

where n is the index of the item, m is the index of the container,514

and k is the index of the resource. xmn is the decision of whether515

to assign itemn to containerm. zmn is the cost of assigning item516

n to container m, wmk is the maximum capacity on resource k517

of container m, and vmnk is the amount of resource k required518

to assign item n to container m. Finding the optimal solution of519

MRGAP is NP-Hard [37]. To map P2 to MRGAP, we consider520

a special case where the assignment constraint (22) is relaxed to521 ∑
m∈M xmn ≤ 1, ∀n ∈N , which allows items without any522

Algorithm 1: SESA.
Inputs:
1) Predicted solar generation profile {Ŝt

b | t ∈ [1, T ]}
2) Predicted SRSU power consumption profile
{P̂ t

b | t ∈ [1, T ]}
3) Battery capacity Emax

Output:
Scheduled solar energy L = {Lt

b | t ∈ [1, T ]}
1: initialize β ← zeros(1, T )
2: Lt

b ← Ŝt
b, ∀t ∈ [1, T ], tf ← tend

3: for t = tend − 1 : 1 do
4: update β, L, tf using DistributeEnergy(β, L, t, tf )
5: end for
6: return L = {Lt

b | t ∈ [1, T ]}
Procedure DistributeEnergy (β, L, ts, tf , b):

1: calculate π̄ ←
∑tf

t=ts
Lt

b
∑tf

t=ts
P̂ t

b

2: calculate πt, ∀t ∈ [ts, tf ]
3: if πts > π̄ && tf > ts do
4: J ← { t | πt < π̄, t ∈ (ts, tf ]}
5: Δ ← Lts

b − π̄P̂ ts
b , β′ ← β, ε← zeros(1, T )

6: calculate εt, ∀ t ∈ J
7: calculate β′t ← β′t +

tf∑
t′= t+1

εt
′
, ∀ t ∈ [ts, tf )

8: T̃ ← { t | β′t ≥ Emax, ∀ t ∈ [t1, tf )}
9: if T̃ /∈ φ do
10: t∗ ← min

t∈T̃
t, ε∗ ← (Emax − β′t

∗
)

11: βt ← βt + ε∗, ∀t ∈ [ ts, t
∗]

12: Lts
b ← Lts

b − ε∗, Lt∗+1
b ← Lt∗+1

b + ε∗

13: update β, Γ from:
14: DistributeEnergy(β, L, t∗ + 1, tf , b)
15: tf ← t∗

16: update β, Γ, tf from:
17: DistributeEnergy(β, L, ts, tf , b)
18: else do
19: β ← β′, Lts

b ← Lts
b −Δ

20: Lt
b ← Lt

b + εt, ∀ t ∈ (ts, tf ]
21: return β, Γ, tf
22: end if
23: else do
24: return β, Γ, tf
25: end if

assignment. Different from conventional MRGAP, this special 523

case always has a feasible solution. 524

Next, we show how P2 is mapped to the relaxed case of 525

MRGAP. Because P2 has a constant denominator �t, we rewrite 526

the numerator of its objective function, 527

Ct
drop + κCt

handover

= �t +
∑
iεIt

∑
b∈B

(−1 + κ− κ Ω
(
xt
bi, x

t−1
bi

))
xt
bi (26)

where Ω(x, y) is an indicator function, it returns 1 if x = y, or 528

otherwise returns 0 (See Appendix A). Minimizing Eq. (26) is 529
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equivalent to minimizing its second term (i.e. the summation530

of −1 + κ− κ Ω(xt
bi, x

t−1
bi )), which can be mapped to zmn531

in MRGAP. Let M be the SRSU set B, N be the VU set532

It, and K to contain resources of the (i) computing speed, (ii)533

downlink subcarriers, (iii) uplink subcarriers, and (iv) energy.534

Let vbi1, vbi2, vbi3, and vbi4 be the amount of computing speed,535

the number of uplink subcarriers, the number of downlink sub-536

carriers, and the corresponding power consumption allocated537

to VU i by SRSU b, respectively. Consequently, P2 can be538

formulated as a special case of MRGAP with relaxed constraint539

(22) and additional constraints (21), (22), and (6).540

Next, we develop a real-time heuristic algorithm H-URA541

for P2. To begin with, let vtbik denote the value of vbik in the542

corresponding MRGAP problem of P2 at the tth time slot. We543

first show how many subcarriers for uplink and delay tolerant544

downlink data transmission are needed to serve VU i. The alloca-545

tion of ktU,bi and ktDT,bi from SRSU b should follow constraints546

(4) and (5), respectively. Once these constraints are satisfied,547

there is no need to increase the value of ktU,bi and ktDT,bi.548

The constraints in (4), (5) thus, can be reduced to deterministic549

allocation decision,550

ktU,bi =
ωt
i

rtU,bi

, ktDT,bi =
εti

θti r
t
D,bi

. (27)

The value of vtbi2 can, therefore, be set as ωt
i/r

t
U,bi for VU i.551

On the other hand, the allocation of computing speed and down-552

link subcarriers for the delay sensitive downlink data should553

satisfy the joint delay constraint (6). Therefore, deterministic554

allocation decision does not exist. A reasonable way is to define555

vtbi1 (required computing speed) and vtbi3 (required downlink556

subcarriers) based on the availability of these two resources,557

vtbi1 =
KD,b + Ub

KD,b

(
cti
dti

)
,

vtbi3 =
KD,b + Ub

Ub,b

(
δti

rtD,bid
t
i

)
+

εti
θtir

t
D,bi

. (28)

Meanwhile, vtbi4 is set to be the power consumption for SRSU558

b when utilizing vtbi1, vtbi2, and vtbi3 amount of resources.559

With the value of vtbi1, vtbi2, vtbi3, and vtbi4, we propose to560

solve P2 by heuristically solving the Lagrangian dual problem561

of its MRGAP form [38]. The Lagrangian dual of P2 can be562

formulated as,563

P2LD : max
λt
b,μ

t
b,ρ

t
b,σ

t
b∈R+,b∈B

min
xt
bi,b∈B,iεIt

∑
iεIt

∑
b∈B

ztbix
t
bi

564

+
∑
b∈B

λt
b

(∑
iεIt

xt
biv

t
bi1 − Ub

)
+
∑
b∈B

μt
b

(∑
iεIt

xt
biv

t
bi2 −KU,b

)

565

+
∑
b∈B

ρtb

(∑
iεIt

xt
biv

t
bi3 −KD,b

)
+
∑
b∈B

σt
b

(∑
iεIt

xt
biv

t
bi4 − L′tb

)

566

s.t. (19)–(21),

where L′tb = min( Lt
b, E

t−1
b + St

b). λt
b, μt

b, ρtb, and σt
b are the 567

Lagrangian multipliers for dualizing constraints (7)-(9) and 568

(22). The optimality of P2LD for P2 depends on the values 569

of λt
b, μt

b, ρtb and σt
b. However, since the workload demands 570

will change in different time slots, the optimal values of these 571

Lagrangian multipliers will also change. Consequently, tradi- 572

tional searching-based methods [36], [38] to find the optimal 573

Lagrangian multipliers are time-consuming since the solution is 574

only applicable to the current time slot. Therefore, we propose 575

to define the Lagrangian multipliers as follows, 576

λt
b = γ

∑
iεIt−1 xt−1

bi ut−1
bi

Ub
, μt

b = γ

∑
iεIt−1 xt−1

bi kt−1
U,bi

KU,b
,

ρtb = γ

∑
iεIt−1 xt−1

bi kt−1
D,bi

KD,b
, σt

b = γ
P t−1
b

L′t−1
b

(29)

where γ is a constant scaling factor. The rationale is as follows. 577

Consider two SRSUs which have the same ztbi to VU i, we tend 578

not to assign this VU to the SRSU whose resources are more 579

likely to be fully utilized. The likelihood relies on the resource 580

utilization condition at the previous time slot. 581

lemma 1: With fixed λt
b, μt

b, ρtb, and σt
b, solving P2LD is 582

equivalent to finding the SRSU which minimizes qtbi= ztbi + 583

λt
bv

t
bi1 + μt

bv
t
bi2 + ρtbv

t
bi3 + σt

bv
t
bi4 for each VU. 584

Proof: See Appendix B. 585

To further minimize the service disruption, we tend to assign 586

VU to the SRSU that locates on its future path. We propose 587

to use a Maximum Likelihood Markov Chain [39] to predict 588

the probability of a VU’s future location. First, we divide the 589

network neighborhood into A non-overlapping areas. Each area 590

is represented by a state in the Markov Chain. Second, we create 591

an |A| x |A| transition matrix Ât for this Markov Chain at the 592

tth time slot, where |A| is the size of A. We define N t
s1s2

as the 593

total instances of VUs moving from area s1 to area s2 during any 594

consecutive time slots before t. The state transition probability 595

Ât
s1,s2

can then be represented as Ât
s1,s2

= N t
s1s2

/
∑

s∈A N t
s1s

. 596

Let bs2 be the SRSU which provides the best signal strength 597

to the geological center of area s2. If a VU is in area s1, the 598

probability that bs2 is the next SRSU for this VU to associate in 599

the next time slot is predicted as Ât
s1,s2

. This probability is then 600

multiplied by κ and added to qtbi for each VU-SRSU pair. For 601

each s ∈ A, the complexity of calculating
∑

s∈A N t
s1s

is O(|A|) 602

and hence the complexity of updating Ât
s1,s2

, s1 ∈ A, s2 ∈ A is 603

O(|A|2). Note that in an SRSU network, the number of VU is 604

usually larger than |A|. Therefore, O(|A|2) < O(�2). 605

Based on lemma 1 and Ât, we assign each VU to the SRSU 606

which corresponds to the VU’s minimal qtbi. However, this as- 607

signment may not be valid since we relax constraints (7)-(9), and 608

(22) in P2. Therefore, we propose to make association decisions 609

for VUs one by one while checking if the decision satisfies the 610

relaxed constraints. We will pick the VU which has the largest 611

difference between its best and second-best qtbi, b ∈ B, as the 612

highest priority VU to make the association decision for. We 613

then assign the VU to the SRSU that corresponds to the best qtbi 614

if the constraints (7)-(9), (21), (22) of P2 can be satisfied, and 615

proceed to the next VU. 616
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Algorithm 2: H-URA.
Inputs:
1) The scheduled solar energy, battery level and solar

generation Lt
b, E

t−1
b , St

b, ∀ b ∈ B
2) VU location {ati}, and workload

{ωt
i , c

t
i, δ

t
i , d

t
i, ε

t
i, θ

t
i }, ∀i ∈ It,

3) Channel conditions {gtbi| i ∈ It, b ∈ B}
4) System Parameters γ, Emax, KD,b, KU,b, and

Ub, ∀b ∈ B
5) Previous association indicators xt−1

bi , ∀i ∈ It, ∀b ∈ B
6) Next SRSU probability prediction Ât

7) Lagrangian multipliers λt
b, μt

b, ρtb, and σt
b, ∀b ∈ B

Output:
1) User association χt, and Resource allocation ψt

1: Initialization: L′tb ←min( Lt
b, E

t−1
b + St

b), ∀b ∈ B
2: visit_UE← 0
3:Qt ← {qtbi}b∈B, i∈It
4: while visit_UE ≤ � && ∃qtbi �=∞ do
5: for ∀ i ∈ It do
6: b1

i ← argminb∈B Qt
bi

7: b2
i ← argminb∈B\{b1

i} Q
t
bi

8: end for
9: i∗ ← max

i
Qt

b2
ii
−Qt

b1
ii
, b∗ ← b1

i ,

ζ′ ← {i| xt
b∗i = 1}+ {i∗}

10: {ũt
b∗i, k̃

t
DS,b∗i, k̃

t
U,b∗i, k̃

t
DT,b∗i|i ∈ ζ′}, ←

MCPA(ζ′, b∗)
11: calculate P t

b∗ using (11)
12: if MCPA(ζ′, b∗)�= 0 && P t

b∗ ≤ L′tb∗ do
13: xt

b∗i∗ ← 1,
14: for ∀ i ∈ ζ′ do
15: ktU,b∗i ← k̃tU,b∗i, k

t
DT,b∗i ← k̃tDT,b∗i,

ut
b∗i ← ũt

b∗i, k
t
DS,b∗i ← k̃tDS,b∗i

16: end for
17: Qt

bi∗ ← ∞, ∀b ∈ B, visit_UE← visit_UE+1
18: else do
19: Qt

b∗i∗ ← ∞, ζ′ ← ζ′\{i∗}
20: end if
21: end while
22: return χt, ψt

Procedure MCPA(ζ, b):
1: for ∀ i ∈ ζ do
2: calculate ũt

bi, k̃
t
DS,bi,k̃

t
U,bi,k̃

t
DT,bi using (27) and (31)

3: end for
4: if constraints (7)-(9), and (22) are satisfied for SRSU b

and every i ∈ ζ satisfies (21) and Ht
b>0

5: return {ũt
bi, k̃

t
DS,bi,k̃

t
U,bi,k̃

t
DT,bi|i ∈ ζ}

6: else
7: return 0
8: end if

To check if a VU association satisfies the constraints (7)-(9),617

(21), (22) of P2 and determine the optimal resource allocation618

decision, we adopt the procedure Minimize SRSU Power Con-619

sumption Algorithm (MPCA), which is proposed in our previous620

work [1]. Given a VU set ζ of an SRSU, MPCA will first check if621

the SRSU can serve all the workloads from ζ. If possible, then 622

MPCA will allocate computing and communication resources 623

to the VUs in ζ while minimizing the power consumption of 624

the SRSU (with the rationale to save solar energy). MPCA 625

determines the optimal resource allocation as follows. We have 626

argued the optimal value of ktU,bi and ktDT,bi. To show the 627

optimal allocation of ktDS,bi and ut
bi in Eq. (31) for a given VU 628

set ζ of SRSU b, we define the following terms for all the VUs 629

in ζ, 630

lti =
δti

rtD,bid
t
i

, ϕt
i =

ltic
t
i

dti
, �t

b =
∑
iεζ

ktDT,bi ,

Ht
b =

∑
iεζ (ϕ

t
i)

1/2

KD,b −�t
b −

∑
iεζ l

t
i

, yti =
(cti)

1/2

dti
+

(lti)
1/2

(dti)
1/2

Ht
b.

(30)
Then, the optimal resource allocation for ut

bi and ktDS,bi will 631

be, 632

ut
bi =

⌈
yti
(
cti
)1/2

⌉
, ktDS,bi =

⌈
yti(l

t
id

t
i)

1/2

Ht
b

⌉
, iε ζ. (31)

The above resource allocation solution to minimize power 633

consumption of the SRSU can be solved by analyzing the prob- 634

lem’s Karush–Kuhn–Tucker (KKT) conditions [40] or using 635

convex optimization programming tools [41]. We omit the proof 636

here for the sake of brevity. 637

MPCA returns 0 if the KKT conditions are violated or con- 638

straints (7)–(9), (21), or (22) are not satisfied. Otherwise, MPCA 639

returns the optimal resource allocation decisions ut
bi, ktU,bi, 640

ktDT,bi, and ktDS,bi for each VU in ζ. 641

Based on the above discussion, we propose H-URA for 642

real-time user association and SRSU resource allocation, which 643

is shown in Algorithm 2. The pseudocode of MPCA is also 644

included in Algorithm 2. H-URA takes real-time VUs’ locations 645

workload demands, and channel conditions, as well as SRSUs’ 646

resource availabilities and Lagrangian multipliers as input. To 647

begin with, Qt in line 3 of H-URA records the value of qtbi 648

for all the VU-SRSU pairs. The user association procedure is 649

determined by the while loop in lines 4-21. H-URA will decide 650

the highest priority VU to make the association decision for in 651

lines 5-9. If H-URA determines VU i∗ as the highest priority VU 652

and b∗ is the SRSU corresponds to its minimal qtbi, then H-URA 653

will consider associating i∗ with b∗. H-URA will check if this 654

association satisfies all the constraints of P2 in lines 10 and 12 by 655

using MPCA. If constraints are satisfied, H-URA will confirm 656

the association, update the association indicator and resource 657

allocation decisions in lines 13-16. Note that ζ′ in line 9 is the 658

set of VUs that have been associated with SRSU b∗ by H-URA. 659

The elements in Qt
bi related to VU i∗ will then be set as∞ in 660

line 17 so that VU i∗ will not be considered again in the next 661

iteration. If the constraints of P2 cannot be satisfied, H-URA 662

will set the value of Qt
b∗i∗ as ∞ in line 19 and proceed to the 663

next iteration. The iteration ends when all the VUs are associated 664

with an SRSU or when all the elements inQt are∞. 665

Note that in the worst case, the while loop will iterate �B 666

times, which is the size of Qt. For each iteration, in the worst 667

case, the time complexity of lines 5-8 is �B while the complexity 668
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Fig. 4. Breakdown of TQMA algorithm.

Fig. 5. A neighborhood in Brooklyn, NY and SRSU deployment studied in
this paper [42].

of other steps is less than or equal to �. On the other hand, the669

complexity of updating Ât is less than O(�2). Therefore, the670

time complexity of H-URA is O(�2B2) for time slot t. Hence,671

H-URA is possible to be executed in real-time for reasonable672

sizes of the current VU set It and SRSU set B. This is validated673

with experimental results reported in the next section.674

By combining the proposed SESA and H-URA algorithms,675

we present our proposed heuristic method to solve P1, TQMA,676

as shown in Fig. 4. In Phase 1, SESA will schedule the solar677

energy for each time slot. Then, H-URA will be executed at678

each time slot to make user association the resource allocation679

decisions real-time in Phase 2.680

V. EXPERIMENTAL RESULT681

A. Simulation Framework682

The objective of our simulation framework is to observe683

the weighted QoS loss performance of different solar energy684

scheduling, user association, and SRSU resource allocation685

strategies. In the simulation results below, we assume that VUs686

offload object detection tasks to SRSUs. In the meantime, some687

VUs will request to download videos as the delay tolerant down-688

link data. To simulate realistic VU movement and topology, we689

take a 1000∗800 (meters) rectangular area in Brooklyn, New690

York City, as shown in Fig. 5. We use historical vehicular traffic691

data in this area collected by New York State Department of692

Transportation [11]. Fig. 5 also shows the placement of 20693

SRSUs used in our simulation environment.694

We list the related simulation parameters in Table II. The695

duration of each time slot τ is 1 second. Because the duration of696

TABLE II
KEY PARAMETERS IN SIMULATION FRAMEWORK

the handover process in LTE-A can be less than 100 ms [43], we 697

set κ = 0.1. Total simulation time is 24 hours, starting from 9 698

AM to include both day and night. Therefore, T is 86400. 699

At the beginning of each time slot, VUs enter the area from 700

both ends of each street following a Poisson distribution with 701

rate Θ. Each VU travels with predetermined route and speed. 702

The travel route decision, speed, and Θ are set in a manner that 703

the average traffic volume of each street satisfies the historical 704

data in [11]. Furthermore, the channel model and the transmit 705

power of SRSUs and VUs are listed in Table II [44], [45]. We 706

set A = 40 for the next SRSU prediction. 707

To model the workload, we assume that each VU will upload 708

an H.264 encoded video file with the data rate ωt
i be uniformly 709

distributed between 11 and 13.5 MB/s. It requires 10 million 710

instructions per second (MIPS) as cti for video processing, 711

including decoding and object detection [1] at the MEC. We as- 712

sume the size of the delay sensitive downlink data δti is uniformly 713

distributed between 0.1 and 0.3 MB and the delay constraint 714

dti is 0.1s. In the meantime, VUs will have 0.25 probability to 715

download a video file with size uniformly distributed between 7 716

and 9 MB as the delay tolerant downlink data, which has delay 717

constraint θti = 1s. 718

We model the downlink and uplink channel gains, gtbi and 719

ht
ib, by using Manhattan grid layout (B1) in [46] as the pathloss 720

and slow fading, and the Nakagami-m distribution [47] as the 721

fast fading, which have been widely used by the industry [44], 722

[48] and are shown to be sufficient to model the vehicular 723

communication channel [47]. 724

The subcarriers are allocated to VUs in groups, and each group 725

has 12 subcarriers (i.e., W = 180kHz/group) [49]. Multiple 726

groups of subcarriers can be allocated to the same VU simultane- 727

ously. We assume each SRSU can utilize 710 subcarrier groups 728

concurrently for each direction of transmission. To improve the 729

inter-cell interference, we adopt the frequency reuse mapping 730

technique [50] with reuse factor 3. 731

We model the MEC server of an SRSU by a Raspberry Pi 2 732

Model B [51], which is used to serve the offloaded workloads. 733

Its corresponding computing resource and power consumption 734

profiles are specified in Table II. 735

For the solar generation profile, we use the data collected at 736

multiple sites in UC San Diego [10]. We normalize the solar 737

energy data and assume the solar panel size is 1 m2 for each 738

SRSU. We use the proposed algorithm in [10] to predict solar 739

generation profiles 24 hours in advance. 740
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To compare against SESA, we use a best-effort technique,741

denoted as the Best effort Solar Energy scheduling Algorithm742

(BSEA). BSEA consists of a best-effort solar energy scheduling743

strategy and the same user association and SRSU resource744

allocation technique (H-URA) as TQMA. BSEA allows each745

SRSU to serve the associated VUs without constrained by the746

scheduled solar energy.747

Another comparison is the Green energy and delay Aware748

User association and Resource Allocation (GAURA) algorithm749

proposed by [14]. GAURA is a combination of battery charg-750

ing/discharging scheduling, SBS transmit power control, and751

user association algorithms, which is the closest approach to752

TQMA compared to other works. We assume GAURA follows753

the same way of H-URA to allocate subcarriers for uplink and the754

delay tolerant downlink data transmission. On the other hand, to755

fulfill the delay constraint in (6), we assume that GAURA will756

allocate ktDS,bi downlink subcarriers and ut
bi computing speed757

to VU i by the ratio: ut
bi = 4ktDS,bi.758

We also compare TQMA with our previous approach, QLM759

[1]. We assume that QLM has accurate predictions of VU’s760

location and workload.761

In the following sub-section, we will first present a per-762

formance comparison of our proposed TQMA with BSEA,763

GAURA, and QLM. Second, to show the efficiency of the Phase764

2 algorithm, H-URA, a dynamic programming based Optimal765

User association and Resource allocation Algorithm (OPTA)766

[52] is implemented. Since [52] does not solve phase 1, we use767

the proposed SESA as the Phase 1 algorithm. We will compare768

the performance of TQMA and OPTA to show the efficiency769

of our proposed Phase 2 algorithm, H-URA. We introduce and770

analyze the complexity of OPTA in Appendix C. Third, to show771

the gap between the optimal solution and the proposed TQMA772

algorithm, we implement the exhaustive search method for P1.773

The complexity analysis of the exhaustive search method is listed774

in Appendix D. Finally, we will show the effect of solar energy775

prediction error on the performance of TQMA.776

B. Simulation Results777

We have implemented the proposed TQMA algorithm using778

MATLAB on a computer with a 3.8 GHz CPU, which is used to779

perform the offline battery scheduling and online user associa-780

tion and resource allocation for all the SRSUs in a neighborhood,781

like shown in Fig. 5. Note that a TQMA instance will be respon-782

sible for the SRSUs and the VUs of each such neighborhood.783

Since the battery scheduling algorithm SESA is run offline,784

we focus here on the run-time performance of H-URA. From785

our simulation-based experiments, the worst-case run-time of786

H-URA algorithm for a time slot is less than 180 ms. This is787

well below the time interval of 1s H-URA is executed (each788

time slot). Note that the input information (e.g., VU locations,789

workloads, and harvested solar) will not change dramatically790

during the 180 ms run-time of H-URA. Hence, we can conclude791

that H-URA is real-time, validating our time complexity based792

assertion in Section IV-B.793

1) Performance Comparison of TQMA With Other Tech-794

niques: The weighted QoS loss performance of TQMA, BSEA,795

QLM, and GAURA are 0.125, 0.145, 0274, and 0.453, respec- 796

tively. The performance of TQMA is the best compared to other 797

techniques. To further discuss the effect of the above algorithms 798

on individual VUs, we define service outage time ratio and 799

service disruption time ratio for each VU as the following: 800

service outage time ratio =
service outage time
service request time

(32)

service disruption time ratio =
service disruption time

service request time
(33)

where the service outage time is the duration that this VU is 801

experiencing the service outage, the service disruption time is 802

the duration that this VU is experiencing the service disruption. 803

The service request time is the duration that this VU is in the 804

neighborhood and sending offloading demands. 805

In Fig. 6, we show the empirical cumulative distribution 806

function (CDF) of the service outage time ratio and service 807

disruption time ratio for the VUs. In Fig. 6(a), 86.2% of the VUs 808

are served by the SRSUs for at least 80% of the service request 809

time (service outage time ratio < 0.2) by using TQMA. On the 810

contrary, 85.8%, 47%, and 40% of the VUs are served by SRSUs 811

for at least 80% of their service request time by using BSEA, 812

QLM, and GAURA algorithms, respectively. The performance 813

of BSEA is close to TQMA because they share the same H-URA 814

algorithm. 815

On the other hand, in Fig. 6(b), we can see that 85.7% of the 816

VUs have less than 50% of their service request time experienc- 817

ing the service disruption (the service disruption time ratio < 818

0.5) by using TQMA. Compared to TQMA, 9.6%, 59.6%, and 819

90.1% of the VUs have the service disruption time ratio< 0.5 by 820

using QLM, BSEA, and GAURA, respectively. QLM performs 821

the worst because it will first consider associating a VU to the 822

SRSU which provides the best signal strength, regardless of 823

the VU’s location, future movement, and the current associated 824

SRSU. Compared to other algorithms, TQMA enables more 825

VUs being served by SRSUs for longer duration while reducing 826

their chances of experiencing service disruption. 827

Fig. 7 shows the weighted QoS loss performance comparison 828

of the above algorithms under various system parameters (i.e., 829

solar panel size, available computing speed, subcarrier groups, 830

and battery capacity of SRSU). Fig. 7(a) shows the weighted 831

QoS loss performance of these four algorithms under different 832

solar energy availabilities, which are controlled by changing 833

the solar panel size. TQMA has the best performance in terms 834

of the weighted QoS loss among all the listed algorithms for 835

different solar panel sizes. For instance, when the solar panel 836

size equals 1 m2, the performance of TQMA is 13.8% better than 837

BSEA, 54.4% better than QLM, and 72.5% better than GAURA. 838

The QoS loss of TQMA decreases while the solar panel size 839

increases. However, the decrease starts to slow down and stops 840

after the solar panel size exceeds 1.1 m2. It is because the 841

bottleneck of the performance becomes other limited resources 842

after SRSU has enough solar energy. 843

From Fig. 7(b), we can observe that the weighted QoS loss de- 844

creases when the available number of subcarrier groups of each 845

SRSU increases. Again, TQMA outperforms other algorithms. 846
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Fig. 6. The empirical cumulative distribution function of (a) left, the service outage time ratio and (b) right, the service disruption time ratio for individual VUs.

Fig. 7. The weighted QoS loss performance of various algorithms on (a) upper left, different solar panel sizes, (b) upper right, different available subcarrier
groups of SRSU, (c) lower left, different available computing speeds of SRSU, and (d) lower right, different battery capacities of SRSU.

The performance gap between TQMA and the second-best algo-847

rithm, BSEA, grows with the number of subcarrier groups. The848

gap grows from 0.0273 to 0.0353 when the number of subcarrier849

groups increases from 250 to 1050, which shows that TQMA can850

more efficiently utilize these increased subcarrier resource.851

In Fig. 7(c), the weighted QoS loss decreases when the avail-852

able computing speed of each SRSU increases. Again, TQMA853

outperforms the other three algorithms under all conditions.854

Notice that the performance of TQMA improves slowly after the855

available computing speed exceeds 3520 MIPS. The weighted 856

QoS loss only improves 0.0048 (i.e., 4%) from 3520 MIPS to 857

5280 MIPS. The performance of GAURA rises vastly in low 858

available computing speed conditions, as its resource allocation 859

mechanism (i.e., ut
bi = 4ktDS,bi) will put a heavier burden on 860

utilizing the computing speed than downlink subcarrier groups, 861

especially in low available computing speed conditions. 862

In Fig. 7(d), the weighted QoS loss increases rapidly after the 863

battery capacity decreases to a certain level. For TQMA, QLM, 864
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Fig. 8. (a) left, the weighted QoS loss performance of various algorithms on different solar panel sizes, (b) center, the weighted QoS loss performance of various
algorithms on different Average VU densities, and (c) right, the peak time complexity of various algorithms on different Average VU densities.

and BSEA, we can observe that the critical point is 400 Wh. The865

weighted QoS loss starts to increase below this capacity because866

the capacity cannot fulfill the SRSU’s power demand at night867

when there is no solar energy generated.868

The results in Fig. 7 demonstrate the tradeoff between QoS869

and different resource availabilities, including solar panel sizes,870

battery capacities, MEC specifications, and configurations of871

SBS (subcarriers). This enables the service providers to identify872

what might be the best configurations of SRSU for expected873

solar generations and offloading demand profiles.874

2) Performance Comparison With OPTA: In this compar-875

ison, we investigate the efficiency of our proposed Phase 2876

algorithm, H-URA, by comparing TQMA to QLM and OPTA.877

To lower the complexity, we consider a smaller neighborhood878

surrounded by the dashed rectangle in Fig. 5. There are 2 SRSUs879

in this neighborhood and less than 14 VUs during peak hours. We880

equally divide the available computing speed into 5 levels and881

allocate them to each VU by levels. Subcarriers are divided into882

5 groups. Fig. 8(a) shows the weighted QoS loss performance883

of QLM, TQMA, and OPTA when the solar panel size varies884

from 0.76 m2 to 0.98 m2. When the solar panel size is 0.9 m2,885

the performance gap is 0.109 between TQMA and OPTA, while886

the gap between QLM and OPTA is 0.244. In terms of the peak887

time complexity (i.e., the recorded longest computation time for888

a time slot), TQMA takes 0.0938s while OPTA requires 333.5s889

when running on a 3.8 GHz CPU.890

In Fig. 8(b), we present the weighted QoS loss performance891

of these 3 algorithms on different average VU density scenarios.892

The average VU density is calculated as
∑T

t |It|/T , where It893

is the VU set at the tth time slot and T is the total number894

of time slots. We control the value of the average VU density895

by changing the vehicle generating rate Θ. In the meantime,896

Fig. 8(c) shows the corresponding peak time complexity. The897

gap between TQMA and OPTA increases linearly from 0.01898

to 0.211 when the average VU density increases from 1.6 to899

8.1. However, the corresponding peak time complexity of OPTA900

increases exponentially from 78.7s to 1047s. Although OPTA’s901

dynamic programming Phase 2 algorithm provides promising902

QoS performance under different solar energy availability and903

average VU density conditions, it is prohibitively expensive in904

terms of time complexity. On the contrary, our proposed Phase905

2 algorithm H-URA can keep the peak time complexity low906

for real-time decision making while compromising somewhat907

Fig. 9. The weighted QoS loss performance of TQMA, OPTA, and BSEA,
compared with the optimal solution using exhaustive search.

on optimal QoS performance though significantly better than 908

QLM. 909

3) Performance Comparison With Exhaustive Search: In 910

this experiment, we investigate the efficiency of our proposed 911

TQMA algorithm for solving P1 by comparing with an ex- 912

haustive search method, which finds the optimal solution for 913

P1. The exhaustive search method searches all the solar en- 914

ergy scheduling possibilities and uses dynamic programming 915

algorithm (i.e. OPTA’s Phase 2 algorithm) for user association 916

and resource allocation for each solar energy scheduling pos- 917

sibility. Fig. 9 shows the performance comparison of BSEA, 918

TQMA, OPTA, and the exhaustive search method. As shown in 919

Appendix D, the complexity of the exhaustive search method 920

is O(TUBKU
BKD

B+1�2
maxB

2T !Ŝ), where ! is the factorial 921

function, Ŝ is the maximum harvested solar energy of a time slot, 922

and �max is the maximum number of VUs for a time slot. Due to 923

the extremely high complexity, in this experiment we simulate 924

only 4 time slots to represent a day (i.e., the gap between each 925

slot is 6 hours). The granularity of the solar energy scheduling 926

decision is 10 W. We consider the same neighborhood as in 927

the previous subsection. Similar to the previous subsection, we 928

control the value of the average VU density by changing the 929

value of the vehicle generating rate Θ. We equally divide the 930

available computing speed into 5 levels and allocate them to 931

each VU by levels. The subcarriers are divided into 5 groups. 932

Compared to BSEA, where no solar energy scheduling algorithm 933

is implemented, TQMA’s performance is closer to the optimal 934
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TABLE III
PERFORMANCE WITH PREDICTION ERROR

1SD: Service disruption rate (%), 2SO: Service outage rate (%)

solution. The performance gap between TQMA and the optimal935

solution is 0.15 under regular traffic conditions (i.e. average VU936

density = 5.0). However, the peak time complexity of TQMA is937

19.2ms, while the exhaustive search method requires 192,038s938

when running on a 3.8 GHz CPU. Therefore, finding the op-939

timal solution is prohibitively expensive in terms of peak time940

complexity. To show their performances for high VU density941

scenarios, we increase Θ and create a 5.5 average VU density942

scenario. The weighted QoS loss gap between TQMA and the943

optimal solution is 0.14, which is almost the same as the gap944

when the average VU density is 5.0. But the peak time complex-945

ity of the exhaustive search method increases to 228,220s while946

TQMA only requires 20.3ms. Therefore, our proposed TQMA947

is more efficient in terms of both the peak time complexity and948

the weighted QoS loss.949

To further investigate the cause of the performance gap be-950

tween TQMA and the exhaustive search method, we include951

the performance of OPTA in Fig. 9. OPTA achieves the same952

weighted QoS loss as the optimal value. Because TQMA and953

OPTA share the same solar energy scheduling algorithm, the per-954

formance of OPTA shows that the gap between TQMA and the955

optimal value is due to the heuristic user association and resource956

allocation. Moreover, OPTA also demonstrates an approach for957

narrowing the performance gap without sacrificing largely on958

the time complexity. Its peak time complexity is 144.7s under959

regular traffic conditions, which is between TQMA (i.e. 19.2960

ms) and the exhausted search method (i.e. 192038 s). Note that961

the performance of OPTA converges to the optimal value in962

Fig. 9 because this experiment is conducted under a limited-scale963

scenario. In fact, OPTA is not an optimal approach for P1 as it964

considers only one solar energy scheduling possibility.965

4) Effect of Prediction Error on TQMA: Finally, in this sub-966

section, we present the effect of the prediction error of solar967

generation on the performance of TQMA. For each experiment,968

we run TQMA two times with the same simulation settings. For969

the first time, we use the predicted solar generation profile for970

SESA. The second time, we use the exact solar generation profile971

(no prediction error) for SESA.972

The simulation results of two different days are shown in973

Table III, where SD is the service disruption rate and SO is the974

service outage rate. For day number 1, we observe prosperous975

and less intermittent solar generation since the weather is mostly976

sunny. Therefore, the prediction error is very small. We observe977

that its weighted QoS loss, SD, and SO are very similar with and978

without solar prediction error (compared to no prediction error). 979

The weighted QoS loss of using solar prediction increases by 980

0.5(4.2%) compared to no prediction case. On the other hand, 981

for day number 2, we observe poor and highly intermittent solar 982

generation since the weather is partly sunny and partly cloudy. 983

Consequently, the prediction error is worse than day number 984

1. The weighted QoS loss of using solar prediction increases by 985

0.6(1.6%) compared to no prediction error case. Its SO increases 986

by 0.5% and SD drops by 0.9%. In this case, SD drops because 987

SO increases. If a VU is experiencing service outage, it will 988

not be counted as service disruption. Although the prediction 989

error increases, the performance drop of TQMA in terms of the 990

increased weighted QoS loss is still under 5%. 991

VI. CONCLUSION 992

In this paper, we propose a real-time QoS loss minimization 993

algorithm to support the offloading of delay sensitive vehicular 994

applications in a Solar-powered RSU network. The algorithm 995

involves a two-phase approach: (i) the solar energy scheduling 996

phase and (ii) the user association and resource allocation phase. 997

SESA and H-URA respectively are developed for these two 998

phases. A complete algorithm, TQMA, is proposed by integrat- 999

ing the above two algorithms which our simulation shows to 1000

significantly reduce the weighted QoS loss for the total operation 1001

time compared to existing techniques under various resource 1002

availabilities. The results help service providers and city plan- 1003

ners to identify adequate SRSU configurations for expected solar 1004

energy generation and offloading demands. 1005

Since solar power can be low due to weather conditions, our 1006

proposed approach cannot mitigate all risks of VUs experiencing 1007

high QoS loss alone. In future work, we plan to investigate 1008

the addition of other RE sources (e.g., wind energy) to ensure 1009

energy diversity and thus reduce risks to QoS loss in adverse 1010

weather conditions. Further, we plan to implement TQMA in 1011

a RE-powered road infrastructure prototype that will show the 1012

feasibility of the proposed algorithm for a sustainable SRSU 1013

network in a real-world scenario. 1014

APPENDIX 1015

A. Proof of Eq. 26 1016

Ct
drop + κCt

handover

=
∑
iεIt

(
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∑
b∈B
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bi

)
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∑
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)(
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)
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B. Proof of Lemma 11017

With fixed Lagrangian multipliers λt
b, μ

t
b, ρ

t
b, and σt

b, P2LD1018

is reduced to:1019

P2′LD : min
xt
bi,b∈B,iεIt

∑
iεIt

∑
b∈B

ztbix
t
bi

+
∑
b∈B

λt
b

(∑
iεIt

xt
biv

t
bi1 − Ub

)
+
∑
b∈B

μt
b

(∑
iεIt

xt
biv

t
bi2 −KU,b

)

+
∑
b∈B

ρtb

(∑
iεIt

xt
biv

t
bi3 −KD,b

)
+
∑
b∈B

σt
b

(∑
iεIt

xt
biv

t
bi4 − L′tb

)

s.t. (19)–(21),

The objective function of P2′LD can then be rewritten as1020

∑
iεIt

∑
b∈B

xt
bi

(
ztbi + λt

bv
t
bi1 + μt

bv
t
bi2 + ρtbv

t
bi3 + σt

bv
t
bi4

)

−
∑
b∈B

(
λt
bUb + μt

bKU,b + ρtbKD,b + σt
bL
′t
b

)
, (34)

where the second term is a constant. Therefore, P2′LD is equal1021

to,1022

P2′′LD : min
xt
bi,b∈B,iεIt

∑
iεIt

∑
b∈B

xt
biq

t
bi

s.t. (19)–(21),

with qtbi = ztbi + λt
bv

t
bi1 + μt

bv
t
bi2 + ρtbv

t
bi3 + σt

bv
t
bi4.1023

Note that qtbi and constraints (19)-(21) are separate for dif-1024

ferent VUs. Therefore, the optimal solution of P2′′LD (which is1025

also the optimal solution of P2LD) will be finding the SRSU1026

which minimizes qtbi under constraints (19)-(21) for each VU.1027

C. OPTA Algorithm1028

Since we have introduced SESA in Section IV-A, in this1029

appendix, we analysis the complexity of OPTA’s Phase 2 algo-1030

rithm, which is based on dynamic programming. For a given1031

instance of Phase 2, integers i, n, α1, . . . , α3B , we use1032

f(i, n, α1, . . . , α3B) to represent the optimal value of P2 with1033

B SRSUs, which considers the VU set {1, 2, . . . , i} ⊆ It and1034

allows at most n dropped VUs. Furthermore, each SRSU b1035

utilizes exactly α3b−2 amount of computing speed, α3b−1 up-1036

link subcarriers, and α3b downlink subcarriers. To track the1037

optimal user association and resource allocation decisions, we1038

let X(i, n, α1, . . . , α3B) and Ψ(i, n, α1, . . . , α3B) be the corre-1039

sponding user association and computing speed allocation of1040

VU i for the instances i, n, α1, . . . , α3B . We only track the1041

allocation of computing speed because once we get xt
bi from1042

X , the optimal ktU,bi, k
t
DT,bi can be derived by choosing the1043

smallest possible values which satisfy workload constraints (4),1044

(5). With the recorded ut
bi in Ψ, we can calculate the optimal1045

ktDS,bi by delay constraint (6).1046

The core formula of OPTA is, 1047

f (i, n, α1, . . . , α3B) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ if n < 0
∞ if ∃b ∈ B, α3b−2 < 0 or α3b−1 < 0 or α3b < 0
0 if i = 0, n ≥ 0, α3b−2 ≥ 0, α3b−1 ≥ 0, α3b ≥ 0,

∀b ∈ B
∞ if ∃b ∈ B, P t

b (α3b−2, α3b−1, α3b) < L′tb
min (A1, A2) otherwise

(35)

where P t
b (α3b−2, α3b−1, α3b) returns the corresponding power 1048

consumption of SRSU b for utilizing α3b−2 amount of com- 1049

puting speed, α3b−1 uplink subcarriers, and α3b downlink sub- 1050

carriers. L′tb = min( Lt
b, E

t−1
b + St

b) is for SRSU b to follow 1051

constraint (22). A1 = 1 + f(i− 1, n− 1, α1, . . . , α3B) is the 1052

optimal value when choosing not to serve VU i. Finally,A2 is the 1053

optimal value considering all possible values of xt
bi, u

t
bi b ∈ B 1054

for VU i, and can be defined as, 1055

A2 = min
b,xt

bi, u
t
bi

ztbi + f
(
i−1, n, α1, . . . , α3b−2 − ut

bi,

α3b−1 − ktU,bi, α3b − ktDT,bi − ktDS,bi, . . . , α3B

)
(36)

with ktU,bi, k
t
DT,bi, and ktDS,bi be the optimal numbers of uplink 1056

and downlink subcarriers correspond to xt
bi and ut

bi. Note that 1057

in (36), if ηtD,bi > γ, ztbi = −1 + κ− κΩ(xt
bi, x

t−1
bi ), otherwise 1058

ztbi =∞. 1059

f is initialized by an arbitrarily large value. X and Ψ are ini- 1060

tialized as zero matrices. We recursively calculate the elements 1061

in f for i from 1 to �,n from 1 to �,α3b−2 from 1 toUb,α3b−1 from 1062

1 to KU,b, α3b from 1 to KD,b, ∀b ∈ B, until all the elements 1063

in f are updated. We record the corresponding optimal values 1064

of xt
biand ut

bi inX(i, n, α1, . . . , α3B) and Ψ(i, n, α1, . . . , α3B), 1065

respectively. The optimal value of P2 is then the smallest el- 1066

ement in matrix f(�, �, :, . . . , :) (i.e., f with the specific in- 1067

dices, i = �, n = �, 1 ≤ α3b−2 ≤ Ub, 1 ≤ α3b−1 ≤ KU,b, and 1068

1 ≤ α3b ≤ KD,b ∀b ∈ B). We then calculate the optimal xt
bi, 1069

ut
bi, k

t
U,bi, k

t
DT,bi and ktDS,bi for VU i iteratively from i = � to 1070

i = 1, by usingX ,Ψ, and the indices correspond to the minimum 1071

element. 1072

The time complexity of OPTA is O(UBKU
BKD

B+1�2B2) 1073

if all the SRSUs have the same computing capacity U , number 1074

of uplink subcarriers KU , and number of downlink subcarriers 1075

KD. The complexity grows exponentially with the number of 1076

SRSUs in the network. Since the value of U , KU , and KD are 1077

usually very large, OPTA will be prohibitive in terms of run-time 1078

if there are more than 2 SRSUs in the network. 1079

D. Complexity analysis of the exhaustive search method 1080

Here we perform a complexity analysis of the exhaustive 1081

search method for P1. The optimal solution of P1 requires the so- 1082

lar energy to be optimally scheduled to each time slot, while the 1083

VUs are associated with the optimal SRSU and SRSU resources 1084

are optimally allocated. For the sake of simplicity of analysis, we 1085

assume each SRSU has the same value of downlink subcarriers 1086

(i.e.,KD), uplink subcarriers (i.e.,KU ), and computing capacity 1087
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(i.e., U ). By dynamic programming analysis in Appendix C, the1088

complexity of the Phase 2 problem is O(UBKU
BKD

B+1�2B2)1089

for each time slot, where B is the number of SRSU and � is1090

the current number of VU. On the other hand, since energy1091

is continuous, there are unlimited possibilities of how many1092

portions of the generated solar energy can be used in the current1093

time slot and how the rest of it can be scheduled in the future1094

time slots, so as to the energy stored in the battery. For simplicity,1095

we assume the granularity of energy is 1 W and the maximum1096

harvested solar energy for each time slot is Ŝ. For the tth time1097

slot, because every 1W of the harvested solar energy can be1098

scheduled to any time slot t′ ∈ [t, T ], there are O((T − t+ 1)Ŝ)1099

scheduling possibilities. Therefore, for the overall operation1100

time, there are O(
T∏
t=1

(T − t+ 1)Ŝ) = O(T !Ŝ) possible solar1101

energy scheduling strategies will be searched, where !. is the1102

factorial function. Consequently, with �max = max
t

�t, the com-1103

plexity of exhaustively searching the optimal solution of P1 is1104

O(TUBKU
BKD

B+1�2
maxB

2T !Ŝ).1105
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