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TEXT

ANDREW STARTS

Data growth at New Relic
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30
GIGABIT PER SECOND INBOUND
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15,000,000
KAFKA MESSAGES PER SECOND
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600 MILLION
EVENTS PER MINUTE
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~50
ENGINEERING TEAMS
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HUNDREDS
OF ENGINEERS



@aughr

100%
DEV TEAMS ON CALL FOR THEIR SERVICES
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1
REGION
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EU region
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Nth region 
Aspiration: one small team can build a 
region
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Project Backpack
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MIGRATIONS 
AND DISASTER RECOVERY
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MIGRATIONS

PROBLEMS TO SOLVE IN EIGHT YEARS

▸ Deploying many services 

▸ Supporting a polyglot environment 

▸ Service discovery 

▸ Better secret management 

▸ Container orchestration
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MIGRATIONS

PROBLEMS TO SOLVE IN EIGHT YEARS

▸ Deploying many services 

▸ Supporting a polyglot environment 

▸ Service discovery 

▸ Better secret management 

▸ Container orchestration 

▸ Multiple regions



MIGRATIONS ARE THE ONLY MECHANISM TO EFFECTIVELY 
MANAGE TECHNICAL DEBT AS YOUR COMPANY AND CODE 
GROWS. IF YOU DON'T GET EFFECTIVE AT SOFTWARE AND 
SYSTEM MIGRATIONS, YOU'LL END UP LANGUISHING IN 
TECHNICAL DEBT.

Will Larson, April 2018

MIGRATIONS
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MIGRATIONS

THE VINTAGES OF NEW RELIC

▸ 2010: Capistrano and Puppet 

▸ 2013: Docker v0.x and Centurion 

▸ 2013: Serveza (in-house service discovery) 

▸ 2016: Vault 

▸ 2017: Grand Central (in-house build/deploy) and Container Fabric (Mesos)
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MIGRATIONS

CAPISTRANO AND PUPPET
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MIGRATIONS

CENTURION
  desc 'Production environment' 
  task :production => :common do 
    env_vars NEW_RELIC_JAVA_AGENT_ENVIRONMENT: 'production' 
    set_current_environment(:production) 

    env_vars AGENT_DB_USERNAME: 'al_acs' 
    env_vars AGENT_DB_PASSWORD: '…' 

    host '….nr-ops.net' 
    host '….nr-ops.net' 
    host '….nr-ops.net' 
  end 
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MIGRATIONS

CENTURION
  desc 'Disaster Recovery environment' 
  task :recovery => :common do 
    env_vars NEW_RELIC_JAVA_AGENT_ENVIRONMENT: 'recovery' 
    set_current_environment(:recovery) 

    env_vars AGENT_DB_USERNAME: 'agent_commands' 
    env_vars AGENT_DB_PASSWORD: '…' 

    host 'usw2v-dr-docker-8.dr.nr-ops.net' 
    host 'usw2v-dr-docker-16.dr.nr-ops.net' 
  end 
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MIGRATIONS

SERVICE DISCOVERY

handle = Serveza::Service.new('feature_flag', 1) 
endpoint = handle.api
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MIGRATIONS

SERVICE DISCOVERY
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MIGRATIONS

CONTAINER FABRIC AND GRAND CENTRAL



@aughr

MIGRATIONS

CONTAINER FABRIC AND GRAND CENTRAL
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INTERFACES



@aughr

Interfaces separate the contract from 
the implementation
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INTERFACES

GETTING DATABASE CREDENTIALS

▸ File a ticket 

▸ Wait for the DB team to add the credentials and share them 

▸ Add them to your service configuration 

▸ Deploy
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INTERFACES

GETTING DATABASE CREDENTIALS

▸ Programmatically declare your service needs access to the DB 

▸ …black box… 

▸ Deploy
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INTERFACES

GETTING DATABASE CREDENTIALS, REALITY

▸ Programmatically declare your service needs access to the DB 

▸ DB team still manually adds credentials 

▸ Deploy
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INTERFACES

GETTING DATABASE CREDENTIALS, REIMPLEMENTATION

▸ Programmatically declare your service needs access to the DB 

▸ Credentials automatically generated once a human reviews the access request 

▸ Deploy
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Encapsulation lets small teams act 
independently



@aughr

HIGH LEVERAGE 
INTERFACES
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY: PROBLEMS

▸ Mix of: 

▸ Serveza (homegrown) 

▸ Hard-coded 

▸ Env vars 

▸ Credential management unsolved 

▸ No way to do static analysis
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HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
ALICE 

DEPLOYING
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HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
ALICE 

BROKEN

SERVICE 
BOB 

NO SUCH SERVICE
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HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
BOB 

HEALTHY
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HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
ALICE 

HEALTHY

SERVICE 
BOB 

HEALTHY
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

handle = Serveza::Service.new('feature_flag', 1) 
endpoint = handle.api
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

BOB_URL: please tell me where bob is
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

BOB_URL: 'http://bob.local' 

BOB_HOST: 'bob.local' 

BOB_ENDPOINT: 'http://bob.local/path/to/api/i/use'
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

BOB_URL: 'discovery_path:bob' 
BOB_URL: 'http://bob.local' 
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

DATABASE_HOST: 'my-db.local' 
DATABASE_PORT: '3306' 
DATABASE_USERNAME: 'myuser' 
DATABASE_PASSWORD: 'mypass' 
DATABASE_NAME: 'my_schema' 
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

DATABASE_URL: 
  'mysql://myuser:mypass@my-db.local:3306/my_schema' 
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

DATABASE_URL: 'discovery_path:@mydb'
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HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY AS DEPENDENCY INJECTION

▸ Services declare their dependencies 

▸ Locations injected via env var in standard format (URLs) 

▸ Credentials part of URLs 

▸ Static analysis is possible
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HIGH-LEVERAGE INTERFACES

CONTAINERS EVERYWHERE

▸ Interface between teams and machines 

▸ Stateless in Container Fabric (Mesos) 

▸ Stateful in containers controlled via Centurion or Ansible 

▸ Cassandra running in Docker since 2015 

▸ Multitenant relational DBs in Docker since 2017 
https://www.percona.com/live/18/sessions/containerizing-databases-at-
new-relic-what-we-learned
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HIGH-LEVERAGE INTERFACES

COREOS NOT CENTOS

▸ Containers containers containers 

▸ Ignition replaces need for Puppet



    c.AssertUnit("newrelic-infra.service")        - name: newrelic-infra.service 
      enable: true 
      contents: | 
        [Unit] 
        Description=New Relic Infrastructure Agent 
        After=docker.service 
        Requires=docker.service 
        [Service] 
        TimeoutSec=0 
        Restart=always 
        ExecStartPre=-/usr/bin/docker kill %p 
        ExecStartPre=-/usr/bin/docker rm %p 
        ExecStartPre=/usr/bin/docker pull … 
        ExecStart=/usr/bin/docker run  \ 
                  …
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HIGH-LEVERAGE INTERFACES

TERRAFORM

▸ Interface between us and the cloud 

▸ Declarative infrastructure-as-code 

▸ Allows repeatability 

▸ Developed our own Terraform providers as necessary
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Second System?
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2X
OPERATIONAL LOAD
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SAME
TIME TO BUILD A NEW REGION
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The Goldilocks balance: 
Choose the right work
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THE PLAN
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THE PLAN

WE HOPED…

▸ Discovery 

▸ Fan out 

▸ Test 

▸ Release
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THE RETRO
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Quick ramp-ups 
How do you prioritize work?
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Autonomous teams
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QUICK RAMP-UPS

AN EXAMPLE OF PROJECT PRIORITIZATION

1. One team’s must-ship project. Everyone makes sure this team can succeed. 

2. High-priority cross-cutting project. All teams do their part as soon as possible. 

3. Feature promised to marketing. 

4. Future highest-priority project. Don’t block the top, but this needs to ramp up.
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QUICK RAMP-UPS

WHAT WASN’T READY?

▸ Full documentation of what we were asking for 

▸ Service discovery 

▸ Other core tooling 

▸ Easily digestible philosophy to help people make decisions



START
STOP

CONTINUE
@aughr

Prioritizing important work across the company

Prepare for what happens when a project suddenly 
receives high priority. 
Produce project philosophy document.

QUICK RAMP-UPS
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Moving goalposts
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MOVING GOALPOSTS

UPFRONT WORK

▸ Containerization 

▸ Move to Container Fabric 
(Mesos) 

▸ Service discovery via env vars
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MOVING GOALPOSTS

UPFRONT WORK

▸ Containerization 

▸ Move to Container Fabric 
(Mesos) 

▸ Service discovery via env vars

LATER WORK

▸ Replace hardcoded env vars with 
discovery_path 

▸ base_environment in YAML 
config 

▸ Regional redirection
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Heroes
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3
BUILDOUTS
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MOVING GOALPOSTS

THE REALITY OF A BUILDOUT

1. A team does the work in the US. 

2. Wait a few days or weeks. (In reality, do other things.) 

3. Backpack team tries to deploy the team’s services, finds problems. 

4. Team is now potentially blocking the buildout. 

5. Frustration. 

6. GOTO 1.
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Steel thread: 
Validate a design using a subproject 
that tests it thoroughly.



START
STOP

CONTINUE
@aughr

Avoid waterfall planning. Agile is still good.

Hidden work, even if only by acknowledging that 
unknown future work exists.

Use a small number of teams that form a complete 
system as a test case. 
Be more honest and transparent.

MOVING GOALPOSTS
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Communication is hard
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COMMUNICATION IS HARD

COMMUNICATION METHODS

▸ Blog posts 

▸ Town hall events 

▸ Checklist app 

▸ Linting 

▸ Emails
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COMMUNICATION IS HARD

COMMUNICATION METHODS

▸ Blog posts… don’t get read. 

▸ Town hall events… are optional. 

▸ Checklist app… doesn’t get looked at. 

▸ Linting… doesn’t get used. 

▸ Emails… don’t get read.
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Centralized documentation



START
STOP

CONTINUE
@aughr

Blogging internally. 
Communicating using as many channels as possible.

Put all project requirements and deliverables in one 
place, with a user-readable changelog (not Git commits). 
Have better linting.

COMMUNICATION IS HARD
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Local maximums
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LOCAL MAXIMUMS

YOUR TEAM 3 YEARS AGO

▸ 20 services 

▸ Want: 

▸ chained deploys 

▸ shared configuration 

▸ service discovery
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LOCAL MAXIMUMS

YOUR TEAM NOW

▸ 20 services 

▸ Have: 

▸ chained deploys 

▸ shared configuration 

▸ service discovery 

▸ Don’t have: the standardized platform that was built in the meantime
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Standardized tooling

Team-specific tooling

Transition pain



@aughr

Future tooling

Team-specific tooling

Standardized tooling



START
STOP

CONTINUE
@aughr

Making standard tooling better.

Making assumptions about how teams or individuals will 
react.

Have more empathy for teams stuck in a local maximum. 
Communicate well in advance, hopefully close gaps early.

LOCAL MAXIMUMS
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Leaning on what you have
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LEANING ON WHAT YOU HAVE

IN-FLIGHT PROJECTS

▸ Container Fabric team building Mesos-based platform 

▸ Build and Deploy Tools building Grand Central build/deploy system 

▸ DB Engineering building Megabase, containerized DB platform
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Huge upticks in adoption rate
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CONTINUE
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Look for high-leverage work a small number of teams 
can do.

Make clear which priorities are highest for infrastructure 
teams.

LEANING ON WHAT YOU HAVE
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Pilot phase
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PILOT PHASE

THE ORIGINAL PLAN

▸ Discovery 

▸ Fan out 

▸ Test ourselves 

▸ Release



@aughr

PILOT PHASE

THE REVISED PLAN

▸ Discovery 

▸ Fan out 

▸ Test ourselves 

▸ Run a pilot 

▸ Release



START
STOP

CONTINUE
@aughr

Magical thinking.

PILOT PHASE
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Where we are now



@aughr

It worked
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EU region
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Disaster recovery
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Less busywork
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95%
SERVICES IN CONTAINER FABRIC
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The New Relic product benefits
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We’ve learned a lot



START
STOP

CONTINUE
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A little bit of magical thinking. 
Trying bold things.

THE FUTURE



THANK YOU Twitter: @aughr 
micro.blog: @aughr 
Mastodon: aughr@pgh.social


