
THE NTH REGION PROJECT
ANDREW BLOOMGARDEN
STAFF ENGINEER, NEW RELIC

Twitter: @aughr
micro.blog: @aughr

Mastodon: aughr@pgh.social

@aughr

THE NTH REGION PROJECT

FORMAT

‣ What New Relic does

‣ What made this project difficult

‣ The technical changes we made

‣ The retro: the organizational challenges we faced

‣ Where we are now

RAILS MONOLITH

UI
API

DATA COLLECTION

RAILS MONOLITH

UI
API

JAVA COLLECTOR

DATA COLLECTION

@aughr

TEXT

ANDREW STARTS

Data growth at New Relic

@aughr

30
GIGABIT PER SECOND INBOUND

@aughr

15,000,000
KAFKA MESSAGES PER SECOND

@aughr

600 MILLION
EVENTS PER MINUTE

@aughr

~50
ENGINEERING TEAMS

@aughr

HUNDREDS
OF ENGINEERS

@aughr

100%
DEV TEAMS ON CALL FOR THEIR SERVICES

@aughr

1
REGION

@aughr

EU region

@aughr

Nth region
Aspiration: one small team can build a
region

@aughr

Project Backpack

@aughr

MIGRATIONS
AND DISASTER RECOVERY

@aughr

MIGRATIONS

PROBLEMS TO SOLVE IN EIGHT YEARS

▸ Deploying many services

▸ Supporting a polyglot environment

▸ Service discovery

▸ Better secret management

▸ Container orchestration

@aughr

MIGRATIONS

PROBLEMS TO SOLVE IN EIGHT YEARS

▸ Deploying many services

▸ Supporting a polyglot environment

▸ Service discovery

▸ Better secret management

▸ Container orchestration

▸ Multiple regions

MIGRATIONS ARE THE ONLY MECHANISM TO EFFECTIVELY
MANAGE TECHNICAL DEBT AS YOUR COMPANY AND CODE
GROWS. IF YOU DON'T GET EFFECTIVE AT SOFTWARE AND
SYSTEM MIGRATIONS, YOU'LL END UP LANGUISHING IN
TECHNICAL DEBT.

Will Larson, April 2018

MIGRATIONS

@aughr

MIGRATIONS

THE VINTAGES OF NEW RELIC

▸ 2010: Capistrano and Puppet

▸ 2013: Docker v0.x and Centurion

▸ 2013: Serveza (in-house service discovery)

▸ 2016: Vault

▸ 2017: Grand Central (in-house build/deploy) and Container Fabric (Mesos)

@aughr

MIGRATIONS

CAPISTRANO AND PUPPET

@aughr

MIGRATIONS

CENTURION
 desc 'Production environment'
 task :production => :common do
 env_vars NEW_RELIC_JAVA_AGENT_ENVIRONMENT: 'production'
 set_current_environment(:production)

 env_vars AGENT_DB_USERNAME: 'al_acs'
 env_vars AGENT_DB_PASSWORD: '…'

 host '….nr-ops.net'
 host '….nr-ops.net'
 host '….nr-ops.net'
 end

@aughr

MIGRATIONS

CENTURION
 desc 'Disaster Recovery environment'
 task :recovery => :common do
 env_vars NEW_RELIC_JAVA_AGENT_ENVIRONMENT: 'recovery'
 set_current_environment(:recovery)

 env_vars AGENT_DB_USERNAME: 'agent_commands'
 env_vars AGENT_DB_PASSWORD: '…'

 host 'usw2v-dr-docker-8.dr.nr-ops.net'
 host 'usw2v-dr-docker-16.dr.nr-ops.net'
 end

@aughr

MIGRATIONS

SERVICE DISCOVERY

handle = Serveza::Service.new('feature_flag', 1)
endpoint = handle.api

@aughr

MIGRATIONS

SERVICE DISCOVERY

@aughr

MIGRATIONS

CONTAINER FABRIC AND GRAND CENTRAL

@aughr

MIGRATIONS

CONTAINER FABRIC AND GRAND CENTRAL

@aughr

INTERFACES

@aughr

Interfaces separate the contract from
the implementation

@aughr

INTERFACES

GETTING DATABASE CREDENTIALS

▸ File a ticket

▸ Wait for the DB team to add the credentials and share them

▸ Add them to your service configuration

▸ Deploy

@aughr

INTERFACES

GETTING DATABASE CREDENTIALS

▸ Programmatically declare your service needs access to the DB

▸ …black box…

▸ Deploy

@aughr

INTERFACES

GETTING DATABASE CREDENTIALS, REALITY

▸ Programmatically declare your service needs access to the DB

▸ DB team still manually adds credentials

▸ Deploy

@aughr

INTERFACES

GETTING DATABASE CREDENTIALS, REIMPLEMENTATION

▸ Programmatically declare your service needs access to the DB

▸ Credentials automatically generated once a human reviews the access request

▸ Deploy

@aughr

Encapsulation lets small teams act
independently

@aughr

HIGH LEVERAGE
INTERFACES

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY: PROBLEMS

▸ Mix of:

▸ Serveza (homegrown)

▸ Hard-coded

▸ Env vars

▸ Credential management unsolved

▸ No way to do static analysis

@aughr

HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
ALICE

DEPLOYING

@aughr

HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
ALICE

BROKEN

SERVICE 
BOB

NO SUCH SERVICE

@aughr

HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
BOB

HEALTHY

@aughr

HIGH-LEVERAGE INTERFACES

WHY STATIC ANALYSIS?

SERVICE 
ALICE

HEALTHY

SERVICE 
BOB

HEALTHY

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

handle = Serveza::Service.new('feature_flag', 1)
endpoint = handle.api

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

BOB_URL: please tell me where bob is

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

BOB_URL: 'http://bob.local'

BOB_HOST: 'bob.local'

BOB_ENDPOINT: 'http://bob.local/path/to/api/i/use'

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

BOB_URL: 'discovery_path:bob'
BOB_URL: 'http://bob.local'

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

DATABASE_HOST: 'my-db.local'
DATABASE_PORT: '3306'
DATABASE_USERNAME: 'myuser'
DATABASE_PASSWORD: 'mypass'
DATABASE_NAME: 'my_schema'

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

DATABASE_URL:
 'mysql://myuser:mypass@my-db.local:3306/my_schema'

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY

DATABASE_URL: 'discovery_path:@mydb'

@aughr

HIGH-LEVERAGE INTERFACES

SERVICE DISCOVERY AS DEPENDENCY INJECTION

▸ Services declare their dependencies

▸ Locations injected via env var in standard format (URLs)

▸ Credentials part of URLs

▸ Static analysis is possible

@aughr

HIGH-LEVERAGE INTERFACES

CONTAINERS EVERYWHERE

▸ Interface between teams and machines

▸ Stateless in Container Fabric (Mesos)

▸ Stateful in containers controlled via Centurion or Ansible

▸ Cassandra running in Docker since 2015

▸ Multitenant relational DBs in Docker since 2017 
https://www.percona.com/live/18/sessions/containerizing-databases-at-
new-relic-what-we-learned

@aughr

HIGH-LEVERAGE INTERFACES

COREOS NOT CENTOS

▸ Containers containers containers

▸ Ignition replaces need for Puppet

 c.AssertUnit("newrelic-infra.service")     - name: newrelic-infra.service
 enable: true
 contents: |
 [Unit]
 Description=New Relic Infrastructure Agent
 After=docker.service
 Requires=docker.service
 [Service]
 TimeoutSec=0
 Restart=always
 ExecStartPre=-/usr/bin/docker kill %p
 ExecStartPre=-/usr/bin/docker rm %p
 ExecStartPre=/usr/bin/docker pull …
 ExecStart=/usr/bin/docker run \
 …

@aughr

HIGH-LEVERAGE INTERFACES

TERRAFORM

▸ Interface between us and the cloud

▸ Declarative infrastructure-as-code

▸ Allows repeatability

▸ Developed our own Terraform providers as necessary

@aughr

Second System?

@aughr

2X
OPERATIONAL LOAD

@aughr

SAME
TIME TO BUILD A NEW REGION

@aughr

@aughr

The Goldilocks balance:
Choose the right work

@aughr

THE PLAN

@aughr

THE PLAN

WE HOPED…

▸ Discovery

▸ Fan out

▸ Test

▸ Release

@aughr

THE RETRO

@aughr

Quick ramp-ups
How do you prioritize work?

@aughr

Autonomous teams

@aughr

QUICK RAMP-UPS

AN EXAMPLE OF PROJECT PRIORITIZATION

1. One team’s must-ship project. Everyone makes sure this team can succeed.

2. High-priority cross-cutting project. All teams do their part as soon as possible.

3. Feature promised to marketing.

4. Future highest-priority project. Don’t block the top, but this needs to ramp up.

@aughr

@aughr

@aughr

QUICK RAMP-UPS

WHAT WASN’T READY?

▸ Full documentation of what we were asking for

▸ Service discovery

▸ Other core tooling

▸ Easily digestible philosophy to help people make decisions

START
STOP

CONTINUE
@aughr

Prioritizing important work across the company

Prepare for what happens when a project suddenly
receives high priority.
Produce project philosophy document.

QUICK RAMP-UPS

@aughr

Moving goalposts

@aughr

MOVING GOALPOSTS

UPFRONT WORK

▸ Containerization

▸ Move to Container Fabric
(Mesos)

▸ Service discovery via env vars

@aughr

MOVING GOALPOSTS

UPFRONT WORK

▸ Containerization

▸ Move to Container Fabric
(Mesos)

▸ Service discovery via env vars

LATER WORK

▸ Replace hardcoded env vars with
discovery_path

▸ base_environment in YAML
config

▸ Regional redirection

@aughr

Heroes

@aughr

3
BUILDOUTS

@aughr

MOVING GOALPOSTS

THE REALITY OF A BUILDOUT

1. A team does the work in the US.

2. Wait a few days or weeks. (In reality, do other things.)

3. Backpack team tries to deploy the team’s services, finds problems.

4. Team is now potentially blocking the buildout.

5. Frustration.

6. GOTO 1.

@aughr

Steel thread:
Validate a design using a subproject
that tests it thoroughly.

START
STOP

CONTINUE
@aughr

Avoid waterfall planning. Agile is still good.

Hidden work, even if only by acknowledging that
unknown future work exists.

Use a small number of teams that form a complete
system as a test case.
Be more honest and transparent.

MOVING GOALPOSTS

@aughr

Communication is hard

@aughr

COMMUNICATION IS HARD

COMMUNICATION METHODS

▸ Blog posts

▸ Town hall events

▸ Checklist app

▸ Linting

▸ Emails

@aughr

COMMUNICATION IS HARD

COMMUNICATION METHODS

▸ Blog posts… don’t get read.

▸ Town hall events… are optional.

▸ Checklist app… doesn’t get looked at.

▸ Linting… doesn’t get used.

▸ Emails… don’t get read.

@aughr

Centralized documentation

START
STOP

CONTINUE
@aughr

Blogging internally.
Communicating using as many channels as possible.

Put all project requirements and deliverables in one
place, with a user-readable changelog (not Git commits).
Have better linting.

COMMUNICATION IS HARD

@aughr

Local maximums

@aughr

LOCAL MAXIMUMS

YOUR TEAM 3 YEARS AGO

▸ 20 services

▸ Want:

▸ chained deploys

▸ shared configuration

▸ service discovery

@aughr

LOCAL MAXIMUMS

YOUR TEAM NOW

▸ 20 services

▸ Have:

▸ chained deploys

▸ shared configuration

▸ service discovery

▸ Don’t have: the standardized platform that was built in the meantime

@aughr

Standardized tooling

Team-specific tooling

Transition pain

@aughr

Future tooling

Team-specific tooling

Standardized tooling

START
STOP

CONTINUE
@aughr

Making standard tooling better.

Making assumptions about how teams or individuals will
react.

Have more empathy for teams stuck in a local maximum.
Communicate well in advance, hopefully close gaps early.

LOCAL MAXIMUMS

@aughr

Leaning on what you have

@aughr

LEANING ON WHAT YOU HAVE

IN-FLIGHT PROJECTS

▸ Container Fabric team building Mesos-based platform

▸ Build and Deploy Tools building Grand Central build/deploy system

▸ DB Engineering building Megabase, containerized DB platform

@aughr

Huge upticks in adoption rate

START
STOP

CONTINUE
@aughr

Look for high-leverage work a small number of teams
can do.

Make clear which priorities are highest for infrastructure
teams.

LEANING ON WHAT YOU HAVE

@aughr

Pilot phase

@aughr

PILOT PHASE

THE ORIGINAL PLAN

▸ Discovery

▸ Fan out

▸ Test ourselves

▸ Release

@aughr

PILOT PHASE

THE REVISED PLAN

▸ Discovery

▸ Fan out

▸ Test ourselves

▸ Run a pilot

▸ Release

START
STOP

CONTINUE
@aughr

Magical thinking.

PILOT PHASE

@aughr

Where we are now

@aughr

It worked

@aughr

EU region

@aughr

Disaster recovery

@aughr

Less busywork

@aughr

95%
SERVICES IN CONTAINER FABRIC

@aughr

The New Relic product benefits

@aughr

We’ve learned a lot

START
STOP

CONTINUE
@aughr

A little bit of magical thinking.
Trying bold things.

THE FUTURE

THANK YOU Twitter: @aughr
micro.blog: @aughr
Mastodon: aughr@pgh.social

