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PREFACE

Riemann’s seminal 1860 memoir showed how questions on the distribution of
prime numbers are more-or-less equivalent to questions on the distribution of
zeros of the Riemann zeta function. This was the starting point for the beautiful
theory which is at the heart of analytic number theory. Heretofore there has been
no other coherent approach that was capable of addressing all of the central issues
of analytic number theory.

In this book we present the pretentious view of analytic number theory;
allowing us to recover the basic results of prime number theory without use
of zeros of the Riemann zeta-function and related L-functions, and to improve
various results in the literature. This approach is certainly more flexible than
the classical approach since it allows one to work on many questions for which
L-function methods are not suited. However there is no beautiful explicit formula
that promises to obtain the strongest believable results (which is the sort of thing
one obtains from the Riemann zeta-function). So why pretentious?

e It is an intellectual challenge to see how much of the classical theory one
can reprove without recourse to the more subtle L-function methodology (For
a long time, top experts had believed that it is impossible is prove the prime
number theorem without an analysis of zeros of analytic continuations. Selberg
and Erdés refuted this prejudice but until now, such methods had seemed ad
hoc, rather than part of a coherent theory).

e Selberg showed how sieve bounds can be obtained by optimizing values
over a wide class of combinatorial objects, making them a very flexible tool. Pre-
tentious methods allow us to introduce analogous flexibility into many problems
where the issue is not the properties of a very specific function, but rather of a
broad class of functions.

e This flexibility allows us to go further in many problems than classical
methods alone, as we shall see in the latter chapters of this book.

The Riemann zeta-function ((s) is defined when Re(s) > 1; and then it is
given a value for each s € C by the theory of analytic continuation. Riemann
pointed to the study of the zeros of ((s) on the line where Re(s) = 1/2. However
we have few methods that truly allow us to say much so far away from the
original domain of definition. Indeed almost all of the unconditional results in
the literature are about understanding zeros with Re(s) very close to 1. Usually
the methods used to do so, can be viewed as an extrapolation of our strong
understanding of ((s) when Re(s) > 1. This suggests that, in proving these
results, one can perhaps dispense with an analysis of the values of ((s) with
Re(s) < 1, which is, in effect, what we do.



viii Preface

Our original goal in the first part of this book wa; w07 5659y er all the main
results of Davenport”s Multiplicative Number Theory [21] by pretentious meth-

ods, and then to provi JPH%h as possible of the result of classical literature,
such as the results in%rns out that pretentious methods yield a much
easier proof of Linnik’s Theorem, and quantitatively yield much the same quality
of results throughout the subject.

However Siegel’s Theorem, giving a lower bound on |L(1, )|, is one result
that we have little hope of addressing without considering zeros of L-functions.
The difficulty is that all proofs of his lower bound run as follows: Either the
Generalized Riemann Hypothesis (GRH) is true, in which case we have a good
lower bound, or the GRH is false, in which case we have a lower bound in
terms of the first counterexample to GRH. Classically this explains the inexplicit
constants in analytic number theory (evidently Siegel’s lower bound cannot be
made explicit unless another proof is found, or GRH is resolved) and, without a
fundamentally different proof, we have little hope of avoiding zeros. Instead we
give a proof, due to Pintz, that is formulated in terms of multiplicative functions
and a putative zero.

Although this is the first coherent account of this theory, our work rests on
ideas that have been around for some time, and the contributions of many au-
thors. The central role in our development belongs to Halasz’s Theorem. Much is
based on the results and perspectives of Paul Erdds and Atle Selberg. Other early
authors include Wirsing, Halasz, Daboussi and Delange. More recent influential
authors include Elliott, Hall, Hildebrand, Iwaniec, Mo %qg%%rl%_{and Vaughan,
Pintz, and Tenenbaum. In addition, Tenenbaum’s bookrT[TOTWS beautiful in-
sight into multiplicative functions, often from a classical perspective.

Our own thinking has developed in part thanks to conversations with our
collaborators John Friedlander, Régis de la Bréteche and Antal Balog. We are
particularly grateful to Dimitris Koukoulopoulos who has been working with us
while we have worked on this book, and proved several results that we needed,
when we needed them!
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1

THE PRIME NUMBER THEOREM

As a boy Gauss determined that the density of primes around «z is 1/ log z, leading
him to conjecture that the number of primes up to x is well-approximated by

the estimate -
T = E 1 ~ . 1.1
() log x (1.1)

p<z

It may seem less intuitive, but in fact it is simpler to weight each prime with
log p; and, as we have seen, it is natural to throw the prime powers into this sum,
which has little impact on the size. Thus we define the von Mangoldt function

A(n) = {log‘p if n=p

™ where p is prime, andm > 1
! (1.2)
0 otherwise,

. PN .
and then, in place of (II.1 i, we conjecture that

P(a) =Y An) ~ . (1.3)

n<zx

The equivalent estimates (hﬂqu) and (hzlg% known as the prime number theorem,
are difficult to prove. In this chapter we show how the prime number theorem
is equivalent to understanding the mean value of the Mobius function. This will
motivate our study of multiplicative functions in general, and provide new ways
of looking at many of the classical questions in analytic number theory.

1.1 Partial Summation

We begin with a useful technique known as Abel’s partial summation. Let a,
be a sequence of complex numbers, and let f : R — C be some function. Set
S(t) =>4, @k, and our goal is to understand

B

Z anf(n)

n=A+1

in terms of the partial sums S(¢). Let us first assume that A < B are non-negative
integers. Since a,, = S(n) — S(n — 1) we may write

B B

D anfm)= Y f(n)(S(n) - S(n-1)),

n=A+1 n=A+1

PNT



2 The prime number theorem

and with a little rearranging we obtain

B B-1
Y anf(n) = S(B)f(B) = S(A)f(A) = Y S(n)(f(n+1) = f(n)). (14) [pst
n=A+1 n=A

If now we suppose that f is continuously differentiable on [A, B] then we may
write the above as

B
> anfln) = SBFB) - SAFA) - [ SO @w 15 [F
A<n<B A
PS
We leave to the reader to check that (M continues to hold for all non-negative
real numbers A < B. If we think of ) ,_, _pa,f(n) as the Riemann-Stieltjes
PS -
integral ff: f(#)d(S(t)) then (h_S% amounts to integration by parts.

PNT PNT2
Exercise 1.1 Using partial summation show that (1.1) and (1.3 are equivalent,
and that both are equivalent to

0(z) = Z logp =z + o(x). (1.6)

p<z

Exercise 1.2 Using partial summation, prove that for any integer N > 1

N

1 Mty

n=1

where throughout we write [t] for the integer part of t, and {t} for its fractional
part (so that t = [t] + {t}). Deduce that for any real x > 1

Z%:logm—&-’H—O(%)

n<z

where v is the Euler-Mascheroni constant

N o0
= (S w) 1 [

ex:stirling| Exercise 1.3 For an integer N > 1 show that

M ity
logN!:NlogN—N+1+/ Tdt.
1

Using that [ ({t} —1/2)dt = ({x}* — {z})/2 and integrating by parts, show that

/IN{?dtllogN;/lN{t}tQ{t}Zdt.

2
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Conclude that N! ~ C/N(N/e)N. Here one also knows that
_ I S Uk A
C’—exp<1—§/1 Tdt)-x/?w,

and the resulting asymptotic for N! is known as Stirling’s formula.
Recall that the Riemann zeta function is given by
o0
1 1\-1
n=1 P

Here the Dirichlet series and the Euler product both converge absolutely in the
region Re(s) > 1.

Exercise 1.4 Prove that for Re(s) > 1

o) =s [ Mty = s [T

Observe that the right hand side above is an analytic function of s in the region
Re(s) > 0 except for a simple pole at s = 1 with residue 1. Thus we have an
analytic continuation of ((s) to this larger region, and near s = 1 we have the
Laurent expansion

C(s)zs_%-ﬁ—v—i-....

ex:stirlin
Adapting the argument in Ezercise 1.3 obtain an analytic continuation of ((s)
to the region Re(s) > —1. Generalize.

1.2 Chebyshev’s elementary estimates

Chebyshev made significant progress on the distribution of primes by showing
that there are constants 0 < ¢ <1 < C with

(c+o(1))

<m(x) < (C+o0(1))

(1.7)

log = logz’

Moreover he showed that if
m(z)
im
z—oo x/logx

exists, then it must equal 1.
The key to obtaining such information is to write the prime factorization of

n in the form
logn = Z A(d).
dln

Summing both sides over n (and re-writing “d|n” as “n = dk”), we obtain that
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dlogn=> Y Ald) =) d(x/k). (1.8)
k=1

n<z n<z n=dk

. C e . ex:stirlin
Using Stirling’s formula, Exercise T.3, we deduce that

> (w/k) = zlogx — x + O(log x). (1.9)

k=1
Exercise 1.5 Deduce that
P(x) ¥(x)

limsup ——= > 1 > liminf ——
T—00 X T—00 X

so that if limg, o (2) /2 exists it must be 1.

Cheb1l Cheb2
To obtain Chebyshev’s estimates ( .7;, take ( 8) at 2z and subtract twice
that relation taken at x. This yields

zlog4d + O(logx) = ¥ (2z) — ¥ (22/2) + ¥ (22/3) — Y (2z/4) + ...,

and upper and lower estimates for the right hand side above follow upon trun-
cating the series after an odd or even number of steps. In particular we obtain
that

¥(2z) > zlog4 + O(log ),

Chebl
which gives the lower bound of (l.?; with ¢ = log 2 a permissible value. And we
also obtain that

(22) — () < wlog 4 + O(log ),
which, when used at z/2, x/4, ... and summed, leads to ¥(z) < wlog4 +

O((log)?). Thus we obtain the upper bound in (I.7) with C' = log4 a per-
missible value.

Exercise 1.6 Using that ¢(2x) — ¢(x) + ¥(2z/3) > xlogd + O(logz), prove

Bertrand’s postulate that there is a prime between N and 2N .
Cheb2

Returning to (I.8), we may recast it as
x
>logn =Y AW@) > 1= A@(%+00)).
n<x d<z k<z/d d<z

Using Stirling’s formula, and the recently established ¢ (z) = O(x), we conclude

that Ald
zlogx + O(z) = xz ST),

d<z

or in other words

Z@ :Zlolg)p+0(1) =logz + O(1). (1.10)

n<lz p<lzx
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Exercise 1.7 Show that (H% would follow from the prime number theore and
partial summation. Why does the prime number theorem not follow from (1.10)
and partial summation? What stronger information on Y ._logp/p would yield
the prime number theorem?

p<z

. Pav . . .
Exercise 1.8 Use (II. 2(5) and partial summation show that there is a constant c

such that ) )
Zi =loglogz +c+ O () .
P log x

p<z

Deduce Mertens” Theorem, that there exists a constant v such that

-
1(-)-i
P log x

p<z

(In fact 7y is the Euler-Mascheroni constant. There does not seem to be a straight-
forward, intuitive proof known that it is indeed this constant.)

1.3 Multiplicative functions and Dirichlet series

The main objects of study in this book are multiplicative functions. These are
functions f : N — C satistying f(mn) = f(m)f(n) for all coprime integers m and
n. If the relation f(mn) = f(m)f(n) holds for all integers m and n we say that f
is completely multiplicative. If n = [] j p?j is the prime factorization of n, where
the primes p; are distinct, then f(n) =[] i f (p?j ) for multiplicative functions f.
Thus a multiplicative function is specified by its values at prime powers and a
completely multiplicative function is specified by its values at primes.

A handy way to study multiplicative functions is through Dirichlet series. We

let
F(s):zfr(g):H<1+f(p)+@+...).

pr o p
The product over primes above is called an Euler product, and viewed formally
the equality of the Dirichlet series and the Euler product above is a restatement
of the unique factorization of integers into primes. If we suppose that the mul-
tiplicative function f does not grow rapidy — for example, that |f(n)| < n*
for some constant A — then the Dirichlet series and Euler product will converge
absolutely in some half-plane with Re(s) suitably large.
Given any two functions f and g from N — C (not necessarily multiplicative),
their Dirichlet convolution f % g is defined by

(f*g)(n) = fla)g(b).
ab=n
If F(s) = > .2, f(n)n™% and G(s) = > 7, g(n)n~* are the associated Dirich-
let series, then the convolution f # g corresponds to their product F(s)G(s) =

> onei (f# g)(n)n=>.
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Here are some examples of the basic multiplicative functions and their asso-
ciated Dirichlet series.

e The function §(1) = 1 and §(n) = 0 for all n > 2 has the associated
Dirichlet series 1.

e The function 1(n) =1 for all n € N has the associated Dirichlet series ¢(s)
which converges abSOl’}'lZé{%g, when Re(s) > 1, and whose analytic continuation we
discussed in Exercise [T.4.

e For a natural number k, the k-divisor function di(n) counts the number of
ways of writing n as a; - - - ag. That is, dj, is the k-fold convolution of the function
1(n), and its associated Dirichlet series is ¢(s)*. The function dy(n) is called the
divisor function and denoted simply by d(n). More generally, for any complex
number z, the z-th divisor function d,(n) is defined as the n-th Dirichlet series
coefficient of {(s)*.

e The Mébius function p(n) is defined to be 0 if n is divisible by the square
of some prime, and if n is square-free p(n) is 1 or —1 depending on whether
n has an even or odd number of prime factors. The associated Dirichlet series
S0 p(n)n~* = ((s)7! so that y is the same as d_.

e The von Mangoldt function A(n) is not multiplicative, but is of great in-
terest to us. Its associated Dirichlet series is —(’/({(s). The function logn has
associated Dirichlet series —(’(s), and putting these facts together we see that

logn = (1xA)(n) = ZA(d)7 and A(n) = (uxlog)(n) = Z u(a)logh. (1.11)

d|n ab=n

Exercise 1.9 If f and g are functions from N to C, show that the relation
f = 1% g s equivalent to the relation g = p * f. This is known as Mobius
nersion.

As mentioned earlier, our goal in this chapter is to show that the prime
number theorem is equivalent to a statement about the mean value of the mul-
tiplicative function p. We now formulate this equivalence precisely.

Theorem 1.10 The prime number theorem, namely ¥(x) = x + o(x), is equiv-
alent to

M(z) = Z u(n) = o(x). (1.12)

n<x

Before we can prove this, we need one more ingredient: namely, we need to
understand the average value of the divisor function.

1.4 The average value of the divisor function and Dirichlet’s
hyperbola method

We wish to evaluate asymptotically > . _d(n). An immediate idea gives

n<x
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YOUIED ) B ) ¥

n<z n<e dln d<z 72%
S )-X (o)
=zlogx + O(x)

Dirichlet realized that one can substantially improve the error term above by
pairing each divisor a of an integer n with its complementary divisor b = n/a;
one minor exception is when n = m? and the divisor m cannot be so paired.
Since a or n/a must be < /n we have

21—2 Z 1+ 6p,

d|n
d<y/n

where 0,, = 1 if n is a square, and 0 otherwise. Therefore

dYldm)=2>" > 1+ > 1

n<x n<x din n<z
d<v/mn n=d?
-3 (1 +2 ) 1)
d</z d2§‘n§x
=Y Qla/d—2d+1),
d</z
and so
1
Zd(n)z% Z g—x+0(\/5):xloga:—x+27x+0(\/5), (1.13)
n<z d<\/z

. ex:harmonic
by Exercise [T.2.

The method described above is called the hyperbola method because we are
trying to count the number of lattice points (a,b) with a and b non-negative and
lying below the hyperbola ab = x. Dirichlet’s idea maybe thought of as choosing
parameters A, B with AB = z, and dividing the points under the hyperbola
according to whether a < A or b < B or both. We remark that an outstanding
open proplem, known as the Dirichlet d1v1sor problem, is to show that the error

. +e
4
term in ( . 3) may be 1mproved to O Jf ex:stirlin
For our subsequent WOI‘k we use Exermse [.3 to recast I 13

S (logn + 29— d(n)) = O(Va). (1.14)

n<z
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Exercise 1.11 Given a natural number k, use the hyperbola method together
with induction and partial summation to show that

Z dk(n) = ka(log CC) + O(xl_l/k+€)

n<x

where Py(t) denotes a polynomial of degree k—1 with leading term t*~1/(k—1)!.

1.5 The primgppmber theorem and the Mdbius function: proof of
Theorem 1.10

First we show that the estimate M(x) = )
number theorem t(z) = x + o(x).
Define the arithmetic function a(n) = logn — d(n) + 27, so that

a(n) = (1% (A =1))(n) + 2y.

u(n) = o(z) implies the prime

n<z

When we convolve a with the Mobius function we therefore obtain

(nxa)(n) = (u*1x(A—=1))(n)+2y(px*1)(n) = (A = 1)(n) +2vy4(n),

where 6(1) = 1, and 6(n) = 0 for n > 1. Hence, when we sum (¢ * a)(n) over all
n < x, we obtain

D (uxa)(n) =) (An) = 1) +2y = ¢(x) —z + O(1).
n<zx n<z
On the other hand, we may write the left hand side above as
> wda(k),
dk<z

and, as in the hyperbola method, split into terms where k¥ < K or k > K (in
which case d < z/K). Thus we find that

S udatk) = S a)M@/k) + S uwd) S alk).
dk<w k<K d<z/K K<k<z/d
Using ( (?IVZI( }sgve see that the second term above is
- 0( 3 \/x/d) = 0(z/VEK).
d<z/K
Putting everything together, we deduce that
P(z) —z = Z a(k)M(z/k) + O(z/VK).
k<K

If we now know that M(x) = o(z), then by letting K tend to infinity very
slowly with z, we may conclude that ¢(x) — z = o(x), obtaining the prime
number theorem.
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Now we turn to the converse. We must show that the prime number theorem
implies that M (z) = o(x). Consider the arithmetic function —u(n)logn which
is the n-th Dirichlet series coefficient of (1/¢(s))’. Since

BRI I S
@) -~
we obtain the identity —pu(n)logn = (pu* A)(n). Since px 1 = 6, we find that

D (wx(A=1)(n) == pu(n)logn —1. (1.15)

n<lx n<lxz
Prs
The right hand side of ( 15) is

flog:cZu +Z,u )log(z/n) — 1= —(logx) M (Zlog x/n)

n<lzx n<zx n<x
(log x)M(x) + O(z),

tirling r5
upon using Exercise o5 lre Tet hand side of (I I5) is
Z wla)(A Zu ( (x/a) —x/a)

ab<z a<zx

We are assuming the prime number theorem, which means that given € > 0 if
t > T is large enough then [¢(t) — t| < et. Using this for a < z/T (so that
z/a > T) and the Chebyshev estimate, [¢)(z/a) — z/a| < z/a for /T <a <z
we find that the left hand side of rﬁ]gmﬁ

< Z ex/a+ Z z/a < exlogx + xlogT.
a<lz/T z/T<a<lwz

Combining these observations, we find that

log T
|M(z)| < ex+x 98- « ex,

log x

if x is sufficiently large. Since € was arbitrary, we have demonstrated that M (z) =
o(x).

Exercise 1.12 Modify the above proof to show that if M(z) < z/(logx)? then
Y(x)—z < z(loglog x)?/(log x)*. And conversely, if (x) —x < x/(logx)? then
M (z) < x/(log x)™n{l-A},

1.6 Selberg’s formula

The elementary techniques discussed above were brilliantly used by Selberg to get
an asymptotic formula for a suitably weighted sum of primes and products of two
primes. Selberg’s identity then led Erdés and Selberg to discovering elementary
proofs of the prime number theorem. We will not discuss the elementary proof
of the prime number theorem here, but let us see how Selberg’s identity follows
from the ideas developed so far.
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Theorem 1.13 We have

Z:(logp)2 + Z (logp)(log q) = 2xlogx + O(x).

p<z pg<z

Proof We define Ax(n) := A(n)logn + 3 ,,._,, A(¢)A(m). Thus As(n) is the
n-th Dirichlet series coefficient of

o'+ o=t

so that Ay = (u * (log)?).

Our previous work exploited that A = (ux*log) and that the function d(n)—2v
had the same average value as logn. Now we search for a divisor type function
which has the same average as (logn)?.

By partial summation we find that

Z(log n)? = z(logx)? — 2xlogx + 2z + O((log z)?).
n<a
Using Exercise hg._fiiﬁzve may find constants ¢y and ¢; such that
Z(ng(n) + cod(n) 4 ¢1) = z(log z)? — 2z log x 4 22 4+ O(z¥/3+9).
n<w
Set b(n) = (logn)? — 2d3(n) — cad(n) — c;1 so that the above relations give
Z b(n) = O(z?/3F). (1.16)
n<e
Now consider (p * b)(n) = Az(n) — 2d(n) — ca — ¢16(n), and summing this
over all n < x we get that
Z(p xb)(n) = Z As(n) — 2zlogx + O(z).
n<az n<ae
The left hand side above is
S k) >0 b(l) <Y (x/k)PH <,
k<z 1<w/k k<z
and we conclude that
Z As(n) = 2zlogx + O(z).
n<w

The difference between the left hand side above and the left hand side of our
desired identity is < y/zlogx, and so our Theorem follows.



Selberg’s formula

Exercise 1.14 Recast Selberg’s identity in the form

(¥(@) —2)logz = — > Am) (v (%) - 2) + O(@)

n<z
Pav
using (1. 725) is necessary. Deduce that a + A = 0 where

a = liminf ¥(@) - z, and A = limsup
Tr—r00 €T Tr—r 00

b(z) —x

11
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FIRST RESULTS ON MULTIPLICATIVE FUNCTIONS

As we have just seen, understanding the mean value of the Mobius function
leads to the prime number theorem. Motivated by this, we now begin our study
of mean values of multiplicative functions in general. We begin by giving in this
chapter some basic examples and developing some preliminary results in this
direction.

2.1 A heuristic

PrsS4
In Section .4 we saw that a profitable way of studying the mean value of the k-
divisor function is to write dj as the convolution 1% dg_1. Given a multiplicative
function f let us write f as 1 % g where ¢ is also multiplicative. Then

> rm) =33 gld) =Y g(@)|5].
n<z n<z dn d<z
Since [z] = z + O(1) we have
S s =23 A0S lgta). (2.1)
n<x d<z d<z

In several situations, for exarg%elin the case of the k-divisor function treated
earlier, the remainder term in (Z.1) may be shown to be small. Omitting this
term, and thinking of . g(d)/d as being approximated by Hp<x(1 +g(p)/p+
g(p?)/p* + ...) we arrive at the following heuristic:

> f(n) ~aP(f;x) (2:2)

n<x

where

P(f;x):H(1+§’§3m+g§2)+...) :H(l—l)(1+f—@+f(€2)+...).

p p b

p<z p<zx

9 o (2.3)

Consider the heuristic (b? in the case of the k-divisor function. The heuristic
predicts that

di(n) =z 1- Ly~ ~ z(e¥log )"
p
n<z p<z

which is off from the true asymptotic formula ~ x(logx)*~!/(k — 1)! only by a
constant factor.

E2.2
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One of our aims will be to obtain results that are uniform over the class of all
mutiplicative functions. Thus for example we could consider x to be large and
consider the multiplicative function f with f(p*) = 0 for p < /z and f(p*) =1
for p > y/z. In this case, we have f(n) = 1 if n is a prime between /z and z
and f(n) = 0 for other n < z. Thus, the heuristic suggests that

) e 2e "k

1
Zf(n)=1+77(1‘)—ﬂ'(\/5)%aj H (1—7 leog\/iw ogz "

n<z p<VzT b

Again this is comparable to the prime number theorem, but the heuristic is off
by the constant 2e~7 ~ 1.1.... This discrepancy is significant in prime number
theory, and has been exploited beautifully by many authors starting with the
pioneering work of Maier.

In the case of the Mobius function, the heuristic suggests comparing

142 re 2
M(z) = w(n with x (1—7> ~—,
€ Z (n) H ) "~ logap?
but in fact >, -, p(n) is much smaller. The best bound that we know uncondi-
tionally is that >

small as z2 ¢ — this is equivalent to the Riemann Hypothesis. In any event, the
heuristic certainly suggests the prime number theorem that M (z) = o(x).

u(n) < xexp(—c(logz)s~¢), but we expect that it is as

n<z

2.2 Multiplicative functions close to 1

E2.2
The heuristic (b? is accurate and easy to justify when the function g is small in
size, or in other words, when f is close to 1. We give a sample such result which
is already quite useful.

Proposition 2.1 Let f = 1% g be a multiplicative function, and suppose that
0 <o <1 is such that

Z |g(§f)‘ _ é(o_)

d=1
is convergent. Then, with P(f) = P(f;00),

|3 ) —aP(f)] < 27Glo).
Proof The argument giving (bE.glJflyields that
Y s - 3 1D < 3 g(a,
d<zx

n<x d<z

Since P(f) = > 45, 9(d)/d we have that
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Pl Z

d<zm d>x

Combining these two inequalities yields that

‘Zf(n) —:cP(f)] <> lg(d) +x2@.

n<z d<z d>x

The result follows from the following observation, which holds for any sequence
of non-negative real numbers: If a,, > 0 for all n > 1 then for any o, 0 < o <1,
we have

o

Zan—FmZ%SZan(%)g—kxz%(g)k =z Z—Z. (2.4)

n<z n>w n<x n>w n>1
O

Exercise 2.2 If g is multiplicative, show that the convergence of Y.~ |g(n)|/n”
is equivalent to the convergence of 3_ . lg(p*)|/p* .

Exercise 2.3 If f is a non-negative arithmetic function, and o > 0 is such that
F(o) = >.°, f(n)n=7 is convergent, then > _. f(n) < a7F(c). This simple
observation is known as Rankin’s trick, and is sometimes surprisingly effective.

Remark 2.4 If we are bounding the sum of f(n) for n < x then the values of
F(®) for p > = are not used in determining the sum, yet the F(o) in the upper
bound in the previous exercise implicitly uses those values. This suggests that in
order to optimize our bound we may select these f(p) to be as helpful as possible,
typically taking f(p*) =1 for all p > z, so that g(p*) = 0.

Exercise 2.5 For any natural number q, prove that for any 0 <o <1

Z 1—@‘% §x"H(1+%).

n<x plg p
(n,q)=1

If one takes o = 0, we obtain the sieve of Eratosthenes bound of 29 (where
w(q) is the number of distinct primes dividing q) for the right side above. A little
calculus shows that, if Zp‘q(logp)/(p—f— 1) <logz, the choice of o that optimizes
our bound, is given by the relation Zp‘q(logp)/(p" +1) =logz.

Exercise 2.6 Let o(n) =3_,, d. Prove that

n)%a(n
Z W = gz+0(\/§loga§).

n<zx
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Exercise 2.7 Let f = 1x g be a multiplicative function and o € [0,1) is such
that ", |g(d)|d=7 = G(0) < co. Prove that for x > exp(1/(1 — o))

Z@ﬂ% flogz +7) — ;g(dlogd+0(w”‘110gw5<0>>-

n<lx

Exercise 2.8 Let f be multiplicative and write f = dy * g where k € N (mi %.1

deontes the k-divisor function. Assuming that |g| is small, as in Proposition
develop an asymptotic formula for Zn<w f(n).

Now we refine Proposition H I nd establish the heuristic b.Bi under a less
restrictive hypothesis.

Proposition 2.9 Let f = 1% g and suppose that
Ig =~
>l g

n=1

is convergent. Then

tm LS gy =P =3 4.

n<z d=1
Proof Recall b ) Lwhich gives >, ., f(n) =23, 9(d)/d+ 034, |9(d)]).
Now - -
n n

n<z n>x
and

Sl = [ 3 20— o)

n<z t<n<z
as o~ |g(n)|/n is convergent, and the result follows. ]

2.3 Non-negative multiplicative functions

Let us now consider our heuristic for the special case of non-negative multiplica-
tive functions wi Ezsblitable growth conditions. Here we shall see that right side
of our heuristic (2.2) is at least a good upper bound for ) .. f(n).

Proposition 2.10 Let f be a non-negative multiplicative function, and suppose

there are constants A and B such that

> f(M)log(p*) < Az + B,

pk<z

for all z > 1. Then for x > e*B we have

> fn) A+1)BH<1+@+M§)+...).

log T p<o p P

n<lz
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Proof Consider

Zf(n)logx:Zf( logn—i—Zf )log(x/n).

n<z n<x n<z

The first term satisfies

> fm)logn=">" Z FO)FE*)log(p®) <Y f(r) D F(0F)log(p")

n<wz n<x p=pkp r<z pk<z/r
(p,r)=1

<3 s (—+B)

r<z

Since logt < t the second term is < z ) f(n)/n. We conclude that

n<z
f(n
ng:zf(n) ogx (A+1) ; logan;f

and since >, f(n)/n < [[,.,(1+ f(p)/p+ f(»*)/p* + ...), the Proposition
follows. - B O

Prop2.1

Note that by Mertens’ Theorem, the upper bound in Proposition bT(f_l?
<(A+1+0 xPlg Li%)y

In Proposition bTDL have in mind a non-negative multiplicative function

dominated by somc k-divisor function, and in such a situation we have shown

that an is bounded above by a constant times the heuristic prediction

égé (2, Fonza non-negative multipli %@tlsve function bounded by 1, Propositions
an establish the heuristic (é 3) in the limit x — oo.
Corollary 2.11 If0 < f(n) <1 is a non-negative multiplicative function then
11—
Zf ) < zP(f; )<<xexp(—27f(p)) (2.5)
n<z p<zx p
with an absolute implied constant. Moreover we have
tim 3™ f(n) = P()
Jim, 5 2. 1) =P

Proof The Chebyshev estimates give that

Z f (") log(p Z log(p”) < Az+ B

pk<z pk<z

E2.5
with any constant A > log 4 heing permissible. The estimate (b.S) therefore
follows from Proposition 2 0.

E2.5
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E2.5
It >°,(1— f(p))/p diverges, then (b.Si shows that

Jim 237 f(n) =0 =P().

Suppose now that - (1 — f(p))/p converges. If we write f = 1 * g then this

condition assures us that . | g(p*)|/p* conv rges. which in turn is equivalent
to the convergence of ) |g(n)|/n. Proposition 2.9 now finishes our proof. ]

We would love to have a uniform result like (%%Tsfor real valued multiplicative
functions with —1 < f(n) < 1 (and more generally for complex valued multiplica-
tive functions), since that would immediately imply the prime number theorem.
Establishing such a result will be one of our goals in the coming chapters. In par-
ticular, one may ask if lim, 0o 2 3, ., f(n) exists (and equals P(f)) for more
general classes of multiplicative functions. Erdés and Wintner conjectured that
this is so for real valued multiplicative functions with —1 < f(n) < 1, and this
was established by Wirsing whose proof also establishes that ) _ u(n) = o(x).
The work of Halasz, which we shall focus on soon, considers the more general
case of complex valued multiplicative functions taking values in the unit disc.



3

INTEGERS WITHOUT LARGE PRIME FACTORS

3.1 “Smooth” or “friable” numbers

Given a real number y > 2, we let S(y) denote the set of natural numbers all of
whose prime factors are at most y. Such natural numbers are called “smooth” in
the English literature, and “friable” (meaning crumbly) in the French literature;
the latter usage seems to be spreading, at least partly because the word “smooth”
is already overused. Smooth numbers appear all over analytic number theory in
connections ranging from computational number theory and factoring algorithms
to Waring’s problem. Our interest is in the counting function of smooth numbers:

U(z,y) = Z 1.

n<zx

neS(y)

We can formulate this as a question about multiplicative functions by considering
the multiplicative function given by f(p¥) = 1if p <y, and f(p*) = 0 otherwise.

If # < y then clearly ¥(z,y) = [r] = 2+ O(1). Next suppose that y < z < y2.
If n < z is not y-smooth then it must be divisible by a unique prime p € (y, z].
Thus

V) =] - 3 S i=z+01)- 3 (%+0(1))

y<p<zn<z y<p<z

pln
O(lozy)'

log )
The formula above suggests writing z = y*, and then for 1 < u < 2 it gives

= z(l — log
logy

u

)
logy /"

Yy y) =y"(1 —logu) + 0(

We can continue the process begun above, using the principle of inclusion and
exclusion to evaluate ¥(y“,y) by subtracting from [y*] the number of integers
which are divisible by a prime larger than y, adding back the contribution from
integers divisible by two primes larger than y, and so on. A result of this type
for small values of v may be found in Ramanujan’s unpublished manuscripts
(collected in “The last notebook”), but the first published uniform results on this
problem are due to Dickman and de Bruijn. The answer involves the Dickman-
de Bruijn function p(u) defined as follows. For 0 < u < 1 let p(u) = 1, and
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let p(u) =1 —logu for 1 < u < 2. For u > 1 we define p by means of the
differential-difference equation

up'(u) = —p(u — 1),

or, equivalently, the integral equation

wiw = [ plo

It is easy to check that the differential-difference equation above has a unique
continuous solution, and that p(u) is non-negative and decreases rapidly to 0 as
u increases. For example, note that p(u) < p(u —1)/u and iterating this we find
that p(u) < 1/[u]l.

Theorem 3.1 Uniformly for all u > 1 we have

(" y) = pluly* + O +1).

Proof Let x = y“, and we start with

U(z,y)loge = Z logn—&—O(Zlog(m/n))z Z logn + O(z).

n<x n<x n<x
neS(y) neS(y)
Using logn = 3, A(d) we have
> logn= Y Ad)¥(z/dy)=> (logp)¥(z/p,y) + O(x),

n<z d<z p<y
neS(y) deS(y)

since the contribution of prime powers p* (with k > 2) is easily seen to be O(z).

Thus
U(z,y)logz = Zlogp \IJ(%, y) + O(xz). (3.1)
P<y
Now we show that a similar equation is satisfied by what we think approxi-
mategagl(x,y), namely zp(u). Put E(t) =3 -, 98P _ogt so that E(t) = O(1)

P
by (T-10). Now
logp (log(z/p) / Y log ¢
—p—=——) = u——— |d(logt + E(t)),
g D ,0( logy ) 1 ,0( logy) ( ()

and making a change of variables ¢t = y” we find that

‘AprLﬁﬁz)abgw@gyyélprdu<bg@pw»
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Moreover, since E(t) < 1 and p is monotone decreasing, integration by parts
gives

/lyp<u _ ;s:;)d(E(t)) < plu—1)+ /f %p(u - 11(‘)’52) dr < plu—1).
Thus we find that
(zp(u))logz = Z logp(;p(bifg;m)> + O(z). (3.2)

p<y

E2. 11 E2. 10
Subtracting (b? from (B.1) we arrive at

x x (logz/p
U(z,y) — zp(u)|logz < logp‘\ll —y) = —pl—— ‘—l—C’x, 3.3
W (@,y) — wp(u) Z o) =y (3.3)

for a suitable constant C.

Now suppose that the Theorem has been established for all values until z /2,
and we now wish to establish it for 2. We may suppose that = > 2, and our
induction hypothesis is that for all ¢ < /2 we have

logt t
W) (2] < (1),
‘ Gy =ty )| = Oliogy *
E2,12
for a suitable constant C;. From (b.l}) we obtain that

x x
v — 1 < 1 —+1 < — .
|V (z,y)—zp(u)|logx < Cy [Z‘; ng(plogy+ )—FCm < Clx+0(logy+y) +Cx

Assuming, as we may, that C7; > 2C' and that y is sufficiently large, the right
hand side above is < 2Cyz, and we conclude that |¥(z,y) —zp(u)| < Crz/logy.
This completes our proof. |

Exercise 3.2 Let

Csy)=Ja—-1/p)"= > n,

p<y neS(y)

be the Dirichlet series associated with the y-smooth numbers. For any real num-
bers x > 1 and y > 2, show that the function x7((o,y) for o € (0,00) attains its
minimum at « = a(x,y) satisfying

log p
logz = Zpa 1
p<y

ex2.1
By Rankin’s trick (see Exercise 1Z.3] conclude that

U(z,y) < z%C(a,y) = r;lggx"é(m Y).
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Exercise 3.3 For any given 1, @ <« n <1, show that

s o (gl)

p<y

(Hint: Compare the sum for the primes with p" < 1 to the sum of 1/p in the
same range. Use upper bounds on w(x) for those primes for which p" > 1.)

Exercise 3.4 For z = y* with y > (logz)?™¢ let o = 1 — 218 W " Bogyce

logy
from the last two exercises that there exists a constant C' > 0 such that

) zlogy.

v
(z,9) < (ulogu

Exercise 3.5 Prove that
(140"
plu) = ( ulogu > '
(Hint: Select ¢ maximal such that p(u) > (c/ulogu)*. By using the functional

equation for p deduce that ¢ > 1. Take a similar approach for the implicit upper
bound.)

3.2 Multiplicative functions which only vary at small prime factors

Proposition 3.6 Suppose that f(p*) =1 for all p > y. Let x = y*. Then

é Z f(n) =P(f;z) +O(1/u"?).

n<z

Can we get an estimate of P(f;2){1+ O(1/u")}, and so generalize the Fun-
damental Lemma of Sieve Theory? We begin with a simple case that follows
from the Fundamental Lemma of Sieve Theory:

Lemma 3.7 Suppose that g(p*) = 0 for all p <y, and g(p*) = 1 for all p > y.
Let © = y*. Then

S g =] (1 - ;) {1+ O(1/u")}.

n<z p<y
GenFundLem
Proof of Proposition %.6 ]Sefine
0 ifp<y f") ifp<y
g =10 TSV g gy = S0
1 ifp>y 0 ifp>y

so that f = g * h. Hence if AB = z then
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S ) =Y h@) Y g+ g0 Y ha).

n<z a<A b<z/a b<B A<a<z/b

BabyBuchstab A
Let A = B = /z and use lemma b 7/ on the first sum to obtain

>~ ha)w, - {1+ 0(1/(u/2)")}.

a<A

where ry =[], (1 — 7) Hence we have a main term of

nyz h y) f;L"P(f, )a
plus an error term of

o Y Oy Z'h LZ 2 < (0f2)

a>A logy

as |h(a)| < 1, using our estimate on tail of sums over smooth numbers. We bound
the second sum above using our knowledge of smooths to obtain

<Z fu/Q w2« p(u)2)t 2
b<B

0“
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DISTANCES AND THE THEOREMS OF DELANGE, WIRSING
AND HALASZ

In Chapter bc%ve considered the heuristic that the mean value of a multi 'écgtive
f ctjon f might be approximated by the Euler product P(f;z) (see (Eézfand

. We proved some elementary result ggxgards this heuristic and were most

sful when f was “close to 17 (see §2.2) or when f was non-negative (see
§F"7TEven for nice non-negative functions the heuristic is not entirely a (égrate
as revealed by the example of smooth numbers discussed in Chapter 77. We
now continue our study of this heuristic, and focus on whether the mean Value
can be bounded above by something like |P(f; §5 We begin by making precise
the geometric language, already employed in §bTof one multiplicative function
being “close” to another.

4.1 The distance between two multiplicative functions

The notion of a distance between multiplicative functions makes most sense in
the context of functions whose values are restricted to the unit disc U = {|z| < 1}.
In thinking of the distance between two such multiplicative functions f and g,
naturally we may focus on the difference between f(p*) and g(p*) on prime
powers. An obvious candidate for quantifying this distance is

3 (" ( )I’

pk<z

e et e o Do . .. | Prop2.7
and implicitly it is this distance which is used n Proposition b.g 2and a stronger
form of such a distance is used in Proposition 2.1). However, it turns out that a
better notion of distance involves 1 — Re(f(p*)g(p*)) in place of |f(p*) — g(p*)|.

Lemma 4.1 Suppose we have a sequence of functions n; : U x U — R>( satis-
fying the triangle inequality

nj(z1,23) < mj(21,22) + 15(22, 23),

for all z1, 25, z3 € U. Then we may define a metric UN = {z = (21, 29,...)} by

setting
oo 1
2 2
w) = (Yo miw)?) "
=1
assuming that the sum converges. This metric satisfies the triangle inequality

d(z,w) < d(z,y) +d(y, w).
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Proof Expanding out we have

[ee] (oo}
2= an(zjij 2 Z 5 (25, Y5) +77](yg,w]))2
— =

by the assumed triangle inequality for 7;. Now, using Cauchy-Schwarz, we have

Z (2, y3) + 15 (Y5, w;))? = d(z,y)* + d(y, w)* + Qan(Zj,yj)nj(yj,wj)
j=1 j=1

oo

< d(z,y)? + d(y, w +2(Zm %:95) )%(Zm (y9)?)°

= (d(z,y) +d(y, w))?,
which proves the triangle inequality. a

A nice class of examples is provided by taking 7;(z) = a;(1 — Re (z;)) for
E%ﬁln‘fgative aj, and we now check that this satisfies the hypothesis of Lemma

Lemma 4.2 Definen: U x U — Rxq by n(z,w)? =1 — Re(zw). Then for any
z1, 29, z3 in U we have

n(z1,23) < n(z1,22) +1(22, 23).
Proof Without loss of generality we may suppose that z; = k1, 2o = kge'?
and z3 = rze'? with Ky, Ko, k3 € [0,1] and 63, 03 € (—, 71]. Our claim is that

(1 — K1Ks3 cos 03)% < (1 — R1kg cOs 02)% + (1 — Kok cos(ba — 93))%. (4.1)

Suppose first that cos 6 and 4C(,38g92 03) have the same sign. If they are both
negative then the RHS of (H)ﬂlearly > 2 and qur ¢lajm holds. If they are
both positive, then for fixed x; and k3 the RHS of zﬂli’)ﬁlmmum for kg =1
and our claim is then that

(1 — k1Ko cos 93)% < (1 — Ky cos 02)% + (1 — kg cos(fy — 93))%. (4.2)

To establish this we square both sides, write cosfls = cosfycos(f2 — 03) +
sinfasin(fy — 03), and the inequality (1 — rcosf) > 2r?sin®6 (valid for all
0<r<1).

So we may assume that cosfs and cos(fy — 63) have opposite signs, so that
one of the two must have opposite sign from cos 3. Suppose cos 63 %H'C]ZL("?OEQQ
have opposite signs. If cosfl3 > 0 > cosfs then it suffices to check (H)Tﬁhe
case £, 5 0 and clearly this holds. If cosfy > 0 > cos 3 then it suffices to check
RUY he case when k1 = 1 and this may be verified in the same manner as
( 2. O
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We can use the above remarks to define distances between multiplicative
functions taking values in the unit disc. Taking a; = 1/p for each prime p < z
we may define a distance (up to z) of the multiplicative functions f and g by

D(f,gia) =3 1 - Re f(p)g(p)

p<z p

lemd.1
By Lemma T this satisfies the triangle inequality
D(f,g;%) +D(g, hyz) = D(f, h; z). (4.3)

It is natural to multiply multiplicative functions together, and we may wonder: if
f1 and g1 are close to each other, and f; and g are close to each other whether
it then follows that fifo is close to g1927 Indeed this variant of the triangle
inequality holds, and we leave its proof as an exercise to the reader:

D(f1,9152) + D(f2, 92; ) > D(f1f2, 91925 ). (4.4)

Alternatively, we can take any o > 1 and take the coefficients a; = 1/p® and
zj = f(p) as p runs over all primes. In this case we have

]D)a(f, 9)2 — Z 1 - Repﬁ(p)g(p)

P
trianglel|triangle2
which obeys the analogs of (h.rS iaﬁnae ih.rl =S

Lemma 4.3 For any multiplicative functions f and g taking values in the unit
disc we have

)

D(f,g;%)* = Da(f,9)* + O(1)
with o = 1+ 1/logx. Furthermore, if f is completely multiplicative and F(s) =
oo f(n)/n® is the Dirichlet series associated to f we have

IF(1+1/logz)| = ¢(1+1/log z) exp (—]D)(l,f;x)z) = log  exp (—]D)(l,f;x)z).

Proof With @ =1+ 1/logz we have

D(f,gia) = Dalf 0P <23 (5 =~ ) +2 3 0 = O(D),
p<z

p>x

proving our first assertion. The second statement follows since log|F(«)| =
Re > f(p)/p® +O(1). O

Taking g(n) = n’ we obtain, for x > 2

f f I
exp (D pl(fi)t =Y % =F (1 Fiogr zt> . (4.5)

p<a n>1"

TruncRight
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4.2 Delange’s Theorem

Theorem 4.4 Let f be a multiplicative function taking values in the unit disc
U. Suppose that

]D)(l,f;oo)zzl_R;f@<oo.
P

Then as x — oo we have

> f(n) ~2P(f; ).

n<x

Prop2.7
Delange’s theorem may be seen as a refinement of Proposition b?IBI"Here the
hypothesis is essentially that 3 |1—f(p)|/p < oo which is a stronger requirement
than Delange’s hypothesis. We warn the reader that the hypothesis of Delange’s
theorem does not guarantee that P(f;x) tends to a limiting value P(f) as x — oo
— the reader may have fun coming up with examples. We postpone the proof of
Delange’s theorem to the next chapter.

4.3 A key example: the multiplicative function f(n) = n'®

Delange’s theorem gives a satisfactory answer in the case of multiplicative func-
tions at a bounded distance from 1, and we are left to ponder what happens
when D(1, f;2) — o0 as ¢ — oco. One would be tempted to think that in this
case 1 > n<x [(n) = 0as z — oo were it not for the following important counter
example. Let o # 0 be a fixed real number and consider the completely multi-
plicative function f(n) = n'®. By partial summation we find that

S [

zt
n<zx 1=

) 1+ic
Y dly) ~

. 4.6
1+ (4.6)

The mean-value at  then is ~ 2'® /(1 + i) which has magnitude 1/|1 +ia| but
whose argument varies with z. In this example it seems plausible enough that
D(1,p**;2) — oo as  — oo and we now supply a proof of this important fact.
We begin with a useful Lemma on the Riemann zeta function.

Lemma 4.5 If s = o + it with 0 > 1 then

5]
s =1

5]
s =1

— sl <I¢(s)] <

+ |s].

If in addition we have |s — 1| > 1 then

¢(s)] < log(2 + |s]).

ezt
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eta
Proof The first assertion follows easily fro Exercise 4. To prove the second
assertion, modify the argument of Exercise ZI fo show that for any integer N > 1
we have

1 N sy,
C(S): E—’_S—l 8/ ys+1y

n=1

Choose N = [|s|]] + 1, and bound the sum over n trivially to deduce the stated
bound for |{(s)]. O

Lemma 4.6 Let o be any real number. Then for all x > 3 we have
D(1,p";2)* = log(1 + |a|log z) + O(1),
in the case |a| < 1/10. When |a] > 1/10 we have
D(1, p'*; x)* > loglog x — loglog(2 + |a|) + O(1).

lem4.3
Proof We have from Lemma %[.eBm

) log
D(1, p'; x)?
(1Lp™52)" = \C(1+1/logaz+za)\
lem4.3.0
Now use the bounds of Lemma h.%n? O

lem4.3.1 . .
We shall find Lemma h.G very useful in our work. One important consequence
of it and the triangle inequality is that a multiplicative function cannot pretend
to be like two different problem examples n*® and n*?.

Corollary 4.7 Let o and [ be two real numbers and let f be a multiplicative
function taking values in the unit disc. Then

4 , 2
(D(ﬁ P @) +D(f, p"; fﬂ))
exceeds
log(1 + |a — Bllogz) + O(1)
in case |a — ] < 1/10 , and in the case | — ] > 1/10 it exceeds

loglog z — loglog(2 + |ae — B]) + O(1).

Proof Indeed the triangle inequality gives that D(f,p'®;x) +P&I,§)ilﬂ;z) >
D(p*®, pP;2) = D(1,p* @ A); ) and we may now invoke Lemma &L%. = a

The problem example n'® discussed above takes on complex values, and one
might wonder if there is a real valued multiplicative function f taking values in
[—1, 1] for which D(1, f;x) — oo as & — oo but for which the mean value does not
tend to zero. A lovely theorem of Wirsing, a precursor to the important theorem
of Haldsz that we shall next discuss, establishes that this does not happen.
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Theorem 4.8 Let f be a real valued multiplicative function with |f(n)| <1 and
D(1, f;2) = 00 as © — oo. Then as x — oo

LY i) =0

n<z

Note that Wirsing’s theorem applied to pu(n) immediately yields the prime
number theorem. We shall not directly discuss this theorem; instead we shall
deduce it as a consequence of Haldsz’s theorem.

4.4 Halasz’s theorem

We saw in the previous section that the function f(n) = n’® has a large mean
value even though D(1, f;z) — 0o as x — co. We may tweak such a function at
a small number of primes and expect a similar result to hold. More precisely, one
can ask if an analog of Delange’s result holds: that is if f is multiplicative with
D(f(p),p"; 00) < oo for some a, can we understand the behavior of }, . f(n)?
This is the content of the first result of Haldsz.

Exercise 4.9 If f is a multiplicative function with | f(n)| < 1 show that there is
at most one real number o with D(f, p’®; 00) < oc.

Theorem 4.10 Let f be multiplicative function with |f(n)| < 1 and suppose
there exists o € R such that D(f, p'*; 00) < co. Write f(n) = g(n)n'®. Then as

T — 00
1+wz

2 f() = T—-Plgiz) + o(x).

n<lz

Proof VVS} fhow how Haldsz’s first theorem may be deduced from Delange’s
Theorem &I 1. ]i partial summation we have

Z fln) = /j tmd(Zg(n)) =gl Z g(n) —ia /j et Zg(n)dt

n<x n<t n<x n<t

Now (1, g;00) = D(f,p'*;00) < oo and so by Delange’s theorem, if ¢ is suffi-
ciently large then

> g(n) =tP(g;t) + oft).

n<t
Therefore -
S 1(n) =2 Plgia) ~ia [ £P(g; )it + ofa).
n<x 1
Now note that P(g;t) is slowly varying: P(g;t) = P(g;z) + O(log(ex/t)/logx)
and our result follows. a

Hall .
Applying Theorem h 10 with f replaced by f(n)/n'® we obtain the following:
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Corollary 4.11 Let f be multiplicative function with |f(n)] < 1 and suppose
there exists o € R such that D(f,p'“;00) < co. Then as  — 00

1
;Zf( 1—|—za xz nm

n<lz

This will be improved considerably in Theorem &ZSLYFL

The next result of Haldsz is central to our book, and it deals with the case
when D(f, p'®;00) = oo for all a. In fact Haldsz’s result is more precise and
quantitative.

Theorem 4.12 Let f be a multiplicative function with |f(n)| <1 for all n and
let 1 <T < (logz)'° be a parameter. Let

M(z,T) = Ms(2,T) = min D(f,p";2)% (4.7

[t|<T

Then !
‘Zf ‘<<M.Z’T)6Xp( M(x,T))-i—T

n<z

Corollary 4.13 If f is multiplicative with |f(n)| < 1 and D(f,p'®;00) = oo for
all real numbers o then as x — oo

LY i) =0

n<z

Exercise 4.14 Show that if T > 1 then
e it., \2
o7 D(f,p'";x)%dt > loglogx + O(1).

Conclude that My(z,T) < loglogz + O(1), and the bound in Haldsz’s theorem
is never better than xloglogz/logx.

Exercise 4.15 If © > y show that

1 I
0. My(e,T) = Myy, ) <2 3 =2log ;;g

+0(1).

y<p<z
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PROOF OF DELANGE’S THEOREM

H%ellﬁn:ggc S . . . o
Theorem 4. et f be a multiplicative function taking values in the unit disc
U for which D(1, f;00) < co. Then as x — co we have

> f(n) ~aP(f;x).

n<z

Let y be large and

e(y) = 1_R;f(m (5.1)

P2y

so that, by hypothesis, e(y) — 0 as y — oo. Since |1 — 2|2 < 2(1—-Re z) for 2 € U

we have
_ 2
Z |1]]§(p)| < 2¢(y). (5.2) |eq:Del22

P>y

Now we decompose the function f as f(n) = s(n)¢(n) where s(n) = s,(n)
is the multiplicative function defined by s(p*) = f(p*) if p < y and s(p*) = 1
otherwise. Correspondingly, £(n) = £,(n) is the multiplicative function defingd .
by £(p*) = f(p*) for p > y and £(p*) = 1 otherwise. Fixing v, PropositionTZ?JL
gives that as ¢ — oo

D> 5(n) = aP(s;00) + o(x) = 2P (f;y) + o(x). (53)

n<x

We shall prove Delange’s theorem by showing that for large x (henceforth as-
sumed > y?) the function ¢(n) is more or less constant over n < .

Exercise 5.1 For any complex numbers wy, ..., wg and z1, ..., zi in the unit
disc we have
J
|21 2 —wy - wg| < g |z — wj].
j=1

Define now g(p) = 0if p <y, g(p) = f(p) — 1 for y <p < /z and g(p) =0
for p > y/x. Then consider the additive function

g(n) =Y g(p),

pln
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where the primes are counted without multiplicity. If n < x is not divisible by
the square of any prime > y, using Exercise 5.1 we have

le(n) —exp(g()l < Y [f(p) —exp(f(p) = DI+ Y 1f(p) = 1]

pln pln

VT>p>y pP>\T
<Y = f@P+ D 1fp) -1l

| pln

P>y p>\T

Since the number of integers below x that are divisible by the square of some
prime > yis <37 x/p* < x/y, we conclude that

T — 2 _
R ) P e

p
n<z VT>p>y Vr<p<z

< z(ve(y) +1/y), (5.4)

:Del22
where the last step follows upon using Cauchy’s inequality and (%65 -
Proposition 5.2 Suppose that g(.) is additive (as above) with each |g(p)| < 1.

Let )

~ g\p

-y

y<p<w p

Then, for x > y2,

Slgm) -gP <z > |g<§>|

n<z y<p<z

2

o)

Proof Note that since g(.) is additive, and g(p) = 0 for p < y and p > /z we

have
x _
Sgm = Y )5 +00) =5+ Ox(va)):
n<z Va>p>y b
Hence, using |g| < loglog z,
2 2 _ 052 Vzloglogx
D lg(m) =317 = 3 lg(m)? = #lgl? + O (3= 2285 ).

n<x n<x

Now, if [p, ] is the least common multiple of p and ¢ then

DlgmP =Y glpgle) D1

n<z VE>p,q>y n<x
p.qln
x
= > glpel)- . +O0(n(Vz)?)
VZ2p,q>y ’

=z[gP+z Y g (11) - pl2> * O((logmx)z)

VT>p>y
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and the result follows.

eq:boundl
Now we are ready to prove Delange’s theorem. Using (%% we have

Y f(n) =) s(n)exp(g(n)) + O(z(Vely) + 1/y)).

n<zc n<z

Now if z and w have negative real parts, | exp(z) — exp(w)| < |z — w|. Therefore

> s(n) exp(g(n)) = exp(3) Y s(n) + O(Z l9(n) — 1)

= exp(9) Z s(n) + O(x(Ve(y) +1/logz)),

Del22 Del23
upon using (| % ) , Proposition % 2 ana Cauchy’s inequality. Now using (% %) we

conclude that

Zf ) = exp(§)aP(s;7) + o(x) + Ola(e(y)? +y~?)).

Now
P(tiz) = exp (g+0( Y *+ > )) 5(1+O( /)
y<p5f Va<p<wz

Since P(¢; x)P(s;x) = P(f,x) we conclude that

> f(n) = aP(f;2) + o(z) + O(z(e(y)

n<lx

N
_|_
N

Letting y — oo so that e(y) — 0, we obtain Delange’s theorem.
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DEDUCING THE PRIME NUMBER THEOREM FROM
HALASZ’S THEOREM

6.1 Real valued multiplicative functions: Deducing Wirsing’s
theorem

Let f be a multiplicative function with —1 < f(n) < 1 for all n. It seems
unlikely that f can pretend to be a complex valued multiplicative function n*®
The triangle inequality allows us to make this intuition precise:

Lemma 6.1 Let f be a multiplicative function with —1 < f(n) < 1 for all n.
For any real number |a| < (logz)'° we have

D(f, pi®; >mm( Vioglogz + O(1), =D(1, f;z) + ()).

Proof Since D(f,p'“;z) = D(f,p~*;x) the triangle inequality gives
D(1,p**x) = D(p~**, p'*; ) < 2D(f, p'*; ).

lem4.3.1
In the range 1/100 < |a| < (log 2)19, we obtain from Lemmah G that (1, p?; 2)? >
(1 —€)loglog z, and so the lemma follows in this range.

Suppqse ngw that |af < 1/100. Then D(1, p**;x) = D(1,p**;z) + O(1) b
Lemma LI.B. Thus, by the triangle inequality and our estimate above

D(f,p"x) > D(1, f;a) = D(1,p"* 2) > D(1, f;2) — 2D(f,p'*;2) + O(1)
so that

D(f,p"*;x) > D1, f) + O(1).

c,oM—A

O
Using the above Lemma and Haldsz’s theorem with T' = (log x)° we deduce:

Corollary 6.2 If f is a multiplicative function with —1 < f(n) <1 then

=3 i) <D, i) esp (— 5D fi0)?) +

n<lz

1
(log x) Tto(1)"

N 78 that the above Corollary implies a ntlfiatlve form of Wirsing’s The-
orem A.8. An optimal version of Corollary as been obtained by Hall and
Tenenbaum.



34 Deducing the prime number theorem from Haldsz’s theorem

6.2 Deducing the prime number theorem
Halreal
Using Corollary %.aZ With f=n we get

Y )|« —
(log z)5to(t)

n<lz

and then

T
=z+0| ———
Wﬂ?) x <(logx)§+o(1)>
by Exercise 1.12 of §1.5.
The classical proof of the Prime Number Theorem yields a much better error
term than what we have obtained above; indeed one can obtain

Y(x)=2+0 (:z: exp (f(log x)3/5+0(1))) .

There are also elementary proofs of the prime number theorem that yield an
error term of O (zexp (—(log z)1/2t°)). While we can make some small im-
provements (see Lemma 6.2 below) to the error term O(z/(log )5 +°(1)) obtained
by Halasz’s theorem, the methods from the study of multiplicative functions do
not appear capable of giving an error better than O(z/logx). That is our meth-
ods are very far, quantitatively, from what can be obtained by other methods.
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SELBERG’S SIEVE AND THE BRUN-TITCHMARSH
THEOREM

In order to develop the theory of mean values of multiplicative functions, we
shall need an estimate for the distribution of primes in short intervals. We need
only an upper estimate for the number of such primes, and this can be achieved
by a simple sieve method and does not need results of the strength of the prime
number theorem. We describe a beautiful method of Selberg which works well in
this and many other applications, but there are many other sieves which would
also work. The reader is referred to Friedlander and Iwaniec’s Opera de Cribro
for a thorough treatment of sieves in general and their many applications.

7.1 The Brun-Titchmarsh theorem

Let a (mod ¢) be an arithmetic progression with (a,q) = 1 and let 7(z;q,a)
denote the number of primes p < z with p = a (mod ¢). The Brun-Titchmarsh
theorem gives an estimate for the number of primes in an interval (z, z +y] lying
in the arithmetic progression a (mod q).

Let Ay =1 and let A\; be a sequence of real numbers with Ay =0 if d > R or
if d has a common factor with g. Selberg’s sieve is based on the simple idea that
squares are positive, and so

2 =1 if n > R is prime
(Z)\d> is

i >0 always.

Therefore, assuming for simplicity that R < x,

m(x +y;q,a) — w(z;q,a) < z (ZAd)Q'

z<n<z+y d|n
n=a (mod q)

Expanding out the inner sum this is

Z )\d1 )‘dz Z 1,

dy,d2 z<n<z+y
n=a (mod q)
[dy1,d2]|n

where [dy, ds] denotes the l.c.m. of d; and dy. Since Ay = 0 unless (d,q) = 1,
the inner sum over n above is over one congruence class (mod ¢[d;,ds]), and
therefore this inner sum is within 1 of y/(¢[d1, d2]). We conclude that
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A

m(x+y;q,a) — m(x;q,a) <

)‘d1/\d2 2
d§2 Tt (§|Ad|) . (7.1)

The ingenious part of Selberg’s argum %E is in determining the op, ql choice
of A4 so as to minimize the first term in (7.1). The second term in ( }'YTTmay be
viewed as an error term, arising from the error in counting integers in an interval,
and this roughly places the restriction that R is at most M In such a range
of R, the first term in (Wis the more important main term, and observe that
it is a quadratic form in the variables Ag. The problem of minimizing this main
term thus takes the shape of minimizing a quadratic form subject to the linear
constraint A; = 1. Selberg’s quadratic form admits an elegant diagonalization
which allows us to find the optimal choice for Ag.
Since [dl, dg] = dldg/(dl, dg), and (dl,dg) = Z@I(dhdz) (ZS(E) we have

Ad >\d Ady Ad Ade
ST S ()
£|d2

If we set

5@22%,

d

then we have diagonalized the quadratic form in our main term:
)\dl )‘d2
Z [dy, da] Z 72 54 (7.2)
dy,dy ’

Note that like Ag, we have that { =01if £ > R or if ({,q) > 1.

What does the constraint Ay = 1 mean for the new variables &7 We must
invert the linear change of variables that we made in going from the \’s to the
¢’s, and this is easily done by Mébius inversion. Let 6(¢) = >, pu(r) be 1 if
¢ =1 and 0 otherwise. Then

)\d_%:&w Z)\CMZI: Z“ Zl:AdZ_ )ﬁr
Tl r|e

In particular, the linear constraint A\; = 1 becomes

p(r)

(7.3)

We have transformed our problem to injmizing the diagonal quadratic form
in (7:2) subject to the linear constraint in (I7.3). It is clear that the optimal choice

E3.1

E3.2

E3.3
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is when & is proportional to yu(r)r/¢(r) forr < R and (r,q) = 1. The constant of
proportionality can be determined from (7.3) and we conclude that the optimal
choice is to take (for » < R and (r,q) = 1)

= 1 7"#(7") whnere
Lo 2

(r,q)=1

u

(7.4)

E3,2
For this choice, the quadratic form in (7.2] attains the minimum value which is
1/L(4R). Note also that for this choice of £, we have (for d < R and (d,q) = 1)

B du(r)p(dr)
ML 2 otdn)

(r,q)=1

and so

ZIMIS Z “dr 2d 1 Z un)°o(n) (7.5)

d<R n<R
d7‘<R (n 9)=1
(dr,q)=1

where o(n) =3, d.
Putting these estimates into 7 I ) we deduce that for any arithmetic progres-
sion a (mod ¢) with (a,q) =1, and any R <z, we have

. . ) u(n
m(x+y;q,a) —m(x;q,a) < qu(R) ( T;% ) ,  (7.6)

(n,9)=1

c2
This bound looks unwieldy but the techniques developed in Chapter bﬁre enough
to estimate zﬂbe sums above. We illustrate this in the case ¢ = 1. Note that by
Exercise '

> Mot - Bt orvaloga).

n<R
2.4
Exercise 7.1 Using Exercise bﬁ}x?, or otherwise, show that
- (log R)*
Li(R) —logR+’y+C+O( 5 )

where

= 08D _ 7553,
—~p(p—1)

Exercise 7.2 Taking R = /My and choosing X\ optimally as 7*/450, prove that for
any 3 <y < z we have

29 % 2(1_27_2c+1og%))+O((logyy)3)’

@ ty) —me) < 1y (logy)

E3.5
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In particular we have:
Theorem 7.1 (Brun-Titchmarsh) If y > yo is large enough then
2
m(x+y) —w(z) < 1ogyy'

. . BT n . .
One can go much further than this, using (?.6;, to obtain that if y/q > yo
then

2y
m(r+y;q,a) —7m(r;q,0) < —/—F—-

( )= ) #(q)log(y/q)
Exercise 7.2 Prove this.

7.2  An alternative lower bound for a key distance
Lemma 7.3 If |t| < 2°M then

9 it 2 log =
D*(p(n),n*;z) > {1 - +0(1)}10g <log(2—|— |t)> .
Proof Fix o € [0,1) and € > 0. Let P be the set of primes for which there
exists an integer n such that p € I, := [e27(nte)/Itl g2n(ntata/ltly go that
Re(p™) lies between cos(2mar) and cos(27(a + €)). We partition the intervals I,
into subintervals of the form [y, y + z], where z = o(y) and log z ~ logy, which is
possible provided |t| = o(n/logn) (Exercise). The Brun-Titchmarsh Theorem
implies that the number of primes in each such interval is < {2+ o(1)}z/logy,

and so 3 ., 1/p < {2+ o0(1)}log(l + ), from which we deduce

1 log
> S < {2¢ + 0(1)} log ( ) +0(e),

log
zo<p<wm &%0

p€l, for some n

where xg := (2 4 [t])°8%e?>™/I!l and 2 4 |t| = 2'/*, as u — co. Combining this
with (1.2.4), we deduce (exercise) that

1+ cos(tlogp) log z 8/4
Z — > {2 +0(1)}log <10g £Uo> /1/4 (1 + cos(2ma))da + O(1)

> {1 - % + 0(1)} log (11;);;()) +0(1).

The result follows if |¢] > 1. If |¢| < 1 then log (M) ~ log(|t|log ). However,

log x¢

zo<p<z

we also have

Z HLuk)gmz(1+cos(27T/3)) Z

p<e2m /31t D p<e2m /31t

1
log — + O(1),

>
7

D=
N | =

by (1.2.4), and then adding these lower bounds gives the result. a
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HALASZ’S THEOREM

Hal
In this chapter we develop the proof of Haldsz’s Theorem (Theorem) ﬁ?z) that
if f is a multiplicative function with |f(n)| < 1 for all n and let 1 < T’ < (log x)1°
be a parameter with M(z,T) = My (2, T) = miny, <7 D(f,p"; 2)?, then
1
’Zf ’<<MxT)exp( M(z,T)) + —.

n<lx

Throughout the chapter f will be a multiplicative function with |f(n)| < 1. The
sum »_ . f(n) will be denoted by S(z) and the Dirichlet series Y7 | f(n)n™*
by F(s).

8.1 Averages of averages

. . . . . . . . E2.10
First we begin with an identity which generalizes the identity (}3 ) for smooth
numbers.

Lemma 8.1 For any multiplicative function f with |f(n)| <1 we have
logz—Zf Ylogp S(xz/p)+ O(z). (8.1)
p<z
Proof Note that

x)logx = Zf(n) 10gn+0<210g(x/n)) = Zf(n) logn+ O(x). (8.2)

n<lx n<x n<z

Next writing logn = 3, A(d) we have

S Fm)logn =" f(n) S AM) = S A@) S F(n)

n<z n<z d|n d<z n<z
d|n
The last sum above has size < z/d, and so the contribution from prime powers
d=p® with b > 2 is < > p<yzlogp)(z/p®) < x. Further when d = p the final
sum over n equals f(p)S(x/p) + O(z/p?), where the error results from those n
that are divisible by p? and there are at most x/p? such terms. We thus conclude
that

z)logz =Y logp»_ f(n)+O0(z) =Y logpS(z/p)+ O(x),

p<z n<w p<e
pln

proving our Lemma. O
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The next step is to bound S(z) by an average involving S(¢) for all ¢ < z.

Proposition 8.2 With notations as above

|S()| 1 / |S(t)dt 1

< .
x log x t ot log x

Note that |S(t)|/t is the average size of f(n) for n up to ¢, and so the Propo-
sition bounds |S(x)| by an “average of averages”.

Proof Now, for z = y + y'/2, using the Brun-Titchmarsh theorem,

> ver s ()] < 3 oo

y<p<z y<p<z

/ ‘S dt—|— (z —y) max

y<t,usz

sl

S (g)‘ < (2 —y) max

y<u<z

5(5)-5()

)

and

5(2)- 5D el -3 -x 2t a2t
t u t wu tu Y2
Summing over such intervals between y and 2y we obtain

5 e Q)<

y<p<2y

lemHall
which implies, by Lemma % [, that

1 r T T
— || dt
[9(@)] < log:z:/ S(t)‘ Jrlogac

log;v / |9 logx

5’(?)‘dt%— 7

8.2 Applications of the Plancherel formula

Proposition 8.3 Let a,, be any sequence of complex numbers such that A(s) =
oo ann™* converges absolutely in Re(s) > 1. Define also A(z) = >, ., an.
For any a > 0 we have -

0o 2 [es} . 2
/ AWP L[~ MGt atinl
1

320 " o o 14 o+ iyl?
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Proof Consider the function G(y) = A(e¥)/e'*t°¥). Note that the Fourier
transform of G is

. o0 i s oo , Al + a +1i€)
Ge) = G WE ) = n (I+a+i&)y g, — )
©= [ ey > / y= Aot

Thus Plancherel’s formula gives

1 [ AQ+a+i) 2, [ 9 /°°|A(t)|2
o Bl ’dff[le(y)\ a= [

upon making the substitution ¢ = €Y. a

The Proposition connects weighted averages of |S(¢)| with the generating
function F'(s). It turns out that it is more fruitful to apply the Plancherel formula
not directly to F' but to F’. The bound that we thus derive is crucial to the proof
of Halédsz’s theorem.

Proposition 8.4 Let T' > 1 be a parameter. For any 1 > o > 0 we have

e 2 dt 1 1
g < L (max [P 40k i a1 )
/1 ‘;f(n) 08n| 35 <<a ‘I;E};l 1+ a+iy)|*+ +(aT)2

Proof We write F(s) = G(s)H(s) where

_ PN~ f()
G(s)—l;[(l—pf) —nz::l e

That is, f (n) is the completely multiplicative function which matches f on all
primes. Note that H(s) is given then by an Euler product which converges ab-
solutely in Re(s) > 1/2 and that in the region Re(s) > 1 we have |H(s)| and
|H'(s)] < 1.

The Plancherel formula gives

>0 2 dt *F'(14a+iy) |2
log —Tarn ¢
/1 ‘;f(n) R EE <</ ltatiy |7

— 00

® NGHA+a+1iy)2 |GH'(1+a+iy)|?
dy. 8.3 :Hal12
<</ (’ 14+ a+y ‘ +‘ 14+ a4y ’)y (8:3)

— 00

Since H'(1 + « +iy) < 1 the second term above is

C G+ a+iy) |2 o S 2 dt 1
— d ‘ ‘— —, 8.4 :Hal13
<[ e [ ISl gm e oo

— 0o

upon using Plancherel again.
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Hal12
Now consider the first term in (b %) and split it into the two regions |y| < T
and |y| > T'. Consider the contribution of the first region. This is

< (\Iﬁg);'F(l—i_a—’—iy)'Q) / ‘(G//G)(1+a+iy)‘2dy

lyl<T L+a+iy
UGG+ a+iy) |2
< (g ir o) [ L0,

Now G'/G(s) = =3, f(n)A(n)n—*, and using Plancherel yet again we have

o (G’/G)(l—i—a—kiy)‘? / ’ ‘ dt /°° dt 1
/_OO‘ Ttatiy | @< 2_ FmAm)| s < , g Sy

n<t

upon using the Chebyshev bound that 1(¢) < ¢. This is clearly acceptable.
It remains lastly to consider the contribution of the region |y| > T. Since
H(1+ a+iy) < 1 we must bound

G'(1+a+iy)? G (1 +a+iy)|?
/ M—am’dy«/ <—azy>’d
wsr! l+a+tiy oo T+ 14+ a+1y

Now G'(1 + o +1iy)/(T + 1 + a + iy) is the Fourier transform of the function
—e~ (TH1+a)z Yon<en f(10 )nT logn and so by Plancherel the above quantity is

o
< / e—2m(T+1+a)
—00

Z f(n)n™ 1Ogn‘2dx <</ xZe‘QE(T+1+a)( Z nT>2dx.
n<e® 0

n<e®

Now by splitting into the cases e* < T and e > T we can easily establish that
D n<en nT < eT® 4+ eT+)7 /(T 4 1). Therefore our integral above is

—2ax

< —22(1+0a) e )d 1 1
<</O (e TS T e

This completes our proof. a

8.3 The key estimate

Combining our work in the preceding two sections we arrive at the following key
estimate.

Proposition 8.5 With notations as above, we have for x > 3,

1
dae 1 loglogz
f‘ E f(n ‘ / max |[F(1+ a+it)| — 4o 208
logz Ji/10g 2 1tIST a T log =




Proof of Haldsz’s theorem

eq:Hall.1
Proof For any x > y > 3 from (%%i we have

1
Zf lognJrO(L) <</
IOg y 10g Y 1/logx

Therefore

T g 1 T
[0l [ (]
2 Y 1/logx 2

n<y

Z f(n) logn‘yi2 )da + log log x.

n<y

Z f(n) logn’;z% +

43

Yy
logy’

o

keybound
Applying Cauchy’s inequality and Proposition b.eZ[ vx?émget, for1>a>1/logx,

(/j‘;f(”“"g”(ﬁmf <([ =] \;f(n)lognf

1 NP
<<?(‘I;|12);|F(1+a+zy)| +1+

:Hal14
Using this in (%e%} we conclude that

Y ly|<T

Y
y3+20¢

)

x S 1 1
/ | (é/)|dy<</ (max|F(1+a+zy)\+1+—>da+loglogfy
1 1

/logz &

1

d 1

<</ max |F(1+ a+ iy)| a+ Ogm—&—loglogm.
1/10g$‘y|<T T

ropHall
Inserting this bound in Proposition @.2 we have completed the proof of our

Proposition.

8.4 Proof of Halasz’s theorem

We begin with the following general Lemma.

Lemma 8.6 Let a, be a sequence of complex numbers such that 220:1

d

lan|
- < 00,

so that A(s) = >.°  a,n™* is absolutely convergent in Re(s) > 1. For all real

numbers T > 1, and all 0 < a < 1 we have

|an]
< — ).
lItI‘lgx|A(1+a+zt)| max |A(1 + du)| +O( 321 - )

Exercise 8.7 Prove that, for any integer n > 1, we have

1 (7 o ) o
—a _ 725
" o T j(:71(12 + 6271 dé._% ()(:j“>.

(Hint: Show that 2+£2 is the Fourier transform of e=I?1.)
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Proof Multiplying the result in this exercise through by a,, /n'*

ming over all n, we obtain

, and sum-

1 /T a O = |an|
Al == | o SAQ+it+igd+0(5 3 )
(1+a+it) W/_Taugz (14t + ig)dg + T; ;
which yields the result when |¢| < T, since then |u| < [t| + || < 2T for u =t + &,
and as %fTT redé < L= a75e2d€ = 1 by the exercise with n = 1. O

Now we are ready to complete the pr gg %froHalzisz’s the E%%aylvf will bound
the ter ieimrﬁa‘rﬂg integral in Proposition é.S using Lemma E.G above. Applying
Lemma E.G with a, = f(n)n~'/1°8% we obtain that for any 1/logz < a < 1 we

have

. ) alogx
F(1 < F(1+1/1 ( )
g@al ( +a+zy)l_‘51§§<T| (1+1/logx +iy)|+ O T
1
< (log x) exp(—M (z,2T)) + “ ;gx.

Moreover we have

1

F(1 )| < C(1 =—+4+0(1).

max [F(1+a+iy)] < ((1+a) =+ O(1)
keyPro

Using the minimum of the two bounds above in Proposition %.5 n other words,

using the first bound for o < exp(—M(x,2T))/logx and the second for larger

«) we conclude that

! 1 logl
*‘ 2 f(“)‘ <« M(x,2T) exp(—M(2,2T)) + 7 + —o—o L,
! T log x
n<x
ex:4.13

By Exercise B.14 we have M (z,2T) exp(—M (x,2T)) > loglog x/log x, so that
the loglo ¥ JﬁOg x term above may be dropped. Now renaming 27" as T" we obtain
Theorem A.12.

8.5 The logarithmic mean

| s =g [ G =S ),

n<t n<z n<x n<z

Since

and so we deduce that

f(n) S(x) v dt
T song

ropHall eq:Hall4
By Proposition @.2 and then (%% we then deduce

1

1
IR R A S
n<x
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MULTIPLICATIVE FUNCTIONS

This is where the book gets less organized. This section includes several useful
results that will be used, but at the moment are not well tied together in a
common theme.

9.1 Upper bounds by averaging further
Suppose that 0 < h(p*) < C° for all prime powers p®, where C' < 2.

Exercise 9.1 Use this hypothesis to show that ZPQQU h(p®)logp® < x. Give an
example to show that this fails for C' = 2. B

Therefore

h(m
S himytogn = 3 h(m) Y logp® = 3 lm) Y A logyt <2 Y .
n<z n<lx p%||n m<z p*<z/m m<z

ptm

by the Brun-Titchmarsh theorem. Moreover, since log(xz/n) < x/n whenever
n < x, hence

> h(n)log(z/n) <z Y %

n<zx m<zx

and adding these together gives

x h(m)
h —_—. 1 3.2.1
S« ¥ 1O o)

(3.2.1)
Using partial summation we deduce from 9. at for 1 <y < z'/2,

S M) e g A 9:2)

log z
z/y<n<z 8 n<x

2.1
If f =1x%g and we proceed as in the proof of Eﬁ_ﬂien
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S) _ S/y)| |5@) 59| w/y g(d g(d)
‘ x /Y ‘S * «; d d;z/y m/y<zds$ d
S%Z\gw)w% S gy + Y 4
d<z y d<z/y z/y<d<z

log 2y) Z \9 < < log(2y) ap |3 11— f(p)|

log x = P

(9-3)

(3.2.1)
by ( b IJ and b?) Note that this holds trivially for y > x. This result may be
regardec? & a first Lipschitz type estimate, explored in more detail later on in
chapter

9.2 Convolutions of Sums

V\{{a Q{;godtu%e here an idea that will be of importance later, in which we develop
(5. I% T 7o b

is totally multiplicative then

logxz/m

/ S Y fAr)d = 3 f(mr)A(r)/ T at
r<zt mr<x %
10 z/n 1o (x/t?) dt
g X 1ogx t
n<x
By (g%%l%ﬁis equals
S(;v) |1—
S(x)+ O logx logaj Z . (9.4) ’(ConvolApprox)

9.3 A first Structure Theorem

Given a multlphcatlve function f, define g(p*) = 1, h(p*) = f(p*) if p < y and
g(P*) = f(¥"), h(p*) =1if p > y. Now 1*f_g>khsothat if h =1 H then
f = g+ H. Therefore

ORI ONCED DEErr i SRIC)

n<zx ab<z a<lzx b<z/a
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We may extend both sums to be over all integers a since the error term is trivially
bigger than the main term when a > x. Now

DLW SUIGTE PN

a>1 a>1 p*|lla
klo H(A H
<2Z gpz| <<10gy.exp Z| (p)] 7
p<y A>1 p< p
E>1

writing @ = p*A with (A,p) = 1 and then extending the sum to all A, since
|H(p*)| < 2. Now

Z [1—g()|+HP)| _ Z 1 *f(p)|7

p<z p p<z p

GenFundLem
and so we have proved, applying Proposition b.G,

LS = L5 0t L5 h) 0 (B oy (32 1S

n<lx n<x n<z p<z
(9.5)
This is especially useful for understanding real valued f whose mean-value is
large.

9.4 Bounding the tail of a sum

Lemma 9.2 If f and g are totally multiplicative, with 0 < f(p) < g(p) < p for
all primes p, then

(7)== ) 2 o7

p<y n<x p<y n<x
P(n)<y P(n)<y

Proof We prove this in the case that f(q) < g(q) and g(p) = f(p) otherwise,
since then the result follows by induction. Define h so that g = f * h, so that
h(g"tY) = (9(q) — f(g))g(¢®) for all b > 0, and h(p®) = 0 otherwise. The left

(%)

hand side above equals [] times

Py

h(m) f(n) h(m) f(n) _ g(n)
POl Dl Z Bt D Dl
m>1 n<x N<xz mn=N T

P)<y P(N)<y P)<y

as desired. a
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Corollary 9.3 Suppose that f is a totally multiplicative function, with 0 <
f(p) <1 for all primes p. Then

M(-2) » (o

p<y n>x
pln = p<y

where x = y".

Proof If take x = oo, both sides equal 1 in the Lemma. Hence if we subtract
both sides from 1, and let g = 1, we obtain

nf-) ¥ men(e) ¥

p<y n>z p<y n>z
pln = p<y pln = p<y

—_

By Mertens’ theorem and this is

— 00 —y oo
Sy T D (Y

~ logy t ~ logy 12

and the result follows from (3.3.3). O

9.5 Elementary proofs of the prime number theorem
Selberglden
In exercise T.14, we rewrote Selberg’s formula as

x x
(Y(x) —z)logz = — Zlogp (z/J () — ) + O(x).
= p) p
pPsT
There is an analogous formula for p(n), derived from (3.1.1):

M(z)logz =~ logp M (;) +O(x).

p<z

Exercise 9.4 Show that

lim inf M(z) + lim sup M

r—00 xX T—00 X

=0.
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DIRICHLET CHARACTERS

We give a concise introduction to Dirichlet characters. We wish to classify the
non-zero homomorphisms x : Z/qZ — C.

Suppose that ¢ = H;Ll p;j. We define a homomorphism x; : Z/p;JZ - C,
by taking x;(a) = x(A) where A = a (mod p}’) and A = 1 (mod ¢/p;’) (as
is possible by the Chinese Remainder Theorem). Moreover one can verify that
X = X1X2--- Xk, and so the characters mod ¢ can be determined by the characters
mod the prime power factors of gq.

Now if x = 1 then x = x1...xk—1 is a homomorphism Z/(q/p;*)Z — C.
Dirichlet characters are those x that are not (also) a homomorphism Z/dZ — C
for some proper divisor d of ¢ with (d, ¢/d) = 1. Hence we may assume that each
Xj # 1.

Now suppose that ¢ = p°. Since x # 0 there exists a such that x(a) # 0.
Then x(a) = x(a-1) = x(a)x(1) and so x(1) = 1. Since x # 1 there exists b
such that x(b) # 1. Then x(0) = x(b-0) = x(b)x(0) and so x(0) = 0. But then
x(p)¢ = x(p°) = x(g) = x(0) = 0 and so x(p) = 0. Hence x(a) = 0 if (a,p) > L.

Now let us return to arbitrary g. The last paragraph implies that x(a) = 0 if
(a,q) > 1, so we can think of x as a homomorphism (Z/qZ)* — C. Now suppose
that (Z/qZ)* is generated by g1, ga,. .., ge of orders ki, ... ks, respectively. Any
a with (a,q) =1 can be written uniquely as g7 ...g;* (mod ¢) where 0 < a; <
k; — 1 for each i, and so x(a) = x(g1)* ... x(g¢)* and therefore the values of
X(g1):- -, x(ge¢) determine x. Now x(g;)* = x(g/*) = 1 and so x(g;) is a k;th
root of unity, and in fact we can select any k;th root of unity. Indeed let 9; be
that character mod ¢ with v;(g;) = e(1/k;), and v;(g;) =1 for i # j. Then the
set of possible characters mod ¢ is

{i* ... ¢y¢ where 0<a; <k; —1 for each i}

which, we see, can be viewed as a multiplicative group, isomorphic to (Z/qZ)*.

Exercise 10.1 Prove that if (a,q) = 1 but a Z 1 (mod q) then there exists a character
x mod ¢ such that x(a) # 1.

We call x¢ the principal character if xo(a) = 1 whenever (a,q) = 1. If ¢ = dm
with m > 1 and x = dug where 0 is a character mod d and pg is the principal
character mod m then x is induced by 6. If m is the smallest such integer then
m is the conductor of x; if m = q then x is primitive.

The orthogonality relations are of central importance:
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1 1 ifm=1
— x(m) = { T (10.1)
#(q) X (mod q) 0 otherwise;

1 1 if x = Xo,
— b) = 10.2
#(q) b (mz(;d q)X( ) {0 otherwise. ( )

0 1
( T1°E trivial if m = 1. Otherwise select ¥ (mod q) for which ¢(m) # 1. As the

characters mod ¢ form a group, the set {1x : x (mod ¢)} is also the character

group, and so 1(m) >, x(m) = > (¥x)(m) = 3> x(m), and the result follows.
Orthog2 Orthogl
Exercise 10.2 Prove (| ltt {Hint: One proof is analogous to that of (l(r). tl f)i

For a given character x (mod ¢), define the Gauss sum
a
900 = > xae(-].
q
a (mod q)

When (m,q) = 1 we can change the variable a to bm, as b varies through the
residues mod ¢, coprime to ¢, so that

X(m)g(x) = g(x,m), where g(x,m):= Y  x(b)e (b;n) ~ (10.3)
b (mod q)

Select b; to be the inverse of ¢/pj’ (mod pj’) so that 1 = > b ~q/py (mod g),
and therefore

g0) =Y. (x---xw)lae Zbe =Hg(Xj7bj)=HYj(bj)g(xJ‘)~

a (mod q) J J J

This implies that [g(x)| = [[; |9(x;)|, and so we may restrict our attention to
prime powers q¢ = p°:

Orthog2
Suppose that y is a primitive character mod ¢q. We have g(x,0) = 0 by (I(r). 2])0

If e > 1 then x(1+ ¢/p) # 1, else x is a character mod ¢/p. Now by writing
a=0b(1+q/p) (mod gq), we have

g0 Mp) = Y x(a)e(aM>

a (mod q) q/p

=x(1+a/p) >, x(be (bM> =x(1+q/p) 9(x, Mp),

b (mod q) q/p

so that g(x, Mp) = 0; that is g(x, m) = 0 whenever (m, q) # 1. Hence
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s@lglP= X lgbemP= Y xax®) Y e((“—b)m)

m  (mod q) a,b  (mod q) m  (mod q) q
=q¢ Y. x@*=¢aq
a (mod q)

so that |g(x)| = /g for ¢ a prime power and, by the above, this follows for
primitive characters modulo composite ¢ as well.
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ZETA FUNCTIONS AND DIRICHLET SERIES: A MINIMALIST
DISCUSSION

11.1 Dirichlet characters and Dirichlet L-functions

We define the Dirichlet L-function for the character x (mod ¢) by

L(s,x) = Z %

n>1

for Re(s) > 1. One can verify using the fundamental theorem of arithmetic that
this has the Euler product expansion

L= ] (1_X(p))

in the same range.
Exercise 11.1 Ifx (mod q) is induced by b (mod m) then determine L(s,x)/L(s, ).

Remark 11.2 We will need to add a proof of Dirichlet’s class number formula,
perhaps a uniform version? (Since this can be used to establish the connection
between small class number and small numbers of primes in arithmetic progres-
sions). We also need to discuss the theory of binary quadratic forms, at least
enough for the class number formula and to understand prime values of such
forms.

Lemma 11.3 For any non-principal Dirichlet character x (mod q) and any
complex number s with real part > 0, we can define

Y x(n)
L(s,x) = Jim 3 =22,
n=1

since this limit exists.

The content of this result is that the right-side of the equation converges.
One usually uses the idea of analytic continuation to state that this equals the
left-side.
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Proof [ sketch] We will prove this by suitably bounding

i x(n)7

n=N+1

for N > q|s|, where s = o +it. It n = N + j we replace the n in the denominator
by N, incurring an error of
‘ 1 1

(N+j)* N°

for 1 < j < ¢. Summing this over all n in the interval (N, N + ¢, gives
N3 x(n)+0(|s|¢?/N**7) < |s]¢? /N'T7. Summing now over N, N +¢, N +
2q, ..., we obtain a total error of < |s|q/oc N7, which implies the result. O

11.2 Dirichlet series just to the right of the 1-line

Corollary 11.4 Suppose that there exists an integer k > 1 such that f(p)k =1
for all primes p. Then D(f(n),n';00) = oo for every non-zero real t.

Examples of this include f = p the Mdobius function, x a Dirichlet character
(though one needs to modify the result to deal with the finitely many primes p
for which x(p) = 0), and even pux.

Proof Suppose that there exists a real number ¢ # 0 such that D(f(n),n'; 00) <

0o. Then D(1,n™*; 00) ADCf(n),n''; 00) < oo by the triangle inequality. Let
s =1+ —— +ikt. By (4.5), we have

log x

1
log((s) = pUFiRE o),

p<z
and so

e 1kt
log ()] = Relog¢ (s)) = 3" 22 1 o)

p<z p

1 .
= = =D(1,n*;2) + O(1) = loglog z + O(1),
p<z p
t
and therefore |((s)| > log x. However exercise A ;ields that
¢(s) ! +O(1+|t]) 1+O 1+t + !
S) = —— = — —_— 5
s—1 it [t|? log
a contradiction. |
Lemma 11.5 If x is a character mod q and x > y > q then

x(p) log q(1 + |t])
144t logy .

< log (2 +

y<p<z
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Proof (Koukoulopoulos) Taking absolute values we have the upper bound
log (log”’). Let m be the product of the primes < y that do not divide q. Write

logy
sx =1+ logl‘X + it for all X > 0, and take s = s, for convenience. Taking
absolute values we obtain an acceptable upper bound for the primes in the pm e
runcRight
that are <Y := (|s,|¢)*. We may therefore now assume that y > Y. By (EIS;

with f = x we have that

x(p) | _ 3 x(n)
exp p1+it = ?
n>1
(n,m)=1

y<p<z

Take N >y with H = ¢N'/3. For s = s, = 1 + —— + it we have

logz

x(n) 1 1 1
> MLy awmeo| Y |L-w
N<n<N+qH N<n<N+qH N<n<N+qH
(n,m)=1 (n,m)=1 (n,mq)=1

Now |1/n® — 1/N?*| < (|s|gH/N)/N%s < |s|¢H/N? as |s|gH < N, which leads
to a bound on the seco?[]d%%gm; and we bound the first sum by taking x = N,y =
H,z = y in Corollary I7.3. Then, partitioning (NN, 2N] into intervals of length
qH, we obtain

x(n) 11 1 |s|qH 11 1
N<n<2N n 08Y HToey H ogy 0gY Niogy Né
(n,m)=1

Summing over N = y, 2y, 4y, 8y, ... yields that our sum is bounded, and hence
the result. a

TruncRight
By (hS; With f = x we have that log(L (sz, Xx) /L (sy4,X)) = Zy<p§r ;‘1(% +
O(1), and so we deduce from the above that if x is a character mod ¢ and

x >y > q then

1 log |t 1
e i) < (128 1o (e vy )]
log x logy logy

There is a proof of this which uses the theory of analytic functions, which is too
beautiful to not include:

Proof It is well-known that the completed Dirichlet L-function has a Hadamard
factorization; that is if 6 = (1 — x(—1))/2 then

A(svx):—(;r)sgér(‘s;ﬂs)L(s,x)—e“Bs 1T (1Z>es/p

p Alp,x)=0




Dirichlet series just to the right of the 1-line 55

where Re(B + 3 ,1/p) = 0 (as in Chapter 12 of Davenport). We deduce that

Ala+it, x)|
‘A(5+it,x)‘ - 1

a+it — p’
|
p A(p,x)=0 fti P
Now if Rep < a < B then |a + it — p| < |B + it — p| by the (geometric) tri-
angle inequality, and so the above product is < 1 if 1 < a < 3 since we know
that Re(p) < 1. Inserting this inequality into the definition of A(s,x), we de-
duce the result from the fact that IV(s)/I'(s) = logs + O(1/|s]) (as in (6) of
Chapter 10 of Davenport), which implies that the ratio of the Gamma factors is
< logt|/logy < 1. O

Exercise 11.6 The Riemann Hypothesis for L(s,x) states that if A(p,x) = 0
then Re(p) < 1/2. Prove that this is equivalent to the conjecture that A(s,x) is
imcreasing as one moves in the positive real direction along any horizontal line,
from the line Re(s) =1/2.
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HALASZ’S THEOREM: INVERSES AND HYBRIDS

It is evidently useful to evaluate the mean value of f(n) in terms of the mean
value of f(n)/n:

Theorem 12.1 Suppose f(n) is a multiplicative function with |f(n)| <1 for all
n. If t = ty(z,logx) then

z loglog x
Sim= 15 200 o5

n<z

This also holds if we take t = t¢(x?,log(z?)) for some A, 1 < A< 1.

This yields a hybrid version of Haldsz’s theorem that takes into account the
point 1 + ét:

Theorem 12.2 Let t = t(x,logx) and let L = L(x,logx). Then

2 loglog x
— lo + . 12.1
‘ Z Jn ‘ 1+ |t| T (log )2~ V3 (12.1)

We can obtain a better result when we have no useful information about the
size of L:
Theorem 12.3 Let f be a multiplicative function with |f(n)] < 1 for all n.

Then loel
oglogx
— + .
‘ Zf ‘ 1+|t‘ 10gm)17%

UBdH b2
Proof of Theorlern 12.3 We may suppose that |¢| > 10. Let y = ¢ (=, |t\ — )
Repulsion
By Lemma 77 and the definition of ¢, we,sge that, [F(1 + zy)| < (logz)=,

ly| < [t| — 2, and the result follows from (7§i iwh T = |t| — O

Exercise 12.1 Prove that if [t| < m and || < 1/2 then 2m® = (m — &)™ 4+ (m +
8)™ 4 O(|t|/m?). Deduce that

O(z).

m<z

Generalize this argument to sum other (carefully selected) functions over the integers.

We require the following lemma, which relates the mean value of f(n) to the
mean-value of f(n)n®.
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Lemma 12.4 Suppose f(n) is a multiplicative function with |f(n)] < 1 for all

n. Then for any real number t with |t| < /3 we have

> fn) 1th nn (Oleog(2—|—|t)exp(ﬂ)(f(n%n“;x)\/m)).

n<z

Proof Let g and h denote the multiplicative functions defined by g(n) =
f(n)/n*, and h(p*) = g(p*) — g(P* 1), so that g(n) = 3=, h(d). Then

DT fm) = gnn™ =Y "0y h(d) =Y h(d)d" Y m"

n<z n<z n<z d|n d<z m<z/d

We use the first estimate in the exercise when d < x/(1 + ¢?), and the second
estimate when 2 /(1 + t?) < d < 2. This gives

2 I 1++ltzh(dd)+0<(1+t2) S @ e Y |h€dd>|).

n<x d<z/(1+t2) z/(1+t?)<d<z

Applying (2.4.5) and (2.4.6) we deduce that
(

plit -
Z fm) = 1+t Z hdd) +O<log3; log(2 + [¢]) Z Vlif”)

n<x d<zx d<z

= fj; e +0(105g”x log(2 + |t|)exp<z L= o)l _pg(p)'».

p<z

We use this estimate twice, once as it is, and then with f(n) replaced by f(n)/n',
and t replaced by 0, so that g and h are the same in both cases.
Then, by the Cauchy—Schwarz inequality,

1-— 1 — Re(
Z 1= 9| <2 Z Z 1= Re(g(p) < 2D(g(n), 1;x)*(loglog z+0O(1)),
p<z p<:x p<z
and the result follows, b}\nce D(f n% n't;x)? = D(g(n), 1;2)? < loglog x. O

Proof of Theorems }ﬁmlp?Tn 12, %QWe may assume that M := M| %'&IO%Trl)
(2—+/3) loglog z else Corollary h’%—%ﬂiows immediately from Lemma ow,
in this case ), ., f(n) < zloglogz/(log 2)2~V3 by Haldsz’s Theorem. Now let
g(n) = f(n)/n". If [t| > 3 log then |(2*/(1 +ﬂf))2n<x9(n)| <z/(1+t]) <
x/logx and Corollary hz%i’%—ﬂows But if tA 2log z then ty(z, $logz) = 0,
so that Mg(z, 3logz) = M, and Corollary ollows from Halasz’s Theorem
applied to g.
ppFinally g’]]?heorem %%Efollows from Corollary %the definition of L.
It is left as an exercise for the reader to prove this for t = t¢(z4,log(z?)).

O
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12.1 Lower Bounds on mean values
Halasz’s Theorem states that

*‘ Z f(n ‘ < L(x,T)log(2/L(x,T)) + 71

n<z

We will see an example which shows that the Llog(1/L) is necessary, but that is
for a very special function. Of more interest is whether we really need a function
like L in our upper bound for typical f.

Theorem 12.5 Suppose that t = ty(z,T) = 0 and let L = L(z,T) with k =
1/log(1/L) and B = log(1/k). There exists a constant ¢ > 0 such that there
exists y in the range /¢ <y < 2B for which

> f(n)|> Lz, T)y.

n<y

If f(n) > 0 for all n then one can improve this to

Zf > kL(y, T)y.

n<y

T Righ
Proof By (h.IS ;nsvé ii;ve
f _ 1 > 1

+
n>1 " log @

If y > then (1/y) >, <, f(n) < L(y)log(1/L(y)) < L(z)/k by Haldsz’s Theo-

rem, and so

e L(z) [ dy L(z)logx
/ Zf Jy < = / — <~ s

CcB y2+logr n< xCB y1+logm

Also taking L = L(x) we have

o

Now if (1/y)>_,, <, f(n) < L(x)/C for all y, 2%/ <y < 2°B we obtain

L/C L/C

r d L1
dy</ dy  Llogx
y C

CB

Llogz
d < = < .
/L/C - Zf Y / 1+logm c

Combining these estimates yields a contradiction if C' is sufficiently large and so
implies our first result.
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Now suppose that f(n) > 0 for all n. Then L(z') < L(x)/t, and hence if
(1/y) > <y f(n) < KL(y)/C for all y, zt/C <y < 2B then

:ECB T QZCB
1 1 d
/ e Y fn)dy < nL/O/ 1%dw@/c/ -
ZL/C y tlogw <y wL/C gy Rarre logy z y +lozw
Llogzx
K )
<¢
which implies our second result. O

Note that this cannot be much improved. The example with f(p) = 1 for
p < ol and f(p) = 0 thereafter, yields ‘Zn<y f(n)‘ = y/u* for y = 2%¥, so in
our first result we cannot improve the lower bound on the range for y to as much

as yL1°8(1/L): and in the second result to as much as y°~.

AsympT2

Exercise 12.6 Use Theorem o0 obtain an analogous result when t(x,T) #

0.

12.2 Tenenbaum (Selberg)

Developing an idea of Selberg, Tenenbaum showed that if the mean value of f(p)
is z, where z # 0, —1, with very little variance, then

1 1 . z s o xzfl
x;f(n)Nw@g(sl) F)) (oga)

Our “expected” mean value is the same quantity with I'(z) replaced by eY(1=2),
Note that if z = 0,—1 then 1/T'(z) = 0 so we might expect a rather different
phenomenon there. Indeed one can show that in both those cases the mean
value is < 1/(logx)?. In the case z = 0 this “singularity” restricts how much we
might believe our heuristic about the mean value of a multiplicative function. In
particular when trying to prove a lower bound on the mean value like > L we
see that it is necessary to include at least a O(1/logx) term.

This is a very delicate kind of result for real z < 0. Let z = —4§,6 > 0;
the above suggests that Y __ f(n) = o(xz/(logx)). If we now alter the mul-
tiplicative function f on the primes (x/2,z] only, then we alter ) _.  f(n) by
Zm/2<p§ac f'(p)—f (p) which can be selected to have any size as large as x/2log x.
This implies that to prove the above result we need very precise distribution of
the f(p); not something of great general interest.
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DISTRIBUTION OF VALUES OF A MULTIPLICATIVE
FUNCTION

Suppose that f is a multiplicative function, with |f(n)| = 1 for all n > 1. Define

RV, 8) = 1 # {n < N o a7 € (a5}

We say that the f(n) are uniformly distributed on the unit circle if R¢ (N, «, ) —
B —aforal 0<a< f <1 Jordan Ellenberg asked whether the values f(n)
are necessarily equidistributed on the unit circle according to some measure, and
if not whether their distribution is entirely predictable. We prove the following
response.

Theorem 13.1 Let f be a completely multiplicative function such that each f(p)
is on the unit circle. Either the f(n) are uniformly distributed on the unit circle,
or there exists a positive integer k for which (1/N)>. _n f(n)¥ /4 0. If k is the
smallest such integer then B

Ry(N,a,B) = Ry (N, ko, k) + onoo(1) for 0 << g < 1

Exercise 13.2 Deduce in the final case that R(N, o + %, B+ %) = R(N,a, )+
ON—oo(l) for all0 < a < 8 < 1.

The last parts of the result tell us that if f is not uniformly distributed on the
unit circle, then its distribution function is k& copies of the distribution function
for f*, a multiplicative function whose mean value does not — 0. It is easy to
construct examples of such functions f¥ = ¢ whose distribution function is not
uniform: For example, let g(p) = 1 for all odd primes p and g(2) = e(v/2), where
g is completely multiplicative.

To prove our distribution theorem we use

Weyl’s theorem Let {£,, : n > 1} be any sequence of points on the unit circle.
The set {&, : n > 1} is uniformly distributed on the unit circle if and only if
(1/N)> >, cn & exists and equals 0, for each non-zero integer m.

We warm up for the proof of the distribution theorem by proving the following
result:

Corollary 13.3 Let f be a completely multiplicative function such that each
f(p) is on the unit circle. The following statements are equivalent:

(i) The f(n) are uniformly distributed on the unit circle.
(ii) Fiz any t € R. The f(n)n' are uniformly distributed on the unit circle.
(ii) For each fized non-zero integer k, we have ), -\ f(n)F = o(N).
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Proof That (i) is equivalent to (iii) is given by Weyl’s equidistribution theorem.
By Haldsz’s Theorem we find that (iii) does not hold for some given k # 0 if and
only if f(n)¥ is n-pretentious for some fixed u. But this holds if and o %l
(f(n)n*)* is ni(“+k)_pretentious for some fixed u. But then, by TheoremrETcT
we see that (iii) does not hold with f(n) replaced by f(n)n®, and hence the
f(n)n are not uniformly distributed on the unit circle. O

Proof o ‘}h? distribution theorem The first part of the result follows from
Corollary f k is the smallest positive integer for which Zn< N f(n)F >
N then, by Halasz s Theorem we know that there exists up < 1 such that
D(f(n)*, n** oo0) < oo, and that D(f7,n™ 00) = oo for 1 < j < k — 1,
whenever |u| < 1. (And note that D(f~7,n~" 0co0) = D(fJ,n™, c0).) Write
f(p) = r(p)p*“*g(p), where r(p) is chosen to be the nearest kth root of unity to
f(p)p~"*, so that |arg(g(p))| < m/k, and hence 1 —Re(g(p)) < 1 —Re(g(p)*).
Therefore D(1, g, 00) < D(g*, 1,00) = D(f(n)*, n?*** 00) < oco.

By the triangle inequality, D(f™*, nikmur o0) < mID(f*, nik%r o0) < oo, and
D(fmk+7 nit 00) > D(f7, n™oo)—D(f™*, nikmur o0) = oo, where v = u—kmuy,
for 1 <j<k—1andany |ul < 1,and so >, _n f(n)¢ = 0s(N) if k1.

The characteristic function of the interval («, 3) is

e
meZ

We can take this sum in the range 1 < |m| < M with an error < e. Hence

RNap = Y A LS o

1<|m|<M n<N

B e(kra) — e(krB) 1 kr

B Z 2imkr Z Fn)™ +0()
1<|r|<R NS

writing m = kr (since the other mean values are 0) and R = [M/k]. This formula
does not change value when we change {a, 8} to {a + £, + 1}, nor when we
change {f,a, 8} to 1 times the formula for {f*, ka,kB} and hence the results.
O

It is an interesting problem to prove a uniform version of this result when N
is large.
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LIPSCHITZ BOUNDS

We wish to determi Eshmm%mean values of multiplicative functions vary in short

intervals. Theorem shows that this is not straightforward for if the mean
values of f(n) at x and x/z are roughly the same an lar %and similarly the
mean values of f(n)/n® at z and z/w; then Theorem implies that w'® ~ 1

which is not necessarily true. However if we take the ¢ mto account then we can
prove such a result:

Corollary 14.1 For1 <w < xlfe, we have

log 2w
( log = ) log x loglog x
E E 1
xH” fn x/w )it J(n L+ [t o8 (lc’gzw)—i_(logac)Q‘/§7

n<z n<z/w

where t = ty(x,logx) if [tf(z,logz)| < %logx, otherwiset =0, and X := 1—% =
0.36338.. ..

Note that 2 - V3 = 0.267&% SchBomllléan ggggéatlve we can improve
the A =1 —2/7 in Corollary /7, see

As a consequence we can give the same upper bound on the absolute value
of the difference of the mean value of f up to z, and the mean value of f up to
x/w. However we can do better if f is real-valued:

Exercise 14.2 Deduce that if f(n) € R for all n then

1 log 2w logz loglog x
— 1 .
z 2 1) Z fn ( log z ) % <log2w> " (log z)2—V3

n<x n<3:/w

LipschBounds A
We deduce Corollary T4.T from the following:

Theorem 14.3 For Tﬁy T 1T>B 3 gnd all 1 < w < x/10, we have, with the same
SC. ounds

notation as Corollary

1 f(n) w f(n) log 2w\ * log =
;Z nit Z nit <<(logx) IOg(logQw)'

We would like to increase the exponent A as much as possible. It must be < 1
since [p(146) — p(1)| =log(1 +9) ~d for 0 < § < 1.
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Our proof is a modification of the proof of H laslg’s Theorem, so that the
. . . . o, . € ro .
key is the appropriate modification of Proposition @ 5. We again define S(N) :=

anzv f(n).

If we use exercise in section 8.4 to establish that
1 , 1 (7« , o a
(1w = —i€(1 — W) 0(7)
na( v ) 7T_/_T042+€2n (1-w ) + T)’
lemHall2
then we obtain a slight variant of Lemma b.%n:l 2

0ffLineD
Lemma 14.4 With the same hypothesis as Lemma 77, flélﬁ gll real numbers
T,w>1, and all 0 < a <1 we have

|t|<T lu|<2T

1<w<

max |A(1+a+it)(1—w ") < max |A(1+iu)(1—w™™) |+0(%Z )
for

keyPro
Proposition 14.5 Let f, T, and x be as in Proposition 8.5 Then
x, we have

‘S(ﬂs);‘?(ﬂf/m’<< ! /1 1(max|(1—w a’iy)F(1+a+iy)|)doz

€z z/w log 2 /11050 @ NIyI<T
1 log2
1 og 2w o log .
T logx log 2w

. . - -, %&%@E
Proof Since the proof is very similar to that of PE(e) )sition 8.5, we shall merely
sketch it. Arguing as in the proof of Proposition % 5, we get that

[[| S (LS g L s e

n<y n<ly/w

lo

+log2wlog( 08T )
log 2w

Using Cauchy’s inequality, we obtain for o« > 1/log x,

Ll

1 d
Zf lognfy/w Z f(n)logn‘yl%

n<y n<y/w
1 2 dy
/ Zf logn—y/—w Z f(n)logn’ ST
n<y n<y/w

. " Sk%ypro% . . .
As in the proof of Proposmon extending the range of integration for y to
fl substitute y = e, and use Plancherel’s formula. The only difference is that
F’(l +a+iy)/(1 +a+zy) in the right side there must be replaced by the Fourier
transform of e~ (1Tt 3™ <et f(n)logn — we= 1+t D on<et jw f(n)logn which is
—F'(1+ a+ iy)(1—w= %)/ (1+a + zy) We make this adjustment, and follow
the remainder of the proof of Proposition %.5. a
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Lipschitz
Proof of Theorem 14 ﬁ We may assume that [¢| < (logx)/2, else the result
follows from Theorem M2.3. Let g(n) = f(n)n=%, so that G(s) = F(s + it); and

therefore

G| =|F(1+1it)| = max G(1 + wy)|.
G| =P +i0l = max G+ i)

HalMod
By Proposition lZIa.5,°wl1th f there replaced by g, F' by G, and T = (logx)/2, we
obtain the upper bound

log 2 1 1t vy d
og 2w ( ogx )+ / max ‘G(1+a+iy)(1_w—a—zy)| 704
logac 1/logx ‘ylg(Ing)/Q «Q

Let a,, be the multiplicative function with a,. = g(p*) i E[Qﬂnne nd a,r =0 so
that 3, |an|/n <T],<,(1-1/p)~" < logz. By Lemma wi A(s) = G(s),

and T = (log z)/2, we have

log x log 2w

max |G(1+a+iy)(1—w * %) < max |G(1+iy)(1 —w ¥)+0O(1).

ly|<(log z)/2 ly|<log
Now \G (1 + i) <, |anl(n < logz; and |G(1 + iy)| < (loga)= (1 +
1/|y))}*~= by Lemma [? oreover, since |1 — w™%| < min(1, |y|log2w), we

deduce that
max |G(1+a+iy)(l —w > )| < (loggc)%(log2w) -z,
ly|<(log z)/2

In addition, we have the trivial estimate

. 1
max |Gl4+a+iy)(1l—w )| < {(1l+a) <K —.
max {1+ a+ i) < cli+a) <o
Using the first bound when a < 1/(logz)7 (log 2w)!~ %, and the second bound
otherwise, in our integral, we obtain our result a

LipschBounds mpT2
Proof ofLCotilolclary 14.1 The result follows from Corollary 12 T foflowed by

Theorem hﬂ’%ﬁ

14.1 Consequences

€

If m is a squarefree integer < z'~¢ we have, for f totally multiplicative,

Yo o f) =) fm) Yo ud) =) wd)fd) Y fr)

n<z n<x d|(m,n) d|m r<z/d
(n,m)=1

B w(d)f(d) T log 2m A log = log log =
_Zidl"'it > fm)+0 Zg << o ) log <log2m) - (1ng)2\/§>

dlm n<lx dlm
m log 2m A log x loglog x
1 _ . _— 1
H( ) 2 fm+ <¢<m> g (( oer ) 15 (G ) (log 2)> 3
plm nsx

(14.1)
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LipschBounds LipschBounds
by Corollary [14. i s I +|t| > 1. Combining this further with Corollary 4. T we

obtain, for mw < xl €,

Z f(n) = w1+zt ( 1+zt> Z fn
n<z/w plm n<x
(n,m)=1
Lofmo .z loglog N log mw\ /™ log logx
p(m) w \ (logx)2—Vv3 log = log mw

(142) [Foteveat]

Exercise 14.6 Verify that

> s 5w, 56,

2
z
y<n<ae 4

Prove that if ky(w) = (1 —i/t)(1 — 1/w')/logw if t # 0, and ko(w) =1, then

pw\ N
1 Z fn) _ ,{t(w)% Z Fn)40 (llogI ) 1og< log x > N ( loglog =

log w z/wn<wz " n<lw L+t log 2w log x)Q_\/g

Show that we may assume t = 0 if f is real-valued.

Up until this point in this book we have developed the theory for all multi-
plicative functions (which is necessary since we need to work with p(n)). It is
typically easier to develop the theory just for totally multiplicative functions.
The point of the next two exercises is to show that this can be done with little
loss of generality.

Exercise 14.7 Given f define g to be that totally multiplicative function with
g(p) = f(p) for all primes p. Prove that

loglog = )
n)=C_C n)+ O <x
2 =) D gt log o)
where t = ty(x,logx) = ty(x,logx), and the correction factor

) =]] <1 - I{I(fi)t) <1 + ;(fi)t + g;f;)t + .. > .

p

(Hint: Write f = g * h and bound the size of h(p¥).) Show that we may take
t =0 if f is real-valued. Show that Ci(f) = 0 if and only if f(2F) = =2t for all
k>1.
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Exercise 14.8 Use the last two exercises to show that

f(n) g(n) 1 log log z
ZT:CO(f) nlit(f)'ng(n)Jro(W)

n<lzx n<lzx n<lx

where ki (f) = (1 —1i/t)(Co(f) — Ce(f)) if t # 0, and

B ko K (") /1" __fW)/p
wolf)=Golf) | > togy (Zpd@@mk 0

p prime

In the special case that t = 0 and f(2F) = —1 for all k > 1 we have

f , ( log log = >
E =C\(f)log8- E — ")
s gln (log x)2-V3

n<x n<w

where Co(f) = 11,251 — f(p)/p)(1+ f(p)/p+ f(0*)/P* +...). Show that we may
take t = 0 if f is real-valued.

14.2 Truncated Dirichlet series

One can verify the identity (obtained through partial summation) that for every

o > 0 one has
NS, 156
xro 1 Z+o’

n<zx

. LipschBounds i
Exercise 14.9 Use Corollary [17.1 to prove that if (1 — o)logxz — oo then

log log x

n" 1—0c+1it x

_ (1-0)(1+it) S(x) (HO(;_U))W(( log log

n<w
In particular if t = 0 then this equals S(z)/x + o(1).
Exercise 14.10 Show that if o > 1 and (0 — 1)logxz — oo then
Z%})N 11 <1+f]§f)+2(§j)+...).
n<z p prime
In analogy to Proposition 2.9, establish that this can be re-written as

/Z H(l—)(lJrﬁf)Jrjg?Jr...).

n<gc n<z p<z

In the last two exercise we have seen that the value of the truncated Dirichlet
series can be easily understood for all ¢ > 0 in terms of Euler products and S(x),

1+ |t])(log x)*

(log )2=V3

).
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except in a small range around o = 1. We write s(t) := S(z')/z'. Substituting
this into the above identity, we obtain for o =1+ A/ log x,

f(n) =e 45 og T 1€7At8
g 1)~ e 5(1) + (1og +A)/O ()dt.

If A is bounded then this implies that
1 ! ! 1
Z f(z)/ Z — :/ e_Ats(t)dt// e~ Mdt +0 () .
= n = n 0 0 log x

This seems to be rather more difficult to understand depending, as it does, on
the vagaries of the mean value of f.

One can view all of these results as comparison of different weighted mean
values.
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THE STRUCTURE THEOREM

We have seen two types of mean values of multiplicative functions

e When f(p) = 0if p/m and f(p) = 1 otherwise then >, .. f(n) ~ 2P(f;z).

e When f(p) =1 if p < y say, then the mean value of f is obtained from an
integral delay equation (as in section 3.1).

One might ask what other possibilities there are. The Structure Theorem tells
us that all large mean values are the product of the two types, the first for the
small prime factors, the latter for the large prime factors:

Given a multiplicative function f, let t = t¢(x,log ) and define

1 ifp<y FOF) ()" ifp<y
g(pk) _ . onip and h(pk) — ( )/( ) - )
f®)/ %) ify<p<z 1 ify <p<u,
Ift=0then hxg=1xf.
Theorem 15.1 We have

%Zf(”): 13—::2':5 % g(n)'izh(nHO((ﬁii)n)

n<x n<z n<x

where k = A/(1+ X) < 0.2665288966 . . .

StructThm
Proof of Theorem I5.1 We begin our proof in the case that ¢(z,logz) = 0.
We let I(z) equal

z/a
S (o oste/n) = X g@n) [ = [ g0 X nn)G

n<z ab<z a<z/T b<T

We split this integral into several intervals. First for T' < y we simply use the
trivial bounds to get §<en}ru1no§‘é{ﬁ For the remaining values of T" we simply take
f = h in Proposition &3.6 to obtain a main term, as P(h; T) = P(h;x), of

/Z P(h; x)dT = P(h; x)x / > gla

a<z/T a<A

plus an error term, again using the trivial bound for ) g(a), and writing T =
t V)
y', x=y", of
u
< logy / xttdt < xlogy,
1
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GenFundLem
by Proposition b.6. Hence if z = ¢y where 1 < v = u" < u then

I(z) — zI(z/z2)

€ z/yz

/v dA
—P(ho) [ 53 g@)% +0llogy)
A

=log z P(h;x)% Z g(n)+ 0 ((1/v + (v/u)’\))

n<x

=logz éz Zh + 0 (1/u")

n<x n<x

Lipschitz GenFundLem
by Theorem IZL%, and then re-applying Proposition b.G.

Now since gxh = f*1 we can apply the same observations to the pair f and 1
(though we could easily obtain sharper estimates in this case); comparing the two
evaluations of I(x) — zI(x/z) yields the result in the case that ¢s(x,logz) = 0.

We now deduce the result Wkﬁn t = tr(x,log J:) # 0 by comparing f(n) to
F(n) := f(n)/n® using Corollary ence tp(z, 5 logz) = 0 and we can apply
the above. The result follows.

15.1 Best possible
Let f(p) = —1ify"/?2 <p<yorz/y'’? <p <, and f(p) = 1 otherwise. Then

2 by = 5+ Ol(e/u)),

n<z
1 1 1 1
Egg(n)ilfQ Z p1+210g(11/2u)1+0<u2>
n<z z/y} 2 <p<z
1 1 1 1 1
=3 fm) =1/2+0((c/w) ~2 Y] _2u+0(u2>.
n<x z/yt/2<p<z
Hence ) X X ) 1
P2 = gt ) = 5, +0 ()

n<x n<z n<z

StructThm
so we see that we must have x < 1 in Theorem 5.nf
One might hope for something like

SWOEFSWORSWOIETIC)

but it is not true in general. Try f(p) = —1 for y* < p < yor z/y* < p < z, and
f(p) = 1 otherwise. Then the means for h, g and f are a?,1—2a/u and o —2a/u,
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respectively. Taking o = 1/u gives mean values 1/u2,1 and —1/u? roughly; ie the
above hoped-for estimate is ridiculous. This example does not work if we take 0
instead of —1 since then the mean values are o, 1 — a/u, o — «/u respectively, so
the last displayed equation with x = 1 is feasible. This would be a good research
project (ie prove the last display for f(n) € [0, 1])
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THE LARGE SIEVE

We are interested in how a given sequence of com }gt gluimbers, a1,a3, ..., 18
distributed in arithmetic progressions mod q. By (;Ul , when (b,q) = 1, we
have

1
Z Ap = W Z Y(b) Xn: anX(”)a

n=b (1510;:1 q) ) x (mod gq)
rtho
Therefore, by using (I().Z])7 we deduce that
2 2
1
an| = — anx(n) (16.1) |SumSgs
ISR RIS
(b,q)=1|n=b (mod q) x (modgq)l n

Now
2

3 3 an<Z<N+1> ST Janl?

(b,q)=1 n<N (b,q)=1 n<N
n=b (mod q) n=b (mod q)

- (];7 - 1) > lanl?,

s
so by ( 6.1) we deduce that
2

ﬁ Yo |2 ax(m)| <(g+N) Y anf. (16.2)

q) x (mod q) [n<N n<N

Note that if a,, = X(n) for all n, then the term on the left-side of ( 1S.t mgé)drre—
sponding to the character x has size @N 2 whereas the right-side of ( 1s.t mlléld
about (q+ N)@N. Hence if ¢ = o(N) and then (&1&%6% possible and any
of the terms on the left-side could be as large as the right side. It thus makes
sense to remove the largest term on the left side (or largest few terms) to deter-
mine whether we can get a significantly better upper bound for the remaining
term .SThis also has arithmetic meaning since the same argument used to prove
(16.1) yields, for any choice of x1,. .., Xk,

2 2

1 1
> > an—@;x(b);anm(n) = 5@ Yo D anx(n)

(b,q)=1|n=b (mod q) XEX1--Xk | T
(169
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Typically number theorists are interested in sequences where a,, = 0 or 1
(which indicates a subset A of the integers up to N), and which are “dense”,
that is A contains more than N/(log N)* elements, or even a positive proportion
of the integers up to N. Given ¢ it is easy enough to find a dense sequence A
that is not well distributed mod ¢ (for example let A be the union of about ¢/2
arithmetic progressions mod q), or even one that is not well distributed modulo
each ¢ in some finite set. Nonetheless we might expect that A is well-distributed
for “almost all” ¢ (say up to v/N) though one needs to be cautious, for if A is
not well-distributed mod m then it will not be well-distributed mod n whenever
m divides n. To see this, suppose that there are (1+6)|A|/m elements of A that
are = b (mod m). By the pigeonhole principle there exists some residue class B
(mod n), with B =b (mod m), which contains at least (14 )| A|/n elements of
A. Thus we see it makes more sense to compare the number of elements of A
that are = B (mod n) with the number that are = B (mod m) for each proper
divisor m of n.

PrimCharsOnly | Exercise 16.1 Show that the “correct” measure of how well the a, are distributed

mod ¢ (with respect to the divisors of ¢) is

p(g/d)p(d) P a(n
275 > an=g 2 xB) Y anX().

n<z x (mod q) n<z
n=b (mod d) X primitive
(n,q)=1

. . 1stBound L. . . .
Summing the left-side of (16.2]i over ¢ < () is important in applications,
which yields a right-side with coefficient Q?/2 + QN. However with the T]gldie@harsom

restriction to primitive characters (which we saw is appropriate in exercise [[6.
we can use some simple linear algebra to improve this to obtain

The large sieve

M+N 2 M+N
LY Y e (V4@ -1 Y e | (16.4)
q<Q d)(Q) x (mod q) In=M+1 n=M+1
X primitive

(We will prove this initially with Q2 — 1 replaced by 3Q?log Q.)
Theorem 16.1 (Duality) Let ©pp € C for 1 <m < M, 1 <n < N. For any

constant ¢ we have )
2
E E AmTm,n <c E |an‘
m n

n

foralla,, €e C, 1 <m < M if and only if

2
ST S bnzma| <> [bml?
n m

m

forallb, € C, 1 <n<N.
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Proof This can be rephrased as stating that for any m-by-n matrix X with
complex entries (that is X € M,, ,(C)), we have

|aX| | Xb|
max = -
a€My, ., (C) |al beM, 1(C) |b]

To see this suppose that |aX| < ~|a| for all @ € M7 ,,,(C). Given any b € M, 1(C)
let @ = Xb so that

la| | Xb] = |Xb]? =a-Xb=0aXb=0aX -b< |aX]| |b] <~l|a| |b],
and therefore either | Xb| < ~|b|, or a = Xb = 0 which also yields | Xb| < 'y|b\
The reverse implication is analogous.

Proposition 16.2 Let a,, M +1 <n < M + N be a set of complex numbers,
and z,,1 <1 < R be a set of real numbers. Let § := min, -, ||z, — x| € [0,1/2],
where ||t|| denotes the distance from t to the nearest integer. Then

M+N 2 M+N
Z Z I
ane(nxr) S (N + Og(§/6)> 2 : |an|2
r |n=M+1 n=M+1

where e(t) = e,

Proof For any b, € C, 1 <r < R, we have
since the inner sum is N if r = s, where, for L := M + %(N +1),

E S Z b"'gse([/(xr - ms))Sin(ﬂ-N(xr — .’Es))

s sin(m(z, — z5))

M+N

be Z e(n(z, —x5)) = N|b||* + E,

n=M+1

Taking absolute values we obtain

|b-bs| |b,-bs| 9 1
E < <N b, -
| |_Z|sm _ZQHLL’T—ISH _;| | 22||$r—$s”

(T — x5))]

since 2|b,.bs| < |b,|2 + |bs|?. Now, for each x, the nearest two x, are at distance
at least § away, the next two at distance at least 26 away, etc, and so

[1/4]

2 log 6/5
EEDMEDIE-E S lom
so that

> [Shetus| < (34 2D S

The result follows by the duality principle. a
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We have |E| < Y, |br[?/ ming, ||z, —z]| < >, |b]|?/d by the strong Hilbert
inequality (see section *), which leads to the constant N + O(1/0) in the result
above.

LargeSieve | G S
Proof of (16.4). By ( (el.n3<i we have

M+N 1 M+N b
Z anXx(n) = ee) x(b) Z ane () .
n=M+1 9\X b (mod q) n=M+1 q

where g(.) is the Gauss sum. Therefore, using (I6.

2
M+N

2 1 M+N bn
S Y e g XY w0 3 me()
x (mod q) In=M+1 qx (mod ¢q) [b (mod q) n=M+1 q
X primitive X primitive
M+N 2
b
<P Y ()
1 b (mod q) In=M+1 q
(b,g)=1

LargeSi
We deduce that the left side of ( CA s

2 x [3 )

4<Q b (mod q) In=M+1
(b,q)=1
BabyL$
We now apply Proposition 6.2 with {z,} ={b/q: (b,q) =1, ¢ < Q}, so that
o> i i b v > i > 1
min  min |- — — min — > —>—
Tad<Q by g ¢ T erd<Qqd T Q(Q—-1)

b/a#b' /q’
LargeSieve
and (16.4) follows. O

16.1 Prime moduli
Primes are the only moduli for which the only impri ifive e(‘sliaem\rfgcter is the prin-
cipal character. Hence an immediate consequence of ( 6.Zfi is:
2
1
2 P 2| D Ty ) ) <Nl (165)
n

p<VN (bp)=1|n=b (mod p) (n,p)=1
p prime

which can be re-written as

1
Siyl oy
pgx/ﬁ (b,p)=1| n=b (mod p)
p prime

2
an =Y _an| <N |an|” (16.6)
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(Elliott showed how to also include the b = 0 congruence class in the sum.)
Typically this corresponds to a massive saving. For example if a, = 1 if n is
prime and 0 otherwise, then this gives

@) |
Z Z m(x;p, b < zr(z);
p—1
p<yz (bp)=1
p prime
and so )
I I T
p:b p—1 Qlogx’
Q<p<Vz (bp)=
p prime

Schlage-Puchta [AA 2003] proved

Z Z Z apXx(p)| < logN };v |ap\2. (16.7) ’LargeSievePrimes

q<Q x (mod q) [p<N
X primitive

16.2 Other things to perhaps include on the large sieve

Elliott [MR962733] proved that for Q@ < x'/27¢ and f multiplicative with
[f(n)] <1,

/

Z(p_l)max max Z f(n _1 Z fln) < logl’l‘x’

<z =1
p<Q y=e (a.p) n<ly n<y

n=a (mod p) (n,p)=1

where the sum is over all p except one where there might be an exceptional

character.
Consequences of the large sieve to be discussed : Least quadratic

non-residue.
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THE SMALL SIEVE

17.1 List of sieving results used

In this subsection we have collected together many of the simple sieve results that
we use. We will need to decide how to present this; whether to prove everything
or whether to quote, say, Opera di Cribro. This chapter probably should come
a lot earlier.

Lemma 17.1 (The Fundamental Lemma of Sieve Theory) If (am,q) =1
and all of the prime factors of m are < z then

> a={iro ) Ay o),

r<n<z+qy
(n,m)=1
n=a (mod q)

where y = 2.

Corollary 17.2 If (am,q) = 1 and all of the prime factors of m are < x'/*
then

E logn = {1+O0(u"""?)} ¢§:)g(loga¢— 1) + O(y/zlog z).
n<z
(n,m)=1

n=a (mod q)

The proof of this and the subsequent corollaries are left as exercises. One
approach here is to begin by writing logn = | " 4t and then swap the order of

1t
the summation and the integral.

Corollary 17.3 If x is a character mod q and all of the prime factors of m are
< z =y and coprime with q, then

> x(n)<<uiu (/)EZ;I) Q + /Y-

z<n<z+qy
(n,m)=1

Let p(n), P(n) be the smallest and largest prime factors of n, respectively.
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Corollary 17.4 If (a,q) = 1 and z is chosen so that ¢ = 201 and z < y then

rz<n<z+qy
n=a (mod q)
p(n)>z
17.2 Shiu’s Theorem

cor2.3
Suppose that 0 < f(n) < 1. Corollary b.ll states that the mean value of f up
to x is < P(f; ). Shiu’s Theorem states that an analogous result is true for the
mean value of f in short intervals, in arithmetic progressions, and even in both:

Theorem 17.5 If (a,q) =1 then

LD I ()

z<n<z+qy Py
n=a (mod q) plq

This is < P(|f]xo0; y) < exp (f o<y, pla I*j;(”)).

Proof Let g(p) = |f(p)| where p < y, and g(p*) = 1 otherwise. Then |>", f(n)| <
Yo lf(n)| < Zn g(n), and proving the result for g implies it for f
Write n = p1 p22... with p1 < p2 < ..., and let d = 101 p2 ...pFr where
d < y'/? < dp, r“. Therefore n = dm with p(m) > z4 := max{P(d),y'/?/d},
(d,q) =1 and g( ) < g(d). Now, if we fix d then m is in an interval (z/d,z/d +
qy/d] of an arithmetic progression a/d (mod ¢) containing y/d + O(1) integers.
g that zg < max{d,y'/?/d} < y'/? < y/d, and so we may apply Corollary
to show that there are < qy/d¢(q)log(P(d) +y'/?/d) such m. This implies

that "
ay g
g(n) < —~ .
w<’n§+qy (Q) d;/2 dlog(P(d) + yl/Q/d)
n=a (mod q) (dq)=1

For those terms with d < y'/2=¢ or P(d) > 3¢, we have log(P(d) + y'/?/d) >
elogy, and so they contribute

“dIl() X7 <o (-5) (+5)

p<y yl/? p<y

(d q) 1 plq

the upper bound claimed above. We are left with the d > y'/2~¢ for which
P(d) < 2" for some r, 1 <r < k = [elogy]. Hence we obtain an upper bound:
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r=1 d>y1/2*5 d>y1/2’6 r=1 d>y1/2’6
(d,q)=1 (d,q)=1 (d,q)=1
P(d)=<2" P(d)<2k P(d)<2"

For the first term we proceed as above. For the remaining terms we use Corollary
3.4.2, with u, := (1/2 — €)log y/(rlog 2), to obtain

< s LT (122 1+1<<y§;1mjg,.n(l_;)(l+g<m>.

Uy
p Uer p<y p
ptq ptq

ma note al U, 1S decreasin, SO a ru,”) < Up 5 IMOore-
Finally note that u, is decreasing, so that 35, < 1/(rut) < 1/ulfh;

over usr = upr/2 and s0 Y ;.o 1/(rufr) < 1/up* < 1, and the result follows.
- O

17.3 Consequences
Define

ot =TT (1-3) (14 2820 and ) = 24201,

p<q p p
plq

Shiu
(Note that p4(f) is an upper bound in Theorem T7.5 provided y > ¢.) We also
define
logg(n) == _ A(d),

des

d|n
where S might be an interval [a, b], and we might write “< @” in place of “[2, Q]”,
or “> R” in place of “[R, 00)”. Note that logn = logp, ,, n.

Lemma 17.6 Suppose that x > Q>**¢ and Q > q. Then, for any character x
(mod q) and any o € R,

EN FRmelan) L) | < po( )y =P 55,

n=a (mod q)

where L(n) = 1,log(x/n), loig%” or logliggn, and N ={n:Y <n<Y +uz}

for'Y =0 in the second and fourth cases, and for any Y in the other two cases.
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Proof The first estimate follows from Shiu’s Theorem for > ¢'*¢. One can
deduce the second since Y, . anlog(z/n) = [, cpe, 7 > n<r an dT for any ay,.

If d is a power of the prime p then let fyq(n) denote f(n/p®) where p®||n, so
that if n = dm then |f(n)| < |fa(m)|. Therefore if z > Qg'*¢ then, for the third
estimate, times log @, we have, again using Shiu’s Theorem,

< Y fmda@ < Y A@) > | fa(m)]

Y <md<Y+z d<Q Y/d<m<(Y+z)/d
md=a (mod q) (d,q)=1 m=a/d (mod q)
a<Q

A
< 3 M 0E <nniosa
4<0 q q
(d,q)=1

In the final case, writing n = mp where p is a prime > 2/Q (and note that p? { n
asp > x/Q > +/x), we have

r/m X
< Y ygml Y lmp< Y |f<m>|¢{)<<pq<f>logc2.
m<Q z/Q<p<z/m m<Q q q
(m,q)=1 p=a/m (mod q) (m,q)=1

by the Brun-Titchmarsh theorem, and then applying partial summation to Shiu’s
Theorem. a

S
By ( 6.1) we immediately deduce
Small.1
Corollary 17.7 With the hypotheses of Lemma [T7.6 we have

2

Yo |2 fXM)Ln)| < (o (f)a).

X (mod g) [n<z

Lemma 17.8 If A > ¢'*¢ then for any D > 0 we have

2

> S @RDAWM)| < A%

x (mod q) |D<d<D+A

s
Proof We expand the left side using (lGu.ml fo obtain

2 2
¢a) D Yo f@A@)] <éla) Y Yo A@)| <47
(b,q)=1 |d=b (mod q) (b,q)=1 |d=b (mod q)
D<d<D+A D<d<D+A

by the Brun-Titchmarsh theorem. a
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THE PRETENTIOUS LARGE SIEVE

18.1 Mean values of multiplicative functions, on average

Define
Sy(@) =" f(n)x(n),

n<lx

and order the characters x1, x2,... (mod ¢) so that the |9 (x)[ are in descend-
37‘.5) for J ©

ing order. Our main result is an averaged version of (17 wisted by all the
characters y (mod ¢), but with a better error term:

Corollary 18.1 Suppose that x > Q>T¢ and Q > ¢*t¢logx. Then
1 2 log Q\ '~ vF 1 ’
2 oWk) f 08 ] o8t
Z ‘xsX(x) < (6 pq(f)(lOgﬂ? 0og IOgQ ’

x (mod q)
XFEX1:X25- 5 Xk—1

where the implicit constants are independent of f. If k =1, f is real and ¢ is

1

not, then we can replace the exponent 0 with 1 — 75

Let C, be any subset of the set of characters (mod ¢), and define

1
max max |F\(1+7it)|,

L = L =
(Cq) logz x€Cq |t|<log? =

where

= 2\ (2

Fus) = [ (H f(p)zc(p) L )2>§(p ) +>
< p p

Our main result is the following:

PLSG| Theorem 18.2 Suppose that x > Q>T¢ and Q > ¢**¢logx. Then
2 2
log @ log x
E L / 1 .
< (( (Ca) +pq(f) 10.%33) o8 (1ogQ

xX€Cq
. PLSG L kRepulsion
mediately from Theorem [I8.2 and Prop sitiop 77, 4
(77, which

éSX(x)

PLSk
Corollary T8.1 follongLlSr@
To prove Theorem M8.2 we begin with an averaged version of

was used in the eggg‘gefrgfeglalasz’s Theorem. Notice that if we simply sum up
(T7)tor S

the square of (77) for 5 = Sy, for each x (mod ¢), then we would get the next
lemma but with the much weaker error term ¢(q).
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Lemma 18.3 Suppose that x > Q>T¢ and Q > q. Then

2
@/Q dt 2
log? x Z =S ()| < Z (/ ) «(t) t) + (pi,(f)logQ) .
Xecq XGC
. . MeanF (n) .
Proof Let z = x/Q. We follow the proof in sectio % N szr the main terms, but
deal with the error terms differently. By Corollary we have

2

S 1Y fyxn)log(a/n)| < (o (f)x)?,

x (mod q) |n<z

and Z > Fm)X(n)(logegn +1ogs, o n)| < (py(f)zlogQ)?,

n<x
so that, using the identity log z = log(z/n)+log<g n+1og., o1 +10gg . /0) 1

2

SISk (@)logal* < D7 1Y f(n)X(n)log g .oy n| + (P (f)zlog Q)2

X€Cq x€Cq n<z

Now for g = fXx we have

D> gm)loggyn— >, gp)logp Y g(m

n<x Q<p<z/Q m<z/p

= > logp > gmpf)+ D> logp > (9(mp)—g(p)g(m)).

Q<pt<z/Q m<x/pk Q<p<z/Q m<z/p
k>2

The last term is 0 unless p?|m, so this last bound is, in absolute value,

lo lo T
IV D> g2p<<m~
Q<p*<z/Q P Q<p<z/Q p
k>2

MeanF(n)
We now bound our main term as in section ough now sve let = =y + \/y
so we obtain the error term x/,/y in the equatlon before (I77). Summing over
such dyadic intervals this yields

+/Q
Y. 9)logp Y g(m) <</Q |5 x/t)|dt+Q1/2

Q<p<z/Q m<z/p

The result follows from the change of variable ¢ — x/t since @ > ¢ and
Py(f)log@ > 1.
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In the next Lemma we create a convolution to work with, as well as removing
the small primes.

Lemma 18.4 Suppose that x > Q>*T¢ and Q > ¢**clogx. Then

([ psof2)'

i, t t

2

dt
Z / Zf n)log-qn tzlogt

X€Cq n<t

1 2
+ (102 10g (lggg;))

Proof We expand using the fact that logt = log(t/n) +log<g n+log. g n; and
the Cauchy-Schwarz inequality so that, for any function ¢, (¢),

Z(/;cx(t)ﬁfjgj_/ TTogt / Z Qtslogt

X

Small.2
By Corollary 7m.a7 we then have

2

dt rodt log =
1 t — / 2/ / 21
LS| stmxtmpentem)| i <02 [ o < ot os (o5
X |m<t
and
2
dt r o dt
F(m)X(m) log <y m —<</ o(F)togQ)? 2
/Q ZX: n; @7 Blogt T Jg () ) t3logt
and the result follows. a

Now we prove the mean square version of Halasz’s Theorem, which is at the
heart of the pretentious large sieve.

Proposition 18.5 If z > Q'€ and Q > ¢'*¢ then

2

r dt
Z / Z F(n)x(n)log.q n 2logt

xeCqy \"@Q |Q<n<t

3
< log G(())ggg) <M2 log (llsggg) + ¢§?) 1OZQ + lo§2x>

where M := maxyec, max|,<or |Fy(1 4 iu)l.




Mean values of multiplicative functions, on average 83

k
Proof (Revisiting the proof of Halasz’s Theorem (particularly Proposition B9y

For a given g = fx and @ we define
h(n) = Y g(m)g(d)A(d),

md=n

a>Q
so that G(s)(GLo(5)/G>q(s)) = — 32,51 h(n)/n® for Re(s) > 1. Now

S amiosqn - Yhn| <2 Y loep Y 152y 3 88 o tloat

n<t n<t pb>Q Z7,+§1t b>1 pb>Q
p |n ;Db'HSt

by the prime number theorem. This substitution leads to a total error, in our
estimate, of

“tlogt dt \° q 5 (logx 1. 5, (logx
C Lost | 2
<<'q'(Qq Q t%gt) © % e/ © 0 ™ \loe@)

which is smaller than the first term in the given upper bound, since M > 1/logq.
Now we use the fact that

1 - /l/logQ dov
logt 1/logx t2

whenever x >t > @, as x > Q'7¢, so that

T dt 1/1log Q T
/ 20| o <</ /
2 |, t logt 1/logx

<t

Z h(n t2 —= | da.

. . . . L. keyPro
Now, Cauchying, but otherwise proceeding as in the proof of Proposition %.5
(with f(n)logn there replaced by h(n) here), the square of the left side is

<</1/1°gQ dov /Vlog@ 1 [~ ‘G(G;Q/G>Q)(1+a+it) 2
1

- - ’ dtdo.
« 2T l1+a+it

1/logx /logx

The integral in the region with |t| < T is now

2 dt
<maX|G + a+it) \2/ Z ‘t3+2a'
ltl= Q<n<t

If we take ¢ = fXx and sum this over all characters x € C, then we obtain an

error
<maX\F 14+a+it |2 E E f(n )‘Zi
[t|<T {342

XECq x (mod q) Q<n<t

o dt 1
< maX|F (1+a+zt)|2/ T < — max |Fy (14 a+it)%
ItI< o tit2e o |t<T
XEC XECq

Small.3
by Lemma I7.8as t > Q > ¢'*
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For that part of the integral with [¢| > T', summed over all twists qf érlg‘g
characters y (mo g), e now proceed as in the proof of Proposition 8.5. We
obtain ¢(q) times (7 ? ), with f () log ¢ replaced by h({) for £ = m and n, but now
with the sum over m = n (mod ¢) with m,n > Q. Observing that |h(¢)| < log¥,
we proceed analogously to obtain, in total

o(q) (log Q)* +¢((1) 1

<o e

The result follows by collecting the above. a
PLSG

Pro E‘Vp aorf; eTVheorem 18.2: The result follows b, A‘g&lgi 2 é N ‘%O%\}cg)gZ x in Proposi-

tion 8.5, and then combining this with Lemmas [T8.3"and [18.4, since p/,(f) log ¢ >

1. O

Corollary 18.6 Fiz ¢ > 0. There erists an integer k < 1/€* such that if v >

q*T5¢ then
2 1—e\ 2
log@Q\
O(1/¢) /
<e (pq(f) <logy> ) ;

where Q = (qlogx)?, for any y in the range

> ‘;ij (v)

X (mod q)
XFEX1,X25+5 Xk

1 €/2
logz > logy > logx / 2 08T ,
log @

where the implicit constants are independent of f.

Proof Select k to be the smallest integer for which 1/vk < 3e. Let C, be the

set of all characters mod ¢ except x1, X2, - - -, Xk- yﬁ@r&te z = QFP, sothat y = C—Bdsl
where B > C > ﬁlﬁ/z and apply Theorem mwith x = y. Then, by (77

1
. RRepulsidn
and Proposition 77 we have
1

log ? O(1/¢ 1 € O(1/e
Ly <L, <logy> < el )P,q(f)B1—3eB < et /)p;(f)01—4e’

and the result follows. Note that by bounding L, in terms of L,, we can have
the same exceptional characters x1, x2,- .., X% for each y in our range. a
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19

MULTIPLICATIVE FUNCTIONS IN ARITHMETIC
PROGRESSIONS

It is usual to estimate the mean value of a multiplicative function in an arithmetic
progression in terms of the mean value of the multiplicative function on all the
integers. This approximation is the summand corresponding to the principal
character when we decompose our sum in terms of the Dirichlet characters mod
q. In what follows we will instead compare our mean value with the summands
for the k characters which best correlate with f. So define

k
ENga) = Y fn)- @ S xi(@) Y £, (n).
n<z j=1

n=a (mod gq)

n<x

The trivial upper bound |E;k71)(x;q,a)| < kpy(f)x/¢(q) can be obtained by
bounding each sum in the definition using the small sieve. We now improve this:

Theorem 19.1 For any given k > 2 and sufficiently large x, if x > X >
max{z/? ¢5t7¢} then

/ 1— L
(k—1) cVk pq(f)‘.i log @ VE log =
E X; —_— 1
| f ( 345 a)| <e (b(q) lOg.I‘ 0og IOgQ )

where Q = (qlogx)® and the implicit constants are independent of f and k. If f
18 real and x1 is not then we can extend this to k = 1 with exponent 1 —

75
PLS’Eé)n prove this we need the following technical tool, deduced from Corollary

Proposition 19.2 Fiz ¢ > 0. For given x = g there exists K < ¢ 2loglog A
such that if x > X > x'/2 and Q = (qlogx)® then

IOg Q) 1—e

1 1 B .
logz D % 2 FX(m)10gig 0 g1 | < 2V pi(f) <logx
x (mod q) n<X

X#Xj, J=1,.., K

Proof Let logz; = 20+¢/3) 41100 ¢ for 0 < i < IA, with I chosen to be the

smallest inteeer for which z; > 2/@Q, so that I < (1/¢) loglog A. In order to apply
Corollary 8.6 With @ = x; we must exclude the characters x;;, 1 < j <k, for
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1 <i<1I. Let x1,Xx2,---,XK be the union of these sets of characters, so that
K < k(I +1) < e 3loglog A. Therefore, for all y € [Q,x/Q], we have

2 1—¢\ 2
> [ise)| <0 <p;(f)(logQ) ) (19.1)
)

X (mod g logy
XFEX1:X25- XK

We rewrite the sum in the Proposition as

)y S Fm)xm) f@X( DA
x (mod q) dm<X
X#Xj, i=1,....K |Q<d<z/Q

and split this into subsums, depending on the size of d. This is bounded by a
sum of sums of the form

2 S f@x@AD Y fomywom)].
i, et @) IPsdsDEa m<X/d

where Q@ < D < z/Q with A ~ %. If we approximate the last sum

here with the range m < X/D, then we can Cauchy to obtain

> Y. F@OX(@AWQ) Yo fm)x(m) (19.2)
x (mod q) D<d<D+A m<X/D
X#Xxj, J=1,... . K
2 2
< > > A @x(d)A(d) > > fm)x(m)
x (mod q) |[D<d<D+A x (mod q) m<X/D
X#Xj> j=1,...,k—1
(19.3)
2
. D, ¢ log@ \'°¢
< ¢00/¢) (A.pq(f)D (log(X/D)) ) ; (19.4)

Small.3 | PLSunif
by Lemma 1 7m.a8 and (9. ir.usal?rnlming the square root of this over the D/A such
intervals for d in [D,2D) yields an upper bound

logQ )le .
) )

o(1/e) 1
< Pal)X <log(X/D

and then summing this over D = X/Q27 for 0 < j < J < log X we obtain the
claimed upper bound.

PLSuniform

OneTermBound
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Finally the error in replacing the range m < X/d by m < X/D is

XA
< Z |f(m)|xo(m) < Z |f(m)|xo(m) < P;(f)ﬁ,
X/d<m<x/D X/(D+A)<m<z/D
(m,q)=1 (m,q)=1

so an upper bound for the contribution in [D,2D) is

XAd(q) A(d) log @
/ /
s 74 2\ X_ 5%
<r(N=7p— 2. =7 <nNX5py
D<d<2D
which is smaller than the other error term. a
FnsInAPs
Proof of Theorem 1X e > 0 sufficiently small with 1/vk > e. By
applying Lemma T7. 6 1th X = Xo we have
x

logz Y f)= > f(n)logig.gn+O (Pf;(f)M log Q) :

n<x n<x
n=a (mod q) n=a (mod q)

Multiplying this by ¥(a), and summing over a we obtain
logz Y f(n)x(n) =Y f(n)x(n)logg .01 n + O (p,(f)zlog Q) ;

n<z n<z
so that
#(q)
1 log n x logQ
rimaa) =g z; ; i) og 0 )30 g
1—e
< 01/9) 11( )z (10gQ) ’
¢(q) \logz
Li PLS
%&roposition lQmZeal;vEere K < e 3loglog A. By Cauchying and then Corollary
, we obtain
1 K
k K
B @i0.0) = B @ig.0) < 25 3 1S, ()]
j=k+1
1/2 L
logQ\ V&
<— | K S < eo(‘/E)p’ f =z ( ) ,
< 50 jzk:ﬂ' 0 ) 50 g
since K < loglog A, and 1— \/ﬁ >1— ﬁ Applying the same argument again,

we also obtain

’ 1--L
(k—1) (k) cvi Pa(f)T <log62> VR <logw>
E; r;q,a) — Ey7(x;9,0)| < e lo .

The result follows from using the triangle inequality and adding the last three
inequalities. a
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PRIMES IN ARITHMETIC PROGRESSION

Theorem 20.1 For any k > 2 and x > ¢° there exists an ordering x1, . . .

non-principal characters x (mod q) such that, for Q = (qlogz)?,

1 1 k=t
7; A(n)—mgf\(n)—qs(q);h T;A

n=a (mod q)

1— L
cvE T log Q VE log® log
< W (logx) % \logQ@ /)

of the

Corollary 20.2 There exists a character x (mod q) such that if x > ¢ then

n<x n<x

n=a (mod q)

n<x

where Q = (qlogx)?.

character.

1 x(a) _ T log @ 1=
> A X Am- XS S A < S (ng)

i e

We may remove the x term unless x is a real-valued

Remark 20.3 Can we obtain the error in terms of 1/|L(1+it,x)|/logx? And

when x is real, probably t = 0.
PNTapsk

Proof of Theorem 20.1 We may assume that z > ¢? for B sufficiently large,

else the result follows from the Brun-Titchmarsh Theorem.

Let g(.) be the totally multiplicative function for which g(p) = 0 for p < Q
and g(p) =1 for p > @, an Eher%l f = pg, so that we have the following variant

of von Mangoldt’s formula (T.11),

An) ifpln = p>Q,
= Y f@glm)togm = .
0 otherwise.
dm=n
Now
Y (A —Aen) < Y ) < Y logz < R
n<x n<x p<Q@Q
n=b (mod gq) pln = p<Q

1og T

by the Brun-Titchmarsh theorem. Denote the left side of the equation in the
Theorem as Ej(\kll)(x; q,a), and note that all of these sums can be expressed as

mean-values of > A(n), as b varies. Hence

n<z, n=b (mod q)
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(b=1) .. (k=1) (.. logz
EA,+ (J}, q, a) - EAQ7+ (J}, q, a) < QlogQ
Now
S oae= X /@) S gmlegm.  (01)
n<z d<z m<z/d
n=a (mod q) (d,q)=1 m=a/d (mod q)

Similar decompositions for the ) Aq(n)X;(n) imply that E[(\ini) (x; q,a) equals

the sum of f(d) over d < x with (d,q) = 1, times

k—1
1 _
> g(m)logm—mZXj(a/d) Sox) DY g(m)logm.
m<z/d q j=0 (b,q)=1 m<z/d
m=a/d (mod q) m=b (mod q)

FLS1
By Corollary T7.2 (with m the product of the primes < @ that do not divide g)

this last quantity is
k x T
—————— + ky/= )1 d
< (u"+2 i9(q)log @ ﬁ) &/

where x/d = Q". Let R be the product of the primes < Q. We deduce that the
sum over d in a range z/Q*" < d < z/Q% with f(d) # 0, is

1 T x k =z kux

<k (+\/7>logxd<<+

o N aese TV a) T g g
(d,R)=1

FLS3
by Corollary I7.4 (for the sum over d), provided u < v := log (fggé) Summing

this up over u = 2,4,8, ..., v, the sum over d in the range Q* < d < x/Q?" is

2
T lo
«-Z ( 80 ) .
¢(q) \ logx
The same argument works to give a much better upper bound for the terms with
d < Q?, though removing the condition (d, R) = 1 in the sum above. Hence we

are left to deal with those d > 2/, which implies that m < z/d < Q".
(20.1)1s

The remaining sum in

> g(m)logm > f(d).

m<QY z/QV<d<z/m
(m,q)=1 d=a/m (mod q)

There are analogous sums for the remaining terms in E/(\ij_ls_) (x;q,a) and so we
need to bound
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3= gtm)logm (B (x/miq,a/m) — BY TV (2/Q q,a/m)).
m<Q”
(m,q)=1

PLSG
To do so we need to apply Theorem [I8.2 with C, to be the seﬁ ﬁfsﬁu characters

mod ¢, less xo,X1,---,Xk—1. Then we can deduce Corollary [[8.T though now
with x # xo,.--,Xx—1 as the condition ngggnsgm (but otherwise the sa %LInAPs
We can then similarly modify Corollary [I8.6 and finally obtain Theorem [I9.

E

~1_ Therefore we obtain the bound

with E](ck_l) replaced by E](c n

3= gtm)logm |BY Y (@/miq,a/m) — BV TV (2/Q%5q,a/m)|

m<Q”
(m,q)=1
/ x ] lfz}f 1
< OVE pq(f) (OgQ) K y Z g(m) ogm
#(q) logx O m
(m,q)=1
_
< (CvE Palf)T (logQ)l v (vlog@)?
¢(q) \logz log@
FLS3
by Corollary [T7.4, and the result follows since p (f) < 1/log Q. (This means we
need to change the sieving to go up to Q throughout rather than q.) a

PNTaps1
Proof of Corollary 20.2 We let kK = 2 in Theorem 11.1 to deduce the first
part. If x is not real valued, then we know that

ST Amxm)| = |3 An)x(n)| < |ES (2:,0) — B (234, 0)]

n<x n<x

PNTapsk
and the result follows from Theorem 20.1. O
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LINNIK’S THEOREM

In this section we complete the proof of Linnik’s famous theorem:

Theorem 21.1 There exist constants ¢, L > 0 such that for any coprime inte-
gers a and q there is a prime = a (mod q) that is < cq”.

There are several proofs of this in the literature, none easy. Here we present
a new proof as a consequence of thepﬁgetseintious Large Sieve, as developed in
the previous few sections. Corollary mjl)ﬁplies that if there are no primes = a
(mod ¢) up to z, a large power of @, then the vast majority of primes satisfy
Xx(p) = —x(a). The difficult part of our current proof is to now show that x(a) =1
(which surely should not be difficult!):

Proposition 21.2 Suppose that x > g where A is chosen sufficiently large. If

1 x
> Am) - @ > An)| > 3@

n<z n<zx
n=a (mod q)

then there exists a real character x (mod q) such that x(a) = —1, and
1 log
- < logl .

2 p < lonlos (logQ)

Q<p<z
x(p)=1

Corollary 21.3 If there are no primes p = a (mod q) with Q@ < p < x then
there exists a real character x (mod q) such that x(a) = —1, and

> Ten

Q<p<z
x(p)=1

Lemma 21.4 (Halasz’s Theorem for sieved functions) Let f be a multiplicative
function with the property that f(p*) = 0 whenever p < Q. If x > Q then

1 1 Y 1 1 1 logz
’z;f(n)‘ < logQ(1 + M)e + T + log x <1+ IOngog <logQ>) -

1—Re(f(p)p~"")
p

where M :=miny <t > o p<s



92 Linnik’s Theorem

HalExplicl
Proof (sketch) We suitably modify the ﬂrkoeogr%f Halasz’s Theorem (7 7). We

begin by following the proof of Proposition B.5. First note that S(N) =1 for all
N < QZ 50 We ecq;}oredluce the ran%e in the 1nteg¥al for a, thrgughout the p?oof of
Proposition %.5, 05z S < 555 Moreover in the first displayed equation we
can change the error term from < % to < long % for N > @ by sieving.

This allows us to replace the error term in the second displayed equation from
< loglogz to < 1+ o2 0 log <logQ>' Hence we can restate Proposition 8.5 wi
the range for «, and the loglogx in the error term, changed in this way.

Now we use the bound |F(1+a+it)| < |F(1+iu)|+ O (‘”‘ logm) throughout

\ T logQ
0ffLine0
this range, as in Lemma [77; and we also note that, in our ranee for g, [F(1+a+
it)| < 1/(alog@). We then proceed as in the proof of (7 ? ), but now splitting

the integral at 1/Llog Qlog x to obtain the result, since Llog@Q < e~ M. a

LinkNoSie
Proof of Proposition 51.2 Write v := log (logg>. We return to the proof

PNTapsk \log . .
of Theorem bl). [, and show, under our hypothesis here, that there exists y in the
range x'/2 < y < z for which

Y

Z fn)x(n)| > oz Q

n<y

For, if not, the proof there implies that

S An)x(n)| = o (Jq)) |

n<z
PNTaps1
which, by Corollary 20. E: Sonﬁrlgﬂilgcvsisoytg lepothesis.
Taking f = fx in Lemma 2T.4, and comparing our upper and lower bounds

for Sy (y) we deduce that

< logwv.

3 1+ Re (x(p)p™)
Q<p<a b
Let T:={z: |2| =1, and § < arg(z) < T or ¢ < arg(z) < 5*}. We must

have |t| < v/logz else p* € T' (and hence x(p)p® € T) for enough of the primes
in (z¢/V,z] that the previous estimate cannot hold. Therefore

1 1 1+ R 1+ R it it 1
il s + Re(x(p)) > + Re(x(p)p") + Ip |<< log .
Q<p<e? Y Qe p Q<p<z p
x(p)=1
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LinkSiegCond PNTaps1
Proof of Corollary 21.3 By Corollary b(i.? we know that for all y in the

range @ <y < z we have

p<y logy

By partial summation, we deduce that

< 1.

x(a) + x(p)
X

Q<p<z

o 1/5
S AM) () + x(@) <y (1 gQ) |

LinkNoSie
Comparing this to the conclusion of Proposition b [.2, we deduce that x(a) = —1

and we obtain the result.

a

L. LinkSiegCond A
Proposition 21.5 If the hypotheses of Corollary 121.3 hold for x = q* where
A is sufficiently large, and if x(a) = 1 then there are primes < x that are = a

(mod q).
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BINARY QUADRATIC FORMS

22.1 The basic theory

Suppose that a,b, c are integers for which b> — 4ac = d and define the binary
quadratic form F(z,y) := ax? + bxy + cy?, which has discriminant d. We will
study the values am? + bmn + cn? when m and n are integers, and in particular
the prime values. We say that F' represents the integer N if there exists integers
m,n such that F'(m,n) = N.

Exercise 22.1 Prove that if there is an invertible linear transformation (over
Z) between two binary quadratic forms then they represent the same integers;
indeed there is a 1-1 correspondence between representations. Show also that the
two forms have the same discriminant. These results suggests that we study the
equivalence classes of binary quadratic forms of a given discriminant.

Now d = b?> —4ac=b*> =0 or 1 (mod 4). For such integers d there is always
at least one binary quadratic form of discriminant d:

z? — (d/4)y* whend=0 (mod 4)
2 +ay— ((d—1)/4)y*> whend=1 (mod 4).

The key result is that there are only finitely many equivalence classes of binary
quadratic forms of each discriminant d, and we denote this quantity by h(d).
We now prove this when d < 0: The idea is that every binary quadratic form
of negative discriminant is equivalent to a semi-reduced form, one for which
|b| < a < c. In that case |d| = dac — b* > 4a® — a® = 3a® and so a < /|d|/3,
and so for a given d there are only finitely many possibilities since |b| < a <
V/]d|/3 and once these are chosen ¢ = (b? — d)/4a. Gauss’s proof that every
form is equivalent to a semi-reduced form goes as follows: If ¢ < a then the
transformation (z,y) — (y, —x) swaps a and ¢; hence we may assume that a < c.
If |b] < a then let B = b (mod 2)a with —a < B < a, so that there exists an
integer k with B = b+ ka. The transformation (x,y) — (z + ky, y) changes F' to
ax? + Bxy + Cxy where C = (B? — d)/4a. Either this is semi-reduced or C' < a
in which case we repeat the above process. If we need to then we see that our
new pair a, C' is smaller than our old pair a, ¢, so the algorithm must terminate
in finitely many steps.

Before we count representations, let’s note that given one representation,
one can often find a second trivially (the automorphs), for example F(m,n) =
F(—m,—n).



The basic theory 95

Exercise 22.2 Show that the only other automorphs when d < 0 occur for d =
—3 and d = —4. We denote the number of automorphs by w(d). Deduce that
w(—4) =4, w(—3) =6 and w(d) =2 for all other negative discriminants d.

The key result in the theory of binary quadratic forms is to show that there is
a 1-1 correspondence between the inequivalent representations of a given integer
N by the set of binary quadratic forms of discriminant d, and the number of
solutions to 22 = d (mod 4n). Once this is established one knows that the total
number of representations is

R(N)=w(d) > (Z) .

k|N

Dirichlet had the idea to simply sum R(N) over all N < z since the sum equals
the total number of values up to = of the inequivalent binary quadratic forms F’
of discriminant d < 0.

Exercise 22.3 Show that the number of pairs m,n of integers for which am? +
bmn+cn? < x can be approzimated by the area of this shape, with an error term
proportional to the perimeter, that is 4wz /\/d + O(/x).

Hence

N%R(N) = h(d) (2”\@ + O(ﬁ)) .

On the other hand

S R =ut) XX (F) = w3 (4)-

N<z N<z k|N ab<z

The main term comes from summing over a < +/z, since the number of b is
x/a+ O(1), to obtain

d\ x d\ 1 d\ 1
Z (a> a+0(\/5)=x2(a> E—FO T Z (a) E-F\/E
a<Vz a1 azye
= 2L(1,(d].)) + O(dVa),
by partial summation since the sum of (d/a), over any interval of length 4d,
equals 0. For the same reason

>y (d>§4d\/§.
b<Vz Jx<a<z/b “

Dividing through by x, and then letting x — oo, we obtain Dirichlet’s class
number formula:
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vy

h(d) = w(d) 3

(1,(d/.)), when d < 0.

When d < 0 the binary quadratic forms are positive definite and so can only take
each value finitely often. When d > 0 there is no obvious limitation on how often a
given integer can be represented, and indeed integers can be represented infinitely
often. The reason for this is that there are infinitely many automorphs for each
d. Fortunately the automorphs can all be generated by two transformations:
F(m,n) = F(—=m,—n) and F(m,n) = F(am + fn,ym + én) for some linear
transformation of infinite order. After taking due consideration this leads to

h(d)Rg = Vd L(1,(d/.)), when d >0,

for some constant Rq. In fact Rq = logey where ¢4 = x + yv/d corresponds to
the smallest solution with z,y > 0 to 22 — dy? = 4.

22.2 Prime values

Let us suppose that x is induced from the quadratic character (./D) so that D
must be squarefree. We re-write this as (d/.) = (./D) where d = (—1)(P~D/4D,
so that d = 1 (mod 4). To begin with we look at divisibility. For a binary
quadratic form ax? +bxy+cy?, we know that (a, b, ¢)?|d, which is squarefree, and
so (a,b,c) = 1. Also note that (m,n)? divides am? + bmn + en?, so we proceed
by replacing m by m/(m,n), and n by n/(m,n), and hence we may assume that
m and n are coprime.

We now show that if odd prime p divides am? + bmn + en? then (d/p) = 0
or 1. If p divides n then 0 = am? + bmn + cn? = am? (mod p) and so p divides
a as (m,n) = 1. Therefore d = b*> — 4ac = b*> (mod p) and hence (d/p) = 0 or 1.
If m { n then 4ap divides 4a(am? + bmn + cn?) = (2am + bn)? — dn?, and so

(o) = (B5) - (5) -G G - ()

implying that (d/p) =0 or 1.

Exercise 22.1 Show that if p is an odd prime then

1—pi2#{m,n (mod p) : am® +bmn +cn® = 0 (modp)}:<1—;1)) (1_%)

We wish to show that am? 4+ bmn + cn? takes on many prime values, that
is not many composite values. If am? + bmn + cn? < z is composite then it
certainly has a prime factor < y/z so we will count the number of such values
with no small prime factor. To explain our method in an intuitive fashion we
will proceed assuming that d < 0 < a (so that am? + bmn + cn? only takes
non-negative values); when we give the actual proof we will use sieve weights
that are easier to work with but more difficult to understand.
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The small sieve shows us that if x = y* then for M = Hpgyp

#{m,n€Z: N:=am? +bmn+cn®* <z, (N,M)=1}=

={1+0w™}]] (1 - 1) (1 - Wp)) X + 0(VX),

p<y p p

where X := #{m,n € Z: N :=am? + bmn + cn® < 2} = 7x/Vd + O(\/z).
We will use this estimate when y is a small power of x, and then obtain a
lower bound by subtracting the number of such integers divisible by a prime in

(y,2'/?].

The trick is that if prime £ is in this range with (d/¢) = 1 then £ can be
written as the value of a binary quadratic form of discriminant d in one of two
(essentially different) ways, and then N/¢ similarly. Hence to count the number
of such N/¢ we can use use the same estimate, though in this case we use the
above simply as an upper bound, particularly as N/¢ > /x. Hence

#{m,n€Z: N:=am?+bmn+cn* <z, (N,M)=1,{|N}
1 d X
<<H(1—) (1—(/’7)) 7
Py P b

Hence in total, we have

H#{m,n€Z: N :=am?+ bmn+ cn?® <z, Nis prime}

IO )

(d/0)=1

where say u > 1/e. LinkSiesCond
From the first equation in the proof of Corollary bl.B We-deduce that that if
there are no primes = a (mod ¢) up to x then

1 log Q 1/5

Z Z<< lo :
y<t<z'/? &Y
(d/0)=1

hence if x = ¢* where L/u is sufficiently large then > y<p<arrz(1+(d/p))/p <
1/2; and so, from the above, we know that there are many prime values of our
binary quadratic form.
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22.3 Finishing the proof of Linnik’s Theorem

To obtain a complete proof without proving all sorts of results about binary
quadratic forms (and of positive and negative discriminant), we can proceed
working (more-or-less) only with the character y, though based on what we
know about binary quadratic forms. The extra observation to add to the analysis
of the previous section is that we should work with the values of all binary
quadratic forms of discriminant d, simultaneously, since Gauss showed that the
total number of “inequivalent” representations of n is then > x(m). Hence

let w(n) =3_,,, x(m), so that w(p) =1+ x(p). We define

m|n

Awiqa)= S wn).

n=a (mod q)

Exercise 22.2 Show that if f is totally multiplicative and g = 1 * f then

g(mn) = > u(d)f(d)g(m/d)g(n/d).

d|(m,n)

As usual A,,(x;q,a) := ), w(n) where the sum is over n < x with M|n and
n =a (mod ¢). Hence, using the exercise with f =y, if (m,q) =1 then

An(wga)= S wmN)= 3 S uld)x(dyw(m/dyw(N/d)

N<z/m N<z/m d|(m,N)
N=a/m (mod q) N=a/m (mod q)
= > udx(d)yw(m/d) > w(N/d)
d|m N<z/m
N=a/m (mod q)
d|N

= ud)x(dyw(m/d)A(x/md; g, a/md).

d|m

Now w(n) = 3,1, m<ym X(M) + 32,1 e s X(1/m). Therefore

Alzsga) = ) Yo oxm+ Y x(n/m)

n<z mln, m<y/n m|n, m<y/n
n=a (mod q)

= > xm) Y l4x@ Y oxtm) Y o1

m<z m2<n<z m<z m?<n<gz
(m,q)=1 n=a (mod q) (m,q)=1 n=a (mod q)
1 _ x
== > (x(m) + x(@x(m) (= —=m+0(1)).
1 cym

(m,q)=1
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Now >, (mod o) (ka+m)X(M) = 32, (o o) mx(M) < ¢*/?. Moreover > me<nr X(M)/m =
L(1,x) + O(¢/M), and so A(x;q,a) = (1+ x(a))L(1, x)z/q+ O(g/x) since x is
real. Hence, if m is squarefree and coprime to ¢, and x(a) = 1 then

A(wig.) = L(1x)5 - DS EE 055 WD )1+ xafm)) +0 (L5 wom/d) /e

d|m d|lm

:zL(l,X)n{qu<1+X<p)<1_;)>+o L a0+ 0+ X))

plm plm

Hence if we write A,,(z;q,a) = (g(m)/m)A(x;q,a) + rm(x;q,a) then g is a

multiplicative function with g(p) = 1+ x(p) (1 - %) and

Z|7"qu7 |<<q\/72 H (p) +1//p) < ¢V Mz log® M.

m<M m<M p|m

Lemma 22.4 (Standard sieving lemma) Suppose that a,, are a set of real weights
supported on a finite set of integers n. Let A(x) =" a, and suppose that there
exists a non-negative multiplicative function g(.) such that

g(m)
Am = n — ——A m
0= 3 o= BRAG) e
for all squarefree m, for which there exists K,k > 0 such that
—1 K
() (i)
y<p<z p ogy

forall2 <y < z <. Let P be a given set of primes, and P(z) be the product
of the elements of P that are < z. Then

ST an={1+0knle )} ] (1 - g(p)) D ant 0| > Irm(@)l
n<z peEP p n<z m|P(z)
(n,P(2))=1 p<z m<z®

Above we let x %ieq/iél’@eﬂf and z = z¢, with u large and eu small, and

then apply Lemma 22.4 with k = 2 to obtain
> ={1+0(e “}H( )( X(p))A(x;q,a)~
n<x p<z p
n=a (mod q)
(n,P(2))=1

Now for each primes p,z < p < 1/ we must remove from the left side those n
divisible by p. For each prime p write n = Np and so we get an upper bound from
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w(p) times the sum of w(N) over N < z/p, N = a/p (mod ¢) and (N, P(z)) = 1.
Since x/p > \/x, we can get an upper bound from the same estimate, of the right
side with z/p in place of z; that is divided by p. Hence we deduce that

Yo wp)=q1+0[e+ > 1+;<(p) 11 (1— ;) (1— X;p)) A(z;q,a).
p<z 2<p<VE p<=

p=a (mod q)
p prime

1/5
In the last section we explained that ) <p<VE 1++@ < (%) , and hence

we have proved that

wia) = (1o ] (1-5) (1= X2) 0 2.

p<z

vL

where z = ¢* and z = ¢VL.
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EXPONENTTAL SUMS

Given a real number a we consider rational approximations a/q with (a,q) =1

such that
< —. 23.1 DiApprox
p (23.1)

23.1 Technical Lemmas
We will work with exponential sums.

Exercise 23.1 Define e(t) := ¢*™". Let ||t|| be the distance from ¢ to the nearest
integer. Prove that for any real S we have

1
oM Z e(Bm)

A-—M<m<A+M

1
< min< 1, 7} ;
{ M||B]l
and

2
< min{l ;} .
T M8

g > etom (1A

A—M<m<A+M

We begin by proving the following:

%logm\g”v if M,N <gq

1 1+ ZlogN ifN<qg<M
Zmin{l,}<< Sharoplt HAS < (23.2)
= Mlno + | 4 log 2M iftM<qg<N

- N4 logM if g < M,N

N q N
< (10T g ) ls2MNg)  (283)

if g < MN (and if ¢ > MN the case @ = 1/q yields the trivial bound N). In
each case there are examples for which these bounds can not be improved. We
proceed by writing @ = a/q+ 5 and n = mq + r with —¢/2 < r < ¢/2 so that
na = mqa +ra/q+ 1B with 78] < (¢/2)(1/¢*) = 1/2q. Hence, for each m these
points are well distributed around the circle (in that for each b, 0 < b < g —1
there is at most one such point in the arc of length 1/q centered on mqa + b/q
(mod 1)). Hence in such an interval our sum is

min{N,q/2} m1n{N,q}>

: 1 9,4
L, ——— <1+ —+ =1
< ; mm{’Mlé/q}<< +M+Mog< T
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and summing up over such intervals we obtain the result. Since

min{N,q/2}

2
1 q
§ mn<{l,——— % <1+ -—,
{ le/q} M

£=0

we also deduce that

2
. N q N ¢ N

E min < 1 < 1+> (14_7):1_’_74_7_,_7. 23.4 -expsum2
{Mll ||} ( q M ¢ M M (23.4)

n<N

This usually wins a log(2M N/q) over the first moment, which can be important.

Now we wish to do the same for prime differences. That is, instead of summing
over n < N, we sum over p,p’ < N and let n =p—p’. We get 7(N) ~ N/log N
copies of 0 and the number of prime pairs p, p+n is < (n/¢(n))N/log? N. Now
ﬁ < me m<\/ﬁu2(m)/m. Hence

Z min{l 1 }2<< N + N Zmin{ } Z #
"Mll(p—p')e logN = log®> N = M||na||

p,p'<N m|n

m<y/n
N N u?(m) _ { 1 2
B S-S SRy
logN  log Nm<\/ﬁ M cheN/m M|[kma|l

writing n = mk. Now if a = a/q then ma = b/r (mod 1) where r = ¢/(g,m).

Hence by ( b3 %f) this sum is

2
2 (m) N(m,q) q N N ¢ N
1+ L jog Nyt
< Z m < mq +M(m,q)+mM < +¢(q)+M o8Ny
m<v N

and so we deduce that

. 1 2 . _ N? N? q
3 mln{l,]wn(d_d/)a} A(d)A(d)<<W+M+(1+M)NlogN.

d,d’<N
@9

23.2 The bound of Montgomery and Vaughan
TroX

DiA
We begin by proving Montgomery and Vaughan’s celebrated result that if ( 3

holds then
3 f(n)e(an) < ——= + —— + \/qrlog z. (23.6) [wv1
= g  logz

(The last term can be removed if ¢ < z/(log x)3.)
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Montgomery and Vaughan proceeded by multiplying through by logx; con-
verting this to logn brings in an error of O(z). Then writing logn = Zd|n A(d),
we find ourselves with the sum

> f(dm)e(adm)A(d).

dm<z

We break this into intervals (assuming f is totally multiplicative for simplicity)
to get sums of the form

<> |f(m) Je(adm)A(d)
and Cauchy, so that the square is
2
< Y1) Y| D ] fld)e(adm)A(d)
m m d
<M Z A(d1)A(dz2) f(d1) f(d2) Ze(a(dl —da)m)
d1,dz m
1
<MZMWM@mem%ﬂwJ

di,d2

This can be improved by a minor modification. If the range for m is A — M/2 <
m < A+ M/2 then we bound the top line above by multiplying the mth term
by 2(1 — |m — A|/M) (which is > 1 in this range), and then extend the sum to
all m in the range A — M < m < A+ M. By the second part of the exercise we
then obtain the bound

2 2

< M2 dl;DA(dl)A(dQ) max {1, m} < @+%+(M+q)xlog(m/M)

um3
by (b3 %) as M D < z. We take the square root (since we Cauchyed) and sum
this up over 1 < M = 2¢ < z to obtain a total upper bound
xlogx

#(q)

<

+x+q1/2x1/2 log3/2x

MV1
from which (bBTi) follows.

23.3 How good is this bound?
If we let f = x, a character mod ¢ with « = 1/¢, and = a multiple of ¢, then

> x(n)e(n/q) = Zx e(n/q) = g(qx)%

where g(x) is the Gauss sum. We saw earlier that |g( )}JVl: VQ, and so if ¢ is
prime then this is > x/1/®(q). Hence the first term in (23.6) needs to be there.
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Given the values of f(p) for p < z/2 let Y f(n)e(an) = re(d) with r €
R>o, where the sum is over all n < z other than the primes in (x/2,z]. Now
consider the multiplicative function f where f ( ) = e(f — ap) for all primes
p, 2/2<p <z Then ) _ f(n)e(an)=(r+m(zx)—m %\% ; in particular
| > <e f(n)e(an)| > x/log . Hence the second term in (23.6) needs to be there.

In both cases we do not need to take f to be exactly the functions described,
f should just be pretentious in that way. In the latter case one can most easily
avoid such problems by removing all integers that have some large prime factor:
As shown by La Bréteche one has, for ¢ < y + x/eQ\/@7

Z f(n)e(an) < <\/@+ 5@) log® 2 + \/i@ (23.7)

n<z
P(n)<y

In this case we do not multiply through by logx but rather write each n = dm
where (d,m) = 1 and d is a power of the largest prime dividing n. Hence

Z f(n)e(an) = Z f(d Z flm)e(dam).

n<z 7n§x/d
P(n)<y D prlme <y P(m)<p

Taking absolute values, we first deal with the term where d is a prime power.
This gives
< > W)
d=p*, k>2

p prime

Using our estimate (*) for ¢ (z,y) it is an exercise to show that this is <«

z/exp({2 + o(1)}/log zloglog z) then main contribution coming from p? val-
ues around exp({1 + o(1)}+/Iog zloglogz). We shall similarly approach those
terms where d = p < T is “small”: they contribute

> w(a/p.p) < z/exp({V2+ o(1)}y/log zloglog z)

p<T
p prime

where T’ = exp(y/1 log z loglog z).
To bound the remaining terms we forget that d should only be prime, and
arrive at

< Z Z fim)e(dam)|.

T<d<y | m<z/d
P(m)<d

Cauchying for the terms with 7" < d < D and m < M where DM < x we obtain
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<D Z f(m)m Z e(da(m —m'))
m,m’<2M P(m),P(m/)<d<z/ max{m,m’}
T 1
<D min{ 7 } .
m,r;QM max{m,m’}" |a(m —m/')||

The m = m' terms yield <« Daxlog M. Otherwise let & = min{m,m’'} and
k + j = max{m,m'}, so our sum becomes

x 1
< D .
2 mm{k+1 |ag}

G k<2M

For each k we partition the j-values into intervals [1,k] and [2k,2""'k) for .
@35)

i=0,1,2,...,1 where I is minimal such that 2/k > 2M, and then apply
assuming x 2 q. We obtain

<D Z ( ( + q) log(M/k) + M) log(2x/q)

k<2M

< (xD log2M + (ac + q) DM + DMQ) log(2z/q).
q

Now we take the square yopt apd sum this over all M = 2/ < X/T with D =

min{y,xz/M} to obtain (bS.ii

23.4 When f is pretentious

We have seen that Montgomery and Vaughan’s bound can be considerably
improved if one removes the effect of the large prime factors, unless f is x-
pretentious for some character x of modulus ¢q. Here we will be interested in
obtaining better estimates in this special case.

We deduce
log = Z Zf e(an)logig /g + O (p(f)zlog Q) .
n<z (mod q) n<z

(23.8)
Small.l
from Lemma [[7.6. 1f (b,d) =1 then

()50 s, B 0=l T, o w0

therefore if (a,q) = 1 then, writing n = mgq/d when (n,q) = g/d (so that
(m’ d) = 1)7

ExpSums2Chars
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> s ( ) > s ()

< dlg m<z/(q/d)
(m,d)=1

Y. Yag) Y flm)d(m)

dlq ¢ mod d m<z/(q/d)

FnsInAPs
Proceeding as in the proof of Theorem 9.1 we have

an flg/d) - -
e () S X, e 3 s
N % induces some x;, 1<j<k -

Vd _
< % @ Z Z f(m)y(m)

Y mod d m<z/(q/d)
v induces some x;, k+1<j<K

_ 1
+Z > S Flmypm) 2T,
¢ g

dlq Y modd m<z/(q/d)
w induces x;, j>K

LinearPLS
since all the prime factors of ¢/d are < Q. By Proposition 19.2 z = Q4, the
second error term is

, T 1 2 1
Z A“q/d<<p(f)fH(l NG p>'A“'

plg

For the first grrqr term we Cauchy it, in two parts, and proceed as in the proof
of Theorem [19.T To obtain

<<p(f)jH<1 }Jr;)-hig/}

1
VEF1
plg A

which dominates.

We now deal with the “main terms”: Suppose that the primitive character
1 (mod r) induces some x; (mod ¢). If x (mod kr) is induced from ¢ (mod r)
then g(x) = u(k)yw(k)g(), so we may assume (k,r) = 1 else g(x) = 0. Therefore
the total contribution is

—Tag@) 3 f"/’” BeE S fmp

k|q/r m<krz/q
(k,r)= (m,k)=1

FSieved2
By (14. 7J the error terms add up to
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)2 1-2/x

T Z u k krz loglog = N <logq/r> log( log x )

(15(7") Kl q (log z)2—V3 log x logq/r
(k,r)=1

<

owla/m), fr log log © <1ogq/r>l2/7T ( log x ) Va log log «
x — + log < x =
6@\ ogop—a " loge loga/r) ) = 6@ " (loga)~7

as 1 —2/7 > 2 —+/3, and since the maximum is attained when r =< ¢. The main
terms add up to

f 1 F(p)
v) 2 Eyk) (q/kr)itit 11 (1 - p”“) 2 Fm)

(k|<1)/ plk n<z
k,r)=1

with F(n) = f(n)¥(n); and this equals

 Y(a)g(v)
o(f,¥,t;q) 2(0) TZ;F(H)
where
o(f. . tiq) == [[ v pp~) = (Fp~h ] (Fw)/p™)*
p°lla/r pella/r

ptr plr
Hence in total we have
S f(n) ( ) Z@f,wj,tq z S f(n)
n<x Jj=1 n<x

Va loglog x , ( 1 1) ~ logA
+0 <¢>(q) x ((1ogx)2¢§+p(f)g 1+ \f+p P +)) .

In particular if we have log g = (log2)°™) then since 1 -2/, 1—1/v/2 > 2—+/3
we deduce that

n)e % . @](a)g(%) w q/r);
s () X %50 {(f’w“tqu oz <logx)2—ﬁ+o<1>>}

n<x j=1 n<xz

NG T
0 (log )~ v +o)

Q

if log ¢ < (loglog x)2.
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In the special case that ¢ is prime we have that @ > o<z f(R)e (%) equals

1 log log log A )
1- - +0 + 3
< ) x ;f(n) <(1og z)2-V3 A%
if some 1; = 1; plus ¥(a)g(v)) times

flg) 1 = log log z
B Y s +0 ((logx)z ﬁ>

f(q)
qit

n<x

for each 1) = 1); of conductor ¢, plus O(,/q(log A)/AY Vlel)
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THE EXPONENTS ng

We Wi;g goufiﬁglnthe largest exponents 771 > 1y > ... that can be used in Propo-

sition [77; that is if x1, x2, - - ., X% are distinct characters mod ¢, with ¢ < Q < x
then
1 —Re((fX;)(p)/p") log =
> —
max o > ; > {1 -, + o(1)} log (logQ) +Ok(1),

Q<p<z

. .. . . kRepulsion
where the implicit constants are independent of f. Proposition [77 shows that

1
M < r
It is evident that m; = 1 taking the example f(n) =1 along with x = xo.

Proposition 24.1 We have ny < 1/3. In fact ny = 1/3 assuming that
o (-0 ((22))
w(x;q,a) = ——= (140 | | ——
w00 =30 log @

Proof To prove the lower bound, suppose that x (mod ¢) has order 3. Define

fp) = {1 i x(r)

=1
-1 ifx(p)=worw

for x > ¢>.

2

so that
_ 1—Rex(p)

1 —Ref(p)x(p) = 1 — Ref(p)x(p) 3

Therefore our two sums are

1 I1-Rex(p) 1 log x

Q<p<s p

. . kRepulsion
as in the proof of Proposition 77, and so 7y < 1/3.

kRepulsion
To prove our lower bound it suffices, as in the proof of Proposition 77, T
suitably bound

% Z 12%(?) :% Z %|1_’_X(p)p21't‘

Q<P |i=3 P Q<p<s
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where x = x1X, and t = (t2 — t1)/2. We will suppose t > 0 (if t < 0 we simply
replace x(p)p** by X(p)p~2%.) By our assumption on 7(z; ¢, a), this equals

1 /log:v it dU
— 1+ x(a)e=™| — +O0(1).
2¢(q) . (Izn;d g Tl v
(a,9)=1

If x has order m > 1 then there are exactly ¢(q)/m values of j (mod m) for
which y(a) = €*7™/™ and so our integral equals

17’” log x 1m
mZO/I costv—&—wg/m‘— mzo/

tlogx
cos(mj/m +6)

og Q tlog @

ndle that part of the integral with # > 1 using the first part of exercise
77 When 6 < 1 we substitute cos(mj/m + 6) = cos(wj/m) + O(6). Hence our
integral equals

92 max{1,tlogx} 46 min{1,tlog z} do
- / -+ cm/ — +0(1)
max{1,tlog Q} 0 min{1,tlog Q} 0

where ¢, 1= L Z;ZOI | cos(mj/m)| equals

if m is odd,

if m is even.

LIS cos(ﬂ'j/m):{m““(fmm)

m [ —
—m/2<i<m)2 m tan(m/2m)

The maximum of ¢,, thus occurs for m = 3, and equals 2/3. Therefore, since
% < % our integral is

2/“°gz dg 2 <log:c>

< - — = -log +0(1
3 Jiogo O 3 log Q (1)
as claimed.

When ¢ = 0 we can simplify the above proof to obtain ¢, log (fgggé) +0(1).
O

Proposition 24.2 We have 2\F <M < \/1% for allm > 1.

kR R 1si
Proof The upper bound was obtained in Proposition 77 “For the lower bound,
let ¢ be the smallest prime in (2m, 4m], say = 2k + 1.
Suppose that x (mod ¢) has prime order £. Define f(p) =1 if x(p) = 1, and

a

flp) = (%) when x(p) = e (Z)

whenever a Z 0 (mod ¢). In this case we note that
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D S o P B S O MG D S Rt

n  (mod £) m  (mod £) m  (mod £)

where gy = g ((?)), so that

-1

(%) X" (p) + % Ki X" (p)
m=0

kRepulsion
for all p. As in the proof of Proposition [77 we deduce that

B (1)) e ()

q<p<z

m=0

Now g, € R if and only if I = 1 (mod 4). Moreover there are exactly 51 = k

values of j (mod ¢) for which (%) has the same sign as gy, and for these the
above implies that

11 1 1 1 1 1
Mm 2Nk 2 —+ 5= —F+-

= + > .
ge 0 oo 0 \2k+1 2k+17 2ym

24.1 How to determine a better upper bound on 7; in general

We may proceed much as in the proofs above. Given the x; and t; we select f(p)
to have size 1 in the same direction as 25:1 x;j(p)p* so that

k k
ZRe (fX;)(0)/p") Z (p)/p" | = ij(p)pt

Hence in this case

a Re((fx J)( )/p' Z] 1X5(P)
z Xp p Z ‘—

j=1Q<p<lz Q<p<z b
Using the hypothesis of Proposition 24.T, this equals
1 /loggc Lo dw
— (a)e'i”| — 4+ O(1).
¢(Q) Z log Q v ( )

a (mod q) j:l

(avq) 1

It is not so easy to proceed as before since the quantity inside |.| is no longer
periodic. Certainly one can do something similar but not the exact same thing.



112 The exponents N

One important special case is where each t; = 0, since this was the worst
case when k = 2. In this case suppose that each xj* = 1, that ¢ is prime and if
¢ has order m mod ¢ then x;(g) = e(b;/m). (Here the b; must be distinct mod
m, as the x; are distinct.) Hence the above becomes

;mf | elib;/m)| - log (f;’:g) +0(1).

n=0 j=1

We therefore wish to find the maximum of this as we vary over all possible b;.

By computer we found optimal examples for 2 < m < 6 by an exhaus-
tive search. Writing the example as [by,...,bx;m], we have [0,1;3], [0,1,3;7],
[0,1,3,9;13], [0,1,4,14,16;21],[0,1,3,8,12,18; 31]. One observes that m = k? —
k41 and that these are all perfect difference sets; that is the numbers {b; — b;
(modm): 1<i#j<k}={l (modm):1<¥¢<m—1}. This case is easy to
analyze because then we have

k

‘Ze(nbj/m) = Z e(n(b; —bj)/m) =k + Z e(nl/m) =k —1,

j=1 1<i,5<k 1<0<m—1

‘ 2

if n # 0. Therefore

Ju

imz_: ’ e(nbj/m)‘ _ (m—l)m+k'

n=0 j=1

Exercise 24.3 Use the Cauchy-Schwarz inequality to show that this is indeed
maximal. (Hint: Under what circumstances do we get equality in the Cauchy-
Schwarz inequality?)

Although there are perfect difference sets for k = 2,3,4,5,6 and 7, there is
none for k = 8. The existence of a perfect difference set is equivalent to the
existence of a “cyclic projective plane” mod m = k? — k + 1. ! There are always
perfect difference sets for k a prime power.

The next question is to understand the size of the individual sums, if we want
a lower bound. What we get is that

Z Re((fX:)(p) _ ¢;log (log:c) +O(1),

Q<p<z P log @

where

IThis is Theorem 2.1 in Cyclic projective planes by Marshall Hall Jr, Duke 14 (1947) 1079
1090.
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EEE) /B

Jj=1

m—1
1 1 n(b; — b;)
=— |1 § g
m + k—1*4 16( m )

1 ( 14 M= k ) - 1
m k—1 VE+1
for k > 1. Evidently, because of equalities throughout, this best possible (when
the ¢t; = 0). It also supplies us with a lower bound in general, at least if k is
prime.
We can use short gaps between primes to extend this to all k. For example,

the prime number theorem implies that there is always a prime in [m, m+o(m)),

and so
1

77k~ﬁ~
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LOWER BOUNDS ON L(1, x), AND ZEROS; THE WORK OF
PINTZ

Exercise 25.1 Forn,0 <n <1 show that

. 1 "l —1
Jim Y0 -

m<zx

exists, and call it 7y,. Prove that

1 " —1 1
2 Ty | S
m<zx

Proposition 25.2 Suppose that L(s, x) # 0 for real s, 1 — @ < s <1 where
X 1s a real non-principal character mod q. Then L(1,x) > 1/logq.

Proof Letn = c/loggq. For any real character y define g = 1xx so that g(n) >0
for all n and g(m?) > 1. Hence

1 1
Z m2_2’7 - n1 n Zdl n Z ml-n

m2<zx n<zx d<z m<a;/d
x(d) ((z/d)" - "
<33 pr o pos
dgac N

= + ’7"7 ) dl n x — X(d)
d<a: d<z dgw

%L(l,x) + (% - 717) L(1—n,x) +O(q/nz'"")

IN

since )., x(d)/d? < q/z* for all p > 0. Now as there are no zeros in [1 — 17, 1]
hence L(1 —n,x) > 0 (like L(1,x)) and v, < 1/n so that term is < 0. Taking
2 = ¢° we obtain the result. 0

25.1 Siegel’s Theorem

If L(s,x) # 0 for real s, 1 — i < s < 1, for all real quadratic characters y
(mod q), for all ¢ then we can ube the above Proposition. Otherwise we suppose
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that there exists a character ¢ (mod k) and a real number p such that L(p, ) =
0. Now

1% n)y(n a)Y(a b
Z( X)( )¢():ZX()¢()_¢()

< ne b< af b
x(a)i(a) P(b) Y(b) x(a)¥(a)
= Z aP Z br + Z br Z aP
a<y/x b<z/a <z Vvr<a<z/b
x(a)y(a) qk
- Z aPf Lip,p)+O | k xp/2 Z be xp 1/2°
asVz an <V

Now (1xA)(n) = 1 if n = m?, and 0 otherwise, where \ is Liouville’s function.
We write A = x * h (so that h(p¥) = A(p k)(l + x(p))). Now

)1 x A)( V(1 x * h)( )(1 * b)h(b
1< Z — Zw 27/} X Zw X )ng().

m2<z n<z n<z ab<z
(m,k)=1

Now the terms with b < \/z are, since |h(b)| < 2¥(?)| and using the bound above,

[h(b)] (1% x)( 2”<b) 2”(b) qk log x

The remaining terms , since |(1 x* X)(a)| < d(a), 0 < |h(D)| < (1% X)(b) and
1/(ab)? < 1= /ab, are

- d(a) (1= x x(m)
< gl=r xtr :
SEDIEIDY y Ay

a<yx Vz<b<wz a<y/z Vz<mn<z
The first sum here is < 2(1=)/2log . For the second we have

Yoy ey Loy M

m

m<zl/3 Vz/m<n<z/m n<z2/3 K z1/3<m<z/n
x(m) 1 1 1 ¢
- Liogz+0 —l+0 La
mozlose O D = H0| D o
m<zl/3 m<zl/3 n<z2/3

1 1
L(l X)log:E+O( 1/6>

if z > ¢7. Combining the above we obtain, provided p > 9/10 and taking = = ¢,
that

L(1,x) > 1/q11(1_”).
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THE SIEGEL-WALFISZ THEOREM

We saw in our discussion of Selberg-Tenenbaum that if the mean value of f(p)
is about d, with ¢ # 0,—1 then the mean value of f(n) for n < z is about
cs/(logz)'=?. In both the two cases § = 0 and —1 one can show that the mean
value of f(n) is <s 1/(logz)?. In our first subsection we shall sketch an argument
to show that if the mean value of f(p) is about 0 then the mean value of f(n)
is correspondingly small. The case when the mean value of f(p) is —1 is rather
more difficult but fortunately featured in [7]. This is relevant to a strong version
of the prime number theorem, since their argument can be used to bound the
mean value of p(n). In a future version we shall give a stronger version of their
argument.

The main point of this section is to prove a strong converse theorem when
the mean value of f(n) is around 0 and the mean value of f(p) cannot be close
to —1. Since this is what we know about Dirichlet characters this will lead us to
a pretentious proof of the Siegel-Walfisz Theorem. This proof is due to Dimitris
Koukoulopoulos. In this version of the book we include a preliminary version of
his paper; he will present a more complete version at the Snowbird meeting.

26.1 Primes well distributed implies...
Let S(z) = ¥,.<, £(n) and P(z) = ¥yc, A(d)f(d). Assume | ()| < cz/(log 2)*
with A > 2.

Select B in the range 2 < B < A and then c¢g > 0 minimal for which there
exists a constant x5 such that if x > 25 then |S(x)| < cgz/(logx)B. Let D = 2
with 8> 0 so that (B —1)(1 — 8)B~1 > 1.

Suppose f is totally multiplicative

> fm)logn= Y fmd)A(d) =Y Ad)S/d)+ > f(m)(P(x/m)-P(D)).

n<z dm<z d<D m<z/D

The second term is, in absolute value,

< % Z T 2c T < T
o mlog(z/m)4  A—1(logD)A~1 ~ (logx)4-1

If our bound is proved up to x/2 then we can insert into the first term to obtain

T CB T
: . 1-2
CB[KZD dlog l‘/d) B —1 (logx/D)B—l < ( e)cB

_r
(logz)B-1"

Hence the total bound that we get is |S(x)| < (1 — €)cpz/(log z)?
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We use this argument several times
1) To show that |S(z)| < z/(logz)B.
2) Letting cp = liminf |S(z)|/z/( logac)B to show that cp = 0.
Hence we have proved that for any B < A we have S(z) = o(z/(logx)?
I suspect that the argument can be used to show that S(z) < z¢(z)/(logx)*
where () is any function going monotonically to infinity, no matter how slowly.
Note that we need to have A > 2 for this argument to work, which seems to
fit the sort of things we know from Selberg-Delange-Tenenbaum.
The above argument is written in a uniform manner. I am interested in
what happens if, say, P(z) < x/e\/@. The key remark is that we can take
B = log(B/2)/B roughly. To make the argument then work we need

A(log D)*~' > B(logz)?~*

If say A is roughly (logz)® and B is roughly this size we get something like
(1—a)(A—1)> B from the powers of log z; that is B is roughly (1 —a)A. One
can be precise, I think, and show that one can obtain

S(x) < A /(logz)?
provided A — oo. Hence if P(z) < x/e?V1°8% and S(x) < x/evVioe®.

26.2 Main results
For an arithmetic function f: N — C we set

Z n9 and Ly( Z n“ ,

n=1 —(n)>y

provided the series converge. We will use pretentious methods to prove:
Corollary 26.1 Let x > 1 and (a,q) = 1 such that

log q
——— < cy/logzx
Lq(le)

for all real characters x mod q, for some sufficiently small ¢ > 0. Then

m(z;q,a) = gég + O(ec\/i@).

Using Siegel’s Theorem this allows us to recover the Siegel-Walfisz Theorem.
That is
The Siegel-Walfisz Theorem. Fix A > 0. Uniformly we have

7(x) x
w(aia.0) = 25+ (o)

If L,(1+it, f) converges for all t € R and all y > 1, we set
LM (f) = ‘Igllig Lyt (1 +it, f)] and L£P(f) = |Ig\1§3/ | Lyy o) (1 +it, £

Y

In the special case that y = 1 we omit the subscript y.
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Theorem 26.2 Let f: N — D be a completely multiplicative function such that

’Z f(n)’ <z (z2>Q) (26.1)

n<z

for some € > 0 and some Q > 2. Then we have E(Qj)(f) < 1 forj =1,2.

Furthermore, if we assume that Eg)(f) >, then there are constants c1 and ca,
depending at most on € and n, such that

log @ \?
flp whenever logz > ¢y (7) .
;;Z; 601 \/log;z £8)(f)

Theore 636.3 Let f: N — D be a completely multiplicative function which
satisfies (26.1) for some € > 0 and some Q > 2.

0 :
1. If (b%l) holds for f? as well, then Cg)(f) =.1 forj=1,2.

2. If f(p) € {~1,+1} forp > Q. then L) (f) =c Lq(1, f) and LY (f) <. 1.
Furthermore, Lo(1, f) # 0 if the sum >, f(n)/\/n converges. Lastly, if
log@ > 2/e and L(o, f) #0 for 1 —1/log@Q < o <1, then Lq(f) = 1.

26.3 Technical results
Let @ >3, ke NU{0}, A>2and M : [(logQ)/3,+00) — (0,400) a differen-
tiable function such that

1
7 SMu) < (u>Q)

and for j € {0,1...,k} the function M(u)/u/ increases for u > Aj. We call
(Q,k, A, M) an admissible quadruple. Given such a quadruple and ¢ € R we
define @; by

Q¢ = min{z > Q : M((logz)/3) > |t|}. (26.2)
Also, we let F(Q,k, A, M) be the family of completely multiplicative functions
f:N—=D:={zeN:|z| <1} such that

‘;f W] < m (x> Q).

For such an f we define

Py k, A, (1 +it,
HFQEAM) = min (Lo (14 it f)

and
L(f:Q.k, A, M) = min|Lo, (1 +it, /)|
The notation
9(z) Kap,... h(z) (> 20)

means that |g(x)| < Ch(z) for x > xg, where C is a constant which depends at
most on a,b,... Lastly, the letters ¢ and C' denote generic constants, possibly
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different at each case and possibly depending on certain parameters which will
always be specified, e.g. by ¢ = ¢(a,b,...).

Theorem 26.4 Let (Q,k, A, M) be an admissible quadruple and consider f €
F(Q,k, A, M). Fort € R define Q; by (25:2).
1. We have

1 cklog @ = ck? =t
22 ) <a (.c(f;Q,k,A,M) log;z:) +(£+(f;Q,k,A,M) logx) (z>Q)

p<z

for some constant ¢ = c¢(A).
2. We have the estimate L(f;Q,k, A, M) <4 1. Moreover, if for some t € R

we have
1 —it 1
Z % > MOg(looggC;t) -C (2>2Q teR), (26.3)
Qi<p<z

where 6 > 0 and C' > 0 are some constants, then |Lg,(1+it, f)| <as.c 1.
3. If f2€ F(Q,k, A, M) as well, then L(f;Q,k, A, M) =<4 1.
4. If f(p) € {—1,+1} for all primes p > Q, then

[,Jr(f;Q,k,A,M) =A 1 and ﬂ(f;Q,k‘,A,M) =A LQ(l,f).

The key estimate in proving Theorem 26.4 is the following theorem.

Theorem 26.5 Let (Q,k, A, M) be an admissible quadruple and consider f €
F(Q,k,A,M). For x >y > Q we have

f(p)log™ p cmlogy \m
< <
Z 1+1/loga: <a <|Ly(1,f)|> (1—m—k)

for some constant ¢ = c¢(A). Moreover, |Ly(1, f)| <a 1.

26.3.1 Preliminaries

Lemma 26.6 Let {a,}>2, be a sequence of elements of D. If 5> | a,/n con-

verges, then

o0 o0
i (427 an
im — = —
e—0+ nlte n
n=1 n=1
Proof The lemma follows by an easy partial summation argument. a

£
The following result is Lemma 5 in ﬁ

Lemma 26.7 Lety > 2 and D = y*® with s > 2. Let 1[P~(n) > y] denote the
indicator function of integers n all of whose prime factors are greater than y.
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Then there exist two sequences {\*(d)}s<p whose elements lie in [—1,1] and
such that
(A" x1)(n) <1[P7(n) > y] < (AT 1)(n).

Moreover, if f : N — [0,1] is a multiplicative function then
ME(d) f(d
d;( ;f( ) _ (140 5))}2{(1— f;p)).
Lemma 26.8 Let (Q,k, A, M) be an admissible quadruple.
1. For 0 < j <k and A\ > max{j,log Q} we have
0o i—2 Al
T R TPV
2. Forp>0and A > max{k log Q} we have

/ A*(2 + log max{1, p})
M( )\u eulp ™= M(N)

Proof (a)If j =0, then the result follows immediately because M is increasing.
Fix 1 < j <k and A > max{j,log Q}. Then

/oo Ly /Auj2d+ A /Oodi‘< A7
L MO T MO CTMOA) [y wr T MY

(b) It suffices to consider the case p > 1. So fix such a p and some A >
max{log @, k}. If k£ = 0, the result follows immediately by the fact that M is
increasing and by the estimate

/oo du_ +/Oo L P
O, O, .
| el ShogPt | o, Slosp

So assume that £ > 1. Then

du Ak n AF /°° du < Ak < Ak (l-i-l +1)
M( Au ™S TN T MOA) S, een = 20y = oy BT8P
which completes the proof. a

Lemma 26.9 Let (Q,k, A, M) be an admissible quadruple and consider f €
F(Q,k, A M). Forx >y > Q and 0 < m < k we have

n)log™n
Z nl—i—l/logac
P—

< A2A(m+1)logy)™

Also, we have

f(n)log"ttn 1
|5 e e o ain(22))
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fund
Proof Let 0 < m < k+ 1. Lemma b6u.n7 with D = /z and = > y?™*2 implies

that
S fm) =Y fm) (A = 1)( )+0(Z(A+*1_x*1)(n))
P_n(fb;;y n<zx n<z

xlogy l.e—logx/Qlogy
(log x)2M (log x/2) + logy

By partial summation then we find that

n)log™n
Z nl—i—l/logw
P=(n)>y

oo

mlog™ tu+ log™ u logy
32 yl+1/logz (log u)2M (logu/2)

< (2(m+1)logy)™ + /

*  mlog™ !t u+ log™ u e lesu/2logy
+ 141/ lo, du
y2m+2 u g IOgy
m m > tm72
< (2(m-+ 1) logy)" + 2(m+ DIogy)" [ s, dt.
Loe Tosr "M ((m+ 1)(logy)t)

drupl
Lemma E%u.aS and our assumption that M (log @) > 1/A then complete the proof
of the lemma. a

Lemma 26.10 Let (Q,k, A, M) be an admissible quadruple and consider f €
F(Q,k, A, M). Let yo > y1 > yo > Q. Assume that

S LERUG) | gy dosz

>
P - logy (z23)

Yyo<p<z

for some § >0 and C > 0. Then

‘ Z %‘<<A,6,Cl-

y1<p<y2

. sieve
Proof By our assumption and Lemma b6.9 we have

f(n)A(n) p(n f(n)logn
‘Z nl—f—l/logw — ‘ Z nl—i—l/log:c + ‘ Z n1+1/10g1 ) ’ Z nl—&-l/logx
—(n)<yo P~ (n)>yo ~(n)>yo
log z \1-9 f(n)logn
<c logyo + <log yo) ) Z niti/logz
P=(n)>yo

1 1-6 1
<A logy0+( ng) (logy0)<1+log( ng>)
log yo log yo

log )1*5/2

<5 (logyo) <log "
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So we deduce that

> f =oa )Hog{ (1+log1y2>}_log{F<l+loglyl)}

y1<p<y2
v2 ' 1 du
—o(1) + / (1+ =)
( ) " F log uw/ u 1og2 u
1+ (logyo)? [ —— 1
<as,c 1+ (logyo) /y1 w(log u)iT5/2 <5 1.
This completes the proof of the lemma. a
26.3.2  Proofs
derjvati
Proof [Proof of Theorem bBe.% Vi a%vWe e have that
f(p)log™ p f(n)A(n)log™ ' n
‘Z 1+1/10ga: < (leogy ‘ Z nl-i—l/logw ‘

P—(n)>y

Set F(s) = Ly(s, f) and note that

f(n)A(n)log™ ' n _(—FN\ D) 1 1
Z nl+1/logw _< r ) < +10gx)'
P—(n)>y

Moreover, we have

(B ¥ Gl Cr

AT ailag!--- 11F(s) 21F(s)

@50

Lemma bSGI.QQV?mplies that
() 1 os ) :
‘F (1 + 7)‘ < (jlogy) (1<j<m).
log x
In addition, for every z’ > z we have that

p

(s )| <0

for some constant C; = C1(A4), by Lemma bsfil.eg‘fe [herefore

R P

y<p<az’ p

- ‘ 3 f(n)
- n1+1/logz’

P—(n)>y

r<p<lz’

= |Ly(1, )
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series identit
as ¢’ — oo, by Lemma b6.6. [nserting the above estimates into bG.ZL With s =
1+ 1/logx and observing that

‘Ly(lv f)‘ = El_igl_i_ |Ly(1 +e f)| <a5,0 1,
by Lemma b%%‘:jyields

f(p)! Coymlogyy\™
Z 1+1/O§)gxp A<|L2;L1:)chﬁ) Z 1

a1+2az+---=m

for some Cy = C3(A). To complete the proof of part (a), note that

1= 1< L Y C
a1+2tzzz-;~~:m IC{;,m} Zi€,§i—m IC{;,m} zI;II ! ml \/m
a; >1 (i€l)

by Stirling’s formula. a

mai,
Proof [Proof of Theorem bl’ﬁ‘:’} (a) We may assume that > @;. For every
T > 1 we have

logp)kfl xl/log:erit
Zf (log p) og(z/p) = oi |t|<TZ 1+1/1ogx+zt (1+1/logx + it)2

p<:L’

vo(tlent Ty

(26.5)
Call I(T) the integral above. By partial summation, we have that
— (1+ Jt)=
fn)yn™ < 2/ 4 1—|—t/ f(n — " (z>Q),
D + (1+ It (Z )% < Ty @2 Q)
that is

it M(-/3)
f(n)n=™ € ]:(Qt,k,clA,m)

for some absolute constant ¢; > 1. For [¢| < T := M(lo%) we have
1

F(p)(log p)F~ coklog Qy k-1
Z <A ( : )
plt1/logz+it ‘LQt(l‘f'thf)l

for some co = c2(A4). So

coklog Q@ \k-1 /M“‘f”) eoklogQp  \k-1dt
I(T) < (S 2008% V" et A
D < granm) * e (Ciraim) 7
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Making the change of variable t = M (u), we find that log Q; = 3u and thus
M(logz/3) dt k 1M/
/ (log C)ﬁ)k*li2 _ 3k71/ ( )
M(logQ/3) ¢ ogo  (M(u))?

_ ((log@)/3)F=1  ((logx)/3)k—1
— M((logQ)/?,) o M((logx)/?,) (26.6)

10% uk_Q
+(k-1) /M M) du.
3

log x
3 k—

du

We have
——du < (A 1 k k
max{k,122Q} M (u) u < (Amax{log Q, k})”,
drupl
by Lemma b%%% if k£ > log Q/3, then

bouh? k=1
——du <k
[ogQ M( )

Comblmng the above inequalities with %5 and (%6) yields

C3k‘10gQ k—1 03]432 k=1
- Zf (log p)* " log(z/p) <a (m) * (m)

for some c3 = ¢3(A). By a standard differentiation argument, this implies

csklogQ N\ csk? et
,Zf (logp)*~ <<A(W> +(W> '

p<z

p<a:

Finally, summing by parts completes the proof of part (a).
dist
(b) For yo > y1 > Qt Lemma, bGl.Sllan)l ?I?plies that

’Lyl (1 t log s logy ’f)’ { Z W} =asc 1

y1<p<y2 p )
rl
Setting y; = Qy, letting yo — oo and applying Lemma o z?)mpletes the proof.
(c )ByLemmabGQ for t € R and z > y > Q; we have
2 —2it 1
3 RUZEPT™) _ o) Jrlog’Ly(l +— +z’t)’ e

oy P log z

for some absolute constant C;. So we find that

5 é}%(f(z;)p”) . 7%( 3 %)1/2( 5 ?Rz(f(z)p”))w

y<p<z y<p<z y<p<z
2 1
SR CIML ST
2 logy

dist
since cos? x = (1 + cos(27))/2. Lemma bﬁl.sllan) then completes the proof.
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(d) For |t| > 1/log Q we have

2t 1 :
Z Mzo(1)+log‘ Z nlt2itt1/logz

y<p<z P P=(n)>y

<CQ

fund
for some aboslute constant Cs, by partial summation and Lemma bGu.n?. So an
argument as the one in part (c) shows that |Lg,(1+1t, f)| < 1 for |t > 1/log Q.
Fix now t € R with 1/logx < |t| < 1/log Q. We claim that

1 5(t1
3 wzdogﬂtﬂogm)—c’ (26.7)

el/ltl<p<z

for some appropriate constants c and . In order to show this we use the argu-
ment in ﬁ Lemma 4.2.1]. Fix some € € (1/10log @, 1/3) to be chosen later and
let P be the set of primes for which there exists an integer n with

w(n—¢€) mw(n+e)

pel,:=e T e ™ | (neNU{0}).

Since ¢/|t| > 1/10, Mertens’ theorem yields

1
— < elog(|t|1log x).
el/ltl<p<g, peP

Thus
Z L+ R(x(p)p~™™) > Z L+ R(f(p)p~™) > € Z 1
e/t <p<z p Mt p<y p Mt p<a
p¢P p¢P

> €(1—0O(e)) log(|t] log z).

4 dist 4
Choosing a small enough € proves (b%?) Next, notice that Lemma bGl.s 0 and (b%?)
yield that

Z f(p) <1

1+it
el/ltl<p<az

Therefore for z > e/t > Q@ we have

> WO s S0 onys 3 1o,

Q<p<z b Q<pzer/itl P Q<p=z
by Lemma bs61.e9Yel his completes the proof of the theorem. a
bounded
Proof [Proof of Theorem 5.2 For the function M(u) = e the quadruple

(Q,k,1/e, M) is admissible for all k € N. Applying Theorem mwith k=,
vlog x proves the desired result. a
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PRIMES IN PROGRESSIONS, ON AVERAGE

Suppose that the character x (mod ¢) is induced from the primitive character
¢ (mod r). Then we write cond x = ¢ and cond*y = r.
We shall use the Siegel-Walfisz Theorem which states that for any fixed
A, B > 0 one has
¢(N;Qaa) - w(N) < N B )
¢(@)  ¢(q)log” N

uniformly for ¢ <« logA N and (a,q) = 1. This may also be phrased as

N
log? N’

Z x(n)A(n) <

n<N

for all primitive characters x (mod ¢), uniformly for ¢ < log® N. We also make
use of a strong form of the prime number theorem: For any fixed A > 0 we have

1/)(N)7N<< W

All of these estimates were proved in the previous section.

27.1 The Barban-Davenport-Halberstam-Montgomery-Hooley
Theorem

The first result shows that the mean square of the error term in the prime number
theorem for arithmetic progressions can be well understood.

Theorem 27.1 If N/(logN)¢ < Q < N then

2. 2

9<Q (a,q)=1

$(Niq,a) — w — NQlog N + 0 (NQlog(N/Q).

We begin with a technical lemma; most of the proof is left as an exercise.

Lemma 27.2 Let c:=[], (1 + ﬁ) andy' ==~y =3, pzliiﬁ_l. Then
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1 log R
:clogR—&—cv’—i—O(Og ),

= o) R
;%QSZ;) = ¢cR+ O(log R),
3 (;;i) = SR?+O(Rlog R).
r<
Also '
’"SZR‘;’“):@EQU@:)) log7+7 Z 1inJrl O(bgg/m)

Proof We can write r/¢(r) =3_,, u%(d)/#(d) to obtain in the first case

2(d) d
S 2“ -y s LS o D o)
r<R r<R d<R Td<\7{? d<R

1
=c(logR++")+ 0O ( 02R> )

by (1.2.1). The next two estimates follow analogously but more easily. The last
estimate is an easy generalization of the first.

O
Proposition 27.3
X+N X+N
S Y |3 e <<(logcz+cz)1oglogcz Sl
q<Q x (mod q) In=X+1 n=X+1
cond*x>R

Proof Suppose that the character x (mod ¢) is induced from the primitive
character ¥ (mod r). Let m be the product of the the primes that divide ¢
but not r and write ¢ = rmf so that (r,m) = 1, and p|¢ = p|rm. Hence

#(q) = ¢(r)p(m)€ and

Saxm) = Y aun);

n: (n,m)=1

and therefore the left side of the above equation equals

u m) - 1

TR SR T T D SRt

m<Q R<r<Q/m, ¢  (mod r) | X<n<X+N 1<Q/rm
(r,m)= (n,m)=1 plé = p|rm
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¢>( ) m We partition the sum over r into dyadic intervals

LargeSieve
y <r < 2y; in such an interval we have 5 < 5t logzogy and so by (6. 5
the above becomes

m 1
< loglogQ > u(b(m) R e I W
m<Q y=2'R, i=0,...1 y n=X+1
2! R:=Q/m
X+N
N
< loglog @ Z e (mym <R+Q> Z lan|?,
m<Q ¢ m) m n=X+1
which implies the result. a
Let
1 _
w(R)(@ Q7a’) = iﬁ(l‘, Q?a’) - m Z Z X(a) Z x(n)A(n)7
q r<R x (mod q) n<z

rlg  cond* X=r

so that (M (N;q,a) = ¢(N;q,a) — 12((];[))'

Corollary 27.4 ForlogN < R < /Q with Q@ < N we have

YA [ 15
3<Q (a,q)=1 q r<R ¥ (mod r) [n<N
N21 2+4o0(1) N
+0 (()gR + @Nlog Nloglog N | .
SumSqk PropLS2
Proof By (h’él%g)%and taking a,, = A(n), X = 0 in Proposition r.o, we deduce
that

N
Z Z ‘¢(R (N;q,a )‘ (RlogN+Q>NlogNloglogN.
q<Q (a,9)=1

by using the prime number theorem. Now, if x (mod ¢) is induced from
(mod r) then

D> x(mAn) =D pmAn) = > ¢ logp,

n<N n<N p?<N
p\q, pir

hence the error term in replacing x by v here is < (w(q) — w(r))log N, and in
the square is < (w(q) — w(r))N log N, Therefore the total such error is
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< Z Z )NlogN < Nlog Nlog Qlog R(loglog Q)*> < N(log N )T,
r<Rq<Q@Q
rlq
SumSqgs
which is smaller than the above. What remains is, by (|

9

*

> > | v ZM D, |2 vmA %

IS
)Qﬁ

q<Q r<R1p (mod ) [n<N r<R ¢ (mod r) [n<N

and the result follows. a

Using this we can now prove the Barban-Davenport-Halberstam-Lavrik-Montgomery-
Hooley theorem.

BDHLMH
Proof of Theorem 27.1 Let Q' = Q/log? N and R = (N log® N)/Q, and use
t@oer I%i:(;gel—V\/'alﬁsz Theorem with A = 2C + 6 and B = C + 2 so that Corollary

yields
Z Z ,a) — —=| <K QN.

9<Q' (arg)=1 9(a)

We are left with the sum for Q' < ¢ < @, which we will treat as the sum for
Q' < g < N, minus the sum for QQ < ¢ < N. We describe only how we manipulate
the second sum, as the first is entirely analogous.

Now the gth term in our sum equals

Y(N)[*

]V'2
> log’p+2 Y. logpilogps — YIN)?

(
p<N p1<p2<N (b( )
p2=p1 (mod q)

plus a small, irrelevant error term made up of contributions from prime powers
that divide ¢g. We sum the middle term over all ¢ in the range Q@ < ¢ < N.
Writing pa = p1 + ¢r we have r < N/q < N/Q, so that po = p; (mod r) with
N > py > p1 + Qr, and therefore the sum equals

2 > Y {w(Nir,p) —v(p+Qrir,p)} logp

r<N/Qp<N—-Qr

2 N?
= > 30 > (N-p-@Qn)logp+0O | Y ————

r<n/Q OV p<n=qr rinyg O(r)log” N
(N —Qr)?
= S e,
%Q o oW

= cN?*(log N/Q + 7' — 3/2) + O(QN log(N/Q)),

LemLS1
by the Siegel-Walfisz theorem and Lemma b?.?. We deduce that the sum of the
middle terms over all ¢ in the range Q' < ¢ < @ is therefore cN?1log Q/Q’ +
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O(QN log(N/Q)). ther hand the sum of the final term over all Q' <
q < Q@ is, by Lemma bTT )2log Q/Q"+O(N?/Q' -log N). Using the strong
version of the prime number theorem these two terms sum to O(QN log(N/Q)).
By the prime number theorem with error term O(N/log N), the first term sums
to QN log N + O(QN log(N/Q)), yielding the result. a

27.2 The Bombieri-Vinogradov Theorem

This is an extremely useful tool in analytic number theory, showing that the
primes up to x are well distributed in arithmetic progressions mod ¢, “on average”
over g < xt/2te(),

The Bombieri-Vinogradov Theorem. For any fixed A > 0 there exists B =
B(A) > 0 such that

Z (m:;mxl

q<Q

Y(x;q,a) —

V) o _ @
¢a)|  (logz)4
where Q = \/z/(log z)®. In fact one can take any fixed B > A + 3.

Select x1 to be that primitive character with conductor in (1, R] for which
| > <z Xx(n)A(n)] is maximized. The strong form of the Siegel-Walfisz Theorem
(which needs to be given in the previous section) states that if primitive y # 1

or x1 then |Zn§w x(n)A(n)| < x/eteviosr,

Corollary 27.5 If 2'/?/ecVIos® < Q < 2'/? then
Z(max ¥(z;q,a)

<Q a,q)=1 d)(q)

where the x1 term is only included if cond(x1)|q.

With @ = xl/z/eCVlogm we see that we get a much stronger bound than in
the Bombieri-Vinogradov Theorem at the cost of including x in or terms.
In order to prove these results we continue to develop the large sieve.

Proposition 27.6 We have

1 X+M Y+N
S, T, |3, m| | 3 e
q<Q x (mod q) Im=X+1 n=Y +1
cond"x>R
X+M Y+N
vVMN
< ( logQ + Q + (VM + N) log? Q) loglog Q Z | |2 - Z b |2.
m=X+1 n=Y+1
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Exercfﬁleo 27,7 Prove this result. Remarks: If one Cauchys the result in Propo-

sition [77.3 one obtains a weaker result,with log® Q replaced by \/(Q/R)log Q as
the coefficient of VM + N in the bound given. To prove the above one proceeds
analogously to the proof of Proposition 13.2. One can Cauchy in this exercise
with m fized, to obtain the result given here.

Proposition 27.8 Suppose that a,,b, are given sequences with a,,b, = 0 for
n < R?, and |a,| < ag, |by| <bo for alln <z. Ifey == ambn then

mn=N

Z 1 Z Z enX(N)| < agbg (% + Q\/E) log? zlog log .

a<Q o(q) x (mod ¢) [N<z
cond*x>R

Proof We begin by noting that

> enx(N) = > amx(m) - bux(n).
N<z mn<x
PropLS6
We will partition the pairs m,n with mn < x in order to apply Pr r%siLt'gn b?BL
For the intervals X <m < X+ M, Y <n <Y + N, Proposition [2)]16 yields the
upper bound

aoboVMN ( ’ ]\gN logQ + Q + (VM + N)log® Q) loglog Q

We now describe the partition for m in the range X < m < 2X.LetY = z/X.
We begin with all X < m <2X, n <Y/2. Then in step k, with k =1,2,... K,
we take

2j 2j 41 2j + 2 2j 41
(D) x<ms (142 ) x v/ (14552 cnsr [ (142,

for 0 < j < 2F=1 — 1. The total upper bound from all these terms is

< aghgVXY < ;Y logQ + KQ + (VX +Y)log? Q) loglog Q.

Let K be such that 25 < Y. Then, for each m, X < m < 2X there are < 1 values
of n < x/m not yet accounted. Hence these missing pairs contribute < apbo@QX,
and so in our construction we interchange X and Y to guarantee that X <Y.
Hence the total error from these unaccounted-for points is < Q+/z in total.

We now sum up the upper bound over X = 29R? for j =0,1,2,...,J where
27 = x/R* (since if m < R? then b,, = 0, and if m > x/R? then n < R? and so
¢n, = 0), to obtain the claimed upper bound. O

We now prove a version of the Bombieri-Vinogradov Theorem:
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Corollary 27.9 If R < eviesr gnd Q < /2 then
Z (max [T (2 q,a)| < (% + Qﬁ) log® zlog log x.

a,q)=1
q<Q

Proof The left side is evidently

_Z¢) > @)l

q<Q (mod q)
cond*xZR
. . . " Egﬁ%@ .

Qh‘fa okal is to bound this using Proposition 27.8"s0, as in the proof of Theorem
bO. o let g be totally multiplicative with g(p) = 0 if p < R? and g(p) = 1
otherwise. Then we letpae =g (n)u(n) for n > 1 and by, = g(m)logm. To be able
to apply Propositi we are forced to take a; = 0 (rather than 1 as in the
proof of Theorem QH I angsgo a xb)(n) = Agrz(n) — g(n) logn. We substitute
this into Proposition ,_and bound the contribution of the powers of the
primes < R? by < Q > op<relogr < QR%logz/log R < Q+/z, which yields the
above upper bound for the sum of |(z, x) — G(z, x)|, and hence for the sum of
max( g=1 [0 (2;4,0) = GF (259, a)| where G(z,x) == 3, <, x(n)g(n)logn

and G(LE, q, a’) = anz, n=a (mod q) g(n) logn
Now, by the small sieve, we know that

G (z;q,a) < _zlogz 1 + (x) v
o d(g)log R u* = \q

where x = R?", so that this is < z/¢(q)e*V!°8*. We immediately deduce that

R) ) X X
Z (5%“1 |G I g4 | < Z: Z ¢ 64\/@ eViogz’
< q<@ | <R
rlq
and the result follows. a

Corollary 27.10 Fiz A > 0. If xl/z/logA r < Q< x'/? then

Z max |Y(z;q,a) — (@) < Qv/zlog? zloglog =
o (wD)=1 #(q)
q<Q
CorLS9
Proof Let R =log"*'zin Corollaryb?o.rg, and bound [ (z; ¢, a) =V (z; ¢, a)|
by the Siegel-Walfisz Theorem. a

The Bombieri-Vinogradov Theorem is an immediate consequence of this re-

sult.
StrongBV CorLS9
Proof of Theorem 27.5 Let R = V198 in Corollary b?o.rg.. T'here are at most

R? characters # 1 or y; in the sum ) (z; ¢, a), and hence their contribution
is < (R%/¢(q))x/e**VI°e® Summing over all ¢ < @Q, their total contribution is
< z/R. The result follows. m]
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28

INTEGRAL DELAY EQUATIONS

We have seen two basic examples of multiplicative functions:

e Those for which f(p) = 1 for all primes p > y, and typi %lg F%l&glnean value
of f(n) tends to P(f,z), an Euler product (see Proposition 13.6).

e Those for which f(p) =1 for all primes p < y. We saw the example of the
smooth numbers, for which the mean value up to y* is given by p(u), a function
which we defined in terms of an integral delay equation. We will now show that
this is typical.

Proposition 28.1 Suppose that f is a totally multiplicative function with f(p) =
1 for all p < y. Define

Z f(d
d<y

(where Y(x) =, . A(m) as usual) so that |x(t)| < 1 for allt, and x(t) =1 if
t<1.Leto(t)=1ift<1, and

o(u) = l/ o(u—t)x(t)dt for all u> 1. (28.1)
U Jo
(Typically one writes (g*h)(u fo t)dt for the (integral) convolution
of the two functions g and h. ) Then for T = y we have
1 U
- mz; f(m)=o(u)+0 (logy) : (28.2)

Exercise 28.2 Convince yourself that the functional equation for estimating
smooth numbers, that we gave earlier, is a special case of this result.

Proof Define s(t) := S(y')/y' =y~ ! so that s(t) =1+ O(y~") if
t<1. We rclgt‘(feuﬁlatr;pggc [1—f(p)|/p < 2§y<p<$ 1/p < 2logu + O(1/logy).

IntDelEqn

Then, by (77) and the prime number theorem in the form (D) = D+0O(D/(log D)**¢),

we obtain

1 u
s(u) = E/o s(u— )y (t)dt + O <logy>
Now if A(u) = |s(u) — o(u)| then we deduce that A(t) <y~ tif ¢t <1, and

/ Au—tdt+ﬂ
gY
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for some constant C' > 0. We claim that A(v) < 2Cv/logy for all v > 0 for if
not, let w be minimal for which A(u) > 2Cu/logy, so that

C C 1 [“2C(u—t C
=0 < A(w) - —2 <7/ (=14 _ Cu
logy logy ~ujo  logy logy
IntDell
a contradiction. Thus (bSntZI *Tollows. ]

This result shows that the mean value of every such multiplicative function
can be determined in terms of an integral delay equation.

IntDelEgn
28.1 Remarks on (28.1)

We shall suppose that x is a measurable function x : Ryq. o> U swith x(t) =1
for 0 < t < 1, and then define o(t) as in Proposition 28.1. We make a few
straightforward observations:

e Since each [x(t)| < 1 hence |o(u)| < My (u) := L [ |o(t)|dt.

e |o(u)] < 1forall u > 0 for, if not, there exists u > 1 for which |o(u)| > |o(t)]
for all 0 < t < w and hence |o(u)| > My (u). But this would imply |o(u)| =
My (u) =|o(t)| for all 0 < t < u, and in particular |o(u)| = 1.

e M, (u) is a non-increasing function since M. (u) = (Jo(u)| — My (u))/u < 0.

IntDelE
We will now show that there is a unique solution o(u) to (b8n.l “which can
be given as follows: Define Ip(u) = Ip(u; x) =1, and for k& > 1,

1= x(t) 1= x(t)

Ik(u) :Ik(u;x) = ot >1 tl tk dtl...dtk.
tit... At <u
Define for all k£ > 0,
k ; 0o .
(—1p (-1
or(u) =Y 7 Lux), and  oo(u) =) 7 I (u; x).
§=0 §=0

Our goal is to show that 0 = 0. We will see how this representation of o is a
manifestation of the inclusion-exclusion principle.

Exercise 28.3 Show that for all j > 1,
wlj(u) = (1 Ij)(u) + 5 (1= x) * Lj—1) (w).

Deduce that uoy(u) = (1xop)(u) — (1 —x)*0k—1)(u). Then show that oo (u) =1
for 0 <u <1, and that uoe(u) = (000 * X)(u) for u > 0.

To show that o, is the unique such function, suppose that we have another
solution . Note that |o(u) — 0o (u)] =0 for 0 < u <1 and

ulo(u) = oo (u)| =

JRCURENONE t)dt] < [ ot~ o)l
0 0
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Exercise 28.4 Modify the proof given above to show that |o(u)| < 1 to now
prove that |o(u) — 0o (u)| = 0 for all u > 0.

Exercise 28.5 Suppose that x a]dh}@’Deal@ Jwo such functions, and let o and o’

be the corresponding solutions to (28.1). Prove that o(u) — o' (u) equals

o' (u—ty—...—t;)dty ... dt;.

i (-1 X (t) = x(t)  X'(t) — x(ty)
il t1,e.t; >1 .
= tll.,.ﬁsjgu b b

Deduce that if |x(t) — X' (t)| < € for all t then |o(u) — o' (u)] < u® — 1, for all
u>1.

Exercise 28.6 Suppose that x and x' are two such functions with x(t) = x'(t)
for 0 <t <wu/2. Deduce that

o(u) —o'(u) = L/Qgtgu — o' (u — t)dt.

28.2 Inclusion-Exclusion inequalities

Our formula for oo (= o) looks like an inclusion-exclusion type identity. For a
real-valued function y, we now show how to obtain inclusion-exclusion inequali-
ties for o.

Proposition 28.7 Suppose that x(t) € R for each t. Then, for all integers k >
0, and all uw > 0, we have

oopr1(u) < o(u) < oop(u).

IntDelE
Proof In (bSn Fwe had uo = 1% o — (1 — x) * 0. Subtracting uoy, = 1 * o), —
(1 —x) * ox—1 (which we proved in exercise 3.1) we obtain

uag = 1xag 4+ (1 — x) * ap_1.

where ay(u) = (—=1)*1(o(u) — oy (u)). We wish to prove that ay(u) > 0 for all
u > 0, for each k > 0. For k = 0 we have 09 = 1 and so ag(u) = 1 —o(u) >
0 by the above. Then, by induction, we have that wag(u) > (1 * ag)(u) as
1—x(t),ag—1(u—t) > 0, and then we deduce our result as in the proof given to
show that |o(u)] < 1. 0

GenFundLem
Remark 28.8 It would be good to improve Proposition mestimate like
(1 + 0y s (1))P(f;2) + 0(1/(logz)?), as in the Fundamental Lemma of Sieve
Theory. The proof there works for f with 0 < f(n) < 1. As a first goal we could
aim for all real-valued f, that is where —1 < f(n) < 1, for all n. This Proposition
perhaps can help us use the technology of sieve theory to do this?
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28.3 A converse Theorem

We now show that for every (appropriate) such integral delay equation there is
an appropriate multiplicative function whose mean value can be determined in
terms of that integral delay equation.

Proposition 28.9 Let S be a closed subset of U and suppose that x is a mea-
surable function whose values lie in, K(S), the convex hull of S, with x(t) =1
for allt < 1. Given € > 0 and u > 1 there exist arbitrarily large y and f € F(S)
with f(n) =1 forn <y and

‘ Zf ‘<e for almost all 0 < t < u.

m<y

IntDelEgn
Consequently, if o(u) is the solution to (2Z8.1) for this x then

— Zf u) + O(u 1)+o<logy>

nlyY

In particular if € = o(u)/ulogu then

LS g=otoro( 24 1),

nly4

Proof Since x is measurable and x(t) belongs to the convex hull of S, we can
find a step function x; within the convex hull of S such that x1(¢t) =1 for ¢t <1,
and |x(t) — x1(t)] < €/2 for almost all ¢ € [0, u]. 2

Now x1(t) belongs to the convex hull of S and so can be arbitrarily well-
approximated by (integral) linear combinations of elements of S. Hence if x1()
has a fixed value in (¢, t2) then we can select the set of values of f(p) € S when
y't < p < y*2 to reflect such a linear combination, and therefore if

X ( Z f(p)logp,

p<v

then |x/(t) — x1(¢)| < ¢/2 for almost all ¢ € [0, u]. Hence |x(t) — ( )| < ¢ for
almost all ¢ € [O u]. The proof in exercise 3.3 then imp 1fs ﬁhﬁt lo(u) — o' (u)] <

u® — 1, for all w > 1, and the result then follows from (| O

28.4 An example for Halasz’s Theorem

Now suppose that x'(¢) = 1if ¢t <1, x'(¢t) =i if 1 <t < wu/2 and X/'(¢t) = 0 if
t > u/2. We let x(t) = x/(t) for t < u/2. Suppose that o’(u) = ¢?|o’(u)|. For

2By almost all, we mean that the inequality is only violated on a set of measure 0.
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u/2 <t <uwelet x(t) = e®¥) where o' (u—t) = e |0’ (u —t)|. Hence, by the
previous exercise

o(u) = U/(U)+//2<t< @ o' (u—t)dt = e* <|a’(u)| +/ M dt) )

/2<t<u

Let « be a complex number with Re(a) < 1, and let p, denote the unique
continuous solution to upl, (u) = —(1 — a)pe(u — 1), for w > 1, with the initial
condition p,(u) = 1 for u < 1 (The Dickman-De Bruijn function is the case
a = 0).3 For a € [0, 1], Goldston and McCurley [5] gave an asymptotic expansion
of pa,* and showed that when « is not an integer

eY(1—a)

Pa(u) ~ W7

as u — 00.” In our example o’ (v) = p;(v) for v < u/2, and so, for ¢ = 7 /|['(i)| =
3.414868086 . .. we have |o'(v)| ~ ¢/v. Hence taking v = u — t above

log(u—1) _ 1
ol 2 [ © o= BT 5 BB e,
1<v<u/2 v(u —v) u U

since, in this example we have

1 u/2 .
1-— 1—
M(z,T) me( / 1—cos(uy) v / Mdv),
yeR \ J, v 1 v

210gu/2—|—min/ Mdt—max/ ﬂcltzlogu—O(l).
yeR J t Yer J, ot

3We will discuss this example in more detail a little later. Perhaps we should combine the
two discussions.

4Their proof is in fact valid for all complex « with Re(a) < 1

5Just as we saw in the Selberg-Tenenbaum Theorem, when « is an integer the behaviour
of po is very different; in fact po(u) = 1/u¥to(") . Ezercise: Use the Structure theorem to
compare these results.
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LAPLACE TRANSFORMS

For a measurable function ¢ : [0,00) — C we will denote the Laplace transform
of g by L(g,s) := fooo g(t)e=stdt. If g is integrable and grows sub-exponentially
(that is, for every € > 0, |g(t)] <. e almost everywhere) then the Laplace
transform is well defined for all complex numbers s with Re (s) > 0. We begin
with (TZS.‘I%._N%lﬁplying through by ue™®* and integrating over all u > 0 yields

—L'(0,8) = / uo(u)e” *“du = / / x(t)e o (u —t)e D du
0 0o Ji=o
= L(0,8)L(x, $)-
Dividing through by £(o, s) and integrating yields
L(o,w) = L(c,0) exp (—/ E(X,s)d$> .
0
Exercise 29.1 Show that
L l-x() N
LI, x).w) = L(——220s)

Since L(0,5) = L(00,5) = Zk,zo(—l)k[,(lk(u,x),w)/k! deduce that

L(o,s) = %exp(— E(l_TX(U),s>)

. CompareTwoChi
Deduce, or use exercise 285 to show that, more generally

L(o1,8) = L(02, ) exp (ﬁ(w, s))

v

We define Bu) = By (u) = exp (/u LX(t)dt)
(u) i " :

Lemma 29.2 Suppose that x(t) =1 fort <1 and 0 < x(t) <1 for all t. Given
u define X(t) = x(t) fort <w and x(t) =0 fort > u. We have

o(w) < -2 —l/ma(t)dt.
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Proof By definition o(v) = 6(v) and E, (v) = Eg(v) for v < u. Now

o) = 6(u) = /Ou G N (u—t)dt < i/ou G(t) = i/om & (t)dt — % /:O G(t)dt.

u

For s a small positive real < 1/u, we have

E(l _tf((t),s) —log E(u) = /000 <l_tf<(t)> e Stdt — /Ou %M dt

_ /Ou <1_tX(t)) (= — 1)t + /:O G;St dt

= —v —log(us) + O(us),

since v = fol 1*fftdt - e—:dt. Hence

1> R | -
a/o J(t)dtfEig%ﬁ(a,s)flli%gexp(—ﬁ( . ’S)>7E(u)7

and so we have the result.
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THE SPECTRUM

30.1 The Mean Value Spectrum

We are interested in what are the possible mean values of multiplicative functions
in certain classes; for example, characters of order m. To this end we let S be a
given subset of the unit disc U, and let T be the unit circle. Let F(S) denote the
class of completely multiplicative functions f such that f(p*) € S for all prime
powers p*.% Our main concern is:

What numbers arise as mean-values of functions in F(S)?

That is, we define T'n(S) = {% > ,«xf(n) : f € F(S)} and then seek to
understand the (mean value) spectrum

F(S) = limNHoo FN(S)7
The case of most interest to us is .S,,, defined as 0 together with the mth roots
of unity, because F(S,,) yields the possible character sums of characters of order
m. We begin by making some simple observations.

We see that T'({1}) = {1}, and if S; C Sy then I'(Sy) C I'(S3). Moreover
['(S) is a closed subset of the unit disc U, and T'(S) = I'(S) where S denotes the
closure of S, and so, henceforth, we shall assume that S is closed.

The hypothesis implies that the set .S is closed under taking integer powers,
for if « € S then let f(p) = a and so o = f(p¥) € S for all k.

Exercise 30.1 Deduce that if there exists a € S with a # 1 then there exists a
real number B € K(S), the convex hull of S.

Lemma 30.2 T'(S) =U or SNT is finite and only contains roots of unity.

Proof If a € T but is not a root of unity then the set {a* : k > 1} is (well-
known to be) dense on the unit circle, T. Hence if @ € S then the closure of
{a¥: k>1}C SisT,and so T C S, since S is closed.

But then the multiplicative function f(n) = n® € S has mean value ~
N /(1+41it) up to N. As we let N — oo we deduce that I'(S) contains the circle
{z: |z| = 1/|1 + it|}. By letting t range in (0, 00) we deduce that I'(S) = U.

60ne can develop this theory under the less stringent conditions that (i) f is multiplicative
but not necessarily completely multiplicative; (ii) f(p) € S for all primes p, but not necessarily
for prime powers. Change (i) requires only minor adjustments, whereas change (ii) makes the
theory somewhat more complicated.

"Here and henceforth, if we have a sequence of subsets Jy of the unit disc U := {|z| < 1},
then by writing limy_~ Jy = J we mean that z € J if and only if there is a sequence of
points zy € Jy with zyy — z as N — oo.
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Hence if T'(S) # U then all elements of SN T are roots of unity. Moreover
there are only finitely many, else they have an accumulation point which is not
a root of unity, and since S (and hence SN T) is closed, this point belongs to S.

|

Henceforth we assume that S N T is finite and only contains roots of unity. 8
Exercise 30.3 Show that if 1 € S then 1 € T'(S).

Exercise 30.4 Suppose that S N'T is finite. Fiz € > 0. Show that there exists
0 >0 such that if z € T and |z — s| > € for all s € SN'T, then |z —s| > 4. for
all s € S.

Exercise 30.5 Show that if there exists s € S such that s Ft ep ) € T'(S).
Show that if 1 € S then T'(S) = {0}. (Hint: Use Proposition

Henceforth we may assume that there exists 1, ¢ € & with a # 1 and therefore
there exists a real number 8 € K(5) by exercise bli. ;

If z € U\ {1} then define Ang(z) = arg(1—z), so that —7/2 < Ang(z) < 7/2.
For any V' C U, define Ang(V') to be the supremum of |arg(1l — v)| as we range
over all v € V with v # 1. We will obtain the following improvement of the last
lemma:

Proposition 30.6 T'(S) = U if and only if Ang(S) = n/2. If T'(S) # U then
there exists an integer m such that S lies within the convex hull of the mth roots
of unity; that is S C K(S) C K(Sy,).

Exercise 30.7 Suppose that Ang(S) = § — 0. Prove that S is contained in the

conver hull of {1} U {e?? : 26 < 0] < 7}.

30.2 Factoring mean values

Our first step in undersg,gmr%gic%the spectrum is to prove that when SNT is finite
a version of Theorem [15.T holds with ¢ = 0:

Theorem 30.8 Suppose that S is a closed, proper subset of U, and that f €

F(S). Let g(p*) = 1, h(pF) = f(*) if p <y, and g(*) = F*), h(P*) =1 if
p>uy, forallk > 1. If = y" then

=D SNIOEED SRS SY I RIS}

n<x n<x n<x

Throughout this section we will suppose that the mean valuset of 'fT up to N,
is > 0 in absolute value. Then |tf(x,logz)| < 1/6 by Theorem 5. [.-'We can also
obtain upper bounds on the mean value directly from Halasz’s Theorem:

8Had we required all f(n) € S then S would be closed under multiplication, and so SN'T
would be the set of mth roots of unity, for some integer m > 1.
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Proposition 30.9 Suppose that S is a proper, closed subset of U. Define

1
Cs:= [ min(1 — Re(se™2"?))adp.
0 SE€S
Ift =ty(x,logx) then
|log(|t|logz)| loglogx
(|t|log z)Cs logz

LS ) < s
n<;E
HalExplicl
Proof To obtain this from (77 7 we need to bound D(f,n', z) from below. We
may assume that ¢t > 1/logx else the result is trivial. Now
. 1— —it 1— —it
D(f,ni2)? = 3 Re(f(p)p™") i L Re(sP™)

ses
p<z p el/t<p<a b

tlogx _ —iv
= / min 1= Refse™™) dv+ O(1) = Cglog(tlogz) + O(1).
1

seS v
O
Exercise 30.10 Show that

1

Cg = min (1 — Re(ze 2"%))d6.
o 0 zeK(S)( ( )

Suppose that | >
Now for small ¢,

(f,n I) (fny) ZRe(f(p)(lfpilt)) Zfz |17p

p

f(n)| > dz. Our proposition yields that |[t] < 1/log .

n<z

p<z

which is < [t|logz if |¢| < 1/logx, and otherwise > —2log(|t|logz) + O(1).
Therefore we deduce that D(f, 1,2)? < log(1/§). This implies that 1 € S.
Remark 30.11 In a similar vein to the Proposition, Hall [] asked for the largest

constant k such that D(f,n', x)? > kD(f,1,x)? whenever f(p) € S. This can be
re-expressed as

ZRG((l—f(p))(ﬁ— <Z 1 — Re( _Zt),

p<z 4 p<z

and then, by the prime number theorem, as

1

; Isnelg Re((1 — s)(k — e 2™))d < 14 O(1/ log(tlog z)).

To approzimate this we define k(S) to be the maximum k for which

1

min Re((1 — s)(k — e~ 27%))dh < 1;
0 SE€S

then D(f,nt, x)? > k(S)D(f,1,2)% + O(1).
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Exercise 30.12 Prove that x(S) > (1 — %) where A(S) is the length of the

perimeter of S.
| MeanValueStructure

Proof of Theorem 30.8.
Suppose that | >_, ., f(n)| > 0z and let ¢t = t¢(z,log x). We have just proved

that [t| <s 1/logz and D(f, 1, 7)? <g log(1/§). Taking y = 2¢ where € — 0

very slowly, Theorem [I5. en implies that
1 o1 1
=D f)~at = Dg(n) -~ h(n)

where g;(p*) = 1, hu(p*) = f(p")/p™*" if p < y, and g (p*) = f (") /™", he(p") =
1 if p > y. Hence the mean values of g; and of h; are both > § '&g@gg&l&g value.
We focus first on the mean value of h¢(n). By Proposition EZ.G we see that

,th hh ) P(ht; ) (fa )* hy Nizh

since

and hence

7;((};;:5)) =11 (1 +0 (ﬂlggp» =1+ O([t|logy) ~ 1.

P<y

AsympT1
Now, by Lemma (24 we see that

't % Z gi(n) ~ é Z ge(n)n™ = é Z g(n)+ 0O % Z l9(n) = ge(n)n"|

n<lx n<x n<x n<lx

Now if |y| = |2| < 1 then |y — 2| < |1 —2/y| = |1 —e'8/¥)| <« |log(z/y)]|, and so

> " lg(n) = gi(mn''] < > log(g(n)/gr(m)n™)| < > Y klt|logp

n<z n<zx n<z pk In
Py
x
<[t logp- 5 < alt/logy = ofx),
] p
k>1

since g(p*)/g:(p*)(p*)* = (p~™)* if p < y and = 1 if p > y. The result follows.
O
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30.3 The Structure of the Mean Value Spectrum

| MeanValueStructure .
Theorem B0.8 allows us to factor the spectrum I'(S) into two parts:

e The first corresponds to mean values for multiplicative functions that only
vary from 1 on the small primes. These mean values can be realized in terms of
Euler products. We denote this Fuler product spectrum by T'p(.S).

e The second corresponds to mean values for multiplicative functions that
only vary from 1 on the large primes. These mean values can be realized in
terms of solutions to integral delay equations. We denote this delay equation
spectrum by A(S).

MeanValueStructu
Hence Theorem b().S mplies fﬁafrg

T(S) = Tp(S)A(S).

We will now be more precise in analyzing the sets I'p(S) and A(S).

30.4 The Euler product spectrum
I'p(9) is the set of mean values 2 14 f(n) where f € F(S) with f(p*) =1 if
’ €

log z . undlLem L.
p >y, and 2>~ — oo. Proposition B.6 implies that this is the same as the set of

(finite) Euler products P(f;x) where f € F(S).
Proposition 30.13

p(S) ={e 1. t >0, acK(9)}.

Proof Since f is totally multiplicative then

- 1(-3) (-2)

p<z

and so

g P (i) = X Lt o) Yos (1- 1)

p<z p<z
m>1

for some a € K (S) since each f(p™) € S. Hence I'5(S) C {e= (1= ¢ >0, a €
K (S)}. In the other direction, for a given « and ¢, select y < x very large so that

> y<p<z 1/p=1+0(1/z), and then the f(p) € Ssothat >° _ . f(p)/p=at+
O(1/y), which is certainly possible if y is sufficiently large. But then log P(f;z) =
—(1 = a)t+ O(1/y). Letting y — oo gives the result. ]

If o ¢ R then {e=(1=®)* ¢ > 0} is a spiral which begins at 1 and ends at 0.
Exercise 30.14 Deduce that I'p(S) = I'p(K(S5)).
Exercise 30.15 Prove that I'p(S) I'p(S) = T'p(S).

9We define the product of two sets A, B € C to be AB={ab: a € A, b€ B}.
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Exercise 30.16 We showed above that we can assume that there exists real
a # 1 with o« € SNR. Deduce that Tp(S) contains the straight-line connecting
0 to 1. Deduce further that T'p(S) is starlike; that is the straight-line connecting
any point of T'p(S) to the origin, lies entirely inside T'p(S).

Exercise 30.17 Prove that if z € T'p(S) then |z| < exp(—|arg(z)| cot(Ang(S))).
Corollary 30.18 Ang(I'p(S)) > Ang(T'(S)) > Ang(S).

Proof Suppose that o € S with |arg(l — )| > Ang(S) — e. Now if v; =
e~ (1=t € T'p(9) then 1 — vy = (1 — )t — (1 — a)?t?/2 4 .... If t is sufficiently
small then |arg(1l—wv;)| > |arg(l — a)| — e > Ang(S) — 2¢, and the result follows.

O

The interior of the unit disk U is {e‘rew  —mw/2<60<7/2, r>0}
Corollary 30.19 Select s;,s_ € S\ {1} so that ¢, = —arg(1l—s,) is mazimal
and ¢_ = —arg(l — s_) is minimal, with —5 < ¢_ <0< ¢ < 5. Then

Tp(S)=1U{e ™" ¢_<0<¢,, r>0}
This can be written as the boundary and interior of the curves given by
27
sin(¢+ — ¢-)

In particular, the circle of radius e~ , where N = 2m/| tan ¢y —tan ¢_|, centered
at 0, is the largest such circle which lies inside T'p(S).

e—tcos¢,(cos¢>++isin¢+) and e—tcos¢+(cos¢',+isin¢,) fO’f' 0<t<

Proof By definition for every point s of S we may write 1 — s = re? with
¢_ <60 < ¢, for some r > 0. This is therefore true for every a € K(S).

Now, if ¢ = —arg(1l — s) where s = x + 4y then (1 —s) = (1 —x)(1+itan¢).
Therefore 2-(1 — s) = n + intan¢. Hence every point on the line between
n+intan ¢4 and n+intan ¢_ takes the form ¢(1— ) with ¢ > 0 and a € K (S5)
for each n > 0. This completes the proof of the first part of our result.

Now if n > N then all numbers oééﬁg fe%rm n+intan¢_i6, with 0 < 0 < 27
are of this form and so Proposition B0.13 yields that I';(.S) contains the circle
of radius e™". a

Exercise 30.20 Prove that Ang(S) = /2 if and only if there is an infinite
sequence of points rpe'®n € S such that 6, — 0 as n — oo with r, < 1 and
rn =14 0(0y).

SinS_m
Proof of Proposition }muppose that A %{1@ = /2. Take the points
rpetfn € S from the last exercise. By Proposition]EU._Fli_fhe points on the spiral
e=(1=rme’™™)t ¢ I'(S) for t > 0. For each 0 € (—m, 7] the consecutive points on the
spiral with argument 6 differ by a multiplicative distance e ~27(1=7n cos0n)/|sin0n| —
14 0n—00(1), and hence as n — oo we see that every point on this ray is a limit
point of I'(S). Hence I'(S) = U.
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Now suppose that Ang(S) < 7/2. Note that if there exists o € 0 I which
is not a root of unity then T C S (as in the proof of Lemma bﬁﬁfmd S0
Ang(S) = m/2. Hence we may assume that S N T is finite and consists only of
roots of unity.

Now suppose that ¢ € SNT which is an mth root of unity. We now show that
Ang(¢S) < /2. If not then we have a sequence of points r,,e*7¢ € S with 6,, — 0
asn — oo with r, < 1 and r, = 1+ 0(#,). Then rme™n = (r, ()™ € §
but here m#,, — 0 as n — oo with " < 1 and " = 1+ o(mb,), so that
Ang(S) = /2, by the previous exercise, a contradiction.

Let us suppose that every element of SN T is an mth root of unity, and
select M divisible by m, so that Ang(Sys) > maxcesnrAng(¢S) and sufficiently

large that the largest dista %I%Pfcr%’ﬂ‘ to the perimeter of K(Sys) is < § then
K(S) C K(Sa) by exercise E}U.ZL O

To simplify our treatment of I'p(S) we shall now restrict attention to totally
multiplicative functions. Hence we define I'*(.S) to be the spectrum of mean-
values of totally multiplicative functions, and similarly I';,(.S) and A*(S). All of
the above proofs are still valid, and so we deduce that I'*(.S) = I'5(S)A*(S) and
A(S) = A*(S5).

Exercise 30.21 (Open problem) Define T'*(S) to be the spectrum of mean-
values of all multiplicative functions with f(p*) € S (but not necessarily totally
multiplicative). Similarly define I's(S). It is evident that T'p(S) C I'5(S). Can
you find elements of I'5(S) that do not belong to I'p(S)? Can you determine
% (9) 710

30.5 The Delay Equation Spectrum

IntDelE
Let A(S) denote the values o(u) = o,(u) obtained from (bSn when X is a
measurable T}.ﬂ‘f&ﬁ%ﬁ“{}th x(t) € K(S) for all ¢ > 0, with x(¢) =1for 0 <t < 1.
Proposition 28.T implies that any mean value of a multiplicative function that
only varies from 1 on the large primes, belongs to A(S). On the other hand if
o(u) € A(S) then there is an f € F(S) whose mean value up to z is ~ o(u), by

o onverse
Proposition b8.9.

Exercise 30.22 Ezxplain why A(S) = A(K(S)). Deduce that T'(S) = I'(K(S5)),
so we can assume throughout that S is a convex, closed, proper subset of U.

Lemma 30.23
I'p(S)A(S) C A(S)

Exercise 30.24 Deduce that A(S) and I'(S) are all also starlike. Then deduce
that T(S) = A(S).

10The easiest examples arise by simply taking the p = 2 term. If S = Sy let f(2F) =i so
that (1 — %)(1 +5+3+..0= % However the spirals in Sy look like e *+% so with angle
7/4 the maximum in size is e~™/4(1 4 4) and e~"/4 = 0.4559381277 < 1/2.
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Proof Suppose that we are given e~(1=t € T'%(S) and o(u) € A(S). Let ©
be sufficiently large that we can choose f(p) with z <p <y = x'/% as in the

proof of Proposition b(i. I Ii, for which P(f.y) = e~(1= 1. 0(1/2). We select f(p)
for y < p|§ea%’\/§fué§t£ﬁ%9§ition ZS.iGegn e let f(p) =1 for all p < z. Applying

Theorem BU.8 and then Proposition 3. Vit derluce that the mean value of f is

ueStructure

~ e~ (1= (y). Now applying Theorem 0.8 again, but this time with y there
equal to z here, we find that h = 1,g = f and so the mean value of f belongs to
A(S). O

This result implies that I'p(S) C A(S). Are there elements of A(S) that do
not belong to I'p(S)? In general, the spectrum contains more elements than
simply the Euler products. For example, the spectrum of Euler products for
S = [—1,1] is simply the interval [0, 1], whereas negative numbers are part of
A(S). We have seen that I'p(.S) is straightforward to fully understand, whereas
A(S) remains somewhat mysterious. We will discuss this in more detail in the
next chapter.
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RESULTS ON SPECTRA

31.1 The spectrum for real-valued multiplicative functions

The spectrum has been fully determined in only one interesting case, where
S = [—1,1]; that is real-valued multiplicative functions. In that case, in [GS], we
proved that I'([—1, 1]) = [d1, 1] where

ve logt

dt = —0.656999. . ..
t+1

51=1—2log(1+\/é)+4/
1

In other words, for any real-valued completely multiplicative function f with
—1 < f(n) <1, we have

S F(n) > (81 + o(1)a

n<z

with equality if and only if D(f, f1,2) = o(1) where

fi(p) =

1 for primes p < zt/(1+ve)
—1 for primes zV/ Ve < p < .

Applying this to the totally multiplicative function f(n) = (%)7 for some
prime p, we deduce that the number of integers below x that are quadratic
residues (mod p) is

%Z (1+ (Z)) > 1251 2+ o(x) = (60 + o(1))a,

n<x

where §y = 0.171500. . .11 More colloquially we have:
If © is sufficiently large then, for all primes p, more than
17.15% of the integers up to x are quadratic residues (mod p).

Exercise 31.1 Prove that the constant §y here is best possible.

1 One can derive the following curious expression for §o (from the definition of &1):

2

7 e 1 1
8o =1—— —log(1 1 2 -
0 5 og( +\/E)og1+\/é+ ;n2(1+\/5)"
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31.2 The number of mth power residues up to =

We now establish that similar results hold for m-th power residues. For each
integer m > 2, define the minimal density and minimal logarithmic density of
mth power residues modulo primes, to be

1
Y = liminf inf  — Z 1,

r—00 { prime I

n<z
n=a™ (mod ¢)
- . 1 1
and ~,, = liminf inf E —.
z—o0 ¢ prime logx =z n
nsx

n=a™ (mod ¢)

We already know that vo = §p and we will see that v5 = 1/2. For m > 3 we show
that

<m < plm) (~ <2m*1_7m_%1218672(km)! Noemie )

We do not know the exact values of ~,, and 7/, for any m > 3. Calculating the
minimum over 3, we found that 74 < 0.3245, v; < 0.2187, ¢ < 0.14792, and
6 < 0.1003. However we do obtain the following consequence:

For any given integer m > 2, there exists a constant m, > 0 such
that if x is sufficiently large then, for all primes p, more than
Tm% of the integers up to x are mth power residues (mod p).

31.3 An important example

Consider the multiplicative function f with f(p) = 1 for p < y = z/* and

flp) =a € S for y < p < x. Write o(u) = po(u) which satisfies the integral
delay equation

wn(w) = [ pattita [ putiar

and therefore p/ (u) = —(1 — @)pa(u — 1)/u. The case a = 0 has already been
discussed in detail. In general we can compute the mean value for small u, using
our results that o = o (u), and I;(u, x) = 0 if j > u. Hence:

If 1 <u < 2 then the mean value is 1 — (1 — &) log u. Therefore if & = ret
K(S) (with a # 1) then z =1 — (1 — a)v € A(S) for 0 < v < log2. If 2 = me™
then one can show that m = sin6/sin(6 + ). On the other hand, if =z € I'p(5)
then by exercise B0.17

2] < ( t0) < 1 < 1 sin ¢
z| < exp(—vco =
= &P ~ 1+wvcotf ~ cosv+sinveotf  sin(d +v)’

which is a contradiction. Hence z is in A(S) but not in I'p(S5).
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If 2 < u < 3 then the mean value is 1 — (1 —«)logu + (1_20‘)2 [ 1 02>1 %%

t1+ta<u

For a = —1 we see that p_1(yv/e) = 0 and hence p’ ;(1 + /¢) = 0. In fact
p—1(14++/e) = 41 and one can show that this is the absolute minimum value p_;
takes. Moreover, by continuity, p_1(u) takes on all values in the interval [d1,1]
showing that A(S) D [d1,1]. This leads us to the multiplicative function f; in
the first section of this chapter.

IntDelEqn
Exercise 31.2 Show that for any x,o satisfying (28.1) (ﬁiat is uo(u) = (x *
o)(u) for allu > 0) we hgpe au(1+ o)(u) = (L 0) * (14 x))(u). Go on to show
that if x;,0; satisfy (128.1) for j = 1,2 then uo(u) = (x * o)(uw) for allu >0

where x = x1 + X2 and 0 = 01 * 03.

Define M(u) = My (u) := [ oy (t)dt; that is M = (1 #0) JEx(t) = —1 for
all ¢ > 1 then M_;(u) = u for 0 < u < 1 and, by exercise bl.Z,

uM_1(u) = 2/ M_y(t)dt for u > 1.
u—1

This is much like the functional equation for p(u) and can be analyzed in much
the same way:

Exercise 31.3 Prove that M_1(u) = ((2¢ + o(1))/ulogu)*. Use the fact that
this is decreasing so fast to deduce that for all sufficiently large v there exists u
with v < u < v+wv/logv such that —p_1(u) > ((2e + o(1))/ulog u)®.

31.4 Open questions of interest

What is T'([—«, 1])? That is the spectrum for real-valued f with the each f(p) €
[—a, 1]. An easy Corollary of Corollary 27.18 is that if S contains a non-real point
that I'(S) contains a negative real-number. We want to know here if this is true
when S is real but contains negative real numbers. Evidently [0, 1] € Gamma(S)
is this case.

What is the spectrum for the mean-value of real-valued multiplicative func-
tions up to z, when f(p) = 0 for all p < y? We will see that this is useful in
understanding the distribution of quadratic residues.
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THE NUMBER OF UNSIEVED INTEGERS UP TO X

This is the article original, more-or-less unedited

One expects around z [[ o p ,<,(1—1/p) integers up to z, all of whose prime
factors come from the set P. Of course for some choices of P one may get rather
more integers, and for some choices of P one may get rather less. Hall [4] showed
that one never gets more than e” + o(1) times the expected amount (where ~y
is the Euler-Mascheroni constant), which was improved slightly by Hildebrand
[5]. Hildebrand [6] also showed that for a given value of [[ ,op ,<.(1 —1/p),
the smallest count that you get (asymptotically) is when P consists of all the
primes up to a given point. In this paper we shall improve Hildebrand’s upper
bound, obtaining a result close to optimal, and also give a substantially shorter
proof of Hildebrand’s lower bound. As part of the proof we give an improved
Lipschitz-type bound for such counts.

Define

g(w) = I;Igg.}f% Z f(n), and G(w) := limsup 1 Z f(n),

T
n<z 00 n<zx

where both limits are taken over the class of multiplicative functions f with
P(f,z) =1/w+ o(1).

If f is completely multiplicative with f(p) = 1 for p < 2/ and f(p) = 0 for
2% < p < o then P(f;2) = 1/w+o(1) and 3., f(n) = p(z, /%) ~ zp(w).
Hence g(w) < p(w) and A. Hildebrand [6] established that in fact g(w) = p(w).
Since p(w) = w="**°(®) note that g(w) decays very rapidly as w increases.

Regarding G(w), R. Hall [4] established that G(w) < €7 /w and Hildebrand [5]
improved this slightly by showing that G(w) < L+ [* p(t)dt. Since [ p(t)dt = €7
this does mark an improvement over Hall’s result, but the difference from e”/w
is L [ p(t)dt = w~wTo(®) which is very small. In this paper we shall prove that
G(w) = &7 /w—1/w?*t°M) but it remains to determine G(w) more precisely. We
shall also give a shorter proof of Hildebrand’s result that g(w) = p(w).

Theorem 32.1 For all w > 1 we have that

G(w) > max (p(w +A)+ /OA %dt).

When w is large, the mazimum is attained for A ~ logw/loglogw, and yields

e’ (7 +0o(1))logw
w w?loglogw

G(w) >
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Theorem 32.2 For all large w we have

Glw) < e 1
w) < — —
~ w  w2exp(c(logw)?/3(loglogw)l/3)

for a positive constant c.
We also give an explicit upper bound for G(w) valid for all w.

Theorem 32.3 For 1 < w we have that G(w) < 1 —logw + (logw)?/2 and
equality holds here for 1 < w < 3/2. For w > 1 put A(w) := 3(w + 1/w) +
8w (4 — 1/w). Then G(w) < A(w) log(1 + €7 /(wA(w))).

The first bound in Theorem 3 is better than the second for w < 3.21..., when
the second bound takes over. Note that the second bound in Theorem 3 equals
€Y /w — (€27 4 0(1)) /w3 log w, only a little weaker than the bound in Theorem 2,
while being totally explicit.

In the range 1 < w < 3/2 we may check that the right side of (1.3) equals
1 —logw + (logw)?/2 = G(w). Perhaps it is true that G(w) is given by the right
side of (1.3) for all w.

We end this section by giving a simple construction that proves Theorem 1.

Proof of Theorem 1 Let y be large and consider the completely multiplicative
function f defined by f(p) = 0 for p € [y,y*] and f(p) = 1 for all other primes p.
Put z = y**2 where 0 < A < w and note that P(f,z) = [1,<p<yu(l—1/p) ~
1/w. An integer n < x with f(n) = 1 has at most one prime factor between y"
and z, and all its other prime factors are below y. Hence

Yo fm)=vy)+ Y vz/py),

nz yv<p<z

and using (1.2) and the prime number theorem this is

~zp(w+A)+z Z ;p<w+A—1Z§]y)>~x<p(w+A)+/oAp(t)dt>,

yv<p<z wtA-t

which gives the lower bound (1.3) for G(w). For large w we see that

S ) 1B A tp(t)
p(w+A)+/0 erAﬂtdt_ w+A/o p(t)dt—l—/o (w+A)(w+A7t)dt+p(w+A)

and since [ tp(t)dt < co and fOA p(t)dt = &7 — A=(+oM)A the above is

1
w+ A

—(1+0 1
(7 — A (1+ (1))A) + O(E)

The quantity above attains a maximum for A = (1 + o(1)) log w/ loglog w, com-
pleting the proof of Theorem 1. |
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We noted above that G(w) = 1 — logw + (logw)?/2 for 1 < w < 1.5 (with
the maximum attained in (1.3) at A = w). Next we record the bounds obtained
for 1.5 < w < 2 (though here the maximum is attained with A a little smaller
than w).

w 1.5 1.6 1.7 1.8 1.9 2.0
G(w) > 676735 |.640255 | .608806 | .581685 | .557392 | .535905
G(w) < .676736 |.640449 | .610155 | .584960 | .564135 | .547080

The upper and lower bounds for G(w) given by Theorems 1 and 3.

w
w

32.1 Reformulation in terms of integral equations
Note that P(f,y*) ~ 1/E(u). Analogously to g(w) and G(w) we may define

g(w) = lirggcnf o(u), and  G(w) = limsup o(u),
Ey(u)=w Exﬁf)(:w

where the limits are taken over all pairs u, xy with v > 1, where x is a measurable
function for which x(t) = 1 for t < 1 and x(¢) € [0,1] for all ¢, and with
E, (u) = w. We shall show that these quantities are in fact equal to g(w) and
G(w) respectively. Something similar was stated (but not very precisely) by
Hildebrand in his discussion paper [7].

Theorem 32.4 We have g(w) = §(w) and G(w) = G(w).

To prove Theorem 2.2 we need to know how small primes affect the mean-
values of multiplicative functions
Prove that

g(w) > g(w) > min lg(f), and  G(w) < Gw) < max ~G(2).

T w>v>1v v

32.2 An open problem or two

Fix ©, 0 < © < 1. Let f be a multiplicative function such that 0 < f(n) < 1,
and |

3 f(p);gp = (0 +0(1)) log z.

p<z
Prove that

1/6 —1
S I <oy [ pa I (1-12)

< n 0 < p
nlx pxx
where p is the Dickman-de Bruijn function. (Note that f0+°° p(t)dt = ¢e7). This
inequality is sharp. To see that take f such that f(p) = 1 for all primes p < 2®
and f(p) = 0 otherwise.

We can reformulate this in terms of integral equations. Define O, (u) :=

fou x(t)dt, then Hall’s conjecture is the following
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Conjecture 32.5

/Ou o(t)dt < (/0@” p(t)dt) exp </1u Xit)dt) .

A stronger conjecture asserts that

o(u) >p (@j@)) -

If true , this implies the result of Hildebrand that liminf, o 2>~ f(n) exists
and is equal to p(w), where the limit is taken over the class of multiplicative
functions f with

H<11> <1+‘f(17)+f§f;2)+...>i+o(1).

p<a p p

32.3 Upper bounds for G(w) and Lipschitz estimates
We are able to improve “1—2/7” to “1—1/n" in the special case that x(t) € [0, 1]
for all ¢.

Theorem 32.6 Let x be a measurable function with x(t) = 1 fort < 1 and
x(t) € [0,1] fort > 1, and let o denote the corresponding solution to (2.1). Then

u—v\l=% U
lo(u) —o(v)] < ( ) (1 + log ) whenever 1 < v < u.
u u—v
Theorem 4 follows immediately from the stronger but more complicated
Proposition 4.2 below, and the fact that |o(u) — o(v)| < w whenever v <
u(1—1/E(u)). This is trivial for v < 2u/3, whereas for larger v in the range, we

obtain
e ue” 3(u—v)

lo(u) —o(v)] < E(v) = vE(u) = U ’

using Hall’s result that o(u) < e7/E(u).

Using (3.3) in (3.2) leads to the bound G(w) < €7 /w — C.. /(w't'/* logw) for
some positive constant C,,. Thus if (3.3) holds with x = 1 then we would be able
to deduce that G(w) = ¢?/w — (logw)®™ /w? by Theorem 1.

In order to prove Theorem 3 we give the following explicit Lipschitz estimate
(see also Proposition 4.1 of [2]).

Proposition 32.7 Let x be a measurable function with x(t) =1 fort <1 and
x(t) € [0,1] for all t, and let o(u) denote the corresponding solution to (2.1).
Then for allu >1 and 1 > § > 0 we have

log(1 + 6)(E(u) —21/E(u) E(u) +21/E(u)
and

o(u(l +6)) — o(u) > —log(1 + 5)(

+log E(u) ) > o(u(l + 6)) — o (u),

E(u)+1/E(u)

Bl = /()Y
2

+ log E(u) 5
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Proof We shall only prove the lower bound, the proof of the upper bound is
similar. From (2.2a,b) we see that

L

ol +8) ~o(w >~ 3 =

(L (u(1+6);x) — I (u; x)) -

I

I
-

J
jo

Q.
Q.

By symmetry we see that I; (u(1 + 9); x) — I;(u; x) equals

j/ 1—x(t1) ,,,I*X(tj—l)/ 1—x(t5)
feetiazl G b S s
The integral over t; is
<10g I 1051 4 o) < jlog(1 + )
u/j
since max(t1,...,t;—1,u—ty —...—t;_1) > u/j. Further since 6 < 1 we have t;,

.. tj—1 < wu and so these integrals contribute < (log E(u))?~'. Thus we have

o0

o1 +6) o) = = 3 5 log(1 +3)(log Blau)) ",
foda

and the result follows easily.

a

Proof of Theorem 2.2 Fix w > v > 1. Suppose x(t) = 1 for t < 1 and
x(t) € [0,1] for all ¢ and let o(u) denote the corresponding solution to (2.1) (we
will think of x as giving the optimal function for either §(w/v) or G(w/v)). Let
U > 1 be a parameter which we will let tend to infinity. Put x1(¢t) = x(¢/U)
and note that the corresponding solution to (2.1) is o1(u) = o(u/U). Define
x2(t) =0 for 1 <t < wvand xa2(t) = x1(¢) for all other ¢, and let o3(u) denote
the corresponding solution to (2.1). By Lemma 2.5 we see that for U > v

> (—1)d
UQ(UU):Jl(UU)+Z( 1) /v ll ..lal(uU—tl—...—tj)dtl-~-dtj.

! St >1 ty ty
= T L E sttt

By Proposition 3.1 we know that

o (ulU =ty — ... —t;) = o1 (ul) + O(min (1,Ex(u) logEX(u)%)

Using this above we see easily that for large U with u, v, w fixed we have o(uU) ~
o1(uU) /v = o(u)/v and note further that E,,(uU) = vE,, (uU) = vE, (u).

dty---

dt;.
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This scaling argument shows that for 1 < v < w we have g(w/v) > vg(w)
and that G(w/v) < vG(w). Using these inequalities in (2.4a) we deduce that
g(w) > §(w) and that G(w) < G(w) and combining this with (2.4b) we obtain
Theorem 2.2.

|

Now that Theorem 2.2 has been established, to prove Theorem 3 it suffices
to establish the analogous bounds for G(w) and we establish these next.

Proof of Theorem 3 Using the inclusion-exclusion upper bound (2.5) with
n = 2 we see that o(u) < 1 —log E(u) + (log E(u))?/2. It follows that G(w) =
G(w) <1 —logw + (logw)?/2. If w < 3/2 then consider x(t) = 0 for 1 <t < w
and x(t) = 1 for all other t. Then we see that the corresponding solution o (u)
satisfies o(u) = 1 — logw + (logw)?/2 for 3 > u > 2w. Thus G(w) = 1 — logw +
(logw)?/2 for 1 < w < 3/2.

We now establish the second bound of the Theorem. As noted in the intro-
duction the second bound is worse than the first for w < 3.21 and so we may
suppose that w > 2. With x, & as above, note that 5(¢t) > 0 for all ¢, and

G(u(l+9)) >d(u) — A(E(u))log(1+9) for 0 <6 <1

by Proposition 3.1. If E(u) > 2 then A(E(u)) > 7/4 > 1/log 2 so that exp(o(u)/A(E(u)))—

1 < 1. Hence we obtain that

o0 exp(o(u)/A(E(u)))—1
1/ &(t)dtz/ (o(u) — A(E(uw))log(1+6))ds  (32.1)
U Jy 0

— o(u) + A(E(u))(exp (/@%) - 1), (32.2)

(32.3)

and inserting this into (3.2) we get the Theorem. O

32.4 An improved upper bound: Proof of Theorem 2

Our proof of Theorem 2 is also based on (3.2) and obtaining lower bounds for
% fuoo &(t)dt. However Theorem 4 is not quite strong enough to obtain this con-
clusion and so, in this section, we develop a hybrid Lipschitz estimate which for
our problem is almost as good as (3.3) with kK = 1. We begin with the following
Proposition (compare Lemma 2.2 and Proposition 3.3 of [3]).

Proposition 32.8 Let x be a measurable function with x(t) =1 for t <1 and
x(t) in the unit disc for all t. Let o be the corresponding solution to (2.1). Let
1 < v < wu be given real numbers, and put § = u — v. Define

“ 1 — x(t)e™ v ,
F:=max exp (v - / Re (x()e) dt) |1 —e 0.
y€ER 0 t
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Then
5 2/(uF) 1 _ g—2au
lo(u) — o(v)] < 2 log +F+F/ 12 (324
u 0 0 x
K} 3
< Elog% + Flog %. (32.5)
(32.6)

Proof As in the proof of Theorem 3 take x(t) = x(t) for ¢ < uw and x(t) =
for t > wu, and let & be the corresponding solution to (2.1). Set o(t) =&
for t < 0. Note that

uo (u) — vo (v)] = |ué (u) — v6 (v ‘7’/ Gu—t)—6(v—1t) dt‘ (32.7)
g/o |&(t)—&(t—6)|dt:/0 2t|&(t)—c}(t—5)|(/0 e’h’td:c>dt

(32.8)

_2/0 /O ([£6() — (£ — 8)6(t — 8)| + 816t — 8)[ e~ 2" dtdar

(32.9)

S/o I(x)dm—&—/o /5 28e~ tmdtdmzélogg—&—/o I(x)dz,

(32.10)

(32.11)

where

I(z) = /Ou 2te(t) — (t — 8)a(t — d)|e 2 “dt.

As [o(u)—o(v)| < L(Juo(u) —vo(v)|+d|o(v)]) < %+%|ua(u)fvcr(v)\, it follows
that

1) 1 [
o) = o(0)| < 2 log <+ = / I(2)da.

By Cauchy’s inequality

I(z)? < (4/ 2“”dt / 6 (t) )&(t—5)|2e_2mdt> (32.12)
< 2(#) (/0 It (t) — (t — 6)5(t — 5)|2672mdt). (32.13)
(32.14)

By Plancherel’s formula the second term above is

o0

Lt~ (t-0)5 -0 w+in)dy = 5 [ £5(0).atig) FlL-e =Py

—00

1 (.¢]
T o
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From (2.1) we see that L(t5(t),z + iy) = L(6,x + iy)L(Y, x + iy) and so the
above equals

1 [ , 1 [
o | 1@ttt Pli-e Ry < P o [ eGPy
T J_co T J—c0
where .
F(z) :=max |1 — e~ @t | £(5, 2 + iy)|.
yER
Now, using Plancherel’s formula again,
o [ e alay= [T RO s [Cera= 0
2 — o ’ 0 - 0 2z ’
and so
1— €—2xu
I(z) < ——— F(x).
x

We now demonstrate that F(z) is a decreasing function of z. Suppose that
B > 0 is real, and recall that the Fourier transform of k(z) := e PlEl is k(¢) =
[ e Pl = ﬂff 5. Hence e™%* = k(z) = k(—z) = 2 [7_ 762i£2 e % dz
by Fourier inversion for z > 0. It follows that for § +¢ > 0 we have

(1- 6—6(w+l3+iy))e—t(x+ﬁ+iy) - 1 /oo B e—t(x+iy+i£)(1 _ 6—6(w+iy+i£))d§.

T oo B2+ &2
Multiplying both sides by &(t), and integrating ¢ from 0 to co, we deduce that
i 1 [ _
(L= e EHPENLG 0+ priy) = - /_oo ﬁﬂ(&, T+ iy + €)1 — e ) g
(32.15)
< (max|(— e =) 6,0+ i) [ 2 e
" \er ’ T B ET
(32.16)
(32.17)

and so F(z + ) < F(x) as claimed. Therefore F(z) < lim, ,o+ F(x).
Now if s = x + iy with > 0 then

_ 00 _ —ivy oo ,—vs __ ,—vT
E(l x(v) , s> = / (1 x(v)e > e "dv Jr/ R
v 0 v 0 v

(1 x)e Y (32.18)
_/0 ( )6 dv + log(x/s), (32.19)

(32.20)
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b0 = Lesp( [ (X)),

Using this for 6 we have

L6, + iy)| = %exp(— /OO - /uRe(l_X(Ml)emdt)
0

” t

so that

For x < 1/u we get

oo —tx oo —t oo —t 1 _—t
—1 1 1
/ € _dt= / S - / e—dtJr/ ¢ dt+log — = —vy+log —+0(uzx),
“ t wz 1 t “ t ux ux

T X

since v = 01 1_fftdt — 100 ?dt, so that

L6+ )| = uexp ( /Ou Re (W) dt + O(uz)).

Note that this is <, 1, so that the maximum of |1 — e~ F+¥)9||L(5, 2 + iy)|
cannot occur with ||yd/2x| — 0 as x — 0 (here ||¢| denotes the distance from
the nearest integer to t), else F(x) <, = + ||yd/2x|| — 0 as z — 0, implying
that F(x) = 0 which is ridiculous. Thus the maximum occurs with ||y /27| > 1
as © — 01 so that 1 — e~ @FW)0 =1 — =0 L O(x6) = (1 — e~ ){1 + O(x0)},
so that

(t)efity

, A u 1—
[1—e= @+ £(5, z+iy)| = ull—e ™| exp ('y - / Re <X
0

97 s ofun).

Therefore F(z) < uF{l + O(uz)} for sufficiently small z; and so F(zx) < uF.
Also F(z) < 2maxyer |[L£(6,z + iy)| < 2/x. Therefore, by (4.2), we get that

1—e2u .
= uF  if ¢ <2/uF

I(z) <9, ° .
if x > 2/uF,

2

which when inserted in (4.1) yields the first estimate in the Proposition.
Now if F' <1 then

2/(uF) 1— —2zu 2/u 1— —2zu 2/(uF) 1
/ ST dr< / Rl +/ “dx < 2+ log(1/F),
0 T 0 €z 2/u T
and so we deduce the second estimate of Proposition 4.1. If F > 1 this holds
trivially since |o(u) — o(v)] < 2.
O

As an application of this Proposition, we establish the following strange-
looking Lipschitz estimate in the case that x(¢) € [0,1] for all ¢t > 1.
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Proposition 32.9 Let x be a measurable function with x(t) =1 for t <1 and
x(t) € [0,1] fort > 1, and let o denote the corresponding solution to (2.1). Let
1 < v < wu be given and write E(u) = (u/(u —v))? for P > 0. Then

U — U>min{1,17% sin(ﬂ'P)}( u )

o) = o (v)] < ( L+ log

U u—uv/

Proof Letd=u—vand A= [/ 17f>f(t)dt = log E(u). We will show that

Ul - min{l,lfi sin(ﬁ)}

exp ( —/ L= x(t) cos(ty) dt) min(1, 0y) < (é) e
0 t u

for all positive y. The result then follows from Proposition 4.1 since F < Left

side of (4.3).

If y < e/u then the left side of (4.3) is < ed/u and the result follows. Hence-
forth we may suppose that y > e/u. Since cos(z) = 1+ O(z?), we get that
fol/y 71_X(t)tcos(ty) dt = fol/y 71_f(t) dt + O(1). Thus if we let z := flu/y Lf(t) dt
then

/u Mdt:A—z—i—O(l) +/u Mdt (32.21)
0 1/y
=A-2z+0(1) +/; 1_Ct°5(ty)dt+/; ! _tX(t) cos(ty)dt
’ ’ (32.22)
= A— z+log(uy) + O(1) + /1“1/ I—%(t/y) cos(t)dt,
(32.23)
(32.24)

by making a change of variables, and since (integrating by parts)

/ cos(ty) gt — sin(ty) |« +/ sm(z;y)dt: o).
1/y t Yyt 1/y 1/y yt

By periodicity

wy | _ U _
/ L=x(t/y) cos(t)dt = / G(P)cosP dP, where G(P) := Z L= x(t/y)
1 t 0 tEPe2n ¢
1<t<uy

and the sum over ¢ above is over real values of ¢ in the range [1,uy] such that
t + P is an integer multiple of 27. Note that

0 < G(P) < Llog(uy) + O(1) for all P, (32.25)
s
and / G(P)dP = / =Xy (32.26)
0 1/y t

(32.27)
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Consider the problem of minimizing [, G(P) cos PdP over all functions G satis-
fying these two constraints. Since cos P decreases from 1 to —1 in the range [0, 7],
we see that this is achieved by taking G(P) = 0 for P € [0, 7 — Po], and G(P) =
Llog(uy)+O(1) for P € [1—Po, w], where Py satisfies Po (L log(uy)+O(1)) = =.
We conclude that

s

4 1 1
/ G(P) cos PdP > / COSP(; log(uy) + O(l))dP = log(uy) sin Py + O(1)
0 TI'—P()

(32.28)
- —% log(uy) sin (m) +0o(1) (32.29)
- —% log(uy) sin (%) +O(1), (32.30)
(32.31)

since 0 < z < log(uy). Therefore

/“ 1 — x(¢) cos(ty)
t

; dt ZA—z—i—log(uy)(l— %sin (k)L)) +0(1).

g(uy)

In the domain 0 < z < log(uy), the right side of (4.4) is a non-increasing function
of z, so that it is greater than the value with z replaced by log(uy), that is, it is
> A+O(1). Therefore the left side of (4.3) is < e~ min(1, §y), which is < §/u if
A > log(uy), as required. If A < log(uy) then the right side of (4.4) is greater than
the value with z replaced by A, which is log(uy)— % sin(m A/ log(uy))+0(1),
so that the left side of (4.3) is

< min(1, dy)

(uy) = s,
uy

This function is maximized when y = 1/4 in the range log(uy) > A, at which
point it yields the right side of (4.3), completing the proof. O

Proof of Theorem 2 Let a = F(u) = e?*. We may assume that « is large,
and that o(u) > 1/a, else our result follows trivially. Let v = (1 + e=*)u for
some parameter A > A, and select x(t) = x(¢) for ¢t <w and x(t) =0 for ¢t > u,
as earlier. Using Proposition 4.2 we deduce that there is a constant C such that

16:(u) — &(v)] < C(1 + A)exp ( A+ %sin (%))

If A > 2A, then this is < C'(1 + A) exp(—A(1 — 1/7)) which is easily verified to
be < 1/(2a) if « is sufficiently large. If A < A < 2A, then the right side of (4.5)
is < 2C(1+ A)exp(—A + 2 sin(Z2)), which is a decreasing function of A in our
range. For A = A+ ¢ where € := ¢A?/3(log A)'/3, with ¢ > (6/72)/3, this equals
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Aﬂ—fg)) =2C(1+A) exp (-A_ﬁi+0 (54

2C(1+A) exp (—A—§—|—A: 3 sin (

Thus we have proved that |6(u) —5(v)| < 1/(2«) for all A > A+, which implies
that 6(v) > 1/(2a) for u < v < u(1 4 e~4~¢). Therefore

1 ) 1 u(1+efA7§) 1 1 1
*/ a(t)dt > */ (v)dv > — LgemAE L s &
u u

u u

which implies the theorem, by (3.2).
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THE LOGARITHMIC SPECTRUM

. 3 TruncDirSeries
We saw in section 77 thaf for any fixed o > 0, the spectrum of

AR rens)

n<xz n<x

is easily understood in terms of Euler products and I'(S), except when o = 1,
in which case we have the logarithmic spectrum, T'y(S), which is easier to study
than I'(S): The fact that

1 f) 1 ("1 1
logxgn_u/o 7 Z f(n)dt—’_:vlog:prgf(n)’

n<y?

implies that T'y(S) C K(T'(S)), the convex linear combinations of elements of
I'(S). Similarly we deduce that

¢
Ao(S) = {1/ o(t)dt: x,o asin ( In.t flin_ 1},
0

u

so that Ag(S) C K(A(S)). We need to see how much of the theory for I'(S)
carries over to I'o(S):

33.1 Results for logarithmic means

Proposition 33.1 Let f be a multiplicative function with |f(n)| <1 for all n,
and put g(n) =3>_,,, f(d). Then

R

p<z p

Proof Let g =1 % f. Since

S o =Y r@) =Y s (b o) = 3 M 4 o),

n<z n<z din d<zx d<z

we see that
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1 f(n) 1 1
logx’nz:x n ‘ = xlog;c Z lg(n)] +O(logx)
1
> lgn

loac
n<x g

log T

L+ fp)-2)) , 1
< exp Z » +logx

p<z

.2.1)
by b I, and then Mertens’ theorem. Now £ (1 — Re(2)) < 2— |14 2| <1 — Re(2)
whenever |z| <1, and so the result follows O

H 4L GOUB
Now (%.ab’ asf?)ge)éher with Proposition &ZB.I implies that ¢t = t¢(z,logx) is
small if the mean value is large. Indeed if |35 _ f(n)/n| > (logz)'~¢ then

D2(f,n',x) < (e +o(1))loglogz and D?(f,1,x) < (2¢ + o(1)) loglog z, so that
log(1 + [t|logz) + O(1) = D*(1,n', ) < (D(f,n", z) + D(f, 1,))?
< ((1+\f) e+ o(1))loglogx.

Hence
1

(log z)!=6¢”
It is not entirely surprising that ¢ must be small since if f(n) = n* with [t| >
1/logz then >° . f(n)/n =log(1/[t]) + O(1).
Exercise 33.2 Prove the Lipschitz-type estimate
1 Z f(n) Z f log 2?/’
logsvnSz n  log m/y ity log:c
for all functions f with |f(n)| < 1. (Hint: Do this from first principles.)

GenFundLem
Exercise 33.3 By using partial summation in Proposition [3.6 or otherwise,
show that if f(p*) =1 for all primes p >y then for x = y* we have

[tf(z,logz)| <

Z f P(f;y)logz + O(logy).

n<lz

This implies tha &‘E]last eEc)uler product spectrum here is the same as before (see,
e.g., Proposition .

Proposition 33.4 Let f be any multiplicative function with |f(n)| < 1. Let

g be the completely multiplicative function defined by g(p) = 1 for p < y and
g(p) = f(p) forp>y. Ifx = y" then

f(n g(n 1
loggsZ P(fy 1ngz +O< 1/2>'
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Proof Let f+*1 = gxh sothat h(p) =1 for all p > y. Using the last exercise
we obtain, for v = y/u and = = y*,

I DO CED S LD S

n<x a<lz/yv b<z/a b<yv z/yv<a<z/b

= %(P(h;y)logx/aﬂLO(logy))+O ZW
a<z/yv =

/ Z -I-Oulog Y),

extending the sum over a to all @ < z. Since gxh = f x1 and P(1,y) = 1 we
deduce that

/Zf e /Zg O(ulog?y).

We subt %gtLtlth%xpression for  from that for zy™, with w = y/u, and then use
exercise E33§ to note that

@y fla)dt =" [ logt dt
/w az;t a 77/,: logxz —i—Olg(t/w)) t

f(n)
= uwlog®y - @ ; 7 + O(ulog®y).

Combining all this information yields the Proposition. a

This is our structure theorem, and allows us to assert that T'g(S) = I'p(S) Ag(S),
and hence T'y(S) is starlike.

Exercise 33.5 Prove that T'o(S) = Ag(S5).

One can easily show that there are elements of Ag(S) that do not belong to
I'p(S): Let x(t) = 1for ¢t <1 and x(t) = a € S for t > 1, so that o(t) =
1—(1—-a)logt for 1 <t <2, and hence

1/ 1/ 1
7/ U(t)dt:].*(l*a)*/ logtdt:].*(l*a)(log’ll71+*)
u Jo u Jq (7

for 1 < w < 2. This implies that {1—(1—a)t: 0 <t <log2—1/2} C Ag(S) and
if z belongs to this set then arg(l — z) = arg(1l — «). In particular this implies
that A gl(nfggé’a?x)t>Ang ). Moreover if 0 <Ang(S) < 7 then one can show, as in

section en z € I'p(.9), and hence we have proved that there are elements
of Ag(S) are not in I'p(S).
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The elements of Ag(S) gre of the form (1% 0)(u)/u, which arise naturally, as

we saw in exercise BI.2. Let us suppose that S = [-1,1] and x € F(S). Then
14+ x() =2forallt <1and 14 x(t) >0 for all t > 1. Now we know that

%@%@ e:In]%%il(‘u) =wufor 0 <wu < 1.If M(t) > 0 for all ¢ < u then, by exercise

uM(u)/OuM(ut)(lJrX)(t)dtZQ/U M(u — t)dt.

Exercise 33.6 Use this functional equation to prove that M(u) > 0 for all
u >0, or even M(u) > ((2+ o(1))/ulogu)®. Deduce that T'o([-1,1]) = [0, 1].

33.2 Bounding I'yg(S)

We are able to say much more about the structure of I'g(S) thanks to the fol-
lowing result:

Proposition 33.7 Suppose S is a closed subset of U with 1 € S. Then I'g(S) C
R, the closure of the convex hull of the points [}, H'Ts’, for allm > 1, and all
choices of points s1, ..., sp lying in he convex hull of S.

By exercise Wﬁ%w that the elements of K(S) are all convex linear
combinations of the points e? with § = 0 or 26 < |#] < 7. Hence ['o(S) is a
subset of the convex E&’ﬂo‘%ﬁ&%% points [[}_, 1+§19'j where 20 < |0;| < 7, with
n > 0, by Theorem B3.7. Such a product has magnitude < (cosd)™ < cosd if
n > 1, and so I'y(.9) is a subset of the convex hull of {1} U {|z| < cosd}. Now,
if |z| < cosd then one can show that Ang(z) < arcsin(|z|) < § — 6, and so it
follows that Ang(I'o(S)) < § — d =Ang(S). In the previous section we showed

that Ang(T'0(S)) > Ang(S), and so we can now deduce that
Ang(To(5)) = Ang(S).

HullO£GO(S) C TwoChi
Proof of Proposition %3.7 By exercise }280.% %\l;lefﬁwc;( ;;}) =—1forallt>1we

have that o(u) equals

[e%S) k
1 1+ X(ti)
Z? 1 HT a,l(u—tl—...—tk)dtl...dtk.
k=1 + +tk<uz 1
Integrating yields that M (u) equals
k
1+ x(t:)
+Z oo HTM_l(uftlf...ftk)dtl...dtk. (33.1)

t14.. Aty <u i=1

We have shown that M_;(v) > 0 for all v > 0, so this is a linear combination of
elements of R, with non-negative coefficients. The sum of those coefficients is

o0

1
Zk—/th . H M_y(u—ty —...—tp)dty ... dtg,
k=1 ti+. At <u i= 1
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which equals M (u), that is the case that x(t) = 1 for all ¢; that is o(t) = 1 for

all ¢, and so M (u) = u. Hence we have proved that M(u)/u, which equals the
(

quantity in . ivided by u, lies in the convex hull of R, as desired. a

33.3 Negative truncations

Gamma0-11
In exercise &33@6 We saw that To([-1,1]) = [0,1], which might mistake one into
surmising that > f(n)/n > 0 whenever f € F([—1,1]); however all one can
deduce is that Y-,y f(1n)/n > —on 0 (log N). In 1958 Haselgrove showed that

sg§7a4) /e gets negative, where A(p*) = (—1)*, and recently it was shown
at the first such value is N = 72185376951205. Moreover the sum equals

—2.075... x 10" when N = 72204113780255. This leads to several questions:
What is the minimum possible value of >~ _\ f(n)/n for each large N7 For any
N? To begin with we show that this is easily bounded below: If g(n) = > f(d)
then each g(n) > 0 and so

03 ot =Y r@[4] <3 («LP +1),

n<z d<z d<z

and hence for any f € F([—1,1]) and any N > 1 we have

n<N

This can be somewhat improved:

Proposition 33.8 If f € F([-1,1]) and g(n) =3_,,, f(d) then

fn) 1 1 (loglog x)?
ST TS

n<x n<x n<x

Proof Proceeding as above we have

S ot = S s@[3] =« 2 TP - S ro{7)

n<x d<z
and so for K = [log x|, we have
K z/k
f(n kg
LA SYTIED SIS DR CO) R ENele )
n<z n<z k=1z/(k+1)<m<z/k m

We can rewrite each such sum as
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7 b

/(k+1) z/(k+1)<m<t

log 1 z/k
72 / ( x )idt—&—O xloglog x xdt
/iy N\ k1)t k(log )23 Jay (ki) 12

n<lz
k+1 1 loglog x
=250 (45 (57) - 751) +© (o)
nz;x k E+1 k(log x)2—V3
RealLipsch
by exercise EWA lélffnming up over all k, 1 < k < K yields the result since
S 1 (k+1) =log(K + 1)+~ — 1+ O(1/K). O

LipschBound
Exercise 33.9 Modify the above proof, using Corollary 121. ZS,C fo show that for
any totally multiplicative f with |f(n)] < 1 we have the same estimate but with
1 —~ replaced by
_ N R € B
= (1 +it) 2+ztd2 where t = t¢(z,logx).
1

Proposition 33.10 There exists a constant ¢ > 0 such that if x is sufficiently
large then there exists f = f, € F([—1,1]) for which

f(n) c
D T

n<z

Proof We discussed above that there exists an integer N such that >, _ v ’\(n")

—§ for some § > 0. Now let > N? be large and define f(p) = 1 if /(N +
1) < p < /N and f(p) = —1 for all other p. If n < x then we see that
f(n) = A(n) unless n = pl for a (unique) prime p € (z/(N + 1),2/N]| in which
case f(n) = A(€) = A(n) + 2A(¢). Therefore

n A(n
S

n<z n<zx w/(N+1)<p§J;/N (<z/p
A 1 20
e D Y
n<wx " z/(N+1)<p<z/N p 08T
by the prime number theorem. a

This next part needs editing: 5
Set u=7>_ _,(1—f(p))/p. By Theorem 2 of A. Hildebrand h] (with f there
being our function g, K = 2, K5 = 1.1, and 2z = 2) we obtain that

S I D)0 1 (o (3 2000

p<z p<z p
+ O(exp(f(logo:)ﬁ)),
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where 8 is some positive constant and o_(§) = {p(§) with p being the Dickman
function!?. Since max(0,1 — g(p)) < (1 — f(p))/2 we deduce that

% > g(n) > (e " logz)(e"*p(e*/?)) + O(exp(—(log z)"))

> """ (log 2) + O(exp(—(log 2)?)),

since p(&) = £~¢+0(), 3
On the other hand, a special case of the main result in h implies that

i’ 3 f(n)’ < e (33.3)

n<z

where x = 0.32867 . ... Combining Proposition 3.1 with (3.5) and (3.6) we imme-
diately get that 6(z) > —c/(loglog x)¢ for any & < 2x. This completes the proof
of Theorem B2.1.

Remark 33.11 The bound (3.5) is attained only in certain very special cases,
that is when there are very few primes p > x¢ = for which f(p) = 1 + o(1).
In this cgse one can get a far stronger bound than (3.6). Since the first part of
Theorem 132.1 depends on an interaction between these two bounds, this suggests

that one might be able to improve Theorem 1 significantly by determining how
(3.5) and (3.6) depend upon one another.

Now what about the class of all multiplicative functions, not necessarily
totally multiplicative, with values in [—1,1]? We will sketch a proof that we
have the same lower bound > —1/(loglog x)%/® unless Yes1(1+ £(29)/2F <

1/(log z)*/?°. Now Y on<a f(n)/n > —01log2 + o(1), with equality if and only
if D*(f, fo;2) = o(1) where D*(f, g;x) := Epgz 21@1(1 — (f9)(®"))/p*, and
f2(2F) = —1 for all k > 1, otherwise fo(.) is totally multiplicative with fo(p) =

fi(p) for all p > 3.
UseTotallyFSievedl

Exercise 33.12 Use the special case of exercise [14.8 an . o prove that
fa(n) 1 log log x
=~ =log2- — fim)+0| ———— ).
= Z g

L. . UseTotall nTru.ncPrec's
Combining exercises an iven [f(n)

|
plicative with g(p) = f(p) for all primes p, and G(n)

f(n) 1 x(loglog x)?
ZT ZG + (etCo(f) — re(f E; O<7(logx)2*\/§>'

n<x n<ac

< 1, let g is totally multi-
=>4 9(d) then

12The Dickman function is defined as p(u) = 1 for u < 1, and p(u) = (1/u) [ | p(t)dt for
u > 1.
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If =1 < f(n) <1 then ¢t = 0 and so we have

f(n 1 z(log log )2
Z%:Co ZG Co(f)*fio(f)); Zg(n)+0(<l(ogg;)2g_\/)§)'

n<x n<z n<x

For - . ! (:’) to have a not-too-small negative value, Co(f) must be small else

one can argue as above. If Co(f) is small then >, <, (1+ f(2¥))/2* must be very
small and the main term comes from rg(f) times the mean value of g(n). We
can easily then show that the largest negative value comes from when g is close

to fl-

33.4 Convergence

We observe that if } -, f(n)/n converges then > _ f(p)/p is bounded.
To see this we begin by observing that if ¢ > ¢y then |E(t)| < e where
E(t) == 3,5, f(n)/n. This implies, by partial summation, that if N > t. then

donSN f(n)/nl‘k@ = ft>N dE(t)/t@ < e. Hence if log? N < elogz then

y I ZH

n<N n>1 n

O(e),

log x

and so the value of Y f(n)/n is simply the limit of > o, f(n)/n'T® as a — 0.
Taking logarithms and limits this means that Zp f(p)/p*+ exists as a — 0.
Now if v = 1/log z then we have seen that this equals >° _, f(p)/p+ O(1). The
result follows.

33.5 Upper bounds revisited
Let us suppose that ¢ = t¢(x,T), and write f(n) = ,,_, ag(b).

Exercise 33.13 Show that 1/a'T% = f:jll/; du/u' T + O((1 + |t)?/a®), and
deduce that if © > A > 1+ |t| then

1 ztt— A" (1+ J¢))?
Z al-it gt +O< A2 )

r>a>A

We therefore deduce, for A > (1 + |t])?,

f(n 1 b
Z%:Zal—it'&b)

n<lz ab<zx
_ g(b) 1 1 g(b)
- Z b Z ql—it + Z al—it Z b
b<z/A a<z/b a<A z/A<b<lz/a
a’ g(b)  g(b) (1+ [
-7 X () o S . &
b<z/A b<z/ a<A x/A<b<lz

b
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2 (3.2.2)
The second-to-last term is < 1. The last term is < (lffg? Zbgz |g(bb)‘. by (b.Z).

Just taking absolute values above, with A = (1+t])2, we deduce when T’ < log z

f(n 1 (loglogx)? lg(®)[
Z It P g log x Z

n<x
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GenGSums
By ( (l.3() we have for a primitive character x (mod q),
M+N

M+N
1 _ an
Soam=g S Y ()
n=M+1 X n=M+1 a (mod q) q
1 _ a(2M + N + 1)\ sintNa/q
90 Z X(a)e( 2q ) sinra/q

a (mod q)
Taking absolute values, we obtain
M+N

> x(n)

n=M+1

1 1
<— ——— < Vqloggq.
Vi (a; |sinma/q| =va

Exercise 34.1 Justify this last step. Indicate how one might improve this to
< (2/m 4 0(1)),/qlogg.

There are various ways one can develop the series above. The most useful is
due to Polya:

Exercise 34.2 Prove that if 0 < a < 1 and x is a character mod q then
X(n) qlogq
S =92 5 My +o (14 9E)
n<agq 1<\n|<N
for any N > 1. (Hint: Think: “Fourier analysis.”)
Exercise 34.3 Deduce that

S ) = 292 - x(2))(1 - x(-1)L(L,3) + 0.

2im
n<q/2

Exercise 34.4 Using 2@%%%@ if (b,r) =1 then
fn bn/ r o f(n)y(n)
> de) r/d S b)) > .

n<N (mod r/d) n<N/d

Exercise 34.5 Deduce that if (b,7) =1 then

00N IA— N 2X() — -
> xm) = T2 | (1= X(-1)LLY) > dote7a) %T/d)w D)) L(L,XP) |+0 (1)

) (=1)=-1
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Let X = z/ logA z. If 0 < o < 1 then Dirichlet’s approximation theorem tells
us that there exists a rational number b/r with 1 <r < X such that |a—b/r| <
1/rX. Therefore if n < R := 1/|a — b/r| then |e(an) — e(bn/r)| < n|a —b/r|;
and otherwise |e(an) — e(bn/r)| < 1. Hence

Zf —e(bn/r)) < Z o — b/r| + Z %

n<z n<min{R,z} min{R,z}<n<z

< log( a—b/rjr) < loglog .

Select ¥ (mod r/dy) as that character with conductor dividing r for which
M = Mg (=, lo% Ex) gscm_inimal.lg We now bound the contribution of the other
o]

terms in exercise or the other characters t; we know that M (z logx) >

(2/3—0(1))log(;25%)+O(1) by Proposition bﬂ and that if k is sufﬁmently large

logr

then M (z,logz) > (1—¢) log(llgif) + O(1) by Proposition By Substituting

Halasz4Lo ExptoChi
these bounds into (%.Gi, nd then the bounds from there into exercise &34.%, we

obtainl?

Z f(n bn/T — f(d1), (D) d1¢ r/dl Z fn T/J1

n<z n<z/d

< (r_l/Q(log:v)l/?’ +’l"1/2) (rlogm)o(l).

34.1 A lower bound on distances

When x has given order g > 1, we wish to bound

poy 1 —Re((x¥)(p)/p")

p

D(x(n), ¥ (n)n', x

p<z

from below, where [t| < (log z)2. The smallest the pth term can be, for given 1 (p)
and p®, is when y(p) is that gth root of unity nearest to (p)p®. If 1 is a character
mod r the Siegel-Walfisz Theorem tells us that there are roughly equal number
of primes p = h (mod r) for each (h,r) = 1 in the interval [z, 2 + z/(log 2)34]
provided loglog z > (1/A)loglog x. If ¢ has order k we may write each 9 (p) =
e(—£/k), the ¢ depending on the arithmetic progression that p belongs to mod
k. Also p* = 2 + o(1) = ¥ + o(1) where 6 := (tlog z)/27. Hence

P

where the sum is over the primes in [z, z + z/(log 2)34].

13This is not quite correct. We need to work ex 31.4 by writing it in terms of primitive
characters and then use those. Nonetheless the calculations done here are the correct ones.

14 Can we improve the last term using the Pretentious large sieve?

) L4 (3£ -0))) v}
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Exercise 34.6 Show that if L = [g,k] and L/g is even then,

Igin T
1—7+—% cos (27T <{L9}—1)>.
;Sll’lz

Show that if L/g is odd then we replace {LO} —1/2 by {LO}.

Exercise 34.7 Deduce that if L/g is even then the mean of this last function,
Jor 0 €0,u] is >1— Zsin? for all u. Deduce that if r < (log x)? with A > 1/e
and v has even order k then

D(x(n), ¢ (n)n", z)?
loglog =

> 1fgsinEfO(e).
m g

(Also deduce that if L/g is odd and D(x(n),¥(n)n, z)? = o(loglogz) then
D(x(n),1(n),x)? = o(loglogz) and g = L (i.e. k divides g).)

We deduce from the above that if (¢ > 3 is odd and)

Z X b’fl/’l" \/17 ¢( )(log .Z‘) %Jro(l) + 7"1/2(7“ logx)o(l).
T

n<x

MV1
We apply this bound when r < logz. By partial summation on (m) for the
sum between r'*¢ and z, for £ > r2, we obtain

e(b 1
Zf (bn/1) < logr + o8 + loglog z.

n<z V ¢(T)

We use this bound for r > log x.
Combining the above (and this nee §0Eicltying up) we obtain that if x is a
primitive character of order g then, by ( , for any N > 1 we have

> x(n) < Vg(logg)= =7 +e, (34.2)

n<N

We believe that this exponent is “best possible” with this method (this needs
some explanation!).

34.2 Using the Pretentious Generalized Riemann Hypothesis
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