
Android Graphics

1 Introduction

If you were not shut off from the world in the past year, you must have heard about An-
droid. Development in communication has been shrinking the world and thanks to the
advancement of Wi Fi technologies, some developing countries are able to leapfrog into
the twenty-first century without the burden of dismantling the infra structure and equip-
ments of wired communication. Mobile devices have become ubiquitous and even more
sophisticated than PCs. Transitioning from working with PCs to mobile devices such as
smart phones and tablet computers has become a trend. Android is developed in response
to this trend. It is an open-source operating system based on the Linux kernel with applica-
tions developed using the java programming language . The Android operating system was
first developed by Android, Inc. Google acquired Android, Inc. in July 2005, and became
the leading developer of the Android OS. In November 2007, the Open Handset Alliance,
which initially was a consortium of 34 companies formed to develop Android. The consor-
tium was later expanded to absorb many more companies in a joint effort to further develop
Android, which is the real innovation in the mobile technology and an improvement in the
our life. Because of its openness, in less than two years, Android has come from nowhere
to become the dominant smart phone operating system in the US, eclipsing all other ma-
jor players in the field. News, details and relevant links of Android can be found from its
official web site,

http://www.android.com/

Wikipedia has a good article about the history and miscellaneous information of Android
at

http://en.wikipedia.org/wiki/Android (operating system)

Technical information can obtained from Android’s official developer web site at:

http://developer.android.com/guide/index.html

This site provides a lot of information and how-to for developing Android applications and
publishing them. The site defines Android as follows:

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications. The Android SDK provides the tools and APIs
necessary to begin developing applications on the Android platform using the Java
programming language.

The developer site also lists various features of Android, including

1. Application framework enabling reuse and replacement of components
2. Dalvik virtual machine optimized for mobile devices
3. Integrated browser based on the open source WebKit engine
4. Optimized graphics powered by a custom 2D graphics library

1

2 Introduction

5. 3D graphics based on the OpenGL ES 1.0 and ES 2.0 specifications
6. SQLite for structured data storage
7. Media support for common audio, video, and still image formats (MPEG4, H.264,

MP3, AAC, AMR, JPG, PNG, GIF)
8. GSM Telephony (hardware dependent)
9. Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

10. Camera, GPS, compass, and accelerometer (hardware dependent)
11. Rich development environment including a device emulator, tools for debugging,

memory and performance profiling, and a plugin for the Eclipse IDE

The following figure shows the architecture of Android.

Figure C-1 Android Architecture

In summary, Android is a software stack for mobile devices that includes an operating
system, middleware and key applications. The Android SDK provides the tools and APIs
necessary to develop applications on the Android platform using the java programming
language. Moreover, Android includes a set of C/C++ libraries that can be used by various
components of the Android system. These capabilities are exposed to developers through
the Android application framework as shown in Figure C-1.

Android Graphics 3

Figure C-1 also shows that an Android application runs in its own process, with its own
instance of the Dalvik virtual machine (VM). The Dalvik Executable (.dex) format is used
to execute files in the Dalvik VM; the format is optimized for minimal memory footprint.
After a java program has been compiled, the classes will be transformed into the .dex format
by the dx tool so that it can be run in the Dalvik VM. The Linux kernel provides underlying
functionality such as threading and low-level memory management for the Dalvik VM.

Like the rest of Android, Dalvik is open-source software and is published under the
terms of the Apache License 2.0. Dalvik is known to be a clean-room implementation
rather than a development on top of a standard java runtime. This could mean that it does
not inherit copyright-based license restrictions from either the standard-edition or open-
source-edition java runtimes.

Android has undergone several versions of revision. Each new version is named after a
desert:

1. Android 1.6 (Donut)
2. Android 2.02.1 (Eclair)
3. Android 2.2 (Froyo)
4. Android 2.3 (Gingerbread)
5. Android 3.0 (Honeycomb)

As of this writing, the latest version is 4.0 (Android Icecream Sandwich), which was re-
leased in November, 2011. This version merges Android 2.3 (Gingerbread) and Android
3.0 (Honeycomb) into one operating system for use on all Android devices. This will al-
low us to incorporate Honeycombs features such as the holographic user interface, new
launcher and more (previously available only on tablets) into our smart phone apps, and
easily scale our apps to work on different devices. Ice Cream Sandwich will also add new
functionality.

We encountered some minor problems in running Android 3.0 and 4.0 emulators in
some platforms, especially in 64-bit machines. It seems that versions 2.2 and 2.3 are the
most stable versions with richest features at this moment. The Android programs presented
in this book are developed and tested with Android version 2.3.3, API level 10.

Though Android apps are written in java, 3D graphics programs are written with OpenGL
ES. Actually, our main concern here is to explain the principles of 3D graphics. The graph-
ics functions, OpenGL commands, that we are going to use are open standards in the indus-
try. They have the same form and syntax, whether they are presented in C/C++ or Android
Java.

2 Development Tools

The Android official site provides the information and tools to develop Android appli-
cations. One can refer to the site

http://developer.android.com/index.html

to learn the details and download the development tools. The following link shows how to
install Android and set up the development environment for the first time:

http://developer.android.com/sdk/installing.html

4 Development Tools

Since Android applications are written in java, in most situations developing an An-
droid application is simply writing some java programs utilizing the Android libraries. The
programs can be compiled and built with use of Apache Ant, a software tool for automat-
ing software build processes. Ant is similar to Make but it is implemented in java, and is
best suited to building java projects. However, it is more convenient to do the develop-
ment using Eclipse, a multi-language open software development environment consisting
of an integrated development environment (IDE) along with an extensible plug-in system.
Eclipse is mostly written in java, and is an ideal IDE for developing java applications; it
can be also used to develop applications of other programming languages such as C/C++
and PHP by means of various plug-ins.

Eclipse

One can obtain information of Eclipse and download it from its official web site at

http://www.eclipse.org/

Eclipse can be easily installed and run in any supported platform. Using Linux as an exam-
ple, the following steps show how to install Eclipse along with the Android Development
Tools (ADT).

1. Go to http://www.eclipse.org/; click Download Eclipse; choose Eclipse for RCP
and RAP Developers: Linux 32 Bit, and download the package into a local direc-
tory, say, /apps/downloads.

2. Unpack the downloaded package into the directory /apps by:

$ cd /apps
$ gunzip -c /apps/download/eclipse-rcp-helios-SR2-linux-gtk.tar.gz | tar xvf -

3. Then start Eclipse by:

$ cd eclipse
$./eclipse

4. From the eclipse IDE, install the Android Development Tools (ADT):

• ClickHelp > Install New Software
• In the “Work with” box, type http://dl-ssl.google.com/android/eclipse/; hit “En-

ter”; select all the “Development Tools”; click Next; click Next; accept the
license “agreement to”, and click Finish to install ADT.

5. After the ADT installation, restart Eclipse.
6. Click Window and you should see the entry Android SDK and AVD Manager.
7. Add the Android SDK directory by clicking Preference; select Android and enter

the location of your Android SDK. Now click on Android SDK and AVD Manager
to proceed.

8. If you are new to eclipse, click on Tutorials and follow the instructions to create a
Hello World application.

As an example of writing Android applications in the Eclipse IDE, we present the steps
of writing a Hello World application. In this example, we will run the application in the
Android Emulator. You can also find this example at the Android tutorial web site at

http://developer.android.com/resources/tutorials/hello-world.html

Android Graphics 5

In the description, we use the specified Android version 2.3.3.

1. Start Eclipse.
2. In the Eclipse IDE, choose Preferences > Android.
3. Install a platform in Eclipse:

(a) Choose Window > Android SDK Manager, which displays a panel showing
the Android platform packages in your system.

(b) As an example, choose Android 2.3.3(API 10) and its subcomponents “SDK
Platform” and “SDK Samples”; then click Install 2 packages; check Accept
All; click Install. Eclipse will download the package from the Internet and
install it.

(c) When it is finished you can press the key ‘ESC’ to clear the panel.

4. Create an Android Virtual Device (AVD), which defines the system image and device
settings of the emulator:

(a) In Eclipse, choose Window > AVD Manager, which displays the Android
Virtual Device Manager panel.

(b) Click New.., which displays the Create new Android Virtual Device (AVD) dia-
log.

(c) Enter a name for the AVD, say, “avd233”.
(d) Select the target to be Android 2.3.3 – API Level 10.
(e) Click Create AVD.
(f) Press ‘ESC’ to exit the AVD panel.

5. Create a new Android project:

(a) In Eclipse, select File > New > Project, which displays the New Project dialog
as shown in Figure C-2 below.

Figure C-2 Eclipse New Project Dialog

(b) Select Android Project and click Next, which displays the New Android Project
dialog.

(c) Enter “HelloWorldProject” Project Name and click Next.
(d) Choose Build Target to be Android 2.3.3 and click Next.
(e) Enter “HelloWorld” for Application Name, “android.hello” for Package Name,

“HelloWorld” for Create Activity, 10(Android 2.3.3) for Minimum SDK and
click Finish.

6 Development Tools

The HelloWorldProject Android project is now ready. It should be visible in the
Package Explorer on the left of the Eclipse IDE. (You may need to click Plug-in
Device.. on the left to display Package Explorer.

6. From the Package Explorer, choose HelloWorldProject > src > android.hello >
HelloWorld.java. Double-click on HelloWorld.java to open it, which should look
like the following:

package android.hello;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorld extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

7. Revise “HelloWorld.java” to the following that constructs a user interface (UI):

package android.hello;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
public class HelloWorld extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
tv.setText("Hello, Android!");
setContentView(tv);

}
}

8. Run the application by choosing from Eclipse, Run > Run. Then select Android
Application and click OK. The Android emulator will start and run the application.
You should see on your screen something like Figure C-3 below.

Figure C-3 HelloWorld Android Application

Android Graphics 7

If you do not see the message “Hello, Android!”, click the menu button of the An-
droid emulator which will run the application.

3 OpenGL ES

The Android framework supports both the OpenGL ES 1.0/1.1 and OpenGL ES 2.0 APIs.
OpenGL ES, where ES is short for embedded system, is a flavor of the OpenGL specifi-
cation tailored for embedded devices. OpenGL ES is royalty-free and cross-platform. Its
APIs have full-function support for 2D and 3D graphics on embedded systems such as
mobile phones and appliances. OpenGL ES 1.X uses the traditional fixed-pipeline archi-
tecture and emphasizes hardware acceleration of the API. It offers enhanced functionality,
good image quality and high performance. OpenGL ES 2.X is for programmable hardware.
It emphasizes a programmable 3D graphics pipeline and allows the user to create shader
and program objects. With ES 2.X, one can also write vertex and fragment shaders in the
OpenGL ES Shading Language. On the other hand, OpenGL ES 2.0 does not support the
fixed function transformation and fragment pipeline that OpenGL ES 1.x supports.

Since Android 1.0, the Android framework has supported the OpenGL ES 1.0 and 1.1
API specifications. Starting from Android 2.2 (API Level 8), the framework supports the
OpenGL ES 2.0 API specification. One can find the API specifications at the site,

http://developer.android.com/guide/topics/graphics/opengl.html

However, the Android emulator does not support OpenGL ES 2.0. Therefore, our discus-
sion here is based on OpenGL ES 1.X, which has certain limitations. In particular, it does
not support direct vertex handling. For example, there are no glBegin/glEnd and glVertex*
functions. Some constants such as GL POLYGONS and GL QUADS are missing.

We will discuss an example of using OpenGL ES 1.0 in Android. This example can be
found in the tutorial section of the Android developer site at

http://developer.android.com/resources/tutorials/opengl/opengl-es10.html

Create an Activity with GLSurfaceView

Before we start using OpenGL to create graphics in Android, we have to implement the
class GLSurfaceView, which extends SurfaceView and the class GLSurfaceView.Renderer,
which is responsible for making OpenGL calls to render a frame. Using Android 2.3.3
(Level 10) as an example, we first show how to create an activity with GLSurfaceView:

1. In Eclipse, choose File > New > Project > Android Project and click Next.

2. Enter “HelloES” for Project Name, and click Next; choose Android 2.3.3 for Build
Target and click Next.

3. Enter the following information for the New Android Project:

Application Name: HelloES
Package Name: opengl.es10
Create Activity: HelloESActivity
Minimum SDK: 10 (Android 2.3.3)

8 OpenGL ES

Then click Finish to create the new project.

4. Project HelloES should appear in Package Explorer of Eclipse. Choose HelloES >
src > opengl.es10 > HelloESActivity.java to open the file “HelloESActivity.java”.
Modify this file as follows:

package opengl.es10;

import android.app.Activity;
import android.os.Bundle;
import android.content.Context;
import android.opengl.GLSurfaceView;

public class HelloESActivity extends Activity {
private GLSurfaceView mGLView;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity.
mGLView = new HelloESSurfaceView(this);
setContentView(mGLView);

}

@Override
protected void onPause() {

super.onPause();
// The following call pauses the rendering thread.
mGLView.onPause();

}

@Override
protected void onResume() {

super.onResume();
// The following call resumes a paused rendering thread.
mGLView.onResume();

}

class HelloESSurfaceView extends GLSurfaceView {

public HelloESSurfaceView(Context context){
super(context);

// Set the Renderer for drawing on the GLSurfaceView
setRenderer(new HelloESRenderer());

}
}

}

Note that you should see an error indicator at setRenderer(new HelloESRenderer());
. This is because up to this point, we have not defined the class HelloESRenderer.

In the HelloESActivity class shown above, we use a single GLSurfaceView for its
view; the class also implements callbacks for pausing and resuming activities. The
HelloESSurfaceView class is responsible for setting the renderer to draw on the
GLSurfaceView.

5. In Eclipse, choose File > New > File and enter “HelloESRenderer.java” for File

Android Graphics 9

name and click Finish to create a new file for the following class HelloESRenderer,
which implements the GLSurfaceView.Renderer interface:

package opengl.es10;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView;

public class HelloESRenderer implements GLSurfaceView.Renderer {

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// Set the background frame color to blue
gl.glClearColor(0.0f, 0.0f, 0.9f, 1.0f);
// Enable use of vertex arrays
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

}

public void onDrawFrame(GL10 gl) {
// Redraw background color
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

}

public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0, 0, width, height);

}
}

6. Now you can run the application by choosing Run > Run > Android Application
and click OK. The Android emulator will start and will show a blue background
screen. The code above is pretty much self-explained. The functions glClear(),
glClearColor(), and glViewport() are the standard OpneGL commands we have
discussed. The only functions new to us are the few used by Android to do the
initialization, which include the following:

• onSurfaceCreated() is called once for setting up the GLSurfaceView environ-
ment.
• onDrawFrame() is called whenever we redraw the GLSurfaceView. This is

similar to the display() function we have used in our OpenGL C programs.
• onSurfaceChanged() is called when the geometry of the GLSurfaceView

changes. This is similar to the glutPostRedisplay() used in C programs.

Draw a Triangle on GLSurfaceView

With the template code provided above, we should be able to make 2D or 3D graphics
with our knowledge of OpenGL. We discuss here how draw to a triangle.

By default, OpenGL ES assumes a world coordinate system where the center of the
GLSurfaceView frame is at (0, 0, 0); the coordinates of the lower left corner and upper right
corner are at (−1,−1, 0) and (1, 1, 0) respectively. Therefore, as an example, we specify a
triangle with the following vertex coordinates:

(−0.6,−0.5, 0), (0.6,−0.5, 0), (0.0, 0.5, 0)

We will display this triangle with green color on the blue background. To accomplish this,
we modify the HelloESRenderer class as follows:

10 OpenGL ES

package opengl.es10;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView;

public class HelloESRenderer implements GLSurfaceView.Renderer {

private FloatBuffer triangle;

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// Set the background frame color to blue
gl.glClearColor(0.0f, 0.0f, 0.9f, 1.0f);
// initialize the triangle vertex array
initShapes();
// Enable use of vertex arrays
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

}

public void onDrawFrame(GL10 gl) {
// Redraw background color
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
// Draw the triangle using green color
gl.glColor4f(0.0f, 1.0f, 0.0f, 0.0f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, triangle);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

}

public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0, 0, width, height);

}

private void initShapes(){
float vertices[] = {

// (x, y, z) of triangle
-0.6f, -0.5f, 0,
0.6f, -0.5f, 0,
0.0f, 0.5f, 0

};

// initialize vertex Buffer for triangle
// argument=(# of coordinate values * 4 bytes per float)
ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
// use the device hardware’s native byte order
vbb.order(ByteOrder.nativeOrder());
// create a floating point buffer from the ByteBuffer
triangle = vbb.asFloatBuffer();
// add the coordinates to the FloatBuffer
triangle.put(vertices);
// set the buffer to read the first vertex coordinates
triangle.position(0);

}
}

We can recompile our graphics application by first clicking on the file HelloESActiv-
ity.java and then choosing Run in Eclipse. The Android emulator will run the application
and we should see a green triangle displayed on a blue background as shown in Figure C-4

Android Graphics 11

below.

Figure C-4 HelloES Graphics Output

Setting Camera View and Transformations

Just as we do in a usual C program, we use gluLookAt() to set the camera view and
position. The modelview transformation and projection transformation functions discussed
in Chapter 3 and Chapter 4 also apply here. As an example, we modify the functions
onDrawFrame() and onSurfaceChange() of the class HelloESRenderer as follows to in-
clude projection and modelview transformations; our camera is at (0, 0, 5) viewing along
the negative z direction. We also scale the triangle by a factor of 3 along the y-direction
and rotate it about the z-axis by 30o. (Note again that we first scale, then rotate.)

public void onDrawFrame(GL10 gl) {
// Redraw background color
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
// Set GL_MODELVIEW transformation mode
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity(); // reset the matrix to its default state

// When using GL_MODELVIEW, you must set the view point.
// camera at (0, 0, 5) look at (0,0,0), up = (0, 1, 0)
GLU.gluLookAt(gl, 0, 0, 5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
//rotate about z-axis for 30 degrees
gl.glRotatef(30, 0, 0, 1);
//magnify triangle by x3 in y-direction
gl.glScalef (1, 3, 1);
// Draw the triangle
gl.glColor4f(0.0f, 1.0f, 0.0f, 0.0f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, triangle);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

}

public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0, 0, width, height);

float aratio = (float) width / height; //aspect ratio

12 Animation and Event Handling

float l, r, b, t, n, f; //left,right,bottom,top,near,far
b = -1.5f; t = 1.5f; n = 3.0f; f = 7.0f;
l = b * aratio; r = t * aratio;

gl.glMatrixMode(GL10.GL_PROJECTION); //set matrix to projection mode
gl.glLoadIdentity(); // reset the matrix
gl.glFrustumf(l, r, b, t, n, f); // apply the projection matrix

}

We also need to include the header statement “import android.opengl.GLU;” at the begin-
ning of the file as we need to use the function GLU.gluLookAt(). After the modification,
we can run the program HelloESActivity.java again. The output of the program is shown
in Figure C-5.

Figure C-5 HelloES Output with Projection and Modelview Transformations

4 Animation and Event Handling

We can make use of the methods (functions) provided by the Android class SystemClock
to create animated graphics. The class consists of core timekeeping facilities. To use the
methods. we have to import the class by adding the header statement,

import android.os.SystemClock;

There are three clocks we can use to keep time:

1. currentTimeMillis() gives the current time and date expressed in milliseconds since
the epoch. This clock can be set by the user or the phone network.

2. uptimeMillis() gives the active time lapse in milliseconds since the system was
booted. This clock stops when the process is in a blocked or a sleep state such
as waiting for an I/O event or executing Thread.sleep().

3. elapsedRealtime() gives the counts in milliseconds since the system was booted,
including the time when the process is blocked or in a sleep state.

Android Graphics 13

There are several ways to control the timing events in an animation process:

1. Thread.sleep(millis) and Object.wait(millis) are standard blocking functions that
can be used to generate desired time delays. When these functions are executed, the
uptimeMillis() clock stops. The thread can be woken up by the function Thread.interrupt().

2. SystemClock.sleep(millis) is a utility function very similar to Thread.sleep(millis),
except that it ignores InterruptedException.

3. We can use the Handler class to schedule asynchronous callbacks at an absolute or
relative time. A handler object uses the uptimeMillis() clock to keep time. It requires
an event loop to wait for an event to happen.

4. We can use the AlarmManager class to access the system alarm services such as
triggering one-time or recurring events when the thread is in a blocked state.

As an example, let us rotate the triangle of Figure C-5 discussed above for 6o every
second. To accomplish this, all we need to do is to add to the class HelloESRenderer a data
member angle of type float:

public float angle = 0.0f;

Then we make the following modifications to the code of its member function onDrawFrame():

public void onDrawFrame(GL10 gl) {
....
GLU.gluLookAt(gl, 0, 0, 5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
SystemClock.sleep (1000); //delay for 1 second
angle += 6; //increment angle by 6 degrees
//rotate triangle about z-axis
gl.glRotatef(angle, 0.0f, 0.0f, 1.0f);
//magnify triangle by x3 in y-direction
gl.glScalef (1, 3, 1);
// Draw the triangle
.....

}

When we run the modified program, we will see the triangle of Figure C-5 rotating anti-
clockwise 6o every second.

If we want the triangle to interact with us rather than rotating automatically, we need
to expand our implementation of GLSurfaceView to override the onTouchEvent() function
to listen for touch events. Since we have defined above the data member angle of the
HelloESRenderer class to be public, the member is exposed to other classes. We just need
to modify the HelloESSurfaceView class to process touch events and pass the data to the
renderer. To accomplish this, we have to include the import statement,

import android.view.MotionEvent;

In the onDrawFrame() function, we just comment out the time delay and increment state-
ments as the angle value is determined by touch events:

public void onDrawFrame(GL10 gl) {
....
// SystemClock.sleep (1000); //delay for 1 second
// angle += 6;

gl.glRotatef(angle, 0.0f, 0.0f, 1.0f);
}

14 Animation and Event Handling

Then we modify the HelloESSurfaceView class (in the file “HelloESActivity.java”) as fol-
lows. We set the renderer member so that we have a handle to pass in rotation input
and set the render mode to RENDERMODE WHEN DIRTY. We also override the on-
TouchEvent() method to listen for touch events and pass the parameters to our renderer:

class HelloESSurfaceView extends GLSurfaceView {
private final float TOUCH_SCALE_FACTOR = 180.0f / 320;
private HelloESRenderer renderer;
private float previousX;
private float previousY;

public HelloESSurfaceView(Context context){
super(context);
// set the renderer member
renderer = new HelloESRenderer();
setRenderer(renderer);

// Render the view only when there is a change
setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);

}
@Override
public boolean onTouchEvent(MotionEvent e) {

// MotionEvent reports input details from the touch screen
// and other input controls. Here, we are only interested
// in events where the touch position has changed.

float x = e.getX();
float y = e.getY();

switch (e.getAction()) {
case MotionEvent.ACTION_MOVE:

float dx = x - previousX;
float dy = y - previousY;

// reverse direction of rotation above the mid-line
if (y > getHeight() / 2)

dx = dx * -1 ;

// reverse direction of rotation to left of the mid-line
if (x < getWidth() / 2)

dy = dy * -1 ;

renderer.angle += (dx + dy) * TOUCH_SCALE_FACTOR;
requestRender();

}

previousX = x;
previousY = y;
return true;

}
}

When we run the application, we should see the green triangle again. If we drag our mouse
and move its cursor around the center in an anticlockwise direction, the triangle will rotate
in a clockwise direction. Conversely, if we drag the mouse clockwise, the triangle rotates
anticlockwise.

In summary, this chapter gives you an introduction to create 2D and 3D graphics in
the Android platform using OpenGL. You can find a lot more examples and resources of
creating graphics in Android at its official site and associated links at

Android Graphics 15

http://developer.android.com/guide/topics/graphics/opengl.html

The Android open-source project has been creating huge opportunities for many people. It
is joyful to make contributions to its growth and development.

16 Animation and Event Handling

Android Graphics 17

	Appendix C Android Graphics
	C.1 Introduction
	C.2 Development Tools
	C.3 OpenGL ES
	C.4 Animation and Event Handling

