Anesthesia Machine Care and troubleshooting Charlene J. Williams, CRNA, MSN Assistant Professor

Anesthesiology Nursing

Hope, Knowledge, and Opportunity

Required Reading

Dorsch & Dorsch <u>Understanding Anesthesia Equipment</u> 4th ed. (1999) Williams&Wilkins:Philadelphia. Pg 355-427, 895-904, 937-965. Other collections from review books and notes

Happy is He who gains Wisdom from another's Mishaps.

Anesthesia Safety

Where does the fault lie???

MAN VS. MACHINE

Primary system of anesthesia machine
High Pressure (745-2200 psi)
Intermediate Pressure (37-55 psi)
Low pressure (16-25 psi)

Anesthesia Machine (High Pressure System)

Cylinder
Hanger yoke (PISS)
Filter
Check valves
Bourdon Type pressure gauge
Pressure regulator

Anesthesia Machine Intermediate Pressure DISS Bourdon Type pipeline pressure gauge Ventilator pneumatic drive gas(O₂) source O2 failure Secondary reducing valve O2 flush valve

Anesthesia machine (Low Pressure)

Proportioning devices
 Flowmeters
 vaporizers

Potential hazards of anesthesia machine and breathing system

- Hypoxia (hypoxia)
 Hypercapnia
 Hyperventilation
 Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

Potential hazards of anesthesia machine and breathing system

Hypoxia Hypercapnia Hyperventilation **Excessive** Airway Pressure Fires Physical damage Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

Hypoxia-Incorrect gas Supplied

Piping system
 Cylinders
 Crossovers in the anesthesia machine

Hypoxia

 Incorrect gas supplied
 Hypoxic mixture delivered Loss of oxygen to atmosphere
 Air entrainment

Hypoxia

Common transposition in piping itself Incorrect gas installed @ central supply Incorrect outlets installed inside the OR

Incorrect connector maybe placed on the hose Pipeline inlet of the anesthesia machine Quick connect fittings may be damaged

Hypoxia (con't)

Quick connect fittings are poorly designed so that an incorrect connection can be made

Connections between piped gases can occur in the peripheral equipment Air flowmeter may have a oxygen outlet connector
 Crossover

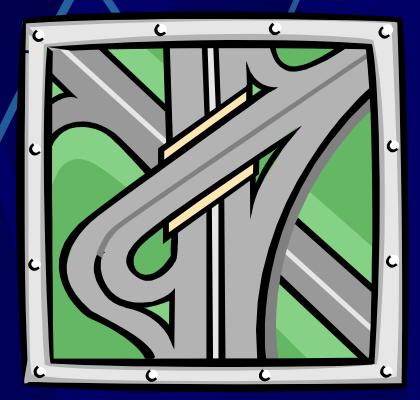
contamination occurred—100% FIO2 want administer

Hypoxia r/t mixture delivered

Flow control valve malfunction
 Incorrect flowmeter settings
 Incorrect flowmeter readings
 Inaccurate flowmeter

Hypoxia R/T Hypoventilation-low inflow

Pipeline problem


Cylinder problem

Machine problem

Hypoxia R/T Hypoventilation

Low inflow Excessive outflow Blockage of the inspiratory pathway

Hypoxia (hypoventilation)excessive outflow

Breathing system leaks
 Disconnections
 Negative pressure applied to the breathing system
 Improper adjustment of the APL valve

Hypoxia(hypoventilation)

Blockage of the inspiratory pathway
What are the causes??

What is your response?

Check ventilator settings
Check ventilator bellows
1.bellows don't move
2.bellows fills but fail to compress fully
3.fail to fill

Incorrect placement of the PEEP valve

Potential hazards of anesthesia machine and breathing system Hypoxia Inhaled foreign substance Hypercapnia Anesthetic agent Hyperventilation overdosage **Excessive** Airway Inadequate Pressure anesthetic agent Fires Inadvertent exposure to Physical damage volatile agent Latex allergy

Hypercapnia

Inadvertent administration of carbon dioxide

Rebreathing without removal of carbon dioxide

Hypercapnia (cont)-Rebreathing without removal of carbon dioxide

 Absorbent failure
 Bypassed absorbent
 Inadequate fresh gas flow to a mapleson system
 Improper assembly of the Bain system

- Unidirectional valve problem
- Problem with nonrebreathing valves
- Excessive dead space

Potential hazards of anesthesia machine and breathing system

- Hypoxia Hypercapnia **Hyperventilation Excessive** Airway Pressure Fires Physical damage Latex allergy
- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

Hyperventilation

 Hole or tear in the bellows can cause inadvertent hyperventilation
 Detection: increased oxygen concentration if oxygen is the driving gas or decreased concentration if air is used

What else can happen??

Hyperventilation
Excessive Airway pressure
Causes-high inflow

Causes-low outflow

Potential hazards of anesthesia machine and breathing system

- Hypoxia Hypercapnia Hyperventilation Excessive **Airway Pressure** Fires Physical damage Latex allergy
- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

Excessive Airway Pressure

High Inflow
 Low Outflow
 Unintentional Peep
 Misconnection of Oxygen tubing

Excessive Airway Pressure---Causes of low outflow

Obstruction in the expiratory limb

At the ventilator

At the APL valve

In the scavenging system

 Nonrebreathing valves in resuscitators

What do you do??

Detection

Response

Potential hazards of anesthesia machine and breathing system

- Hypoxia
 Hypercapnia
 Hyperventilation
 Excessive Airway Pressure
 Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

Inhaled foreign substance

Absorbent dust
Ethylene oxide and glycol
Parts of breathing system components
Contaminated medical gases
Foreign bodies

Potential hazards of anesthesia machine and breathing system

- Hypoxia
 Hypercapnia
 Hyperventilation
 Excessive Airway Pressure
 Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

Anesthetic agent overdosage

 Tipping
 Vaporizer or N2O inadvertently turned on
 Incorrect agent
 Improper vaporizer installation

Overfilled vaporizer

Potential hazards of anesthesia machine and breathing system

- Hypoxia
 Hypercapnia
 Hyperventilation
 Excessive Airway Pressure
 Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent

 Inadvertent exposure to volatile agent

Inadequate anesthetic agent

- Decreased N2O flow
- Unexpected high O2 concentration
- Leak in vaporizer
- Empty vaporizer
- Incorrect agent in vaporizer

- Incorrect vaporizer setting
- Incorrect vaporizer mounting
- Damaged vaporizer
- Air entrained into breathing system
- Dilution by ventilator driving gas

Potential hazards of anesthesia machine and breathing system

 Hypoxia
 Hypercapnia
 Hyperventilation
 Excessive Airway Pressure

Fires

- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

More hazards

Inadvertent
 exposure to volatile
 agent

Fires and explosion
 Factors

 1.

- 2.
- 3.

Potential hazards of anesthesia machine and breathing system

- Hypoxia
 Hypercapnia
 Hyperventilation
 Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent

More hazards

Physical damage

Latex allergy

Malignant Hyperthermia

Clinical presentation: tachycardia, tachypnea, and elevated ETCO2

 Must be distinguished from ventilator or unidirectional valve malfunction (respiratory acidosis),hyperthyroidism,cocaine intoxication, pheochromocytoma and sepsis

Malignant Hyperthermia

Triggers: succinylcholine and all inhaled volatile agents Safe anesthetics: barbituates, propofol, etomidate, ketamine, opiods, local anesthetics, catecholamines, N2O and all nondepolarizing muscle relaxant

Malignant Hyperthermia

 Treatment in the OR: high gas flow,hyperventilation,stopped inhaled agents
 Dantrolene 2.5mg/kg up to 10mg/kg
 Cooling by any means

Equipment checking

- High pressure system
 - Cylinder gas supply
 - Pipeline gas supply

- Low pressure system
 - Negative pressure
 - Positive pressure
 - Pressure gauge
 - Fresh gas line occlusion
 - Elapsed time pressure

Equipment checking

Scavenging system
Breathing system

Equipment checking

Leak test for the bellow Ventilator safety relief valve

Alarm check

Unidirectional valves

Alarm devices

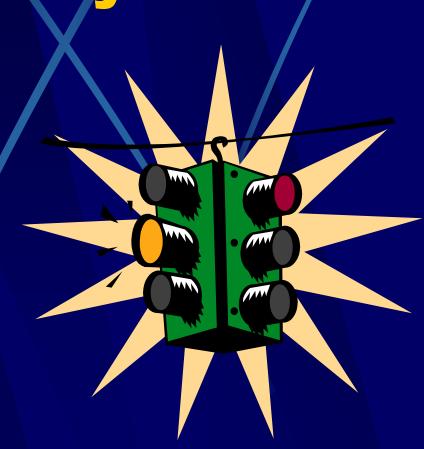
Audible signals
High priority
Medium priority
Low priority

False alarmsFalse negativeFalse positive

Hazards of ventilation

 Descending bellows
 Ventilation pressure relief valve failure
 Disconnect pilot line
 Ruptured valve Drive gas failure
Electronic failure
Misconnection
Bellow leaks
Utilized flush valve during mechanical ventilation

Hazards of ventilation


Ventilation pressure relief valve failure Hypoventilation: incompetent valve stuck open on inspiration leads to interface and scavenging interface and scavenging vacuum directly into breathing circuit

 Barotrauma: valve is stuck closed during exhalation

summary

Machine check is the most important piece for patient safety

- If unsure, please ask
- If it doesn't fit easily don't force it

Electric hazards

Macroshock: gross amount of current experienced at body surface to intact skin (120V-household current)

- Severity:
 - Resistance of skin (1000's to 1 million)
 - Contact time
 - Density of current (contact of current on skin)

Electric hazards

Microshock: small amount of current delivered internally by conduits
 Pacing electrodes
 CVP
 PA catheters

What is the difference?

Macroshock & effect

1 sec contact time

1 mA	tingling	
5 mA	Maximum safety	
10-20 mA	"Let go" threshold before muscle contraction	
50 mA	pain	
<u>100-300 mA</u>	<u>V-fib</u>	
6000 mA	Resp muscle paralysis	

Microshock & effect

1 sec contact time

50-100 microA V-fib 10 microA Maximum current leak in equipment

Line Isolation Monitor (LIM)

- Monitors the integrity of isolated power system alarms when current flows to ground
 - Alarms @ 2-5 mA current leak
 - Leaks above threshold-trips the circuit breaker

Isolated power system

- Ungrounded system- main line are grounded
 - Secondary transformer-isolated transformer separated from the main hospital

Purpose: macroshock prevention
 Short circuit activates ground wire
 Does not prevent microshock

Disinfectant inactivates HBV/CMV/HIV

	HBV/CMV-10 min @20 C	HIV- 10 @ 24 C
Ethyl ETOH	<u>ineffective</u>	50%
Sodium hypochlorite	1:10 solution	1:10 solution
Quaternary ammomium	<u>ineffective</u>	0.08%
phenolic	<u>ineffective</u>	0.05%
Isopropyl ETOH	70%	35%

OSHA Occupational Exposure Limits

Ethylene oxide: 1 ppm 8 hours TWA 5 ppm STEL or 15 min TWA

Glyteraldehyde (cidex) : 0.2 PPM 8 hour TWA

Disinfection of anesthesia machine & equipment

- EPA: (primary) use only EPA registered disinfection
 - FDA: regulates some chemical disinfectant
 OSHA: regulates occupational exposure to toxic levels

CDC: makes recommendations for prevention-don't regulate approve or test chemical germicides or sterilizer

Autoclaving

Steam sterilizing-old/most common method of sterilization that tolerates heat and humidity

 Best method for inactivation TB,HBV,CMV, HIV and Creutzfeldt-Jakob Disease (CJD)

CJD

Extremely resistant to disinfection
Steam sterilization 1 hour @ 132 C (best)
Soak in Bleach 1 hour rm temp.
Wipe surfaces bleach undiluted/diluted 1:10 dilution (15-30 min rm temp.

- Bleach is caustic
- 1:10 solution----1 part bleach with 9 parts water

TB/ HEP B/ HIV

Tuberculocidal agents adequate inactivating HBV/CMV HBV survives for several days HIV(?)-minutes Blood and Body fluids exposure is decreased by Clorox-effective and economical against HIV in a 1:10 solution