Chapter 3 Unit Plan: Angles and LInes

This geometry unit plan was created for my methods in teaching math class and taught to my peer and professor. It is based on chapter 3 of The University of Chicago School Mathematics Project, Geometry which was about angles and lines. The students learned about angle measure, parallel lines, perpendicular lines, and associated theorems. There was a focus on showing angle congruence and an introduction to proof writing using a two-column set up. The main Indiana state standard related to this unit is,
"G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment."

The summative assessment associated with this unit was a chapter test covering vocabulary, measuring angles, proving theorems using a two-column format, and applying theorems about angles and lines to find missing angles. Throughout the unit, I used formative assessments including homework, exit tickets, and in class activities.

Sources

Coxford, A. F., Usiskin, Z., \& Hirschhorn, D. (1993). Geometry. Glenview, IL: ScottForesman.

Indiana Academic Standards Mathematics: Geometry. (2017, October 2). Retrieved December 07, 2017, from https://www.doe.in.gov/sites/default/files/standards/mathematics/geometrystandards.pdf

Name: \qquad Date: \qquad Class Period: \qquad

Matching (2pts. each): Match all terms to their definitions.
A. Acute Angle
B. Obtuse Angle
C. Right Angle
D. Straight Angle
E. Zero Angle
F. Complementary Angles
G. Supplementary Angles

1. \qquad Measure of angle is 180°
2. \qquad Measure of angle is 90°
3. \qquad Sum of angle measures is 180°
4. \qquad Measure of angle is 0°
5. \qquad Measure of angle is less than 90°
6. \qquad Sum of angle measures is 90°
7. \qquad Measure of angle is greater than 90

Measuring (3pts. each): Name and measure each angle using a protractor.
8. Name: \qquad
Measure: \qquad
9. Name: \qquad
Measure: \qquad

Proofs: Prove the following theorems using the two-column setup. Draw a picture if needed.
10. Vertical Angle Theorem (6 pts.): If two angles are vertical angles, then they have equal measure.

Statements	Reasons

11. Alternate Interior Angles

Theorem (6 pts.): When two parallel lines are cut by a transversal, alternate interior angles are equal.

12. Angle Pile Up (18 pts.): From given information, find measure of all other angles. Justify all of your answers.

- Line a is parallel to line b
- $\mathrm{m} \angle 2=126^{\circ}$
- $\mathrm{m} \angle 12=80^{\circ}$
- $\mathrm{m} \angle 13=134^{\circ}$

School of Education Essential Components of Lesson

Academic and Christian Discovery
Topic: Angles Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 1
Enduring Understanding (Big Idea): There are several ways we can talk about angles and how they relate to each other.
Essential Question/s: How do we talk about and describe angles?
Key Vocabulary: Angle, side, vertex, measure, interior, exterior, measure
I. CONTENT STANDARDS: (this is for whole unit)
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Define and angle and identify the parts
2) Measure an angle
3) Apply the Angle Measure Postulate
III. ASSESSMENT:
4) Exit ticket and homework
5) Exit ticket and homework
6) In class examples and homework

IV. MATERIALS AND INSTRUCTIONAL TOOLS:

Protractor, smart board
Textbook: The University of Chicago School Mathematics Project, Geometry

V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:

Use various colors to tie concepts together
Have students come to the board to answer questions or have them do a turn and talk depending on class size.
Offer challenge problem with homework assignment.

VI. STUDENT ACCOMMODATIONS:

Follow all IEP guidelines
Offer students who need it fill in the blank copies of the notes as well as post notes online to class website for students to refer to later.

VII. DESCRIPTION of LEARNING ACTIVITIES:						
	\# of minutes	Activities	Assessment/ Evidence	Resources		
Intro: Transition	5	Probably seen angles and some of this before Today is learning some technical names and rules about angles				
Teach/Practice	20	Lesson (see power point) Go through the power point and fill in the written notes attached. Ask questions along the way, either have someone come up to the board or do a turn and talk then share answers with class.	Book			
Application *	5	Practice Problems	Book			
Closure	10	Exit Ticket: 1) Definition of angle 2) Draw an Angle 3) Label and name it properly 4) Measure it (?)	Exit ticket handed in at end of class Homework handed in next class			

Day 1

School of Education Essential Components of Lesson

Academic and Christian Discovery

```
Topic: Angles Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 2
Enduring Understanding (Big Idea): There are several different types of angles categorized by measure. Essential Question/s: What are different types of angles.
Key Vocabulary: Zero, straight, right, acute, obtuse, complementary, supplementary, adjacent, linear pair, vertical angles.
```

I. CONTENT STANDARDS: (this is for whole unit)
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Define vocabulary above.
2) Know and apply linear pair theorem.
3) Know and apply vertical angle theorem.

III. ASSESSMENT:

1) Exit ticket and homework
2) In class example and homework
3) In class example and homework

IV. MATERIALS AND INSTRUCTIONAL TOOLS:

Smart board
Textbook: The University of Chicago School Mathematics Project, Geometry

V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:

Use various colors to tie concepts together
Have students come to the board to answer questions or have them do a turn and talk depending on class size
Offer extra challenge question with homework assignment.

```
VI. STUDENT ACCOMMODATIONS:
Follow all IEP guidelines
Offer students who need it fill in the blank copies of the notes as well as post notes online to class
website for students to refer to later.
```

VII. DESCRIPTION of LEARNING ACTIVITIES:				
	\# of minutes	Activities	Assessment/ Evidence	Resources
Intro: Motivation \& Transition	7	Recall: 1. What is an angle? 2. How do we name an angle? 3. How do we measure an angle? 4. What is a straight angle? 5. What is a zero angle?	Have students answer individually then check as a class	
Teach/Practice	15	Lesson (see power point) Go through the power point and fill in the written notes attached. Ask questions along the way, either have someone come up to the board or do a turn and talk then share answers with class.		Book
Application*	11	Example on $2^{\text {nd }}$ to last slide. Fill in given information, ask students to work on own then fill in		Book
Closure	7	Exit Ticket: 1. Draw a pair of... a. Vertical angles b. Complementary angles c. Supplementary angles 2. What is an obtuse angle? Homework: p. 117 \#1,4-12 even, 15 Challenge Problem: p. 119 \#25 or 26	Exit ticket handed in at end of class Homework handed in next class	

Day 2

School of Education Essential Components of Lesson

Academic and Christian Discovery

Topic: Angles Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 3
Enduring Understanding (Big Idea): We manipulate angles in several ways to solve a problem
Essential Question/s: How can we use angles in problem solving?
Key Vocabulary: NA

I. CONTENT STANDARDS:

For Whole Unit
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
For This Activity
PS.1: Make sense of problems and persevere in solving them.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Manipulate angles to solve a problem
III. ASSESSMENT:
2) Progress on the activity
IV. MATERIALS AND INSTRUCTIONAL TOOLS (including safety issues and technology):

Projector, student computers

```
V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:
Students get to work at their own pace
```


VI. STUDENT ACCOMMODATIONS:
 Follow all IEP guidelines

VII. DESCRIPTION of LEARNING ACTIVITIES:				
	Clock Time or \# of minutes	Activities	Assessment/ Evidence	Resources
Intro: Transition	5	Project essential question for day Talk about how today we will be doing an activity involving problem solving and angles		
Teach/Practice	5	Have students go to student.desmos.com Enter class code After first 2 slides of activity, pause to check for understanding in how the activity works	Desmos activity	
Application*	25	Students work through activity Pause on error correction slide Pause on another angle slide Keep class together on make your own challenge slides	Desmos activity	
Closure	5	Exit Ticket: 1. What was the hardest part of today's activity?	2. What did you enjoy the most?	

School of Education Essential Components of Lesson

Academic and Christian Discovery

```
Topic: Angles Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 4
Enduring Understanding (Big Idea): We can use definitions, postulates, and theorems to prove our statements.
Essential Question/s: How can we prove what we know?
Key Vocabulary: Proof
```

I. CONTENT STANDARDS: (this is for whole unit)
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Define proof.
2) Justify statements
3) Write proof using 2 columns set up

III. ASSESSMENT:

1) Exit ticket
2) Homework
3) In class examples and homework

IV. MATERIALS AND INSTRUCTIONAL TOOLS:

Smart board
Textbook: The University of Chicago School Mathematics Project, Geometry

V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:

Have students come to the board to answer questions or have them do a turn and talk depending on class size
Offer extra challenge question with homework assignment

VI. STUDENT ACCOMMODATIONS:

Follow all IEP guidelines
Offer students who need it fill in the blank copies of the notes as well as post notes online to class website for students to refer to later.

VII. DESCRIPTION of LEARNING ACTIVITIES:				
	\# of minutes	Activities	Assessment/ Evidence	Resources
Intro: Motivation \& Transition	10	Recall: 1) What are complementary angles? 2) What are supplementary angles? 3) What is a linear pair? 4) What are vertical angles?		
Teach/Practice	10	Lesson (see power point) Go through the power point and fill in the written notes attached. Ask questions along the way, either have someone come up to the board or do a turn and talk then share answers with class.		Book
Application *	10	Prove linear pair theorem and vertical angle theorem, ask students for ideas on how to prove it.		Book
Closure	10	Exit Ticket: 5) What is a proof? 6) Why do we want to justify statements? Homework: p.123-124 \#5,7,11-15 Challenge Problem: look up another geometry theorem and proof. Write 1 paragraph about some things you recognize and if you understand the argument.	Exit ticket handed in at end of class Homework handed in next class	

Day 4

Ihings to Remembeit

\star We can only use postulates,
theorems, and definitions we
have stated, proved, or
defined so far.
\star There is a list starting on
p. 801

Iinal Check

\star What is a proof?

* Why do we want to prove our
statements?

School of Education Essential Components of Lesson

Academic and Christian Discovery

Topic: Angles and Lines Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 5
Enduring Understanding (Big Idea): There are theorems related to parallel and intersecting lines.
Essential Question/s: What angles are formed by intersecting lines?
Key Vocabulary: Transversal, corresponding angles, alternate exterior, alternate interior, parallel

I. CONTENT STANDARDS: (this is for whole unit)
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Define transversal, corresponding angles, alternate exterior, alternate interior, parallel
2) Know and apply corresponding angle postulate
3) Know, prove, and apply alternate interior angle theorem
4) Know, prove, and apply alternate exterior angle theorem
III. ASSESSMENT:
5) Exit ticket and homework
6) Exit ticket, in class example, homework
7) In class example and homework

IV. MATERIALS AND INSTRUCTIONAL TOOLS:

Smart board
Textbook: The University of Chicago School Mathematics Project, Geometry

V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:

Use various colors to tie concepts together
Have students come to the board to answer questions or have them do a turn and talk depending on class size
Offer extra challenge question with homework assignment.

```
VI. STUDENT ACCOMMODATIONS:
Follow all IEP guidelines
Offer students who need it fill in the blank copies of the notes as well as post notes online to class
website for students to refer to later.
```


VII. DESCRIPTION of LEARNING ACTIVITIES:

	\# of minutes	Activities	Assessment/ Evidence	Resources
Intro: Transition	5	$\frac{\text { Recall: }}{\text { 1. What is a proof? }}$2. What does the vertical angle theorem say?		
Teach/Practice	20	Lesson (see power point) Go through the power point and fill in the written notes attached. Ask students to share ideas and try to prove alternate interior and alternate exterior angle theorem. Turn and talk to neighbor then either have students share steps with class or have student come to board to prove (depending on class size)	Book	
Application *	10	Example practice problem		
Closure	5	Exit Ticket: 7) What are parallel lines? 8) Draw two lines cut by a transversal. 9) Label corresponding angles and alternate interior angles.	Honded in at end of class Homework handed in next dass	

Day 5

School of Education Essential Components of Lesson

Academic and Christian Discovery

Topic: Angles Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 6
Enduring Understanding (Big Idea): Perpendicular lines have unique qualities and theorems associated with them.
Essential Question/s: What are perpendicular lines?
Key Vocabulary: Perpendicular, perpendicular bisector, angle bisector

I. CONTENT STANDARDS: (this is for whole unit)
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Define perpendicular, perpendicular bisector, angle bisector
2) Know, prove, and apply two perpendiculars theorem
3) Know, prove, and apply parallel to perpendicular theorem
4) Construct a perpendicular bisector

III. ASSESSMENT:

1) Exit ticket and homework
2) In class example and homework
3) In class example and homework
4) Homework

IV. MATERIALS AND INSTRUCTIONAL TOOLS:

Smart board
Textbook: The University of Chicago School Mathematics Project, Geometry

V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:

Use various colors to tie concepts together
Have students come to the board to answer questions or have them do a turn and talk depending on class size

```
VI. STUDENT ACCOMMODATIONS:
Follow all IEP guidelines
Offer students who need it fill in the blank copies of the notes as well as post notes online to class
website for students to refer to later.
Let students work in pairs for support from peers
```

VII. DESCRIPTION of LEARNING ACTIVITIES:

	\# of minutes	Activities	Assessment/ Evidence	Resources
Intro: Motivation \& Transition	5	Recall: 1) What are parallel lines? 2) Draw two parallel lines cut by a transversal. 3) Label all angles with same measure.		
Teach/Practice	15	Lesson (see power point) Go through the power point and fill in the written notes attached. Ask questions along the way, either have someone come up to the board or do a turn and talk then share answers with class.		Book
Application *	15	Prove two perpendiculars theorem and parallel to perpendicular theorem with partner then share with class		Book
Closure	5	Exit Ticket: (look at picture) 4) What are perpendicular lines? 5) What is an angle bisector? 6) What is $m \angle 1$ if I and m are perpendicular and n is an angle bisector? Homework: p.135-137 \#2, 4-6, 11, 13, 14 Challenge Problem: p. 139 \#26	Exit ticket handed in at end of class Homework handed in next class	

Day 6

tinal Chick

* What are perpendicular

lines?
\star What is an angle bisector?
\star What is $\mathrm{m}<1$ if l and m are
perpendicular and n is an
angle bisector?

School of Education Essential Components of Lesson

```
Topic: Angles and lines Class: Geometry (MATH 4700) Timeframe: 40min Date: Day 7 Enduring Understanding (Big Idea): We can use our theorems and definitions together to solve for angles.
Essential Question/s: How can we apply our definitions and theorems to solve for angles?
Key Vocabulary: No new vocabulary
```

I. CONTENT STANDARDS: (this is for whole unit)
G.PL.3: Prove and apply theorems about lines and angles, including the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and corresponding angles are congruent; when a transversal crosses parallel lines, same side interior angles are supplementary; and points on a perpendicular bisector of a line segment are exactly those equidistant from the endpoints of the segment.
II. INSTRUCTIONAL OBJECTIVES: Students will be able to...

1) Apply the definitions and theorems to solve for other angles.

III. ASSESSMENT:

1) Angle pile up activity

IV. MATERIALS AND INSTRUCTIONAL TOOLS:

Protractor, activity worksheets
Textbook: The University of Chicago School Mathematics Project, Geometry

V. DIFFERENTIATED INSTRUCTIONAL STRATEGIES:

Students get to be as creative as they want when creating their own version of the activity

```
VI. STUDENT ACCOMMODATIONS:
Follow all IEP guidelines
Let students work in pairs if they choose to get support from peers
```

VII. DESCRIPTION of LEARNING ACTIVITIES:

	\# of minutes	Activities	Assessment/ Evidence	Resources
Intro: Motivation \& Transition	2	Today we are doing an activity to practice bringing together our definitions and theorems to solve for angles. We have done things like this in our notes before but today is a big one		
Teach/Practice	8	Go through instructions on slides and on worksheet		
Application *	20	Activity		
Closure	10	Go through what is on the test Ask if there are any questions Homework: study for test tomorrow		

Review Activity: Angle Pile Up (Part 1)

Please fill in all missing angles. Be sure to list all justifications for each angle measure you find.
Note: $\overleftrightarrow{\boldsymbol{D P}}$ is parallel to $\overleftrightarrow{I O}$ and $\overleftrightarrow{H N}$ is perpendicular to $\overleftrightarrow{E M}$

Review Activity: Angle Pile Up (Part 2)

Now create your own angle pile up activity. You can be as creative as you want but include...

1) At least 1 pair of parallel lines
2) At least 1 pair of perpendicular lines
3) At least 1 pair of vertical angles
4) At least 1 linear pair
5) Measure of any required angles, measured with a protractor
