
BDD and TDD for AngularJS

Acceptance testing with CucumberJS
and Protractor
Acceptance testing for AngularJS is done via the Protractor tool, which is a
framework developed by the team behind AngularJS. It is worth noting that
Protractor uses by default Jasmine as the testing framework and it was not until
recently that CucumberJS was integrated to Protractor.

You should also be aware of the fact that CucumberJS does not cover all the
features provided by the standard Cucumber (particularly those that have been
deprecated after the controversy behind BDD and Cucumber). Nevertheless,
CucumberJS is already good enough for our purposes.

Let’s start by copying the following Gherkin user story in the file
test/features/filt er_movies.feature

Feature: display list of movies filtered by MPAA rating

 As a concerned parent
 So that I can quickly browse movies appropriate for my family
 I want to see movies matching only certain MPAA ratings

 Background: movies have been added to database

 Given the following movies exist:
 | title | rating | release_date |
 | Aladdin | G | 25-Nov-1992 |
 | The Terminator | R | 26-Oct-1984 |
 | When Harry Met Sally | R | 21-Jul-1989 |
 | The Help | PG-13 | 10-Aug-2011 |
 | Chocolat | PG-13 | 5-Jan-2001 |
 | Amelie | R | 25-Apr-2001 |
 | 2001: A Space Odyssey | G | 6-Apr-1968 |
 | The Incredibles | PG | 5-Nov-2004 |
 | Raiders of the Lost Ark | PG | 12-Jun-1981 |
 | Chicken Run | G | 21-Jun-2000 |

 And I am on the RottenPotatoes home page

 Scenario: restrict to movies with 'PG' or 'R' ratings

 When I check the checkbox for rating 'PG'
 And I check the checkbox for rating 'R'
 And I uncheck the checkbox for rating 'G'
 And I uncheck the checkbox for rating 'PG-13'
 Then I should see movies with ratings 'PG', 'R'
 And I should not see movies with ratings 'PG-13', 'G'

 Scenario: all ratings selected
 When I check the checkbox for rating 'PG'
 And I check the checkbox for rating 'R'
 And I check the checkbox for rating 'G'
 And I check the checkbox for rating 'PG-13'
 Then I should see 10 movies

Now, let’s configure protractor. Copy the following snippet to the file
ProCukeConf.js (you can use whatever name you like).

require('coffee-script');
exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 framework: 'cucumber',
 specs: [
 'test/features/*.feature'
],
 capabilities: {
 'browserName': 'chrome'
 },
 baseUrl: 'http://localhost:9000',
 cucumberOpts: {
 require: 'test/features/steps/*_steps.coffee',
 format: 'pretty'
 }
};

Before going on, we need to setup Protractor and friends. Let’s start by installing
Protractor and CucumberJS:

npm install -g protractor

npm install -g cucumber

Just keep in mind that if you are using a UNIX based operating system, you
have to run the command above using sudo .

By default, Protractor expects javascript. To add support to coffescript, we have to
install a package to our project (note that this is local to our project). By the same
token, let’s install the packages chai and chai-as-promised that will provide a set of
matchers that are easy to read (intuitive).

npm install -D coffee-script
npm install -D chai-as-promised

Protractor runs its tests directly on a browser. To that end, Protractor interfaces
with a middleware (i.e., selenium), which needs some additional steps for
configuration. First, we have to install a driver for interacting with an actual
browser. I will assume that you have chrome installed in your computer. If so you
can execute the following command:

webdriver-manager update --chrome

We are now ready to start the BDD cycle. In three different terminals you have to
execute the following commands (one per terminal):

grunt serve

webdriver-manager start

protractor ProCukeConf.js

As expected, protractor on behalf cucumber reports that no step is defined and
provides some snippets to start with (in Javascript, though). However, we can use
cucumber to get coffeescript snippets:

cucumber-js test/features/filter_movies.feature --coffee

Based on cucumber snippets, we can write our initial set of cucumber steps. The
file, called test/cucumber/steps/filter_movies_steps.coffee , should look like:

chai = require 'chai'
chaiAsPromised = require 'chai-as-promised'
chai.use chaiAsPromised
expect = chai.expect
By = `by`

module.exports = ->
 @Given /^the following movies exist:$/, (table, callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @Given /^I am on the RottenPotatoes home page$/, (callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @When /^I check the checkbox for rating 'PG'$/, (callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @When /^I check the checkbox for rating 'R'$/, (callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @When /^I uncheck the checkbox for rating 'G'$/, (callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @When /^I uncheck the checkbox for rating 'PG\-(\d+)'$/, (arg1, callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @Then /^I should see movies with ratings 'PG', 'R'$/, (callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @Then /^I should not see movies with ratings 'PG\-(\d+)', 'G'$/, (arg1, call
back) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @When /^I check the checkbox for rating 'G'$/, (callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @When /^I check the checkbox for rating 'PG\-(\d+)'$/, (arg1, callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

 @Then /^I should see (\d+) movies$/, (arg1, callback) ->
 # express the regexp above with the code you wish you had
 callback.pending()

In contrast to Rails/Cucumber, in our setting AngularJS/CucumberJS we don’t
usually have access to the backend’s database. Therefore, we cannot store the
sample movies into the database. Instead, we have to inject a mock AngularJS
service, itself in javascript alas. Copy the following snippet to implement the first
step:

 generateMockServiceScript = (movies) ->
 script = '''
 var app = angular.module('coffee1AppMock', []);
 app.service('MoviesService', function() {
 var movies = [
'''
 for movie in movies
 script += "{title: '#{movie.title}', rating: '#{movie.rating}', release_
date: '#{movie.release_date}'},"

 script += '''
];

 this.all = function() { return movies; };
 this.add = function(movie) { movie.id = movies.count; movies.push(movi
e); };
 });
'''

 @Given /^the following movies exist:$/, (table, next) ->
 script = generateMockServiceScript(table.hashes())
 browser.addMockModule 'coffee1AppMock', script
 next()

You can easily verify that the mock service has the same structure than the
MoviesService that we used in the initial implementation of our rottenpotatoes. You
can also see that we use a for loop to generate object literals for each movie, all of
them stored in the array movies . It is worth noting that we defined the service as a
string that will be injected by protractor in the browser. By the way, browser is an
object provided by Protractor. This implementation would override the existing
implementation of MoviesService .

It is also important to note that the second parameter received by the function in
@Given , that I have renamed as next, is called at the end of the function, which will
mark to cucumber that it is time to continue with the next step.

 @Given /^I am on the RottenPotatoes home page$/, (next) ->
 browser.get '#/movies'
 next()

The step is rather simple, it consists only in “opening” the page #/movies . Once
again, we use browser (provided by Protractor) and the method get can be
mapped to a HTTP GET.

There are several steps in the user story referring to checkboxes in the user
interface that can be used for selecting the rating to be filtered/kept. Copy the
snippet below and remove all the steps that are subsumed.

 @When /^I (.*)check the checkbox for rating '(.*)'$/, (uncheck, rating, next
) ->
 checkbox = element(By.id('rating_' + rating))
 checkbox.isSelected().then (selected) ->
 if (selected and uncheck == 'un') or (not selected and uncheck != 'un')
 checkbox.click()
 next()

What is very important is to note the construction
element(By.id('rating_' + rating)) that let us access to the DOM element identified
by a string of the form rating_G . Note that in this way we are fixing a requirement
to be met on the HTML by the web page designers: there must be checkboxes
using identifiers of that form.

Promises
One of the challenges to face when testing a javascript web front-end
application stems from the fact interactions happen asynchronously. As a
way of example, consider Google maps, the response to a simple query
would usually take a little while. To cope with asynchrony, we will adopt the
notion of promises: any call to an asynchronous function returns
immediately not with the expected value but with a promise that such a
value (or an error) will eventually be returned. In the code above, when we
query whether the checkbox is selected or not we doing so via a promise.
The function then registers two functions for the positive outcome and the
other one (which is optional) for error handling. Therefore, once the status
of the checkbox has been determined in the browser the function handling
the positive outcome is called with the parameter selected . Afterwards,
depending on the value of selected we will click the checkbox or not (e.g., if
the checkbox was already checked).

Completing scenario “all ratings selected”
When we follow the BDD-TDD cycle, this would be the time to start writing the unit
test (TDD) to guide the implementation. This time, we will short-circuit the cycle
and we will add some code to complete the second scenario “all ratings selected”.

First, we have to modify the view so as to include one checkbox per movie rating.
Copy the following snippet in the file views/movies/index.html :

<div>
 <label ng-repeat="rating in ['G', 'PG', 'PG-13', 'R']">
 <input id="rating_{{rating}}" type="checkbox"/>{{rating}}
 </label>
</div>

You should already understand the directive ng-repeat : it iterates over a collection
(an array in this example) and creates a label and input element. Note that we use
rating to specify the text to be rendered as label and also to specify the identifier
of the input element. This is done via rating_{{rating}} . Note that this is in line with
what we specified in the cucumber steps.

With this changes, you will have several steps in green. Please remember that our
goal is just to pass one scenario of the cucumber specification, even if at this
moment no movie filtering is implemented.

To complete the scenario “all ratings selected” we only need to count the number

of movies listed in the index page. To this end, we will adopt the following
convention: we will annotate every row corresponding to a movie in the table with
the CSS class “.movie-info”. In this case we cannot use the element identifier
because it must be unique. With this idea in mind we can complete the cucumber
step as follows:

 @Then /^I should see (\d+) movies$/, (number_of_movies, next) ->
 allMovies = element.all(By.css('.movie-info'))
 expect(allMovies.count()).to.eventually.equal(parseInt(number_of_movies))
 .and.notify(next)

Please note that the idea is to query all DOM elements annotated with class
“.movie-info”. The we can specify our expectation as a promise: we expect the
middleware will eventually determine the number of matched elements and that
this number is equal to the integer value of number_of_movies . As the expectation
will be evaluated in the future we delegate to this promise the responsibility of
notifying the completion (via .and.notify(next)).

Of course, if you run protractor the test would fail because we haven’t annotated
the table rows with the class movie-info . Modify the line that opens up the table
row displaying the information about a movie as follows:

 <tr class="movie-info" ng-repeat="movie in movies">

With this last addition, we completed the second scenario.

TDD with Karma and Jasmine
We will now write a unit test for guiding the implementation of filter, that will
restrict the list of movies according to their rating. To this end, we will use Jasmine
a testing framework for javascript that is very close in syntax to RSpec.

We have to install some other tools and modify the configuration files. IN a
terminal window, run the following commands:

npm install -D karma-jasmine
npm install -D karma-phantomjs-launcher
npm install -D karma-coffee-preprocessor

For convinience, let us also install the Karma command line:

npm install -g karma-cli

Karma is a node.js package that works as test runner. Therefore, we need to

modify the configuration file for karma. Open the file karama.conf.js and add the
following lines just before the section files:

 preprocessors: {
 '**/*.coffee': ['coffee']
 },
 coffeePreprocessor: {
 options: {
 bare: true,
 sourceMap: false
 },
 transformPath: function(path) {
 return path.replace(/\.coffee$/, '.js');
 }
 },

The above instructs Karma to precompile all the coffeescript files into javascript
before performing the test.

Scroll down a bit the same file and change the following parameters as shown
below:

 autoWatch: true,
 browsers: ['PhantomJS'],

The first parameter, namely autowatch , instructs Karma to monitor the coffeescript
files. When Karma detects a change it will automatically run the test once more
(think about this feature as if you were using autotest in the Rails context). The
second parameter, that is browsers , specify the list of browsers to be considered
when running the test. You can specify several browsers, but for our purposes we
will only use PhantomJS which is a simulated browser that does not require to open
anything in the screen, and therefore very convenient for development.

We are ready to start working. Copy the following snippet into the file
test/spec/controllers/movies_controllers.coffee .

'use strict'

describe 'Controller: MoviesIndexController', ->
 it 'should fail because it is a contradiction', ->
 expect(true).toBe false

You can easily verify that the above spec should fail. The purpose of such a spec is
to verify if our configuration is correct. Let’s now launch karma:

karma start karma.conf.js

If everything is correct, you should get 1 failed test: “Expect true to be false”.

If everything is correct, you should get 1 failed test: “Expect true to be false”.
Please note that Karma keeps running. Change the specification to something
correct.

Adding a filter test
Angular controllers provide a kind of placeholder for data to be render and also
some functions to interact with such data. Think about the “MoviesIndexController”
in our running example. This controller already exports “movies” and is also the
place where we should implement the filtering logic.

Let’s start with a simple test. Copy the following snippet to your Jasmine
specification (replace entirely the previous specification).

'use strict'

describe 'Controller: MoviesIndexController', ->
 MoviesIndexController = {}
 scope = {}

 beforeEach module 'rottenpotatoesApp'

 beforeEach inject ($controller, $rootScope) ->
 scope = $rootScope.$new()
 MoviesIndexController = $controller 'MoviesIndexController', {
 $scope: scope
 }

 it 'should export a list of movies', ->
 expect(scope.movies).toBeDefined()

The first beforeEach block connects the test with the AngularJS module
representing our application. The second beforeEach block instantiates the
MoviesIndexController and passes a mock scope that we are going to use to
read/write data handled by the controllerand to verify the results of any
computation performed on such data.

If you turn now your attention to the only test case in the specification you will
notice that we are checking if the controller exports a variable movies , the one that
holds the list of movies. Of course, this test should pass without any problem.

Let’s first add some fixtures for the test. I will use the same list of movies evoked in
the user story as fixtures for our text. Replace the only it block that we have by
the following snippet:

 sampleMovies = [
 {title: 'Aladdin', rating: 'G'}
 {title: 'The Terminator', rating: 'R'}
 {title: 'When Harry Met Sally', rating: 'R'}

 {title: 'The Help', rating: 'PG-13'}
 {title: 'Chocolat', rating: 'PG-13'}
 {title: 'Amelie', rating: 'R'}
 {title: '2001: A Space Odyssey', rating: 'G'}
 {title: 'The Incredibles', rating: 'PG'}
 {title: 'Raiders of the Lost Ark', rating: 'PG'}
 {title: 'Chicken Run', rating: 'G'}
]

 beforeEach ->
 scope.movies.push sampleMovies...

 it 'should export a list of movies', ->
 expect(scope.movies).toBeDefined()
 expect(scope.movies.length).toBe(10)

As you infer from the code above, we are going to set scope.movies first as an
empty array and then we are going to copy all the movies in sampleMovies . This will
be executed before every it block. You can also notice that we have added a new
expectation: we should have now a list of 10 movies.

This is just the setup part. We can now start with real stuff :P At this moment, we
have modified the view to include a group of checkboxes one per movie rating.
However, this is disconnected from the controller. Therefore, we have to wire them
up. We will assume that the controller exports an object (a hash?) with the rating
and the status of the corresponding checkbox. Let’s add a new it block

 it 'should export an object with the status of rating checkboxes', ->
 expect(scope.selectedRatings).toBeDefined()

As we go red with our test, we have to take a time to fix the controller
MoviesIndexController . Add the following line to the corresponding file.

 $scope.selectedRatings = {'G': true, 'PG': true, 'PG-13': true, 'R': true}

This should be enough to get the test accepted.

Note that we initialized the object such that all the ratings are displayed.
Afterwards, the user can discard/select some of the ratings by means of the
checkboxes in the view. In the context of this controller test we are bypassing the
view. However, we can programatically change the object selectedRatings in the
controller without requiring any manipulation of elements in the view.

To implement the expected behavior, filter out movies depending on their rating
we will introduce a new concept: AngularJS filter. AngularJS provides a set
predefined filters. For instance, we can use a filter to format the release date by
changing the corresponding line in views/movies/index.html as follows:

 <td>{{movie.release_date | date:'mediumDate'}}</td>

Behind scenes, AngularJS calls the filter date with two parameters: a date (i.e.,
movie.release_date) and a format (i.e., 'mediumDate').

Another type of filter can be implemented via a function declared in the controller.
Roughly, we want to change the element that iterates over the list of movies and
creates a new row in the table to look something like:
<tr class="movie-info" ng-repeat="movie in movies | filter:byRating"> , where
byRating is a function implemented in the controller and that takes a movie as
input and returns true if the movie should be rendered and false otherwise. The
movie corresponds to the one that we are selecting during the iteration and the
filtering depends on the status of the checkboxes associated to each rating.

With all the above elements, we can now formulate our test.

 it 'should filter out "G" rated movies', ->
 scope.selectedRatings['G'] = false
 for movie in sampleMovies
 expect(scope.byRating(movie)).toBe(scope.selectedRatings[movie.rating])

Initially, all the checkboxes associated to ratings are checked, meaning that
selectedRatings is set to {'G': true, 'PG': true, 'PG-13': true, 'R': true} . In the
test, we simulate the case were the user unchecks the checkbox for movies rated
'G' . Finally, we iterated over the list of movies and we call the filter
scope.byRating(movie) and set our expectation such that the function returns true
or false according to the movie rating.

Sure enough our test will fail. However, the code to be added to the controller is
clearly hinted withing the test:

 $scope.byRating = (movie) ->
 $scope.selectedRatings[movie.rating]

Believe it or not, we are done with the controller.

Connecting all the pieces together
Now we can go back to the acceptance test to complete the missing steps. The
good news is that we can simplify the steps so as to have only one cucumber step.
Therefore, replace the two pending steps with the code below.

 @Then /^I should (.*)see movies with ratings (.*)$/, (not_see, ratings, next
) ->
 ratings = ratings.replace(/[\s\']/g, '').split(',')

 ratings = ratings.replace(/[\s\']/g, '').split(',')

 displayed_ratings = element.all(By.css('.movie-rating'))
 .map((elm) -> elm.getText())

 if not_see is 'not '
 expect(displayed_ratings).to.eventually.not.include.members(ratings)
 .and.notify(next)
 else
 expect(displayed_ratings).to.eventually.include.members(ratings)
 .and.notify(next)

As for the one of our previous examples, we will use a CSS selector to gain access
to the information about the movie rating, i.e.,
element.all(By.css('.movie-rating')) . But this time we do further, we iterate over
the list of DOM elements and create an array containing only their text (this is done
by means of the function map()).

Of course, our test will fail because there is no element on our HTML with the class
movie-rating . Change the corresponding line in the file views/movies/index.html as
follows:

 <td class="movie-rating">{{movie.rating}}</td>

Finally, in our cucumber step we use the nice matchers
.to.eventually.include.members() and .to.not.eventually.include.members()
provided by ChaiJS to compare the contents of the arrays ratings and
displayed_ratings . Clearly, our test will fail because we haven’t filtered out any
movie.

We first need to connect the rating checkboxes in the view with the variable
selectedRatings exported by the controller. Replace the corresponding lines of
code in the file views/movies/index.html as follows:

 <label ng-repeat="(rating, status) in selectedRatings">
 <input id="rating_{{rating}}" type="checkbox"
 ng-model="selectedRatings[rating]"/>{{rating}}
 </label>

Note that the directive ng-repeat iterates over the variable selectedRatings and
not longer over a constant array. Additionally, we have connected the checkbox
with selectedRatings[rating] via the ng-model directive. This gives us the
opportunity to keep synchronized both the view and the controller.

The only missing piece is the filter. Surprisingly, integrating the filter requires only
a small change:

 <tr class="movie-info" ng-repeat="movie in movies | filter:byRating">

Just to double check, run protractor. The test should be all green!!!

Written with StackEdit.

https://stackedit.io/

	BDD and TDD for AngularJS
	Acceptance testing with CucumberJS and Protractor
	Promises
	Completing scenario “all ratings selected”

	TDD with Karma and Jasmine
	Adding a filter test

	Connecting all the pieces together

