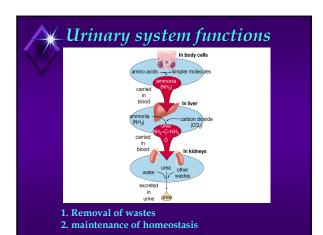
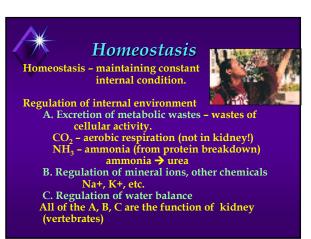


Animals: Urinary System

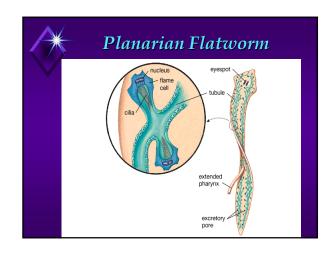
A urinary system is crucial to balancing the intake and output of water and solutes

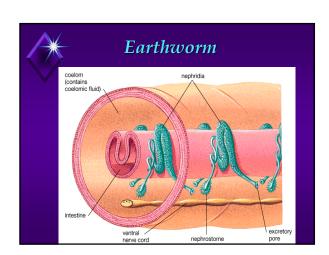

Outline

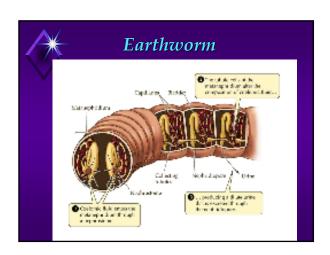

- 1. Key concepts
- 2. Urinary system functions
- 3. Homeostasis
- 4. Excretory systems
- 5. Functions of Human kidney
- 6. Conclusions

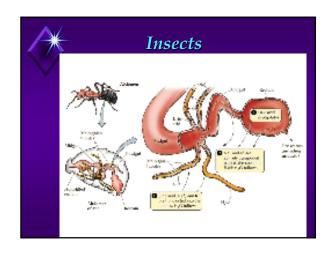
Key Concepts:

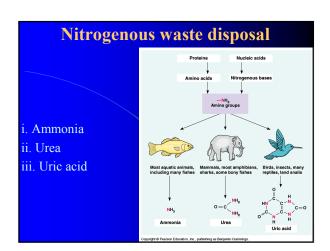
- 1. A urinary system is crucial to balancing the intake and output of water and solutes
- 2. Kidneys are blood-filtering organs, and the urinary system of vertebrates has a pair of them
- 3. Nephrons receive water and solutes from capillaries
- 4. Water and solutes not returned to the blood leave the body as fluid called urine

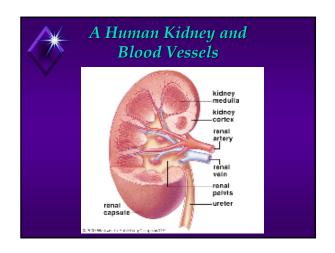


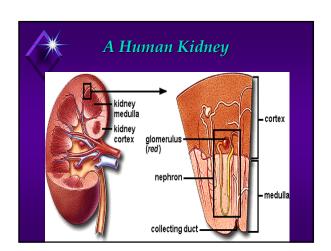


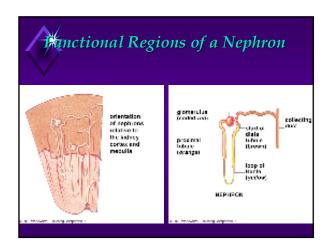


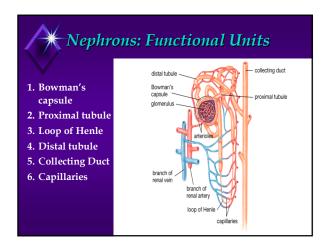

Excretory systems

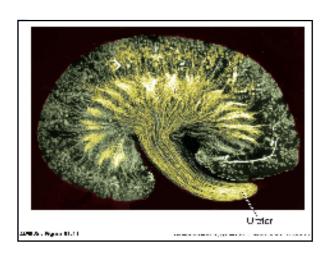

- A. Planarian flatworm: network of fine tubules and cilia-lined flame cells→ elimination of excess water.
- B. Earthworm: most body segments have a pair of nephridia (similar in structure and function to the nephron of the human kidney) → elimination of NH₃, conservation of water
- C. Grasshopper: Malpighian tubules nitrogen waste products emptied into the hindgut and eliminated along with digestive wastes. (insects no liquid urine)











*Functions of Human kidney

- 1. Kidney structure Cortex, Medulla, and Renal Pelvis (collecting chamber)
- 2. Function

function unit = Nephron (more than 1 million)

A. force filtration

RBC , WBC, large protein cannot move (forced) across the membrane enter the Bowman's capsule. AAs, glucose, NaCl, vitamins, H₂O... come out

B. re-absorption

in the proximal tubule region, AAs, NaCl, glucose, vitamins, etc. active transported out of the tubule and back to blood vessels

C and more next slide

*Functions of Human kidney

C. tubule secretion

in the distal tubule region, some wastes not initially filtered out are actively secreted from blood into the distal tubule for excretion such as K+, H+, ammonia, and many drugs (penicillin,

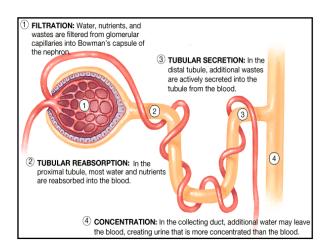
- for example)

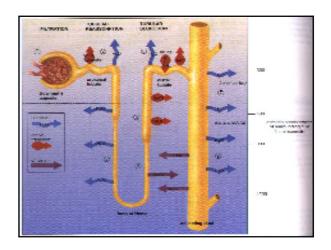
 D. Water back to circulatory system by osmosis
- the osmotic concentration gradient of salts produced by the loop of Henle → water comes out of the tubule and into the capillary bed

 E. Antidiuretic Hormone (ADH) circulates in blood can increase the permeability to water (distal tubule and collecting duct region)→ more water reabsorbed

Urine Formation

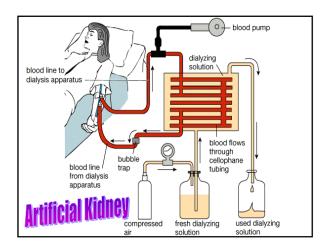
Three Processes


Filtration


At Glomerulus

Reabsorption

Most of water and solutes move back into blood Secretion (at both Proximal tubule and Distal tubule


Active transport of H+ and K+ into nephron

Reabsorption			
Table 41.2 Average Daily Reabsorption Values for a Few Substances			
	Fitered	Excreted	Proportion Beabsorbes
Water	180 liters	T.B liters	99%
Slucose	100 grams	None, normally	100%
Bodum lons	630 grams	3.9 grams	鹽碗
Jrea	54 grams	30 grams	44%

*In Conclusion

- 1. The vertebrate urinary system consists of 2 kidneys, 2 ureters, a bladder, and urethra
- 2. Kidneys have many nephrons that filter blood and form urine
- 3. Urine forms in the nephron by 3 processes: filtration, reabsorption, and secretion

