
Animation – A broad Brush

Traditional Methods
• Cartoons, stop motion

Keyframing
• Digital inbetweens

Motion Capture
• What you record is what you get

Simulation
• Animate what you can model (with equations)

Computer Animation

Keyframing

Traditional animation technique
Dependent on artist to generate ‘key’
frames
Additional, ‘inbetween’ frames are
drawn automatically by computer

Keyframing

From “The computer in the visual arts”, Spalter, 1999

How are we going to interpolate?

Linear Interpolation

Simple, but discontinuous velocity

Nonlinear Interpolation

Smooth ball trajectory and continuous velocity, but loss of timing

Easing

Adjust the timing of the inbetween frames. Can be automated by adjusting the stepsize
of parameter, t.

Style or
Accuracy?

Interpolating time
captures accuracy
of velocity
Squash and stretch
replaces motion
blur stimuli and
adds life-like
intent

Traditional
Motivation

Ease-in and
ease-out is like
squash and
stretch
Can we
automate the
inbetweens for
these?

“The Illusion of Life, Disney Animation”
Thomas and Johnson

Procedural

www.sodaplay.com

http://jet.ro/dismount

Examples

Inanimate video game objects
• GT Racer cars
• Soapbox about why this is so cool

Special effects
• Explosions, water, secondary motion
• Phantom Menace CG droids after they were

cut in half

Procedural Animation

Very general term for a technique that
puts more complex algorithms behind
the scenes
Technique attempts to consolidate
artistic efforts in algorithms and
heuristics
Allows for optimization and physical
simulation

Procedural Animation Strengths

Animation can be generated ‘on the fly’
Dynamic response to user
Write-once, use-often
Algorithms provide accuracy and
exhaustive search that animators
cannot

Procedural Animation
Weaknesses

We’re not great at boiling human skill
down to algorithms
• How do we move when juggling?

Difficult to generate
Expensive to compute
Difficult to force system to generate a
particular solution
• Bicycles will fall down

Particle Systems
Particle systems provide a powerful
framework for animating numerous
similar elementary “objects” at the same
time. Those objects are called particles.
Using a lot of particles with simple
physics allow us to model complex
phenomena such as:
• Fireworks
• Waterfalls
• Smoke
• Fire
• Flocking
• Clothes, etc.

Cornell CS 468 Andrew Butts •16

Introduction

Typical Particle system
animation routine
ParticleSystem()
1. Animate a particle System
2. While animation not finished
3. Do Delete expired particles
4. Create new particles
5. Simulate Physics
6. Update particle attributes
7. Render particles

Particle

A particle is
described by
physical body
attributes,
such as:

Mass, Position,
Velocity,
Acceleration,
Color, Life
time.

typedef struct // Create A Structure For
Particle
{ bool active; // Active (Yes/No)

float life; // Particle Life
float fade; // Fade Speed
float r; // Red Value
float g; // Green Value
float b; // Blue Value
float x; // X Position
float y; // Y Position
float z; // Z Position
float xi; // X Direction
float yi; // Y Direction
float zi; // Z Direction
float xg; // X Gravity
float yg; // Y Gravity
float zg; // Z Gravity

}
particles; // Particles Structure

initAll(){

for(int i = 0; i <= MAX_PARTICLES; i++){

Particles[i].x = rand() % WORLD_WIDTH;

Particles[i].y = rand() % WORLD_HEIGHT;

Particles[i].z = rand() % WORLD_DEPTH;}}

initEntity(int index){

Particles[index].x = rand() % WORLD_WIDTH;

Particles[index].y = rand() % WORLD_HEIGHT;

Particles[index].z = rand() % WORLD_DEPTH;}

render(){

for(int i = 0; i <= MAX_PARTICLES; i++){

draw_rain_texture(Particles[i].x, Particles[i].y, Particles[i].z); }}

update(){

for(int i = 0; i <= MAX_PARTICLES; i++) {

Particles[i].y =- (rand() % 2) - 2.5;

if (collisiondetect(Particles[i])) { initEntity(i); }

}}

Example - Firework

During the rocket phase, all
particles flock together. The
speed of the particles inside

the illusory rocket is
determined by the initial

launch speed to which we
subtract the influence of

gravity

Firewor
k

Gravity
Field

During the explosion phase, each
particle has its own mass,
velocity and acceleration

attributes modified according
to a random, radially centered

speed component.

Physics

F = m*a
a =F/m
a = g = 9.81 m/s
a(t + dt) = - gz where z is upward unit vector
v(t+dt) = v(t) + a(t) dt
x(t+dt) = x(t) + v(t)dt + ½ a(t^2)dt

Particle system - Applications

Using this general particle system
framework, there are various animation
effects that can be simulated such as force
field (wind, pressure, gravity), viscosity,
collisions, etc.
Rendering particles as points is
straightforward, but we can also draw tiny
segments for giving the illusion of motion
blur, or even performing ray casting for
obtaining volumetric effects.

The QuadParticles Class

Although many particle systems can be modeled
with points and lines, moving to quadrilaterals
(quads) combined with textures allows many more
interesting effects.
The texture can contain extra surface detail, and can
be partially transparent in order to break up the
regularity of the quad shape.
A quad can be assigned a normal and a Material
node component to allow it to be affected by lighting
in the scene.
The only danger with these additional features is that
they may slow down rendering by too much. For
example, we want to map the texture to each quad
(each particle), but do not want to use more than one
QuadArray and one Texture2D object.

Forces

A = F/m
• Particle masses won’t change
• But need to evaluate F at every time step.
• The force on one particle may depend on the

positions of all the others

Forces

Typically, have multiple independent
forces.
• For each force, add its contribution to each

particle.
• Need a force accumulator variable per particle
• Or accumulate force in the acceleration variable,

and divide by m after all forces are accumulated

Forces

Example forces
• Earth gravity, air resistance
• Springs, mutual gravitation
• Force fields

• Wind
• Attractors/Repulsors
• Vortices

Forces

Earth Gravity
• f = -9.81*(particle mass in Kg)*Y

Drag
• f = -k*v

Uniform Wind
• f = k

Forces

Simple Random Wind
• After each timestep, add a random offset to

the direction
Noisy Random Wind
• Acts within a bounding box
• Define a grid of random directions in the box
• Trilinear interpolation to get f
• After each timestep, add a random offset to

each direction and renormalize

Forces

Attractors/Repulsors
• Special force object at position x
• Only affects particles within a certain distance
• Within the radius, distance-squared falloff

• if |x-p| < d
v = (x-p)/|x-p|
f = ±k/|x|2 *x

else
f = 0

• Use the regular grid optimization from lecture

Emitters

What is it?!
• Object with position, orientation
• Regulates particle “birth” and “death”
• Usually 1 per particle system

• More than 1 can make controlling particle death
inconvenient

Emitters

Regulating particles
• At “birth,” reset the particle’s parameters

• Free to set them arbitrarily!
• For “death,” a few possibilities

• If a particle is past a certain age, reset it.
• Keep an index into the particle array, and reset a

group of K particles at each timestep.
• Should allocate new particles only once!

• Recycle their objects or array positions.

Emitters

Fountain
• Given the emitter position and direction, we

have a few possibilities:
• Choose particle velocity by jittering the direction

vector
• Choose random spherical coordinates for the

direction vector

Demo
• http://www.delphi3d.net/download/vp_sprite.zip

Rendering

Spheres are easy but boring.
• Combine points, lines, and alpha blending for

moderately interesting effects.
Render oriented particle meshes
• Store rotation info per-particle
• Keep meshes facing “forward” along their

paths
• Can arbitrarily pick “up” vector

Rendering

Render billboards
• Want to represent particles by textures
• Should always face the viewer
• Should get smaller with distance
• Want to avoid OpenGL’s 2d functions

Rendering

Render billboards (one method)
• Draws an image-plane aligned, diamond-shaped

quad
• Given a particle at p, and the eye’s basis (u,v,w),

draw a quad with vertices:
q0 = eye.u
q1 = eye.v
q2 = -eye.u
q3 = -eye.v

• Translate it to p
• Will probably want alpha blending enabled for smoke,

fire, pixie dust, etc. See the Red Book for more info.

Simulation Loop Recap

A recap of the loop:
• Initialize/Emit particles
• Run integrator (evaluate derivatives)
• Update particle states
• Render
• Repeat!

Particle Illusion Demo
• www.wondertouch.com

