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SUMMARY

Singlet fission is known to improve solar energy utilization by circumventing the Shockley-Queisser

limit. The two essential steps of singlet fission are the formation of a correlated triplet pair and its sub-

sequent quantum decoherence. However, the mechanisms of the triplet pair formation and decoher-

ence still remain elusive. Here we examined both essential steps in single crystalline hexacene and

discovered remarkable anisotropy of the overall singlet fission rate along different crystal axes. Since

the triplet pair formation emerges on the same timescale along both crystal axes, the quantum deco-

herence is likely responsible for the directional anisotropy. The distinct quantum decoherence rates

are ascribed to the notable difference on their associated energy loss according to the Redfield quan-

tum dissipation theory. Our hybrid experimental/theoretical framework will not only further our un-

derstanding of singlet fission, but also shed light on the systematic design of new materials for the

third-generation solar cells.

INTRODUCTION

Singlet fission has recently attracted extensive attention from both experimentalists (Busby et al., 2015;

Chan et al., 2011, 2012; Congreve et al., 2013; Musser et al., 2015; Walker et al., 2013) and theoreticians

(Berkelbach et al., 2013a, 2013b, 2014; Tiago et al., 2003; Yost et al., 2014; Zimmerman et al., 2010; Zirzlme-

ier et al., 2015), since it has the potential to circumvent the Shockley-Queisser limit for solar energy utiliza-

tion. Many materials have exhibited singlet fission, and they range from small molecules to polymers, and

from isolatedmolecules, thin films, to polycrystalline materials (Burdett et al., 2010; Busby et al., 2014, 2015;

Cook et al., 2016; Johnson et al., 2010; Jundt et al., 1995; Katoh et al., 1997; Marciniak et al., 2009; Michl et

al., 2007; Najafov et al., 2010; Pensack et al., 2016; Schwob andWilliams, 1972; Takeda et al., 1996; Tayebjee

et al., 2013; Walker et al., 2013; Watanabe et al., 2006; Wen et al., 2013; Wilson et al., 2011; Zenz et al., 1999).

Singlet fission is a spin-conserving process, in which a photo-generated singlet exciton is converted into

two individual triplet excitons (Smith and Michl, 2010). This unique photophysical phenomenon is usually

considered to proceed in two steps, namely, the formation of a correlated triplet pair, 1(T1T1), and its sub-

sequent quantum decoherence to engender a decoupled triplet dimer, T1+T1. A generic model often em-

ployed to describe the mechanism of singlet fission is given by (Merrifield et al., 1969):

S0 + S1/
kF 1ðT1T1Þ/kQ

T1 +T1 (Equation 1)

where S0 is a ground state, S1 is a singlet excited state, and kF and kQ denote the rate constants for the for-

mation of 1(T1T1) and its quantumdecoherence, respectively. Despite recent tremendous efforts, themech-

anisms of these two constituent steps of singlet fission (Bakulin et al., 2016; Chan et al., 2011, 2012; Miyata et

al., 2017; Musser et al., 2015; Stern et al., 2017) are still not well understood.

Previous studies were primarily focused on the first step (Berkelbach et al., 2013b; Chan et al., 2013; Mon-

ahan and Zhu, 2015; Schwerin et al., 2010; Smith and Michl, 2010; Yost et al., 2014; Zimmerman et al., 2010,

2011) and have invoked three mechanisms so far to rationalize the formation of 1(T1T1). They are the direct

mechanism (Zimmerman et al., 2010, 2011, 2013), the charge-transfer (CT)-mediated mechanism (Beljonne

et al., 2013; Busby et al., 2015; Chan et al., 2013; Monahan and Zhu, 2015; Smith and Michl, 2010), and the

sequential mechanism (Berkelbach et al., 2013b; Nakano et al., 2016). On the other hand, the quantum de-

coherence of 1(T1T1) is rarely explored, particularly from the theoretical perspective (Casanova, 2018). As a

matter of fact, quantum decoherence plays a key role in singlet fission by decoupling 1(T1T1) through vi-

bronic coupling. Therefore, a rapid decoherence of correlated 1(T1T1) is highly desired for an efficient pro-

duction of decoupled T1+T1, the final product of singlet fission. Otherwise, the reverse of the singlet fission
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Figure 1. Polarized Linear Absorption Spectra of Single Crystalline Hexacene

(A) Optical image of one of hexacene single crystals in our experiments.

(B) The schematic of a unit cell of hexacene single crystal.

(C) Polarization resolved linear absorption spectra in the a-b plane of hexacene single crystals along the a (upper) and b

(lower) axes. The dotted curves are the theoretical results. The lowest transition along the a axis is located at 761 nm,

whereas the lowest transition along the b axis is located at 835 nm. The singlet Davydov splitting exhibits a large value of

144 meV in hexacene single crystals.
could be mediated by fusion of two triplets via triplet-triplet annihilation (Yong et al., 2017), thereby

decreasing the photon-to-exciton conversion efficiency. The fundamental driving force for the quantum

decoherence of 1(T1T1) is its interaction with its dissipative environment, which is typically described by a

thermalized phonon path at finite temperature (Tao, 2014). This system-environment interaction varies

greatly from amorphous, or polycrystalline, to ordered crystalline structures. Singlet fission materials in

the form of single crystal are anticipated to exhibit pronounced collective characteristics in molecular vibra-

tions because of their ordered crystalline structures.

In this work, we investigated the quantum decoherence of 1(T1T1) states in single crystalline hexacene by

polarized transient absorption spectroscopy in conjunction with ab initio quantum mechanics simulations.

Our results showed that both 1(T1T1) and T1+T1 states are of anisotropic origin owing to triplet Davydov

splitting in hexacene, leading to distinctive quantum decoherence rates along crystal a and b axes. This

notable anisotropy can be principally ascribed to the difference on the energy gap between 1(T1T1) and

T1+T1 according to the Redfield quantum dissipation theory (Ishizaki and Fleming, 2009). Moreover,

through our functional mode analysis, the anisotropic quantum decoherence is predominantly driven by

some slow phonon modes with an effective frequency up < 50 cm�1.
RESULTS

Singlet Davydov Splitting in Hexacene

Hexacene single crystals used in our experiments were grown with physical vapor transport by following a

recently developedmethod (Laudise et al., 1998; Watanabe et al., 2012). Their typical lateral size was on the

order of 20 mm3 40 mm (Figure 1A), whereas their thickness was estimated to be 0.5 mm as detailed in Sup-

plemental Information. The triclinic unit cell of hexacene shown in Figure 1B is defined by experimental in-

plane crystal lattice constants (Watanabe et al., 2012) of a = 7.673 Å (long axis) and b = 6.292 Å (short axis)

(Yamagata et al., 2011). A home-built microscopy was coupled with a tungsten-halogen light source for po-

larization-dependent optical transmission measurements of hexacene single crystal (Figure S1), and its po-

larization-resolved linear absorption spectra for the ab plane is presented on Figure 1C. Interestingly, the

polarized measurements exhibit different absorption features along these two lattice axes. The lowest

resonant peak at 835 nm was assigned to be the transition along the short b axis and is called b1. On
1080 iScience 19, 1079–1089, September 27, 2019
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Figure 2. Supercell and Energy Diagram of all Spin States for Hexacene Single Crystal

(A) 9 3 9 3 3 supercell of a hexacene single crystal. The tetramer designated as the singlet fission reaction center is

highlighted. The molecular pair along the crystal a axis is colored blue, whereas the one along the crystal b axis is colored

red. Moreover, all nearest neighbors of the tetramer are colored green.

(B) Energy diagram of all spin states participating in the single-fission process. The ground state, singlet excited state,

charge-transfer state, correlated triplet pair, and uncorrelated triplet dimer are denoted as S0S0, S1S0, CT,
1(T1T1), and

T1 + T1, respectively. Their subscripts of a and b refer to the corresponding crystal axes. For instance, 1(T1aT1a) represents

a correlated triple pair whose constituents are along the [100] crystal axis.
the other hand, the lowest transition at 761 nm was attributed to the transition along the long a axis and is

named a1. Apparently, b1 is redshifted by 144 meV (1,160 cm�1) with respect to a1. This notable energy dif-

ference is due to the splitting of electronic excitations, the so-called singlet Davydov splitting (Davydov,

1948, 2013) that stems from dipole-dipole interactions of two non-equivalent molecules in a hexacene

unit cell (Chernikov et al., 2014; Hestand et al., 2015).

Calculated Anisotropic Energy Levels in Hexacene Single Crystals

To explore the energy levels of all singlet-fission participating states in single crystalline hexacene, we per-

formed computer simulations under periodic boundary conditions. Specifically, the single crystalline hex-

acene was modeled as a 9 3 9 3 3 supercell with a total of 20,412 atoms (Figure 2A). For a compromised

balance between numerical efficiency and physical accuracy, the hybrid quantum mechanics/molecular

mechanics approach (Warshel and Levitt, 1976) was adopted. A detailed description of the computational

calculations can be found in Supplemental Information. As shown in Figure 2B, we denote the ground state,

singlet excited state, charge-transfer state, correlated triplet pair, and decoupled triplet dimer as 1(S0S0),
1(S1S0), CT,

1(T1T1), and T1 + T1, respectively, and their constituent spin configurations were illustrated in our

previous studies (Elenewski et al., 2017a, 2017b). Geometry optimization was carried out on all spin states

before their relative energies are determined. The only exception is 1(S1S0)*, which assumes the same ge-

ometry as 1(S0S0), such that DEðS0S0 /S1S
�
0Þ reflects the vertical optical gap of hexacene crystal. In partic-

ular, the linear-response time-dependent density functional theory(Casida and Huix-Rotllant, 2012) was uti-

lized to delineate the 1(S1S0) and
1(S1S0)* states, whereas the constrained density functional theory (CDFT)

(Kaduk et al., 2012) was used to construct the reference orbitals needed for the multi-configurational CT,
1(T1T1), and T1 + T1 states. As for the T1 + T1 dimer, a correction term of �kbTln(3 3 3) z �56 meV was

added to account for the electronic spin entropy. Interestingly, we found that the 1(T1T1) and T1 + T1 states

along the short b axis aremore thermodynamically stable than their counterparts along the long a axis, sug-

gesting possible directional heterogeneity of quantum decoherence.

Spectroscopic Signatures of Triplet Davydov Splitting

Transient absorption spectroscopy is a proven tool to investigate singlet fission in solution and in thin film.

We have designed and constructed a polarization-resolved transient absorption microscopy to examine

anisotropic singlet fission in hexacene single crystals. A detailed description of our experimental setup

is presented in Figure S1. In short, a regenerative amplifier Ti:Sapphire laser system operating at 795 nm

and 1 kHz repetition rate was used for our measurements. A small portion of the laser pulse was taken

as a pump light, and its fluence on samples was kept below 200 mJ/cm2 to avoid exciton-exciton
iScience 19, 1079–1089, September 27, 2019 1081
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Figure 3. Polarized Transient Absorption Spectra of Hexacene Single Crystal

(Left) Pseudo-color plots of polarized transient absorption spectra from hexacene single crystal excited at 795 nm along

the b crystalline axis and probing along the b axis (A and B) and along the a axis (C and D). Note that the color scales for (B)

and (D) (ground state bleaching, 620 nm–738 nm) and (A) and (C) (excited state absorption, 500 nm–626 nm) are

comparison sake. For a better contrast, the color scale for (D) has been multiplied by 1.75. (Right) Transient absorption

spectra at several time delays probing the b axis (E) and along the a axis (F).
annihilation (Figure S3) by using a half-wave plate and a polarizer. Another small part of the laser pulse with

a pulse energy of ca. 1 mJ was focused onto a sapphire crystal to generate white light supercontinuum as a

probe. The pump and probe beams were combined to become collinear with a pellicle beam splitter. They

were then focused onto samples through a 103 microscope objective. The polarizations of the pump and

probe beams were independently adjusted with two individual half-wave plates.

To explore anisotropic spectral kinetics in hexacene single crystals, polarization-resolved transient absorp-

tion measurements were performed along both axes using a pump along b axis under the near lowest

photo-excitation of 795 nm. Their results were presented as pseudo-color plots of transient absorption

spectra (DT/T) along b axis (Figures 3A and 3B) and a axis (Figures 3C and 3D). We chose two different color

scales to highlight the difference on relaxation between the perturbed ground state and the newly popu-

lated excited states. The strong positive changes in DT/T between 729 and 620 nm were primarily due to

the ground state bleaching and recovery. As expected, these positive responses DT/T in spectra are similar

to those of the linear absorption spectra in hexacene as shown in Figure 1C. The negative spectral changes

in DT/T between 496 and 620 nm were attributed to the photo-induced absorption of the excited states

(Figures 3E and 3F). The transient spectra along both axes have broad, featureless, and short-lived bands

from 496 to 577 nm (Figures 3E and 3F). The fast process dominated in this spectral region can be ascribed

to the excited state absorption S1 to a higher singlet state Sn (S1/ Sn). By contrast, long-lived peaks appear

in the range between 590 and 620 nm, as well as in the range between 508 and 544 nm. The latter even

overlaps with the short-lived bands. We attributed these long-lived peaks to triplet transitions in hexacene.

Again, a strong anisotropicity was observed on the triplet transitions. The peak along b axis is at 599 nm,

whereas the one along a axis is redshifted by 9 nm. Since the redshift is an indicator of triplet Davydov split-

ting, we expect a coexistence of two kinds of triplet excitons with a splitting energy of 30meV. Note that the

correlated triplet pair, 1(T1T1), is a dark state in our case and did not show appreciable spectral feature in

the transient spectra. Therefore, the 9-nm redshift must be induced by the energy difference between the

decoupled triplet dimers, i.e., T1a + T1a and T1b + T1b. Interestingly, T1b + T1b was found to be energetically

more stable than T1a + T1a probably due to the stronger Davydov splitting between two spatially closer
1082 iScience 19, 1079–1089, September 27, 2019
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Figure 4. Kinetics Traces in the Transmission Change DT/T along

the a and b Axes

(A and B) (A) At 525G 18.0 and 599G 8.7 nm probing along the b axis

and (B) at 525 G 18.0 and 608 G 9.0 nm probing along the a axis,

under 795 nm with a pump polarization along the b axis. Global

fittings of the kinetic traces to the two-step model described in the

context yield the generation and dissociation rates for the 1(T1T1)

along the b axis (kF,b = 4.5G 0.2 ps�1, kQ,b = 6.7G 0.2 ps�1) and the a

axis (kF,a = 5.0 G 0.2 ps�1, kQ,a = 3.3 G 0.2 ps�1), respectively. The

instrumental response function was 130 fs.
triplet excitons. Nevertheless, the long-lived spectral features between 500 and 620 nm were assigned to

the T1 / Tn transitions along both axes (Busby et al., 2014; Lee et al., 2013).

Moreover, we measured the anisotropic transient spectra using pumps along both axes to further verify the

independence of triplet Davydov splitting on pump polarization. The independence was confirmed by Fig-

ure S4, which does not manifest appreciable change when the pump polarization is varied. Furthermore, we

changed the excitation wavelengths to 400 nm and again observed distinctive triplet Davydov splitting

(Figure S12). Therefore, the anisotropy of the triplet states and their derivatives is an intrinsic property of

crystalline hexacene regardless of external electromagnetic perturbations.

Singlet Fission Kinetics along the Long and Short Crystal Axes

Figure 4 shows kinetic traces of hexacene in terms of DT/T after pumps are applied along b axis with the

following wavelengths: (1) 525 G 18.0 nm for S1/Sn; (2) 599 G 8.7 nm for T1b /Tnb; (3) 608 G 9.0 nm

for T1a /Tna. A kinetic model (Johnson et al., 2010; Monahan et al., 2017; Wan et al., 2018) was

used to derive the generation and dissociation rates of 1(T1T1) state from the experimental data

shown in Figure 4. The detailed fitting procedure can be found in Supplemental Information. A

global fitting of the kinetic traces affords the formation (kF) and decoherence (kQ) rates along b axis as

kF, bb = 4.5 G 0.2 ps�1 and kQ, bb = 6.7 G 0.2 ps�1, respectively. Similarly, their counterparts along a

axis are given by kF,aa = 5.0 G 0.2 ps�1 and kQ, aa = 3.3 G 0.2 ps�1. Apparently, kF remains nearly un-

changed, whereas kQ has more than doubled after the probe polarization rotates from a axis to b axis.

Once again, our experimental data suggest that the mechanism of singlet fission is of anisotropic nature

in single crystalline hexacene.

DISCUSSION

Our studies of single crystalline hexacene have three main traits: (1) a large triplet Davydov splitting of

30 meV; (2) a homogeneous 1(T1T1) formation rate regardless of molecular directionality; (3) a notable

anisotropy of 1(T1T1) quantum decoherence rate. We have also proposed a unified vibronic model for

singlet fission by treating the formation of a correlated triplet pair and its quantum decoherence on the

same footing using our non-adiabatic functional mode approach (Chen, 2014; Elenewski et al., 2017b).

As clearly depicted in Scheme 1, the optical excitation results in anisotropic structural and dynamical prop-

erties for both the 1(T1T1) and T1 + T1 states, allowing us to gain more insights into the intrinsic directional

heterogeneity of triplet excitons in single crystalline hexacene.

Formation of 1(T1T1) Directly from 1(S1S0)*

The formation of 1(T1T1) is generally considered as the rate-determining step of singlet fission under the

assumption of ultrafast quantum decoherence of 1(T1T1). Surprisingly, our results show that the formation
iScience 19, 1079–1089, September 27, 2019 1083
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Scheme 1. Schematic for Anisotropic Singlet Fission in Hexacene Single Crystal

Anisotropic 1(T1T1) states are formed along the short b and long a axes directly from the hot S1S0 state. The rate for

quantum decoherence along the short b axis is almost twice that along the long a axis. 1(T1aT1a) and
1(T1bT1b) represent

correlated triplet pair states along the a and b axes, whereas T1a + T1a and T1b + T1b are triplet states along the a and b

axes.
of 1(T1T1) outpaces its quantum decoherence in hexacene, making the overall singlet fission rate predom-

inantly decided by the latter. More interestingly, the formation rates of 1(T1T1) were found to be similar

along b axis (kF, bb = 4.5 G 0.2 ps�1) and a axis (kF,aa = 5.0 G 0.2 ps�1). As previously discussed, the forma-

tion of 1(T1T1) could proceed through the direct, the CT-mediated, and the sequential mechanisms. To

reconcile which mechanism is responsible for the fast and isotropic formation of 1(T1T1) in hexacene, we

employed our functional mode vibronic theory that has been successfully applied to investigate singlet

fission in tetracene and pentacene (Elenewski et al., 2017a, 2017b). If the direct mechanism is followed,
1(T1T1) is formed without the aid of any CT intermediate. By contrast, the sequential mechanism demands

a thermodynamically stable CT state with an energy lower than the hot 1(S1S0)*. Similarly, the mediated

mechanism entails a virtual CT state, whose energy should be close to 1(S1S0)* for an ideal vibrational

wave-function mixing between them. Since our calculated energy diagram in Figure 2 manifests a relatively

large energy gap of over 0.25 eV between the CT and 1(S1S0)* states, both the sequential and mediated

mechanisms should be effectively blocked. In this regard, we assume that the 1(T1T1) pair production in sin-

gle crystalline hexacene only proceeds through the direct mechanism (Elenewski et al., 2016, 2017b):

kF =
J2

ћ2

ð+N

�N

e
iðDG0 + l�ћUnð0Þe�GjtjÞt

ћ e�1
2U

2t2e�nð0Þe�GjtjU2t2dt (Equation 2)

where J is the electronic strength between 1(S1S0)* and 1(T1T1), DG0 =ES0S1 � EðTTÞ is the driving force of

singlet fission, l is the associated reorganization energy, U is the angular frequency of the effective

singlet-fission driving vibrational mode, G is its thermal relaxation rate, and nð0Þ=Einc � ES0S1=ћU is the

optically populated initial vibrational quanta where Einc is the incident light energy, which is 795 nm in

the present study. We can then apply Equation 2 to calculate the 1(T1T1) formation rate kF under non-ther-

malized condition. It was found that kF,aa of 0.93 ps�1 is nearly the same as kF,bb of 0.83 ps�1, in spite of a

modest disparity in energetic parameters such as DG0 and l. The diminished difference on kS along a and b

axes primarily arises from their fast Us, whose zero-point energies become much more overwhelming for

vibrational quantum tunneling. As suggested by Busby et al., 2014, almost all singlet excitons in hexacene

crystal undergo singlet fission, resulting in a triplet quantum yield of nearly 200% that also affords a
1084 iScience 19, 1079–1089, September 27, 2019



negligible fluorescence quantum yield. If so, the overall decay rate, kD, of
1(S1S0)* is simply kF + G, leading

to kD,aa of 1.86 ps�1 and kD,bb of 2.08 ps�1. These computed rates are in good agreement with those ob-

tained from our experimental measurements, indicating a direct formation of 1(T1T1) from the vibrationally

‘‘hot’’ 1(S1S0)* in hexacene. In fact, previous studies of hexacene thin films attributed a slower singlet fission

to multi-phonon relaxations, as compared with pentacene and tetracene (Busby et al., 2014). For example,

ultrafast vibronic spectroscopies of pentacene and its derivatives showed that the singlet fission process is

a single-molecular internal conversion via a conical intersection due to strong coupling between nuclear

and electronic motions (Musser et al., 2015). As a result, the thermal relaxation of the 1(S1S0)* state should

be taken into account when its decay rate is probed by transient spectroscopy techniques.

Anisotropic Nature of T1 + T1 and 1(T1T1)

Triplet Davydov splitting exhibits a difference in energy as high as 30 meV along the a and b axes in hex-

acene single crystals, indicating that the T1 + T1 states remain strong dipole-dipole interactions in the

anisotropic environment. The energy level of T1b + T1b is lower than that of T1a + T1a in the case of hexa-

cene. This energy alignment is opposite to that of pentacene (Figure S5) and tetracene (Schwoerer and Bi-

rech, 2014), both of which have T1b + T1b higher than T1a + T1a as reported. Since the anisotropic lowest

spin-correlated triplet T1 + T1 states arises from the decoherence of 1(T1T1), it is legitimate to surmise

that the 1(T1T1) states should be anisotropic in hexacene single crystals. We further hypothesized that

the energy level for 1(T1bT1b) is lower than that for 1(T1aT1a) in hexacene single crystals from the measured

triplet Davydov splitting.

To reveal the nature of the anisotropic 1(T1T1) andT1+T1 states,weneed toaddress the anti-ferromagnetic elec-

tron correlation in acenes as revealed by a complete active space simulation using the density matrix renormal-

ization group algorithm (Hachmann et al., 2007). This anti-ferromagnetism was later corroborated by a

spin-polarized density functional theory study (Jiang and Dai, 2008), which discovered spatially separatedmag-

netizations in acenes. Similarly, electron spins in hexacene favor anti-ferromagnetic correlation, resulting in the

notable presence of diradical covalence resonance structures. For example, a pair of adjacent hexacene mole-

cules along a axis had been extracted from the crystal structure before a complete active space self-consistent

field calculation (Aquilante et al., 2016) with an active space of CAS(6,6) was conducted to reveal an enthalpy dif-

ference, EðT1 +T1Þaa � EðT1T1Þaa , of 16.7meV. In fact, a similar value of 13.5meV was also achieved by our employed

CDFTmethod thathadbeendemonstrated toachieveacomparableaccuracyagainst themultireferenceconfig-

uration interactionMRCI+Q level of theoryonpolyacenes (Kubas et al., 2014). Since a T1+T1 dimer has less anti-

ferromagnetic characteristics than its parental 1(T1T1) pair in spite of more available spinmicrostates, its relative

energetic stability is determined by a direct competition between enthalpy and entropy, i.e., EHS/LS versus

kBTln9. It turns out that entropy is a more dominant factor than enthalpy for crystalline hexacene at room tem-

perature, making T1 + T1 thermodynamically more stable than 1(T1T1) as shown in Figure 2. By the same token,

the 1(T1aT1a) pair is expected to have a higher energy than its counterpart along axis b owing to diminished anti-

ferromagnetic coupling strengthover distance.Nevertheless, thedifferenceon the spin-flipenergybetween the

twoaxes isnot strongenoughtooverride theirgapon the 1(T1T1) pair, thussustaining the relative stabilityofT1b+

T1b over T1a + T1a.

In polycrystalline singlet fission materials, the anisotropy of the 1(T1T1) states may preserve within individual

crystalline grains. The random orientation of those grain boundaries, however, is bound to suppress the

global expression of the anisotropy. Very uniquely, our studies in the form of single crystals allow us to un-

ravel the anisotropic nature of the 1(T1T1) state without ambiguity. Previous studies of polycrystalline

acenes and other singlet fission materials showed that the energy level of a triplet pair 1(T1T1) is higher

than that of a decoupled triplet dimer(Basel et al., 2019; Yong et al., 2017). Recently, a triplet pair 1(T1T1)

was reported to be bound relative to free triplets with an energy of ca. 30 meV, which is largely material

independent (Yong et al., 2017). Our results not only demonstrated a higher energy of 1(T1T1) than T1 +

T1, but also exhibit their anisotropic features in hexacene.

Anisotropic Quantum Decoherence of 1(T1T1)

The transition dipole strength for the triplet pair 1(T1T1) state is generally too weak to be detected so that its

quantum decoherence is usually assumed to be much faster than its formation (Berkelbach et al., 2014;

Chan et al., 2013; Coto et al., 2015; Mirjani et al., 2014; Tamura et al., 2015; Yost et al., 2014). Nevertheless,

some studies implied that the quantum decoherence rate of the 1(T1T1) state could be as slow as its forma-

tion rate (Feng and Krylov, 2016; Kolomeisky et al., 2014; Monahan et al., 2017; Pensack et al., 2016). In the
iScience 19, 1079–1089, September 27, 2019 1085



present study, we found that kQ is even slower than kF along the long a axis, whereas kQ along the short b

axis is comparable with kF. Our results indicate that the relatively slow quantum decoherence is as impor-

tant as triplet pair formation for the overall singlet fission rate in hexacene. According to the Redfield quan-

tum dissipation theory (Ishizaki and Fleming, 2009), the quantum decoherence rate, kQ, due to system-bath

coupling is given by:

kQz
2lupDE

DE2 + ћ2u2
p

0
BBB@

e

DE

kbT

e

DE

kbT � 1

1
CCCA (Equation 3)

where DE is the energy gap between the initial and final states of quantum decoherence, l is the corre-

sponding reorganization energy, and up is the system-bath coupling frequency. If the quantum decoher-

ence of 1(T1T1) pair in hexacene crystal is assumed to be driven by vibronic coupling only, up can be ascer-

tained by the functional mode analysis (Hub and de Groot, 2009), which projects the diabatic energy gaps

between 1(T1T1) and T1 + T1 onto the dimer’s vibrational normal modes for 5,000 snapshots extracted from

our MD trajectory. It was found that the quantum decoherence is predominantly driven by a few slow vibra-

tional modes with up < 50 cm�1 (Figure S11). Thus, the quantum decoherence is mediated by the electron-

phonon interaction in crystalline hexacene. Even if we account for the small contributions from other vibra-

tional modes that are usually much faster, the calculated effective drivingmode,up = ðPNvib

i = 1 c
2
i u

�1
i Þ, is still as

slow as �40 cm�1 (Table S3). Therefore, up is an important factor for the quantum decoherence of 1(T1T1)

pair in hexacene because of its notable mismatch with DE, i.e., ћup�DE/kQfuplDE
�1. Interestingly, the

DE along a axis is nearly two times as large as its counterpart along b axis, resulting in a remarkable direc-

tional heterogeneity of kD, i.e.,
kQ;bb

kQ;aa
z1:7. Besides the experimentally consistent heterogeneity factor, our

calculated values of kQ along the two crystal axes are also well in line with the results from our ultrafast spec-

troscopy studies (Table S2).

Previous studies of singlet fission in pentacene and hexacene were performed on their polycrystalline films

(Bakulin et al., 2016; Busby et al., 2014; Chan et al., 2011; Kandada et al., 2014; Rao et al., 2011; Wilson et al.,

2011, 2013). Fission rates of the films are, in general, the averaged result over different orientations of the

polycrystalline structures, leading to a loss of intrinsically anisotropic features in these materials. Transient

absorption microscopy experiments found that long-lived correlated triplet pairs exist and triplet interac-

tion and binding could be induced by a p-staked geometry in crystalline pentacene derivative (Folie et al.,

2018). Polarization measurements of tetracene demonstrated that there was no difference in kinetics along

the long and short axes (Schwoerer and Birech, 2014; Wan et al., 2015; Zhang et al., 2014). By contrast, our

results showed that the anisotropic quantum decoherence of 1(T1T1) occurs in single crystalline hexacene.

This decoherence process is driven by the vibronic coupling between the 1(T1T1) state and some low-fre-

quency phononmodes of hexacene crystal. Owing to the directional asymmetry of the crystal, this quantum

decoherence process might be intrinsically anisotropic as governed by the energy gap between 1(T1T1) and

T1 + T1.

In summary, we discovered anisotropic singlet fission in single crystalline hexacene and have revealed its

mechanism by deciphering its two constituent steps. For the first step that gives rise to correlated triplet

pairs through the so-called direct mechanism, no anisotropy was found as they were formed on the

same timescale of �200 fs along the two crystal axes. In the second step that involves quantum decoher-

ence of the correlated triplet pairs, the rate along the short b axis is nearly two times as fast as that along the

long a axis. The difference on the rate might be ascribed to the directional heterogeneity of the hexacene

crystal that results in distinct thermodynamic stabilities between the initial and final states of the quantum

decoherence, which is driven by system-bath coupling with a slow effective frequency of up < 50 cm�1. Our

findings not only corroborated the importance of quantum decoherence in fission process, but will also

guide future experimental and theoretical endeavors of exploring anisotropic photophysical properties

in novel materials for multiple exciton generation.

Limitations of the Study

From a fundamental point of view, one of the most challenging tasks for the singlet fission community is the

characterization and monitoring of the optically dark 1(T1T1) state due to its small absorption cross section

and short lifetime upon photo-excitation. Although the transient absorption spectra of the 1(T1T1) state

were presented in recent experiments (Burdett and Bardeen, 2012; Korovina et al., 2016; Lukman et al.,
1086 iScience 19, 1079–1089, September 27, 2019



2015, 2016, Stern et al., 2015, 2017), those results are limited to intramolecular singlet fission or intermolec-

ular one for dimers in solution (Rao and Friend, 2017) with unusually long 1(T1T1) lifetime. Therefore, it is not

surprising that the optical identification of the short-lived 1(T1T1) state in hexacene has not been reported

yet with the transient absorption spectroscopy method. More recently, the two-dimensional optical spec-

troscopy was employed to demonstrate the existence of 1(T1T1) state in thin film pentacene and its deriv-

atives (Bakulin et al., 2016). Nevertheless, this technique has to be coupled with a microscopy approach for

small-size samples such as single crystalline hexacene, our system of interest.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Information 

 

 

 

Figure S1. Schematic diagram of transient absorption setup coupled with home-built microscope. 
Related to Figure 1. 
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Figure S2. Global Fittings of kinetics traces with probes along b (left) and a (right) axes when the 
photoexcitation is applied along b axis. The dynamics has been shift vertically for clearance. The 
solid red line and blue line are fitted curve while the black dots are the raw data. The colored dashed 
lines correspond to singlet component (red) and triplet component (blue) based on the fitting results. 
Related to Figure 4. 
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Figure S3 Triplet Exciton-Exciton Annihilation. Measured pump-induced signal of triplet state 
along b-axis at low (170µJ/cm2) and high (6600µJ/cm2) pump influence. The pump beam was set 
at 795 nm. The polarization of the pump beam was set along b-axis of the hexacene single crystal. 
Related to Figure 3. 
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Figure S4 Comparison of transient spectra between all four possible polarization combinations: (a) 
b-axis pump / b-axis probe, (b) a-axis pump / b-axis probe, (c) b-axis pump / a-axis probe, (d) a-
axis pump / a-axis probe. The transient responses of hexacene single crystals strongly depend on 
the probe polarization, whereas they are independent of the pump polarization. Related to Figure 3. 
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Figure S5. Transient absorption spectra of pentacene single crystals at a time delay of 4 ps probing 
along the long a- axis and short b-axis when a 400-nm photoexcitation is applied along the b-axis. 
The T1→Tn transitions exhibit different absorption peaks at 609 nm and 619 nm along the long a- 
axis and short b-axis, respectively. Related to Figure 3. 
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Figure S6. Singlet Fission in Hexacene Thin Film under 515 nm Photoexcitation. (a) Pseudo-color 
plots of transient absorption spectra from hexacene thin film excited at 515 nm. (b) Transient 
absorption spectra of hexacene thin film at times delay of 5, 10 and 15 ps. Related to Figure 3.	
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Figure S7 Energy diagram of singlet Davydov splitting and triplet Davydov splitting of pentacene 
and haxacene. Related to Figure 2. 
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Figure S8. Calculated driving vibrational modes, , for singlet fission within 

an adjacent hexacene molecules along axes a and b. Their constituents in terms of  are 
also presented alongside their side and top views. For visual clearance, only the 
displacement vectors on the participating molecules of singlet-fission are displayed.  
Related to Scheme 1. 
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Figure S9. Scatter plots for the cross validation of  along a and b axes. Related 
to Scheme 1. 
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Figure S10. Profile of the thermal relaxation rate, , of vibrational normal modes 

weighted by their relative importance, , to the singlet-fission driving mode, 

. Related to Scheme 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Γi

  ci
2

  
!

VSF



	 11	

 

 

 

Figure S11. Components of the vibrational modes that drive quantum decoherence to 
decouple into  along a and b axes. Related to Scheme 1.  
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Figure S12. Transient absorption spectra of hexacene single crystals at a time delay of 6.4 
ps probing along the long a- axis and short b-axis when a 400-nm photoexcitation is applied 
along the b-axis. The T1→Tn transitions exhibit different absorption peaks at 594 nm and 
610 nm along the long a- axis and short b-axis, respectively. Related to Figure 3. 
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Supplemental Tables  

Table S1. The energy gaps and oscillator strengths of the  optical transitions 
along the a and b axes, alongside their projected transition dipole moments. Related to 
Figure 2. 

lattice direction aa  bb  

   1.65 1.42 

 
 5.57 8.94 

   0.82 0.04 

  0.39 1.13 

 0.03 0.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

   S0S0→ S1S0
*

		ΔE S0S0→ S1S0
*( ) 	 eV( )

   
f12 10−3( )

	
Da debye( )

  
Db debye( )

  
Dc debye( )
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Table S2. Key parameters for the  transition rate along axes a and b.  is the 

driving force,  is the reorganization energy,  is the electronic coupling strength,  is the 
effective angular frequency of the driving vibrational mode,  is its thermal relaxation rate,  is 

the singlet fission rate, and  is the decay rate of . Related to Figure 4.    

lattice direction aa bb 

  -0.62 -0.43 

  0.46 0.40 

  9.2 10.9 

  1752 1901 

  0.93 1.25 

  0.93 0.83 

  1.86 2.08 

  

   
S0S1→ TT( )    ΔG0

 λ  J  Ω

 Γ kF
kD   S0S1

   
ΔG0 eV( )

   
λ eV( )

  
J meV( )

   
Ω cm−1( )

   
Γ ps−1( )

kF ps
−1( )

( )1Dk ps-



	 15	

Table S3. Key parameters for the quantum decoherence rates, , along a and b axes according 

to the Redfield theory. Related to Figure 4 and Scheme 1. 

lattice direction aa  bb  

   42 26 

   8 6 

  36.2 39.5 

  3.2 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

kQ

ΔEQD  meV( )

		λ 	 meV( )

    
ω p cm−1( )

kQ ps
−1( )
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Transparent Methods 

Preparation of Single Crystals 

Hexacene single crystals were grown in a physical vapor transport (PVT) furnace at 

atmospheric pressure. Hexacene precursor was synthesized according to a previously 

reported method(Laudise et al., 1998; Watanabe et al., 2012). ~1 mg hexacene powder was 

heated in a hot zone of the furnace at 300 °C for a week. 50 SCCM of ultrahigh purity 

argon gas (99.999%) was used as purging gas as well as carrier gas. Hexacene single 

crystals were collected in the crystallization zone. Single crystals grown in this manner 

were first spread on a quartz substrate. The hexacene crystal face for this method tends to 

grow parallel to the substrate, namely (001). A gasket sealed container to hold the quartz 

substrate was assembled in the N2 box to protect the single crystals from oxygen during 

optical experiments. 

Experimental Setup for Micro Transmission UV-vis Spectrometer 

The optical absorption measurements of hexacene single crystals were performed on a 

home-built microscope equipped with a lamp (Lumina-I) as an unpolarized broadband 

radiation source. Briefly, an intensity-tunable halogen-lamp and a LED pen light were used 

as the UV-vis light source for the UV-vis transmission measurements and the illumination 

light for the microscope, respectively. A beam splitter combined both the UV-vis and 

illumination light for a collinear light path. An objective with 10× magnification 

subsequently focused the selected polarized light onto a hexacene single crystal at normal 

incident angle. A condenser was used to collect the transmitted light that is turn was 

focused into a grating spectrometer (Andor Shamrock 500 with a grating blazed at 500nm, 

150 groove/mm), followed by a thermo-cooled CCD (Andor Newton). A polarizer was 

placed between the lamp and the objective to select the polarization of the incident light. 

Only a few of crystallites met the requirements of the optical measurements on each 

substrate, even though small single crystals have been intentionally prepared. The 

thicknesses of the chosen hexacene samples were estimated to be on the order of ca. 0.5 

μm according to the absorption coefficient of hexacene thin films reported in the literature. 

All experiments were performed at room temperature. 

Micro-transient Absorption Spectrometer  
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A home-built microscope was coupled with a transient absorption setup for our micro-

transient absorption measurements (Figure S1). We used 1 KHz regeneratively amplified Ti: 

Sapphire laser system to generate laser pulse with a center wavelength at 795 nm. The pulse 

duration is about 100 fs. The laser pulse was then split into two parts: one part was coupled 

with a motorized delay stage (Klinger) as a pump light, and the other part was focused onto 

a sapphire crystal plate to generate white light super-continuum as a probe light. Both the 

pump light and the probe light have been combined by a pellicle beam splitter and sent to 

the objective. Two more beam splitters were used along the beam path to couple the 

illumination light and a CMOS camera for imaging samples. The transmitted probe light 

was collected by a condenser and sent to the spectrometer and CCD (Andor Shamrock and 

Andor Newton, respectively). The pump light was blocked after passing the samples by 

placing an appropriate band pass filter. The time-dependent changes in absorption spectra 

have been obtained by switching on/off of the pump pulse. The CCD sampling rate of 200 

Hz was synchronized with an optical chopper. A detection sensitivity of about 5 10-4 was 

achieved.  

Estimation of Photo-excited Carrier Density for Singlet Fission  

We estimated the photo-excited carrier density as follows: 

1). We measured the transmission of the hexacene sample on quartz comparing with clean 

quartz substrate and observed approximately 20-fold decrease of the transmission light at 

730 nm. By using a known extinction coefficient for hexacene single crystal at the same 

wavelength (0.25 105 cm-1), we obtained the crystal thickness of about 520 nm.  

  

2). For 0.25 μW 795 nm femtosecond laser pulse, the number of photons per volume is 

given by 

            

×

×

I(z) = I(0) ⋅10−α(λ)z

z = log20 / α(λ) = 520nm
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3). If we assume that each absorbed photon generates one singlet exciton, the initial 

singlet exciton density is 2.1 1019 cm-3. 

4). Laser fluence: 

 

5). Excitation volume:       

 

6). Volume of hexacene: 

                   a=7.673Å, b=6.292Å, c=16.242Å 
                           

      Since there are two molecules in a unit cell, the volume of each molecule is 392.06 Å3 

7). The ratio of excited molecule density vs total molecule density: 

 

8). The expected pump probe signal without considering singlet fission: 

 

 

 

Coupled Rate Equations of Singlet Fission 

 

kF: the formation rate of a correlated triplet pair state  
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kQ: the quantum decoherence rate of a correlated triplet pair state 

By solving the two-step coupled rate equation, we can write the population dynamics 

for singlet and triplet exciton as 

                 Equation S1 

	

Global Fitting Based on Coupled Rate Equations for Singlet Fission 

We noticed that all the kinetic traces include both the contributions from the S1→Sn 

and T1→Tn transitions. As such, we made our kinetic analyses by considering: 1) Transient 

responses at any energy are a sum of the S1→Sn and T1→Tn transitions; 2) Singlet fission 

is a two-step process with two independent rates, namely kF and kQ. The justification of the 

latter was based on the fact that the decay rate of S1 is not consistent with the generation 

rate of T1 from our kinetic data, in particular along the a axis. Specifically, we treat ΔT/T(E, 

t) as a sum of the contributions from both the S1-Sn and T1-Tn transitions at a given energy: 

-ΔT/T(E, t)=σS1-Sn(E)nS1(t) + σT1-Tn(E)nT1(t), where nS1(t) and nT1(t) are standard time-

dependent populations of a two-step sequential reaction as given in Equation 1, and σS1-

Sn(E) and σT1-Tn(E) are the cross sections for the S1→Sn and T1→Tn transitions. 

Based on the kinetic model and the rate equations described above, we are able to apply 

the global fitting to our transient absorption data at different time delays. The change in 

measured transient transmission is proportional to the absorption cross section for each of 

the three following transitions: S0 → S1, S1 → Sn and T1 → Tn. 	

0

0

1 0
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	 	 	 	 	 	 	 	 Equation S2	

Since the time-dependent spectra for the three transitions are highly overlapped, we 

treated every spectral region as a mixture of singlet and triplet excitons. Therefore, it takes 

the form as: 	

	

In light of the excitation pulse temporal profile, we used the following fitting function for 

our data:	

	

	 Equation S3 
where Erf denotes the Gauss error function.

 

 

Triplet Davydov Splitting of Pentacene Single Crystals 

We performed polarized transient absorption experiments on pentacene single crystals 

too. Figure S5 shows transient absorption spectra of pentacene single crystals at a time 

delay of 4 ps with probes along the long a-axis and the short b-axis when a 400-nm 

photoexcitation is applied along the b-axis. The T1→Tn transitions exhibit different 

absorption peaks at 608 nm and 618 nm along the long a- axis and short b-axis, respectively. 

The triplet Davydov splitting results show that the triplet energy level along the b-axis is 

higher than that along the a-axis, i.e., . 
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Technical Details of Quantum Mechanics/Molecular Mechanics Simulations 

In our hybrid quantum mechanics/molecular mechanics (QM/MM) study, density 

functional theory (DFT)(Hohenberg et al., 1964) was employed to accurately model the 

singlet fission process within a hexacene tetramer, which was selected to span along the a 

and b crystal axes. In addition, all nearest-neighboring molecules of the tetramer were also 

included in the QM subsystem to account for the electronic polarization effect. By contrast, 

generalized AMBER empirical force field (GAFF)(Wang et al., 2004) was used to 

efficiently describe the thermal fluctuation of other hexacene molecules consisting of the 

MM subsystem. Unless other specified, all QM/MM simulations were performed using 

CP2K package(VandeVondele et al., 2005) with Goedecker-Teter-Hutter (GTH) 

pseudopotential,(Goedecker et al., 1996) optimally tuned range-separated hybrid Perdew-

Burke-Ernzerhof (ω-RSH-PBE) exchange-correlation functional,(Jacquemin et al., 2014) 

polarized-valence-double-ζ (PVDZ) basis set,(Woon et al., 1994) electrostatic QM/MM 

coupling scheme,(Laino et al., 2005) and a wavelet-based Poisson solver.(Genovese et al., 

2006)  

Simulated Formation Rate of Correlated Triplet Pair  

As shown in Table S1, the optical gap for the  transition along a axis is 

1.65 eV, which is 0.23 eV higher than its counterpart along b axis. In spite of their relatively 

small difference on the optical gap, these two optical transitions have distinct oscillator 

strengths, i.e., , making the light absorption along b axis nearly 

60% stronger than that along a axis. Both of our calculated optical gaps and oscillator 

strengths are well in line with the experimental absorption spectrum (Figure. 1C).  

   S0S0→ S0S1
*

  5.57×10−3  vs. 8.94×10−3



	 22	

      In our FMSF theory(Elenewski et al., 2017b), the effective vibrational mode that drives 

singlet fission, is a linear combination of all normal modes, , where  

reflects the relative importance of the i th normal mode. Mathematically,  can be 

ascertained by maximizing the Pearson’s correlation coefficient between  and 

,(Chen, 2014) where  is the energy gap between  and 

. Specifically, our training set for  consists of 3,000 snapshots extracted from a 3-

ns trajectory of molecular dynamics (MD) simulation. As shown in Figure S8, regardless 

of the lattice direction of singlet fission,  is always a ring-stretching mode that is 

collectively exerted by two adjacent hexacene molecules. Therefore, it is not surprising 

that the profile of  features a few prominent peaks around 1200 cm-1 and 1500 cm-1, 

making the vibrational quantum tunneling effect important for singlet fission since 

. As a prudent measure to ensure the statistical quality of , the determined 

 were projected onto another 3000 snapshots extracted from a different MD trajectory 

for cross validation. It turns out that the cross-validated Pearson’s coefficients, 

, are only slightly smaller than their counterparts of the training 

set 	(Figure S9), suggesting satisfactory sampling for the 

functional mode analysis of .   

      Once the composition of  is ascertained, we can evaluate its effective angular 

frequency  by assuming that the contribution of a given normal mode to 
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 is proportional to its relative importance to . As listed in Table S2,  along a axis 

is 0.46 eV, which is 0.06 eV higher than that along b axis. The moderate difference on  

can be ascribed to a greater distortion of the hexacene crystal needed to accommodate a 

longer spin separation distance along a axis. Nevertheless,  of 1752 cm-1 is even 

slightly slower than  of 1902 cm-1 due to the higher weights of slower vibrational 

modes in  along a axis (Figure S8). Interestingly, the values of both  are less than 

, placing the singlet fission into the inverted Marcus region. The applicability of 

Marcus-type non-adiabatic transition theory is further justified by our calculated feeble 

electronic coupling strengths of ~10 meV, which are in line with previous studies on other 

acenes.(Elenewski et al., 2017a; Yost et al., 2014) 

      Besides singlet fission, another important decay channel for an optically populated

 vibronic state is its thermal relaxation. According to the phonon scattering theory,(Li 

et al., 2014) the lifetime of a given vibrational normal mode,  , is decided by its 

anharmonic coupling with others. If only the third-order anharmonicity is considered, its 

decay rate,  is given by:             				

																				             
Equation S4

 

 where  are the angular frequencies,  is the Bose-Einstein distribution 

function,   is the third-order derivate of energy with respect to all participating 
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normal modes, and  is the Dirac delta function. Using the ALAMODE simulation 

package,(Tadano et al., 2014) the third-order anharmonicity of our system was evaluated 

through a non-linear least squares regression subject to translational symmetry constraint. 

Thereafter,  was calculated by exploring all energy-conversing scattering events. The 

profile of  weighted by  (Figure S10) again features a couple of distinct peaks at 

~1200 cm-1 and ~1500 cm-1, further signifying the importance of these ring-stretching 

normal modes not only to singlet fission but also to thermal relaxation. Now, with all 

needed parameters in hand, we can apply Eq.2 to calculate  under non-thermalized 

condition. It was found that  of 0.93 ps-1 is nearly same as  of 0.83 ps-1, in spite of 

a modest disparity in energetic parameters such as  and . The diminished difference 

on  along a and b axes primarily arises from their fast , whose zero-point energies 

become much more overwhelming for vibrational quantum tunneling. If the fluorescent 

decay of  to  is negligible, the overall decay rate, , of  is simply , 

leading to  of 1.86 ps-1 and  of 2.08 ps-1.         

Derivation of Energy Gap Associated with Quantum Decoherence 

Using a two-electron-two-orbital scheme, one can easily construct the three constituent 

states for a molecule at its triplet state:  
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Equation S5

 

where we denote the upper and lower orbitals as a and b, respectively. Similarly, we can 

construct another molecule’s triplet state using different upper and lower orbitals denoted 

as c and d: 

                                                                 
Equation S6

 

For a fully decoupled  dimer, all nine possible cross-molecule combinations of the 

constituent states are equally weighted, resulting in an energy expectation value of 

         
Equation S7

 

where  is the electronic entropy,  is the temperature,  is the coulomb 

energy arising from all orbital pairs, and  stands form the exchange energy between a 

selected orbital pair. For example,  is the exchange energy between orbital a and orbital 

b.  
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Alternatively,  can be expressed as  

                                                        
Equation S8

 

where  and  are the energies of the following spin configurations:    

                                        and      ,           respectively. 

For a  pair at its singlet state: 

    

Equation S9
 

its energy is given by: 

   
Equation S10 

which can be further simplified as  

                                                            
Equation S11

 

 Through a comparison between Eq. 4 and Eq. 7, we found that  
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where  is the associated spin-flip energy.  
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