Announcements 2 Feb 09

• PRS

S.Willocq

S.Willocq

- Start using PRS clickers on Wednesday
- Blog posts: http://blogs.umass.edu/physics131-willocq
 - You need to log to post a comment (use "Blog log in" link)
 - I will need to authorize your comments

TO DO by tomorrow morning (8 am on Feb 3)

- Complete the "Introduction to MasteringCollegePhysics" homework assignment
- This assignment does not count toward your grade but is necessary to get acquainted with MasteringPhysics webbased homework system

Physics 131

Hmwk #1 due Friday morning (8 am on Feb 6)

Homework

- Homework #1 due on Friday
- Consists of two components:
 - Online homework via http://www.masteringphysics.com

Physics 131

- due on Friday by 8 am
- Written homework (1 problem, see blog)
 due on Friday at the start of lecture

Post questions as comment to blog posts

Written Homework

Written homework to be turned in at the start of lecture on the due date

 Submit handwritten solution to one problem (on a sheet of paper)

- Grading

- · 2 points
- important to see your work, as important as final answer(s)

Physics 131

Deadline

S.Willocq

- Late submissions are accepted for half credit
- No submission once the solution is posted
 - (~a few days after due date)

Question about magnitude of numbers PRS

Which of the following two numbers is larger?

A. 4 x 10⁶

B. 6 x 10⁴

How much larger?

Read Ch 1 Sec 4 for units, unit conversions, significant figures, scientific notation, etc. → homework #1

S.Willocq

Physics 131

Powers of 10 Describing our Universe requires the use of vastly different numbers Simulation of the large scale structure of the universe Cortical nerve cells $120 \mu m = 1.2 \times 10^{-4} m$

S.Willocq

Physics 131

27

26

Scalar OR Vector?

- Distance? **S**
- Displacement? V
 - Speed? S
 - Velocity? V
 - Mass? S
 - Time? **S**
 - Energy? **S**
 - Momentum? V

Vectors and Motion

A quantity that requires both a magnitude (or size) and a direction can be represented by a *vector*. Graphically, we represent a vector by an arrow.

The velocity of this car is **100 m/s** (magnitude) to the **left** (direction).

This boy pushes on his friend with a force of 25 N to the right.

S.Willocq

Physics 131

32

Adding Displacement Vectors

Example: Adding Displacement Vectors

PRS

Jenny runs 1 mi to the northeast, then 1 mi south. Graphically find her **net displacement**.

Trigonometry reminder: "SOHCAHTOA"

To determine the x- and y-axis components of a vector it is useful to remember "SOH CAH TOA" For example, the x-axis component would be $A = H \cos \theta$

Velocity Vectors

Example: Velocity Vectors

Jake throws a ball at a 60° angle, measured from the horizontal. The ball is caught by Jim. Draw a motion diagram of the ball with velocity vectors.

Units

Units

Every measurement of a quantity must include a unit.

The standard system of units used in science is the SI system. Common SI units include:

- Length: meters (m)
- Time: seconds (s)
- Mass: kilograms (kg)
- Some advantages of metric (SI) system over British system:
 - -1 km = 1000 m but 1 mi = 5280 ft
 - In international use

S.Willocq

Physics 131

38