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PREFACE

This volume was conceived to bring together reviews describing recent
advances in knowledge and understanding of plant nuclear structures and
functions, including that of the nuclear envelope. The book is particularly
timely in that recent progress has been rapid in key areas including descrip-
tion and characterization of proteins of the nuclear envelope and nuclear
pore complex, novel insights into nucleoskeletal structures, as well as devel-
opments related to chromatin organization, function and gene expression.
Together these advances provide a framework for comparative understand-
ing of nuclear envelope structure and function in a range of organisms and
for understanding its evolution.

Current knowledge of the dynamic structure of plant DNA and chromatin
is discussed by Sanchez-Moran in Chapter 5. Despite intensive study of
histones and other chromosome-associated proteins, interactions to achieve
the complex structures required both in interphase and during cell division
remain poorly understood. The structures require several levels of organiza-
tion, the first being the nucleosomal fibre comprising DNA wrapped around
a core of histones. This is a dynamic structure and mechanisms for its remod-
elling are described. The nucleosomal fibre is then wound into a structure
termed the chromatin fibre, which is arranged in loops associated with a
multi-protein chromosome scaffold, the third level of structure. This inter-
phase structure undergoes rapid dynamic change in mitosis with further
condensation for replication and division. The importance of the structural
organization of chromatin for processes such as transcription, replication,
repair, recombination, condensation and segregation is also discussed. As in
metazoans, plant chromatin is organized into regions of hetero- and euchro-
matin with heterochromatin adjacent to the NE.

Recent advances in understanding heterochromatin structure are presented
in Chapter 6 by Vanrobays et al. Heterochromatin, originally thought to
be condensed, gene-poor and ‘silent’, is now known often to be preferen-
tially localized to the nuclear envelope and nucleolus and its significance
is becoming clear as an epigenetic state required for many functions of the
genome, including gene regulation, segregation of chromosomes and main-
taining stability of the genome. Despite limited knowledge of it, in most
species heterochromatin is the main form of chromatin and key questions
remain to be answered. How is spatial organization of heterochromatin main-
tained through the cell cycle as DNA is replicated, chromatin condensed, and
the nuclear envelope disrupted and reformed? Interactions between nuclear

xix
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envelope, nucleoskeleton and chromatin are likely to be very significant and
are discussed together with other theories for heterochromatin positioning.

Plant genomes vary greatly in size but in all cases the genome is con-
tained within a very small compartment and it is clear that complex three-
dimensional organization is needed in order for the many processes required
for function. This three-dimensional structure requires interactions between
chromatin, the envelope, the nuclear pores and the rest of the cell. In Chap-
ter 4, Goldberg discusses from an ultrastructural and biochemical perspective
the presence of an equivalent of the highly ordered lamina and nucleoskeleton
described in metazoans. Such a structure appears to be required for nuclear
function, but until recently its protein composition has eluded plant scientists.
Plant cells have no proteins homologous to the lamins or other intermediate
filament protein. Recent electron microscope studies in Goldberg’s laboratory
of the inner face of the plant nuclear envelope reveal a filamentous structure
interconnecting the NPCs. This appears to be organized similarly to the lam-
ina of Xenopus oocytes. Protein candidates for a plant nucleoskeleton have
recently been suggested from a number of approaches; these long coiled-coil
nuclear-localized proteins show some similarities to nucleoskeletal proteins
of the metazoans and Goldberg presents the growing, but as yet incomplete,
evidence for their role. The likely (direct or indirect) interactions of these pro-
teins with the proteins of the nuclear envelope via a ‘Linker of Nucleoskele-
ton and Cytoskeleton’ complex is also considered in Chapter 2 by Graumann
and Evans. Therein, the authors describe that, in common with metazoans,
plants have one key family of proteins that in other kingdoms constitutes
the inner nuclear envelope component of this bridging complex, namely the
Sad1/Unc84 (SUN)-domain protein family. Absence of a variety of other
inner nuclear envelope components involved in nuclear envelope-chromatin
interactions in other kingdoms suggests that the SUN- domain proteins play
a particularly significant and broader role in plants. In many respects how-
ever, the higher plant SUN-domain proteins show remarkable conservation
in structure to those of other organisms. They are smaller than their metazoan
counterparts, being closest in size to the yeast homologue Sad1. In addition,
the authors discuss first evidence of proteins interacting with SUN-domain
proteins in plants that show similarity in structure and mechanism to the
Klarsicht/Anc-1/Syne Homology (KASH)-domain proteins of other king-
doms, which complete the nucleo-cytoskeletal bridging complexes. Chapter 2
also focuses on other protein components of the plant nuclear envelope as
well as its lipid composition and highlights many of the cellular and nuclear
processes in which the plant nuclear envelope plays key roles.

Structure and position of chromosomes must be achieved both for success-
ful mitosis and meiosis. Evidence for SUN- domain protein involvement in
the breakdown and reformation of the nuclear envelope in plant mitosis is
presented in Chapter 2 together with suggestions of conserved mechanisms
between kingdoms. Meiosis, while more complex, has received considerable
attention and the role of telomeres is presented by Roberts et al. in Chapter 7,
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who reveal emerging evidence for their role in early events in the move-
ment and synapsis of homologous chromosomes. Studies in Arabidopsis
suggest that paired telomeres loosely cluster at the nuclear periphery in mei-
otic prophase 1; it is suggested that this facilitates chromosome alignment
and synapsis. The proteins involved in the attachment of telomeres to the
nuclear envelope remain elusive; however, in common with the yeast and
metazoans, a role for SUN-domain proteins is suggested. Exploration of the
structural protein interactions in meiosis is being vigorously pursued.

Recent characterization of proteins of the plant nuclear pore complex (NPC)
has revealed that the structure more closely resembles those of vertebrates
than yeast or fungi. In Chapter 3, Zhou et al. describe the significant progress
made recently in identifying 30 constituent proteins of the plant NPC as well
as characterizing plant NPC structure. While the overall architecture of NPCs
is conserved in eukaryotes, the plant NPC are set apart by several unique
features and absence of a number of vertebrate nucleoporins. Significantly,
the anchorage of RanGAP, involved in the generation of the RanGTP/GDP
gradient required for nuclear import and export (a mechanism conserved
between kingdoms) has been shown to differ significantly between plants
and other organisms. In mammals, for instance, RanGAP is anchored to the
pore complex by sumoylation. In plants, this function is taken over by interac-
tion with proteins associated with the nuclear pore complex termed the WPP
(tryptophan proline proline) interacting proteins (WIPs) and WPP interacting
tail-anchored proteins (WITs). Apart from structural differences, the authors
also discuss plant-specific functions and non-trafficking processes that plant
nucleoporins are involved in, including mitotic functions, plant development,
hormone and abiotic stress responses and plant-microbe interactions. The lat-
ter topic is the primary focus of Chapter 8 by Binder and Parniske. Using Lotus
japonicus as a model system, loss of function mutants of several nucleoporins
result in impaired mycorrhizal association as well as root-nodule symbiosis
linked to failure of nuclear calcium signalling. In Arabidopsis thaliana, nucleo-
porins have been shown to be required for the two major forms of response to
fungal pathogens, namely pathogen-associated molecular pattern (PAMP)-
triggered and disease resistance (R) gene-mediated defence signalling. This is
presented in the context of expanding knowledge of the nuclear pore complex
and other proteins of the nuclear envelope and suggests important targets
for attention in relation to the introduction of nitrogen fixation into cereals
and in the development of crops showing enhanced resistance to fungi. The
authors also focus on the challenges of correlating specific functions with
individual nucleoporins due to the complexity of interactions and functions
of NPC components and functional redundancies.

It is evident that exploration of plant nuclear structure, genome architec-
ture and gene regulation has widespread implications for crop improvement
and food security. Movement of the nucleus occurring as stress and devel-
opmental responses are presented in Chapter 2 by Graumann and Evans
and include movement in intense light, due to touch and viral and fungal
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infection. Such movements are likely to be significant in plant tolerance to
stress and infection and to involve nucleo-cytoskeletal bridging complexes
at the nuclear envelope. The positional effects of chromatin structure and
the structure of the nucleus on gene expression, discussed in Chapter 6 by
Vanrobays et al., suggest an area with considerable potential for exploration
as tools to study gene targeting to subnuclear localizations become available.
It has yet to be established whether localization to the nuclear periphery,
pore complex or other regions of the nucleus induces a repressive or activa-
tion effect in respect to gene expression. Such effects, if reproducible, have
considerable potential for development. Perhaps the most comprehensively
studied role for the plant nuclear structures with widespread significance
concerns the role of the nuclear pore complex in fungal pathogenesis and
symbiosis.

There is a very clear need to expand knowledge of protein interaction
networks at the nuclear envelope involving cytoskeleton, nucleoskeleton and
chromatin components. Study of the nuclear envelope proteome has been
held back by a combination of limited interest by researchers and the technical
difficulties of isolating and analysing it. Recent advances – the identification
of SUN domain proteins and first evidence for a linker of nucleoskeleton and
cytoskeleton complex, the characterization of more than 30 nucleoporins and
increasing functional evidence and the tentative characterization of a plant
lamina – all provide a framework for rapid advances coupled with increased
understanding of chromatin structure and function. Given the outstanding
importance of the nucleus and of epigenetic factors, we anticipate that the
study of plant nuclear structure, genome architecture and gene regulation
will play a very significant role in the near future.

As knowledge and understanding of the structure and properties of
the nucleus and nuclear envelope expand, we come tantalizingly closer
to understanding the origins of the structures of the eukaryotic cell. John
Bryant (Chapter 1) uses the information presented together with knowledge
of replication of nuclear DNA and the import of the replication proteins to
present and develop current theories of the origins of the nucleus and its
envelope. The early presence of the nucleus and nucleoskeleton, predating
the arrival of chloroplasts and mitochondria in the proto-eukaryotic cell and
the probable formation of the nuclear envelope from invaginations of the
plasma membrane are discussed in the light of the development of key fea-
tures of the higher plant nucleus. Just as we hope that presenting advances in
understanding the structure and function of the plant nucleus will stimulate
research in this field, it is equally our hope these advances will result in
better appreciation of their origins not only in plants but across the orders of
living things.
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Chapter 1

INTRODUCTION: MYSTERIES,
MOLECULES AND
MECHANISMS
John A. Bryant
Biosciences, University of Exeter, Exeter, UK

Abstract: This brief chapter mentions the main structural and functional features
of plant nuclei and in doing so, provides a very general introduction to other chap-
ters in the book. It also covers aspects that are not featured elsewhere, especially the
replication of nuclear DNA and the import of the replication proteins. Throughout
the chapter there is an underlying theme of evolution, relating both to the similar-
ities to and differences from the Archaea and to the possible evolutionary origins
of the nucleus.

Keywords: Archaea; DNA replication; evolution; nuclear envelope; nuclear local-
ization signal; origin; protein import

1.1 Darwin and Margulis revisited

In a famous letter sent in July 1879 to Joseph Hooker, the Director of Kew
Gardens, Charles Darwin described the origin of the flowering plants as ‘an
abominable mystery’. Over 130 years later, the mystery seems to be solved,
if not in detail, at least in general terms. It is now thought that flowering
plants diverged from a lineage of seed ferns (now a totally extinct group)
in the late Jurassic or early Cretaceous period (Doyle, 2006, 2008). Based
on extensive phylogenetic analysis, the living plant that most resembles the
earliest angiosperms (i.e. which is at the base of the angiosperm phylogenetic
tree) is Amborella trichopoda, a semi-climbing shrub only found in the rain
forests of New Caledonia. So, while a solution to that mystery has been
found, a further, and perhaps more fundamental mystery remains. It is a

Annual Plant Reviews Volume 46: Plant Nuclear Structure, Genome Architecture and Gene Regulation,
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2 � Plant Nuclear Structure, Genome Architecture and Gene Regulation

mystery that involves not just flowering plants but all eukaryotes and at the
beginning of the 21st century it is still not completely solved. That mystery
is the origin of the nucleus, the organelle that is the subject of this book.
As is evident in subsequent chapters, we have extensive knowledge of its
structure and activities. It is a truly beautiful organelle – one that induces in
many of us a sense of wonder. However, we are not at all sure where it came
from although, as will become clear later in the chapter, a few hypotheses are
beginning to emerge as front runners.

On the quest to solve the puzzle, one factor to consider is the origin of
eukaryotes. It is now accepted that the two other major membrane-bound
organelles, mitochondria and chloroplasts, have evolved from bacterial sym-
bionts that invaded or were engulfed by what we could call proto-eukaryotes
(as originally proposed by Margulis, 1971a, b, 1981). This idea has been
extensively confirmed by genomic and proteomic studies, which also sug-
gest strongly that those proto-eukaryotic host cells were derived from the
Archaea and, in terms of energy metabolism, were using a form of glycoly-
sis1. Further, it is clear that following the endosymbiotic events, transfer of
genes from both the non-photosynthetic (i.e. mitochondrial) and the photo-
synthetic (chloroplastic) endosymbionts to the host’s genome occurred on
a large scale. Indeed, that the process is still going on (Huang et al., 2004,
Rousseau-Gueutin et al., 2011, Wang et al., 2012). But where, and in what state
were the genomes of those proto-eukaryotic host organisms?

It was thought for several years that relevant information could be obtained
by study of amitochondrial eukaryotes, eukaryotes presumed to date back to
before the first endosymbiotic event. However, it is now known that these are
secondarily amitochondrial, as revealed by the presence of endosymbiont-
derived genes in the nucleus and the vestiges of a mitochondrion (e.g. van
der Giezen and Tozar, 2005; Minge et al., 2009). So, these cells cannot tell us
what the proto-eukaryote looked like. Nevertheless, it is clear that in more
recent instances of gene transfer (as mentioned above), the organelle gene
has been integrated into a typical eukaryotic nuclear genome located in a
typical eukaryotic nucleus. These structures are no hindrance to gene transfer.
Further, the use of bioinformatics coupled with comparative cell physiology
and biochemistry in attempts to ‘root’ the eukaryotic phylogenetic tree all
lead to the conclusion that most of the approximately 60 differences between
eukaryotes and prokaryotes were developed or developing before the first
symbiotic event, the acquisition of mitochondria (de Duve, 2007; Margulis
et al., 2007; Cavalier-Smith, 2009).

The eukaryotic features possessed by the proto-eukaryotes are thought to
have included the possession of a nucleus, nucleoskeleton and cytoskeleton
(Margulis et al., 2007; de Duve, 2007; Cavalier-Smith, 2009). Looking at the

1But note that in modern Archaea there are several variants of the ‘conventional’
glycolysis pathway (Sato and Atomi, 2011).
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first two of these, these data do not provide any clear clues about where
the nucleus came from and there are also questions about the nature of the
nucleoskeleton in the earliest eukaryotes. Focussing specifically on this prob-
lem, we note that after the first symbiotic event (acquisition of mitochondria),
the eukaryotic lineage split into two major branches (Cavalier-Smith, 2002),
the unikonts (with one flagellum) that gave rise to, amongst other things,
fungi and Metazoa, and the bikonts (with two flagella), one lineage of which
became plants by the acquisition of chloroplasts (as mentioned above; see
also Keeling, 2010).

Turning now to look at extant lineages, as is shown in Chapters 2 and 4, part
of the nucleoskeleton in animals is the prominent lamina, consisting mainly
of proteins known as lamins. However, plants lack lamins but do possess a
lamina-like structure that has been called the ‘plamina’ (Fiserova et al., 2009),
consisting of plant-specific proteins that are functional analogues of lamins.
Finally, in fungi, at least as represented by yeasts, the nucleoskeleton does
not have any form of lamina. So, based on the origins of these groups, it is
suggested that the proto-eukaryotic nucleoskeleton lacked a lamina and that
this has developed subsequent to the uni-kont/bikont split. This gives us a
little more information on the early nucleus, but the question of its origin
remains.

At this point further specific discussion of the origin of nucleus is deferred
to the end of the chapter, although it will appear more indirectly from time to
time in the next three sections. Attention is now turned to the genome itself.
Particular focus will be placed on the general structure of the genome, on
its replication and on the implications for the latter process of enclosing the
genome in an organelle.

1.2 Nuclei – general features

In plant cells that are not extensively vacuolated, the nucleus is the largest and
usually the most obvious organelle. Even in mature cells with large vacuoles,
the nucleus is usually clearly visible within the cytoplasm. It is the organelle
that contains the bulk of the cell’s DNA, the nuclear genome. Indeed, chro-
matin (Chapters 5 and 6), consisting mainly of a complex of DNA and pro-
teins, is usually the most obvious component of the nucleus. The chromatin
is attached via scaffold- or matrix-associated regions (SARs/MARs) to the
nuclear matrix/scaffold/nucleoskeleton (Chapters 4 to 6). Within chromatin,
the highly repeated genes encoding the major ribosomal RNAs (rRNAs) are
looped out in structures called nucleoli. The fibrillar centres of the nucleoli
are the sites of transcription of these genes and the transcripts are processed
in the outer regions of the nucleoli.

The nucleus is bounded by the nuclear envelope or NE (Chapters 2 and 3),
which consists, in effect, of three membranous components (shown diagram-
matically in the cartoon in Figure 1.1). Firstly, the outer envelope is connected
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Figure 1.1 Diagrammatic cartoon of the nuclear envelope and nuclear pore
complex. (From Evans et al., 2004.) Reproduced by permission of the Society for
Experimental Biology.

to the ER and the lipids and proteins of the outer NE are similar to those
of the rough ER. Further, as with the rough ER, ribosomes are often present
on the outer NE. So, the outer NE may be a site of protein synthesis and is
certainly a part of the cell’s endomembrane system. Secondly, there is the
inner NE separated from the outer NE by the lumen, which is about 30 nm
across. The inner surface of the inner NE is closely associated with the nuclear
lamina, a structure consisting of filamentous proteins and which forms the
main component of the nuclear matrix or nucleo-skeleton. Thirdly there is
the pore membrane, which links the inner and outer NEs and forms part of
the nuclear pore complex or NPC (Chapters 2, 4 and 8).

The containment of chromatin within its own membrane-bound organelle
has major implications for the life of the cell. Amongst other things, it per-
mits precise and complex regulation of gene activity and DNA replication
‘protected’ from more general aspects of cellular metabolism. However, it
also imposes constraints. The nucleus does not contain protein-synthesizing
machinery, even though proteins may be made on the surface of the outer
NE. All the enzymes, together with structural and regulatory proteins neces-
sary for the activities and components of the nucleus, over 1000 proteins in
all (Nuclear Protein Database: http://npd.hgu.mrc.ac.uk/), must be able to
get in from the outside. At the same time, several thousand more proteins,
those that are not involved in the life of the nucleus, are kept out. There are
also proteins that shuttle between the nucleus and the cytosol. Finally, all
the different RNAs that function in the cytosol must leave the nucleus (in
the form of nucleoprotein complexes). The NPCs have a major role in the

http://npd.hgu.mrc.ac.uk

