Annu. Rev. Condens. Matter Phys. 2020.11:529-559. Downloaded from www.annualreviews.org

Access provided by 71.117.163.225 on 03/17/20. For persona use only.

"\ ANNUAL
.\ REVIEWS

Annu. Rev. Condens. Matter Phys. 2020. 11:529-59

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
031119-050637

Copyright © 2020 by Annual Reviews.
All rights reserved

aiis CONNECT

www.annualreviews.org

* Download figures

* Navigate cited references

* Keyword search

« Explore related articles

* Share via email or social media

Annual Review of Condensed Matter Physics

Varghese Mathai,! Detlef Lohse,* and Chao Sun®

!School of Engineering, Brown University, Providence, Rhode Island 02912, USA

?Physics of Fluids Group, Max Planck-University of Twente Centre for Complex Fluid
Dynamics; MESA+ Institute; and Department of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands

3Max Planck Institute for Dynamics and Self-Organization, 37077 Géttingen, Germany

*Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering
of Ministry of Education, and Department of Energy and Power Engineering, Tsinghua
University, Beijing 100084, China; email: chaosun@tsinghua.edu.cn

Keywords

bubbles, buoyant particles, Lagrangian dynamics, wake—turbulence
interaction, bubble-induced turbulence, two-way coupling

Abstract

Fluid turbulence is commonly associated with stronger drag, greater heat
transfer, and more efficient mixing than in laminar flows. In many natural
and industrial settings, turbulent liquid flows contain suspensions of dis-
persed bubbles and light particles. Recently, much attention has been de-
voted to understanding the behavior and underlying physics of such flows
by use of both experiments and high-resolution direct numerical simula-
tions. This review summarizes our present understanding of various phe-
nomenological aspects of bubbly and buoyant particle-laden turbulent flows.
We begin by discussing different dynamical regimes, including those of
crossing trajectories and wake-induced oscillations of rising particles, and
regimes in which bubbles and particles preferentially accumulate near walls
or within vortical structures. We then address how certain paradigmatic
turbulent flows, such as homogeneous isotropic turbulence, channel flow,
Taylor—Couette turbulence, and thermally driven turbulence, are modified
by the presence of these dispersed bubbles and buoyant particles. We end
with a list of summary points and future research questions.
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1. INTRODUCTION AND OBJECTIVES OF REVIEW

Turbulent multiphase flows are common in nature and industry. Typical examples are pollutants
dispersed in the atmosphere, air bubbles and plankton in the oceans, sediment-laden river flows,
and catalytic particles and bubble columns in process technology. In all of these examples, the
particles of the dispersed phase have a different mass density from that of the carrier phase. When
the dispersed particle is lighter than the carrier fluid element, there may be major consequences
for the kinematics and dynamics of both phases, often triggering a multitude of flow modifications.
Many of these flow modifications can be viewed as originating from the inherent buoyancy of the
bubbles and light particles, which renders them capable of adding energy over a range of scales
while ascending through the turbulent flow. These flow modifications have decisive roles in many
natural phenomena, for example, in the collective dynamics of buoyant zooplankton undergoing
diel vertical migration (e.g., 1, 2); in bubble-induced mixing in the upper oceans (e.g., 3); and in
engineering applications of drag reduction, heat transfer, and mixing (e.g., 4-6).

The subject of dispersed particles in turbulent flows has been studied extensively from the
perspective of small (inertial) particles. For reviews of experimental and numerical techniques for
particle-laden flows, see References 7-13. Over the past couple of decades, researchers have gained
much insight into particle dynamics and flow modulations at various scales of turbulence, mainly
for neutrally buoyant and heavy particles. As we discuss in this review, for a variety of reasons, heavy
and neutrally buoyant particle-laden flows are experimentally, numerically, and theoretically more
tractable than their bubble-laden counterparts (14).

Balachandar & Eaton (15) recently reviewed important aspects of turbulent bubbly flows. How-
ever, they do not consider how the buoyancy of gas bubbles and light particles can manifest in
various forms in turbulent multiphase settings. The aim of this review is to examine the subject
from this perspective for bubbles and buoyant particles in turbulence. Therefore, all of the flows
we consider are liquid, and henceforth we use the term buoyant particles generically to refer to
both gas bubbles and light particles. Vapor bubbles, which have rich underlying physics of their
own (16), are not discussed here.

The review is organized into several sections. We begin with the equations governing fluid
motion and that of a particle suspended within the flow (Section 2). In Section 3, we address the
dynamics of small bubbles and buoyant particles in a regime in which particle inertia is dominant,
followed by a regime where buoyancy and inertia compete, leading to clustering and reduced rise
velocities. We then explore the unsteady wake-induced dynamics of finite-sized buoyant particles
and air bubbles, as well as their so-called lift and lateral migration tendencies. In Section 4, we
discuss the main consequences of particle dynamics on flow modulations, including drag reduction
and heat transfer enhancement pertaining to different turbulent flow systems. The review ends
with a summary and outlook toward open issues for future research.

1.1. Dimensionless Groups

Covering the vast number of issues encountered in buoyant particle-laden turbulence would re-
quire an exhaustive compilation of the relevant dimensionless parameters (for a review of bubbles
in general, see 14). In this review, we restrict our attention to a selected subset of these. We divide
the control parameter space into particle parameters and flow parameters. For the bubble or buoy-
ant particle, the following dimensionless groups are important: the density ratio of the particle (or
bubble) to liquid, I' = p,/py, and the size ratio, & = d,,//, where d, is the particle diameter and /
is a characteristic length scale of the flow. By combining I" and E one can obtain the Stokes num-
ber, St = /71, where 1, is the response time of the particle and 7y is a characteristic timescale
of the flow. We note that the problem is sufficiently defined once two of the three parameters
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(T, E, and St) are specified. Furthermore, one can include the effect of buoyancy (or gravity) by
using two additional control parameters: the Froude number, Fr,,, and the Galileo number, Ga. In
the most general form,' Fr,, = U?/(gd,) gives the ratio of inertia to buoyancy, where Uis a relevant
velocity scale and g is gravitational acceleration. Ga = /gd}(I' — 1)/v compares buoyancy effects

with viscous effects (17), where v is the kinematic viscosity of the carrier liquid. Note that the
above definition of the Galileo number, Ga, is alternatively referred to as the Archimedes number,
Ar (18). Next, when the buoyant particle under consideration is a gas bubble, its deformability can
have an influence on particle-turbulence interactions. The E6tvés number, Eo = g gdrz) /o (also
known as the Bond number, Bo), gives the ratio of buoyancy force to capillary force. Here, p; is
the liquid density and o is the surface tension of the gas-liquid interface. Furthermore, when the
buoyant particle’s rotation is important, its mass moment of inertia ratio, I* = I,/I; (where I, is
the particle moment of inertia and I; is the moment of inertia of the displaced liquid), becomes
a relevant control parameter. For turbulence, we refer to the Reynolds number, Re (with varying
definitions based on the type of the turbulent flow), and the Rayleigh number, Ra (for thermal
turbulence). With these parameters specified, we look at a variety of responses of the particles, as
well as the flow modulations they induce.

Lastly, the volume fraction « of the dispersed phase is a crucial control parameter for the system.
For particle-laden systems, it is common to specify a low—volume fraction threshold for transitions
to two-way and four-way coupling regimes (13). For bubbly and light particle-laden turbulence,
such a criterion is rarely used. As is often the case, even one buoyant bubble can significantly
modify the turbulence around it. Thus, it is not appropriate to identify a threshold of bubble
volume fraction below which bubbles can be considered passive. In this review, we restrict our
discussion to situations of low and moderate volume fractions (@ < 5%), where complex issues of
coalescence and breakup (19) are not dominant.

1.2. Response Quantities

In addition to the abovementioned control parameters, we discuss the particle Reynolds number,
Re, = vrd, /v, and the buoyancy parameter, R, = vr/#, which are estimable output parameters.
Here, vy is the measured mean particle rise velocity and #' is the root-mean-square velocity of the
liquid fluctuations of single-phase turbulence. Broadly speaking, the Lagrangian dynamics of the
particles and the various flow modifications they induce are the output quantities of importance.
Our intention is to present these under one umbrella of familiar terminology. We provide further
details of the dimensionless groups in the relevant sections of text.

2. PARTICLE MOTION IN A FLUID FLOW

The fluid motion in an incompressible multiphase flow is governed by the Navier—Stokes (NS)
equations,

U v

LU= - VU4, 1.

ot ol
where U is the velocity at the location of the particle, p is the pressure, p; is the liquid density, v
is the kinematic viscosity of the liquid, and f is a back-reaction force per unit mass on the fluid.
On the basis of the flow setting and the modeling approach, fg can be either exactly computed
(11) or modeled (20, 21), or ignored altogether (7). Appropriate boundary conditions must be

Note that many different, but equivalent, definitions of the Froude number are available.
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applied on the boundaries of the fluid domain. For the particle, when employing fully resolved
direct numerical simulations (DNS), the boundary condition is either no slip or free slip, or a
combination of the two.

We begin by considering the equation of motion of a small buoyant spherical particle advected
in a fluid flow with velocity U[X(2), 7], and in the presence of gravity. Assuming the particle’s spatial
dimension is pointlike, one can use a form of equation in the spirit of the celebrated Maxey—Riley
equation (22):

VP’OPXP: ppl%g+FAI+FB+FL+FD, 2.
where X, is the position of the particle (or bubble); V, = (nd]i)/ 6 is its volume; and p; and p,
are the liquid and particle mass densities, respectively. In obtaining the above equation, we have
assumed that the coupling between translation and rotation of the particle is negligible. The forces
contributing on the right-hand side, other than those due to the accelerated flow (which includes
the pressure gradient term), are the added mass Fy, drag Fpy, buoyancy Fg, and a so-called (shear-
induced) lift Fy . Generally, they are modeled as

Fy=CupV, (% —Xp>, 3.
Fy=V, (op — 1) g€, 4.
F.=—C.pV,X, - U) x (V x U), 5.
Fp= —Cp%d‘z’anp ~-U|X, - U), 6.

where Cy is the added mass coefficient and g is the gravitational acceleration directed along
¢,, the unit vector in the vertical direction. The shear-induced lift depends on the alignment be-
tween the vorticity vector (V x U) and the relative velocity of the particle (Xp —U), and Cp and
Cp are the constants of proportionality for lift and drag, respectively (i.e., lift and drag coeffi-
cients). It is important to first appreciate the directions of these force vectors for a rising buoyant
particle. Figure 1a presents a simplified picture of a buoyant particle rising along the downward
side of a vortex. Note that the Faxén forces (accounting for flow nonuniformity at the particle
scale) and the Basset history force are omitted for simplicity (24, 25). The relative importance of
these terms for buoyant rising particles is still to be resolved (26-28).

When the condition of the particle’s Reynolds number, Re, < 1, is met, the drag coefficient
reduces to Cp = 24/Re,, which implies the following linear drag relation: Fp = =37 ud, (Xp -U).
While the basic form of this equation is founded on a unified treatment of particles, drops, and
bubbles, it also assumes that, for Re, < 1, the particle locally sees a Stokes flow (22, 29) despite
the unsteadiness and turbulence of the carrier flow. The expression for drag used above assumes
a contaminated air-liquid interface for the bubble. For a clean bubble interface, the prefactor of
Fp is slightly modified (30), although it retains its functional form. The assumption of a contam-
inated interface is indeed reasonable for most natural and industrial flows, since the carrier liquid
is almost never ultrapure. Assuming potential flow in the outer regions, we can use Cy = 1/2.
Similarly, by considering the momentum flux far from the particle, one can obtain the Auton
life, Ci, = 1/2 (24, 31), which applies to small spherical bubbles or particles in a shear
flow.

For the purpose of simplification, we now consider the turbulence to be homogeneous and
isotropic. A state of homogeneous isotropic turbulence (HIT) is fully determined by knowing
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Figure 1

A buoyant spherical particle in a turbulent flow. (#) Forces (represented as point forces) felt by a small buoyant particle or gas bubble
rising past a vortex (a simplified representation of turbulent eddy). v}, is the instantaneous particle velocity vector, and the forces due to
buoyancy (Fp), drag (Fp), so-called lift (Fy,), and the net effect of added mass and pressure (Faip) are represented by colored arrows
giving their relative directions. The drag (purple arrow) is oriented to oppose the direction of the particle’s velocity; the buoyancy (green
arrow) is vertical; and the shear-induced lift force (red arrow) acts perpendicularly to the plane containing the particle velocity and the
vorticity vector and is opposed by the centrifugal force (blue arrow) that is directed toward the eye of the vortex, as the particle is lighter
than the surrounding liquid. Fp is obtained by rearranging the added mass and fluid force terms in Equation 2, and it accounts for the
pressure force on the buoyant particle. For details of the variables shown, see Equations 3-6. (b)) The buoyant particle rising through a
turbulent flow composed of vortices (or eddies) of various length and timescales. 4, is the particle diameter, 1 is the dissipative length
scale, and L is the integral length scale of the flow (7, 23). A is an intermediate length scale, commonly known as the Taylor

microscale.

the kinematic viscosity v, an outer length scale, and a timescale. A bubble or light particle rising
through HIT (Figure 15) sees the largest and smallest length scales, which are the energy injection
scale L and the Kolmogorov (or dissipative) scale 7, respectively. Additionally, A represents an
intermediate scale known as the Taylor microscale, upon which the Taylor—Reynolds number,
Re; = w'L/v, is based. Since the particle size is comparable to the dissipative scale, it is appropriate
to nondimensionalize the equation of particle motion by using the Kolmogorov units of length
(n) and time (7). This leads to

Du

. P U P
% =Bp, T @R+ Tu—%) xe, 7.

where the lowercase bold variables x,,, u, and @ denote the new dimensionless vectors for particle
position, flow velocity, and vorticity, respectively. 8 = 3/(1 4 2T') is an effective density ratio that
takes the fluid added mass into account. The Stokes number, St = d; /12Bvt,, and the Froude
number, Fr = 4,/[(8 — 1)g], are defined generically to be valid for light (I < 8 < 3), heavy (0 <
B < 1), and neutrally buoyant (8 = 1) particles. 2, = n/ rnz is the acceleration at the Kolmogorov
scale.
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Figure 2

A simplified regime diagram for a buoyant particle or air bubble in a turbulent flow. The dynamics of the
particle can be summarized as a function of three dimensionless parameters: the Stokes number (St), a
measure of particle inertia; the Froude number (Fr), the ratio between turbulence strength and gravity; and
the particle Reynolds number (Rep) (27, 32). The different regimes are FT (fluid tracer-like), IC (inertial
clustering), RR (reduced rise velocity), and CT (crossing trajectories). The horizontally hatched (magenta)
region is the regime where the effect of crossing trajectories can be observed to various extents, depending
on the value of St. The asterisks (connected by arrows) help illustrate a gradual regime transition seen by an air
bubble (density ratio I' = 10~%) upon increasing its size at constant turbulence level, and assuming that Re,,
< 1. Note that the figure does not capture the effects of changing I' and size ratio (E).

3. BUOYANT PARTICLE DYNAMICS
3.1. Regimes of Dynamics

A wealth of intriguing phenomena have been reported for buoyant particle suspensions in turbu-
lent flows. Figure 2 depicts a simplified regime diagram for a buoyant spherical particle (or bubble)
when the particle parameters St, Fr, and Re,, are varied, with T, &, and background turbulent flow
unchanged. When extremely small, bubbles (or light particles) can serve as a passive flow visualiza-
tion tool (33), while in other scenarios, they have been used to selectively sample intense vortical
structures present in flows (33, 34). It is widely known that in the case of finite particle inertia
[St ~ O(1) and Fr > 1] bubbles cluster in high-vorticity regions (Figure 2). Several researchers
(20, 35, 36) observed these effects in their simulations of HI'T laden with microbubbles. The phe-
nomenon was later extensively explored by others (37, 38), thus providing a unified understanding
of the clustering behavior of light, heavy, and neutrally buoyant particles. The methods adopted
to quantify clustering have been diverse, with some (37) using the Kaplan—Yorke dimension and
Minkowski functionals and others (39-42) using Voronof tessellations or simply the relative par-
ticle concentration in high-vorticity regions (21), but all to the same end. An assessment of the
actual forces that bubbles are subjected to in turbulent environments was performed by Volk et al.
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(43,44), who experimentally investigated the acceleration dynamics of small bubbles (4, ~ 75 j1m)
in a relatively intense turbulent flow (Re; = 850) generated by a von Kdrmén flow apparatus. The
high intensity of turbulence ensured that the 75-pm air bubble had St =1.85 with Fr ~10, which
meant that the role of buoyancy was negligible. These bubbles showed an acceleration variance
four times that of the fluid, presumably a combined effect of inertial forces and preferential ac-
cumulation in high-vorticity regions of the flow (27). For reviews of inertial particle dynamics in
the absence of buoyancy, see References 7 and 8.

It is worthwhile to take a step back to appreciate the various regime transitions seen by an air
bubble (I' = 107%) when its size is increased with all other parameters kept fixed. Practically speak-
ing, for a laboratory-scale turbulent water flow [say, Re; ~ O(100) and L ~ 100 mm], the actual
regime transitions can be more complex. For instance, a microbubble with 4, < 10 um can still
be considered a good tracer of the turbulent flow, but when 4, is increased to around 100 pm, the
effects of buoyancy begin to play a role in the dynamics. When the bubble is a few hundred mi-
crometers in size, in addition to its buoyancy, the bubble’s inertia becomes important, and when the
diameter is increased further (4, > 500 pm), one can expect noticeable non-Stokesian and finite-
Re, contributions. In the following sections, we discuss these regimes of dynamics in more detail.

3.2. Crossing Trajectories

This section addresses the dynamics of a particle advected in HIT in a regime where Fr =
a,/[(B — 1g] < 1. The importance of buoyancy (Fr < 1) naturally implies that the particle
experiences a mean vertical drift through the turbulent flow, hence the term crossing trajectories
(Figure 1b).

3.2.1. Noninertial particles with buoyancy. We begin with bubbles and buoyant particles that
are in the noninertial limit, that is, with St < 1. Since a very small St naturally implies tiny parti-
cle dimensions, such bubbles are commonly used as tracers in turbulence experiments. Recently,
Mathai et al. (32) conducted a combined experimental and numerical study of the dynamics of
such small bubbles and particles in the noninertial (St < 1) limit. An interesting consequence of
buoyancy is that even low-St bubbles are subject to intense acceleration. For Fr <1 and St <1,
Equation 1 is dictated by the balance between only the drag and buoyancy terms, yielding the
expression X, =~ Du/Dr + (St/Fr)d,u, where 0,u are the gradients of the turbulent flow velocity
at the particle’s location. The buoyancy parameter can be exactly computed as R, = u,St/(«/Fr).
The acceleration variance (/th component) of the buoyant particle (ﬂlz))i can be expressed as an
enhancement over the fluid acceleration variance (a?):

2

(a)i St\?
~1 P — 8.
wy T (Fr) ’

where «, = 2/(154) for the horizontal component and «, = 1/(154) for the vertical compo-
nent, with #y the so-called Heisenberg—Yaglom constant (45). These relations follow exactly from
the assumption that the turbulence is statistically isotropic (23). In other words, the increase in
acceleration variance is a direct consequence of the vertical drift of the bubble through the turbu-
lent eddies. While the acceleration variance increases, its decorrelation time compared with the
fluid is suppressed (Figure 34,b), as the drifting particle spends comparatively less time within the
turbulent eddies. Similarly, the kurtosis of acceleration is diminished because the spatial velocity
gradients 0,u in turbulence are less intermittent than the fluid acceleration (for further details,
see 32). Finally, we note that in this noninertial limit the behavior of buoyant particles is expected
to be nearly identical to that of heavy particles, for fixed StFr (46-48). Of course, the effect is
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Accelerations and clustering behavior of small (E < 1) buoyant particles and bubbles in isotropic turbulence obtained using
Euler-Lagrangian direct numerical simulations (DNS) with the inclusion of buoyancy and lift. (#) Normalized acceleration variance of
buoyant noninertial (St < 1) particles in turbulence versus SU/Fr at Re; = 75. The acceleration variance here is normalized by the
acceleration variance of the fluid. (/) Normalized acceleration decorrelation time (time to reach an autocorrelation value of 0.5) of the
particles for the same cases as in panel 2. The normalization here is with the Kolmogorov timescale of the turbulence. In panels #z and b,
solid and hollow symbols correspond to vertical (gravity direction) and horizontal components, respectively. The solid and dashed
curves represent theoretical predictions. (c,d) Projections of bubble distribution in isotropic turbulence (Re, = 62) for St = 0.33 and

St = 1. Note that the particle concentration is identical for both panels. Bubble clustering is pronounced in the St = 1 case (d). We
estimate the ratio SUFr (% vr/uy) to be 1.0 and 3.0 in panels ¢ and 4, respectively, implying R, < 1. (¢) Clustering of light particles in
turbulence, quantified using probability density functions (PDFs) of normalized Voronoi volumes for different values of St. The solid
curve is a Gamma distribution, which is representative for nonclustering (randomly distributed) particles. Green data points are based
on DNS using an Euler-Lagrangian (point—particle) model, at Re, = 180. Black data points represent experimental data for
microbubbles (St = 0.04) in turbulence at Re, = 162. The results suggest that maximum clustering for bubbles occurs at St around 1-2.
(f) Number of bubbles located in a particular zone of fluid, »;, normalized by the volume fraction of that zone, v;, versus St. Here,
again, Re; = 62, and St/Fr is kept fixed at 1. The symbol colors refer to zones: eddy (green), shear (orange), streaming (magenta), and
convergence (blue). Panels 2 and b adapted from Reference 32. Panels ¢ and 4 adapted from Reference 20. Panel ¢ adapted from
Reference 40. Panel fadapted from Reference 21.

more pronounced for bubbles because their density contrast is generally larger than that of heavy
particles in liquid flows. Thus, a tiny bubble or droplet is not necessarily a good tracer of turbulent
acceleration. In reality, the situation of finite g/a, is common for bubbles that drift through the
oceans (g/a, ~ 100-1,000) and for droplets settling through clouds (g/#, ~ 10-100) (49). On the
practical side, these also point to the key condition St/Fr <« 1 that must be met (in addition to
St «1) for the usage of small bubbles (or droplets) in flow visualization and particle tracking in
turbulent flows.

3.2.2. Inertia and buoyancy. Next, we consider the cases when Fr < 1 and St ~ 1, that is,
a regime in which both buoyancy and inertia are important and in competition. Employing an
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Euler-Lagrangian point—particle (PP) approach of a form similar to Equation 7, Mazzitelli et al.
(20) studied the effect of increasing St at fixed Fr for bubbles rising in isotropic turbulence (Re; =
62). Figure 3¢,d depicts the bubble distribution obtained from their simulations. At St = 0.33, the
particles (bubbles) are nearly uniformly distributed, but at St = 1, clustering is visibly amplified. A
three-dimensional Voronoi analysis was used to quantify the clustering of bubbles in HIT turbu-
lence by use of data sets from numerics in the PP limit (without gravity and lift) and experimental
data (40). For bubbles, Tagawa et al. (40) observed that the probability of finding both small and
large Voronoi volumes V/V is generally higher. The two regions of small and large volumes can be
used to identify clusters and voids. A high probability for low values of V/V signifies intense clus-
tering. As shown in Figure 3e, when St increases, the probability of finding clusters (and voids)
increases and reaches a maximum around St &~ 1.6, suggesting that the strongest clustering for
bubbles occurs in the St range of 1-2. A direct quantification of the clustering in the presence
of buoyancy is shown in Figure 3f. Since the buoyancy and lift terms were included in Refer-
ence 21, the relative degree of clustering is typically less than what is observed in the minimalistic
simulations presented in Reference 38, where these terms were neglected.

3.2.3. Non-Stokesian bubbles and particles. For the more common situation of air bubbles
in water flows, an St of order 1 typically almost never satisfies the condition of Re, < 1 (50, 51).
Therefore, a modified consideration of the drag, added mass, and lift forces is essential to predict
the trajectory of finite-sized and finite-Re,, bubbles. As a model problem, Sridhar & Katz (52)
experimentally studied the entrainment of such air bubbles (4, ~ 500-800 pwm) by a vortex ring.
They reported that the drag coefficient was comparable to the Schiller—-Naumann parameteri-
zation (Figure 44), while the lift forces did not agree with the existing theoretical or numerical
models (22, 47, 53). More recently, Aliseda & Lasheras (54) experimentally investigated the be-
havior of small spherical bubbles (4, ~ 100-1,000 um) immersed in a homogeneous isotropic

a b
4 ——————————————————— ; ; ; ;
10 Experiment 1 —— u;
Sridhar & Katz (1995) 1 012 -
3k — Schiller-Naumann - é ®— Vtheor
‘5 Vtap
3 —O— Vg
LS 0.08F -
Cp 2+ - 54
L Q
_ %
L =
i :g 0.04 - -1
1+ B 3
L [--]
0 I T R SR B 0 & I I
0 20 40 60 80 100 0 100 200 300 400 500
Re, dp (um)

Figure 4

Drag coefficient and rise velocity modifications for submillimetric air bubbles rising in turbulent flows. (#) Comparison of the drag
coefficient for 500-800-pum-diameter air bubbles (in a vortical flow), along with the predictions of the Schiller—-Naumann drag model.
(b) Direct measurements of rise velocity v7 for small bubbles versus bubble diameter 4, in a grid-generated turbulent flow at Re;, ~
404 (as roughly estimated by us). For comparison, veheor is the terminal velocity estimated theoretically using Stokes drag Cp = 24/Re,
vdist is the terminal velocity measured in triply distilled water, and vy, is the same quantity measured for tap water. Data in panel #
adapted from Reference 52. Data in panel 4 adapted from Reference 54.
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turbulent water flow (Figure 45). Within the turbulent flow, the concentration field of the bub-
bles was altered, with preferential accumulation at the smaller scales and reduced rise velocities in
comparison to the value in stationary liquid. These effects were interpreted as occurring due to
two phenomena. First, the pressure fluctuations drive the inertial bubbles to the cores of the vor-
tices. Second, the lift forces cause the bubbles to be preferentially transported toward downflow
regions, where, in combination with an increased relative velocity (increased viscous drag), they
are further slowed down (Figure 1a) (21).

The conditions of small size (d,/n < 1) and nearly spherical shape are typically satisfied only
for submillimetric air bubbles (52, 54). However, most bubble-laden turbulence operates under
conditions where the bubbles are of finite size, free to move, and, most importantly, deformable
(55, 56). These call for a more detailed consideration of the coupled interaction between the bub-
ble topology and its wake-induced dynamics arising from the finite-Re,, and finite-Weber number
(We) eftects (57). A fully resolved treatment of the interaction between isotropic turbulence and
large solid spherical particles has been performed in a variety of configurations (28, 58, 59). In com-
parison, DNS of turbulent bubbly flows are challenging because of the interface deformations and
internal circulations, along with the need to resolve a wide range of length and timescales inherent
to the turbulent flow. Loisy & Naso (60) used DNS to study an isolated deformable bubble freely
rising in an otherwise isotropic turbulent flow (Figure 54). Both the buoyancy parameter (R, €
[0.63, 2.17]) and the bubble Reynolds number (Re, € [17, 62]) are moderate; therefore, in quies-
cent liquid such bubbles rise along straight vertical paths. However, with decreasing R, the tra-
jectories become erratic and increasingly deviate from vertical paths (Figure 5b-d), accompanied
by a reduction in rise velocities. With regard to the statistics of bubble velocity and acceleration,
the probability distribution functions (PDFs) were nearly Gaussian for the velocity and showed
stretched tails for accelerations. Lastly, the bubble showed a preference for increased residence in
vorticity-dominated regions, computed here using the discriminant D = 27R? 4+ 4Q?, where Q and
R are the second and third invariants of the velocity gradient tensor, respectively (61). This result
was determined by conditional sampling of the average discriminant profile and discriminant field
around the bubble (see Figure 5e and b, respectively).

The above analyses (60) show that the dynamics of moderate-Re;, bubbles in turbulence (rise
velocity, PDF shapes, and clustering) are at least qualitatively captured by the PP model (27) de-
spite their finite Re,, finite size, and deformed shape. However, this does not reflect the full pic-
ture, since certain aspects of the bubble statistics are markedly different from the PP predictions.
The PDF of the longitudinal acceleration, namely the component of bubble acceleration directed
along its instantaneous velocity, was found to be negatively skewed, a feature not captured by the
PP model even with the inclusion of a back-reaction force. It remains to be determined whether
the origin of the negative skew actually lies in the time irreversibility (62) of turbulence, as postu-
lated by Loisy & Naso (60), or in the asymmetry of flow-induced forcing on the bubble.

3.3. Wake-Driven Dynamics and Path Instabilities

With increasing buoyancy over inertia, the bubble or buoyant particle’s Re;, can reach a few hun-
dred. Two important changes come into effect in this regime. First, the mean drag coefficient loses
its Reynolds number dependence, and Cp becomes weakly dependent on Re,,. Second, such bub-
bles and particles experience fluctuating components of forces that originate from the instability of
their wakes. Although the mean forces on the particle can still be approximated, the instantaneous
drag and lift can no longer be described using simplified coefficients. Furthermore, owing to the
lightness of the particle, this regime paves the way for a strong coupling between the unsteady
wake dynamics and particle motion, often resulting in vigorous path instabilities (18, 63-67). As
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Figure 5

Direct numerical simulations of a slightly deformed bubble (E ~ 10; Re,, € [17, 62]) rising in a turbulent flow at Re; = 30. (#) Snapshot
of the (normalized) vertical velocity field of the turbulent flow on a plane passing through the bubble center. ()—4) Sample bubble
trajectories for decreasing buoyancy parameter R, = vr/u': () Ry = 2.17,(¢) 1.11, and (d) 0.63. The bubble trajectories are colored by
their instantaneous vertical velocity normalized by their terminal velocity. (¢) Radially averaged profile of discriminant D around the
bubble for the three different R, cases. The abscissa v/ /dj, is the (normalized) radial distance from the centroid of the bubble. The sign
of the discriminant D (ordinate) can be used to highlight the vorticity-dominated regions. (f~5) Average discriminant field around the
bubble for decreasing R, (lef to right). The color scale is centered around the mean value D # 3 to show that values above D are the
vorticity-dominated regions. The discriminant field clearly demonstrates that clustering in high-vorticity regions increases as the
bubble rise velocity decreases. Figure adapted from Reference 60.

reported by Risso (68), there is now compelling evidence that the wakes and dynamics of isolated
buoyant particles are remarkably robust to turbulent perturbations (69). Therefore, the forces act-
ing on an isolated buoyant particle in a flow can still provide a basis for understanding dispersed
two-phase flows.

3.3.1. Wake-driven bubbles. Building on the original formulations proposed by Kirchhoff for
a rigid particle in an arbitrary irrotational flow (70, 71), Mougin & Magnaudet (30) extended
this case to a situation where the NS equations governing the liquid flow (72, 73) are considered
in conjunction with Newton’s laws for the translational and rotational dynamics of a fixed-in-
shape nonspherical bubble or buoyant particle. The Kelvin-Kirchhoft equations, which disregard
small-scale deformability effects, demonstrate that wake instability and anisotropic added-mass
effects of oblate spheroids (63, 74) are indeed sufficient to explain the experimentally observed
path instabilities (75) of millimetric bubbles. This method, now readily available, has yet to be used
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The horizontal component of velocity and dispersion for 1.8-mm-diameter air bubbles (R, ~ 10) rising in active-grid-generated

)

turbulence at Re, = 110. Here, the bubble size ratio & ~ 5. (#) A sample image from one of the cameras. (b)) Lagrangian temporal
autocorrelation function of the horizontal component of the bubble velocity. (¢) Kurtosis of the horizontal velocity-increment
probability distribution function as a function of time lag 7. (4) Horizontal component of the mean-squared displacement (MSD) for
the bubble as a function of time lag 7. The well-known ballistic—diffusive behavior of fluid tracers is shown for comparison: The dashed
gray line represents oct?, and the solid gray line represents o271,7. The dotted blue line on the right shows the prediction for the
reduced long-time dispersion for the bubble, obtained using the crossing-trajectories hypothesis. Figure adapted from Reference 51.
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widely for turbulent bubbly flows, and it holds the potential to yield useful insights at a reduced
computational cost, since the condition of a continuously deforming bubble interface is relaxed.

Mathai et al. (51) have experimentally studied the dynamics of isolated millimetric air bubbles
in turbulent flows. These authors generated a suspension of air bubbles (4, ~ 1.8 mm) in active-
grid turbulence with Re; € [110, 300]. The bubbles were nearly spherical (Figure 64), and their
volume fraction in the experiments was low (o« ~ 5 x 107%). At a low level of turbulence (Re, =
110), both the Lagrangian temporal autocorrelation of the bubble velocity and its kurtosis showed
periodicity (Figure 6b,c), which clearly indicated wake shedding at a frequency fi;, ~ 0.1v,/d,.
The effects of these on the spreading of the bubbles was analyzed using mean-squared displace-
ment (MSD), which was then compared with the well-known regimes of Taylor dispersion for the
fluid in turbulence (Figure 6d). At short times, the bubble MSD grows ballistically (oct?), whereas
at a longer timescale set by the wake-shedding frequency f., it approaches the diffusive regime,
where MSD o 7. Note that the ballistic regime of the bubbles lies well above the #27? prediction
of fluid tracers, whereas the diffusive regime of the bubbles lies well below the 222 T}t prediction
of fluid tracers (here, 77, is the Lagrangian integral timescale, which sets the ballistic—diffusive
transition time for fluid tracers in turbulence). Thus, with high-Reynolds number millimetric air
bubbles in turbulence, we can appreciate an elegant merger of two classical phenomena: the wake-
induced velocity fluctuations of the bubbles (at short times) and the reduced dispersion (at longer
times) originating from the crossing-trajectories effect (2, 32, 51, 76).

Ravelet et al. (77) have studied the motion of an even larger bubble (4, ~ 9 mm) in turbulence.
At these sizes in a turbulent water flow, the bubble shows considerable deformability (We >~ 11.6),
and its Reynolds number, Re, & 2,800. These researchers tracked the bubble motion and orien-
tation in intricate detail using three-dimensional shape recognition, yielding statistics of bubble
translation, rotation, and deformation in turbulence (Figure 74-d). The bubble dynamics was
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Kinematics of a deformable air bubble (4, 2 9.3 mm; Re,, = 2,800) rising in a (rotating) grid-generated turbulent flow (77). The
buoyancy parameter R, lies in the range [5, 10]. (#—) Image-processing steps on the bubble images, with equivalent ellipse (red), center
of mass (red circle), major axis (blue), and minor axis (green) of the best-fit ellipsoid. (¢) Standard deviation of the liquid velocity measured
in one vertical plane and eight horizontal planes, superimposed on a trajectory of the bubble (black). Note that the bubble is trapped in a
region of highest vorticity. (f) Normalized power spectral density (PSD) of horizontal velocity v, (black), orientation 6 (red ), and major
axis « (blue). The spectra are normalized by the frequency f> = 15 Hz, as in Reference 77.

found to be governed by three fairly independent mechanisms. First, the average bubble shape is
imposed by the mean motion of the bubble relative to the liquid. Second, the wake instability of the
bubble generates periodic oscillations in its velocity and orientation. Third, the turbulence adds to
the random deformations, which under rare circumstances can even lead to bubble breakup. Such
bubbles were observed to be trapped inside a vortex at the core of the flow (Figure 7e). The tem-
poral spectra of horizontal velocity, orientation, and semiaxis lengths (Figure 7f) reveal peaks at
around 8.5 Hz. This is consistent with wake instability and yields a Strouhal number (Sr) of ~0.27.

3.3.2. Wake-driven rigid buoyant particles. In the following discussion, we provide an
overview of studies on large buoyant particles of fixed shape advected in turbulent flows. Ini-
tial progress was made using finite-sized neutrally buoyant spherical particles (78-80). From a
modeling perspective, the PP approach with the so-called Faxén corrections (22, 81) for particle
size was widely adopted for the study of neutrally buoyant spherical particles (27). Still, the ques-
tion of finite-slip velocities, which occur in most practical situations, raises important concerns
about the validity of this treatment (12). By performing experiments using marginally buoyant
(B ~ 1.05) rigid finite-sized spheres in turbulence, Mathai et al. (82) showed that even a slight
density mismatch is sufficient to cause the dynamics of buoyant particles to deviate significantly
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Figure 8

Kinematics and dynamics of rigid buoyant spheres (& ~ 10) in a turbulent flow with Re, ~ 300. (#—) Three-dimensional trajectories of
buoyant spheres for increasing Galileo number (Ga). In obtaining these trajectories, the mean rising motion of the spheres was
counteracted by matching the sphere rise velocity with the mean downward flow speed. Note that the increase in Ga coincides with an
increase in the buoyancy parameter R, = (v7/#’), which was measured to be around (2) 1.7, (b) 13.6, and (c) 45.6. (d) The Frenet—Serret
coordinates [tangent (T), normal (N), and binormal (B)] were used to decompose the instantaneous motion of the sphere in turbulence.
(e) Probability distribution functions (PDFs) of the centripetal acceleration an for two spheres with identical properties (I' = 0.89;

E ~ 100; Ga = 6,000), except their mass moments of inertia, I* = 1.0 (black circles) and 0.6 (red circles). Here, ax is directed along the N
vector in the Frenet-Serret formulae. Reducing I* triggers a dramatic increase in the (¢) translational and (f) rotational accelerations.
Panels 4—c adapted from Reference 82. Panels d—f adapted from Reference 65.

from the Faxén model predictions. The deviations increase dramatically upon reducing the density
ratio until, for very buoyant particles with 8 ~ 2.90 (i.e., comparable to the B of a bubble), vigorous
path oscillations outweigh the turbulence-induced motion. Figure 84— demonstrates this effect
of increasing buoyancy (Ga = 30-3,000): The turbulence-induced chaotic dynamics in panel # are
replaced by wake-induced oscillations in panels & and ¢, reminiscent of Lissajous orbits (83).
Three mechanisms contribute to the increasing path oscillations observed here. First, an in-
crease in Ga strengthens the wake-induced forces. Second, there is an accompanying increase in
the buoyancy parameter, R, = vy/#’. When R, increases, the rising spherical particle crosses the
turbulent eddies at increasingly high speeds, thus having little time to respond to the turbulent
fluctuations. A third, not so obvious, influence was revealed experimentally in a recent study (65),
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which hints that the observed path instabilities are also augmented by the particle’s rotational
motions. To explain this finding, we revisit the Kelvin—Kirchhoff equations expressing linear and
angular momentum conservation for a buoyant spherical particle:

1 dv F
F4+-4B8) 24T Q@ xV,=—2 + (T — 1)g&; 9.
( +2—|— 1 ) o + p XV, ,01Vp+( )ge;,
1 de To
—TF4B,s) 2= 2 10.
(10 T ) dr — ppVpd?’

where V,, is the sphere velocity vector; €, is the sphere angular velocity vector; g is the acceler-
ation due to gravity; and I* = I,,/I; is the moment of inertia ratio, with I, the sphere moment of
inertia and I; the moment of inertia of the liquid volume displaced by the spherical particle. Fo
and T represent the quasi-static fluid force and torque vectors, respectively, which result from
the existence of vorticity in the flow. These terms can be straightforwardly obtained by integrating

the local stress and moment over the sphere surface. Note that § = /(v,)/(7d;) is the dimen-

sionless Stokes boundary layer, which develops in a time 7,. The prefactors B; = 18 and B, = 2
are analytically obtained from unsteady viscous contributions (73, 84). Equations 9 and 10 help us
appreciate the strong coupling that could exist between the translation and rotation of a buoyant
spherical particle (I* ~ I' < 1). Assuming the time available for the Stokes layer to develop scales
with the vortex shedding timescale, Mathai et al. (65) estimated that, up to moderate Ga, the role
of I* ought to be insignificant. By contrast, upon increasing Ga further, I* becomes increasingly
dominant in Equation 10.

3.3.3. Rotation-induced accelerations. To further analyze the role of rotation, it is advan-
tageous to adopt a Lagrangian frame of reference that is oriented with respect to the sphere’s
instantaneous motion (Figure 84). The mutually orthogonal Frenet-Serret coordinates are the
tangent T = X, /[x,[, normal N = B x T, and binormal B = (%, x %,)/[I%, x %,|| vectors, which
are directed along the particle velocity, curvature, and a direction perpendicular to the trajectory
plane, respectively. For neutrally buoyant spheres in turbulence, Zimmermann et al. (79) were
the first to show the existence of an alignment between translation and rotation. Figure 8e and
the inset show PDFs of linear (#x) and angular accelerations (), respectively, of two buoyant
spheres (I' ~ 0.89) that differ solely in their rotational inertia ratios, I* = 1.0 and 0.6. For the
case of lower I*, a strong coupling between translation and rotation ensues, which is strongly re-
flected in the particle’s linear and angular acceleration PDFs (65). The same qualitative effects
were reproduced for buoyant cylindrical particles with different I* values (67). New experiments
are being extended to the realm of buoyant ellipsoidal particles (oblate to prolate) in turbulence (J.
Will, V. Mathai, D. Krug, S. Huisman, D. Lohse & C. Sun, unpublished manuscript). Interesting
new regimes are being revealed (Figure 9) due to the coupling among particle buoyancy, particle
shape, and turbulence.

3.4. Lift- and Shear-Induced Lateral Migration

It is well known that bubbles or buoyant particles experience a lift force when subjected to a mean
shear in a flow. For spherical particles rising in a simple shear flow, the nature of these lift forces is
by now well understood (86, 87). The case of bubbles, however, is quite different due to additional
complexities arising from deformability, internal circulations, and surface contamination (50, 88—
92). In most situations, the aim is to assess the lateral forces that induce bubble migration toward
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Figure 9

Trajectories of buoyant ellipsoids of different aspect ratios x rising in quiescent liquid. The observed
trajectories are remarkably robust to background turbulent fluctuations. Here, T’ = 0.8 and Ga = 300,
calculated on the basis of the diameter d,e = (6V,/ 7)1/3. Aspect ratio x is used to distinguish oblate (x < 1)
and prolate (x > 1) ellipsoids from a spherical particle (x = 1). The oblate ellipsoids represent an
approximation of the mean deformed shapes of millimetric air bubbles in water (77, 85). Figure adapted
from J. Will, V. Mathai, D. Krug, S. Huisman, D. Lohse & C. Sun (unpublished manuscript).

or away from the wall, which in turn can be expressed as a function of bubble properties (de-
formability, size), and flow properties (coflowing channel, counterflowing channel, or background
turbulence level).

Bubble-laden wall layers are a common observation and have been extensively explored exper-
imentally (93-96). In the presence of turbulence, the two most common flow configurations are
upward (97) and downward (98) turbulent channel flows. Whereas in single-phase flow the two are
identical, they differ greatly for two-phase situations, since the bubble buoyancy can now orient
differently with respect to the mean shear near the channel walls. Drew & Lahey (99) developed
the first model to unveil the mechanisms involved. Using an asymptotic analysis, they qualitatively
reproduced the general trends for the velocity profiles and void fraction distributions. In compari-
son, DNS provide an ideal setting in which the governing NS equations can be solved numerically
for both phases such that all the length and timescales are fully resolved. Lu et al. (100) used DNS
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Figure 10

Direct numerical simulations of rising bubbles in vertical channel flows. Distribution of (#) spherical (Eo =
3) and (b) deformable (Eo = 0.9) bubbles, respectively, in an upward flow turbulent channel at a friction
Reynolds number of Re; = 127. The ratio of bubble diameter to channel half-width is 4, /5 = 0.3, and the
mean bubble Reynolds number is Rep, ~ 136. Spherical bubbles migrate toward the walls, but deformable
bubbles distribute themselves nearly uniformly in the bulk of the flow, as demonstrated by the tracks of the
(¢) spherical and (d) deformable bubbles. Figure adapted from Reference 102.

with front tracking to examine bubbly flows in a vertical channel. The results showed that for
nearly spherical bubbles, the lift-induced lateral migration resulted in two regions: a nearly uni-
form velocity bulk flow region, in which the weight of the liquid—bubble mixture balances the im-
posed pressure gradient, and a wall layer, which is free of bubbles for downflow and bubble-rich for
upflow (101). The latter situation, with bubble clustering near the walls, is shown in Figure 10a.
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While this result can be explained in the same spirit as the shear-induced lift of rigid spherical par-
ticles, strikingly, when the bubble is deformable the effectis reversed (Figure 105), and deformable
bubbles distribute themselves in the bulk of the channel. The negligible lift for the deformable
bubble can be attributed to the pliant nature of its interface, which prevents the buildup of a
nonuniform surface pressure distribution. Thus, it is bubble deformability (103), and not size, that
causes the sign change of the lift force in turbulent upflow channels and pipes. We return to the
flow modifications that the bubbles bring about in vertical channel flows in Section 4.2.2, below.

4. TURBULENCE MODULATION BY BUBBLES

Above, we have reviewed a variety of regimes for bubbles and buoyant particles in turbulent flows.
However, it is the collective behavior of these particle that often contributes to sizable effects in
most engineering applications of particle-laden turbulence. We now discuss the crucial role that
some of the above-described mechanisms play in triggering the different kinds of flow modulations
occurring in low— to moderate-volume fraction (¢ < 5%) suspensions of bubble-laden turbulence.

4.1. Bubbles Rising Within Homogeneous Turbulence

Two forms of turbulent flows with statistical homogeneity, namely HIT and homogeneous shear
turbulence, are considered in Sections 4.1.1 and 4.1.2, respectively.

4.1.1. Homogeneous isotropic turbulence. HIT represents one of the most elementary forms
of turbulence imaginable (104). Notwithstanding how unrealistic this flow might seem from a
practical viewpoint, studies of HI'T have led to great breakthroughs in our understanding of real-
world turbulent flows (23). The assumptions of statistical homogeneity and isotropy (among oth-
ers) have been central to many successful theories of turbulent flows. Note that all single-phase
flows, at high enough Reynolds numbers, will behave as HIT in the universal range and far from
boundaries. For single-phase turbulence, the —5/3 scaling of the energy spectrum (in the inertial
range) is well known (23); here, the energy flux flowing down to smaller length scales is nearly
constant up to the dissipative scales. In contrast, for a swarm of high-Re,, bubbles rising within an
otherwise quiescent liquid, bubble-induced turbulence (BIT) leads to a —3 scaling for the energy
spectrum. This result, originally observed in the milestone study by Lance & Bataille (105), has
by now become well established through detailed experiments, DNS, and even large-eddy sim-
ulations (106-108b). A further simplified approach was undertaken by Mazzitelli & Lohse (109),
who used the PP equation of motion with an imposed back reaction on the flow. This cumula-
tive back-reaction force, fr = X[(Du/Dr) — g]V, 8(xf — x;,), acting at the point x¢ in the flow, did
not generate the kind of liquid agitation commonly observed in BI'T. Although the two-way cou-
pling proved nonideal for BIT, it demonstrated that the key component for the scaling (missing in
the PP approach) was a model for the unsteady bubble wakes. For a detailed review of the liquid
agitation induced by bubble swarms (BI'T), see Reference 68.

Single-phase turbulence and bubbly swarms have been studied separately, but the situation
where bubbles are injected into an already turbulent background flow, despite its relevance in in-
dustrial applications, has only recently begun to be understood. What determines the nature of
the liquid fluctuations and energy spectrum of such bubbly turbulent flows? To allow compar-
isons across different levels of turbulence and bubble volume fractions, Lance & Bataille (105)
[and later Rensen et al. (110)] introduced the so-called bubblance parameter, b, which compares
the intensity of BIT with the intensity of incident turbulence. This ratio of kinetic energies can
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Figure 11

Flow modification in turbulent bubbly upflows. (#) Experimental images of 2—4-mm-diameter deformable air bubbles in a vertical flow
at Re; = 262. () Volume rendering of deformable bubbles in a turbulent flow, obtained from direct numerical simulations (DNS) with
the front tracking method. The flow structures are colored by isovalues of the so-called A, criterion (114). (c) Probability density
functions (PDFs; vertically shifted for better visibility) of the axial velocity in the bulk of the flow from the experimental (black) and
DNS (blue) cases shown in panels # and b, respectively. The PDF shapes are qualitatively similar in the experiments and DNS.

(d) Normalized vertical velocity fluctuations of the liquid phase for different values of the bubblance parameter, 4. (¢) Normalized
spectra of the bubble-induced liquid fluctuations. Distinct ranges of scalings can be observed: —5/3 for f/f. < 1 and —3 for f/fc > 1. fc is
a characteristic cutoff frequency, which can be calculated using the bubble and flow properties. Panels #, 4, and ¢ adapted from
Reference 112. Panel b adapted from Reference 113.

be written as b = oV’ Ju”*, where V; is the mean rise velocity of the bubbles.” Recently, Alméras
etal. (112) conducted extensive experiments in such turbulent bubbly flows for a wide range of 4.
Figure 114 depicts 2-4-mm-diameter bubbles rising in the bulk region of upward channel flow.
The liquid velocity fluctuations in bubble-laden turbulence was measured using phase-sensitive

?Note that a prefactor of 1/2, based on the Cy of a spherical bubble (111), was used in the definition of 4 in
Reference 110.
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hot-film anemometry (112) and shown to be positively skewed as is also the case for BIT. Sim-
ilarly skewed velocity PDFs have been observed in DNS of bubbles in turbulent upflows (113)
by use of the front tracking method (Figure 11b,¢). In the experiments, turbulence attenuation
was observed at low values of b (<0.25), while the liquid velocity fluctuations were augmented
at high b (Figure 11d). We emphasize that the liquid agitation produced by high-Reynolds
number bubbles is anisotropic (68), the effects of which are also noticeable in turbulent flows.
For details about the anisotropy of liquid velocity fluctuations in bubble-laden turbulence, see
Reference 115.

With knowledge of the magnitude and distributions of liquid agitation, the natural next ques-
tion is: How is the energy spectrum modified by the presence of bubbles in an incident turbulent
flow? Figure 11e shows the spectrum of liquid velocity fluctuations for 4 in the range [0, 1.3]. With
the addition of bubbles, the higher frequencies of the inertial subrange of single-phase turbulence
are substituted by a —3 scaling of BI'T. However, the —5/3 scaling appears to be preserved for the
lower frequencies for all values of 4 tested. The characteristic cutoff frequency, f., imposed by the
bubble swarm may then be calculated as V./Ae, where A = dy/Cao, with Cyy the drag coefficient
of an isolated bubble in still fluid (116). The above results only partially resolve the complexity
of the problem. The spectrum modification by 2—4-mm-diameter bubbles (reported above) is at
variance with some of the observations in Reference 68. The reason involves the differences in
the operating conditions, specifically the size and Reynolds number of the bubbles. A change in
bubble diameter leads to a different cutoff length scale, A.. This leaves room for much variability
in the frequency range of BI'T. These issues can be resolved through careful studies in which bub-
ble size and bubble Reynolds number are controlled independently. Such studies will, however, be
challenging.

4.1.2. Homogeneous shear turbulence. Homogeneous shear turbulence can be considered
one of the simplest turbulent flows, in that the flow relaxes the condition of statistical isotropy
but maintains homogeneity over all spatial scales (117, 118). Explorations of bubble-laden homo-
geneous shear turbulence have been performed mainly using direct numerical simulations (119).
As a general rule, bubbles enhance the dissipation rate of turbulent kinetic energy (120); however,
the production rate of turbulent kinetic energy can be either enhanced or diminished, depend-
ing on the flow parameters (121). While the turbulent kinetic energy production rate increases
with turbulent Reynolds number, it decreases with shear Reynolds number. In addition, bubble
deformability enhances the turbulent kinetic energy production rate. Although simplified models
have been proposed to explain these observations, the absence of direct experimental evidence has
led to much debate regarding the validity of these mechanisms in causing turbulence modulation.

4.2. Bubble-Laden Channel Flows

Channel flows are an extremely important class of turbulent flows, owing to their widespread
presence in industrial and engineering settings. Based on the orientation of the channel with re-
spect to gravity, they can be broadly classified into horizontal channels (Section 4.2.1) and vertical
channels (Section 4.2.2). We review some of the flow modifications that result from the addition
of bubbles to these canonical flow configurations.

4.2.1. Horizontal channels and boundary layers. Several experimental explorations over the
past few decades (122-125) have demonstrated that the injection of bubbles, small or large, in
turbulent boundary layers and horizontal channel flows modulates flow. Recent numerical studies
have employed either Eulerian-Lagrangian models (126, 127) or DNS (128) to show that bubbles
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Flow modification in turbulent bubbly upward channel flows for a 3% volume fraction of bubbles with a size ratio d;,/h = 0.3, where b
is the channel half-width. () Flow rate as a function of bubble deformablity, quantified here using the E6tvos number (Eo, also known
as the Bond number, Bo), for two different values of the friction Reynolds number (Re;). The Re, effect is negligible; the phenomenon
is governed primarily by the bubble deformability. The bubble Reynolds number (Rey) lies in the range [120, 200]. (5) Velocity profile
near the wall for the Eo = 3 (Re; = 127) case in panel , in comparison to the single-phase case. Figures adapted from Reference 102.

can modify near-wall vortical structures, causing friction drag reduction even with relatively low
volume fractions. For reviews on drag reduction by bubbles in turbulent boundary layers, see
References 4, 129, and 130.

4.2.2. Vertical channels. Turbulence modulation in bubbly vertical channel flows has histori-
cally been the subject of numerous investigations, both experimental (131) and analytical (132). As
discussed in Section 3.4, above, with high-resolution DNS becoming increasingly feasible, simu-
lations employing front tracking (133) have led to significant breakthroughs in our understanding
of these problems (113, 134-137). Here, we describe the main effects of bubbles on the underlying
flow field.

For a bubble-laden channel flow, the relevant dimensionless parameters are Rey,, Ga, and Eo.
The bubble Reynolds number, Re;, which is one of the output parameters, can be expressed as a
function of Ga, Eo, and to a lesser extent the volume fraction «. For upward channel flows, the
most prominent effect is a reduction in the net flow rate. This reduction is most extreme for spher-
ical bubbles, since they occupy the near-wall regions. Highly deformable bubbles, owing to their
nearly zero (or slightly negative) lift force, remain in the bulk of the flow, thus having negligible
effect on the volumetric flow rate (Figure 124). The physical mechanism behind the flow rate
reduction is a sudden rise in the near-wall viscous dissipation when the spherical bubbles enter
the viscous sublayer. As determined by their relative distributions, the near-wall liquid velocity
fluctuations are enhanced for spherical bubbles, but the same occurs in the bulk for deformable
bubbles. In addition, turbulent velocity fluctuations in the bubble-rich regions are enhanced, a re-
sult arising directly from knowledge of BIT (68). The velocity profile near the wall is retarded in
the presence of bubbles (Figure 125), which is consistent with the observed flow rate reductions.
In the less commonly explored downflow configuration with bubbles (100), a flow rate reduction
is accompanied by a suppression of turbulence in the near-wall bubble-free layer as well as by
turbulence augmentation in the bubble-rich bulk flow (see also Section 3.4). Thus, while in many
engineering applications it might seem beneficial to reduce bubble size and maximize the inter-
facial area, such efforts should not be made at the expense of flow rate reduction due to viscous
losses of the bubbles accumulating near the wall.

www.annualreviews.org o Bubbles and Buoyant Particles in Turbulence 549



Annu. Rev. Condens. Matter Phys. 2020.11:529-559. Downloaded from www.annualreviews.org

Access provided by 71.117.163.225 on 03/17/20. For personal use only.

550

Lastly, we note that the above discussion pertains to clean bubbles. In reality, the void fraction
profiles in turbulent bubbly upflow experiments (131) may not be as sharply peaked as seen in
simulations (DNS). When the gas-liquid interfaces are contaminated (with dirt or surfactants),
one can expect a slight reduction in lift force and lateral migration tendency (138-140). Thus, even
atlow volume fractions of the dispersed phase, bubble dynamics can show fundamental differences
from particles because of the presence of an internal circulation. In contrast, dense bubbly flows
(¢ = 5%) must be treated as a markedly different subject; for a review of experiments on bubbles in
vertical pipe/channel flows, see Reference 141. For a review of flow regimes, operating parameters,
and design parameters of industrial bubble columns, see Reference 142.

4.3. Bubbly Taylor—Couette Turbulence

Taylor-Couette (T'C) flow, the flow between two coaxial co- or counterrotating cylinders, is one
of the paradigmatic systems of fluid physics (143). Unlike the turbulent flows discussed above, TC
flow is a closed system with exactly derivable balances between driving and dissipation. Owing
to these particular benefits, turbulent TC flow experiments have been widely used as a model
system to study bubble-induced flow modulations, bubble—vortex interactions, and bubbly drag
reduction (144-150). A remarkable effect of introducing bubbles in turbulent TC flow is that
one can achieve significant turbulence modulation with only a small percentage [« ~ O(1%)] of
bubbles. This usually manifests in major drag reduction, with various mechanisms contributing to
it (see also 14, section 9).

4.3.1. Drag reduction in the buoyancy-dominant regime. We now turn to studies on drag
reduction by microbubbles in turbulent T'C flow. To this end, Sugiyama et al. (151) and Spandan
et al. (152) conducted DNS employing an Euler-Lagrangian (PP) two-way coupled approach in
a regime where the inner cylinder Reynolds number, Rej. = wicic(roc — 7ic)/V, was in the range
[600, 8,000]. Here, wic, 7ic, and 7, are the inner cylinder angular velocity, inner cylinder radius,
and outer cylinder radius, respectively. The drag reduction was defined as

DR(%) = % x 100, 11.
f

where C; = [(1 — #ic/70c)? /7] G/ReL, is the friction factor and G = 1 /(2 £.p1v?) is the dimension-
less torque, with t the torque that is necessary to keep the inner cylinder of length ¢, rotating
at constant angular velocity (153). The subscripts s and tp denote single phase and two phase,
respectively. Simulations by Sugiyama et al. (151) and Spandan et al. (152) have shown that the
buoyant motions of microbubbles can disrupt the coherent vortices (i.e., Taylor rolls), resulting
in a reduction of drag (up to 20%) on the inner cylinder surface (Figure 134). Spandan et al.
(152) varied the Froude number, Fr;. = wic\/ﬁ , which represents the ratio of centripetal force
strength over buoyancy force, in the range [0.16, 2.56]. By keeping the values of Rej, a, and 4,
fixed, the authors found that drag reduction was at low values of Fr;. (Fr;. < 1) and negligible at
high values (Fr;c 2 1). In this regime, drag reduction decreases with increasing Reynolds num-
ber. For a more generic quantification of drag reduction in this low—Reynolds number regime,
one might incorporate the bubble St and « as well, in which case the drag reduction can likely
be expressed as a function of St/Fr and « (assuming the bubbles are noninertial). The aim is to
obtain an overarching dimensionless parameter that can explain the degree of drag reduction in
the so-called wavy vortex regime (154-156) of TC turbulence.

4.3.2. Drag reduction in the highly turbulent regime. In the high-Re; regime, the stable co-
herent structure of the vortices in T'C turbulence no longer persists. Consequently, the effect of the
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Bubbly drag reduction (DR) in turbulent Taylor—Couette (T'C) flow. (#) Direct numerical simulations of TC turbulence at an inner
cylinder Reynolds number (Re;c) of 900 for (top) single-phase flow and (borromz) two-phase flow laden with pointlike bubbles. Wall shear
stress (WSS) (color bar) is reduced in the two-phase flow with small bubbles, leading to ~20% DR. (b)) DR as a function of time at high
Re;c values (Reje = 2 x 10%). Nearly all DR is lost after injection of a surfactant (Triton X-100), which reduces the two-phase flow from
a suspension of large deformable bubbles (upper left inset) to microbubbles (upper right inset). Panel  adapted from Reference 151.
Panel b adapted from Reference 144.

bubbles on friction drag diminishes, as mentioned above. However, bubbles can still be used to re-
duce drag in the highly turbulent T'C regime. In this high-Reynolds number regime, however, the
deformability of the bubble (i.e., We > 1) is crucial for drag reduction (147, 148). In this regime,
drag reduction increases with increasing Re;.. Verschoof et al. (144) provide a direct experimental
demonstration of the effects of bubble deformability on turbulent TC drag reduction. These au-
thors dynamically changed the drag by adding a minute amount of surfactant (Triton X-100) to
a highly turbulent TC flow (up to Re;. = 2 x 10°) laden with deformable bubbles (Figure 134).
In the original state with only a 4% volume fraction of deformable bubbles, the drag reduction
was more than 40%. The addition of surfactant initiated a remarkable turn of events (breakup,
coalescence prevention, etc.) that caused the large deformable bubbles to be fully substituted by
tiny microbubbles. This reduced the drag reduction to only 4%, which corresponds to the trivial
effect of the bubbles on the density and viscosity of the liquid.

Spandan et al. (157) recently used DNS to investigate the physical mechanisms of drag reduc-
tion in the turbulent regime (up to Re;. = 2 x 10%). They connected the increase in drag reduction
to a decrease in the dissipation in the wake of highly deformed bubbles near the inner cylinder.
This interpretation can be linked to the more familiar field of polymer drag reduction (158-160)
and suggests possible similarities in drag reduction mechanisms where the elastic properties of the
dispersed phase are exploited.
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Yet another important issue that arises in studies of bubbly drag reduction in TC flow is the
effect of centripetal force on the bubble distribution in the flow. If the T'C flow is in a fully lami-
nar state (and Fr;. >> 1), all the bubbles should be pushed against the inner wall due to the radial
pressure gradient induced by the centrifugally driven flow. However, when the system is a highly
turbulent state, the bubbles experience liquid velocity fluctuations and pressure fluctuations, which
are enough to diffuse them toward the bulk region of the flow (148). The resulting bubble dis-
tribution in the gap between the cylinders will depend on the competing effects of the turbulent
pressure fluctuations: induced acceleration, #,f, and centripetal acceleration, 4.(r). The competi-
tion between these two terms can be expressed as a so-called® centripetal Froude number:

2
apf U /d,

FI'C(T) = [lc(V) - UHZ/r )

12.

where Uj is the mean azimuthal liquid velocity and 7 is the radial position in the TC setup under
consideration. van Gils et al. (148) estimated that Fr. ~ 1.6 at Rej. ~ 5 x 10° and that Fr, ~ 3.4
at Re;. = 1 x 10°. The lower Re;. implies a lower Fr,, so the effective centripetal force on the
bubbles is higher and the bubble accumulation, in turn, is stronger near the inner cylinder wall
at the expense of a lower concentration in the bulk. This reasoning is also consistent with these
authors’ direct experimental observations.

Thus, drag reduction in bubbly TC turbulence is a function of several parameters. While at
moderate Re;. the buoyancy-induced drift of the microbubbles is sufficient, in the highly turbulent
regime buoyancy, deformability, and centripetal effects are all crucial components of drag reduc-
tion. In light of the close analogy between TC flows and pipe flows (161), the results obtained
for turbulent T'C flows are valuable for research on drag reduction. However, it remains to be
determined whether and how the principles of turbulent two-phase T'C flow can be extended to
pipelines and naval applications.

4.4. Bubbles in Turbulent Convection

In heat transfer systems, the motion of bubbles can efficiently induce mixing of warm and cold
parcels of liquid. For many industrial applications, injecting bubbles into the flow can lead to a 100-
fold enhancement in the heat transfer coefficient in comparison to its single-phase counterpart
(162). Therefore, the effect of bubbles and light particles on heat transfer has been the subject of
several experimental and numerical investigations. One approach to enhancing heat transport is
to create vapor bubbles (16) or biphasic (163) and thermally expandable (164) particles. Some of
these approaches have resulted in impressive heat transport enhancements in comparison to the
single-phase case (163, 165, 166). However, in this review we restrict our attention to gas-phase
bubbles.

Early studies in forced convection systems with bubble injection (167-169) showed that the
bubbles modify the temperature profile of the system and that the gas volume fraction close to
the heated wall is important for heat transfer enhancement; in other words, higher void fractions
close to the heated wall lead to enhanced heat transfer. Using DNS with front tracking, Dabiri &
Tryggvason (170) recently studied the effect of bubbles on the heat transfer rate in a flow between
two parallel walls under a constant heat flux condition. They found that the bubbles stir up the
viscous layer and reduce the size of the conduction region near the wall, resulting in improved

3Note that this Froude number should not be confused with the more widespread definition of Froude num-
ber, where the gravitational force appears in the denominator. Here, the body force in the denominator is
centrifugal.
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heat transfer efficiency; in other words, a 3% volume fraction of bubbles can increase the Nusselt
number by 60%.

Studies of the effects of bubble injection on heat transfer in natural convection systems have
been conducted mostly with injections of microbubbles (171, 172) and submillimetric bubbles
(173) close to the heated wall. Kitagawa & Murai (173) investigated the effects of microbubble
injection on natural convection heat transfer from a vertical heated plate in water. They found
that microbubble injection significantly increases the heat transfer coefficient in both the laminar
and transition regimes. The enhancement ratio of the heat transfer coefficient due to bubble in-
jection is 1.6-2.0 in the laminar regime and 1.5-2.0 in the transition regime. The physical reason
for heat transfer enhancement in the laminar regime is effective mixing, whereas the physical
reason for the heat transfer enhancement in the transition region is that microbubble injection
accelerates the transition to turbulence (173). Using DNS, Deen & Kuipers (174) studied wall-to-
liquid heat transfer in dispersed gas-liquid two-phase flow and found that a few high-Reynolds
number bubbles rising in quiescent liquid can considerably increase local heat transfer between
the liquid and a hot wall.

Recently, Gvozdié et al. (5) studied the effect of deformable bubbles (with diameters of 2-3 mm)
on heat transfer in a vertical natural convection setup, which was heated from one side and cooled
from the other side (Figure 144). The air bubbles were injected into the system using 180 capillar-
ies (inner diameter, 0.21 mm) uniformly distributed over the bottom of the natural convection sys-
tem. The gas volume fraction, «, varied from 0.5% to 5%, and the Rayleigh number ranged from
4.0 x 10° to 3.6 x 10'0. Here, the Rayleigh number is defined as Ray = [gj/(Th — TOH?] /v,
and the Nusselt number is defined as Nu = (Q./A)/[K (T}, — T.)/L], where y is the thermal
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the bottom of the apparatus. (b)) Nusselt number (Nu) in bubble-laden vertical convection versus Rayleigh number (Rag) for various gas
volume fractions «. The blue circles, shown for comparison, correspond to the single-phase turbulent vertical convection case (¢ = 0%).
The size of the symbols corresponds to the typical error bar in the data. (/) Heat transfer enhancement due to bubble injection Nu/Nug

versus Rayy. Here, Nuy is the Nusselt number of the single-phase case. Figure adapted from Reference 5.
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expansion coefficient; 74, and T, are the mean temperatures of the hot and cold walls, respec-
tively; L is the length of the setup; A is the surface of the sidewall; «. is the thermal diffusivity; K
is the thermal conductivity of water; and Q. is the measured power supplied to the heaters. For
the entire range of & and Ray, adding bubbles dramatically increased the heat transport efficiency,
as the Nusselt number is approximately an order of magnitude higher than in the single-phase
flow case (Figure 14b). To more clearly quantify the heat transport enhancement due to bubble
injection, Figure 14¢ shows the ratio of the Nusselt number for two-phase bubbly flow (Nu) to
that of the single-phase case (Nup) as a function of Ray at different values of . The figure shows
that heat transfer was enhanced up to 20-fold as a result of the bubble injection and that the heat
transfer enhancement increased with increasing o and decreasing Ray. Note that the decreas-
ing trend of Nu/Nuy with Rag occurred because Nuy increased with Rag, whereas Nu did not
change with Raj. Nu was nearly independent of Raj and depended solely on « with the scaling

of Nu o o%%

, which suggests a diffusive transport mechanism, as has been found in the case of
mixing a passive tracer into a homogeneous bubbly flow for a low gas volume fraction (6, 115).
Thus, bubble-induced mixing dominates the efficiency of heat transfer in moderate-Ray; bubbly

natural convection systems.

1. The past decade has witnessed tremendous progress in our understanding of bubbly and
buoyant particle-laden turbulent flows. The addition of buoyant particles to turbulent
flows can modify key aspects of single-phase turbulence, such as spectra or drag, offering
the opportunity to use bubbles or light particles to tailor turbulent flows to our benefit.

2. As in many areas of modern fluid dynamics, fully resolved DNS can explain many in-
tricate phenomena of two-phase turbulence. At the same time, a reduced treatment em-
ploying the Euler-Lagrangian approach proves sufficient in a remarkable number of
situations. The basic PP formulation has been extended to include rotation through the
Kelvin—Kirchhoff equations, which have significant predictive capabilities for buoyant
particle and bubble dynamics in flows.

3. Deformable bubble dynamics in turbulence are governed by three fairly independent
mechanisms: The average bubble shape is controlled mainly by the relative motion be-
tween the bubble and the surrounding fluid; the bubble’s velocity and orientation are
a result of its own wake instability; and the effect of turbulence is reflected by random
deformations of the bubble interface, which under extreme situations can cause bubble
breakup or rise velocity changes.

4. Buoyancy brings about a multitude of modifications to particle dynamics in turbulence.
For small bubbles and particles, the crossing-trajectories effect leads to augmented par-
ticle accelerations, while in finite-sized and finite-Re,, cases, wake-induced accelerations
add to the turbulent forcing. When the particle Reynolds number is increased, the buoy-
ant particle’s rotation further aids in the development of vigorous accelerated motions.

5. Addition of bubbles to turbulent flow is not synonymous with drag reduction. While
bubbly drag reduction is possible in horizontal channel flows, boundary layers, and
TC flows, in vertical channel flows (both upflows and downflows) the effective drag is
enhanced. The reason is that in vertical channels the bubbles increase the energy dissi-
pation rate, while in TC turbulence and other flows they suppress the dissipation.
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6. Air bubbles added to (open) turbulent convection systems dramatically enhance heat
transfer because of their induced liquid agitation and mixing.

1. Rigid buoyant anisotropic particles, including ellipsoidal, chiral, and vaned particles,
can add significant amounts of energy to turbulent flows. Their coupled translational-
rotational dynamics is crucial to liquid agitation.

2. Varying the rotational inertia and/or the center-of-mass location of buoyant particles
presents exciting opportunities for turbulence modulation.

3. Whether or not the collective wake instabilities of rising bubbles and buoyant particles
persist in intensely turbulent environments is an open question.

4. The issue of energy spectra in bubble-laden turbulence is only partially resolved. The
effect of bubble size (in comparison to the Kolmogorov scale) is not clear. Similarly, spec-
trum modification by the wake of low— to moderate—Reynolds number bubbles remains
to be elucidated. Furthermore, the behavior of bubbly turbulent flows in the limit of very
high-intensity turbulence needs to be studied.

5. Tumbling buoyant particles can be engineered for turbulent downflow channels to affect
near-wall turbulence and heat transfer. Bubbles cannot be used for this purpose.

6. The response of bubbles to homogeneous shear turbulence remains to be experimen-
tally explored. The relative alignment between buoyancy and shear, in combination with
deformability, is expected to induce symmetry breaking, and rich variability in bubble dy-
namics can be expected. These will require the design of dedicated experimental setups.
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