
by: LLOYD PSYCHE T. BALTAZAR

LESSON OBJECTIVES

At the end of the lesson, you are expected to:
a. distinguishes between simple and general annuities;
b. finds the future value and present value of both simple annuities and general annuities; and
c. calculates the present value and period of deferral of a deferred annuity.

DEFINIION OF TERMS

ANNUITY

- a series of equal payments made at equal intervals of time

PAYMENT INTERVAL

- the period of time between successive payments (e.g. monthly, quarterly)

FUTURE VALUE

- sum of future values of all the payments to be made during the entire term of the annuity.

TERM OF ANNUITY

- the length of time between the beginning of the first payment period and the end of the last payment period.

PRESENT VALUE

- sum of present values of all the payments to be made during the entire term of the annuity

ORDINARY ANNUITY

- a series of payments where each periodic payment is made at the end of the payment interval.

SIMPLE ANNUITY

- is an annuity whose interest conversion period is equal to the payment interval.

Example:

Monthly payments, and the interest is compounded monthly

GENERAL ANNUITY

- is an annuity whose interest conversion period is not equal to the payment interval.

Example:

Monthly payments, but the interest
is compounded semi-annually

Formula for Simple Ordinary Annuity

$$
\mathrm{FV}=\mathrm{R}\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$$
\mathrm{PV}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

where:
FV = future value of simple ordinary annuity
$\mathrm{PV}=$ present value of simple ordinary annuity
R = amount of periodic payment
$i=$ rate of interest per conversion period $\left(\frac{\text { rate of interest }}{\text { conversion period }}\right)$
$n=$ number of payment (con. period $*$ term of annuity)

ILLUSTRATIVE PROBLEM

A person made a deposit oi P2,000 at the end of each six months for 2 years at 5\% compounded semi-annually. How much is in his account at the end of 2 years?

RATE OF INTEREST
CONVERSION PERIOD

Prob 1: A person made a deposit of $尹 2,000$ at the end of each six months for 2 years at 5% compounded semi-annually. How much is in his account at the end of 2 years?

Given:
$R=2,000$
$r=0.05$
term of annuity $=2$
con. period $=2$
payment int. $=2$
$F V=R\left[\frac{(1+i)^{n}-1}{i}\right]$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.05}{2} \\
& i=0.025
\end{aligned}
$$

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=2 * 2 \\
& n=4
\end{aligned}
$$

Solution for FV:

$$
\begin{aligned}
& F V=R\left[\frac{(1+i)^{n}-1}{i}\right] \\
& F V=2,000\left[\frac{(1+0.025)^{4}-1}{0.025}\right] \\
& F V=2,000\left[\frac{(1.025)^{4}-1}{0.025}\right]
\end{aligned}
$$

$$
F V=8,305.03
$$

Prob 2: A television (TV) set is for sale at P13,499 in cash or on installment terms, P2,500 each month for the next 6 months at 9% compounded monthly. If you were the buyer, what would you prefer, cash or installment?

Given:

$$
\begin{aligned}
& R=2,500 \\
& r=0.09
\end{aligned}
$$

term of annuity $=\frac{6}{12}$ or $\frac{1}{2}$ con. period= 12
payment int. $=12 \quad$ To find n,

$$
P V=R\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.09}{12} \\
& i=0.0075
\end{aligned}
$$

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=12 * \frac{1}{2} \\
& n=6
\end{aligned}
$$

Solution for PV:

$$
\begin{aligned}
& P V=R\left[\frac{1-(1+i)^{-n}}{i}\right] \\
& P V=2,500\left[\frac{1-(1+0.0075)^{-6}}{0.0075}\right] \\
& P V=2,500\left[\frac{1-(1.0075)^{-6}}{0.0075}\right] \\
& P V=14,613.99
\end{aligned}
$$

Prob 3: Mr. Tanjiro paid P200,000 as down payment for a car. The remaining amount is to be settled by paying $\ngtr 16,200$ at the end of each month for 5 years. If interest is 10.5% compounded monthly, what is the cash price of his car? (Cash price $=$ down payment + present value)

Given:

$$
\begin{aligned}
& R=16,200 \\
& r=0.105
\end{aligned}
$$

term of annuity $=5$
con. period $=12$
payment int. $=12$
$P V=R\left[\frac{1-(1+i)^{-n}}{i}\right]$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.105}{12} \\
& i=0.00875
\end{aligned}
$$

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=12 * 5 \\
& n=60
\end{aligned}
$$

Solution for PV:

$$
\begin{aligned}
& P V=R\left[\frac{1-(1+i)^{-n}}{i}\right] \\
& P V=16,200\left[\frac{1-(1+0.00875)^{-60}}{0.00875}\right] \\
& P V=16,200\left[\frac{1-(1.00875)^{-60}}{0.00875}\right] \\
& P V=753,702.20
\end{aligned}
$$

$$
\text { cash price }=200,000+753.702 .20
$$

$$
\text { cash price }=953,702.20
$$

Prob 4: Suppose that you vow to save $\begin{aligned} & \text { P500 a month for the next three }\end{aligned}$ years, with your first deposit one month from today. If your savings can earn 3\% converted monthly, determine the total in your account 3 years from now.

Given:

$R=500$
$r=0.03$
term of annuity $=3$
con. period $=12$
payment int. $=12$

$$
F V=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.03}{12} \\
& i=0.0025
\end{aligned}
$$

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=12 * 3 \\
& n=36
\end{aligned}
$$

Solution for FV:

$$
\begin{aligned}
& F V=R\left[\frac{(1+i)^{n}-1}{i}\right] \\
& F V=500\left[\frac{(1+0.0025)^{36}-1}{0.0025}\right] \\
& F V=500\left[\frac{(1.0025)^{36}-1}{0.0025}\right]
\end{aligned}
$$

$$
F V=18,810.28
$$

Prob 5: A retired employee wished to get | | 000 |
| :--- | :--- | :--- | :--- | :--- |
| every month for 10 | | years from her savings deposit. If the money is worth 12% compounded monthly, how much should her money be in the account in order to get the desired amount?

Given:
$R=15,000$
$r=0.12$
term of annuity $=10$
con. period= 12
payment int. $=12$
$P V=R\left[\frac{1-(1+i)^{-n}}{i}\right]$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.12}{12} \\
& i=0.01
\end{aligned}
$$

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=12 * 10 \\
& n=120
\end{aligned}
$$

Solution for PV:

$$
\begin{aligned}
& P V=R\left[\frac{1-(1+i)^{-n}}{i}\right] \\
& P V=15,000\left[\frac{1-(1+0.01)^{-120}}{0.01}\right] \\
& P V=15,000\left[\frac{1-(1.01)^{-120}}{0.01}\right]
\end{aligned}
$$

$$
P V=1,045,507.83
$$

STEPS IN SOLVING GENERAL ANNUITY

1. convert the regular/periodic payment in general annuity into its equivalent regular/periodic payment in simple annuity with respect to the interest period;
2. then use the formula for simple annuity.

Formula for General Annuity

$$
\mathrm{B}=\frac{\mathrm{R} i}{(1+i)^{k}-1}
$$

$$
\mathrm{FV}=\mathrm{R}\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$$
\mathrm{PV}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

where:
$B=$ Periodic Payment (in simple interest)
$\mathrm{R}=$ Periodic payment in the given general annuity problem
$i=$ rate of interest per conversion period $=\left(\frac{\text { rate of interest }}{\text { conversion period }}\right)$
$k=$ interest conversion period in a year divided payment interval also in a year
$\mathrm{k}=\left(\frac{\text { interest conversion period }}{\text { payment interval }}\right)$

Prob 6: Nami deposits $\mathrm{P} 1,000$ at the end of each quarter in her savings account earning interest rate of 3.6% compounded monthly. How much will she have in 5 years?

Given:

$R=1,000$
$r=0.036$
term of annuity $=5$
con. period= 12
payment int. $=4$
$\mathrm{B}=\frac{\mathrm{R} i}{(1+i)^{k-1}}$

To find i,
$i=\frac{\text { rate of interest }}{\text { conversion period }}$
$i=\frac{0.036}{12}$
$i=0.003$
To find k,
$k=\frac{\text { conversion period }}{\text { payment interval }}$
$k=\frac{12}{4}$
$k=3$

Solution for B:
$B=\frac{\mathrm{R} i}{(1+i)^{k-1}}$
$B=\frac{(1,000)(0.003)}{(1+0.003)^{3}-1}$

$$
B=R=332.34
$$

To find n,
$n=$ con.period.$*$ term of annuity

$$
n=12 * 5
$$

$$
n=60
$$

Solution for FV:

$$
F V=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$$
F V=332.34\left[\frac{(1+0.003)^{60}-1}{0.003}\right]
$$

$$
F V=332.34\left[\frac{(1.003)^{60}-1}{0.003}\right]
$$

$$
F V=21,812.01
$$

Prob 7: Sanji Vinsmoke borrowed an amount of money from Luffy. He agrees to pay the principal plus interest by paying 尹38,973.76 each year for 3 years. How much money did he borrow if interest is 8% compounded quarterly?

Given:

$R=38,973.76$
$r=0.08 \quad i=\frac{0.08}{4}$
term of annuity $=3 \quad i=0.02$
con. period $=4$
payment int. $=1$
$\mathrm{B}=\frac{\mathrm{R} i}{(1+i)^{k}-1}$

To find i,
$i=\frac{\text { rate of interest }}{\text { conversion period }}$

To find k,

$$
k=\frac{\text { conversion period }}{\text { payment interval }}
$$

$$
k=\frac{4}{1}
$$

$$
k=4
$$

Solution for B :

$$
\begin{aligned}
& \mathrm{B}=\frac{\mathrm{R} i}{(1+i)^{k}-1} \\
& \mathrm{~B}=\frac{(38,973.76)(0.02)}{(1+0.02)^{4}-1}
\end{aligned}
$$

$$
B=R=9,455.96
$$

To find n,
$n=$ con.period. $*$ term of annuity
$n=4 * 3$
$n=12$

Solution for PV:

$$
P V=R\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

$$
P V=9,455.96\left[\frac{1-(1+0.02)^{-12}}{0.02}\right]
$$

$$
P V=9,455.96\left[\frac{1-(1.02)^{-12}}{0.02}\right]
$$

$$
P V=100,000.00
$$

Prob 8: Monkey D. Luffy started to deposit P300 monthly in a fund that pays 6\% compounded quarterly. How much will be in the fund after 15 years?

Given:

$R=300$
$r=0.06$
term of annuity $=15$
con. period $=4$
payment int. $=12$
$\mathrm{B}=\frac{\mathrm{R} i}{(1+i)^{k}-1}$

To find i,
$i=\frac{\text { rate of interest }}{\text { conversion period }}$
$i=\frac{0.06}{4}$
$i=0.015$
To find k,
$k=\frac{\text { conversion period }}{\text { payment interval }}$
$k=\frac{4}{12}$
$k=\frac{1}{3}$

Solution for B :
$\mathrm{B}=\frac{\mathrm{R} i}{(1+i)^{k}-1}$
$\mathrm{B}=\frac{(300)(0.015)}{(1+0.015)^{\frac{1}{3}-1}}$
$B=R=904.49$
To find n,
$n=$ con.period.* term of annuity
$n=4 * 15$
$n=60$

Solution for FV:

$$
F V=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$$
F V=904.49\left[\frac{(1+0.015)^{60}-1}{0.015}\right]
$$

$$
F V=904.49\left[\frac{(1.015)^{60}-1}{0.015}\right]
$$

$$
F V=87,025.19
$$

REFERRED ANNUITY

Deferred Annuity

- an annuity in which the first periodic payment is made after a certain interval of time, known as the deferral period

Ordinary Deferred Annuity

- when deferral period ends one payment interval before the first periodic payment.

The future value of a deferred annuity

- is the accumulated value of the stream of payments at the end of the annuity period. This is the same procedure as future value of an ordinary annuity (both simple and general annuity).

The present value of a deferred annuity

- is the discounted value of the stream of payments at the beginning of the deferral period.

Ordinary Deferred Annuity

$$
\mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right]
$$

$$
\mathrm{FV}_{\text {def }}=\mathrm{R}\left[\frac{(1+i)^{n}-1}{i}\right]
$$

where:
$\mathrm{PV}_{\text {def }}=$ present value of deferred annuity
$\mathrm{FV}_{\text {def }}=$ future value of deferred annuity
$\mathrm{R}=$ amount of periodic payment
$\mathrm{i}=$ rate of interest per conversion period
$\mathrm{n}=$ number of payment
$\mathrm{d}=$ number of deferred period

(Assume the annuities are Ordinary)

- Payments of $P 1,000$ at the end of each year for ten years with the first payment made three years from now.

$$
\text { period of deferral = } 2
$$

- Payments of $P 5,000$ at the end of every 6 months for 15 years with the first payment made 5 years from now

$$
\text { period of deferral = } 9
$$

DETERMINE THE PERIOD OF DEFERRAL

(Assume the annuities are Ordinary)

- A second hand car sells for $\mp 120,000$ down payment and 24 monthly payments of $₹ 7,000$ each, the first payment being due at the end of the $6^{\text {th }}$ month. Find the cash price if the interest rate is 8% compounded monthly.

$$
\text { period of deferral = } 5
$$

- A quarterly payment of $₹ 8,500$ at 6% compounded quarterly, the first payment is due in 1 year and 6 months and the last payment is at the end of 5 years.

$$
\text { period of deferral = } 5
$$

Prob 9: A second hand car sells for $\mathcal{P 1 2 0 , 0 0 0}$ down payment and 24 monthly payments of $P 7,000$ each, the first payment being due at the end of the 6th month. Find the cash price if the interest rate is 8% compounded monthly. (Cash price = down poyment t present value)

Given:
$R=7,000$
$r=0.08$
term of annuity= 2
con. period= 12
payment int. $=12$
$d=5$
$\mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right]$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.08}{12}
\end{aligned}
$$

Retain i, since the answer
is repeating

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=12 * 2 \\
& n=24
\end{aligned}
$$

Solution for PV:

$$
\begin{aligned}
& \mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right] \\
& \mathrm{PV}_{d e f}=7,000\left[\frac{1-\left(1+\frac{0.08}{12}\right)^{-24}}{\frac{0.08}{12}\left(1+\frac{0.08}{12}\right)^{5}}\right] \\
& \mathrm{PV}_{d e f}=149,716.28
\end{aligned}
$$

$$
\text { cash price }=120,000+149,716.28
$$

$$
\text { cash price }=269,716.28
$$

Prob 10: If money is worth 9% compounded semi-annually, find the present value of 6 semi-annual payments of $P 10,000$ each, the first payment is due in 4 years.

Given:
$R=10,000$
$r=0.09$
term of annuity $=6$
con. period $=2$
payment int. $=2$
$d=7$
$\mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right]$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.09}{2} \\
& i=0.045
\end{aligned}
$$

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=2 * 6 \\
& n=12
\end{aligned}
$$

Solution for PV:

$$
\begin{aligned}
& \mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right] \\
& \mathrm{PV}_{d e f}=10,000\left[\frac{1-(1+0.045)^{-12}}{0.045(1+0.045)^{7}}\right] \\
& \mathrm{PV}_{d e f}=10,000\left[\frac{1-(1.045)^{-12}}{0.045(1.045)^{7}}\right] \\
& \mathrm{PV}_{d e f}=67,005.93
\end{aligned}
$$

Prob 11: Find the present value of 24 annual payments of $\mathrm{P} 20,000$ each, the first payment is due after 3 years and the interest rate is 9% compounded annually.

Given:

$R=20,000$
$r=0.09$
term of annuity $=24$
con. period=1
payment int. $=1$
$d=2$
$\mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right]$

To find i,

$$
\begin{aligned}
& i=\frac{\text { rate of interest }}{\text { conversion period }} \\
& i=\frac{0.09}{1} \\
& i=0.09
\end{aligned}
$$

To find n,

$$
\begin{aligned}
& n=\text { con.period } * \text { term of annuity } \\
& n=1 * 24 \\
& n=24
\end{aligned}
$$

Solution for PV:

$$
\begin{aligned}
& \mathrm{PV}_{d e f}=\mathrm{R}\left[\frac{1-(1+i)^{-n}}{i(1+i)^{d}}\right] \\
& \mathrm{PV}_{d e f}=20,000\left[\frac{1-(1+0.09)^{-24}}{0.09(1+0.09)^{2}}\right] \\
& \mathrm{PV}_{d e f}=20,000\left[\frac{1-(1.09)^{-24}}{0.09(1.09)^{2}}\right] \\
& \mathrm{PV}_{d e f}=163,397.22
\end{aligned}
$$

