REVIEW QUESTIONS

Chapter 16

1. A buffer is prepared by adding 20.0 g of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ and 20.0 g of sodium acetate $\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ in enough water to prepare 2.00 L of solution. Calculate the pH of this buffer? $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
20.0 g HAc $\times \frac{1 \mathrm{~mol}}{60.0 \mathrm{~g}} \times \frac{1}{2.00 \mathrm{~L}}=0.167 \mathrm{M} \quad 20.0 \mathrm{~g} \mathrm{NaAc} \times \frac{1 \mathrm{~mol}}{82.0 \mathrm{~g}} \times \frac{1}{2.00 \mathrm{~L}}=0.122 \mathrm{M}$

| | $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $+\quad \mathbf{H}_{2} \mathrm{O}$ | \rightleftharpoons | $\mathrm{H}_{3} \mathrm{O}^{+}+$ | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ |
| Initial | $\mathbf{0 . 1 6 7}$ | ---- | $\mathbf{0}$ | $\mathbf{0 . 1 2 2}$ |
| Δ | $-\mathbf{x}$ | ---- | $+\mathbf{x}$ | $+\mathbf{x}$ |
| Equil. | $\mathbf{0 . 1 6 7 - x}$ | ---- | \mathbf{x} | $\mathbf{0 . 1 2 2 + \mathbf { x }}$ |

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(\mathrm{x})(0.122+\mathrm{*})}{0.167-\mathrm{*}}=1.8 \times 10^{-5} \\
& \mathrm{x}=\frac{(0.167)\left(1.8 \times 10^{-5}\right)}{0.122}=2.46 \times 10^{-5} \quad \mathrm{pH}=-\log \left(2.46 \times 10^{-5}\right)=4.61
\end{aligned}
$$

2. What is the ratio of HCO_{3}^{-}to $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood of pH 7.4 ? $\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\left.\mathrm{H}_{2} \mathrm{CO}_{3}=4.3 \times 10^{-7}\right)$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-} \\
& \mathbf{p H}=\mathrm{pK}_{\mathrm{a}}+ \log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
& 7.4=6.37+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
& \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\operatorname{antilog}(7.4-6.37)=10^{1.03}=11
\end{aligned}
$$

3. How many grams of NaBrO should be added to 1.00 L of 0.200 M HBrO to form a buffer with a pH of 8.80 ? (K_{a} for $\mathrm{HBrO}=2.5 \times 10^{-9}$)

$$
\begin{aligned}
& \mathrm{HBrO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{BrO}^{-} \\
& \mathbf{p H}=\mathbf{p K}_{\mathrm{a}}+\log \frac{\left[\mathrm{BrO}^{-}\right]}{[\mathrm{HBrO}]} \quad 8.80=8.60+\log \frac{\left[\mathrm{BrO}^{-}\right]}{\left[\mathrm{HBrO}^{2}\right]} \\
& \frac{\left[\mathrm{BrO}^{-}\right]}{\left[\mathrm{HBrO}^{2}\right]}=\operatorname{antilog}(8.80-8.60)=10^{0.20}=1.6 \\
& {\left[\mathrm{BrO}^{-}\right]=\mathbf{1 . 6}(\mathbf{0 . 2 0 0} \mathbf{M})=\mathbf{0 . 3 2} \mathrm{M}} \\
& \mathbf{1 . 0 0} \pm \times \frac{0.32 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{118.9 \mathrm{~g}}{1 \mathrm{~mol}}=38 \mathrm{~g}
\end{aligned}
$$

4. Acetylsalicylic acid (aspirin, $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$) is a weak acid with $\mathrm{Ka}=2.75 \times 10^{-5}$ at $25^{\circ} \mathrm{C} .3 .00 \mathrm{~g}$ of sodium acetylsalicylate $\left(\mathrm{NaC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right)$ is added to 200.0 mL of 0.100 M solution of this acid. Calculate the pH of the resulting solution at $25^{\circ} \mathrm{C}$.

$$
\text { Molarity of } \mathrm{NaC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}=3.00 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{202 \mathrm{~g}} \times \frac{1}{0.200 \mathrm{~L}}=0.0743 \mathrm{M}
$$

	$\mathbf{H C}_{9} \mathbf{H}_{7} \mathrm{O}_{4}+\mathbf{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathbf{H}_{3} \mathrm{O}^{+}+$	$\mathrm{C}_{9} \mathbf{H}_{7} \mathrm{O}_{4}{ }^{-}$
Initial	$\mathbf{0 . 1 0 0}$	----	$\mathbf{0}$	$\mathbf{0 . 0 7 4 3}$
Δ	$-\mathbf{x}$	----	$+\mathbf{x}$	$+\mathbf{x}$
Equil.	$\mathbf{0 . 1 0 0}-\mathbf{x}$	----	\mathbf{x}	$\mathbf{0 . 0 7 4 3 + \mathbf { x }}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]}=\frac{(\mathrm{x})(0.0743+\mathrm{*})}{0.100-*}=2.75 \times 10^{-5} \\
& \mathrm{x}=\frac{(0.100)\left(2.75 \times 10^{-5}\right)}{0.0743}=3.70 \times 10^{-5} \\
& \mathrm{pH}=-\log \left(3.70 \times 10^{-5}\right)=4.432
\end{aligned}
$$

5. The equations and dissociation constants for three different acids are given below:

$$
\begin{array}{lll}
\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} & \mathrm{K}_{\mathrm{a}}=4.2 \times 10^{-7} & \mathbf{p K a}=\mathbf{6 . 4} \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} & \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-8} & \mathbf{p K a}=7.2 \\
\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} & \mathrm{K}_{\mathrm{a}}=1.3 \times 10^{-2} & \mathbf{p K a}=\mathbf{1 . 9}
\end{array}
$$

Identify the conjugate pair that is best for preparing a buffer with a pH of 7.2. Clearly explain your choice.

The best conjugate pair would be $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$
The $\mathbf{p H}=\mathbf{p K a}=7.2$ for this buffer when $\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]=\left[\mathrm{HPO}_{4}{ }^{2-}\right]$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{--}\right]}
$$

6. A sample of 25.0 mL of 0.100 M solution of HBr is titrated with 0.200 M NaOH . Calculate the pH of solution after 10.0 mL of the base is added.

	HBr	NaOH	\rightarrow	NaBr
Initial	2.50 mmol	2.00 mmol	0	$\mathrm{H}_{2} \mathrm{O}$
Δ	-2.00 mmol	-2.00 mmol	+2.00 mmol	----
Final	0.50 mmol	0	2.00 mmol	----

$$
\left[\mathrm{H}^{+}\right]=[\mathrm{HBr}]=\frac{0.50 \mathrm{mmol}}{35.0 \mathrm{~mL}}=0.01 \underline{43} \mathrm{M} \quad \mathrm{pH}=-\log (0.01 \underline{4})=1.85
$$

7. A buffer solution is prepared by adding 0.10 L of 2.0 M acetic acid solution to 0.10 L of 1.0 M NaOH solution.
a) Calculate the pH of this buffer solution.
$0.10 \pm \times \frac{2.0 \mathrm{~mol}}{1 \amalg}=0.20 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$0.10 \amalg \times \frac{1.0 \mathrm{~mol}}{1 \mathrm{~L}}=0.10 \mathrm{~mol} \mathrm{NaOH}$

	$\mathrm{HC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$	+NaOH	$\rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+$	$\mathbf{H}_{2} \mathrm{O}$
Initial	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 0}$	0	---
Δ	$-\mathbf{0 . 1 0}$	$-\mathbf{0 . 1 0}$	$+\mathbf{0 . 1 0}$	---
Final	$\mathbf{0 . 1 0}$	$\mathbf{0}$	$\mathbf{0 . 1 0}$	---

$$
\begin{gathered}
{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\frac{0.10 \mathrm{~mol}}{0.20 \mathrm{~L}}=0.50 \mathrm{M} \quad\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=\frac{0.10 \mathrm{~mol}}{0.2 \mathrm{~L}}=0.50 \mathrm{M}} \\
\mathrm{pH}=\mathrm{pKa}+\log \frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
\end{gathered}
$$

From textbook $K a=1.7 \times 10^{-5}$

$$
\mathrm{pKa}=4.77
$$

$$
\mathrm{pH}=4.77+\log \frac{0.50}{0.50}=4.77
$$

b) 0.10 L of 0.20 M HCl is added to 0.40 L of the buffer solution above. What is the pH of the resulting solution?

The $\mathrm{H}_{3} \mathrm{O}^{+}$ions provided by HCl react with the acetate ions in the buffer.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=(0.10 \mathrm{~L})(0.20 \mathrm{M})=0.020 \mathrm{~mol}} \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=(0.40 \mathrm{~L})(0.50 \mathrm{M})=0.20 \mathrm{~mol}}
\end{aligned}
$$

	$\mathrm{C}_{2} \mathbf{H}_{3} \mathrm{O}_{2}{ }^{-}+$	$\mathrm{H}_{3} \mathrm{O}^{+}$	\rightarrow	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+$
	$\mathrm{H}_{2} \mathrm{O}$			
Initial	$\mathbf{0 . 2 0}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 2 0}$	----
Δ	$-\mathbf{0 . 0 2 0}$	$-\mathbf{0 . 0 2 0}$	$+\mathbf{0 . 0 2 0}$	----
Final	$\mathbf{0 . 1 8}$	$\mathbf{0}$	$\mathbf{0 . 2 2}$	----

$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\frac{0.18 \mathrm{~mol}}{0.50 \mathrm{~L}}=0.36 \mathrm{M} \quad\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=\frac{0.22 \mathrm{~mol}}{0.50 \mathrm{~L}}=0.44 \mathrm{M}$
$\mathrm{pH}=\mathrm{pKa}+\log \frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \quad \quad$ From textbook $\mathrm{Ka}=1.7 \times 10^{-5}$

$$
\mathrm{pKa}=4.77 \quad \mathrm{pH}=4.77+\log \frac{0.36}{0.44}=4.68
$$

8. A 10.0 mL solution of $0.100 \mathrm{M} \mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$ is titrated with a 0.100 M HCl solution. Calculate the pH of this solution at equivalence point.

At equivalence point $10.0 \mathrm{~mL} \mathrm{NH}_{3} \times \frac{0.100 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{HCl}}{1 \mathrm{NH}_{3}} \times \frac{1 \mathrm{~L}}{0.100 \mathrm{~mol}}=10.0 \mathrm{~mL}$ of $\mathbf{H C l}$
At equivalence point all $\mathrm{NH}_{3}(1.00 \mathrm{mmol})$ reacts with all $\mathrm{HCl}(1.00 \mathrm{mmol})$ to produce 1.00 mmol of $\mathrm{NH}_{4} \mathrm{Cl}$. Since only salt is present at this point, the $\mathbf{p H}$ of solution is based on hydrolysis of this salt.

$$
\left[\mathrm{NH}_{4}^{+}\right]=\frac{1.00 \mathrm{mmol}}{20.0 \mathrm{~mL}}=0.0500 \mathrm{M}
$$

	$\mathrm{NH}_{4}{ }^{+}+\mathbf{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathbf{N H}_{3}$	+
$\mathbf{H}_{3} \mathbf{O}^{+}$				
Initial	$\mathbf{0 . 0 5 0 0}$	---	0	0
Δ	$-\mathbf{x}$	---	$+\mathbf{x}$	$+\mathbf{x}$
Equil.	$\mathbf{0 . 0 5 0 0}-\mathbf{x}$	---	\mathbf{x}	\mathbf{x}

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10} \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{0.050-\mathrm{x}}=5.6 \times 10^{-10} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{x}=\sqrt{(0.050)\left(5.6 \times 10^{-10}\right)}=5.3 \times 10^{-6} \quad \mathrm{pH}=-\log \left(5.3 \times 10^{-6}\right)=5.28}
\end{aligned}
$$

9. A $10.0-\mathrm{mL}^{2}$ solution of $0.300 \mathrm{M} \mathrm{NH}_{3}$ is titrated with a 0.100 M HCl solution. Calculate the pH after the following additions of the HCl solution: (a) 0.0 mL , (b) 10.0 mL , (c) 30.0 mL a) Since no acid has been added, the $\mathbf{p H}$ of solution is based on the ionization of NH_{3}.

$$
\begin{array}{rl}
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \text { From textbook, } \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5} \\
\mathrm{~K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{(\mathbf{x})(\mathbf{x})}{0.300-x}=1.8 \times 10^{-5} & \mathrm{x}=\left[\mathrm{OH}^{-}\right]=\sqrt{(0.300)\left(1.8 \times 10^{-5}\right)}=2.32 \times 10^{-3} \\
\mathrm{pOH} & =-\log \left(2.32 \times 10^{-3}\right)=\mathbf{2 . 6 3}
\end{array} \quad \mathrm{pH}=14.00-2.63=11.37 .
$$

b) Addition of 10.0 mL of acid neutralizes some of the ammonia, as shown below:

	$\mathrm{NH}_{3}+\mathrm{HCl}$		\rightarrow	$\mathrm{NH}_{4}{ }^{+} \quad+$
Initial	3.00 mmol	$\mathbf{1 . 0 0} \mathbf{~ m m o l}$	0	---
Δ	-1.00 mmol	$-\mathbf{1 . 0 0} \mathbf{~ m m o l}$	$+\mathbf{1 . 0 0} \mathbf{~ m m o l}$	---
Final	2.00 mmol	0	1.00 mmol	----

$$
\begin{array}{ll}
{\left[\mathrm{NH}_{3}\right]=\frac{2.00 \mathrm{mmol}}{20.0 \mathrm{~mL}}=0.100 \mathrm{M}} & {\left[\mathrm{NH}_{4}^{+}\right]=\frac{1.00 \mathrm{mmol}}{20.0 \mathrm{~mL}}=0.0500 \mathrm{M}} \\
\mathrm{~K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.56 \times 10^{-10} & \mathrm{pK}_{\mathrm{a}}=\log \mathrm{K}_{\mathrm{a}}=9.25 \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}=9.25+\log \frac{0.100}{0.0500}=9.55
\end{array}
$$

c) After addition of $\mathbf{3 0 . 0} \mathrm{mL}$ of $\mathbf{H C l}$ equivalence point is reached. At this point all $\mathbf{N H}_{3}$ $(3.00 \mathrm{mmol})$ reacts with all $\mathrm{HCl}(3.00 \mathrm{mmol})$ to produce 3.00 mmol of $\mathrm{NH}_{4} \mathrm{Cl}$. Since only salt is present at this point, the pH of solution is based on hydrolysis of this salt.

$$
\left[\mathrm{NH}_{4}^{+}\right]=\frac{3.00 \mathrm{mmol}}{40.0 \mathrm{~mL}}=0.0750 \mathrm{M}
$$

	$\mathbf{N H}_{4}{ }^{+}+\mathbf{H}_{2} \mathbf{O}$	\rightleftharpoons	$\mathbf{N H}_{3}$	+
$\mathbf{H}_{3} \mathbf{O}^{+}$				
Initial	$\mathbf{0 . 0 7 5 0}$	---	0	0
Δ	$-\mathbf{x}$	---	$+\mathbf{x}$	$+\mathbf{x}$
Equil.	$\mathbf{0 . 0 7 5 0}-\mathbf{x}$	---	\mathbf{x}	\mathbf{x}

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{(0.0750-\mathrm{x})}=5 . \underline{56 \times 10^{-10}} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{(0.0750)\left(5.56 \times 10^{-10}\right)}=6.46 \times 10^{-6} \quad \mathrm{pH}=-\log \left(6.46 \times 10^{-6}\right)=5.19
\end{gathered}
$$

10. A $45.0-\mathrm{mL}$ sample of 0.200 M acetic acid is titrated with 0.180 M NaOH . Calculate the pH of the solution (a) before addition of NaOH , (b) after addition of 20.0 mL of NaOH and (c) at the equivalence point.
a) Since no base has been added, the pH of solution is based on the ionization of acid. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad$ From textbook, $\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-5}$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CHO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{0.200-\mathrm{x}}=1.7 \times 10^{-5} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{(0.200)\left(1.7 \times 10^{-5}\right)}=1 . \underline{8} 4 \times 10^{-3} \quad \mathrm{pH}=-\log \left(1 . \underline{8} 4 \times 10^{-3}\right)=2.73
\end{gathered}
$$

b) Addition of $\mathbf{2 0 . 0} \mathbf{~ m L}$ of NaOH neutralizes some of the acetic acid, as shown below:

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH}$	\rightarrow	$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$	
Initial	$\mathbf{9 . 0 0} \mathbf{~ m m o l}$	$\mathbf{3 . 6 0} \mathbf{~ m m o l}$	0	---
Δ	$-\mathbf{3 . 6 0} \mathbf{~ m m o l}$	$-\mathbf{3 . 6 0} \mathbf{~ m m o l}$	+3.60 mmol	---
Final	$\mathbf{5 . 4 0} \mathbf{~ m m o l}$	0	$\mathbf{0 . 6 0} \mathbf{~ m m o l}$	----

$$
\begin{array}{lr}
{\left[\mathrm{HC}_{2} \mathrm{H} \mathrm{O}_{2}\right]=\frac{5.40 \mathrm{mmol}}{65.0 \mathrm{~mL}}=0.0831 \mathrm{M}} & {\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\frac{3.60 \mathrm{mmol}}{65.0 \mathrm{~mL}}=0.0554 \mathrm{M}} \\
\mathrm{~K}_{\mathrm{a}}=1.7 \times 10^{-5} & \mathrm{pK}_{\mathrm{a}}=\log \mathrm{K}_{\mathrm{a}}=4.77
\end{array} \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}=4.77+\log \frac{0.0554}{0.0831}=4.59 \mathrm{l}
$$

c) At equivalence point:

$$
45.0 \mathrm{~mL} \text { acid } \times \frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \text { base }}{1 \mathrm{~mol} \text { acid }} \times \frac{1 \mathrm{~L}}{0.180 \mathrm{~mol}}=50.0 \mathrm{~mL} \text { of base }
$$

At this point all the acid $(\mathbf{9 . 0 0} \mathbf{~ m m o l})$ is neutralized by the base $(9.00 \mathrm{mmol})$ to produce $\mathbf{9 . 0 0} \mathbf{~ m m o l}$ of salt. Since only salt is present, the $\mathbf{p H}$ of the solution is based on hydrolysis of this salt.

$$
\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\frac{9.00 \mathrm{mmol}}{95.0 \mathrm{~mL}}=0.094 \underline{4} 4 \mathrm{M}
$$

	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	$+\mathrm{H}_{2} \mathrm{O}$	$\rightleftharpoons \mathrm{HC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$	$+\mathrm{OH}^{-}$
Initial	$0.094 \underline{\underline{7}}$	----	0	0
Δ	-x	----	+x	+x
Equil.	0.09474-X	----	X	x

$$
\begin{gathered}
\mathrm{K}_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{1.7 \times 10^{-5}}=5 . \underline{88} \times 10^{-10} \quad \mathrm{~K}_{\mathrm{b}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{(0.094 \underline{7}-\mathrm{x})}=5 . \underline{88} \times 10^{-10} \\
\mathrm{x}=\left[\mathrm{OH}^{-}\right]=\sqrt{(0.094 \underline{10})\left(5 . \underline{8} 8 \times 10^{-10}\right)}=7.47 \times 10^{-6} \\
\mathrm{pOH}=-\log \left(7.47 \times 10^{-6}\right)=5.13 \quad \mathrm{pH}=14.00-5.13=8.87
\end{gathered}
$$

11. Calculate the molar solubility of $\mathrm{AgBr}\left(\mathrm{Ksp}=5.0 \times 10^{-13}\right)$ in 0.50 M NaBr solution.

	$\operatorname{AgBr}(\mathrm{s})$	\rightarrow	$\mathbf{A g}^{+}(\mathrm{aq})+$
$\mathbf{I n}^{-}(\mathrm{aq})$			
Initial	----	$\mathbf{0}$	$\mathbf{0 . 5 0}$
Δ	$-\mathbf{x}$	$+\mathbf{x}$	$+\mathbf{x}$
Final	----	\mathbf{x}	$\mathbf{0 . 5 0 + \mathbf { x }}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=(\mathbf{x})(0.50+\mathrm{x})=5.0 \times 10^{-13} \\
& \text { solubility }=\mathrm{x}=\frac{\mathbf{5 . 0 \times 1 0 ^ { - 1 3 }}}{\mathbf{0 . 5 0}}=1.0 \times 10^{-12} \mathrm{M}
\end{aligned}
$$

12. A solution is made by mixing 10.0 mL of $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 10.0 mL of 0.0010 M $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Will a precipitate form? (Ksp for $\mathrm{PbSO}_{4}=1.06 \times 10^{-8}$)

$$
\begin{gathered}
\mathrm{PbSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \\
{\left[\mathrm{Pb}^{2+}\right]=\frac{(0.10 \mathrm{M})(10.0 \mathrm{~mL})}{(20.0 \mathrm{~mL})}=0.0500 \mathrm{M} \quad\left[\mathrm{SO}_{4}^{2-}\right]=\frac{(0.0010 \mathrm{M})(10.0 \mathrm{~mL})}{(20.0 \mathrm{~mL})}=5.00 \times 10^{-4} \mathrm{M}} \\
\mathrm{Q}_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=(0.0500)\left(5.00 \times 10^{-4}\right)=2.50 \times 10^{-5}
\end{gathered}
$$

Since $Q_{\text {sp }}>K_{\text {sp }}$, precipitation will occur
13. The solubility of iron (II) hydroxide, $\mathrm{Fe}(\mathrm{OH})_{2}$, is $1.43 \times 10^{-3} \mathrm{~g} / \mathrm{L}$.
a) Calculate the Ksp for iron (II) hydroxide.

$$
\begin{aligned}
& \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& {\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Fe}(\mathrm{OH})_{2}\right]=\frac{1.43 \times 10^{-3} \mathrm{~g}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{89.85 \mathrm{~g}}=1.59 \times 10^{-5} \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}\right]=2\left(1.59 \times 10^{-5}\right)=3.18 \times 10^{-5} \mathrm{M}} \\
& \mathrm{~K}_{\text {sp }}=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left(1.59 \times 10^{-5}\right)\left(3.18 \times 10^{-5}\right)^{2}=1.61 \times 10^{-14}
\end{aligned}
$$

b) Calculate pH of a saturated solution of iron (II) hydroxide.

$$
\begin{aligned}
& \text { From part (a) }\left[\mathrm{OH}^{-}\right]=3.18 \times 10^{-5} \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{3.18 \times 10^{-5}}=3.14 \times 10^{-10} \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=9.50
\end{aligned}
$$

c) A 50.0 mL sample of $3.00 \times 10^{-3} \mathrm{M} \mathrm{FeSO}_{4}$ solution is added to 50.0 mL of $4.00 \times 10^{-6} \mathrm{M}$ NaOH solution. Does a precipitate form?

$$
\begin{aligned}
& {\left[\mathrm{Fe}^{2+}\right]=\frac{\left(3.00 \times 10^{-3} \mathrm{M}\right)(50.0 \mathrm{~mL})}{(100.0 \mathrm{~mL})}=1.50 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}\right]=\frac{\left(4.00 \times 10^{-6} \mathrm{M}\right)(50.0 \mathrm{~mL})}{(100.0 \mathrm{~mL})}=2.00 \times 10^{-6} \mathrm{M}} \\
& \mathrm{Q}_{\text {sp }}=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left(1.50 \times 10^{-3}\right)\left(2.00 \times 10^{-6}\right)^{2}=6.00 \times 10^{-15} \\
& \text { Since } \mathrm{Q}_{\text {sp }}<\mathrm{K}_{\text {sp }}, \text { precipitation will not occur }
\end{aligned}
$$

14. Lead iodate, $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$, is a slightly soluble salt with a Ksp of 2.6×10^{-13} at $25^{\circ} \mathrm{C}$. To 35.0 mL of $0.150 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution is added 15.0 mL of $0.800 \mathrm{M} \mathrm{KIO}_{3}$. A precipitate of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ results. What are the $\left[\mathrm{Pb}^{2+}\right]$ and $\left[\mathrm{IO}_{3}^{-}\right]$in the final solution?
$\left[\mathrm{Pb}^{2+}\right]=\frac{(0.150 \mathrm{M})(35.0 \mathrm{~mL})}{(50.0 \mathrm{~mL})}=0.105 \mathrm{M}$

$$
\left[\mathrm{IO}_{3}^{-}\right]=\frac{(0.800 \mathrm{M})(15.0 \mathrm{~mL})}{(50.0 \mathrm{~mL})}=0.240 \mathrm{M}
$$

Using bounce-back method, first assume all Pb^{2+} reacts with all $\mathrm{IO}_{3}{ }^{-}$ion to produce $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$, and then some of the precipitate dissolves back to the ions.

	$\mathrm{Pb}\left(\mathbf{I O}_{3}\right)_{2}(\mathrm{~s})$	$\mathbf{P b}^{+2}(\mathrm{aq})+$			$\mathbf{2} \mathbf{I O}_{3}{ }^{-}(\mathrm{aq})$
Initial	----	$\mathbf{0 . 1 0 5}$	$\mathbf{0 . 2 4 0}$		
Δ_{1}	$+\mathbf{0 . 1 0 5}$	$-\mathbf{0 . 1 0 5}$	$-\mathbf{0 . 2 1 0}$		
Precipitate	-----	0	$\mathbf{0 . 0 3 0}$		
Δ_{2}	$-\mathbf{x}$	$+\mathbf{x}$	$+2 \mathbf{x}$		
Finish	----	\mathbf{x}	$\mathbf{0 . 0 3 0 + 2 x}$		

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}=(\mathrm{x})(0.030+\mathrm{*})^{2}=2.6 \times 10^{-13} \\
& {\left[\mathrm{~Pb}^{2+}\right]=\mathrm{x}=\frac{\mathbf{2 . 6} \times 10^{-13}}{(0.030)^{2}}=\mathbf{2 . 9 \times 1 0 ^ { - 1 0 } \mathrm { M }}} \\
& {\left[\mathrm{IO}_{3}^{-}\right]=\mathbf{0 . 0 3 0}+\mathbf{2 x}=\mathbf{0 . 0 3 0} \mathrm{M}}
\end{aligned}
$$

15. Consider a solution that is $0.010 \mathrm{M} \mathrm{in}^{\mathrm{Ba}^{2+}}$ and $0.020 \mathrm{M} \mathrm{in}^{2+}$. If sodium sulfate is added to this solution to selectively precipitate one of the cations, which will precipitate first? What is the minimum concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ that would trigger the precipitation of this cation?
From textbook,

$$
\begin{aligned}
& \mathbf{K}_{\text {sp }} \text { for } \mathrm{BaSO}_{4}=1.07 \times 10^{-10} \\
& \mathbf{K}_{\text {sp }} \text { for } \mathrm{CaSO}_{4}=7.10 \times 10^{-5}
\end{aligned}
$$

Since the solution stoichiometry for both these compounds are similar, it would be appropriate to relate $K_{s p}$ and molar solubility. Since the lower $K_{s p}$ value would require the lower sulfate ion concentration in order to precipitate, it would then follow that Ba^{2+} would precipitate first.

$$
\begin{aligned}
& \mathrm{BaSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=1.07 \times 10^{-10} \\
& {\left[\mathrm{SO}_{4}^{2-}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Ba}^{2+}\right]}=\frac{1.07 \times 10^{-10}}{0.010 \mathrm{M}}=1.07 \times 10^{-8} \mathrm{M}}
\end{aligned}
$$

16. What is the Cr^{3+} concentration when 0.010 mol of $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in a liter of solution buffered at pH of 10.0. Cr^{3+} forms a complex ion with hydroxide shown below:

$$
\begin{aligned}
\mathrm{Cr}^{3+}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{a}) \rightleftharpoons & \mathrm{Cr}(\mathrm{OH})_{4}^{-} \quad \mathrm{K}_{\mathrm{f}}=8 \times 10^{29} \\
\mathbf{p O H}=\mathbf{1 4 . 0}-\mathbf{1 0 . 0}=\mathbf{4 . 0} & {\left[\mathrm{OH}^{-}\right]=\text {antilog } \mathbf{p O H}=\mathbf{1 . 0} \times 10^{-4} }
\end{aligned}
$$

Due to the large K_{f} all of Cr^{3+} is converted to the complex ion, and some subsequently dissociates back to Cr^{3+}. Then at equilibrium,

$$
\begin{gathered}
\underset{\mathrm{x}}{\mathrm{Cr}^{3+}(\mathrm{aq})}+\underset{1.0 \times 10^{-4}}{4 \mathrm{OH}^{-}(\mathrm{a})} \rightleftharpoons \\
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{Cr}(\mathrm{OH})_{4}^{-}\right]}{\left[\mathrm{Cr}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{4}}=\frac{(\mathbf{0 . 0 1 0 - \mathrm { x })}}{\mathbf{x}\left(1.0 \times 10^{-4}\right)^{4}}=8 \times 10^{29} \\
\mathbf{0 . 0 1 0 - \mathrm { x } (\mathrm { OH }) _ { 4 } ^ { - }} \\
{\left[\mathrm{Cr}^{3+}\right]=\mathrm{x}=1.2 \times 10^{-16} \mathrm{M}}
\end{gathered}
$$

Note: Since the solution is buffered, $\left[\mathrm{OH}^{-}\right]$will remain constant during the reaction.
17. A $0.10-\mathrm{mol}$ sample of AgNO_{3} is dissolved in $1.00 \mathrm{~L}^{2} 1.00 \mathrm{M} \mathrm{NH}_{3}$. If 0.010 mol of NaCl is added to this solution, will $\mathrm{AgCl}\left(\mathrm{K}_{\text {sp }}=1.8 \times 10^{-10}\right)$ precipitate? $\left(\mathrm{Ag}^{+}\right.$and NH_{3} form the complex ion $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$with $\left.\mathrm{K}_{\mathrm{f}}=1.6 \times 10^{7}\right)$

To determine if a precipitate forms, we need to determine the concentration of $\mathbf{A g}^{+}$ in the solution, and then calculate $\mathbf{Q}_{\text {sp }}$ to determine if a precipitate forms.

To determine the concentration of $\mathbf{A g}^{+}$, due to the large \mathbf{K}_{f} value, assume all of the Ag^{+}reacts to form the complex and then some dissociates back.

	$\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow$		
Initial	$\mathbf{0 . 1 0}$	$\mathbf{A g}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq})$	
Δ_{1}	$-\mathbf{0 . 1 0}$	$-\mathbf{0 . 2 0}$	$\mathbf{0}$
Complex	$\mathbf{0}$	$\mathbf{0 . 8 0}$	$+\mathbf{0 . 1 0}$
Δ_{2}	$+\mathbf{x}$	+2 x	$\mathbf{0 . 1 0}$
Finish	\mathbf{x}	$\mathbf{0 . 8 0 + 2 x}$	$-\mathbf{x}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}=\frac{(0.10-\mathrm{x})}{\mathrm{x}(0.80+2 \mathrm{x})^{2}}=1.6 \times 10^{7} \\
& {\left[\mathrm{Ag}^{+}\right]=\mathrm{x}=\frac{0.20}{(0.80)^{2}\left(1.6 \times 10^{7}\right)}=9.8 \times 10^{-9} \mathrm{M}} \\
& \mathrm{Q}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(9.8 \times 10^{-9}\right)(0.010)=9.8 \times 10^{-11}<1.8 \times 10^{-10}
\end{aligned}
$$

AgCl will NOT precipitate
18. AgNO_{3} is added to a solution that is 0.10 M in NaCl and $0.010 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$. Assume no dilution caused by the addition of AgNO_{3}. Given the Ksp values below:

$$
\begin{aligned}
& \text { Ksp for } \mathrm{AgCl}=1.6 \times 10^{-10} \\
& \text { Ksp for } \mathrm{Ag}_{2} \mathrm{CrO}_{4}=9.0 \times 10^{-12}
\end{aligned}
$$

a) Which precipitates first, AgCl or $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$? Calculate the $\left[\mathrm{Ag}^{+}\right]$when precipitation first begins.
Since the solution stoichiometry for both these compounds are not the same, it would not be appropriate to relate $K_{\text {sp }}$ and molar solubility.

To determine which ion precipitates first, we must calculate the cation concentration required for each precipitation. The lower value required for precipitation would indicate the ion that would precipitate first.
$\left[\mathrm{Ag}^{+}\right]$required for AgCl precipitation:

$$
\begin{aligned}
& \mathrm{AgCl}(\mathrm{~s}) \quad \rightarrow \quad \mathrm{Ag}^{+}(\mathrm{aq})+\quad \mathrm{Cl}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\mathbf{1 . 6 \times 1 0 ^ { - 1 0 }} \\
& {\left[\mathrm{Ag}^{+}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Cl}^{-}\right]}=\frac{\mathbf{1 . 6 \times 1 0} 0^{-10}}{0.10 \mathrm{M}}=1.6 \times 10^{-9} \mathrm{M}}
\end{aligned}
$$

$\left[\mathrm{Ag}^{+}\right]$required for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ precipitation:

$$
\begin{gathered}
\mathrm{Ag}_{2} \mathrm{Cr}_{4}(\mathrm{~s}) \quad \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\quad \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]=9.0 \times 10^{-12} \\
{\left[\mathrm{Ag}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{CrO}_{4}^{2-}\right]}}=\sqrt{\frac{9.0 \times 10^{-12}}{\mathbf{0 . 0 1 0 \mathrm { M }}}}=3.0 \times 10^{-5} \mathrm{M}}
\end{gathered}
$$

The precipitation occurs for the salt which requires the smallest $\left[\mathrm{Ag}^{+}\right]$at equilibrium. Therefore AgCl precipitates first at a $\left[\mathrm{Ag}^{+}\right]$of $1.6 \times 10^{-9} \mathrm{M}$
b) What is the $\left[\mathrm{Cl}^{-}\right]$when $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ first begins to precipitate?

Calculations above show that in order of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ to precipitate, the $\left[\mathrm{Ag}^{+}\right]$ must equal $3.0 \times 10^{-5} \mathrm{M}$. Therefore,

$$
\begin{aligned}
& \mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(3.0 \times 10^{-5}\right)\left[\mathrm{Cl}^{-}\right]=1.6 \times 10^{-10} \\
& {\left[\mathrm{Cl}^{-}\right]=\frac{1.6 \times 10^{-10}}{3.0 \times 10^{-5}}=5.3 \times 10^{-6} \mathrm{M}}
\end{aligned}
$$

