Date:-16-12-2015 Max Marks: 50 Duration 90 Minutes Time: 12.00 to 1.30p.m

General Instructions:-

1. All questions are compulsory
2. Mark your responses on separate answer sheet provided to you with pencil
3. No Negative marking correct answer will get one mark
4. If more than one option are marked then students will get Zero mark and will be disqualified.

QN0	Use of calculator and rough sheet is allowed
1.	A solution is prepared by adding 2 g of a substance A to 18 g of water. Mass percent of solute A will be \qquad a) $\mathbf{1 0 \%}$ b) 20% c) 25% d) 15% Mass percentage of $A=\frac{\text { Mass of } A}{\text { Mass of solution }} \times 100=\frac{2 g}{2 g \text { of } A+18 \mathrm{~g} \text { of water }} \times 100=10 \%$
2.	Molarity of NaOH in a solution prepared by dissolving 4 g of NaOH in enough water to form 250 ml of solution is \qquad a) 0.45 M b) $\mathbf{0 . 4 M}$ c) 1.4 M d) 4.1 M $\text { Molarity }=\frac{\text { No. of moles of solute }}{\text { Volume of solution in liters }}=\frac{\text { Mass of } \mathrm{NaOH} / \text { Molar mass of } \mathrm{NaOH}}{0.250}=\frac{4 / 40}{0.250}=0.4 \mathrm{M}$
3.	A mole is a collection of \qquad particles. a) 6.022×10^{23} b) 2.022×10^{23} c) 2.066×10^{23} d) 6.022 Ans a) 1 mole $=6.022 \times 10^{23}$ particles
4.	According to Dalton's atomic theory chemical reactions involve \qquad a) Construction of atoms b) Reorganisation of atoms c) Destruction of atoms d) Reorganisation of nuclei According to Dalton's atomic theory chemical reactions involve reorganization of atoms.
5.	15 g of a substance A combines with 20 g of a substance B to give 35 g of product C . The law followed in this reaction is \qquad a) Law of multiple proportions b) Law of definite proportions c) Law of conservation of mass d) Law of reciprocal proportions According to the law of conservation of mass, matter can not be created or destroyed, it always remain conserved.

6.	Dalton's atomic theory did not propose which of the following? a) Matter consists of indivisible atoms b) Atoms of different elements have the same mass c) Atoms of a given element have identical properties d) Atoms cannot be created or destroyed Dalton's theory does not propose that atoms of different elements differ in mass.
7.	The atomic mass of an element is usually fractional because \qquad a) Elements contain impurities b) Elements are mixture of allotropes c) Elements are mixture of isotopes d) Elements are mixture of isobars The atomic mass is the average of atomic masses of all the isotopes of an element.
8.	Substances whose two or more components completely mix with each other to make a uniform composition are called \qquad a) Heterogeneous mixtures b) Homogenous mixtures c) Ionic compounds d) Elements Homogenous mixtures are those whose components completely mix with each other to make a uniform composition.
9.	\qquad pair of species has the same number of electrons. a) $\mathrm{Fe}, \mathrm{Mn}^{+}$ b) Te, Se c) $\mathrm{Ar}, \mathrm{K}^{+}$ d) Mn, Tc Argon has at. no.18. i.e no. of electrons $=18$ and in the same way $\mathrm{K}^{+}=19-1=18$
10	\qquad statement is true about the electron. a) It is negatively charged and is lighter than a proton. b) It is negatively charged and has same mass as a proton. c) It is positively charged and has no mass d) None of the above An electron is negatively charged and has much smaller mass than that of a proton
11	The shape of the p_{x} orbital is \qquad a) Spherical b) Octahedral c) Dumb-bell d) Double Dumb-bell All p orbitals are dumb-bell in shape
12	\qquad orbital can hold only two electrons. a) $2 p$ b) 3 s c) 4 d d) 5 f
	Which of the subshells below do not exist due to the constraints upon the azimuthal quantum

	number? a) 2 d b) 2 s c) $2 p$ d) 4 d The principal quantum no. $\mathrm{n}=2$ can not have I $=2$
	Quantum mechanics is based on a fundamental equation which is called \qquad a) Newton's law b) Schrodinger equation c) Equation of state d) Boyle's law
15	An orbital is identified by \qquad quantum number/s. a) 1 b) 2 c) 3 d) 4 An orbital is identified by 3 quantum numbers i.e Principal quantum number, azimuthal quantum number and magnetic quantum number
16	Which one of the following represents an acceptable possible set of quantum numbers (in the order $\mathrm{n}, 1, \mathrm{~m}_{1}$ and m_{s} for an electron in an atom? a) $2,1,-1,1 / 2$ b) $2,1,0,0$ c) $2,1,2,1 / 2$ d) $2,0,1,-1 / 2$ For $n=2$, I has only two possible values 0 and 1 and possible values of m are 0 and $-1,0$ and +1
17	Law of Triads is applicable to \qquad set of elements. a) Lithium, Beryllium, Boron b) Fluorine, Iodine, Bromine c) Chlorine, Bromine, Iodine d) Sodium, Potassium, Rubidium Law of Triads is applicable to Chlorine, Bromine, and lodine
18	Horizontal rows in the periodic table are called \qquad a) Periods b) Groups c) Table d) Cell
19	The elements beyond atomic number $(Z=92)$ are known as \qquad a) trans fermium elements b) Transuranium elements c) carbon family d) oxygen family
20	\qquad pairs have both the members from the same group of periodic table. a) Mg, Be b) Mg, Na c) Mg, Cu d) Mg, Cl

	General outermost electronic configuration for both Mg and Be is $n s^{2}$. These are alkaline earth metals
21	\qquad block of the periodic table contains the man made elements. a) s block b) p block c) d block d) f block In the f-block of the periodic table, most of the elements are man made, radioactive elements.They are prepared only in nanogram quantities by nuclear reactions.
22	Na^{+}is smaller than Na atom because \qquad a) Nucleus in each case contains different nucleons b) Sodium atom has one electron lesser than sodium ion c) The effective nuclear charge is greater in case of sodium ion d) Na^{+}is more stable than in Na atom The total number of electrons is 10 in case of Na^{+}and 11 in case of Na , while the number of proton is same i.e. 11 in both case
23	Among the following molecules octet rule is not obeyed by \qquad a) PCl_{3} b) CO_{2} c) OF_{2} d) ClF_{3} The central atom of ClF_{3} has more than eight electrons in its valence shell and forms super octet molecule.
24	The number of dots in the Lewis symbol represents \qquad a) The number of valence electrons present in the atom b) Atomic mass of the element c) Atomic number of the element d) The electronic configuration of the atom
25	\qquad has the maximum bond angle. a) CH_{4} b) $\mathrm{H}_{2} \mathrm{O}$ c) NH_{3} d) CO_{2} Maximum bond angle 180° is possible for sp hybridization
26	The hybridized orbitals have \qquad a) Equivalent energies and identical shapes b) Equivalent energies and different shapes c) Different energies and identical shapes d) Different energies and different shapes
27	The percentage of s character in sp^{3} hybridized orbital is \qquad a) $\mathbf{2 5 \%}$ b) 30% c) 50% d) 35% The sp ${ }^{3}$ hybridized orbital has $25 \% \mathrm{~s}$ - character and $75 \% \mathrm{p}$ - character
28	Repulsive forces arise between_

	a) nucleus of one atom and its own electron b) nucleus of one atom and electron of other atom c) electrons of two atoms d) neutrons of two atoms
29	A pi-bond is formed by the overlap of \qquad a) s -s orbitals b) s-p orbitals c) p-p orbitals in end to end fashion d) p-p orbitals in sidewise manner
30	The relationship between Pc, Vc, and Tc is \qquad a) $\mathrm{PcVc}=\mathrm{RTc}$ b) $\mathrm{PcVc}=3 \mathrm{RTc}$ c) $\mathrm{PcVc}=3 / 5 \mathrm{RTc}$ d) $\mathbf{P c V c}=3 / 8 \mathrm{RTc}$
31	Gas deviates from ideal gas nature because molecules \qquad a) are colourless b) attract each other c) contain covalent bond a) shows Brownian movement
32	During boiling of a liquid ,bubbles are formed because \qquad a) the vapour pressure inside the bubbles is equal to the atmospheric pressure b) the vapour pressure inside the bubbles is slightly greater than the atmospheric pressure c) the vapour pressure inside the bubbles is slightly less than the atmospheric pressure d) the dissolved gas ge entrapped which is being expell
33	Equation of Boyle's Law is \qquad a) $d P / P=-d V / V$ b) $\mathrm{dP} / \mathrm{P}=+\mathrm{dV} / \mathrm{V}$ c) $d^{2} P / P=-d V / V$ d) $d^{2} \mathrm{P} / \mathrm{P}=+\mathrm{dV} / \mathrm{V}$
34	According to kinetic theory of gases, in an ideal gas , between two successive collisions a gas molecule travels \qquad a) in a circular path b) in a wave path c) in a straight path d) none of the above
35	In the phenomenon of surface tension \qquad a) surface molecules experience a net upward force b) bulk molecules experience a net downward force c) bulk molecules do not experience any force d) none
36	Use of hot air balloons is an application of \qquad a) Charles' law b) Gay Lussac's law c) Avogadro's law d) Boyle's law
	Choose the one which is not a characteristic property of gases:

	a) The gases mix evenly and uniformly without any mechanical aid b) Gases are compressible c) Gases have maximum thermal energy d) Gases are rigid
38	For the equilibrium reaction ,the value of Gibbs free energy change is \qquad a) >0 b) <0 c) $=0$ d) none
39	An open system \qquad a) can neither lose nor gain energy b) can lose nor gain energy c) can lose nor gain matter d) can lose or gain both matter or energy
40	In general, for exothermic reaction to be spontaneous \qquad a) temperature should be high b) temperature should be zero c) temperature should be low d) temperature has no effect
41	In the reactions, where enthalpy value determination is difficult by experiments, the enthalpy value can be calculated by \qquad a) kirchoff's equation b) Hess law c) Henry's law d) van't Hoff law
42	IUPAC name of the compound $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ is \qquad a) 3-oxobutanol b) 1-Hydroxybutan-3-one c) 4-Hydroxybutan-2-one d) 2-oxobutan-4-ol
43	The displacement of electrons in a multiple bond in the presence of attacking reagent is called \qquad a) inductive effect b) electromeric effect c) resonance d) hyper conjugation
	The overlapping of orbital in benzene is of the type \qquad a) $\mathbf{s p}^{2}-\mathbf{s p}^{2}$ b) $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ c) $\mathrm{sp}-\mathrm{sp}$ d) $\mathrm{sp}-\mathrm{p}$
45	Which of the following formulae represents isobutyl alcohol? a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ b) c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}$

	d)
46	The longest chain in the following compound consists of \qquad a) 8 carbon atoms b) 9 carbon atoms c) 6 carbon atoms d) 5 carbon atoms The longest chain must contain carbon atom of carboxyl group.
47	The IUPAC name of $\mathrm{CH}_{2}=\mathrm{CHCHOH}-\mathrm{CH}_{2} \mathrm{CHO}$ is a) 3-Hydroxy-pent-4-ene-1-al b) 3-Hydroxy-2-pentenal c) 2-Hydroxy-3-pentenal d) 3-Hydroxy-2-pentenal
48	\qquad type of isomerism is exhibited by the compounds whose structures are shown below? $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \text { and } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ a) Tautomerism b) Position isomerism c) Metamerism d) Geometric isomerism In this type of isomerism the isomers differ in structure due to difference in the distribution of carbon atoms about the functional group.
49	When there is breaking of bonds in such a way that the shared pair of electrons remains with one of the fragments it is termed as \qquad a) Geometrical isomerism b) Heterolytic cleavage c) Homolytic cleavage d) Metamerism As after cleavage one of the atom has sextet electronic configuration and the positive charge whereas the other atom has atleast one lone pair and the negative charge. Hence it is a Heterolytic Cleavage
50	A reagent that brings an electron pair is known as \qquad a) Nucleophile b) Electrophile c) Inductivity d) Conjugation

@@@@@@@@@@@@ACT Wishes you all the best in upcoming Examinations@@@@@@@@@@@

