

ANSYS Structural Mechanics Update 2019 R1

ANSYS-Motion: New product family for professional multi-body simulation

- Analyze rigid and flexible systems efficiently in any contact situation
- Flexible bodies can be considered without networking and thus be fast in the model preparation.
- Supplemented by powerful special applications for gearboxes, bearings, belts, chains and complete drive trains
- Integrated into the ANSYS product environment with direct interfaces to SpaceClaim for the geometric model preparation as well as to TwinBuilder with the link to the system simulation
- Bridges the gap between classic FEM and classic multi-body simulation
- Developed with the support of Prof. Daesung Bae as the world's outstanding expert in the field of multi-body simulation

ANSYS Motion for professional multi-body simulation

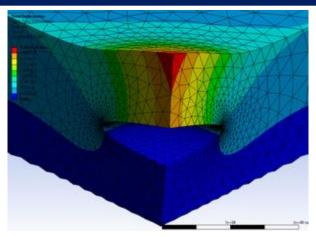
HPC

- Distributed Memory Parallel now standard for all analyzes (new: DMP for SMART Crack Growth Method)
- Nonlinear contact analysis: Automated splitting of contact areas for performance enhancement on models with large area contacts

• Reduction of RST file sizes by up to 50% with new compression method

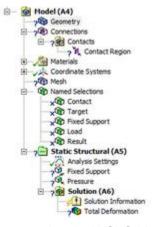
Automated division of a large-area contact into individual sections for non-linear contact analyzes

Solver


Semi-implicit method: In the case of non-linear analyzes, switch from an
implicit solution procedure to an explicit solution procedure in the short term in
order to avoid convergence difficulties.

Fracture Mechanics

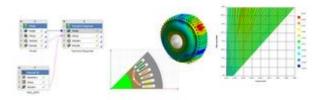
- Consideration of pressure loads on the crack surfaces as well as temperature
- Automatic cracking on cracks over edges



Automatic crack creation on edge cracks

Mechanical handling

- Move or rotate model areas within the mechanical environment
- Simulation Template: Create a non-CAD mechanical setup to prepare for analysis
- New solution combination method for efficient load case overlay including import of load case tables from csv files.
- · Advanced keyframe animation for moving presentation of results
- Export animations in MP4, WMV, AVI and GIF formats


Simulation template in ANSYS Mechanical

Dynamics

- Component Mode Synthesis for harmonic analysis (modal superposition) within the mechanical environment
- Reuse system matrices of multiple built-in substructures to reduce disk space requirements
- Rotor dynamics: consideration of Coriolis effects in the Rotating Reference
 Frame
- NVH: Complete workflow for vibration simulation of the run-up of an electric motor (including waterfall diagram of the resulting structure-borne sound power)

Workflow for vibration simulation of the run-up of an electric motor

Multi-body simulation

 On-Demand Query of deformation, stress and strain results in flexible structures and thus significant reduction of analysis times by abandoning the expansion of results

ANSYS LS-DYNA

- Consideration of thermal loads of a previous thermal simulation
- Further use of a deformed model geometry as a result of an explicit analysis for further mechanical analysis

General axisymmetric structures in ANSYS Mechanical

Suitable for 3D static analyzes

General Axisymmetric Model in ANSYS Mechanical

APDL Elements

- Thermal Reinforcing Element REINF264 for imaging thermal fibers
- CABLE280 element for robust simulation of flexible cable and cable structures
- Consideration of anisotropic viscoelastic behavior in piezoelectric analyzes
- Heating of piezoelectric models by anisotropic electrical losses

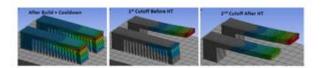
Material Designer

- New predefined lattice basic structures
- Unit cells with unevenly distributed short fibers

Topology Optimization

 Topology optimization for stationary temperature field analyzes to determine the optimum installation space with the most effective possible heat dissipation via heat conduction

- Structure optimization for shell structures
- Automatic smoothing of resulting structure surfaces



Topology optimization in thermal analyzes (left) and shell structures (right)

Additive manufacturing

- Layered tetrahedral mesh
- Analysis of a subsequent heat treatment
- Consideration of remaining powder after the printing process
- Consideration of already existing secondary structures

Simulation of thermal post-treatment after 3D printing