Efficiency and Performance Analysis of Residential Geothermal HVAC systems in New York State

Anthony Novakovic

Introduction:

Geothermal Energy:

• Considered an environmentally friendly, renewable resource (Axelsson et al 2003; Blum et al 2013)

Can be found nearly anywhere within the earth's interior (Keçebas 2012)

- Geothermal energy is used in three ways (Wu et al 2009)
 - Electricity Generation
 - Direct heating
 - Indirect heating and cooling via geothermal heat pumps

Natural processes of environment around geothermal system

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS
--------------	----------------------	------------	---------

Growth Potential in United States:

 \$10 billion invested into geothermal projects by 46 countries between 2005-2009 (Lund et al 2011)

 20% of U.S. energy use is expended for space and hot water heating

 More installation needed to achieve full potential of geothermal energy (Thorsteinsson et al 2010)

Regions of the United States that are suitable for geothermal usage

INTRODUCTION REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSION
-----------------------------------	------------	---------	------------

Forms of Geothermal Energy:

"High Grade" Geothermal:

- Temperatures near or exceeding 212°F (boiling point)
- Found near geysers and other hydro-geothermal reservoirs
- Primarily used to generate electricity

"Low Grade" Geothermal:

- Temperatures (less than 120°F)
- Uses heat pumps to move heat
- Typically used with HVAC systems

High Grade Geothermal

Functions of Loops and Heat Pumps:

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS
--------------	----------------------	------------	---------

Types of Geothermal Systems:

Fundamentals

Open Loop:

- Ground water is drawn directly into the building for heating and cooling
- Ground water must be free of minerals and contaminants

Florides et al 2007

Design Open Loop:

- Air passes through underground tubes (pre-heating/cooling)
- Two wells are usually required Extraction well Injection well

Fundamentals

Closed Loop:

- Dedicated fluid loop circulates through ground/pond to exchange energy (Ballard et al 2012)
- The ground/pond water and loop water do not mix (Cui et al 2011)

Design

Closed Loop:

- Variations in design
 - Horizontal
 - Vertical (more costly, less piping)
 - Diagonal
 - Slinky (especially in U.S.)

Florides et al 2007

Design of Geothermal Systems:

Installation and Operational Costs:

 40-50% of the total investment cost of projects are the drilling of production

 Materials are bought when commodities are at their lowest prices (Sveinbjornsson et al 2012)

- Typical R.O.I. is 6-20 years
 (Dowlatabadi et al 2007)
- Low-interest loans and incentives are available for geothermal installation

T	_	L I	_	
- L.	я	nı	е	
	-	~	~	

Comparison of economic parameters for various heating systems in several locations

		Alberta		Ontario		Nova Scotia			
		Annual		Annual		Annual			
	Capital	heating cost	Present	heating cost	Present	heating cost	Present		
Heating system	cost (\$)	(\$)	worth (\$)	(\$)	worth (\$)	(\$)	worth (\$)		
Geothermal HP	9000	601	21,020	328	15,560	649	27,230		
Air source HP	4900	813	21,160	444	13,780	877	27,940		
Electric baseboard	1550	2257	46,690	1231	26,170	2432	50,190		
Natural gas furnace ^e	1500	1276	27,020	2344	48,380	1885	44,750		
Natural gas furnace ^b	1900	1109	24,080	1049	22,880	1653	40,460		
Monetary units are in 2009 Canadian dollars. Self et al 2011									
	Capital costs to install geothermal heat pumps								

REVIEW OF LITERATURE

HYPOTHESES

METHODS

CONCLUSION

In New York State, what type of geothermal system is most efficient when annually heating a suburban residence?

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSIC
--------------	----------------------	------------	---------	-----------

Hypotheses:

In New York State, what type of geothermal system is most efficient when annually heating a suburban residence?

- *H*₀: In New York State, it is inefficient to geothermally heat a suburban residence.
- *H*₁: In New York State, it is more efficient to geothermally heat a suburban residence with a closed loop system than an open loop system, as the C.O.P. of a closed loop system meets or exceeds its expectations.
- *H*₂: In New York State, it is more efficient to geothermally heat a suburban residence with an open loop system than a closed loop system, as the C.O.P. of an open loop system meets or exceeds its expectations.

INTRODUCTION REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSION
-----------------------------------	------------	---------	------------

Project Timeline:

- Client/system identification
- Heat exchanger analysis
- System performance collections
- Search for server errors in data collection
- Calculate weekly, monthly, and seasonal C.O.P. averages
- Compare client seasonal C.O.P. averages to heat exchanger standard
- Conclusion

METHODS

Client/System Identification:

- Each client was given an alias to keep their anonymity
- Loop type and location was obtained for analysis purposes

<u>Loop Name</u>	Loop Type	Loop Location
Alpha	Hybrid Open Loop/ Standing Column shown with primary ground loop including drywell	Tivoli, New York
Bravo	Hybrid Open Loop/ Standing Column shown with primary ground loop including drywell	Rhinebeck, New York
Charlie	Closed Loop System Closed Loop water to air	New Paltz, New York
Delta	Closed Loop System Closed Loop water to air	New Paltz, New York

	INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHO
--	--------------	----------------------	------------	-------

DS

Heat Exchanger Analysis:

- The heat exchangers of each client were identified
- During the data analysis, each system's C.O.P. was compared to the typical heat exchanger C.O.P.
 - Heat exchanger C.O.P. values were obtained from the manufacturer's manual

Loop Name	<u>Heat Exchangers</u>
Alpha	Climate Master Tranquility 27 Model 72 – Full Load
Bravo	Climate Master Tranquility 27 Model 49 – Part Load
Charlie	Water Furnace Envision Series NSW
Delta	Water Furnace Envision Series NSW

INTRODUCTION REVIEW OF LITERATURE	HYPOTHESES ME	THODS CONCLUSIO	br
-----------------------------------	---------------	-----------------	----

System Performance Data Collection:

Data collection method: online server

Data duration: 10/1/14 – 3/1/15

- 5-day charts
- Monthly
- Seasonal (10/1 3/1)

Primary variables:

- Air temperature (outside)
- Water input
- Coefficient of performance (C.O.P.)
- Truth value indicated status of system
 - (1) = online
 - (0) = offline
- Offline system data was excluded

12/4/2014 11:45:34 46.85 49.44 61.59 69.13 39.09 50.56 1 0 1 4.2931 5.333 12/3/2014 4:59:04 46.51 49.33 62.49 72.28 34.25 50.90 1 0 0 1 4.2192 5.4456 12/2/2014 23:50:34 46.18 48.88 62.94 71.94 33.13 50.11 1 0 0 1 4.0652 5.2912 12/1/2014 20:48:04 47.19 49.78 62.60 72.16 37.18 51.01 1 0 0 1 4.0492 5.5738 12/4/2014 20:42:04 46.06 48.20 61.48 72.39 29.75 49.66 1 0 0 1 3.6163 4.5802 11/30/2014 10:10:04 44.26 46.85 62.04 73.40 37.96 48.43 1 0 0 1 3.572 5.1164 12/2/2014 10:48:34 45.61 48.20 62.83 73.06 30.76 49.89 1 0	Date	Time	WaterIn 1	WaterOut	Air In.0	Air Out.0	Outside.0	Super Hea	Y1(Stage	Y2(Stage	O(Cooling	F(Fan).0	System C	HeatPum
12/3/2014 4:59:04 46.51 49.33 62.49 72.28 34.25 50.90 1 0 0 1 4.2192 5.4456 12/2/2014 23:50:34 46.18 48.88 62.94 71.94 33.13 50.11 1 0 0 1 4.0652 5.2912 12/1/2014 20:48:04 47.19 49.78 62.60 72.16 37.18 51.01 1 0 0 1 4.0492 5.5738 12/4/2014 20:42:04 46.06 48.20 61.48 72.39 29.75 49.66 1 0 0 1 3.6163 4.5802 11/30/2014 10:10:04 44.26 46.85 62.04 73.40 37.96 48.43 1 0 0 1 3.5727 5.1164 12/2/2014 10:48:34 45.61 48.20 62.83 73.06 30.76 49.89 1 0 0 1 3.5727 4.533 12/1/2014 4:40:34 45.63 48.76 61.70 71.60 39.99 50.00 1	12/4/2014	11:45:34	46.85	49.44	61.59	69.13	39.09	50.56	1	0	0	1	4.2931	5.333
12/2/2014 23:50:34 46.18 48.88 62.94 71.94 33.13 50.11 1 0 0 1 4.0652 5.2912 12/1/2014 20:48:04 47.19 49.78 62.60 72.16 37.18 51.01 1 0 0 1 4.0492 5.5738 12/4/2014 20:42:04 46.06 48.20 61.48 72.39 29.75 49.66 1 0 0 1 3.6163 4.5802 11/30/2014 10:10:04 44.26 46.85 62.04 73.40 37.96 48.43 1 0 0 1 3.5727 5.1164 12/2/2014 10:48:34 45.61 48.20 62.83 73.06 30.76 49.89 1 0 0 1 3.5772 4.533 12/1/2014 4:40:34 46.63 48.76 61.70 71.60 39.99 50.00 1 0 0 1 3.4533 4.7617 11/30/2014 1:07:34 47.30 49.10 61.44 68.90 30.43 50.11 1 <td>12/3/2014</td> <td>4:59:04</td> <td>46.51</td> <td>49.33</td> <td>62.49</td> <td>72.28</td> <td>34.25</td> <td>50.90</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>4.2192</td> <td>5.4456</td>	12/3/2014	4:59:04	46.51	49.33	62.49	72.28	34.25	50.90	1	0	0	1	4.2192	5.4456
12/1/2014 20:48:04 47.19 49.78 62.60 72.16 37.18 51.01 1 0 0 1 4.0492 5.5738 12/4/2014 20:42:04 46.06 48.20 61.48 72.39 29.75 49.66 1 0 0 1 3.6163 4.5802 11/30/2014 10:10:04 44.26 46.85 62.04 73.40 37.96 48.43 1 0 0 1 3.5727 5.1164 12/2/2014 10:48:34 45.61 48.20 62.83 73.06 30.76 49.89 1 0 0 1 3.5772 4.533 12/1/2014 4:40:34 46.63 48.76 61.70 71.60 39.99 50.00 1 0 0 1 3.5776 4.383 11/30/2014 18:49:34 45.28 47.64 63.39 74.08 37.29 49.44 1 0 0 1 3.4253 4.5277 12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1	12/2/2014	23:50:34	46.18	48.88	62.94	71.94	33.13	50.11	1	0	0	1	4.0652	5.2912
12/4/2014 20:42:04 46.06 48.20 61.48 72.39 29.75 49.66 1 0 0 1 3.6163 4.5802 11/30/2014 10:10:04 44.26 46.85 62.04 73.40 37.96 48.43 1 0 0 1 3.5727 5.1164 12/2/2014 10:48:34 45.61 48.20 62.83 73.06 30.76 49.89 1 0 0 1 3.5727 5.1164 12/1/2014 4:40:34 46.63 48.76 61.70 71.60 39.99 50.00 1 0 0 1 3.5727 4.353 11/30/2014 1:07:34 47.30 49.10 61.14 68.90 30.43 50.11 1 0 0 1 3.4533 4.7617 11/30/2014 18:49:34 45.28 47.64 63.39 74.08 37.29 49.44 1 0 0 1 3.4253 4.5277 12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1 <td>12/1/2014</td> <td>20:48:04</td> <td>47.19</td> <td>49.78</td> <td>62.60</td> <td>72.16</td> <td>37.18</td> <td>51.01</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>4.0492</td> <td>5.5738</td>	12/1/2014	20:48:04	47.19	49.78	62.60	72.16	37.18	51.01	1	0	0	1	4.0492	5.5738
11/30/201410:10:0444.2646.8562.0473.4037.9648.4310013.57275.116412/2/201410:48:3445.6148.2062.8373.0630.7649.8910013.53724.53312/1/20144:40:3446.6348.7661.7071.6039.9950.0010013.50764.385311/30/20141:07:3447.3049.1061.1468.9030.4350.1110013.45334.761711/30/201418:49:3445.2847.6463.3974.0837.2949.4410013.42534.527712/2/20140:20:0447.8649.3361.7068.6834.2549.7810013.41714.453312/1/20149:24:0448.2049.8962.6069.4645.2850.6810013.4084.531811/30/201416:50:3446.0648.7661.9370.8137.0650.3410013.3748.268712/2/201410:01:0447.0850.7962.1569.2438.5352.3610013.35114.358612/2/201418:55:3446.4048.6562.1571.4931.8950.0010013.26844.838912/2/201415:11:0448.4350.0	12/4/2014	20:42:04	46.06	48.20	61.48	72.39	29.75	49.66	1	0	0	1	3.6163	4.5802
12/2/2014 10:48:34 45.61 48.20 62.83 73.06 30.76 49.89 1 0 0 1 3.5372 4.53 12/1/2014 4:40:34 46.63 48.76 61.70 71.60 39.99 50.00 1 0 0 1 3.5372 4.3853 11/30/2014 1:07:34 47.30 49.10 61.14 68.90 30.43 50.11 1 0 0 1 3.4533 4.7617 11/30/2014 18:49:34 45.28 47.64 63.39 74.08 37.29 49.44 1 0 0 1 3.4553 4.5277 12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1 0 0 1 3.4171 4.4533 12/1/2014 9:24:04 48.20 49.89 62.60 69.46 45.28 50.68 1 0 0 1 3.408 4.5318 11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1	11/30/2014	10:10:04	44.26	46.85	62.04	73.40	37.96	48.43	1	0	0	1	3.5727	5.1164
12/1/2014 4:40:34 46.63 48.76 61.70 71.60 39.99 50.00 1 0 0 1 3.5076 4.3853 11/30/2014 1:07:34 47.30 49.10 61.14 68.90 30.43 50.11 1 0 0 1 3.4533 4.7617 11/30/2014 18:49:34 45.28 47.64 63.39 74.08 37.29 49.44 1 0 0 1 3.4533 4.5277 12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1 0 0 1 3.4171 4.4533 12/1/2014 9:24:04 48.20 49.89 62.60 69.46 45.28 50.68 1 0 0 1 3.408 4.5318 11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1 0 0 1 3.3734 8.2687 12/3/2014 10:01:04 47.08 50.79 62.15 69.24 38.53 52.36 1	12/2/2014	10:48:34	45.61	48.20	62.83	73.06	30.76	49.89	1	0	0	1	3.5372	4.53
11/30/2014 1:07:34 47.30 49.10 61.14 68.90 30.43 50.11 1 0 0 1 3.4533 4.7617 11/30/2014 18:49:34 45.28 47.64 63.39 74.08 37.29 49.44 1 0 0 1 3.4253 4.5277 12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1 0 0 1 3.4171 4.4533 12/1/2014 9:24:04 48.20 49.89 62.60 69.46 45.28 50.68 1 0 0 1 3.408 4.5318 11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1 0 0 1 3.408 4.5318 11/30/2014 10:01:04 47.08 50.79 62.15 69.24 38.53 52.36 1 0 0 1 3.3734 8.2687 12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 <td>12/1/2014</td> <td>4:40:34</td> <td>46.63</td> <td>48.76</td> <td>61.70</td> <td>71.60</td> <td>39.99</td> <td>50.00</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>3.5076</td> <td>4.3853</td>	12/1/2014	4:40:34	46.63	48.76	61.70	71.60	39.99	50.00	1	0	0	1	3.5076	4.3853
11/30/2014 18:49:34 45.28 47.64 63.39 74.08 37.29 49.44 1 0 0 1 3.4253 4.5277 12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1 0 0 1 3.4171 4.4533 12/1/2014 9:24:04 48.20 49.89 62.60 69.46 45.28 50.68 1 0 0 1 3.408 4.5318 11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1 0 0 1 3.3997 6.5494 12/3/2014 10:01:04 47.08 50.79 62.15 69.24 38.53 52.36 1 0 0 1 3.3734 8.2687 12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 0 0 1 3.3511 4.3586 12/4/2014 15:11:04 48.43 50.00 61.36 68.11 40.10 50.45 1 <td>11/30/2014</td> <td>1:07:34</td> <td>47.30</td> <td>49.10</td> <td>61.14</td> <td>68.90</td> <td>30.43</td> <td>50.11</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>3.4533</td> <td>4.7617</td>	11/30/2014	1:07:34	47.30	49.10	61.14	68.90	30.43	50.11	1	0	0	1	3.4533	4.7617
12/2/2014 0:20:04 47.86 49.33 61.70 68.68 34.25 49.78 1 0 0 1 3.4171 4.453 12/1/2014 9:24:04 48.20 49.89 62.60 69.46 45.28 50.68 1 0 0 1 3.408 4.5318 11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1 0 0 1 3.3997 6.5494 12/3/2014 10:10:04 47.08 50.79 62.15 69.24 38.53 52.36 1 0 0 1 3.3734 8.2687 12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 0 0 1 3.3511 4.3586 12/4/2014 15:11:04 48.43 50.00 61.36 68.11 40.10 50.45 1 0 0 1 3.268 4.8389 12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1	11/30/2014	18:49:34	45.28	47.64	63.39	74.08	37.29	49.44	1	0	0	1	3.4253	4.5277
12/1/2014 9:24:04 48.20 49.89 62.60 69.46 45.28 50.68 1 0 0 1 3.408 4.5318 11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1 0 0 1 3.3997 6.5494 12/3/2014 10:01:04 47.08 50.79 62.15 69.24 38.53 52.36 1 0 0 1 3.3734 8.2687 12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 0 0 1 3.3511 4.3586 12/4/2014 15:11:04 48.43 50.00 66.311 40.10 50.45 1 0 0 1 3.2684 4.8399 12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1 0 0 1 3.208 4.0913	12/2/2014	0:20:04	47.86	49.33	61.70	68.68	34.25	49.78	1	0	0	1	3.4171	4.453
11/30/2014 16:50:34 46.06 48.76 61.93 70.81 37.06 50.34 1 0 0 1 3.3997 6.5494 12/3/2014 10:01:04 47.08 50.79 62.15 69.24 38.53 52.36 1 0 0 1 3.3734 8.2687 12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 0 0 1 3.3511 4.3586 12/4/2014 15:11:04 48.43 50.00 68.11 40.10 50.45 1 0 0 1 3.2684 4.8389 12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1 0 0 1 3.208 4.0913	12/1/2014	9:24:04	48.20	49.89	62.60	69.46	45.28	50.68	1	0	0	1	3.408	4.5318
12/3/2014 10:01:04 47.08 50.79 62.15 69.24 38.53 52.36 1 0 0 1 3.3734 8.2687 12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 0 0 1 3.3511 4.3586 12/4/2014 15:11:04 48.43 50.00 61.36 68.11 40.10 50.45 1 0 0 1 3.2684 4.8389 12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1 0 0 1 3.208 4.0913	11/30/2014	16:50:34	46.06	48.76	61.93	70.81	37.06	50.34	1	0	0	1	3.3997	6.5494
12/2/2014 18:55:34 46.40 48.65 62.15 71.49 31.89 50.00 1 0 0 1 3.3511 4.3586 12/4/2014 15:11:04 48.43 50.00 61.36 68.11 40.10 50.45 1 0 0 1 3.2684 4.8389 12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1 0 0 1 3.208 4.0913	12/3/2014	10:01:04	47.08	50.79	62.15	69.24	38.53	52.36	1	0	0	1	3.3734	8.2687
12/4/2014 15:11:04 48.43 50.00 61.36 68.11 40.10 50.45 1 0 0 1 3.2684 4.8389 12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1 0 0 1 3.208 4.0913	12/2/2014	18:55:34	46.40	48.65	62.15	71.49	31.89	50.00	1	0	0	1	3.3511	4.3586
12/3/2014 21:20:04 46.74 39.65 63.39 88.59 39.09 37.40 1 0 0 1 3.208 4.0913	12/4/2014	15:11:04	48.43	50.00	61.36	68.11	40.10	50.45	1	0	0	1	3.2684	4.8389
	12/3/2014	21:20:04	46.74	39.65	63.39	88.59	39.09	37.40	1	0	0	1	3.208	4.0913

Sample of a client's system performance data

METHODS

Coefficient of Performance Rates:

- C.O.P. rates are strong indicators of a system's heat pump efficiency (Ozgener et al 2012)
- C.O.P. rates can be calculated for both heating and cooling processes (Hamilton 2013)
- Two components compose the COP
 - Heat supplied/removed (Q)
 - Work conducted by heat pump (W)
- Client C.O.P. rates were automatically calculated by the server

Hamilton 2013

Coefficient of Performance Formula

METHODS

HYPOTHESES

CONCLUSION

Coefficient of Performance Comparison:

- Actual C.O.P. values were compared to expected C.O.P. values
- Expected C.O.P. values obtained from heat exchanger manuals
- Deviation actual C.O.P. and expected C.O.P. calculated
- Percent Error is negative: system C.O.P. did not meet expectations
- Percent Error is positive: system
 C.O.P. exceeded expectations

Data:

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSION
--------------	----------------------	------------	---------	------------

Data:

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSION
--------------	----------------------	------------	---------	------------

Data:

System	Average C.O.P.	Average Temp. (F°)	Average Water Temp. (F°)	Expected C.O.P.	C.O.P. Deviation
<u>Alpha</u>	3.83368	30.967	47.84574	3.5	+9.534%
Bravo	4.40103	33.171	48.76398	4.5	-2.199%
<u>Charlie</u>	3.30874	30.653	49.17464	3.1	+6.734%
<u>Delta</u>	2.93247	23.369	46.06254	3.1	-5.404%
Seasonal System Performance Values (10/1/14 – 3/1/15)					

INTRODUCTION REVIEW OF

ATURE HYPC

HYPOTHESES

METHODS

Data Analysis Results:

- System with highest positive C.O.P. deviation: Alpha (open loop)
- System with most consistent performance: Charlie (closed loop)
- System with highest negative C.O.P. deviation: Delta (closed loop)
- System with highest average water temperature: Charlie (closed loop)
- System with lowest average water temperature: Delta (closed loop)

Sources of Error:

- Sample size (only four clients participated)
- Internal server errors
 - Possible errors in calculations of C.O.P. and variables
- Lack of knowledge regarding thermostat preferences
 - Desired temperature of client is unknown
- Terrain varied among the four locations
 - Possibility for difference in soil composition, temperature, etc.

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSION
--------------	----------------------	------------	---------	------------

Conclusions:

- Most efficient system: System Charlie
- System Charlie exceeded expectations every month throughout the study
- System Alpha most exceeded its expected C.O.P. rates, but it was not consistent
 - Exceeded expectations 60% of the time
 - When it did not exceed expectations, it fell short of them
- Therefore, in New York State it is more efficient to geothermally heat a suburban residence with a closed loop system than an open loop system, as they perform more consistently and are more likely to exceed/meet performance expectations

Acknowledgements:

- I would like to thank my parents for their continuous moral support
- I would like to thank my mentors, Lloyd Hamilton and Jefferson Tester for giving me the opportunity to conduct this research
- Last, but not least, I would like to thank my instructor Mr. Inglis for supporting me throughout my three years in the program

Lloyd Hamilton

Jefferson Tester

Mr. Inglis

INTRODUCTION	REVIEW OF LITERATURE	HYPOTHESES	METHODS	CONCLUSION
--------------	----------------------	------------	---------	------------

Bibliography:

- Axelsson, G., Bromley, C., Mongillo, M., Rybach, L., 2010. The Sustainability Task of the International Energy Agency's Geothermal Implementing Agreement, World Geothermal Congress, Bali, Indonesia.
- Ballard, Michael. "Research and Development Initiative: Geothermal Heat Pump." OGE ENERGY CORPORATION. (2009): n. page. Print.
- Florides, Georgios, and Soteris Kalogirou. "Ground Heat Exchangers—A Review of Systems, Models and Applications." Renewable Energy 32.15 (2007): 2461-478. Sciencedirect. Web. 14 Nov. 2014. http://www.sciencedirect.com/science/article/pii/S0960148107000092>.
- Hildigunnur Thorsteinsson and Tester, Jefferson. "Barriers and enablers to geothermal district heating system development in the United States." Energy Policy 38.2 (2010): 803-813. *ScienceDirect*. Web. January 6 2014.
- Lund, John, Derek Freeston, and Tonya Boyd. "Direct Utilization of Geothermal Energy 2010 Worldwide Review." Energy Policy 40. (2011): 159-180. *ScienceDirect*. Web. 3 Mar 2014.
- Dowlatabadi H, Hanova J. Strategic GHG reduction through the use of ground source heat pump technology. Environ Res Lett 2007;2:1-8
- Self S., Reddy B., Rosen M. "Geothermal heat pump systems: Status review and comparison with other heating options." Applied Energy 101. (2013): 341-348. *ScienceDirect*. Web. 14 Dec 2014.
- Hamilton L. "Geothermal Energy 101" (2013): n. page. Print.
- Wu R. Energy efficiency technologies air source heat pump vs. ground source heat pump. J Sust Dev 2009;2:14-23
- Kecebas, Ali. "Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application." Energy Conversion and Management 65. (2013): 546-556. ScienceDirect. Database. 20 Dec 2013. http://dx.doi.org/10.1016/j.enconman.2012.07.021
- Sveinbjornsson, Bjorn, and Sverrir Thorhallsson. "Drilling performance, injectivity and productivity of geothermal wells." Geothermics 50. (2014): 76-84. ScienceDirect. Database. 20 Dec 2013. http://dx.doi.org/10.1016/j.geothermics.2013.08.011>.
- Ozgener, Leyla. "Coefficient of performance (COP) analysis of geothermal district heating systems (GDHSs): Salihi GDHS case study." Renewable and Suitable Energy Reviews 16. (2012): 1330-1334. ScienceDirect. Database. 24 Feb 2015.
- http://geothermal.marin.org/geopresentation/sld119.htm
- http://www.epa.gov/sites/production/files/styles/large/public/2014-11/heat-pump-heating.png
- http://populationeducation.org/sites/default/files/geothermal_plant.png
- http://www.verdaegeothermal.com/data/uploads/Lloyd%20Hamilton_Head%20Shot.JPG
- https://jeff-tester.cbe.cornell.edu/images/people/jeff_tester.jpg