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Abstract

A comprehensive model of the plasma dynamics in MICF and how that translates
into the propulsive capability of the system was developed in this Phase I research effort.
Using the fundamentals of plasma physics, the time evolution of a fusion plasma
generated in a spherical pellet by an incident laser or particle beam is followed from
initiation to termination for the purpose of calculating that all important quantity known
as the “fusion gain factor Q”.  The higher the gain, the larger the energy content of the
plasma at the end of the burn, and the larger is the velocity of the plasma particles as they
emerge through the magnetic nozzle to produce the thrust.  The main feature that
distinguishes MICF from other inertial fusion systems is the self-generated magnetic field
that serves to thermally insulate the plasma from the metal shell that physically contains
it during the burn.  Such a field is shown to scale directly with the square root of the
plasma temperature and inversely with the spot diameter at the point of beam incidence,
and its decay time has a direct bearing on the plasma lifetime in the system.  The
confinement time is determined by the time it takes the shock wave, initiated at the inner
surface of the metal shell at the time of beam incidence, to traverse the thickness of this
shell.  Since the speed of sound varies directly with the square root of the temperature of
the medium and inversely with the square root of its density, its value in MICF is much
smaller than in “implosion-type” inertial fusion due to the larger atomic mass of the shell,
and its lower temperature that arises from the thermal insulation provided by the
magnetic field.  A set of coupled, time dependent particle and energy balance equations
for all species in a multi-region target that includes the core plasma, the partially ionized
fuel region separated from the core by the magnetic field, and a metal shell divided
appropriately into three regions is solved to generate the gain factor.  The solution
accounts for particle and energy transport across the magnetic field in both directions,
and for radiation transport from the core to the outer regions.  Particles and energy
diffusion across the field that includes classical and anomalous transport were
incorporated in the analysis where it is shown that mild turbulence results in large gains
that can be attributed to a more efficient fueling by this process.  Gains ranging from
several hundreds to several thousands are found to be feasible in MICF depending on the
target design and the incident energy.  A nanogram of antiprotons is shown to be
sufficient to ignite a typical MICF target and, in a propulsion system, this could generate
a specific impulse of about a million seconds and a thrust of more than 104 Newtons if a
rep rate of 10 Hertz is used.  These propulsive capabilities are considered crucial for
interstellar and some interplanetary missions.

An additional objective of the phase I research is the generation of data that can
be used in designing targets for the purpose of conducting experiments in a phase II work
plan that will validate the theory and analysis carried out in phase I.  With minor
modifications, the equations developed for a reactor can be used to predict the plasma
dynamics in a target with a fuel that generates little or no fusion energy, e.g., DD at a
relatively low temperature but capable of producing detectable magnetic fields upon
illumination by carefully chosen laser and/or particle beams such as energetic protons.  It
will also allow for measurements of confinement time and other relevant signatures such
as neutron production which can be sizable even at modest temperatures.  The eventual
utilization of antiprotons to produce meaningful plasma in MICF targets must await the
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construction of traps for these particles currently under development at NASA’s Marshall
Space Flight Center.

1.0 Introduction

1.1 Executive Summary

NASA’s challenges of interplanetary manned missions in the early part of the
next century along with robotic interstellar missions such as the so-called “precursor
mission” to the Oort Cloud at 10,000 AU in less than 50 years require propulsion systems
that can produce specific impulses in the 105 – 106 seconds range and thrusts in the tens
to hundreds of kilonewtons.  This automatically eliminates from consideration
conventional propulsion systems and some of the advanced concepts such as nuclear
thermal and gas core fission systems due to the small specific impulses they produce.
With pure antimatter annihilation propulsion still very far in the future, fusion reactions
with the next largest energy production per unit mass (~ 1014 J/kg) offer the most
promising approaches to this challenge.  Of particular interest is the antiproton-driven
Magnetically Insulated Inertial Confinement Fusion (MICF) Concept because of its
capability of meeting these demanding requirements and simultaneously lending itself to
a near-term development due to current understanding of its underlying physics
principles.

The Magnetically Insulated Inertial Confinement Fusion (MICF) Concept
combines the favorable aspects of both magnetic and inertial fusion in that physical
containment of the plasma is provided by a metallic shell such as tungsten or gold, while
its thermal energy is insulated from that shell by a self-generated magnetic field.  Fusion
reactions in this device can be triggered by laser or particle beams that enter the target
pellet through a hole to ablate the fuel-coated inner wall and form a hot plasma.  The
lifetime of such a plasma is dictated by the time it takes the shock wave initiated at the
time of beam incidence to traverse the shell’s thickness.  This is estimated to be typically
about 100 nanoseconds which is two orders of magnitude longer than “implosion” type
inertial fusion, and that translates into longer fusion burn and greater energy
multiplication.  In a propulsion system, it is envisioned that MICF pellets injected into a
reaction chamber will be zapped by a beam of antiprotons to initiate the fusion reactions
and subsequently allowing the reaction products to exhaust through a magnetic nozzle to
produce the desired thrust.  This study has shown on the basis of established plasma
physics laws that such a propulsion system has the capability of opening up revolutionary
NASA mission scenarios for future interplanetary and interstellar spacecraft.  The unique
features of this concept with regard to future space travel opportunities are:

• The ability to generate very large fusion energy gains that translate into specific
impulses on the order of a million seconds.

• The ability to capitalize on present day technology in the manufacture of fusion fuel-
coated targets currently used in inertial fusion research for terrestrial power.

• The flexibility in target design to meet specific mission requirements.  This can be
accomplished by varying the proportions of the fusion fuel and the metal shell to
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increase either the specific impulse or the thrust, i.e., to make the propulsion system a
variable specific impulse, variable thrust device.

• The potential of making a low mass, comparatively low cost system that can be run
by a small amount of antiprotons as opposed to massive and complicated laser drivers
or particle drivers that require larger accelerators.

• The ability to generate large thrusts (~ 104 – 105 Newtons) by careful selection of rep
rates which in turn could allow a 10,000 AU mission to be accomplished in less than
50 years.

Some assumptions were employed in the analysis carried out in phase I which
lead to the conclusions cited above.  They must, however, be validated through
experimentation to be proposed in phase II.  These include:

• Verification of the generation of large magnetic fields in MICF targets.
• The scaling of these fields with plasma properties, and with target and incident-beam

properties.
• Minimization of plasma loss through the hole through which the incident beam

enters.
• In the absence of availability of antiprotons in the near future, the response of these

targets to, say, proton beams of average energy of ~ 1 MeV.
• The degree and methods of focusing needed for such particle beams to enter the small

holes in the tiny pellets.
• Identification of the particle transport across the magnetic field within the pellet,

whether classical or anomalous, and the conditions that may enhance or inhibit each.
• Identification and/or discovery of unexpected phenomena that may impact the

propulsive capability and performance of an MICF propulsion system.

1.2 Background and Rational

In recent years, NASA has set a number of challenging and ambitious mission
goals for space exploration in the early part of the next century.  These include manned
missions to Mars in several months instead of several years, and some robotic interstellar
missions to 10,000 AU in less than 50 years.  As pointed out earlier, most of these
interplanetary and interstellar missions require propulsion systems that can deliver
specific impulses in the range of 105 – 106 seconds and thrusts in the tens to hundreds of
kilonewtons.  These are the very parameters that distinguish current from future
propulsion systems and as Fig. 1 reveals, that classification is a meaningful and an
informative one.  If one adopts a simply trajectory consisting of a continuous burn
acceleration/deceleration at a constant thrust for such missions, then it can be readily
shown from the standard non-relativistic rocket equation that the round trip time, τRT, can
be expressed(1) by

F

Dm
4

gI

D4 f

sp
RT +=τ        (1)
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where D is the one way distance between the travel points, g the earth’s gravitational
acceleration, mf the dry mass of the vehicle, F the thrust.  The inverse dependence of

Fig. 1: Specific Impulse vs. Jet Power for Different Propulsion Systems

travel time on Isp and F reveals dramatically the desirability of having both of these
parameters as large as possible and feasible.  Fig. 1 shows that present day chemical
propulsion is capable of producing large thrusts but at a modest Isp of about 450 seconds.
Moreover, a great deal of propellant is required to lift the propellant itself up thereby
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limiting the amount of payload that can be transported into space.  Solid core fission
rockets are capable of Isp ~ 1000 seconds only due to the temperature limitations of its
solid fuel elements.  They are, however, capable of generating large thrusts, but they also
must carry a great deal of propellant to compensate for the modest Isp.  The gas core
fission rocket avoids the temperature limitations of SCR by using the fissionable fuel in a
gaseous and indeed ionized form.  It has been theoretically predicted(2), however, that
such systems are capable of producing Isp’s of about 2000 – 3000 seconds but major
physics and engineering problems stand in the way of achieving these propulsive
capabilities.  It is also evident from Fig. 1 that next to the antimatter annihilation systems,
fusion (CTR) occupies the largest domain in the propulsion parameter space of Isp and jet
power (including thrust), and as we shall see, the MICF system falls well within the
shaded region identified as ICF or inertial confinement fusion.

2.0 Advanced Concept Description

2.1 Major Attributes of MICF

The effectiveness of MICF as a propulsion system resides with its ability to
generate large energy magnification through fusion reactions that translate into very large
particle escape velocities and correspondingly large specific impulses.  This appears to be
quite achievable in MICF pellets due to the presence of a large self-generated magnetic
field that serves to thermally insulate the plasma from the metal shell that physically
contains it.  When a laser or a particle beam enters the target through a small hole, as
depicted in Fig. 2, it ablates the fuel-coated inner wall not only at the spot of incidence
but throughout the region as a result of photon scattering during the illumination process.
If high enough energy is delivered by the incident beam, a hot plasma is created in the
core which can immediately begin to undergo fusion reactions and produce energy.  At
the time of beam incidence, a shock wave is also set up at the inner face of the metal shell
that begins instantly to traverse that medium outward.  Its velocity is dictated by the
density and the temperature of the shell, and the time it takes this sound wave to reach the
outer surface constitutes the confinement time of the plasma within.  This is estimated to
be about 100 nanoseconds which is two orders of magnitude larger than that of
implosion-type inertial fusion systems.  Because of this long confinement time, more
fusion reactions take place that result in greater magnification of the incident energy and
a hotter plasma at the end of the burn.  End of the burn is reached when the shock wave
reaches the outer surface of the metal shell at which time the physical integrity of the
pellet is no longer preserved and disassembly takes place.  As the analysis below will
show, energy gains ranging from several hundreds to a few thousands are achievable
depending on pellet design and incident energy.  This gain ultimately manifests itself in
very energetic particles that emerge through the magnetic nozzle of a reaction chamber
delivering ~ 106 seconds of specific impulse.
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2.2 Detailed Technical Analysis

A mathematical formulation of the plasma dynamics in MICF follows the time
evolution of the following sequence of events.  Initially, the target pellet will consist of a

Fig. 2: Schematic of (1) Plasma Formation and (2) Magnetic Field Formation in MICF

metallic outer shell of outer radius rmax, coated internally by a layer of solid fuel with a
central cavity of radius ro.  An incident beam ablates a portion of the fuel layer to form
the core plasma and probably leaves the remainder of the fuel layer in a vaporized,
partially ionized state.  This partially ionized fuel layer we call the “halo”.  The outer
radius of the halo is designated by r1.  Fig. 2(1) shows the three regions at a time when
the beam is illuminating the interior.
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By writing down a set of quasi one-dimensional time dependent balance equations
for the constituents of a deuterium-tritium (DT) plasma and an appropriate number of fast
alpha energy groups, we assess the reactor aspect of MICF by calculating the energy gain
factor Q and identifying the relevant parameters that could lead to its enhancement.  We
allow for classical and anomalous diffusion across the magnetic field for the hot core
plasma and the cooler plasma in the halo region and find that Q-values in the hundreds to
thousands are achievable if certain assumptions are made regarding initial plasma
parameters and refueling rates.

We assume that the hole through which the beam enters the pellet interior is small
enough so that the resulting plasma is effectively spherically symmetric.  The incident
beam may not deposit all of its energy at the point where it strikes the interior wall; some
of it may be reflected, but since the entry hole is small, it will remain within the cavity
and eventually be absorbed elsewhere on the wall.  Thus, we therefore assume that the
wall temperatures are also spherically symmetric.  Certainly, this symmetry should be
reasonable once the beam is turned off and the fusion plasma becomes the sole source of
energy for the system.  It will also be assumed that the plasma is nearly uniform in the
radial direction, with a sharp boundary where it meets the halo; the magnetic field is
assumed to be trapped in a narrow gap between those two regions.  We again assume that
the halo is uniform in density, temperature, and (partial) ionization fraction.  We treat the
metal shell as having three regions, each of which is inertially uniform: the innermost of
these is considered to be partially ionized; the second, which is bounded on its outer edge
by the propagating shock wave, is treated as un-ionized but with a density and
temperature which may vary with time; the third, outermost region is outside the shock
wave and is assumed to be unaffected by the events within.

2.3 Basic Equations and Analysis

We treat the core plasma region as having three thermalized species: fuel ions,
electrons, and alpha particles, plus an arbitrary number of fast alpha energy groups.  The
fuel ions have mass mf, density nf, and temperature Tf.  Similarly, the electrons have mass
me, density ne, and temperature Te, while the thermal alphas have mass mα, density nα,
and temperature Tα.  There are kmax fast alpha groups (also with mass mα).  For each
group maxkk1 ≤≤ , the density is nk and the energy is Ek.  The various energies Ek are

preset constants which do not vary with time; changes in the fast alpha energy
distribution are accomplished by varying the densities nk.

2.3.1 Fuel Ions
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In these equations, r is the radius of the plasma core, <σv>f is the velocity-
averaged fusion reaction cross section, Γf and Wf the particle and energy fluxes
respectively for fuel ions escaping from the plasma core, and Γr and Wr the particle and
energy fluxes for the refueling fuel ions which cross the magnetic field region to enter the
plasma core.  The quantity (nτ)ef is the energy exchange time constant for the electron-ion
interaction while (nτ)αf is the corresponding one for the interaction between thermal
alphas and fuel ions.  The rate at which the k-th fast alpha group loses energy to the fuel

ions is given by 
f

k

dt

dE

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


, and γ is the adiabatic constant whose value is taken to be 
3

5
.

2.3.2 Electrons
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In Eqs. (4) and (5), Γα is the particle flux for alpha particles escaping from the
plasma core.  Ere is the average energy of an electron which diffuses across the magnetic
field into the plasma core, while Ele is the average energy of an electron which diffuses
out of the core.  (nτ)αe is the energy exchange time constant for electrons interacting with

thermal alphas and 
e
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 the rate at which the k-th fast alpha group loses energy to the

electrons.  PBC is the bremsstrahlung radiation per unit volume from the core plasma
electrons.  Here we set Ere and Ele equal to the appropriate average electron energies, i.e.,
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2.3.3 Thermal Alphas
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In these last equations, Wα is the energy flux for thermal alphas diffusing out of

the core, and 
α



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dt

dE k  gives the rate at which the k-th fast alpha group gives up energy to

the thermal alphas.  Lmax is the rate at which alpha particles slow down out of the lowest
of the fast alpha energy groups and thus become part of the thermal alpha population.

The lower energy bound of this group is set to αT
2

3
 , and those alphas that cool down

below this energy are assumed to be thermalized.

2.3.4 Fast Alphas
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Here, Sk is the rate at which alpha particles enter the k-th group, and Lk is the rate
at which they leave it.   We explicitly assume that fast alphas slow down much more
rapidly than they diffuse out of the core, so that cross-field losses can be ignored during
the slowing down process.  For the first group (highest energy), S1 is the rate at which
high energy (3.5 MeV) alphas are produced by fusion, i.e.,

f

2
f1 vn

4

1
S σ=      (10)

The upper boundary of the k-th group is Ek-1, and the lower boundary is Ek.  We therefore
assume that
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Since alphas slowing down out of one group constitute the source for the next group, then

    max1kk kk2,LS ≤≤= −      (12)

Thus, if we solve the fast alpha equations in order from k = 1 to k = kmax, each pair of
Eqs. (8) and (9) has two unknowns, nk and Lk.  Typically, we choose kmax to be 10
originally.

2.3.5 Halo Region

The fuel ions and associated electrons which lie outside the central core, between
r and r1, constitute the halo.  This region can exchange ions (and energy) with the core
region by cross-field diffusion.  We assume, however (with perhaps some risk), that there
is no exchange of ions or energy with the metallic shell which lies outside the halo
region.  Thus, our halo equations can be written as
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where N1 is the density of fuel ions plus atoms in the halo region.  We assume that this
region contains only un-ionized fuel atoms, fuel ions, and electrons.  Since the atoms in
this region are only partially ionized, they have an effective charge Z1E which depends on
the temperature T1.  The quantity EZ1 represents a “latent heat” of ionization.  The terms
φ(r) and φ(r1) are the bremsstrahlung fluxes per unit area across r and r1 respectively.
Thus, the first term on the right hand side of the above equation represents the radiative
heating of the halo region.

2.3.6 Metallic Shell

We break up the metallic shell into three regions.  The innermost from r1 to r2 is
considered to be partially ionized, with an effective charge number Z2E.  This region has a
density (ions plus un-ionized atoms) N2 and a temperature T2.  For this region, the density
and energy equations are
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where EZ2 represents the “latent heat” of ionization for the material and the first term on
the right hand side represents the bremsstrahlung heating of this region.  Actually, we
would expect a continuous variation of Z2E and T2 with radius, with Z2E becoming zero
for sufficiently large radii.  For ease of calculation, however, we assume the temperature
to be constant over this region, and that the following region also has a constant
temperature, but no ionization.  The un-ionized metallic shell region extends from r2 to r3
and has a density N3 and temperature T3.  To keep the calculation manageable, we have
assumed that there is no flux of particles or energy across either of these borders.  For the
un-ionized region, the density and energy equations are
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The outer radius, r3, of this region is fixed at the shock wave, which moves with the local
speed of sound outward through the shell.  Thus, while we assume no movement of
matter or energy (except for bremsstrahlung radiation) across the boundary at r2, the
outward movement of the shock wave is constantly incorporating more material into the
un-ionized shell region.  The portion of the metallic shell outside r3 constitutes a third
shell region; however we do not provide any balance equations for this region.  Its only
effect on the inner regions comes through the temperature of the matter incorporated into
the 3 region via the motion of r3.  We assume that the density of this outer region is the
unperturbed solid Nsol, and that the temperature of the matter incorporated by the motion
of r3 is just T3 which is the temperature of the un-ionized region inside r3.  This latter
assumption may not be fully justified since the region below r3 is subject to adiabatic
compression heating as well as bremsstrahlung, while the region outside r3 is affected by
bremsstrahlung only.
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2.3.7 Bremsshrahlung Radiation

As we have indicated in the equations above, the bremsstrahlung emitted by the
hot core electrons may cause an appreciable ablation of the inner wall of the shell which
initially is composed of DT fuel in the solid state.  The rate at which bremsstrahlung

carries energy out of the core is BC
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In a planar geometry of a monoenergetic beam of photons, the energy flux can be
expressed by
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where hν is the energy per photon and Iν the beam intensity.  The absorption coefficient
Kν is given by(3)

         
ν
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
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 π=ν
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3

4
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where N is the ion density, T the electron temperature, and Z the ionic charge in the
absorbing medium.  The electron mass is denoted by me, its charge by e, and the speed of
light by c.  Using the following values

110

22
15

e
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18

scm1099793.2c

cmskeV
1.1836

10043937.1
amu

1.1836

1
m

keVcm1044.1e

skeV10135.4h

−

−

−

−

⋅×=

⋅⋅×==

⋅×=
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we obtain

( )
( )

1

32
1

23
48 cm

hT

NZ
106651.7K −−

ν
ν

×=      (22)

when N is given in cm-3 and both T and hν are expressed in keV.
If the incident bremsstrahlung is emitted by a plasma whose electrons have a

Maxwellian velocity distribution characterized by the temperature To, then the emitted
energy density Jν is given by(4)
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where N+ is the density of the ions, Zo the ionic charge, and N- the electron density in the
emitting plasma.  Setting N+ = No and N- = ZoNo, this becomes

  ( ) 




 ν−×= −
ν

o2
1

o

2
o

3
o32

T

h
exp

T

NZ
10253614.1J      (24)

where No is in cm-3 and To and hν are in keV.  If the plasma volume is Vo and the surface
area Ao since Jν is an energy density,

( ) ( )∫
∞

νν ν−=φ
0o

o dxKexpJ
A

V
x      (25)

The above equation has been derived for plane geometry; however, switching to spherical
geometry introduces very little change.  The spherical analogue is given by

         ( ) ( )[ ]∫
∞

νν ν−−=φ
0

12

3
o drrKexpJ
r3

r
r      (26)

If there is an absorber shell of thickness ∆1 in the region between ro and r1, characterized
by an absorption coefficient K1ν, and an absorber between r1 and r characterized by K2ν,
then one can show after some manipulation that we can write

( ) ( )α=φ PCr o      (27)

where
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     (30)

We have found that we can approximate the integral P(α) in (28) by the algebraic form

( ) ( )α−≅α 43.0e
D

1
P      (31)

where

  ( ) ( ) ( ) 32 065.0040.0924.0000.1D α+α+α+≡      (32)

This form is quite accurate for small α.  For large α, the relative error may be large, but
P(α) becomes so small that the absolute error is negligible for our purposes.

2.3.8 Partial Ionization

The degree of ionization in a material at thermal equilibrium depends on the
temperature of the material.  The Saha equation represents a commonly used approach to
describing how the ionization state varies with temperature.  We have approximated the
standard form of this equation(5) by ones that apply directly to the regions of interest in
MICF.  For example, when applied to the fuel ions with a single charge only, in the halo
region we let

        ( )yexp0.1Z E1 −−=      (33)

where

       
( )[ ]
( ) 4

9
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+=      (34)

and
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n
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x      (35)

Once Z1 has been calculated, the energy required to achieve that degree of ionization is
just

        ( ) 1
2

1Z Z1036.1E −×=      (36)



15

Similar formulas were deduced for tungsten whose Z2 = 74.  If we define the energy EZ0

required to completely ionize a tungsten atom as

keV387.277E 0Z =

then the energy needed to achieve the ionization state Z2E is



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









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1
0Z2Z E

y
exp0.1EE      (37)

where the parameter y1 is given by
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n108.1xI
0.1yIy      (38)

In this equation, y is a constant expressed in terms of the density and the
temperature of the region, and keV1098.7I 3

1
−×=  is the energy needed to strip away

the first electron from a tungsten atom, i.e., the energy required to form a singly-ionized
tungsten ion.  The above formulas can be applied to other heavy metals such as gold,
often considered for MICF targets but not necessarily with the same numerical factors.

2.3.9 Additional Relevant Formulas

Before any meaningful results can be obtained from the preceding equations,
several formulas must be supplied for a number of the quantities that appeared therein.  In
some cases, just the general formula will be listed keeping in mind that numerical values
will depend on the species involved including mass, charge, density, and temperature.

A. Fusion Cross Section

An excellent fit to the measured velocity averaged fusion cross section for DT is
given by(6)
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
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
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=σ

−

     (39)

This formula gives results which agree with the numerically tabulated values of Greene(7)

to within 2.7% for fuel temperatures between 1.0 and 500 keV.
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B. Energy Exchange Between Maxwellian Species

The time constant (nτ)ij for energy exchange between species i and j can be
expressed by the general formula(8)

( )
ij
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which in the case of alpha-fuel ion interaction, for example, assumes the form
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where the Coulomb logarithm term contains(9)

      ( )
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α      (42)

C. Fast Alpha Slowing Down

The energy loss per unit time when a fast alpha slows down in an ion (including
thermal alphas) whose thermal velocity is much smaller than the velocity of the incident
alpha can be written as(8)

   j
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while for fast alpha slowing down on electrons whose thermal velocity is still generally
greater than the fast alpha velocity the result is
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where
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e
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Similar formulas can be written with the appropriate constants from Eq. (43) for the
interactions with the fuel ions and thermal alphas.

D. Pressure Gradients

We readily obtain the pressure gradient within a given region as ΣnT summed
over the species (including electrons) present in the region.  However, since a pressure is
assumed to apply everywhere within its region, we would obtain infinite pressure
gradients at the boundaries between regions.  To get around this problem, we assume a
form for the pressure dependence upon radius, which can then be fitted to the pressures in
tow adjacent regions to provide the pressure and pressure gradient at the boundary.  Since
the pressure in adjacent regions often differ by several orders of magnitude, we choose a
logarithmic relationship

2
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1 Pln
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brr
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rbr
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
 −+

=      (46)

where the first region extends from ro to r1, the second region goes from r1 to r2, and the
parameter b is the “inverse average” of the thickness of the two regions, i.e.,
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Setting r = r1 in Eq. (46) it yields

            21PPP =      (48)

        





=
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P
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r
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     (49)

This pressure gradient is used in the calculation of the diffusion across the magnetic field,
and also in the calculation of the various shell boundaries.

E. Diffusion Across the Magnetic Field

It seems likely that diffusion across the magnetic field will obey the classical
diffusion law for which the following formulas have been obtained and adapted to the
MICF scheme(10).  A Bohm diffusion term(11) has also been included for completeness so
that we can write using subscript “C” to denote classical and subscript “B” to denote
Bohm:

           ( ) BBohmCBohm CC1 Γ+Γ−=Γ      (50)
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         ( ) BBohmCBohm WCWC1W +−=      (51)

where ΓC and WC are the classical fluxes and ΓB and WB the Bohm fluxes and CBohm an
arbitrary constant.  The classical diffusion coefficient includes the product of the “step
size” in a random walk across the field and a collision frequency.  The step size is the
Larmor radius while the collision frequency should include collisions with all the species
in the region.  The Bohm diffusion is identified with plasma turbulence instability
associated with density and/or temperature gradients and its coefficient has the form

( )
B

T
1025.6

eB16

T
D 5

B ×==      (52)

where e is the electronic charge, and B the strength of the magnetic field.  Noting that for
charge neutrality,

αΓ+Γ=Γ 2fe      (53)

the particle and energy fluxes via Bohm diffusion can be written as
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For the classical diffusion of fuel ions across the magnetic field into the core plasma, we
use the basic diffusion formula keeping in mind that collisions in this region are only
with the electrons since no alphas are created there or
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In this equation, the quantities ne and Te do not have the same meaning as in the other
equations cited so far.  Te is this case refers to the temperature of the electrons in the halo
region between r1 and r which is not equal to the temperature of the core plasma
electrons.  The electron density ne should be equal to nr, the density of the fuel ions in the
halo region rather than the density of the core plasma electrons.  For the density gradient
in the halo region, we use

         

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∂
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
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rr
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     (59)

where 
r

P

∂
∂

 is calculated from Eq. (49).

2.3.10 Expansion Rates

The advantage of Magnetically Insulated Inertial Confinement Fusion is that the
expansion of the plasma core is inhibited by the presence of a solid outer shell.  As the
plasma attempts to expand, it pushes on the halo, which is compressed and in turn pushes
on the metallic shell.  The various metallic shell regions are similarly compressed and
exert pressure on the regions outside themselves.  Thus a pressure (shock) wave is set up
which propagates outward at the local speed of sound.  The speed of this shock wave,
assuming there is negligible back pressure outside the shock wave is given by
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== −      (60)

where ms is the mass of a metal ion in the shell.  The shock speed is a function of the
local temperature; we like this temperature to be that of the preceding metallic shell
region since we have no other evaluation of the temperature in the boundary zone.  Once
the shock wave reaches the outer limit (rmax) of the metallic shell, we assume that the
physical integrity is lost so that further expansion is purely inertial and the fusion reaction
is rapidly quenched.  Hence the calculations cease when r3 = rmax.

The expansion speed of each of the inner boundaries is found from a momentum
balance equation of the form

      ( )Pr
dr

d

r

1

dt

du
mN 2

2
−=      (61)

The pressure gradients are obtained using Eqs. (49) and (57).  The mass m and density N
should be those of the boundary region.  Since these are undefined, we take the quantity
mN to be the average mass times density products in the two adjacent regions.  We
therefore have
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with explicit expression for 
dt

du1 and 
dt

du 2 .  If the gradient 
( )

r

Pr 2

∂
∂

 is positive, the velocity

derivative 
dt

du
 is negative.  Should this condition hold for a sufficiently long time, it is

possible for the speed to become negative.  In our simulation, this does in fact occur and
is critical for the generation of a significant amount of fusion power.  Were it not for the
requirement that

321 rrrr <<<      (63)

combined with the limitation on 
dt

dr3  given by Eq. (60), this compression of plasma

would not occur and our gains Q would be quite modest.  Since we are assuming no
energy transport across the boundaries r1 and r2 except for the bremsstrahlung, this
radiation may play an important role in slowing down the expansion of the core and
increasing Q.

2.3.11 Alpha Source

We recall that the source term for the thermal alphas is Lmax.  The last (kmax) fast
alpha group is treated somewhat differently from the others, so that some further
discussion is warranted.  Unlike the other fast alpha groups, the lower energy boundary

for this group is not a preset number but instead is set equal to αT
2

3
.  Thus,
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Unlike the other groups, this average energy is not a constant, but has the derivative

        
dt

dT

4

3

dt

Ed maxk α=      (65)

This additional factor must be kept in mind in solving Eq. (9) for Lkmax.
In the course of a calculation, it may happen that Tα rises sufficiently to make

1maxkET
2

3
−α ≥ .  Since we would get into a serious computational difficulty if Ekmax were

allowed to approach too close to 1maxkE − , we must merge the kmax fast alpha group with
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the (kmax – 1) group when the energy difference ( )maxk1maxk EE −− becomes small.  This of

course reduces kmax by one.  We would not have this problem if we made 1maxk − large

enough that it always remains well above αT
2

3
, but such a procedure would reduce to

some extent the accuracy of the solution.

2.3.12 Stability Considerations

Although no attempt was made to carry out an exhaustive study of the stability
problem in MICF, we have identified the most likely modes and assessed their impact on
the energy multiplication capability of the system.  Numerical simulations(12) have shown
that while the density increases outward from the center towards the halo region, the
temperature drops over the same distance, allowing the pressure to remain nearly
constant, i.e., 0P =∇ .  The plasma pressure remains constant also in the halo region,
while the jump in its value occurs across the magnetic field that separates the two
regions.

The stability of a high beta (ratio of plasma pressure to magnetic field pressure)
plasma with gradients in density, temperature, and magnetic field has been examined by
Aydemir, et al(13), who have shown that the two important parameters are
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With 21+<τ  as it is in MICF, the finite Larmor radius (FLR) modes are stable when

δ < 0, while the zero Larmor radius (ZLR) modes are stable when 
τ+

>δ
1

5.0
.  In MICF,

the FLR modes are stable since 1−≅δ , while the ZLR modes may not be stable.
However, upon close examination, it appears that neither of these modes is likely to occur
in MICF, or if they do, they constitute at best very weak instabilities.  This is so because
the magnetic field gradient in the region of interest is zero (i.e., δ = 0) since the field
variation follows that of the plasma pressure, and as we have already noted, 0P =∇ .

This clearly leaves those modes that can arise in a high beta plasma with 0P =∇ ,
situated in a constant magnetic field.  This instability has been studied by
Mikhailovski(14), and is characterized by the frequency
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where ωr is the drift frequency.  Such an instability gives rise to ambipolar diffusion
characterized by the coefficient

         r2 3

2
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D ω=γγ=

⊥

     (68)
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where the perpendicular wave length 1k −
⊥  is set approximately equal to the plasma radius.

We label such a diffusion as “modified Bohm” since we have already used the
conventional Bohm diffusion to represent the anomalous transport in some of the cases
we have examined.  Conventional Bohm is generally associated with collisionless,
magnetized plasma and its adaptability to MICF plasma may be questionable since the
plasma in this case is likely to be highly collisional.  Nevertheless, the use of
conventional Bohm is perhaps justified to dramatize the impact of anomalous transport
and associated turbulence on the performance of MICF.  As we shall note shortly, the
modified Bohm can result in Q-values exceeding a thousand, re-affirming the notion that
such transport can lead to a more efficient fueling of the hot plasma without degrading its
temperature.

3.0 Calculations Procedure and Results

3.1 Calculations Procedure

A large number of computational runs were made in order to produce a
comprehensive parameter study of the MICF system for potential utilization in space
propulsion.  For each run, the initial density, temperature, and radius of the hot plasma
core species are specified.  While the initial temperatures of the core electrons and ions
may each be specified separately, for most of these runs the two were set equal.  The
thermal alpha temperature was always set equal to that of the core fuel ions, while the
densities of thermal alphas and fast alpha groups were set to achieve an appropriate
equilibrium in the slowing down process.  In addition, the initial density and temperature
for the halo, “ionized” metallic shell, and “un-ionized” metallic shell regions were
specified, as were the boundary radii.  Judging by the trends displayed by the governing
equations, it was not necessary to start the halo and metallic temperatures too low.  The
inner edge of each of these regions should become quite hot almost instantaneously.  We,
therefore, chose to set the initial halo temperature keV10.0T1 = and the initial metallic

shell temperatures keV01.0TT 32 == and these choices appeared to be reasonable.

The shock wave velocity u3 is calculated while the other velocities are guessed at,
but after a few iterations, these velocities settle down to their proper values.  While the
specified values for ro, the initial cavity radius, and r1, the initial other radius of the solid
fuel, are design parameters, the value of r2 of the boundary between the “ionized” and
“un-ionized” metal is arbitrary, but its selection was guided once again by equations and
known values of densities, etc.  We set the shock wave position r3 a small distance
beyond r2 initially, since it should be located in the non-ionized metal, but initially should
be just outside the ionized region.

The time-dependent differential equations are then solved to obtain the various
densities, temperatures, radii, and velocities for each time step until the calculation is
halted.  We end the calculation when the shock wave reaches rmax, the specified radius of
the metallic shell.  At this point, presumably the physical integrity of the metallic shell is
lost; from then on the expansion of the plasma core becomes purely inertial so that the
plasma rapidly dissipates and cools, quenching the fusion reaction.  Since our equations
do not have this loss of physical integrity built in, we use the arbitrary cut-off on plasma
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radius in its place.  For some runs, the shock wave never reaches rmax, since we also halt
the computation if the plasma ion temperature in the core drops below keV50.0 .  Below

this temperature, the fusion cross section 
f

vσ  is so small that there seems little chance

of enough fusion energy being generated to re-heat the plasma and the gain Q is no
longer changing appreciably with time.

3.2 Results

It appears that for most parameter ranges, the gain Q is considerably larger if the
diffusion is classical than if it is anomalous (Bohm).  Fig. 3 shows a typical result; over
much of the range Q is an order of magnitude larger for classical diffusion than for Bohm
diffusion.  However, while the anomalous diffusion exemplified by Bohm appears to give
a lower gain than does the classical, the “modified Bohm” addressed in the section on
stability appears to provide higher gain than classical.  Fig. 4 shows the gains obtained
for the same pellet and initial density as in Fig. 3.  Note that the gains in Fig. 4 are about
an order of magnitude higher than the classical diffusion of Fig. 3, and almost two orders
higher than the Bohm results reaching a high value of Q = 2623 at Ein = 1.15 MJ.  The
high gain regime in Fig. 4 thus also extends downward farther than those of Fig. 3, which
dropped rapidly below 2.6 MJ.

Fig. 3: Gain Q vs. Input Energy Ein. B = 100 T, N = 5x1021 cm-3, ro = 0.15 cm,
rf = 0.18 cm, rmax = 0.6 cm.
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Fig. 4: Gain Q vs. Input Energy Ein for Modified Bohm Diffusion.
Initial N = 5x1021 cm-3, ro = 0.15 cm, rf = 0.18 cm, rmax = 0.6 cm.

Fig. 3 also demonstrates the typical behavior of the results as the input energy Ein

is varied.  The gain generally increased as Ein decreased, although this behavior is not
completely monotonic.  However, there seems to exist a “cut-off” input energy below
which Q becomes extremely small.  This behavior is shown again in Fig. 5, which is for a
smaller pellet (0.6 cm outer radius instead of 1.0 cm) but otherwise similar parameters.
The maximum gains possible with this smaller pellet are somewhat lower in the case of
classical diffusion, though roughly comparable in the case of Bohm diffusion, but away
from the cut-off energy seem to be comparable in both cases.  The major difference to be
noted between Figs. 3 and 5 is the range of Ein in each.  For the larger pellet (Fig. 3), the
cut-off energy is about 2.5 MJ, while for the smaller pellet (Fig. 5), the cut-off energy
occurs at 0.6 MJ for Bohm diffusion, and 0.7 for classical.
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Fig. 5: Gain Q vs. Input Energy Ein. B = 100 T, N = 5x1021 cm-3, ro = 0.15 cm,
rf = 0.18 cm, rmax = 0.6 cm.

During a single run, the typical behavior is that the fuel ion temperature Tf

initially drops while the density Nf increases.  This latter effect is due to a more rapid
diffusion into the core from the cool, dense halo then outward from the hot, diffuse core
plasma.  In those cases where the gain Q remains small, the temperature plunges so low
that there is little fusion energy produced.  If, however, the initial temperature and density
were large enough, Tf goes through a minimum and begins to rise again.  If this
temperature can be maintained for a long enough period, an appreciable amount of fusion
occurs and Q becomes quite large.  Fig. 6 shows such a behavior; Tf rises to 227 keV and
drops off very slowly beyond, falling to 74 keV at 100 ns when the shock wave reaches
the wall.  Most of the fusion energy was produced during the period when the pressure P
was high; the gain at 24 ns was Q = 259, while the final gain (at 100 ns) was Q = 303.
Thus, while we have specified an outer radius rmax for the shell of 1.0 cm, the gain would
be almost as large if the radius was rmax = 0.4 cm, the shock wave radius at 24 ns.

The diffusion process plays a very important role in determining the temperature
behavior.  A net influx of fuel ions is helpful to the fusion process in that it builds up the
density; since the fusion rate is proportional to the square of the density, this build-up can
increase Q quite significantly.  However, the incoming ions are much cooler than those of
the central core, so that a high inward flux tends to cool the core.  In the neighborhood of
5 keV and lower, the drop off in 

f
vσ  with decreasing temperature becomes quite sharp,

so that the increase in density may well be offset by the decrease in 
f

vσ .  The

turnaround in fuel ion temperature shown in Fig. 6 occurred only after the halo had been
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Fig. 6: Fuel Properties vs. Time for Ein = 4.033 MJ.  B = 100 T, ro = 0.25 cm,
N = 5x1021 cm-3, To = 20 keV

almost completely depleted (at 3.0 ns).  In Fig. 7, we see that the radius r of the core
increased for small times, while the outer radius r1 of the halo remained virtually constant
until r1 – r became very small.  From that point onward, r1 and r necessarily go in step
since we consider the halo to be depleted and arbitrarily set

dt

du

r

r

dt

du 11 =

Under our assumptions, at that point the fluxes into and out of the core become zero.
While we might expect metallic shell ions to begin flowing into the core at that point
their large charge number may serve to inhibit such incoming flux sufficiently for our
assumption to be reasonably justified.

A typical behavior is seen in Fig. 7 where the plasma core contracts shortly after
the depletion of the halo, reaching a minimum in this case near 18 ns, just about where
the pressure maximum occurs.  Meanwhile, r2, the outer radius of the ionized metal, and
r3, the shock wave position, are increasing monotonically.  The result is the Q plot as a
function of time shown in Fig. 8.  We observe that most of the gain occurs during the
“compression” phase of the core plasma behavior.
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Fig. 7: Radii r, r1, r2, and r3 vs. Time for Ein = 4.033 MJ.  B = 100 T,
N = 5x1021 cm-3, To = 20 keV, Classical Diffusion.

Since diffusion plays such an important role in determining the gain for an MICF
reactor, it is not surprising that our assumption for the value of the magnetic field
strongly affects the results.  For most of our runs, we have used the value of 100 tesla.
One set of runs done with various magnetic field values suggests that this may be near the
optimum value.  Fig. 9 shows Q falling off rather rapidly for small fields, and also falling,
if less precipitously, as the field increases above 100 tesla.

The cut-off gain Q also scales with ro up to almost ro = 0.3 cm for classical
diffusion; for Bohm diffusion, however, Q falls slightly as ro increases.  On the whole,
since achieving the indicated input energies is likely to be one of the major challenges for
MICF, it appears that the smaller the pellet, the better off we will be.  The initial guess
for the plasma density No appears to have relatively little effect on the results for
densities in the range 21

o
21 105N105.1 ×≤≤× , although there are indications that still

higher densities may produce higher Q for lower input energy.  Fig. 11 shows the results
from one set of runs for classical diffusion with an initial cavity radius of 0.25 cm, and an
outer radius of rmax = 1.0 cm.  No runs were made for initial densities between 21105×
and 22100.1 ×  so the straight lines in this region simply indicate insufficient data.
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Fig. 8: Gain Q vs. Time for Ein = 4.033 MJ.  B = 100 T, N = 5x1021 cm-3,
To = 20 keV, Classical Diffusion

4.0 Application to Propulsion

To assess the effectiveness of MICF as a propulsion system, we choose a pellet
design such as that given in Fig. 5, namely one with ro = 0.15 cm, rf = 0.18 cm, and
rmax 0.6 cm.  We envisage a propulsion system as depicted in Fig. 12 where MICF pellets
are injected into a reactor chamber where they are zapped by a beam of antiprotons ( )p
and exhausted from the chamber via a magnetic nozzle which is an integral part of an
external magnetic field that also serves to cushion the chamber walls from the shock of
the microexplosions.  We choose a modest rep rate (ω) of 10 Hertz so that the thrust
produced by the system can be written as

     eT vmF ω=      (69)

where mT is the mass of the pellet and ve the exhaust velocity of the pellet as it emerges
from the nozzle, which occurs at the end of the burn.  At that point (i.e., when the shock
wave within the pellet has reached the outer metal surface), physical integrity of the
pellet is no longer preserved and disassembly might take place, i.e., the pellet would
perhaps be a collection of debris, but for simplicity we assume that the pellet remains
intact as it comes out of the nozzle.  In order to calculate ve, we must first determine the
energy content of the pellet at the end of the burn.  We assume the “modified Bohm”
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Fig. 9: Gain Q vs. Magnetic Field B.  Ein = 4.907 MJ, N = 5x1021 cm-3,
ro = 0.25, rf = 0.3, rmax = 1 cm.

Fig. 10: Cut-off Input Energy Ein and Gain Q vs. Initial Cavity Radius ro.
B = 100 T, No = 5x1021 cm-3.

diffusion during the burn and, if we apply that scaling to the pellet in question, we find
that at Ein of 2 MJ the Q-value is about 900, giving an energy output of 1800 MJ.  For the
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pellet in question, the mass can be readily calculated to be 3.42 gm, and this yields

s

m
1003.1v 6

e ×= .  This, of course, gives rise to s1003.1I 5
sp ×≈  which is well within

the range displayed in Fig. 1.  From Eq. (69), we find that the thrust generated by the
system at ω = 10 to be N10523.3F 4×= .

Fig. 11: Cut-off Input Energy Ein and Gain Q vs. Initial Plasma Density No.  B = 100 T,
Initial cavity radius ro = 0.25 cm.

As a first application to the MICF propulsion, we consider the one-way robotic
mission to the Oort Cloud at 10,000 AU, a mission considered by NASA as a precursor to
a mission to the nearest star, Alpha Centauri.  From the standard non-relativistic rocket
equation, it can be shown for a fly-by mission that the travel time tf, and the distance sf

are given by(15)
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Fig. 12: MICF Fusion Propulsion System.
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where im  and mf are the initial and final (dry) vehicle masses respectively, and vf the
velocity of the vehicle when it reaches its destination assuming it started from rest.  Some
design of the propulsion system is required in order to make use of the above equations



32

and for that we choose a design for a laser-driven inertial fusion rocket(16) but without the
laser driver.  The assumption being that an antiproton-driven system will be significantly
less massive than a laser-driven one, and as a result, we estimate the dry mass of the
vehicle to be 220 metric tons (mT).  Clearly, this aspect of the analysis is subject to
further investigation and detailed study which is beyond the scope of this work.
Nonetheless, this choice of mf appears to be reasonable and would allow a meaningful
assessment of MICF as a propulsion system.  Substituting these quantities into Eqs. (70)
and (71), we find that the fly-by mission to 10,000 AU takes 47 years with the pellet
design described above, and requires 166 gms of antiprotons to accomplish such a
mission.  Clearly, a more optimum design might yield significantly better results!

For the second propulsion example, we consider a round trip mission to Jupiter, a
somewhat distant planet in the solar system.  Using a continuous burn acceleration /
deceleration type of trajectory at constant thrust, the travel time is given by Eq. (1) or

      
F

Dm
4

v

D4 f

e
RT +=τ      (73)

where, in this case, D denotes the linear distance from Earth to Jupiter which is
m1029.6 11× .  When the values of ve, mf, and F given earlier are inserted in this

equation, the result is 120 days, and the amount of antiprotons required is 1.16 gm.
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