
ANTLR

#antlr

Table of Contents

About 1

Chapter 1: Getting started with ANTLR 2

Remarks 2

Versions 2

Examples 3

Hello world 3

Chapter 2: ANTLR Targets/Language Runtimes 5

Examples 5

Language Support 5

Python parser setup 6

Chapter 3: Introduction to ANTLR v3 8

Examples 8

Installation and Setup 8

How To Install ANTLR in Eclipse 8

Chapter 4: Introduction to ANTLR v4 10

Remarks 10

Examples 10

Installing for Command Line Use 10

Installing Using Build Automation tools 11

Install in Eclipse and Build Hello World 11

Installing ANTLR in Visual Studio 2015 (using Nuget) 13

Test if everything works 14

Chapter 5: Lexer rules in v4 17

Examples 17

Simple rules 17

Fragments 17

Implicit lexer rules 18

Priority rules 18

Lexer commands 19

Actions and semantic predicates 20

Chapter 6: Listeners 21

Examples 21

Listener Events Using Labels 21

Chapter 7: TestRig / grun 22

Examples 22

Setup TestRig 22

Accessing TestRig 22

Build Grammar with Visual Parse Tree 23

Chapter 8: Visitors 26

Introduction 26

Examples 26

Example 26

Credits 28

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: antlr

It is an unofficial and free ANTLR ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ANTLR.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/antlr
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ANTLR

Remarks

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading,
processing, executing, or translating structured text or binary files. It's widely used to build
languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can build
and walk parse trees.

Official antlr website (always points to the latest version)•

Antlr Versions
Antlr is separated in two big parts, the grammar (grammar files) and the generated code files,
which derive from the grammar based on target language. The antlr versions are in the format of
V1.V2.V3 :

V1: Change in V1 means that new syntax of features were introduced in grammar files•
V2: Change in V2 means that new features or major fixes were introduced in the generated
files (e.g addition of new functions)

•

V3: stands for bug fixes or minor improvements•

Runtime Libraries and Code Generation Targets
The Antlr tool is written in Java, however it is able to generate parsers and lexers in various
languages. To run the parser and lexer you will also need having the runtime library of antlr
alongside with the parser and lexer code. The supported target language (and runtime libraries)
are the following:

Java•

C#•

Python (2 and 3)•

JavaScript•

Versions

Version Release Date

2.0 1997-05-01

3.0 2011-01-19

4.0 2013-01-21

4.1 2013-07-01

https://riptutorial.com/ 2

http://www.antlr.org/

Version Release Date

4.2 2014-02-05

4.2.1 2014-03-25

4.2.2 2014-04-07

4.3 2014-06-19

4.4 2014-07-16

4.5 2015-01-23

4.5.1 2016-07-16

4.5.2 2016-01-30

4.5.3 2016-03-31

4.6 2016-12-15

4.7 2017-03-30

Examples

Hello world

A simple hello world grammar can be found here:

// define a grammar called Hello
grammar Hello;
r : 'hello' ID;
ID : [a-z]+ ;
WS : [\t\r\n]+ -> skip ;

To build this .g4 sample you can run the following command from your operating systems
terminal/command-line:

Java -jar antlr-4.5.3-complete.jar Hello.g4

//OR if you have setup an alias or use the recommended batch file

antlr4 Hello.g4

Building this example should result in the following output in the Hello.g4 file directory:

Hello.tokens1.
HelloBaseListener.java2.
HelloLexer.java3.

https://riptutorial.com/ 3

https://gist.github.com/mattmcd/5425206

HelloLexer.tokens4.
HelloListener.java5.
HelloParser.java6.

When using these files in your own project be sure to include the ANTLR jar file. To compile all of
these files using Java, in the same operating directory or by path run the following command:

javac *.java

Read Getting started with ANTLR online: https://riptutorial.com/antlr/topic/4453/getting-started-
with-antlr

https://riptutorial.com/ 4

https://riptutorial.com/antlr/topic/4453/getting-started-with-antlr
https://riptutorial.com/antlr/topic/4453/getting-started-with-antlr

Chapter 2: ANTLR Targets/Language
Runtimes

Examples

Language Support

ANTLR is capable of generating parsers for a number of programming languages:

C# Target1.
Python Target2.
JavaScript Target3.
Java Target4.

By default ANTLR will generate a parser from commandline in the Java programming language :

Java -jar antlr-4.5.3-complete.jar yourGrammar.g4 //Will output a
 java parser

To change the target language you can run the following command from the OS
terminal/commandline:

 antlr4 -Dlanguage=Python3 yourGrammar.g4
//with alias
 java -jar antlr-4.5.3-complete.jar -Dlanguage=Python3 yourGrammar.g4
//without alias

Rather than use the '-Dlanguage' parameter on the commandline/terminal each time to build your
desired parser for a specific language you can select the target from within your .g4 grammar file
by including the target within the global section:

options {
 language = "CSharp";
}
//or
options {
 language="Python";
}

To use the generated parser output make sure you have the ANTLR runtime for the specified
language :

CSharp runtime1.
Python 2 runtime2.
python 3 runtime3.

Full instructions and information on ANTLR run-times libraries

https://riptutorial.com/ 5

http://www.antlr.org/download/antlr-csharp-runtime-4.5.3.zip
https://pypi.python.org/pypi/antlr4-python2-runtime
https://pypi.python.org/pypi/antlr4-python3-runtime
http://www.antlr.org/download.html

Python parser setup

After running your grammar .g4 file with ANTLR.jar you should have a number of files generated
such as :

1.yourGrammarNameListener.py
2.yourGrammarNameParser.py
3.yourGrammarName.tokens
...

To use these in a python project include the Python runtime in your workspace so any application
you are developing can access the ANTLR library. This can be done by extracting the runtime into
your current project folder or importing it within your IDE into your project dependencies.

#main.py
import yourGrammarNameParser
import sys

#main method and entry point of application

def main(argv):
 """Main method calling a single debugger for an input script"""
 parser = yourGrammarNameParser
 parser.parse(argv)

if __name__ == '__main__':
 main(sys.argv)

This setup includes your parser and accepts input from commandline to allow processing of a file
passed as a parameter.

#yourGrammarNameParser.py
from yourGrammarNameLexer import yourGrammarNameLexer
from yourGrammarNameListener import yourGrammarNameListener
from yourGrammarNameParser import yourGrammarNameParser
from antlr4 import *
import sys

class yourGrammarNameParser(object):
 """
 Debugger class - accepts a single input script and processes
 all subsequent requirements
 """
def __init__(self): # this method creates the class object.
 pass

#function used to parse an input file
def parse(argv):
 if len(sys.argv) > 1:
 input = FileStream(argv[1]) #read the first argument as a filestream
 lexer = yourGrammarNameLexer(input) #call your lexer
 stream = CommonTokenStream(lexer)
 parser = yourGrammarNameParser(stream)
 tree = parser.program() #start from the parser rule, however should be changed to your
entry rule for your specific grammar.

https://riptutorial.com/ 6

 printer = yourGrammarNameListener(tree,input)
 walker = ParseTreeWalker()
 walker.walk(printer, tree)
 else:
 print('Error : Expected a valid file')

These files coupled with the ANTLR runtime and your files generated from your grammar file will
accept a single filename as an argument and read and parse your grammar rules.

To extend the basic functionality you should also expand on the default listener to handle relevant
events for tokens that are encountered during runtime.

Read ANTLR Targets/Language Runtimes online: https://riptutorial.com/antlr/topic/3414/antlr-
targets-language-runtimes

https://riptutorial.com/ 7

https://riptutorial.com/antlr/topic/3414/antlr-targets-language-runtimes
https://riptutorial.com/antlr/topic/3414/antlr-targets-language-runtimes

Chapter 3: Introduction to ANTLR v3

Examples

Installation and Setup

How To Install ANTLR in Eclipse

(Last tested on Indigo and ANTLR IDE 2.1.2)

Install Eclipse.1.
Download ANTLR complete binaries jar that includes ANTLR v2. Extract to a temp directory.
Copy the antlr-n.n folder to an appropriate permanent location, for example the same folder
that Eclipse is installed in.

2.

Add ANTLR IDE update site to Eclipse.
In Eclipse, click on Help and select Install New Software.•
Click Add… button.•
In the Add Repository window, for Location type
http://antlrv3ide.sourceforge.net/updates and type something like ANTLR IDE for the
Name and click OK to get back to the Available Software window.

•

Check the box for ANTLR IDE vn.n.n and click on through until it is installed. Eclipse
will probably restart.

•

3.

Configure the ANTLR IDE.
In the Eclipse main window, click Window then Preferences.•
In the left pane, expand ANTLR and select Builder.•
In the right pane, click the Add… button.•
In the Add ANTLR Package window, click Directory… and navigate to the location of
the antlr-n.n folder and click OK.

•

Click OK to close the Add ANTLR Package window.•
Select Code Generator in the left pane and click on Project relative folder in the right
pane. Type a folder name. Examples: antlr-java or antlr-generated.

•

Select any other configuration parameters but DO NOT check –nfa or –dfa in the under
General in the Building window. If checked, these will cause ANTLR errors preventing
java files from being generated in the output folder.

•

Click OK to close the Preferences window.•

4.

Create a new Java project and enable ANTLR support.
From the Eclipse main window, go to File, New, Java Project. Click Next, type a project
name and click Finish.

•

To enable ANTLR support for the project, in the Package Explorer window (left pane)
right-click the project just created and select Configure, Convert to ANTLR project.

•

Add the ANTLR complete jar file to the project: right-click the project and select
Properties, Java Build Path, click Add External JARs…, browse to the ANTLR jar file,
select it, and click OK. Click OK to close the project Properties window.

•

5.

Create an ANTLR grammar.6.

https://riptutorial.com/ 8

http://www.antlr.org/download/antlr-3.4-complete.jar
http://antlrv3ide.sourceforge.net/updates

Create a new ANTLR grammar: right-click the src folder of the project, then File, New,
Other, expand ANTLR and select Combined Grammar. Click Next, type grammar
name, select a Language option, and click Finish.

•

A “.g” file is created with the options selected and a blank rule. Add the options
language=Java, @header, @lexer::header, and @members statements at the top (see
example). Auto completion is the easiest way to add these (press CTRL-space to bring
up auto-completion list).

•

Save the grammar.
When saved, a folder containing generated Java code for the grammar should appear
in the Project Explorer. If it does not, make sure the –nfa or –dfa options are not
checked in ANTLR Preferences under General in the Building window (Step 4g).
[Confirm if these needed: check CLASSPATH environment variable points to the Java7
that matches your Eclipse install (32 or 64 bits) and Windows Path environment
variable had Java7 SDK.]

•

To avoid “cannot be resolved to a type” Java errors, right-click the folder containing
generated Java code, then Build Path, Use as a Source Folder.

•

7.

SAMPLE COMBINED GRAMMAR

grammar test; //must match filename.g

options {
 language = Java;
}

@header { //parser
 package pkgName; //optional
 import java.<whatever you need>.*;
}

@members { //parser
 // java code here
}

@lexer::header { //lexer
 package pkgName; //optional
 import java.<whatever you need>.*;
}

@lexer::members {
 // java code here
}
/*--
 * PARSER RULES (convention is all lowercase)
 --/
parserule: LEXRULE;

/*--
 * LEXER RULES (convention is all uppercase)
 --/
LEXRULE: 'a'..'z';

Read Introduction to ANTLR v3 online: https://riptutorial.com/antlr/topic/6629/introduction-to-antlr-
v3

https://riptutorial.com/ 9

https://riptutorial.com/antlr/topic/6629/introduction-to-antlr-v3
https://riptutorial.com/antlr/topic/6629/introduction-to-antlr-v3

Chapter 4: Introduction to ANTLR v4

Remarks

ANTLR v4 is a powerful tool used for building new programming languages and
processing/translating structured text or binary files. ANTLR uses a grammar you create to
generate a parser which can build and traverse a parse tree (or abstract syntax tree, AST). The
parser consists of output files in a target language that you specify. ANTLR v4 supports several
targets including: Java, C#, JavaScript, Python2, and Python3. Support for C++ is being worked
on. For working in GUI IDEs, there are plug-ins for Visual Studio, Intellij, NetBeans, and Eclipse.

For general information, visit the ANTLR website. To get serious about ANTLR, check out the
highly recommended book written by Terrence Parr (the guy who created ANTLR) The Definitive
ANTLR 4 Reference.

Significant Version Info

4.5: 01/22/15 - Added JavaScript target and upgraded C# target. 4.5 Release Notes•
4.4: 07/16/14 - Added Python2 and Python3 as targets. 4.4 Release Notes•
4.3: 06/18/14 - Major bug fixes; prepared for adding new targets. 4.3 Release Notes•
4.2: 02/04/14 - Improved syntax for selecting/matching parse trees. 4.2 Release Notes•
4.1: 06/30/13 - Improved parsing performance; export ASTs to PNG. 4.1 Release Notes•
4.0: 01/21/13 - Initial release.•

Examples

Installing for Command Line Use

ANTLR is distributed as a Java Jar file It can be downloaded here. As ANTLR is compiled as a jar
file it subsequently requires the Java runtime environment to operate, if you do not have It can be
downloaded here.

Once the ANTLR JAR file has been downloaded you can run ANTLR from the command line in
the same way as any other JAR file:

Java -jar antlr-4.5.3-complete.jar

(Assuming you are operating in the same directory as the antlr-4.5.3-complete.jar file).

This should output something similar to this :

ANTLR Parser Generator Version 4.5.3
 -o ___ specify output directory where all output is generated
 -lib ___ specify location of grammars, tokens files
 -atn generate rule augmented transition network diagrams

https://riptutorial.com/ 10

http://www.antlr.org/
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
https://github.com/antlr/antlr4/releases/tag/4.5
https://github.com/antlr/antlr4/releases/tag/4.4
https://github.com/antlr/antlr4/releases/tag/4.3
https://github.com/antlr/antlr4/releases/tag/4.2
https://github.com/antlr/antlr4/releases/tag/4.1
http://www.antlr.org/download.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

 -encoding ___ specify grammar file encoding; e.g., euc-jp
 -message-format ___ specify output style for messages in antlr, gnu, vs2005
 -long-messages show exception details when available for errors and warnings
 -listener generate parse tree listener (default)
 -no-listener don't generate parse tree listener
 -visitor generate parse tree visitor
 -no-visitor don't generate parse tree visitor (default)
 -package ___ specify a package/namespace for the generated code
 -depend generate file dependencies
 -D<option>=value set/override a grammar-level option
 -Werror treat warnings as errors
 -XdbgST launch StringTemplate visualizer on generated code
 -XdbgSTWait wait for STViz to close before continuing
 -Xforce-atn use the ATN simulator for all predictions
 -Xlog dump lots of logging info to antlr-timestamp.log

other recommended actions for setup include:

 1. Add antlr4-complete.jar to CLASSPATH, either: Permanently:
Using System Properties dialog > Environment variables > Create or append to CLASSPATH
variable Temporarily, at command line: SET CLASSPATH=.;C:\Javalib\antlr4-
complete.jar;%CLASSPATH%
 3.Create batch commands for ANTLR Tool, TestRig in dir in PATH
 antlr4.bat: java org.antlr.v4.Tool %*
 grun.bat: java org.antlr.v4.gui.TestRig %*

After setup you can build an application using your .g4 grammar file :

Java -jar antlr-4.5.3-complete.jar yourGrammar.g4

You can also build an application in other languages with the -Dlanguage parameter. For example
to generate C# files you would do something like this:

java -jar antlr-4.5.3-complete.jar yourGrammar.g4 -Dlanguage=CSharp

See here for full list of pre-made grammar's for common programming languages.

Installing Using Build Automation tools

Download the latest version of ANTLR and extract it to a folder.

You can use also Maven, Gradle, or other build tool to depend on its runtime (the classes the
generated grammars use): org.antlr:antlr4-runtime.

In order to automatically -as part of the build process- generate the parser in a maven project, use
the Maven plugin: org.antlr:antlr4.

Install in Eclipse and Build Hello World

(Tested with ANTLR 4.5.3, Eclipse Neon, ANTLR 4 IDE 0.3.5, and Java 1.8)

Download the latest ANTLR. Make sure to get the complete ANTLR Java binaries jar. Save 1.

https://riptutorial.com/ 11

https://github.com/antlr/grammars-v4
http://www.antlr.org/download.html
http://www.antlr.org/api/maven-plugin/latest/index.html
http://www.antlr.org/download.html

to any appropriate location, for example the folder where other Java libraries are stored. It
doesn’t matter where, just remember the location.

Install the ANTLR IDE in Eclipse.

From the Eclipse menu, click Help and select Eclipse Marketplace.•
In the Find: box, type antlr and click Go.•
Click Install for ANTLR 4 IDE.•
Click Finish in the Confirm Selected Features window.•
If a Security Warning window pops up, click OK.•
Restart Eclipse.•

2.

Work around for the “Failed to create injector…” error.

When accessing ANTLR 4 Preferences in Eclipse or when the environment variable
HOME is not set, the following error occurs: Failed to create injector for
com.github.jknack.antlr-4ide.Antlr4 for com.github.jknack.antlr-4ide.Antlr4.

•

Make sure the environment variable HOME is set. If not, set it as appropriate for your
system.

•

Download Xtext 2.7.3 to the same location as antlr-n.n.n-complete.jar.•
In Eclipse, click on Help and select Install New Software.•
Click Add… to get to the Add Repository window.•
Type a name, xtext 2.7.3 for example, then click on Archive…, navigate to the Xtext
2.7.3 file and select it, then click OK.

•

In the Install window, click the Select All button then click Next> twice, accept the
license agreement. and click Finish.

•

Restart Eclipse.•

3.

Tell Eclipse/Java where ANTLR is.

In Eclipse, click on Window and select Preferences.•
In the left pane, expand Java and Build Path, then select Classpath Variables.•
In the right pane, click New…, enter a Name, and click File… and browse to your
location of antlr-n.n.n-complete.jar. Click OK to get back to the Classpath Variables
window.

•

Click OK to exit Preferences.•

4.

(Optional) Configure the ANTLR IDE generated sources directory.

In the Eclipse main window, click Window then Preferences.•
In the left pane, expand ANTLR 4 and select Tool.•
Under Options, change the directory if desired. For example, java is my target
language so I use ./antlr-java.

•

Click OK to close the Preferences window.•

5.

Create an ANTLR 4 project.

From the Eclipse main window, go to File, New, Project.•
In the New Project window, expand General and select ANTLR 4 Project.•

6.

https://riptutorial.com/ 12

http://www.eclipse.org/modeling/download.php?file=/modeling/tmf/xtext/downloads/drops/2.7.3/R201411190455/tmf-xtext-Update-2.7.3.zip

Click Next, type a project name and click Finish.•
The default new project contains a Hello.g4 file and will automatically build the
standard "Hello World" program.

•

In the Package Explorer, expand the new project folder to see the g4 file and a folder
named target (or the name you gave it in Step 5) containing the target source files.

•

Installing ANTLR in Visual Studio 2015 (using Nuget)

Open Visual Studio 2015, navigate to Tools → Extensions → Online and search for Antlr.
Download the extension ANTLR Language Support (Created by Sam Harwell) and restart
Visual Studio.

1.

Create new Console Application Project. Right click on the Solution → Manage Nuget
Packages for Solution → Browse (Tab) and search for Antlr4 and install it.

2.

Add a New Item to your Project by right clicking on it. And look for ANTLR4 Templates. 3.

https://riptutorial.com/ 13

https://i.stack.imgur.com/nVweD.png

From your ANTLR file (ending .g4) go to File → Advance Save Options and search for
Unicode (UTF-8 without signature) - Codepage 65001 and click OK. Thats it.

4.

Test if everything works

https://riptutorial.com/ 14

https://i.stack.imgur.com/fNaF9.png
https://i.stack.imgur.com/ed3Tc.png

Create a ANTLR 4 Combined Grammar item and name it Calculator.g4•
Copy and Paste the Calculator source code from this Github project here: Calculator by Tom
Everett

•

Change grammar calculator to grammar Calculator•
On Solution Explorer → Click on Show All Files.•

Save and Run (Start) the project•
In Solution Explorer under obj folder you should see cs classes generated like the Visitor and
Listener. If this is the case you succeeded. Now you can start working with ANTLR in Visual
Studio 2015.

•

https://riptutorial.com/ 15

https://github.com/antlr/grammars-v4/blob/master/calculator/calculator.g4
https://github.com/antlr/grammars-v4/blob/master/calculator/calculator.g4
https://i.stack.imgur.com/pvPV9.png

Read Introduction to ANTLR v4 online: https://riptutorial.com/antlr/topic/2856/introduction-to-antlr-
v4

https://riptutorial.com/ 16

https://i.stack.imgur.com/BhkWn.png
https://riptutorial.com/antlr/topic/2856/introduction-to-antlr-v4
https://riptutorial.com/antlr/topic/2856/introduction-to-antlr-v4

Chapter 5: Lexer rules in v4

Examples

Simple rules

Lexer rules define token types. Their name has to start with an uppercase letter to distinguish
them from parser rules.

INTEGER: [0-9]+;
IDENTIFIER: [a-zA-Z_] [a-zA-Z_0-9]*;

OPEN_PAREN: '(';
CLOSE_PAREN: ')';

Basic syntax:

Syntax Meaning

A Match lexer rule or fragment named A

A B Match A followed by B

(A|B) Match either A or B

'text' Match literal "text"

A? Match A zero or one time

A* Match A zero or more times

A+ Match A one or more times

[A-Z0-9] Match one character in the defined ranges (in this example between A-Z or 0-9)

'a'..'z' Alternative syntax for a character range

~[A-Z] Negation of a range - match any single character not in the range

. Match any single character

Fragments

Fragments are reusable parts of lexer rules which cannot match on their own - they need to be
referenced from a lexer rule.

INTEGER: DIGIT+

https://riptutorial.com/ 17

 | '0' [Xx] HEX_DIGIT+
 ;

fragment DIGIT: [0-9];
fragment HEX_DIGIT: [0-9A-Fa-f];

Implicit lexer rules

When tokens like '{' are used in a parser rule, an implicit lexer rule will be created for them unless
an explicit rule exists.

In other words, if you have a lexer rule:

OPEN_BRACE: '{';

Then both of these parser rules are equivalent:

parserRule: '{';
parserRule: OPEN_BRACE;

But if the OPEN_BRACE lexer rule is not defined, an implicit anonymous rule will be created. In that
case, the implicit rule will be defined as if it were defined before the other rules: it will have a
higher priority than other rules.

Priority rules

Several lexer rules can match the same input text. In that case, the token type will be chosen as
follows:

First, select the lexer rule which matches the longest input•
If the text matches an implicitly defined token (like '{'), use the implicit rule•
If several lexer rules match the same input length, choose the first one, based on definition
order

•

The following combined grammar:

grammar LexerPriorityRulesExample;

// Parser rules

randomParserRule: 'foo'; // Implicitly declared token type

// Lexer rules

BAR: 'bar';
IDENTIFIER: [A-Za-z]+;
BAZ: 'baz';

WS: [\t\r\n]+ -> skip;

https://riptutorial.com/ 18

Given the following input:

aaa foo bar baz barz

Will produce the following token sequence from the lexer:

IDENTIFIER 'foo' BAR IDENTIFIER IDENTIFIER

aaa is of type IDENTIFIER

Only the IDENTIFIER rule can match this token, there is no ambiguity.

•

foo is of type 'foo'

The parser rule randomParserRule introduces the implicit 'foo' token type, which is prioritary
over the IDENTIFIER rule.

•

bar is of type BAR

This text matches the BAR rule, which is defined before the IDENTIFIER rule, and therefore has
precedence.

•

baz is of type IDENTIFIER

This text matches the BAZ rule, but it also matches the IDENTIFIER rule. The latter is chosen as
it is defined before BAR.

Given the grammar, BAZ will never be able to match, as the IDENTIFIER rule already covers
everything BAZ can match.

•

barz is of type IDENTIFIER

The BAR rule can match the first 3 characters of this string (bar), but the IDENTIFIER rule will
match 4 characters. As IDENTIFIER matches a longer substring, it is chosen over BAR.

•

As a rule of thumb, specific rules should de defined before more generic rules. If a rule can only
match an input which is already covered by a previously defined rule, it will never be used.

Implicitly defined rules such as 'foo' act as if they were defined before all other lexer rules.

Lexer commands

A lexer rule can have associated commands:

WHITESPACE: [\r\n] -> skip;

Commands are defined after a -> at the end of the rule.

skip: Skips the matched text, no token will be emited•
channel(n): Emits the token on a different channel•

https://riptutorial.com/ 19

type(n): Changes the emitted token type•
mode(n), pushMode(n), popMode, more: Controls lexer modes•

Actions and semantic predicates

A lexer action is a block of arbitrary code in the target language surrounded by {...}, which is
executed during matching:

IDENTIFIER: [A-Z]+ { log("matched rule"); };

A semantic predicate is a block of arbitrary code in the target language surrounded by {...}?, which
evaluates to a boolean value. If the returned value is false, the lexer rule is skipped.

IDENTIFIER: [A-Z]+ { identifierIsValid() }?;

Semantic predicates should be defined at the end of the rule whenever possible for performance
reasons.

Read Lexer rules in v4 online: https://riptutorial.com/antlr/topic/3271/lexer-rules-in-v4

https://riptutorial.com/ 20

https://riptutorial.com/antlr/topic/3271/lexer-rules-in-v4

Chapter 6: Listeners

Examples

Listener Events Using Labels

Labeling the alternatives inside a rule starting with the # operator tells ANTLR to generate listener
methods for each label corresponding to the alternative.

By specifying a label for each alternative in the following rule:

// Rule
type : int #typeInt
 | short #typeShort
 | long #typeLong
 | string #typeString
 ;

// Tokens
int : 'int' ;
short : 'short' ;
long : 'long' ;
string : 'string' ;

Will generate the following methods in the generated interface that extends ParseTreeListener:

public void enterTypeInt(TypeShortContext ctx);
public void enterTypeShort(TypeIntContext ctx);
public void enterTypeLong(TypeLongContext ctx);
public void enterTypeString(TypeStringContext ctx);

Read Listeners online: https://riptutorial.com/antlr/topic/6717/listeners

https://riptutorial.com/ 21

http://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/ParseTreeListener.html
https://riptutorial.com/antlr/topic/6717/listeners

Chapter 7: TestRig / grun

Examples

Setup TestRig

ANTLR contains a testing tool in its runtime library, this tool can be used to display information
detailing how the parsing is performed to match input against defined rules in your grammar file.

To use this tool contained within the ANTLR jar file you should setup your systems classpath to
allow access to both the ANTLR tool and the runtime library :

export CLASSPATH=".:/usr/local/lib/antlr-4.5.3-complete.jar:$CLASSPATH"

Note: Ensure the Dot precedes any path to ensure the java virtual machine wont see
classes in your current working directory.

Alises can be used on Linux/MAC/Unix to simplify commands used:

alias antlr4='java -jar /usr/local/lib/antlr-4.5.3-complete.jar'
//or any directory where your jar is located

Note setup on windows for aliases and classpath setup may be more complicated, see here for
more comprehensive details.

Accessing TestRig

Once you have setup your alias you can setup TestRig in the following way, again using an alias is
recommended as reduces the amount of time required to perform the action:

alias grun='java org.antlr.v4.runtime.misc.TestRig'

If you do not wish to setup an alias on windows you can access TestRig by running the following
command in the same location as your ANTLR jar directory:

java -cp .;antlr.4.5.3-complete.jar org.antlr.v4.runtime.misc.TestRig
//or
java -cp .;antlr.4.5.3-complete.jar org.antlr.v4.gui.TestRig

To run TestRig on your grammar you can pass the parameters in for your grammar like this :

grun yourGrammar yourRule -tree //using the setup alias
java -cp .;antlr.4.5.3-complete.jar org.antlr.v4.gui.TestRig yourGrammar YourRule -tree //on
windows with no alias
java -cp .;antlr.4.5.3-complete.jar org.antlr.v4.gui.TestRig yourGrammar Hello r -tree
//Windows with the grammar Hello.g4 starting from the rule 'r'.

https://riptutorial.com/ 22

https://levlaz.org/setting-up-antlr4-on-windows/

Build Grammar with Visual Parse Tree

Specifying the -gui command line option when running an ANTLR grammar in the test rig will
result in a window popping up with a visual representation of the parse tree. For example:

Given the following grammar:

JSON.g4

/** Taken from "The Definitive ANTLR 4 Reference" by Terence Parr */

// Derived from http://json.org
grammar JSON;

json
 : value
 ;

object
 : '{' pair (',' pair)* '}'
 | '{' '}'
 ;

pair
 : STRING ':' value
 ;

array
 : '[' value (',' value)* ']'
 | '[' ']'
 ;

value
 : STRING
 | NUMBER
 | object
 | array
 | 'true'
 | 'false'
 | 'null'
 ;

STRING
 : '"' (ESC | ~ ["\\])* '"'
 ;
fragment ESC
 : '\\' (["\\/bfnrt] | UNICODE)
 ;
fragment UNICODE
 : 'u' HEX HEX HEX HEX
 ;
fragment HEX
 : [0-9a-fA-F]
 ;
NUMBER
 : '-'? INT '.' [0-9] + EXP? | '-'? INT EXP | '-'? INT
 ;
fragment INT

https://riptutorial.com/ 23

 : '0' | [1-9] [0-9]*
 ;
// no leading zeros
fragment EXP
 : [Ee] [+\-]? INT
 ;
// \- since - means "range" inside [...]
WS
 : [\t\n\r] + -> skip
 ;

Given the following JSON file:

example.json

{
 "name": "John Doe",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "mobile",
 "number": "123 456-7890"
 }
],
 "children": [],
 "spouse": null
}

The following syntax command line syntax:

export CLASSPATH=".:/usr/local/lib/antlr-4.0-complete.jar:$CLASSPATH"

alias antlr4='java -jar /usr/local/lib/antlr-4.0-complete.jar'

alias grun='java org.antlr.v4.runtime.misc.TestRig'

antlr4 -o . -lib . -no-listener -no-visitor JSON.g4; javac *.java; grun JSON json -gui
example.json

will result in the generated .java & .tokens files, as well as the compiled .class files:

JSON.g4 JSONLexer.class JSONListener.java
JSONParser$PairContext.class JSON.tokens JSONLexer.java
JSONParser$ArrayContext.class JSONParser$ValueContext.class JSONBaseListener.class
JSONLexer.tokens JSONParser$JsonContext.class JSONParser.class
JSONBaseListener.java JSONListener.class

https://riptutorial.com/ 24

JSONParser$ObjectContext.class JSONParser.java

and the following parse tree:

Read TestRig / grun online: https://riptutorial.com/antlr/topic/3270/testrig---grun

https://riptutorial.com/ 25

http://i.stack.imgur.com/oNjUt.png
https://riptutorial.com/antlr/topic/3270/testrig---grun

Chapter 8: Visitors

Introduction

What is the difference between a listener and a visitor? The difference between listener and visitor
mechanisms is listener methods are called by the ANTLR-provided walker object, whereas visitor
methods must walk their children with explicit visit calls. Forgetting to invoke visit() on a node’s
children means those subtrees don’t get visited. In visitor we have the ability to tree walking while
in listener you are only reacting to the tree walker.

Examples

Example

Grammar Example (Expr.g4)

grammar Expr;
prog: (expr NEWLINE)* ;
expr: expr ('*'|'/') expr

 | expr ('+'|'-') expr
 | INT
 | '(' expr ')'
 ;
NEWLINE : [\r\n]+ ;
INT : [0-9]+ ;

Generating the visitor

To generate a Visitor, or to disable a visitor for your grammar you use the following flags:

 -visitor generate parse tree visitor
 -no-visitor don't generate parse tree visitor (default)

The commandline/terminal command to build your grammar with a visitor will be formatted as
shown below, with respect to flag chosen and possible aliases:

java - jar antlr-4.5.3-complete.jar Expr.g4 -visitor
java - jar antlr-4.5.3-complete.jar Expr.g4 -no-visitor

The output will be a parser/lexer with a visitor or no visitor respectively.

Output The output will be ExprBaseVisitor.java and ExprVisitor.java for this example. These
are the relevant java files for you to implement visitor functionality. It is often ideal to create a new
class and extend the ExprBaseVisitor to implement new visitor functionality for each method.

// Generated from Expr.g4 by ANTLR 4.5.3

https://riptutorial.com/ 26

import org.antlr.v4.runtime.tree.AbstractParseTreeVisitor;

/**
 * This class provides an empty implementation of {@link ExprVisitor},
 * which can be extended to create a visitor which only needs to handle a subset
 * of the available methods.
 *
 * @param <T> The return type of the visit operation. Use {@link Void} for
 * operations with no return type.
 */
public class ExprBaseVisitor<T> extends AbstractParseTreeVisitor<T> implements ExprVisitor<T>
{
 /**
 * {@inheritDoc}
 *
 * <p>The default implementation returns the result of calling
 * {@link #visitChildren} on {@code ctx}.</p>
 */
 @Override public T visitProg(ExprParser.ProgContext ctx) { return visitChildren(ctx); }
 /**
 * {@inheritDoc}
 *
 * <p>The default implementation returns the result of calling
 * {@link #visitChildren} on {@code ctx}.</p>
 */
 @Override public T visitExpr(ExprParser.ExprContext ctx) { return visitChildren(ctx); }
}

Read Visitors online: https://riptutorial.com/antlr/topic/8211/visitors

https://riptutorial.com/ 27

https://riptutorial.com/antlr/topic/8211/visitors

Credits

S.
No

Chapters Contributors

1
Getting started with
ANTLR

Athafoud, cb4, Community, D3181, Gábor Bakos, KvanTTT

2
ANTLR
Targets/Language
Runtimes

D3181

3
Introduction to
ANTLR v3

Athafoud, cb4

4
Introduction to
ANTLR v4

Athafoud, cb4, Community, D3181, Devid, Gábor Bakos,
GRosenberg, Lucas Trzesniewski

5 Lexer rules in v4 Athafoud, bn., Loxley, Lucas Trzesniewski

6 Listeners bn., Lucas Trzesniewski

7 TestRig / grun bn., D3181, Lucas Trzesniewski, Pascal Le Merrer

8 Visitors D3181

https://riptutorial.com/ 28

https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/1318479/cb4
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6510101/d3181
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/1046374/kvanttt
https://riptutorial.com/contributor/6510101/d3181
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/1318479/cb4
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/1318479/cb4
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6510101/d3181
https://riptutorial.com/contributor/1262566/devid
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/1886753/grosenberg
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/89339/bn-
https://riptutorial.com/contributor/366385/loxley
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/89339/bn-
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/89339/bn-
https://riptutorial.com/contributor/6510101/d3181
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/1392658/pascal-le-merrer
https://riptutorial.com/contributor/6510101/d3181

	About
	Chapter 1: Getting started with ANTLR
	Remarks
	Versions
	Examples
	Hello world

	Chapter 2: ANTLR Targets/Language Runtimes
	Examples
	Language Support
	Python parser setup

	Chapter 3: Introduction to ANTLR v3
	Examples
	Installation and Setup

	How To Install ANTLR in Eclipse

	Chapter 4: Introduction to ANTLR v4
	Remarks
	Examples
	Installing for Command Line Use
	Installing Using Build Automation tools
	Install in Eclipse and Build Hello World
	Installing ANTLR in Visual Studio 2015 (using Nuget)

	Test if everything works

	Chapter 5: Lexer rules in v4
	Examples
	Simple rules
	Fragments
	Implicit lexer rules
	Priority rules
	Lexer commands
	Actions and semantic predicates

	Chapter 6: Listeners
	Examples
	Listener Events Using Labels

	Chapter 7: TestRig / grun
	Examples
	Setup TestRig

	Accessing TestRig
	Build Grammar with Visual Parse Tree

	Chapter 8: Visitors
	Introduction
	Examples
	Example

	Credits

