TU/e

CONTROL THEORY FUNDAMENTALS Anuradha Annaswamy Active-adaptive Control Laboratory Massachusetts Institute of Technology

Applications of NCS

- Automobile industry in 1970's
 - Driven by reduced cost for cabling, modularization of systems, and flexibility in car manufacturing
- A wide range of applications at present
- Engineering Networks
 - Manufacturing automation
 - Automotive Systems
 - Aircraft
 - Teleoperation & Remote Surgery
 - Building automation
 - Automoted highway systems
 - Environmental monitoring and control

- Physical/ biological/ ecological networks
 - Synchronization networks
 - Flock of birds/school of fisch

TU/e

- Gene/cell networks
- Food webs
- Social networks

Implications of Network Control

- 1. Delays and packet dropouts:
 - Non-ideal signal transmission
 - Delays and packet dropouts are the consequence
 - Delays are a source of instability and performance deterioration
 - Delay depends on network configuration, number of participators, routing transients, aggregate flows, network topolgies
 - Transmission delays may be non-deterministic

TLM 29 **TU/6**

Implications of NCS (contd.)

- 2. Limited network resources
 - Multiple sensors and system communicating over a shared network
 - Network bandwidth is essential in the design of the system
 - · Need for optimal scheduling and prioritizing

Ŭii ³º TU/e

NCS: Challenges (3)

- 3. Synchronization of local clocks
 - Clock offset may drift
 - Time and durations may differ for each component in the NCS

חח חר

TU/e

Highlights of NCS Solutions

- Analysis and synthesis of controllers that are robust to
 - (1) delays
 - (2) varying delays
 - (3) packet dropouts

IIIi 32 TU/e

A Standard Sampled-Data Problem

- Physical system: $\dot{x}(t) = A_c x(t) + B_c u(t)$
- Multiple both sides by $e^{-A_c t}$

$$\frac{d}{dt}(e^{-A_c t}x(t)) = e^{-A_c t}B_c u(t)$$

• Integrate over $[t_k, t_{k+1}]$

- $e^{-A_c(kh+h)}x[k+1]-e^{-A_ckh}x(kh)=\int^{kh+h}e^{-A_c\eta}B_cu(\eta)\,d\eta$
- Multiply both sides by $e^{A_c(kh+h)}$
- $-u(\eta) = u[k], over[t_k, t_{k+1}]$
- $x[k+1] = e^{A_c h} x[k] + \int_{kh}^{kh+h} e^{-A_c (\eta kh h)} B_c d\eta \cdot u[k]$

$$\Rightarrow x[k+1] = Ax[k] + Bu[k]$$

• Assumes that u[k] is available immediately after t_k

Effect of Network: $\tau \neq 0$

- Physical system: $\dot{x}(t) = A_c x(t) + B_c u(t)$
- With sampling, and integration $over[t_k, t_{k+1}]$

$$\begin{array}{l} x[k+1] = e^{A_c h} x[k] + \int_{kh}^{kh+h} e^{-A_c (\eta - kh - h)} B_c \, u(\eta) d\eta \\ - \, u(\eta) = u[k-1], \quad [\mathbb{I}_k, \mathbb{I}_k + \tau] \\ - \, u(\eta) = u[k], \quad [\mathbb{I}_k + \tau, t_{k+1}] \end{array}$$

 $x[k+1] = e^{A_c h} x[k] +$ $\textstyle \int_{kh}^{kh+\tau} e^{-A_c(\eta-kh-h)} B_c \, d\eta \cdot u[k-1] + \int_{kh+\tau}^{kh+h} e^{-A_c(\eta-kh-h)} B_c \, d\eta \cdot u[k]$

$$=\underbrace{e^{A_ch}}_A x[k] + \underbrace{\int_{h-\tau}^h e^{A_cv} d\eta \cdot B_c}_{\hat{B}_2} \cdot u[k-1] + \underbrace{\int_{0}^{h-\tau} e^{A_cv} d\eta \cdot B_c}_{\hat{B}_1} \cdot u[k]$$

- $\Rightarrow x[k+1] = Ax[k] + B_1u[k] + B_2u[k-1]$
- τ can be a significant fraction of h. Design u[k] assuming $B_2 \sim 0$. Guarantee robustness

TU/e

Stability Tools

Control designs that are robust to τ

$$\dot{x} = Ax + B\hat{y}, \ \ y = Cx$$

$$\hat{y}_k = y_k \quad \forall k \in \mathbb{N}$$

$$\hat{y}(t) = \begin{cases} \hat{y}_{k-1}, & t \in [t_k, t_k + \tau_k) \\ \hat{y}_k, & t \in [t_k + \tau_k, t_{k+1}) \end{cases}$$

TU/e

Theorem: Assuming there exist constants $h > \tau \ge 0$ such that

$$t_{k+1} - t_k = h, \qquad \tau_k = \tau, \qquad \forall k \in N$$

the NCS in the figure above is exponentially stable if the closed-loop matrix is Schur.

Imposes limits on the delay for satisfactory behavior

(1) M. S. Branicky et al., "Stability of networked control systems: Explicit analysis of delay," Amer. Contr. Conf., 2000, vol. 4

Control designs that are robust to variable delay⁽²⁾

 $\xi_{k+1} = \bar{A}(\tau_k)\xi_k, \ \tau_k \in [0, \tau_{\max}]$

with

$$\bar{A}(\tau_k) = \begin{bmatrix} e^{Ah} - \Gamma_0(\tau_k)BK & -\Gamma_1BK \\ I & 0 \end{bmatrix}$$

and
$$\xi_k = \begin{pmatrix} x_k^T & x_{k-1}^T \end{pmatrix}^T$$

Theorem:

Given the system above with the delay-dependent matrix $\bar{A}(\tau_k)$. If there exists a solution to the discrete-time Lyapunov matrix inequalities

$$P = P^T > 0$$

$$\bar{A}^T P \bar{A} - P < 0, \forall \bar{A} \in \mathcal{A}$$

for a suitable chosen finite set of matrices A, then the system is robustly globally asymptotically stable for any sequence of delays $\tau_k \in [0, \tau_{\text{max}}]$

(2) M. Cloosterman et al, Robust Stability of NCS with Time-varying Network-induced Delays,"

TU/e

Control designs that are robust to packet dropouts (3)

$$z_{k+1} = \Phi_{\theta} z_k$$

where

$$\Phi_{\theta} = \begin{bmatrix} e^{Ah} + \theta \Gamma(h - \tau)BC & e^{A(h - \tau)}\Gamma(\tau)B + (1 - \theta)\Gamma(h - \tau)B \\ \theta C & (1 - \theta)I \end{bmatrix}$$

for $\theta \in 0, 1$

TU/e

Theorem:

The NCS given above with dropout probability p (Bernoulli) is exponentially mean-square stable if there exists a symmetric matrix Z > 0 such that

$$\begin{bmatrix} Z & \sqrt{p}(\Phi_0 Z)' & \sqrt{1-p}(\Phi_1 Z)' \\ * & Z & 0 \\ * & * & Z \end{bmatrix} > 0$$

(3) P. Seiler and R. Sengupta, "Analysis of communication losses in vehicle control problems,"

Amer. Contr. Conf., 2001, vol. 2

ARBITRATED NETWORKED CONTROL SYSTEMS (ANCS)

חח חר TU/e

ANCS: Co-design Network and Control Network NCS: Given a network, how do we design the controller? ANCS: Exploit network transparency. Use information available Exploit network flexibility. Given a controller, how do we design the Co-design the network and controller. Co-design τ to meet quality of control and network resource constraints. וחוווו TU/e

A Standard Sampled-Data Problem

- Physical system: $\dot{x}(t) = A_c x(t) + B_c u(t)$
- Multiple both sides by $e^{-A_c t}$

$$\frac{d}{dt}(e^{-A_c t}x(t)) = e^{-A_c t}B_c u(t)$$

• Integrate over $[t_k, t_{k+1}]$

$$e^{-A_c(kh+h)}x[k+1] - e^{-A_ckh}x(kh) = \int_{kh}^{kh+h} e^{-A_c\eta}B_cu(\eta) d\eta$$

- Multiply both sides by $e^{A_c(kh+h)}$
- $-\quad u(\eta)=u[k], over\ [t_k,t_{k+1}]$
- $x[k+1] = e^{A_c h} x[k] + \int_{kh}^{kh+h} e^{-A_c (\eta kh h)} B_c \, d\eta \cdot u[k]$

$$\Rightarrow x[k+1] = Ax[k] + B_1u[k]$$

• Assumes that u[k] is available immediately after t_k

The overall idea

• Plant-model:

$$\dot{x}(t) = A_c x(t) + B_c u(t - \tau)$$

(continuous-time)

• Sample at t_k and t_{k+1} :

$$x[k+1] = Ax[k] + B_1u[k] + B_2u[k-1]$$

• At each t_k : Measure x[k], compute u[k] after τ

 τ : End-to-end delay

- depending on the applications serviced

Stability Tools

We need to accommodate different cases where $\tau \sim 0$, $\tau \sim \alpha h$, $\alpha \ll 1$, $\tau \sim \beta h$, $\beta \sim 1$.

- Dwell time
- Common Lyapunov Function
- Multiple Lyapunov Functions (MLF)
- Definition:

A is Schur \Rightarrow all eigenvalues of A are inside the unit circle

חח חו TU/e

A common Lyapunov

TU/e

function for all i

Dwell time

· Switch between

$$\begin{cases} x_{k+1} = A_n x_k, & If Nominal \\ x_{k+1} = A_d x_k, & If Drop \end{cases}$$

• A_n : Schur; A_d : arbitrary

$$||x_{k+N}|| \le ||A_n^n|| ||A_d||^{N-n} \cdot ||x_0||$$

• Make n large compared to N-n

$$||x_{k+N}|| \le \gamma \lambda^n k^{N-n} \cdot ||x_0||, \quad \lambda < 1$$

• For some n, $\gamma \lambda^n k^{N-n} < 1$; \Rightarrow stability of the switched system

Common Lyapunov Function (CLF)

- Hurwitz Matrices A_i
- $\dot{x} = A_i x$, $i = 1, 2, \dots, N$
 - Stable with arbitrary switching* if for any $i, j \in \sigma$

• A more powerful tool: CLF

$$V = x^T P x$$

$$A_i^T P + A_i P = -Q$$
 $Q > 0$

Narendra K.S., and Balakrishnan J., "A Common Lyapunov Function for Stable LTI Systems with Commuting A-Matrices," IEEE

Common Quadratic Lyapunov Function (CQLF)

- Discrete-time Systems: $x[k+1] = A_i x[k]$
 - $-A_i$ Schur i = 1, ..., n
 - Switched system is stable with arbitrary switching if there exist P > 0 such that

$$V = x^T P x \qquad A_i^T P A_i - P < 0$$

Narendra K.S., and Balakrishnan J., "A Common Lyapunov Function for Stable LTI Systems with Commuting A-Matrices," IEEE

TU/e

Multiple Lyapunov Functions

Definition (LLF):

- V_i(x) is a Lyapunov-Like Function (LLF) if
 - $-V_i(x) > 0$
 - $-\ V_i(x[k_1]) \le h(V_i(x[k_1+j_1^*]))$
- h: continuous; h(0) = 0.

MLF Theorem: $x[k+1] = A_i x[k]$. Switched system is stable if

- (i) LLFs V_i s exist over all intervals T_i 's where ith system is active.
- (ii) For all switching instants t_i^j ,

$$V_i(x[t_i^{n_2}]) \le V_i(x[t_i^{n_1}]);$$

1) Soudbakhsh D., Phan L.X, Sokolsky O., Lee I., and Annaswamy A.M., "Co-design of control and platform with dropped signals," ICCPS 2013.

2) Branicky M.S., "Multiple Lyapunov functions and other analysis tools for switched and hybrid systems," IEEE-TAC, 43(4):475 – 482, 1998.

l'liiT

19

TU/e

Linear Matrix Inequalities (LMI)

• LMI in the variable $x \in \mathbb{R}^n$ is an inequality: $a(x) = a_0 + x_1 a_1 + \dots + x_n a_n \ge 0$

where a_0, a_1, \dots, a_n are symmetric $m \times m$ matrices

- Can be solved for x very efficiently
- Example: Lyapunov Inequality $A^TP + PA < 0$ is an LMI in variable P

Boyd S., El-Ghaoui L., Feron E., and Balakrishnan V., "Linear matrix inequalities in system and control theory," Vol. 15. Philadelphia: Society for Industrial and Applied Mathematics, 1994.

TU/e

Summary (Part 2)

- Control theory fundamentals
 - Use of Feedback
 - Control performance metrics
 - Transient and steady-state
 - Trade-off between speed/accuracy and control effort
- ANCS
 - A Network Control System that exploits the information available and flexibility in the platform design
 - Transparency and flexibility in the network: Delays are known
 - Use of switching systems and their design for stability

51

TU/e