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Abstract

This paper proposes an image dehazing model built with

a convolutional neural network (CNN), called All-in-One

Dehazing Network (AOD-Net). It is designed based on a

re-formulated atmospheric scattering model. Instead of es-

timating the transmission matrix and the atmospheric light

separately as most previous models did, AOD-Net directly

generates the clean image through a light-weight CNN.

Such a novel end-to-end design makes it easy to embed

AOD-Net into other deep models, e.g., Faster R-CNN, for

improving high-level tasks on hazy images. Experimental

results on both synthesized and natural hazy image datasets

demonstrate our superior performance than the state-of-

the-art in terms of PSNR, SSIM and the subjective visual

quality. Furthermore, when concatenating AOD-Net with

Faster R-CNN, we witness a large improvement of the ob-

ject detection performance on hazy images.

1. Introduction

The existence of haze dramatically degrades the visibil-

ity of outdoor images captured in the inclement weather and

affects many high-level computer vision tasks such as de-

tection and recognition. These all make single-image haze

removal a highly desirable technique. Despite the challenge

of estimating many physical parameters from a single im-

age, many recent works have made significant progress to-

wards this goal [1, 3, 17]. Apart from estimating a global at-

mospheric light magnitude, the key to achieve haze removal

is to recover a transmission matrix, towards which various

statistical assumptions [8] and sophisticated models [3, 17]

have been adopted. However, the estimation is not always

accurate, and some common pre-processing such as guild-

filtering or softmatting will further distort the hazy image

generation process [8], causing sub-optimal restoration per-

formance. Moreover, the non-joint estimation of two criti-
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Figure 1. The PSNR and SSIM comparisons on dehazing 800 syn-

thetic images from Middlebury stereo database. The results certify

that AOD-Net presents more faithful restorations of clean images.

cal parameters, transmission matrix and atmospheric light,

may further amplify the error when applied together.

In this paper, we propose an efficient end-to-end dehaz-

ing convolutional neural network (CNN) model, called All-

in-One Dehazing Network (AOD-Net). While some previ-

ous haze removal models discussed the “end-to-end” con-

cept [3], we argue the major novelty of AOD-Net as the

first to optimize the end-to-end pipeline from hazy images

to clean images, rather than an intermediate parameter esti-

mation step. AOD-Net is designed based on a re-formulated

atmospheric scattering model. It is trained on synthesized

hazy images, and tested on both synthetic and real natural

images. Experiments demonstrate the superiority of AOD-

Net over several state-of-the-art methods, in terms of not
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(a) Inputs (b) DCP [8] (c) DehazeNet [3] (d) MSCNN [17] (e) AOD-Net

Figure 2. Visual quality comparison between AOD-Net and several state-of-the-art methods on a natural hazy image. Please amplify figures

to view the detail differences in bounded regions.

only PSNR and SSIM (see Figure 1), but also visual qual-

ity (see Figure 2). As a lightweight model, AOD-Net has

achieved a fast processing speed, costing as low as 0.026

second to process one 480× 640 image with a single GPU.

Furthermore, we are the first to examine how a haze removal

model could be utilized to assist the subsequent high-level

vision task. Benefiting from the end-to-end formulation,

AOD-Net is easily embedded with Faster R-CNN [16] and

improves the object detection performance on hazy images

with a large margin.

2. Related Work

Physical Model: The atmospheric scattering model has

been the classical description for the hazy image generation

process [11, 13, 14].

I (x) = J (x) t (x) +A (1− t (x)) , (1)

where I (x) is observed hazy image, J (x) is the scene ra-

diance (“clean image”) to be recovered. There are two criti-

cal parameters: A denotes the global atmospheric light, and

t (x) is the transmission matrix defined as:

t (x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and

d (x) is the distance between the object and the camera.

Traditional Methods: [23] coped with haze removal by

maximizing the local contrast. [6] proposed a physically-

grounded method by estimating the albedo of the scene.

[8, 24] discovered the effective dark channel prior (DCP) to

more reliably calculate the transmission matrix. [12] further

enforced the boundary constraint and contextual regulariza-

tion for sharper restored images. An accelerated method

for the automatic recovery of the atmospheric light was pre-

sented in [22]. [32] developed a color attenuation prior and

created a linear model of scene depth for the hazy image,

and then learned the model parameters in a supervised way.

Deep Learning Methods: CNNs have witnessed pre-

vailing success in computer vision tasks, and are recently

introduced to haze removal. [17] exploited a multi-scale

CNN (MSCNN), that first generated a coarse-scale trans-

mission matrix and later refined it. [3] proposed a train-

able end-to-end model for medium transmission estimation,

called DehazeNet. It takes a hazy image as input, and out-

puts its transmission matrix. Combined with the global at-

mospheric light estimated by empirical rules, a haze-free

image is recovered via the atmospheric scattering model.

All above methods share the same belief, that in order

to recover a clean scene from haze, it is the key to esti-

mate an accurate medium transmission map. The atmo-

spheric light is calculated separately, and the clean image

is recovered based on (1). Albeit being intuitive and phys-

ically grounded, such a procedure does not directly mea-

sure or minimize the reconstruction distortions. As a re-

sult, it will undoubtedly give rise to the sub-optimal image

restoration quality. The errors in each separate estimation

step will accumulate and potentially amplify each other. In

contrast, AOD-Net is built with our different belief, that the

physical model could be formulated in a “more end-to-end”

fashion, with all its parameters estimated in one unified

model. AOD-Net will output the dehazed clean image di-

rectly, without any intermediate step to estimate parameters.

Different from [3] that performs end-to-end learning from

the hazy image to the transmission matrix, the fully end-

to-end formulation of AOD-Net bridges the ultimate target

gap, between the hazy image and the clean image.

3. Modeling and Extension

In this section, the proposed AOD-Net is explained.

We first introduce the transformed atmospheric scattering

model, based on which the AOD-Net is designed. The struc-

ture of AOD-Net is then described in detail. Further, we

discuss the extension of the proposed model to high-level

tasks on hazy images by embedding it directly with other

existing deep models, thanks to its end-to-end design.

3.1. Transformed Formula

By the atmospheric scattering model in (1), the clean im-

age is obtained by

J (x) =
1

t (x)
I (x)−A

1

t (x)
+A. (3)
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As explained in Section 2, previous methods such as [17]

and [3] estimate t (x) and A separately and get the clean

image by (3). They do not directly minimize the recon-

struction errors on J (x), but rather optimize the quality of

t (x). Such an indirect optimization causes a sub-optimal

solution. Our core idea is to unify the two parameters t (x)
and A into one formula, i.e. K (x) in (4), and directly min-

imize the reconstruction errors in the image pixel domain.

To this end, the formula in (3) is re-expressed as

J (x) = K (x) I (x)−K (x) + b,where

K (x) =

1
t(x) (I (x)−A) + (A− b)

I (x)− 1
.

(4)

In that way, both 1
t(x) and A are integrated into the new

variable K (x). b is the constant bias with the default value

1. Since K (x) is dependent on I (x), we then aim to build

an input-adaptive deep model, and train the model by min-

imizing the reconstruction errors between its output J (x)
and the groundtruth clean image.

A naive baseline that might be argued for is to learn t (x)
(or 1/t (x)) from end to end by minimizing the reconstruc-

tion errors, with A estimated with the traditional method

[8]. That requires no re-formulation of (3). To justify why

jointly learning t (x) and A in one is important, we com-

pare the two solutions in experiments (see Section 4 for

the synthetic settings). As observed in Figure 3, the base-

line tends to overestimate A and cause overexposure visual

effects. AOD-Net clearly produces more realistic lighting

conditions and structural details, since the joint estimation

of 1
t(x) and A enables them to mutually refine each other. In

addition, the inaccurate estimate of other hyperparameters

(e.g., the gamma correction), can also be compromised and

compensated in the all-in-one formulation.

3.2. Network Design

The proposed AOD-Net is composed of two parts (See

Figure 4): a K-estimation module that uses five convolu-

tional layers to estimate K (x), followed by a clean image

generation module that consists of an element-wise multi-

plication layer and several element-wise addition layers to

generate the recovery image via calculating (4).

The K-estimation module is the critical component of

AOD-Net, being responsible for estimating the depth and

relative haze level. As depicted in Figure 4 (b), we use five

convolutional layers, and form multi-scale features by fus-

ing varied size filters. [3] used parallel convolutions with

varying filter sizes. [17] concatenated the coarse-scale net-

work features with an intermediate layer of the fine-scale

network. Inspired by them, the “concat1” layer of AOD-

Net concatenates features from the layers “conv1” and

“conv2”. Similarly, “concat2” concatenates those from

“conv2” and “conv3”; “concat3” concatenates those from

(a) Inputs (b) AOD-Net using (4) (c) Baseline using (3)

Figure 3. Visual comparison between AOD-Net using (4), and the

naive baseline using (3). The images are selected from the Chal-

lenging Real Photos: see more setting details in Section 4.

“conv1”, “conv2”, “conv3”, and “conv4”. Such a multi-

scale design captures features at different scales, and the

intermediate connections also compensate for the informa-

tion loss during convolutions. As a simple baseline to jus-

tify concatenation, we tried on TestSetA (to be introduced

in Section 4) using the structure ”“conv1” → “conv2” →
“conv3” → “conv4” → “conv5”, with no concatenation.

The resulting average PSNR is 19.0674 dB and SSIM is

0.7707, both lower than current results in Table 1 (notice

the large SSIM drop in particular). Notably, each convolu-

tional layer of AOD-Net uses only three filters. As a result,

our model is much light-weight, compared to existing deep

methods such as [3] and [17].

3.2.1 Necessity of K-estimation module

Most deep learning approaches for image restoration and

enhancement have fully embraced end-to-end modeling:

training a model to directly regress the clean image from the

corrupted image. Examples include image denoising [29],

deblurring [20], and super resolution [28]. In comparison,

there has been no end-to-end deep model for dehazing so

far1. While that might appear weird at the first glance, one

needs to realize that haze essentially brings in non-uniform,

signal-dependent noise: the scene attenuation of a surface

caused by haze is correlated with the physical distance be-

tween the surface and the camera (i.e., the pixel depth).

That is different from common image degradation models

that assume signal-independent noise, in which case all sig-

nals go through the same parameterized degradation pro-

cess. Their restoration models could thus be easily modeled

1[3] performed end-to-end learning from the hazy image to the trans-

mission matrix, which is completely different from what we define here.
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Figure 4. The network diagram and configuration of AOD-Net.

with one static mapping function. The same is not directly

applicable to dehazing: the degradation process varies by

signals, and the restoration model has to be input-adaptive

as well.

3.3. Incorporation with High­Level Tasks

High-level computer vision tasks, such as object detec-

tion and recognition, concern visual semantics and have re-

ceived tremendous attentions [16, 30]. However, the per-

formance of those algorithms is largely jeopardized by vari-

ous degradations. The conventional approach first resorts to

a separate image restoration step as pre-processing, before

feeding into the target high-level task. Recently, [27, 4] val-

idated that a joint optimization of restoration and recogni-

tion steps would boost the performance over the traditional

two-stage approach.

Previous works [31] have examined the effects and reme-

dies for common degradations such as noise, blur and low

resolution. However, to our best knowledge, there has been

no similar work to quantitatively study how the existence

of haze would affect high-level vision tasks, and how to

alleviate its impact. Whereas current dehazing models fo-

cused merely on the restoration quality, we take the first step

towards this important mission. Owing to its unique end-

to-end design, AOD-Net can be seamlessly embedded with

other deep models, to constitute one pipeline that performs

high-level tasks on hazy images, with an implicit dehazing

process. Such a pipeline can be jointly optimized from end

to end for improved performance, which is infeasible if re-

placing AOD-Net with other deep hehazing models [3, 17].

4. Evaluations on Dehazing

4.1. Datasets and Implementation

We create synthesized hazy images by (1), using the

ground-truth images with depth meta-data from the indoor

NYU2 Depth Database [21]. We set different atmospheric

lights A, by choosing each channel uniformly between

[0.6, 1.0], and select β ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}.

For the NYU2 database, we take 27, 256 images as the train-

ing set and 3,170 as the non-overlapping TestSet A. We also

take the 800 full-size synthetic images from the Middle-

bury stereo database [19, 18, 9] as the TestSet B. Besides,

we also collect a set of natural hazy images to evaluate our

model generalization performance.

During the training process, the weights are initialized

44773



Table 1. Average PSNR and SSIM results on TestSet A.

Metrics ATM [22] BCCR [12] FVR [25] NLD [1, 2] DCP [8] MSCNN [17] DehazeNet [3] CAP [32] AOD-Net

PSNR 14.1475 15.7606 16.0362 16.7653 18.5385 19.1116 18.9613 19.6364 19.6954

SSIM 0.7141 0.7711 0.7452 0.7356 0.8337 0.8295 0.7753 0.8374 0.8478

Table 2. Average PSNR and SSIM results TestSet B.

Metrics ATM [22] BCCR [12] FVR [25] NLD [1, 2] DCP [8] MSCNN [17] DehazeNet [3] CAP [32] AOD-Net

PSNR 14.3364 17.0205 16.8488 17.4479 18.9781 20.9653 21.3046 21.4544 21.5412

SSIM 0.7130 0.8003 0.8556 0.7463 0.8584 0.8589 0.8756 0.8879 0.9272

Figure 5. Visual results on dehazing synthetic images. From left

to right columns: hazy images, DehazeNet results [3], MSCNN

results [17], AOD-Net results, and the groundtruth images. Please

amplify to view the detail differences in bounded regions.

using Gaussian random variables. We utilize ReLU neuron

as we found it more effective than the BReLU neuron pro-

posed by [3], in our specific setting. The momentum and

the decay parameter are set to 0.9 and 0.0001, respectively.

We adopt the simple Mean Square Error (MSE) loss func-

tion, and are pleased to find that it boosts not only PSNR,

but also SSIM as well as visual quality.

The AOD-Net model takes around 10 training epochs

to converge, and usually performs sufficiently well after 10

epochs. It is also found helpful to clip the gradient to con-

strain the norm within [−0.1, 0.1]. The technique has been

popular in stabilizing the recurrent network training [15].

4.2. Quantitative Results on Synthetic Images

We compared the proposed model with several state-

of-the-art dehazing methods: Fast Visibility Restoration

(FVR) [25], Dark-Channel Prior (DCP) [8], Boundary

Constrained Context Regularization (BCCR) [12], Auto-

matic Atmospheric Light Recovery (ATM) [22], Color At-

tenuation Prior (CAP) [32], Non-local Image Dehazing

(NLD) [1], DehazeNet [3], and MSCNN [17]. Among

previous experiments, few quantitative results about the

restoration quality were reported, due to the absence of

haze-free ground-truth when testing on real hazy images.

Our synthesized hazy images are accompanied with ground-

truth images, enabling us to measure the PSNR and SSIM

and to examine if the dehazed results remain faithful.

Tables 1 and 2 display the average PSNR and SSIM re-

sults on TestSets A and B, respectively. Since AOD-Net is

optimized from end to end under the MSE loss, it is not

surprising to see its higher PSNR performance than others.

More appealing is the observation that AOD-Net obtains

even greater SSIM advantages over all competitors, even

though SSIM is not directly referred to as an optimization

criterion. As SSIM measures beyond pixel-wise errors and

is well-known to more faithfully reflect the human percep-

tion, we become curious through which part of AOD-Net,

such a consistent SSIM improvement is achieved.

We conduct the following investigation: each image in

TestSet B is decomposed into the sum of a mean image and

a residual image. The former is constructed by all pixel lo-

cations taking the same mean value (the average 3-channel

vector across the image). It is easily justified that the MSE

between the two images equals the MSE between their

mean images added with that between two residual images.

The mean image roughly corresponds to the global illumi-

nation and is related to A, while the residual concerns more

the local structural variations and contrasts, etc. We observe

that AOD-Net produces the similar residual MSE (averaged

on TestSet B) to a few competitive methods such as De-

hazeNet and CAP. However, the MSEs of the mean parts of

AOD-Net results are drastically lower than DehazeNet and

CAP, as shown in Table 3. Implied by that, AOD-Net could

be more capable to correctly recover A (global illumina-

tion), thanks to our joint parameter estimation scheme under

an end-to-end reconstruction loss. Since the human eyes are

certainly more sensitive to large changes in global illumina-

tion than to any local distortion, it is no wonder why the

visual results of AOD-Net are also evidently better, while

some other results often look unrealistically bright.

The above advantage also manifests in the illumination

(l) term of computing SSIM [26], and partially interprets

our strong SSIM results. The other major source of SSIM

gains seems to be from the contrast (c) term. As exam-
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(a) Inputs (b) FVR (c) DCP (d) BCCR (e) ATM (f) CAP (g) NLD [1] (h) DehazeNet [3] (i) MSCNN [17] (j) AOD-Net

Figure 6. Challenging natural images results compared with the state-of-art methods.

Metrics ATM [22] BCCR [12] FVR [25] NLD [1] DCP [8] MSCNN [17] DehazeNet [3] CAP [32] AOD-Net

MSE 4794.40 917.20 849.23 2130.60 664.30 329.97 424.90 356.68 260.12

Table 3. Average MSE between the mean images of the dehazed image and the groundtruth image, on TestSet B.

ples, we randomly select five images from TestSetB, on

which the mean of contrast values of AOD-Net results

is 0.9989, significantly higher than ATM (0.7281), BCCR

(0.9574), FVR (0.9630), NLD(0.9250), DCP (0.9457) ,

MSCNN (0.9697), DehazeNet (0.9076), and CAP (0.9760).

4.3. Qualitative Visual Results

Synthetic Images Figure 5 shows the dehazing results

on synthetic images from TestSet A. We observe that AOD-

Net results generally possess sharper contours and richer

colors, and are more visually faithful to the ground-truth.

Challenging Natural Images Although trained with

synthesized indoor images, AOD-Net is found to generalize

well on outdoor images. We evaluate it against the state-

of-the-art methods on a few natural image examples, that

were found to be highly challenging to dehaze [8, 7, 3].

The challenges lie the dominance of highly cluttered ob-

jects, fine textures, or illumination variations. As revealed

by Figure 6, FVR suffers from overly-enhanced visual arti-

facts. DCP, BCCR, ATM, NLD, and MSCNN produce un-

realistic color tones on one or several images, such as DCP,

BCCR and ATM results on the second row (notice the sky

color), or BCCR, NLD and MSCNN results on the fourth

row (notice the stone color). CAP, DehazeNet, and AOD-

Net have the most competitive visual results among all, with

plausible details. Yet by a closer look, we still observe that

CAP sometimes blurs image textures, and DehazeNet dark-

ens some regions. AOD-Net recovers richer and more satu-

rated colors (compare among third- and fourth-row results),

while suppressing most artifacts.

White Scenery Natural Images White scenes or object

has always been a major obstacle for haze removal. Many

effective priors such as [8] fail on white objects since for ob-

jects of similar color to the atmospheric light, the transmis-

sion value is close to zero. DehazeNet [3] and MSCNN [17]

both rely on carefully-chosen filtering operations for post-

processing, which improve their robustness to white objects

but inevitably sacrifice more visual details.

Although AOD-Net does no explicitly consider the han-

dling of white scenes, our joint optimization scheme seems
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(a) Input (b) DCP [8] (c) CAP [32] (d) DehazeNet [3] (e) MSCNN [17] (f) AOD-Net

Figure 7. White scenery image dehazing results. Please amplify figures to view the detail differences in bounded regions.

Figure 8. Examples for anti-halation enhancement. Left column:

real photos with halation. Right column: results by AOD-Net.

to contribute stronger robustness here. Figure 7 displays

two hazy images of white scenes and their dehazing results.

It is easy to notice the intolerable artifacts of DCP results,

especially in the sky region of the first row. The problem

is alleviated, but persists in CAP, DehazeNet and MSCNN

results, while the AOD-Net results are almost artifact-free.

Moreover, CAP seems to blur the textural details on white

objects, while MSCNN creates the opposite artifact of over-

enhancement: see the cat head region for a comparison.

AOD-Net is able to remove the haze, without introducing

fake color tones or distorted object contours.

Image Anti-Halation We try AOD-Net on another im-

age enhancement task, called image anti-halation, without

re-training. Halation is a spreading of light beyond proper

boundaries, forming an undesirable fog effect in the bright

areas of photos. Being related to dehazing but following

different physical models, the anti-halation results by AOD-

Net are decent too: see Figure 8 for a few examples.

4.4. Running Time Comparison

The light-weight structure of AOD-Net leads to faster de-

hazing. We select 50 images from TestSet A for all models

Table 4. Comparison of average model running time (in seconds).

Image Size 480× 640 Platform

ATM [22] 35.19 Matlab

DCP [8] 18.38 Matlab

FVR [25] 6.15 Matlab

NLD [1, 2] 6.09 Matlab

BCCR [12] 1.77 Matlab

MSCNN [17] 1.70 Matlab

CAP [32] 0.81 Matlab

DehazeNet (Matlab) [3] 1.81 Matlab

DehazeNet (Pycaffe)2 [3] 5.09 Pycaffe

AOD-Net 0.65 Pycaffe

to run, on the same machine (Intel(R) Core(TM) i7-6700

CPU@3.40GHz and 16GB memory), without GPU acceler-

ation. The per-image average running time of all models are

shown in Table 4. Despite other slower Matlab implemen-

tations, it is fair to compare DehazeNet (Pycaffe version)

and ours. The results illustrate the promising efficiency of

AOD-Net, costing only 1/10 time of DehazeNet per image.

5. Improving High-level Tasks with Dehazing

We study the problem of object detection and recogni-

tion [16, 30] in the presence of haze, as an example for

how high-level vision tasks can interact with dehazing. We

choose the Faster R-CNN model [16] as a strong baseline3,

and test on both synthetic and natural hazy images. We

then concatenate the AOD-Net model with the Faster R-

CNN model, to be jointly optimized as a unified pipeline.

General conclusions drawn from our experiments are: as

the haze turns heavier, the object detection becomes less re-

liable. In all haze conditions (light, medium or heavy), our

jointly tuned model constantly improves detection, surpass-

ing both naive Faster R-CNN and non-joint approaches.

3We use the VGG16 model pre-trained based on 20 classes of Pascal

VOC 2007 dataset provided by the Faster R-CNN authors.
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Setting Heavy + F Heavy + A Medium + F Medium + A Light + F Light + A Goundtruth

mAP 0.5155 0.5794 0.6046 0.6401 0.6410 0.6701 0.6990

Table 5. mAP comparison on all seven settings: “Heavy + F” and “Heavy + A” are short for “Heavy + Faster R-CNN” and “Heavy +

AOD-Net followed by Faster R-CNN”, respectively; similarly for the other two groups.

(a) Faster R-CNN (b) DehazeNet + Faster R-CNN (c) AOD-Net + Faster R-CNN (d) AOD-Faster R-CNN

Figure 9. Comparison of detection and recognition results on natural hazy images, using a threshold of 0.6.

Quantitative Results on Pascal-VOC 2007 with Syn-

thetic Haze We create three synthetic sets from the Pascal

VOC 2007 dataset (referred to as Groundtruth) [5]: Heavy

Haze (A = 1, β = 0.1), Medium Haze (A = 1, β = 0.06),

and Light Haze (A = 1, β = 0.04). The depth maps

are predicted via the method described in [10]. We calcu-

late the mean average precision (mAP) on the sets (includ-

ing Groundtruth), using both Faster R-CNN and AOD-Net

concatenated with Faster R-CNN (without joint tuning), as

compared in Table 5. The heavy haze degrades mAP for

nearly 0.18. By appending AOD-Net, the mAP improves

by 4.54% for object detection in the light haze condition,

5.88% in the medium haze, and 12.39% in the heavy haze.

Furthermore, we jointly tune the end-to-end pipeline of

AOD-Net concatenated with Faster R-CNN in the Heavy

Haze condition, with a learning rate of 0.0001. It further

boosts the mAP from 0.5794 to 0.6819, showing the im-

pressive power of joint tuning.

Visualized Results Figure 9 displays a visual compari-

son of object detection results on web-source natural hazy

images. Four approaches are compared: (1) naive Faster-

RCNN: directly apply pre-trained Faster-RCNN to the hazy

image; (2) DehazeNet + Faster R-CNN: DehazeNet con-

catenated with Faster R-CNN, without any joint tuning; (3)

AOD-Net + Faster R-CNN: AOD-Net concatenated with

Faster R-CNN without joint tuning; (4) JAOD-Faster R-

CNN: jointly tuning the pipeline of AOD-Net and Faster

R-CNN from end to end. We observe that haze can cause

missing detections, inaccurate localizations and unconfident

category recognitions for Faster R-CNN. DehazeNet tends

to darken images, which often impacts detection negatively

(see the first row, column (b)). While AOD-Net + Faster

R-CNN already show visible advantages over naive Faster-

RCNN, the performance is further dramatically improved in

JAOD-Faster R-CNN results.

Note that JAOD-Faster R-CNN benefits from joint opti-

mization in two-folds: the AOD-Net itself jointly estimates

all parameters in one, and the entire pipeline tunes the low-

level (dehazing) and high-level (detection and recognition)

tasks from end to end.

6. Conclusion

The paper proposes AOD-Net, an all-in-one pipeline

that direct reconstructs haze-free images via an end-to-end

CNN. We compare AOD-Net with a variety of state-of-the-

art methods, on both synthetic and natural haze images, us-

ing both objective (PSNR, SSIM) and subjective measure-

ments. Extensive experimental results confirm the superi-

ority, robustness, and efficiency of AOD-Net. Moreover,

we present the first-of-its-kind study, on how AOD-Net can

boost the object detection and recognition performance on

natural hazy images, by joint tuning the pipeline.
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