AP* Buffer Equilibrium Free Response Questions KEY

Essay Questions

1972

Since ammonium chloride is a salt of a weak base, the weak base is needed, ammonia, NH3.
(a) When moderate amounts of a strong acid, $\mathrm{H}+$, are added, the ammonia reacts with it. The concentration of the hydrogen ion remains essentially the same and therefore only a very small change in pH .
$\mathrm{NH}_{3}+\mathrm{H}^{+}<=>\mathrm{NH}_{4}{ }^{+}$
(b) When moderate amounts of a strong base, OH -, are added, the ammonium ion reacts with it. The concentration of the hydrogen ion remains essentially the same and therefore only a very small change in pH .
$\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}<=>\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(c) By diluting with water the relative concentration ratio of $\left[\mathrm{NH}_{4}{ }^{+}\right] /\left[\mathrm{NH}_{3}\right]$ does not change, therefore there should be no change in pH .

1983

(a) three points

A buffer solution resists changes in pH upon the addition of an acid or base.
Preparation:

- Mix a weak acid + a salt of a weak acid.
- Or mix a weak base + a salt of a weak base.
- Or mix a weak acid with about half as many moles of strong base.
- Or mix a weak base with about half as many moles of strong acid.
- Or mix a weak acid and a weak base.
(b) five points

Carla has the correct procedure. She has mixed a weak base, NH3, with the salt of a weak base, NH 4 Cl .
Archie has buffer solution but it has a pH around 5 .
Beula does not have a buffer solution, since her solution consists of a strong acid and a salt of a weak base.
Dexter does not have a buffer solution, since his solution consists of a weak base plus a strong base.

1988

Average score $=1.76$
a) two points

The sharp vertical rise in the pH on the pH -volume curve appears at the equivalence point (about 23 mL). Because the acid is monoprotic, the number of moles of acid equals the number of moles of NaOH . That number is the product of the exact volume and the molarity of the NaOH . The molarity of the acid is the number of moles of the acid divided by 0.030 L , the volume of the acid.
b) two points

At the half-equivalence point (where the volume of the base added is exactly half its volume at the equivalence point), the concentration [HX] of the weak acid equals the concentration [X^{-}] of its anion. Thus, in the equilibrium expression, $\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]$/ $[\mathrm{HX}]=\mathrm{K}_{\mathrm{a}}$. Therefore, pH at the half-equivalence point equals pK_{a}
c) one point

Cresol red is the best indicator because its pK_{a} (about 8) appears midway in the steep equivalence region. This insures that at the equivalence point the maximum color change for the minimal change in the volume of NaOH added is observed.
d) three points

6(a) Best conjugate pair : $\mathrm{H}_{2} \mathrm{PO}_{4}, \mathrm{HPO}_{4}^{2}=\quad$ (1)
\therefore pts. when $7.2=p H=p \mathrm{Ka}$ fr this pair when $\left\{\mathrm{HPO}_{4}^{2-}\right]=\left\{\mathrm{H}_{2} \rho \mathrm{O}_{4}^{-}\right]$. (1)
(b). Dessolor equal moles (or amounts) of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and pt HPO_{4}^{2-} (or appropuate compuends) un water
$\ldots \ldots$ answer un (a) was $\mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$, student. would receir. I pt m (b) if then stated that $\mathrm{CO}_{3}{ }^{2-} / \mathrm{HCO}_{3}^{-}$mole unto wares 6,7:1
(c).. PH not change

Capacity of buffer wowed increase because
3 pis there are more males of conjugate acid and conjugate base to react with added base or acid
(d) Add stang base to eat of conjugate uceit

2 pts
or add strong acc to salt of conjugate brae
add 1 mole conjugate acid to $\frac{1}{2}$ mole shoug base 1 or 1 mole conjugate base to $\frac{1}{2}$ male strong reed
or use pH mater to monitor addetennstrong bus to conjugate reid or strong acis to conjugate base

Question 5

(8 points)
(a) 4 essential steps: 2 pts

1) weigh KHP
2) fill buret with NaOH solution
3) add indicator (phenolphthalein)
4) titrate to endpoint (color change)

- Two points earned for all 4 steps; one point earned for 2 or 3 steps
- Titration of acid into base accepted if described correctly
(b) moles $\mathrm{KHP}=\frac{\text { mass KHP }}{\text { molar mass KHP }}$ 1 pt moles $\mathrm{KHP}=$ moles OH^{-}at equivalence and $\frac{\text { moles } \mathrm{OH}^{-}}{\text {liters } \mathrm{NaOH}}=\left[\mathrm{OH}^{-}\right] \quad$ 1 pt
- Acceptable if some parts of part (b) appear in (a)
(c) Curve should have 3 important features:

1) curve begins above pH 1 , but below pH 7
2) equivalence point at 25 mL
3) equivalence point above pH 7

- Both points earned for all 3 features
- One point earned for any 2 of the 3 features

(d) At the half-way point in the titration, $\mathrm{pH}=\mathrm{p} K_{a}$. 1 pt
(e) At point A in the titration, the anion in highest concentration is Y^{2-}. 1 pt
- Also accepted: $\mathrm{Y}^{-2}, \mathrm{Y}^{--}, \mathrm{Y}^{=}$, and specific anions such as $\mathrm{SO}_{4}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$
- $\mathrm{HY}^{-}, \mathrm{Y}^{-}$, and "Y ion" not accepted

$A P^{\circledR}$ Chemistry 2000 - Scoring Standards

Question 8

(8 points)
(a) $\quad \mathrm{NH}_{3}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{NH}_{4}^{+}(a q)$
$\begin{aligned} & \boldsymbol{o r} \\ & \mathrm{O}^{+}(a q)\end{aligned} \rightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
1 pt.
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
Note: phase designations not required to earn point
(b) Sketch of Titration Curve: 3 pts.

Volume of 0.20 M HCl Added

- $1^{\text {st }}$ pt. \Rightarrow initial pH must be >7 (calculated $\mathrm{pH} \approx 11$)
- $2^{\text {nd }} \mathrm{pt} . \Rightarrow$ equivalence point occurs at $15.0 \mathrm{~mL} \pm 1 \mathrm{~mL}$ of HCl added (equivalence point must be detectable from the shape of the curve or a mark on the curve)
$-3^{\text {rd }} \mathrm{pt} . \Rightarrow \mathrm{pH}$ at equivalence point must be <7 (calculated $\mathrm{pH} \approx 5$).
Note: a maximum of 1 point earned for any of the following:
- a line without an equivalence point
- a random line that goes from high pH to low pH
- an upward line with increasing pH (equivalence point MUST be at 15.0 mL)

AP ${ }^{\circledR}$ Chemistry 2000 - Scoring Standards

Question 8
 (continued)

(c) Methyl Red would be the best choice of indicator,
because
the $\mathrm{p} K_{a}$ for Methyl Red is closest to the pH at the equivalence point.
1 pt.

- explanation must agree with equivalence point on graph
- alternative explanation that titration involves strong acid and weak base (with product an acidic salt) earns the point
d) The resulting solution is basic.

1 pt.
K_{b} for $\mathrm{NH}_{3}\left(1.8 \times 10^{-5}\right)$ and K_{a} for $\mathrm{NH}_{4}^{+}\left(5.6 \times 10^{-10}\right)$ indicate that NH_{3} is a stronger base than $\mathrm{NH}_{4}{ }^{+}$is an acid
or
1 pt.
$\left[\mathrm{OH}^{-}\right]=K_{b}=1.8 \times 10^{-5}$ because of the equimolar and equivolume amounts of ammonium and ammonia \Rightarrow cancellation in the buffer pH calculation. Thus $\mathrm{pOH} \approx 5$ and $\mathrm{pH} \approx 9$ (i.e., recognition of buffer, so that $\log \left(\frac{0.05}{0.05}\right)=0 \Rightarrow$ $\mathrm{pOH}=\mathrm{p} K_{b} \approx 5 \Rightarrow \mathrm{pH}=14-\mathrm{pOH} \approx 9$)

Problems

(a) $\mathrm{CH}_{3} \mathrm{COOH}(a q)<=>\mathrm{H}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$
$\mathrm{K}_{\mathrm{a}}=1.8 \infty 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\mathrm{X}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=2.0-\mathrm{X}, \mathrm{X} \ll 2.0,(2.0-\mathrm{X})=2.0$
$1.8 \times 10^{-5}=\frac{X^{2}}{2.0}$
$\mathrm{X}=6.0 \times 10^{-3}=\left[\mathrm{H}^{+}\right] ; \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.22$
(b) $\quad 0.1 \mathrm{~L} \times 2.0 \mathrm{~mol} / \mathrm{L}=0.20 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$
$0.1 \mathrm{~L} \times 1.0 \mathrm{~mol} / \mathrm{L}=0.10 \mathrm{~mol} \mathrm{NaOH}$
the 0.10 mol of hydroxide neutralizes $0.10 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ with 0.10 mol remaining
with a concentration of $0.10 \mathrm{~mol} / 0.20 \mathrm{~L}=0.5 \mathrm{M}$. This also produces 0.10 mol of acetate ion in 0.20 L , therefore, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.50 \mathrm{M}$.
$1.8 \propto 10^{-5}=\frac{\left[\mathrm{H}^{+}\right][0.50]}{[0.50]}$
$\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-5}=\mathrm{pH}$ of 4.74
(c) $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{o}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{0}$

$$
\begin{aligned}
& =0.50 \mathrm{M} \mathrm{x}^{\frac{0.040 \mathrm{~L}}{0.14 \mathrm{~L}}}=0.143 \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]_{\mathrm{o}}=0.50 \mathrm{M} \mathrm{x}^{\frac{0.10 \mathrm{~L}}{0.14 \mathrm{~L}}}=0.357 \mathrm{M}}
\end{aligned}
$$

the equilibrium will be pushed nearly totally to the left resulting in a decrease of the hydrogen ion by 0.143 M . Therefore, the $\left[\mathrm{H}^{+}\right]_{\text {eq }}=0.357 \mathrm{M}-0.143 \mathrm{M}=0.214 \mathrm{M}$.
(a) $\quad \mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}<=>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}$
$3.2 \infty 10^{-8}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]}=\frac{\mathrm{X}^{2}}{(0.050-\mathrm{X})}$
$\mathrm{X}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$
(b) $\quad \mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}<=>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}$
$\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][0.010+\mathrm{X}]}{[0.0250-\mathrm{X}]}=3.2 \infty 10^{-8}$
; $\mathrm{X} \ll 0.010$
$\mathrm{X}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.0 \times 10^{-8} \mathrm{M}$
(c) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{HCl}+\mathrm{HOCl}$
$[\mathrm{HOCl}]=[\mathrm{HCl}]=0.0040 \mathrm{M}$
HCl as principal source of $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.40$

AP* Acid-Base Buffer Free Response Questions KEY

1982
a) 3 points
$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}$
$\mathrm{K}_{\mathrm{a}}=\left(\left[{\left.\left.\mathrm{H} 3 O^{+}\right]\left[\mathrm{HCOO}^{-}\right]\right) /[\mathrm{HCOOH}]}\right.\right.$

| | $[\mathrm{HCOOH}]$ | $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ | $\left[\mathrm{HCOO}^{-}\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| Initial: | 0.40 | | 0.60 |
| Equil: | $0.40-\mathrm{y}$ | y | $0.60+\mathrm{y}$ |

$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}=(\mathrm{y}(0.40+\mathrm{y})) \div(0.60-\mathrm{y})$
neglect the +y and the -y
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{y}=1.2 \times 10^{-4}$
$\mathrm{pH}=-\log \left(1.2 \times 10^{-4}\right)=3.92$
Alternative Approach:
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
$=-\log \left(1.8 \times 10^{-4}\right)+\log (0.40 / 0.60)$
$=3.92$
b) 1 point

The pH remains unchanged because the ratio of the formate and formic acid stays the same
c) 3 points

Initial amounts of concentrations:
$1.00 \mathrm{M} \mathrm{HCl} \times 0.00500 \mathrm{~L}=0.00500$ mole HCl
$0.40 \mathrm{M} \mathrm{HCOOH} \times 0.100 \mathrm{~L}=0.040$ mole HCOOH
$0.60 \mathrm{M} \mathrm{HCOO}^{-} \mathrm{x} 0.100=0.060$ mole HCOO^{-}
or
$1.00 \mathrm{M} \mathrm{HCl} x(5.00 \mathrm{ml} / 105 \mathrm{ml})=0.0476 \mathrm{M} \mathrm{HCl}$
$0.40 \mathrm{M} \mathrm{HCOOH} \times(100 \mathrm{ml} / 105 \mathrm{ml})=0.38 \mathrm{M} \mathrm{HCOOH}$
$0.60 \mathrm{M} \mathrm{HCOO}^{-} \mathrm{x}(100 \mathrm{ml} / 105 \mathrm{ml})=0.57 \mathrm{M} \mathrm{HCOO}^{-}$
Amounts or concentrations after H^{+}reacts with HCOO^{-}:
$0.040+0.005=0.045$ mole HCOOH
$0.060-0.005=0.055$ mole HCOO^{-}
or
$0.43 \mathrm{M} \mathrm{HCOOH}^{2}$ and $0.52 \mathrm{M} \mathrm{HCOO}^{-}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-4} \mathrm{x}((0.045 / \mathrm{vol}) /.(0.055 / \mathrm{vol}))=.1.5 \times 10^{-4} \mathrm{M}$
d) 2 points
0.800 liter x $2.00 \mathrm{M} \mathrm{HCOOH}=1.60$ moles HCOOH
0.200 liter x $4.80 \mathrm{M} \mathrm{NaOH}=0.96 \mathrm{~mole} \mathrm{OH}^{-}$
1.60 moles $\mathrm{HCOOH}+0.96$ mole OH^{-}yields 0.64 mole HCOOH and 0.96 mole HCOO^{-} $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-4} \times(0.64$ mole/liter $) /(0.96$ mole/liter $)=1.2 \times 10^{-4}$
The alternative approach in part (a) can also be used in part (d)

1984
Average score 4.36
a) two points
$\mathrm{pH}=8.60$
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-8.60} \mathrm{M}=2.5 \times 10^{-9} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-14}\right) /\left(2.5 \times 10^{-9}\right) \mathrm{M}$ $=4.0 \times 10^{-6} \mathrm{M}$
b) three points

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{HOH}^{-}-->\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-}{ }^{-} \\
& \mathrm{K}=\left(\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{OH}^{-}\right]\right) \div\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right] \\
& =\left(\left(4.0 \times 10^{-8}\right)\left(4.0 \times 10^{-6}\right)\right) \div\left(0.10-4.0 \times 10^{-6}\right) \\
& =1.6 \times 10^{-10}
\end{aligned}
$$

c) one point

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}<====>\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-} \\
& \mathrm{K}_{\mathrm{a}}=\left(\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]\right) \div\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right] \\
& =\left(\left(2.5 \times 10^{-9}\right)(0.10)\right) \div\left(4.0 \times 10^{-6}\right) \\
& =6.3 \times 10^{-5}
\end{aligned}
$$

d) two points

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}<===>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{H}^{-} \\
& \mathrm{pH}=2.88 \\
& {\left[\mathrm{H}^{+}\right]=1 \times 10^{-2.88} \mathrm{M}=1.3 \times 10^{-3}} \\
& \mathrm{~K}_{\mathrm{a}}=\left(\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]\right) \div\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right] \\
& 6.3 \times 10^{-8}=\left(\left(1.3 \times 10^{-3}\right)\left(1.3 \times 10^{-3}\right)\right) \div \mathrm{x} \\
& \mathrm{x}=2.8 \times 10^{-2} \mathrm{M} \\
& \text { Total } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} \text { in solution }= \\
& \left(2.8 \times 10^{-2}+1.3 \times 10^{-3}\right) \mathrm{M}= \\
& 2.9 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

1991
a) three points

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\left(\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]\right) \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right] \\
& 1.3 \times 10^{-5}=\mathrm{x}^{2} \div 0.20 \\
& \mathrm{x}=\left[\mathrm{H}^{+}\right]=1.6 \times 10^{-3}
\end{aligned}
$$

b) one point
$\%$ dissoc. $=\left[\mathrm{H}^{+}\right] \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]$
$=1.6 \times 10^{-3} \div 0.20=0.80 \%$
c) two points

$$
\left[\mathrm{H}^{+}\right]=\text {antilog }(-5.20)=6.3 \times 10^{-6}
$$

$$
1.3 \times 10^{-5}=\left(6.3 \times 10^{-6}\right) \times\left(\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right] \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]\right.
$$

$$
\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right] \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]=1.3 \times 10^{-5} \div 6.3 \times 10^{-6}=2.1
$$

An alternate solution for (c) based on the Henderson-Hasselbalch equation.
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ([$ base $] \div$ [acid])
$5.20=4.89+\log \left(\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right] \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]\right)$
$\log \left(\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right] \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]\right)=0.31$
$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right] \div\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]=2.0$
d) six points
$0.10 \mathrm{~L} \mathrm{x} 0.35 \mathrm{~mol} / \mathrm{L}=0.035 \mathrm{~mol} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
$0.10 \mathrm{~L} \times 0.50 \mathrm{~mol} / \mathrm{L}=0.050 \mathrm{~mol} \mathrm{C} 3 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$
$0.035 \mathrm{~mol}-0.004 \mathrm{~mol}=0.031 \mathrm{~mol} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
$0.050 \mathrm{~mol}+0.004 \mathrm{~mol}=0.054 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$
$1.3 \times 10^{-5}=\left[\mathrm{H}^{+}\right] \times[(0.054 \mathrm{~mol} / 0.1 \mathrm{~L}) \div(0.031 \mathrm{~mol} / 0.1 \mathrm{~L})]$
Can use 0.54 and 0.31 instead.
$\left[\mathrm{H}^{+}\right]=7.5 \times 10^{-6}$
$\mathrm{pH}=5.13$
An alternate solution for (d) based on the Henderson-Hasselbalch equation.
use []s or moles of $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ and $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log (0.054 / 0.031)$
$=4.89+0.24=5.13$
\# 1 STANDARDS
a) $K_{b}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right][\mathrm{OH}]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$

$$
\begin{equation*}
S_{i g} . F_{i g}=-1 \text { for } \geqslant 2 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\text { (3) } \mathrm{CH}_{3} \mathrm{NH}_{2} \times \mathrm{H}_{2} \mathrm{O}=\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} & +\mathrm{OH}^{-} \\
i 0.225 & 0 & 0 \\
\Delta & -x & +x \\
\& 0.225-x & x & x
\end{array} \\
& K_{b}=5.25 \times 10^{-4}=\frac{(x y x)}{0.225-x}=\frac{x^{2}}{0.225} \\
& \left.x=\left[\mathrm{OH}^{-}\right]=1.09 \times 10^{-2}+20 / \mathrm{L}\right)
\end{aligned}
$$

must indicate (Quadratic: $\left.1.06 \times 10^{-2} \mathrm{md} / \mathrm{L}\right)(1)\left[\mathrm{HH}^{-}\right]=x$ or mo Roubt.
b): $\left.\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]=\frac{0.0100 \mathrm{ml}}{0.120 \mathrm{~L}}=0.0833 \mathrm{mld} / \mathrm{L}\right\}$ (1)
(3) $\mathrm{OR} \mathrm{CH}_{3} \mathrm{NH}_{2}=0.120 \mathrm{~L} \times \frac{0.225 \mathrm{~mol}}{2}=0.0270 \mathrm{ml}$

$$
K_{b}=5.25 \times 10^{-4}=\frac{\left(0.0833^{2}+x\right)(x)}{0.225-x} \simeq \frac{0.0833 x(1)}{0.225}
$$

$$
\left.\begin{array}{rl}
X= & {\left[O H^{-}\right]=1.42 \times 10^{-3} \operatorname{mol} / \mathrm{L}} \tag{1}\\
& P O H=2.85 ; \quad P H=11.15
\end{array}\right\}
$$

c) It C $/$ munt the abled. (1)
(2)

$$
\begin{aligned}
& \text { (2) } 5.25 \times 10^{-4}=\frac{(0.0833+y)(0.0010)}{(0.225-x)} \\
& 1.18 \times 10^{-4}-5.25 \times 10^{-4} x=8.33 \times 10^{-5}+1.0 \times 10^{-3} \times \\
& x=0.0228 \mathrm{~mol} / L \\
& 0.0228 \frac{\mathrm{~mol}}{L} \times 0.120 \mathrm{~L}=2.74 \times 10^{-3} \mathrm{mfl} \mathrm{HCl} \\
& \text { d) The } \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}+\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]} \text { ratio Loes mot change (1) } \\
& \text { (1) anflen solution with dilution. }
\end{aligned}
$$

\therefore no affuct on pH

QUESTION 2

(9 points)
2.

$$
\mathrm{HOCl} \rightleftharpoons \mathrm{OCl}^{-}+\mathrm{H}^{+}
$$

Hypochlorous acid, HOCl , is a weak acid commonly used as a bleaching agent. The acid-dissociation constant, K_{a}, for the reaction represented above is 3.2×10^{-8}.
(a) Calculate the $\left[\mathrm{H}^{+}\right]$of a 0.14 -molar solution of HOCl .
(b) Write the correctly balanced net ionic equation for the reaction that occurs when NaOCl is dissolved in water and calculate the numerical value of the equilibrium constant for the reaction.
(c) Calculate the pH of a solution made by combining 40.0 milliliters of 0.14 -molar HOCl and 10.0 milliliters of $0.56-$ molar NaOH .
(d) How many millimoles of solid NaOH must be added to 50.0 milliliters of 0.20 -molar HOCl to obtain a buffer solution that has a pH of 7.49 ? Assume that the addition of the solid NaOH results in a negligible change in volume.
(e) Household bleach is made by dissolving chlorine gas in water, as represented below.

$$
\mathrm{Cl}_{2}(g)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{HOCl}(a q)
$$

Calculate the pH of such a solution if the concentration of HOCl in the solution is 0.065 molar.

Scoring Guide

General Notes: All simplifying assumptions are justified within 5%.
One point deduction for a significant figure or math error, applied only once per problem.
No credit earned for numerical answer without justification.
(a)
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OCl}^{-}\right] \approx \sqrt{0.14 \times 3.2 \times 10^{-8}}=6.7 \times 10^{-5} \mathrm{M}$
2 points
since $K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]} \approx \frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{c}_{\mathrm{HOCl}}}$
(Note: 1 point for correct substitutions; 1 point for computation)
(b) $\quad \mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HOCl}+\mathrm{OH}^{-}\left(\right.$or $\left.\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}+\mathrm{HOCl}+\mathrm{OH}^{-}\right)$

1 point
$K_{b}=\frac{K_{w}}{K_{a}}=\frac{1 \times 10^{-14}}{3.2 \times 10^{-8}}=3.1 \times 10^{-7}$
1 point
(c) Concentrations before reaction: $[\mathrm{HOCl}]=\frac{(0.0400)(0.14)}{(0.050)}=0.11 \mathrm{M}$

$$
\left[\mathrm{OH}^{-}\right]=\frac{(0.0100)(0.56)}{(0.050)}=0.11 \mathrm{M}
$$

Thus reaction is essentially complete and \equiv solution of NaOCl and $\left[\mathrm{OCl}^{-}\right] \approx 0.11 \mathrm{M}$ (or reaction is at equivalence point)

1 point

Then $\left[\mathrm{OH}^{-}\right] \approx[\mathrm{HOCl}] \Rightarrow K_{b}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{0.11}=3.1 \times 10^{-7} \Rightarrow$
$\left[\mathrm{OH}^{-}\right]=\sqrt{(0.11)\left(3.1 \times 10^{-7}\right)}=1.8 \times 10^{-4}, \mathrm{pOH}=3.73$

$$
\mathrm{pH}=14-3.73=10.27
$$

1 point
(d) $\mathrm{pH}=7.49 \Rightarrow\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-8}$
$\mathrm{pH}=\mathrm{p} K_{a}$, or $\left[\mathrm{H}^{+}\right]=K_{a}$.
So $\frac{\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]}=1$, or solution must be half neutralized
1 point
initial $\mathrm{mmol} \mathrm{HOCl}=50.0 \times 0.20=10.0 \mathrm{mmol}$
mmol NaOH required $=\frac{10.0}{2}=5.0 \mathrm{mmol}$
1 point
(e) From equation, $1 \mathrm{~mol} \mathrm{H}{ }^{+}$produced for each 1 mole of HOCl produced, thus $\left[\mathrm{H}^{+}\right] \approx[\mathrm{HOCl}]=0.065 \mathrm{M} \Rightarrow \mathrm{pH}=1.19$

AP ${ }^{\circledR}$ CHEMISTRY 2001 SCORING GUIDELINES

Question 3

(10 points)
(a) $\quad(0.325 \mathrm{~g} / 2.00 \mathrm{~g}) \times 100 \%=\mathbf{1 6 . 2} \% \quad 1$ point
(b) $\frac{1.200 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} / \mathrm{mol}}=0.06659 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$\begin{array}{ll}\left(0.06659 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(2 \mathrm{~mol} \mathrm{H} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right)=0.1332 \mathrm{~mol} \mathrm{H} \\ (0.1332 \mathrm{~mol} \mathrm{H})(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})=\mathbf{0 . 1 3 4 3} \mathbf{g ~ H} & \text { 1 point }\end{array}$
$n_{\mathrm{CO}_{2}}=\frac{P V}{R T}=\frac{(750 / 760) \mathrm{atm} \times 3.72 \mathrm{~L}}{\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}=\mathbf{0 . 1 5 0} \mathbf{~ m o l ~ C O} \mathbf{C O}_{2} \quad$ 1 point
$(0.150 \mathrm{~mol} \mathrm{CO} 2)\left(1 \mathrm{~mol} \mathrm{C} / \mathrm{mol} \mathrm{CO}_{2}\right)=0.150 \mathrm{~mol} \mathrm{C}$
$(0.150 \mathrm{~mol} \mathrm{C})(12.0 \mathrm{~g} / \mathrm{mol})=\mathbf{1 . 8 0} \mathbf{g ~ C} \quad 1$ point
grams of oxygen $=3.00 \mathrm{~g}-(1.80 \mathrm{~g}+0.133 \mathrm{~g})=\mathbf{1 . 0 7} \mathbf{g ~ O}$
1 point

Note: The first point is earned for getting the correct mass of H : the second point is earned for using the Ideal Gas Law and substituting consistent values of P, V, R, and T. The third point is earned for converting moles of CO_{2} to moles of C and then grams of C . If the number of moles of CO_{2} is calculated incorrectly, but that incorrect value is used correctly, the third point is earned. The fourth point is earned for using the values of H and C to get the mass of oxygen by difference. If one (or both) of the previously determined values is incorrect, but the student uses those incorrect values correctly, the fourth point is still earned.
(c) moles $\mathrm{OH}^{-}=(0.08843 \mathrm{~L})(0.102 \mathrm{~mol} / \mathrm{L})=0.00902 \mathrm{~mol} \mathrm{OH}^{-}$,
therefore, $0.00902 \mathrm{~mol} \mathrm{H}^{+}$neutralized, therefore 0.00902 mole acid
molar mass $=\frac{1.625 \mathrm{~g}}{0.00902 \mathrm{~mol}}=180 . \mathrm{g} / \mathrm{mol}$

Note: The first point is earned for setting up the calculation to determine the number of moles of OH^{-}used in the titration; the second point is earned for using the number of moles of OH^{-}correctly to get the molar mass. If the number of moles of OH^{-}is incorrectly calculated, credit can be earned for this step if the student uses the incorrect value correctly.

AP ${ }^{\circledR}$ CHEMISTRY 2001 SCORING GUIDELINES

Question 3 (cont.)

(d) (i) The $\mathrm{p} K_{a}$ is equal to the pH halfway to the equivalence point.

1 point
At 10.00 mL of added $\mathrm{NaOH}, \mathrm{pH}=3.44$, therefore $\mathrm{p} K_{a}=3.44$
$K_{a}=10^{-3.44}=3.6 \times 10^{-4}$

- Other paths to the correct answer include using the initial data point and the acid equilibrium value, or using the Henderson-Hasselbalch equation
(ii) Beyond the end point, there is excess OH^{-}, and the $\left[\mathrm{OH}^{-}\right]$determines the pH .

Moles of excess $\mathrm{OH}^{-}=(0.00500 \mathrm{~L})(0.100 \mathrm{~mol} / \mathrm{L})=5.00 \times 10^{-4} \mathrm{~mol} \mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=\frac{5.00 \times 10^{-4} \mathrm{~mol} \mathrm{OH}^{-}}{0.04000 \mathrm{~L}}=1.25 \times 10^{-2} M \mathrm{OH}^{-}$
$\mathrm{pOH}=1.90$
$\mathrm{pH}=\mathbf{1 2 . 1 0}$
1 point

Note: The first point is earned for recognizing that the pH past the end point is determined by the amount of excess OH^{-}ions; the second point is earned for the calculations and the final answer.

AP ${ }^{\circledR}$ CHEMISTRY 2002 SCORING GUIDELINES (Form B)

Question 1

10 points

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}(a q)
$$

1. Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, is a monoprotic acid that dissociates in aqueous solution, as represented by the equation above. Lactic acid is 1.66 percent dissociated in $0.50 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(\mathrm{aq})$ at 298 K . For parts (a) through (d) below, assume the temperature remains at 298 K .
(a) Write the expression for the acid-dissociation constant, K_{a}, for lactic acid and calculate its value.

$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]}$	1 point earned for equilibrium expression
$0.50 M \times 0.0166=0.0083 M=\mathrm{x}$	1 point earned for amount of $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ dissociating
$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}(\mathrm{aq})$	
I $0.50 \quad \sim 0$	
C $\quad-\mathrm{x}$ +x +x	
E $0.50-\mathrm{x}+\mathrm{x} \quad+\mathrm{x}$	
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]}=\frac{[0.0083][0.0083]}{[0.50-0.0083]}$	1 point earned for $\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]$set up and solution
$K_{a}=1.4 \times 10^{-4}$	

(b) Calculate the pH of $0.50 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$.

```
From part (a):
[H+}]=0.0083 
pH = - log[H+}]=-\operatorname{log}(0.0083)=2.0
```

1 point earned for correctly calculating pH

AP ${ }^{\circledR}$ CHEMISTRY 2002 SCORING GUIDELINES (Form B)

Question 1 (cont'd.)

(c) Calculate the pH of a solution formed by dissolving 0.045 mole of solid sodium lactate, $\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, in 250. mL of $0.50 M \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$. Assume that volume change is negligible.

$$
\begin{aligned}
& \frac{0.045 \mathrm{~mol} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}}{0.250 \mathrm{~L}}=0.18 \mathrm{M} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-} \\
& \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}(a q) \\
& \begin{array}{llll}
\mathrm{I} & 0.50 & \sim 0 & 0.18
\end{array} \\
& \begin{array}{llll}
\mathrm{C} & -\mathrm{x} & +\mathrm{x} & +\mathrm{x}
\end{array} \\
& \text { E } \quad 0.50-\mathrm{x} \quad+\mathrm{x} \quad 0.18+\mathrm{x} \\
& K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]}=\frac{[\mathrm{x}][0.18+\mathrm{x}]}{[0.50-\mathrm{x}]}
\end{aligned}
$$

Assume that $\mathrm{x} \ll 0.18 \mathrm{M}$
$K_{a}=1.4 \times 10^{-4}=\frac{[\mathrm{x}][0.18]}{[0.50]}$
$\mathrm{x}=3.9 \times 10^{-4} M=\left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(3.9 \times 10^{-4}\right)=3.41$
OR

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \underline{0.18} \text { or } \underline{0.045}=3.41
$$

$0.50 \quad 0.125$

1 point earned for $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}\right]$
(or $0.250 \mathrm{~L} \times 0.50 \mathrm{~mol} / \mathrm{L}=0.125$
mol $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ and $0.045 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}$)

1 point earned for $\left[\mathrm{H}^{+}\right]$
(set up and calculation)

1 point earned for calculating the value of pH

AP ${ }^{\circledR}$ CHEMISTRY 2002 SCORING GUIDELINES (Form B)

Question 1 (cont'd.)

(d) A $100 . \mathrm{mL}$ sample of 0.10 M HCl is added to $100 . \mathrm{mL}$ of $0.50 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$. Calculate the molar concentration of lactate ion, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}$, in the resulting solution.

$0.50 \mathrm{MHC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\left(\frac{100 \mathrm{~mL}}{200 \mathrm{~mL}}\right)=0.25 \mathrm{MHC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1 point earned for initial $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]$
$0.10 \mathrm{M} \mathrm{HCl}\left(\frac{100 \mathrm{~mL}}{200 \mathrm{~mL}}\right)=0.050 \mathrm{M}^{+}$	OR $\left(10 \mathrm{mmol} \mathrm{H}^{+} ; 50 \mathrm{mmol} \mathrm{HC} 3 \mathrm{H}_{5} \mathrm{O}_{3}\right.$)
$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}(a q)$	
$\begin{array}{cccc}\mathrm{I} & 0.25 & 0.050 & 0\end{array}$	1 point earned for showing dilution or moles of each
$\begin{array}{llll}\text { C } & -\mathrm{x} & +\mathrm{x} & +\mathrm{x}\end{array}$	
E $\quad 0.25-\mathrm{x} \quad 0.050+\mathrm{x} \quad+\mathrm{x}$	
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]}=\frac{[0.050+\mathrm{x}][\mathrm{x}]}{[0.25-\mathrm{x}]}$	1 point earned for $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]$setup and calculation
Assume $\mathrm{x} \ll 0.050 \mathrm{M}$	
$K_{a}=1.4 \times 10^{-4}=\frac{[0.050][\mathrm{x}]}{[0.25]}$	
$\mathrm{x}=7.0 \times 10^{-4} \mathrm{M}=\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}\right]$	

AP ${ }^{\circledR}$ CHEMISTRY 2003 SCORING GUIDELINES

Question 1

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

1. Aniline, a weak base, reacts with water according to the reaction represented above.
(a) Write the equilibrium expression, K_{b}, for the reaction represented above.

$$
\begin{array}{c|c}
\hline K_{b}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]} & 1 \text { point for correct expression } \\
\hline
\end{array}
$$

(b) A sample of aniline is dissolved in water to produce 25.0 mL of a 0.10 M solution. The pH of the solution is 8.82 . Calculate the equilibrium constant, K_{b}, for this reaction.

$$
\begin{aligned}
& \mathrm{pH}=8.82 \\
& \mathrm{pOH}=14-8.82=5.18 \\
& {\left[\mathrm{OH}^{-}\right]=10^{-5.18}=6.61 \times 10^{-6} \mathrm{M}} \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]=\left[\mathrm{OH}^{-}\right]=6.6 \times 10^{-6} \mathrm{M}} \\
& K_{b}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}=\frac{\left(6.6 \times 10^{-6}\right)^{2}}{0.10} \\
& K_{b}=4.4 \times 10^{-10}
\end{aligned}
$$

1 point for calculation of $\left[\mathrm{OH}^{-}\right]$
1 point for $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]=\left[\mathrm{OH}^{-}\right]$

1 point for calculation of K_{b}
Note: Following this point, any value of K_{b} obtained must be carried through.

AP ${ }^{\circledR}$ CHEMISTRY 2003 SCORING GUIDELINES

Question 1 (cont'd.)

(c) The solution prepared in part (b) is titrated with 0.10 M HCl . Calculate the pH of the solution when 5.0 mL of the acid has been added.

AP ${ }^{\circledR}$ CHEMISTRY
 2003 SCORING GUIDELINES

Question 1 (cont'd.)

(d) Calculate the pH at the equivalence point of the titration in part (c).

(e) The $\mathrm{p} K_{a}$ values for several indicators are given below. Which of the indicators listed is most suitable for this titration? Justify your answer.

Indicator	$\mathrm{p} K_{a}$
Erythrosine	3
Litmus	7
Thymolphthalein	10

| The pH at the equivalence point is acidic. The best indicator is
 erythrosine, for which the value of $\mathrm{p} K_{a}$ is closest to the pH at
 the equivalence point. |
| :--- | | 1 point for correct indicator and |
| :--- |
| justification |

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

AP ${ }^{\circledR}$ CHEMISTRY 2005 SCORING GUIDELINES

Question 1

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}(a q) \rightleftarrows \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q)+\mathrm{H}^{+}(a q) \quad K_{a}=1.34 \times 10^{-5}
$$

Propanoic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$, ionizes in water according to the equation above.
(a) Write the equilibrium-constant expression for the reaction.

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]}
$$

Notes: Correct expression without K_{a} earns 1 point. Entering the value of K_{a} is acceptable. Charges must be correct to earn 1 point.
(b) Calculate the pH of a $0.265 M$ solution of propanoic acid.

$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}(a q) \rightleftarrows$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q)+$	$\mathrm{H}^{+}(a q)$	
I	0.265	0	~ 0
C	$-x$	$+x$	$+x$
E	$0.265-x$	$+x$	$+x$

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]}=\frac{(x)(x)}{(0.265-x)}
$$

Assume that $0.265-x \approx 0.265$,
then $1.34 \times 10^{-5}=\frac{x^{2}}{0.265}$
$\left(1.34 \times 10^{-5}\right)(0.265)=x^{2}$
$3.55 \times 10^{-6}=x^{2}$
$x=\left[\mathrm{H}^{+}\right]=1.88 \times 10^{-3} M$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.88 \times 10^{-3}\right)$
$\mathrm{pH}=2.725$

One point is earned for recognizing that $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right.$] have the same value in the equilibrium expression.

One point is earned for calculating $\left[\mathrm{H}^{+}\right]$.

One point is earned for calculating the correct pH .

AP ${ }^{\circledR}$ CHEMISTRY 2005 SCORING GUIDELINES

Question 1 (continued)

(c) A 0.496 g sample of sodium propanoate, $\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$, is added to a 50.0 mL sample of a 0.265 M solution of propanoic acid. Assuming that no change in the volume of the solution occurs, calculate each of the following.
(i) The concentration of the propanoate ion, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q)$ in the solution

$$
\begin{array}{l|c}
\mathrm{mol} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=0.496 \mathrm{~g} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}}{96.0 \mathrm{~g} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}} & \begin{array}{c}
\text { One point is earned for } \\
\text { calculating the number of } \\
\text { moles of } \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} .
\end{array} \\
\mathrm{mol} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=5.17 \times 10^{-3} \mathrm{~mol} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}
\end{array} \quad \begin{aligned}
& \text { One point is earned for the } \\
& \text { molarity of the solution. }
\end{aligned}
$$

(ii) The concentration of the $\mathrm{H}^{+}(a q)$ ion in the solution

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}(a q) \rightleftarrows \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q)+\mathrm{H}^{+}(a q)
$$

I	0.265	0.103	~ 0
C	$-x$	$+x$	$+x$
E	$0.265-x$	$0.103+x$	$+x$

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]}=\frac{(x)(0.103+x)}{(0.265-x)}
$$

One point is earned for calculating the value of $\left[\mathrm{H}^{+}\right]$.

Assume that $0.103+x \approx 0.103$ and $0.265-x \approx 0.265$

$$
\begin{aligned}
& K_{a}=1.34 \times 10^{-5}=\frac{(x)(0.103)}{0.265} \\
& x=\left[\mathrm{H}^{+}\right]=\left(1.34 \times 10^{-5}\right) \times \frac{0.265}{0.103}=3.45 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

The methanoate ion, $\mathrm{HCO}_{2}{ }^{-}(a q)$, reacts with water to form methanoic acid and hydroxide ion, as shown in the following equation.

$$
\mathrm{HCO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HCO}_{2} \mathrm{H}(a q)+\mathrm{OH}^{-}(a q)
$$

(d) Given that $\left[\mathrm{OH}^{-}\right]$is $4.18 \times 10^{-6} \mathrm{M}$ in a 0.309 M solution of sodium methanoate, calculate each of the following.

AP ${ }^{\circledR}$ CHEMISTRY 2005 SCORING GUIDELINES

Question 1 (continued)

(i) The value of K_{b} for the methanoate ion, $\mathrm{HCO}_{2}{ }^{-}(a q)$

(ii) The value of K_{a} for methanoic acid, $\mathrm{HCO}_{2} \mathrm{H}$

$$
\begin{aligned}
& K_{w}=K_{a} \times K_{b} \\
& K_{a}=\frac{K_{w}}{K_{b}}=\frac{1.00 \times 10^{-14}}{5.65 \times 10^{-11}} \\
& K_{a}=1.77 \times 10^{-4}
\end{aligned}
$$

One point is earned for calculating a value of K_{a} from the value of K_{b} determined in part (d)(i).
(e) Which acid is stronger, propanoic acid or methanoic acid? Justify your answer.
K_{a} for propanoic acid is 1.34×10^{-5}, and K_{a} for methanoic acid is 1.77×10^{-4}. For acids, the larger the value of K_{a}, the greater the strength; therefore methanoic acid is the stronger acid because $1.77 \times 10^{-4}>1.34 \times 10^{-5}$.

One point is earned for the correct choice and explanation based on the K_{a} calculated for methanoic acid in part (d)(ii).

AP ${ }^{\circledR}$ CHEMISTRY
 2006 SCORING GUIDELINES (Form B)

Question 1

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(s) \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q) \quad K_{a}=6.46 \times 10^{-5}
$$

1. Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, dissociates in water as shown in the equation above. A 25.0 mL sample of an aqueous solution of pure benzoic acid is titrated using standardized 0.150 M NaOH .
(a) After addition of 15.0 mL of the 0.150 M NaOH , the pH of the resulting solution is 4.37. Calculate each of the following.
(i) $\left[\mathrm{H}^{+}\right]$in the solution

$$
\left[\mathrm{H}^{+}\right]=10^{-4.37} M=4.3 \times 10^{-5} M \quad \text { One point is earned for the correct answer. }
$$

(ii) $\left[\mathrm{OH}^{-}\right]$in the solution

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14} M^{2}}{4.3 \times 10^{-5} M}=2.3 \times 10^{-10} M \quad \text { One point is earned for the correct answer. }
$$

(iii) The number of moles of NaOH added
$\mathrm{mol} \mathrm{OH}=-0.0150 \mathrm{~L} \times 0.150 \mathrm{~mol} \mathrm{~L}^{-1}=2.25 \times 10^{-3} \mathrm{~mol}$
One point is earned for the correct answer.
(iv) The number of moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)$ in the solution
mol OH^{-}added $=\operatorname{mol~} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)$ generated, thus
mol $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)$ in solution $=2.25 \times 10^{-3} \mathrm{~mol}$

One point is earned for the correct answer.
(v) The number of moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ in the solution

$$
\begin{aligned}
& \left.K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right.}{}{ }^{-}\right] \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}
\end{aligned} \quad\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{K_{a}}=3.7 \times 10^{-2} \mathrm{M} .
$$

One point is earned for the correct molarity.

One point is earned for the correct answer.

AP ${ }^{\circledR}$ CHEMISTRY 2006 SCORING GUIDELINES (Form B)

Question 1 (continued)

Alternative solution for part (a)(v):

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}^{2}\right]} \\
& \begin{aligned}
\Rightarrow \mathrm{pH}-\mathrm{p} K_{a}= & \log \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]-\log \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]
\end{aligned} \\
& \begin{aligned}
\Rightarrow \log \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right] & =\log \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]-\left(\mathrm{pH}-\mathrm{p} K_{a}\right) \\
& =\log \left(\frac{2.25 \times 10^{-3} \mathrm{~mol}}{0.040 \mathrm{~L}}\right)-(4.37-4.190) \\
& =-1.25-0.18=-1.43
\end{aligned} \\
& \begin{aligned}
\Rightarrow \quad\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right] & =10^{-1.43}=3.7 \times 10^{-2} \mathrm{M}
\end{aligned} \\
& \text { thus, } \mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=(0.040 \mathrm{~L})\left(3.7 \times 10^{-2} \mathrm{M}\right)=1.5 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

(b) State whether the solution at the equivalence point of the titration is acidic, basic, or neutral. Explain your reasoning.

At the equivalence point the solution is basic due to the presence
of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$(the conjugate base of the weak acid) that hydrolyzes to produce a basic solution as represented below.

One point is earned for the prediction and the explanation.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-}
$$

In a different titration, a 0.7529 g sample of a mixture of solid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ and solid NaCl is dissolved in water and titrated with 0.150 M NaOH . The equivalence point is reached when 24.78 mL of the base solution is added.
(c) Calculate each of the following.
(i) The mass, in grams, of benzoic acid in the solid sample

$\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$=(0.02478 \mathrm{~L}) \times\left(0.150 \mathrm{~mol} \mathrm{OH}^{-} \mathrm{L}^{-1}\right) \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}{1 \mathrm{~mol} \mathrm{OH}^{-}}$	
	$=3.72 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	One point is earned for the correct answer.
mass $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$=3.72 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \times \frac{122 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}$	
	$=0.453 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	

AP ${ }^{\circledR}$ CHEMISTRY 2006 SCORING GUIDELINES (Form B)

Question 1 (continued)

(ii) The mass percentage of benzoic acid in the solid sample

$$
\begin{aligned}
\operatorname{mass} \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} & =\frac{0.453 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}{0.7529 \mathrm{~g}} \times 100 \\
& =60.2 \%
\end{aligned}
$$

One point is earned for the correct answer.

