AP CALCULUS AB \& BC
 FORMULA LIST

Definition of e: $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
Absolute value: $|x|=\left\{\begin{array}{l}x \text { if } x \geq 0 \\ -x \text { if } x<0\end{array}\right.$
Definition of the derivative:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { (Alternative form) }
\end{aligned}
$$

Definition of continuity: f is continuous at c iff

1) $f(c)$ is defined;
2) $\lim _{x \rightarrow c} f(x)$ exists;
3) $\lim _{x \rightarrow c} f(x)=f(c)$.

Average rate of change of $f(x)$ on $[\mathrm{a}, \mathrm{b}]=\frac{f(b)-f(a)}{b-a}$
Rolle's Theorem: If f is continuous on $[a, b]$ and differentiable on (a, b) and if $f(a)=f(b)$, then there is at least one number c on (a, b) such that $f^{\prime}(c)=0$.

Mean Value Theorem: If f is continuous on $[a, b]$ and differentiable on (a, b), then there exists a number c on (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Intermediate Value Theorem: If f is continuous on $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c between a and b such that $f(c)=k$.
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x= \begin{cases}\cos ^{2} x-\sin ^{2} x & \cos ^{2} x=\frac{1+\cos 2 x}{2} \\ 1-2 \sin ^{2} x & \sin ^{2} x=\frac{1-\cos 2 x}{2} \\ 2 \cos ^{2} x-1\end{cases}$

Definition of a definite integral: $\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot\left(\Delta x_{i}\right)$
$\frac{d}{d x}[c]=0$
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
$\frac{d}{d x}[u v]=u v^{\prime}+v u^{\prime}$
$\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
$\frac{d}{d x}[\sin u]=\cos u \frac{d u}{d x}$
$\frac{d}{d x}[\tan u]=\sec ^{2} u \frac{d u}{d x}$
$\frac{d}{d x}[\sec u]=\sec u \tan u \frac{d u}{d x}$
$\frac{d}{d x}[\ln u]=\frac{1}{u} \frac{d u}{d x}$
$\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}$
$\frac{d}{d x}[\arcsin u]=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\frac{d}{d x}[\arctan u]=\frac{1}{1+u^{2}} \frac{d u}{d x}$
$\frac{d}{d x}[\operatorname{arcsec} u]=\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x}$
$\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}$
$\int \sin u d u=-\cos u+C$
$\int \sec ^{2} u d u=\tan u+C$
$\int \csc ^{2} u d u=-\cot u+C$
$\int \sec u \tan u d u=\sec u+C$
$\int \csc u \cot u d u=-\csc u+C$
$\int \frac{1}{u} d u=\ln |u|+C$

$$
\begin{array}{ll}
\int \tan u d u=-\ln |\cos u|+C & \int \cot u d u=\ln |\sin u|+C \\
\int \sec u d u=\ln |\sec u+\tan u|+C & \int \csc u d u=-\ln |\csc u+\cot u|+C \\
\int e^{u} d u=e^{u}+C & \int a^{u} d u=\frac{a^{u}}{\ln a}+C \\
\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C & \int \frac{d u}{u^{2}+a^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C \\
\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C &
\end{array}
$$

Definition of a Critical Number:

Let f be defined at c. If $f^{\prime}(c)=0$ or if f^{\prime} is undefined at c, then c is a critical number of f.

First Derivative Test:

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then $f(c)$ can be classified as follows.

1) If $f^{\prime}(x)$ changes from negative to positive at c, then $f(c)$ is a relative minimum of f.
2) If $f^{\prime}(x)$ changes from positive to negative at c, then $f(c)$ is a relative maximum of f.

Second Derivative Test:

Let f be a function such that the second derivative of f exists on an open interval containing c.

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f(c)$ is a relative minimum.
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f(c)$ is a relative maximum.

Definition of Concavity:

Let f be differentiable on an open interval I. The graph of f is concave upward on I if f^{\prime} is increasing on the interval and concave downward on I if f^{\prime} is decreasing on the interval.

Test for Concavity:

Let f be a function whose second derivative exists on an open interval I.

1) If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave upward in I.
2) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave downward in I.

Definition of an Inflection Point:

A function f has an inflection point at $(c, f(c))$

1) if $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist and
2) if $f^{\prime \prime}$ changes sign from positive to negative or negative to positive at $x=c$

OR if $f^{\prime}(x)$ changes from increasing to decreasing or decreasing to increasing at $x=c$.

First Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$
Second Fundamental Theorem of Calculus: $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$

$$
\text { Chain Rule Version: } \frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \cdot g^{\prime}(x)
$$

Average value of $f(x)$ on $[a, b]: f_{A V E}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
Volume around a horizontal axis by discs: $V=\pi \int_{a}^{b}[r(x)]^{2} d x$
Volume around a horizontal axis by washers: $V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x$
Volume by cross sections taken perpendicular to the x-axis: $V=\int_{a}^{b} A(x) d x$
If an object moves along a straight line with position function $s(t)$, then its
Velocity is $v(t)=s^{\prime}(t)$
Speed $=|v(t)|$
Acceleration is $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$
Displacement (change in position) from $x=a$ to $x=b$ is Displacement $=\int_{a}^{b} v(t) d t$
Total Distance traveled from $x=a$ to $x=b$ is Total Distance $=\int_{a}^{b}|v(t) d t|$
or Total Distance $=\left|\int_{a}^{c} v(t) d t\right|+\left|\int_{c}^{b} v(t) d t\right|$, where $v(t)$ changes sign at $x=c$.

CALCULUS BC ONLY

Differential equation for logistic growth: $\frac{d P}{d t}=k P(L-P)$, where $L=\lim _{t \rightarrow \infty} P(t)$
Integration by parts: $\int u d v=u v-\int v d u$
Length of arc for functions: $s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$
If an object moves along a curve, its
Position vector $=(x(t), y(t))$
Velocity vector $=\left(x^{\prime}(t), y^{\prime}(t)\right)$
Acceleration vector $=\left(x^{\prime \prime}(t), y^{\prime \prime}(t)\right)$
Speed (or magnitude of velocity vector) $=|v(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
Distance traveled from $t=a$ to $t=b$ (or length of arc) is $s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

In polar curves, $x=r \cos \theta$ and $y=r \sin \theta$
Slope of polar curve: $\frac{d y}{d x}=\frac{r \cos \theta+r^{\prime} \sin \theta}{-r \sin \theta+r^{\prime} \cos \theta}$
Area inside a polar curve: $A=\frac{1}{2} \int_{a}^{b} r^{2} d \theta$

Definition of a Taylor polynomial:

If f has n derivatives at c, then the polynomial

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the nth Taylor polynomial for \boldsymbol{f} at \boldsymbol{c}.

Lagrange Error Bound for a Taylor Polynomial (or Taylor's Theorem Remainder):

If f is differentiable through order $n+1$ in an interval I containing c, then for each x in I, there exists z between x and c such that
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)$,
where $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1} . R_{n}(x)$ gives a bound for the size of the error
found by the nth degree Taylor polynomial.
The remainder represents the difference between the function and the polynomial. That is,

$$
\left|R_{n}\right|=\left|f(x)-P_{n}(x)\right| .
$$

Alternating Series Remainder:

If a series has terms that alternate, decrease in absolute value, and have a limit of 0 (so that the series converges by the Alternating Series Test), then the absolute value of the remainder R_{n} involved in approximating the sum S by S_{n} is less than the first neglected term. That is,

$$
\left|R_{n}\right|=\left|S-S_{n}\right|<a_{n+1} .
$$

Maclaurin series that you must know:

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Summary of Tests for Series

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
nth-Term	$\sum_{n=1}^{\infty} a_{n}$		$\lim _{n \rightarrow \infty} a_{n} \neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} a r^{n}$	$\|r\|<1$	$\|r\| \geq 1$	Sum: $S=\frac{a}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)$	$\lim _{n \rightarrow \infty} b_{n}=L$	$p \leq 1$	Sum: $S=b_{1}-L$

Taylor's Theorem: If a function f is differentiable through order $n+1$ in an interval I containing c, then for each x in I, there exists a number z between x and c such that $f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)(x-c)^{2}}{2!}+\ldots+\frac{f^{(n)}(c)(x-c)^{n}}{n!}+R_{n}(x)$ where $\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(z)(x-c)^{n+1}}{(n+1)!}\right| \cdot\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(z)(x-c)^{n+1}}{(n+1)!}\right|$ is called the Lagrange Form of the Remainder or the Taylor's Theorem Remainder.

Alternating Series Remainder: For a convergent alternating series whose terms are decreasing, the absolute value of the remainder R_{n} involved in approximating the sum S by S_{n} is less than or equal to the first neglected (truncated) term. In other words, $\left|S-S_{n}\right|=\left|R_{n}\right| \leq a_{n+1}$.

