AP Calculus AB Course Description and Syllabus

- Course Objective: This course is designed to prepare the students for the AP Exam in May. Students will learn to use graphical, numerical, verbal and analytical techniques in solving calculus problems involving limits, derivatives, and integrals, and their applications.
- Resources: All of these are made available by the school.

1. Textbook: Calculus of a Single Variable ($9^{\text {th }}$ ed.) - Larson \& Edwards (ISBN: 978-0-547-21290-6)
2. TI Nspire CAS CX: Perhaps the best calculator on the market for AP Calculus is the TI Nspire CAS CX. We will be using this calculator extensively this year and it is the best, most user-friendly calculator that is allowed on the AP Calculus exam in May. The calculator will not only be used to get answers, but also to interpret results you have on paper as well as supporting your conclusions. I do have a classroom set that you may use during class, but it would be highly advantageous for you to have your own so you can practice with it at home.
3. Calculus Calculator Labs Workbook (by Benita Albert \& Phyllis Hillis): Through these labs students will investigate precalculus and calculus concepts on the graphing calculator. With each lab you should be prepared to explain your findings either in writing or verbally.

- THE FLIPPED CLASSROOM: I basically flip the order/timing of the traditional classroom. For "homework" you will watch a video that contains the lecture \& notes. When you get to class the next day you will do the work that typically is the homework. Basically your homework is to watch the lesson and take notes, and your classwork is to do the homework.

1. Benefits:

a. The teacher (Carboni) is always present when you're actually working problems..
b. Lesson videos will always be online, so if you are absent or need a refresher you can simply go online and watch the lesson you missed.
c. Significantly less time in class will be spent listening to lectures and taking notes.

2. Drawbacks:

a. If you do not watch the video the previous day you will be lost in class the next day, and I will not offer one-on-one tutoring during class because you failed to watch the video.
b. Some students have difficulty adjusting to this format because you've gone through a decade of traditional teaching.

3. How to make it work:

a. Treat the online videos just like you would treat a lecture in school. Pay close attention and take notes. You can even pause the video to try to work a problem before I show you the solution in the video.
b. If you have questions about the lesson video email or message it to me. That way I can anticipate problem areas for class the next day.
c. If you still have questions after class the next day come visit me outside class hours to polish things up.

- Grading Breakdown: Grades will be given by total points. This means there are no categories and I compute averages the easy way - simply divide the total points you accumulated by the total points possible. Classwork is worth about 10 points per assignment, weekly quizzes are worth anywhere from 30 to 60 points, and the unit tests will typically be 180 points. All major tests will be given on an extended day. They consist first of a calculator portion, then a non-calculator portion. Tests are graded according to AP Exam grading criteria, then scaled to reflect an appropriate percentage for the grade recorded.
- Classroom Donations: I am usually in need of paper towels, Kleenex, and hand sanitizer. If you are a kind soul who wants to make a donation these are the things I would like.
- Social Media: I will occasionally post announcements and such on Instagram and Twitter. Follow @ MathGnome to get these announcements.

I can be reached at pcarboni@hoover.k12.al.us if you ever have any questions or concerns regarding the class.

AP Calculus AB Topics Outline

Unit 1: A review of functions

Upon completing this unit students should be able to do the following:

1. Accurately graph the functions in the library of functions (lines, quadratic, cubic, absolute value, reciprocal, exponential, logarithmic, greatest integer, trig, and signum)
2. Apply transformations to the library of functions.
3. Identify the domain, range, intercepts, symmetry, period, and discontinuities of functions.
4. Use the graphing calculator for the following:
a. Solve equations graphically by finding x intercepts or intersections of two graphs.
b. Explore domain and range of functions graphically.
c. Store solutions in the calculator for easy retrieval.

Topic	Textbook Section	Activities/Projects
20 Functions to Know \& Love	Supplement	1. Transformations Project: Reviews transformations, characteristics of functions (domain, range, intercepts, discontinuities, period, and symmetry), and knowing the library of functions.
Discontinuities \& asymptotes	Supplement	
Domain \& Range	Supplement	
Intermediate Value Theorem	$\begin{aligned} & 1.4 \\ & \text { (P. } 80, \# 83-94) \end{aligned}$	
		2. Calculus Calculator Lab 1 - What Should You See Graphically? Students use their calculators to investigate the affects of negatives and absolute values on the function $f(x)=x^{x}$. 3. Calculus Calculator Lab 2 - Functional Collages: Students explore piece-wise functions and analyze implicit relations by decomposing them into functional pieces.

Upon completing this unit students should be able to do the following:

1. Solve limits of functions by analyzing their graphs or a table of values.
2. Use algebra to solve limits through substitution, factoring, conjugates, or other algebraic techniques.
3. Evaluate one-sided limits.
4. Use limits to describe asymptotic or unbounded behavior of graph.
5. Use limits to discuss both verbally and in writing the continuity of a function at a given point.
6. Describe the three types of discontinuities (infinite, removable, and jump).
7. Explain both verbally and in writing the relationship between slope and rates of change.
8. Find average rates of change and estimate instantaneous rate of change from a table of values.
9. Use the limit of a difference quotient to compute instantaneous rate of change or general derivatives.
10. Write the equation of a line tangent or normal to a graph at a given x coordinate.
11. Sketch the graph of $f^{\prime}(x)$ given the graph of $f(x)$.
12. Explain both verbally and in writing the relationship between differentiability and continuity.
13. Recognize important limits - most notably the limit definition of a derivative and the limit forms of the constant e.
14. Use the graphing calculator to find limits of functions by analyzing the graph or a table of values.

Topic	Textbook Section	Activities/Projects
Evaluate Limits with Graphs	1.2	1. Calculus Calculator Lab 3-Important Limits and their Extensions: Students will use their calculator's graphing and table functions to explore the following limits: a. $\lim _{x \rightarrow 0}(1+x)^{1 / x}$ b. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ c. $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}$ 2. Group Presentation: Students will present AP problems to the class, explain the solutions, and field questions from their peers.
Evaluate Limits with Tables	1.2	
Evaluate Limits with Algebra a. Plug in b. Factor c. Conjugates	1.3	
One-sided limits	1.4	
Limits involving infinity a. As $x \rightarrow \infty$. b. Answers involving ∞ (unbounded behavior)	$\begin{aligned} & \text { a. } 3.5 \\ & \text { b. } 1.5 \end{aligned}$	
Rates of Change \rightarrow Approximate instantaneous rate of change on a table or graph	Supplement	
Continuity (defined by limits)	1.4	
Limit Derivatives with difference quotients a. Slope at a point (instantaneous rate of change) b. General derivative c. Tangent and Normal Lines	2.1	
Relating graphs of f and f^{\prime}	Supplement	
Differentiability and continuity	Supplement	

Upon completing this unit students should be able to do the following:

1. Use derivative shortcuts to find derivatives of polynomials, quotients, products, composition of functions, exponential functions, and logarithmic functions.
2. Find derivatives implicitly (used for equations that cannot easily expressed as $y=f(x)$).
3. Use derivative shortcuts to find equations of tangent and normal lines and find locations of horizontal and vertical tangents.
4. Use properties of logarithms to simplify functions and make differentiation easier.
5. Use implicit differentiation to prove the formula for the derivative of an inverse function.
6. Use properties of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to describe characteristics of $f(x)$.
7. Use position, velocity, and acceleration to explain particle motion.
8. Students will use their graphing calculator to do the following:
a. Compute the value of the derivative at a single point.
b. Use the graphing capabilities to solve equations and find critical numbers.
c. Store solutions to solved equations for later use.
d. Analyze the graph of a function at non-differentiable points and explain why the symmetrical derivative approach in Calculator Lab 4 might yield an incorrect answer.

Topic	Textbook Section	Activities/Projects
Power Rule (include expanding \& STDs)	2.2	1. Group Presentation: Students will present AP problems to the class, explain the solutions, and field questions from their peers. 2. Calculus Calculator Lab 4 - Numerical Derivatives? Students explore the calculator's "symmetric derivative" algorithm for calculating numerical derivatives. 3. Calculus Calculator Lab 5 -Derivative of the Inverse Function: Students use their calculators to establish the relationship between the derivative of a function and its inverse graphically, numerically, and symbolically. 4. Calculator Exploration: Students will graph functions and their derivatives on the same screen to investigate how specific characteristics of derivatives (namely extrema and x-intercepts) relate to the shape of the function.
Product Rule	2.3	
Quotient Rule	2.3	
Chain Rule	2.4	
Implicit Differentiation	2.5	
Trig Derivatives	2.3	
Exponential Derivatives	5.4 \& 5.5	
Logarithmic Derivatives \rightarrow Include $y=f(x)^{g(x)}$	5.1 \& 5.5	
Inverse Derivatives (with implicit)	Supplement	
Inverse Trig Derivatives	5.6	
Relationships among f, f^{\prime}, and $f^{\prime \prime}$	Supplement	
Position, Velocity, \& Acceleration a. Direction of Travel b. Total distance vs. displacement c. Speeding up and slowing down	Supplement	

Upon completing this unit students should be able to do the following:

1. Apply the Extreme Value, Mean Value, and Rolle's Theorem to functions.
2. Use the first and second derivative to accurately graph functions.
3. Use their knowledge of first and second derivatives to justify locations of extrema and inflection points and intervals of increase or decrease. Justifications must be in written sentences.
4. Use linear approximation to estimate function values, and determine if those estimates are over or under approximations.
5. Solve related rates problems.
6. Find critical numbers and use them to solve optimization problems.
7. Use L'Hopital's Rule to solve limits.
8. Given a function and a point P that is not on the curve, students will do the following:
a. Find the minimum distance from point P to the function.
b. Find the equation of the line tangent to the function that passes through point P.
9. Students will use their graphing calculators to confirm locations of extreme and inflections points by analyzing the graphs of the first and second derivatives.

Topic	Textbook Section	Activities/Projects
Extreme Value Theorem	3.1	Note: When supporting your conclusions in writing, students must express their justifications in complete sentences from this point forward. 1. Group Presentation: Students will present AP problems to the class, explain the solutions, and field questions from their peers. Explanations will include thorough explanations. 2. Calculus Calculator Lab 6 - Getting to Know "Cow" Culus Differentially: Students use their calculators to follow a cow traveling along quadratic and cubic graphs. Students "stand" on the coordinate plane and find when the cow is closest to them and when they can "tangentially swat" a fly off the cow. 3. Calculus Calculator Lab 7 - Mattie's Mean Value Adventure: Students use the graphing calculator to interpret the Mean Value Theorem graphically, numerically, and analytically. 4. Justifying Answers: Students, in groups and individually, will use their knowledge of theorems and curve sketching to thoroughly explain solutions. Explanations will be both oral and written.
Mean Value Theorem \& Rolle's Theorem	3.2	
Curve Sketching a. Intercepts b. Discontinuities c. Asymptotes d. Increase/Decrease intervals e. Local Extrema f. Concavity g. Inflection Points	3.6 (summary) a. supplement b. supplement c. supplement d. 3.3 e. 3.3 f. 3.4 g. 3.4	
Linear Approximation	Supplement	
Optimization	3.7	
Related Rates	2.6	
L'Hopital's Rule a. Product \& Quotient Indeterminate b. Power indeterminate forms	8.7	

Unit 5: Integration and Basic Applications of Integration

Upon completing this unit students should be able to do the following:

1. Use area approximation techniques (Riemann Sums and Trapezoidal Rule) to estimate area under a curve.
2. Estimate areas with Riemann sums or trapezoidal rule when given a table of values or a graph.
3. Use areas to measure accumulation over an interval when given a rate of change.
4. Use geometry to measure exact area under linear functions and semicircles.
5. Use infinite limits with Riemann sums to investigate the connection between Riemann Sums and definite integrals.
6. Find antiderivatives through recognition, power rule, u-substitution, parts, trig substitution, and partial fractions.
7. Understand and apply the both parts of the Fundamental Theorem of Calculus:
a. Differentiation of integral defined functions.
b. Using antiderivatives to compute exact area under a curve.
8. Determine the convergence or divergence of improper integrals.
9. Students will use their graphing calculators to do the following:
a. Evaluate definite integrals.
b. Compute areas with the graphing features.

*These topics are not part of the AB curriculum, but will still be covered in class.

Upon completing this unit students should be able to do the following:

1. Use integration to find the area between two curves.
2. Find the volume of a solid using the following techniques:
a. Discs
b. Washers
c. Known cross sections
d. *Shells
3. Use an initial condition and a rate of change to compute a final value or amount.
4. Find the length of function over a given interval or the length of a parametric or polar curve.
5. Understand and apply the Average Value Theorem.

Topic	Textbook Section	Activities/Projects

*Volume by shells is not in the AP curriculum, but will still be covered.

Upon completing this unit students should be able to do the following:

1. Generate a slope field for a given differential equation.
2. Use a slope field and an initial condition to sketch the solution to a differential equation.
3. Solve separable differential equations.
4. Understand and apply their knowledge of isoclines and equilibrium solutions.

Topics	Textbook Section	Activities/Projects

