Problem 1

a)
$W^{\prime}(12) \approx \frac{W(15)-W(9)}{15-9}=\frac{67.9-61.8}{6}=\frac{6.1}{6} \approx 1.017 \frac{\text { degrees Fahrenheit }}{\text { minute }}$
At $t=12$ minutes, we estimate that the temperature of water is increasing at a rate approximately equal to the average rate of change between 9 and 15 minutes, which is 1.017 degrees Fahrenheit per minute. (Answer rounded to three decimal places.)
b)
$\int_{0}^{20} W^{\prime}(t) d t=W(20)-W(0)=71.0-55.0=16$ degrees Fahrenheit. This is the Net Change in the temperature of water from 0 to 20 minutes.
c)
$L_{4}=W(0)(44-0)+W(4)(9-5)+W(9)(15-9)+W(15)(20-15)=$
$L_{4}=55 * 4+57.1 * 5+61.8 * 6+67.9 * 5=1215.8$
$\frac{1}{20} \int_{0}^{20} W(t) d t \approx \frac{1}{20} L_{4}=\frac{1215.8}{20}=60.790$ degrees Fahrenheit
The approximate average temperature over the 20 minutes is 60.790 degrees Fahrenheit.

This is an underestimate because the function used as a height of the rectangles in the Riemann Sum is increasing; hence the resulting rectangles fail to capture the entire area under the graph.
d)
$W(25)-W(20)=\int_{20}^{25} W^{\prime}(t) d t=2.04315(T I-84)$
$W(25)=W(20)+2.04315=71.0+2.04315=73.043$ deg Fahrenheit

Problem 2

a)

Intersection Point x-coordinate $=3.69344=a$
Area $=\int_{1}^{a} \ln x d x+\int_{a}^{5} 5-x d x=2.13225+0.85355=2.9858 \approx 2.986$
OR

$$
\text { Area }=\int_{y=0}^{y=5-a} X_{F A R}-X_{\text {NEAR }} d y=\int_{y=0}^{y=1.30656}(5-y)-e^{y} d y=2.9858 \approx 2.986
$$

b)

The side of a typical square is given by the y-value.
$V=\int_{1}^{5} A(x) d x$, where $A(x)=\left\{\begin{array}{l}(\ln x)^{2} \quad \text { when } 1 \leq x \leq 3.69344 \\ (5-x)^{2}\end{array} \text { when } 3.69344 \leq x \leq 5\right)^{\prime}$
c)

The horizontal line $y=k$ will intersect the graphs of $y=\ln x$ and $y=5-x$ at the points (b, k) and (c, k), respectively. We can express the two areas as infinite sums of rectangles in the vertical direction.
$X_{F A R}=5-y \Leftarrow y=5-x$
$X_{\text {NEAR }}=e^{y} \Leftarrow y=\ln x$
Note that the value of $x=a$ was determined in part a).

$$
\begin{aligned}
& \int_{y=0}^{y=k} X_{F A R}-X_{\text {NEAR }} d y=\int_{y=k}^{y=5-a} X_{F A R}-X_{N E A R} d y \\
& \int_{y=0}^{y=k} 5-y-e^{y} d y=\int_{y=k}^{y=656} 5-y-e^{y} d y
\end{aligned}
$$

Problem 3

a)
$g(2)=\int_{1}^{2} f(t) d t=\frac{1}{2} *$ base $*$ height $=\frac{1}{2} * 1 * \frac{-1}{2}=\frac{-1}{4}$
$g(-2)=\int_{1}^{-2} f(t) d t=-\int_{-2}^{1} f(t) d t=-[($ right triangle $)-($ semicircle $)]=-\left[\frac{3}{2}-\frac{\pi}{2}\right]=\frac{\pi-3}{2}$
Note that the minus sign in front of 'semicircle' is added because the semicircle lies below the horizontal axis, whereas the right triangle lies above.
b)

$$
\begin{aligned}
& g^{\prime}(x)=f(x), g g^{\prime \prime}(x)=f^{\prime}(x) \\
& g^{\prime}(-3)=f(-3)=2 \\
& g^{\prime \prime}(-3)=f^{\prime}(-3)=1 \text { (read slope from the graph) }
\end{aligned}
$$

c)
$g^{\prime}(x)=0 \rightarrow f(x)=0 \rightarrow x=-1,1$
$x=-1 \rightarrow g^{\prime}(x)$, which is $f(x)$, changes from positive to negative
$g(-1)$ relative maximum
$\mathrm{x}=1 \rightarrow g^{\prime}(x)$, which is $f(x)$, does not change sign, but $g^{\prime \prime}(x)$ does.
$g(1)$ not a relative extremum. It is an inflection point.
d)

An inflection point occurs where $g(x)$ is continuous and $g "(x)$ changes sign but $g^{\prime}(x)$ does not.

In the context of this problem, we are looking for points where $f^{\prime}(x)$ changes sign, yet $f(x)$ maintains its sign. This occurs at $(-2,3),(0,-1)$, and $(1,0)$. These are the three inflection points.

Problem 4

a)
$f^{\prime}(x)=\frac{-2 x}{2 \sqrt{25-x^{2}}}=\frac{-x}{\sqrt{25-x^{2}}}[$ Chain Rule $]$
Note that $\frac{d y}{d x}=\frac{-x}{y}$ [Remember this from implicit differentiation ?]
b)
$x=-3 \rightarrow y=\sqrt{25-9}=4$
$(-3,4)$
$\left.\frac{d y}{d x}\right|_{(-3,4)}=\frac{-x}{y}=\frac{3}{4} \rightarrow y-4=\frac{3}{4}(x+3) \rightarrow 4 y-3 x=25$
c)
$g(x)$ will be continuous at $x=-3$ if and only if $\lim _{x \rightarrow-3} g(x)=g(-3)$
We investigate the one-sided limits of the piece-wise function:

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{-}} g(x)=\lim _{x \rightarrow-3^{-}} f(x)=4(-3) \\
& \lim _{x \rightarrow-3^{+}} g(x)=\lim _{x \rightarrow-3^{+}}(x+7)=4
\end{aligned}
$$

The one-sided limits coincide and are also equal to the y-value, therefore the function is continuous at -3 .
d)

$$
\begin{aligned}
& u=25-x^{2} \\
& d u=-2 x d x \\
& \int_{0}^{5} x \sqrt{25-x^{2}} d x=\frac{-1}{2} \int_{0}^{5}-2 x \sqrt{25-x^{2}} d x=\frac{-1}{2} \int_{u(0)}^{u(5)} \sqrt{u} d u= \\
& =\frac{-1}{2} \int_{25}^{0} \sqrt{u} d u=\frac{1}{2} \int_{0}^{25} \sqrt{u} d u=\left.\frac{1}{2} \frac{2}{3} u^{\frac{3}{2}}\right|_{0} ^{25}=\frac{1}{3}(125-0)=\frac{125}{3}
\end{aligned}
$$

Problem 5

a)
$\left.\frac{d B}{d t}\right|_{B=40}=\frac{1}{5}(100-40)=12 \mathrm{grams} /$ day
$\left.\frac{d B}{d t}\right|_{B=70}=\frac{1}{5}(100-70)=6 \mathrm{grams} /$ day
The bird is gaining weight faster when it weighs 40 grams.
b)

$$
\frac{d^{2} B}{d t^{2}}=\frac{d}{d t}\left(\frac{d B}{d t}\right)=\frac{d}{d t}\left(\frac{1}{5}(100-B)=\frac{-1}{5} \frac{d B}{d t}=\frac{-1}{5} \frac{1}{5}(100-B)=\frac{-1}{25}(100-B)\right.
$$

When B is less than 100 , the second derivative suggests that the graph must be concave down for all values of B in this range. The given graph is concave up at first, and then concaye down.
c)

$$
\begin{aligned}
& \frac{d B}{d t}=\frac{1}{5}(100-B) \\
& \frac{1}{100-B} d B=\frac{1}{5} d t \\
& \int \frac{1}{100-B} d B=\int \frac{1}{5} d t \\
& -\int \frac{-1}{100-B} d B=\int \frac{1}{5} d t \\
& -\ln |100-B|=\frac{t}{5}+C \\
& B(0)=20 \rightarrow-\ln 80=C \\
& -\ln |100-B|=0.2 t-\ln 80
\end{aligned}
$$

$$
\ln |100-B|=\ln 80-0.2 t
$$

$$
100-B=e^{\ln 80-0.2 t}
$$

$$
B(t)=100-80 e^{-0}
$$

Problem 6

a)

The particle will be moving to the left when the velocity function is negative. So we look for:

$$
v(t)=\cos \left(\frac{\pi}{6} t\right)<0 \text { for } 0 \leq t \leq 12 \rightarrow \frac{\pi}{2}<\frac{\pi}{6} t<\frac{3 \pi}{2} \rightarrow 3<t<9
$$

The particle will be moving to the left for t-values between 3 and 9 .
b)

Total Distance on $[0,6]=\int_{0}^{6}|v(t)| d t=\int_{0}^{6}\left|\cos \left(\frac{\pi}{6} t\right)\right| d t$
c)

$$
a(t)=v^{\prime}(t)=-\sin \left(\frac{\pi}{6} t\right) \frac{\pi}{6} \quad a(4)=-\sin \left(\frac{\pi}{6} 4\right) \frac{\pi}{6}=\frac{-\pi}{6} \frac{\sqrt{3}}{2}=\frac{-\sqrt{3} \pi}{12}
$$

Speed is the absolute value of velocity. We know, from part a), that the velocity at $t=4$ is negative, which means

$$
\begin{aligned}
& \text { speed }=w(t)=|v(t)|=\left\{\begin{array}{l}
v(t) \text { when } v(t) \geq 0 \\
-v(t) \text { when } v(t)<0
\end{array}\right. \\
& w^{\prime}(4)=-v^{\prime}(4)=-a(4)=\frac{\sqrt{3} \pi}{12}>0
\end{aligned}
$$

We conclude that the speed of the particle at $t=4$ is increasing.
d)

FTC : $x(4)-x(0)=\int_{0}^{4} v(t) d t \Rightarrow x(4)=x(0)+\int_{0}^{4} \cos \left(\frac{\pi}{6} t\right) d t=-2+\frac{6}{\pi} \int_{0}^{4} \frac{\pi}{6} \cos \left(\frac{\pi}{6} t\right) d t=$
$-2+\left.\frac{6}{\pi} \sin \left(\frac{\pi}{6} t\right)\right|_{0} ^{4}=-2+\frac{6}{\pi}\left(\sin \frac{2 \pi}{3}-\sin 0\right)=-2+\frac{6}{\pi} \frac{\sqrt{3}}{2}=\left(\frac{3 \sqrt{3}}{\pi}-2\right)$ units

