AP CALCULUS BC
Unit 5 Outline - Volume and Arc Length

DATE	CONCEPT	
$10 / 11$	VOLUME OF SOLIDS WITH KNOWN CROSS SECTIONS	Notes - Handout
$10 / 12$	IN-CLASS SAMPLE PROBLEMS	
HOMEWORK		Worksheet 25

DATE	CONCEPT	
DELAYED	VOLUME OF SOLIDS FORMED BY ROTATION	Notes - Handout
HOMEWORK		

DATE	CONCEPT	
$10 / 14$	VOLUME OF SOLIDS FORMED BY ROTATION THE SHELL METHOD	Notes - Handout

DATE	CONCEPT	
$10 / 15$	ARC LENGTH	IN-CLASS SAMPLE PROBLEMS
Hotes - Handout		

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
$10 / 16$	REVIEW	Area
		Volume Arc Length Average Value
HOMEWORK	Worksheet 29	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
$10 / 17$	EXAM	Area
		Volume Arc Length Average Value
HOMEWORK	None	

1. The base of a solid in the $x y$-plane is a right triangle bounded by the axes and $y=-x+2$. Cross sections of the solid perpendicular to the x-axis are squares. Find the volume.
2. (Calculator Permitted) The base of a solid S is the region enclosed by the graph of $y=\ln x$, the vertical line $x=e$, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, which of the following gives the best approximation of the volume of S ?
(A) 0.718
(B) 1.718
(C) 2.718
(D) 3.171
(E) 7.388
3. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the graphs of $y=e^{-x^{2}}$, $y=1-\cos x$ and the y-axis. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of the solid.
4. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the graphs of $y=\sqrt{x}$, $y=e^{-3 x}$ and the vertical line $x=1$. For this solid each cross section perpendicular to the x-axis is a rectangle whose height is 5 times its length of its base. Find the volume of the solid.
5. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the x-axis, the graph of $y=\sin ^{-1} x$, and the vertical line $x=1$. For this solid, each cross section perpendicular to the y-axis is a semicircle. What is the volume?
(A) 0.356
(B) 0.279
(C) 0.139
(D) 1.571
(E) 0.571
6. (Calculator Permitted) The base of a solid is the region bounded by the curve $y=2+\sin x$, the x-axis, $x=0$, and $x=\frac{3 \pi}{2}$. Find the volume of the solids whose cross sections perpendicular to the x-axis are the following:
a) squares
b) rectangles whose height is 3 times the base
c) equilateral triangles
d) isosceles right triangles with leg on the base
e) isosceles right triangles with hypotenuse on the base
f) semi-circles
g) quarter-circles

Answers:

1. $\frac{8}{3}$	2. A	3. 0.461	4. 1.554
5. C	6. a) 25.20575 b) 75.61725 c) 10.91441 d) 12.60287 e) 6.301437 f) 9.898275 g) 19.79655		

1	(Calculator Permitted) Let R be the region in the first quadrant bounded by the graph of $y=8-x^{3 / 2}$, the x-axis, and the y-axis. Which of the following gives the best approximation of the volume of the solid generated when R is revolved about the x-axis? (A) 60.3 (B) 115.2 (C) 225.4 (D) 319.7 (E) 361.9
2	Let R be the region enclosed by the graph of $y=x^{2}$, the line $x=4$, and the x-axis. Which of the following gives the best approximation of the volume of the solid generated when R is revolved about the y-axis. (A) 64π (B) 128π (C) 256π (D) 360 (E) 512
3	Let R be the region enclosed by the graphs of $y=e^{-x}, y=e^{x}$, and $x=1$. Which of the following gives the volume of the solid generated when R is revolved about the x-axis? (A) $\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x$ (B) $\int_{0}^{1}\left(e^{2 x}-e^{-2 x}\right) d x$ (C) $\int_{0}^{1}\left(e^{x}-e^{-x}\right)^{2} d x$ (D) $\pi \int_{0}^{1}\left(e^{2 x}-e^{-2 x}\right) d x$ (E) $\pi \int_{0}^{1}\left(e^{x}-e^{-x}\right)^{2} d x$
4	(Calculator Permitted) Let R be the region bounded by the curves $y=x^{2}+1$ and $y=x$ for $0 \leq x \leq 1$. Showing all integral set-ups, find the volume of the solid obtained by rotating the region R about the a) x-axis b) line $y=-1$ c) $\operatorname{line} y=3$ d) y-axis

Answers

1) E	2) B
3) D	4)a) 4.817 c) 10.053
c) 10.890	
d) 2.617	

1	Let R be the region in the first quadrant bounded by the graph of $y=3 x-x^{2}$ and the x-axis. A solid is generated when R is revolved about the vertical line $x=-1$. Set up, but do not evaluate, the definite integral that gives the volume of this solid. (A) $\int_{0}^{3} 2 \pi(x+1)\left(3 x-x^{2}\right) d x$ (B) $\int_{-1}^{3} 2 \pi(x+1)\left(3 x-x^{2}\right) d x$ (C) $\int_{0}^{3} 2 \pi(x)\left(3 x-x^{2}\right) d x$ (D) $\int_{0}^{3} 2 \pi\left(3 x-x^{2}\right)^{2} d x$ (E) $\int_{0}^{3}\left(3 x-x^{2}\right) d x$
2	(Calculator Permitted) Let R be the region bounded by the graphs of $y=\sqrt{x}, y=e^{-x}$, and the y-axis. (a) Find the area of R. (b) Find the volume of the solid generated when R is revolved about the line $y=-1$. (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a semicircle whose diameter runs from the graph of $y=\sqrt{x}$ to the graph of $y=e^{-x}$. Find the volume of this solid.
3	(Calculator Permitted) Find the volume of the solid formed when the R enclosed by the curves $y=x$ and $y=x^{2}$ is rotated about the following axes: a) the x-axis b) the line $y=2$ c) the line $y=-5$ d) the y-axis e) the line $x=-1$ f) the line $x=17$.

Answers:

1) A	2) a) 0.161	3) a) 0.418
	b) 1.630	b) 1.675
	c) 0.034	c) 5.654
		d) 0.523
		e) 1.570
		f) 17.278

1	(' 88 BC) The length of the curve $y=x^{3}$ from $x=0$ to $x=2$ is given by (A) $\int_{0}^{2} \sqrt{1+x^{6}} d x$ (B) $\int_{0}^{2} \sqrt{1+3 x^{2}} d x$ (C) $\pi \int_{0}^{2} \sqrt{1+9 x^{4}} d x$ (D) $2 \pi \int_{0}^{2} \sqrt{1+9 x^{4}} d x$ (E) $\int_{0}^{2} \sqrt{1+9 x^{4}} d x$
2	('03 BC) The length of a curve from $x=1$ to $x=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve? (A) $y=3+3 x^{2}$ (B) $y=5+x^{3}$ (C) $y=6+x^{3}$ (D) $y=6-x^{3}$ (E) $y=\frac{16}{5}+x+\frac{9}{5} x^{5}$
3	(Calculator Permitted) Which of the following gives the best approximation of the length of the arc of $y=\cos (2 x)$ from $x=0$ to $x=\frac{\pi}{4}$? (A) 0.785 (B) 0.955 (C) 1.0 (D) 1.318 (E) 1.977
4	Which of the following gives the length of the graph of $x=y^{3}$ from $y=-2$ to $y=2$? (A) $\int_{-2}^{2}\left(1+y^{6}\right) d y$ (B) $\int_{-2}^{2} \sqrt{1+y^{6}} d y$ (C) $\int_{-2}^{2} \sqrt{1+9 y^{4}} d y$ (D) $\int_{-2}^{2} \sqrt{1+x^{2}} d x$ (E) $\int_{-2}^{2} \sqrt{1+x^{4}} d x$
5	Find the length of the curve described by $y=\frac{2}{3} x^{3 / 2}$ from $x=0$ to $x=8$. (A) $\frac{26}{3}$ (B) $\frac{52}{3}$ (C) $\frac{512 \sqrt{2}}{15}$ (D) $\frac{512 \sqrt{2}}{15}+8$ (E) 96
6	

Which of the following expressions should be used to find the length of the curve $y=x^{2 / 3}$ from $x=-1$ to $x=1$?
(A) $2 \int_{0}^{1} \sqrt{1+\frac{9}{4} y} d y$
(B) $\int_{-1}^{1} \sqrt{1+\frac{9}{4} y} d y$
(C) $\int_{0}^{1} \sqrt{1+y^{3}} d y$
(D) $\int_{0}^{1} \sqrt{1+y^{6}} d y$
(E) $\int_{0}^{1} \sqrt{1+y^{9 / 4}} d y$
(AP BC 2002B-3) (Calculator Permitted) Let R be the region in the first quadrant bounded by the y axis and the graphs of $y=4 x-x^{3}+1$ and $y=\frac{3}{4} x$.

(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the x-axis.
(c) Write an expression involving one or more integrals that gives the perimeter of R. Do not evaluate.

2011 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

Graph of f
4. The graph of the differentiable function $y=f(x)$ with domain $0 \leq x \leq 10$ is shown in the figure above. The area of the region enclosed between the graph of f and the x-axis for $0 \leq x \leq 5$ is 10 , and the area of the region enclosed between the graph of f and the x-axis for $5 \leq x \leq 10$ is 27 . The arc length for the portion of the graph of f between $x=0$ and $x=5$ is 11 , and the arc length for the portion of the graph of f between $x=5$ and $x=10$ is 18 . The function f has exactly two critical points that are located at $x=3$ and $x=8$.
(a) Find the average value of f on the interval $0 \leq x \leq 5$.
(b) Evaluate $\int_{0}^{10}(3 f(x)+2) d x$. Show the computations that lead to your answer.
(c) Let $g(x)=\int_{5}^{x} f(t) d t$. On what intervals, if any, is the graph of g both concave up and decreasing? Explain your reasoning.
(d) The function h is defined by $h(x)=2 f\left(\frac{x}{2}\right)$. The derivative of h is $h^{\prime}(x)=f^{\prime}\left(\frac{x}{2}\right)$. Find the arc length of the graph of $y=h(x)$ from $x=0$ to $x=20$.

1. Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
a) Find the area of R.
b) Write, but do not solve, an integral expression that can be used to find the perimeter of R.
c) Region R forms the base of solid. Write, but do not evaluate, an integral expression that can be used to find the volume of this solid if cross-sections taken perpendicular to the x-axis are semicircles.
d) Region R is rotated around the line $y=6$ to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.
e) Region R is rotated around the x-axis to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.
f) Region R is rotated around the y-axis to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.
g) Region R is rotated around the line $x=9$ to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.

A calculator may be used for these problems.

2. In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y=4 \ln (3-x)$, the horizontal line $y=6$, and the vertical line $x=2$.
a) Find the area of R.
b) Find the perimeter of R.
c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of the solid.
d) The region R is the base of a solid. For this solid, each cross section perpendicular to the y-axis is a quarter-circle. Find the volume of the solid.
e) Find the volume of the solid generated when R is revolved about the horizontal line $y=6$.
f) Find the volume of the solid generated when R is revolved about the horizontal line $y=8$.
g) Find the volume of the solid generated when R is revolved about the vertical line $x=2$.
h) Find the volume of the solid generated when R is revolved about the vertical line $x=-11$.

