AP CALCULUS BC Unit 5 Outline – Volume and Arc Length

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/11	VOLUME OF SOLIDS WITH KNOWN CROSS	Notes - Handout
10/12	SECTIONS	
HOMEWORK		Worksheet 25

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/13		
	VOLUME OF SOLIDS	Notes - Handout
DELAYED	FORMED BY ROTATION	
HOMEWOR	RK	Worksheet 26

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
10/14	VOLUME OF SOLIDS FORMED BY ROTATION THE SHELL METHOD	Notes - Handout	
HOMEWORK		Worksheet 27	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
10/15	ARC LENGTH	Notes - Handout	
Homewo	RK	Worksheet 28	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/16	REVIEW	Area Volume Arc Length Average Value
Homewor	RK	Worksheet 29

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/17	EXAM	Area Volume Arc Length Average Value
Номежо	DRK	None

- 1. The base of a solid in the xy-plane is a right triangle bounded by the axes and y = -x + 2. Cross sections of the solid perpendicular to the x-axis are squares. Find the volume.
- 2. (Calculator Permitted) The base of a solid S is the region enclosed by the graph of $y = \ln x$, the vertical line x = e, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, which of the following gives the best approximation of the volume of S?
 - (A) 0.718
- (B) 1.718
- (C) 2.718
- (D) 3.171
- (E) 7.388
- 3. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the graphs of $y = e^{-x^2}$, $y = 1 \cos x$ and the y-axis. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of the solid.
- 4. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$, $y = e^{-3x}$ and the vertical line x = 1. For this solid each cross section perpendicular to the x-axis is a rectangle whose height is 5 times its length of its base. Find the volume of the solid.
- 5. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the *x*-axis, the graph of $y = \sin^{-1} x$, and the vertical line x = 1. For this solid, each cross section perpendicular to the *y*-axis is a semicircle. What is the volume?
 - (A) 0.356
- (B) 0.279
- (C) 0.139
- (D) 1.571
- (E) 0.571
- 6. (Calculator Permitted) The base of a solid is the region bounded by the curve $y = 2 + \sin x$, the *x*-axis, x = 0, and $x = \frac{3\pi}{2}$. Find the volume of the solids whose cross sections perpendicular to the *x*-axis are the following:
 - a) squares
 - b) rectangles whose height is 3 times the base
 - c) equilateral triangles
 - d) isosceles right triangles with leg on the base
 - e) isosceles right triangles with hypotenuse on the base
 - f) semi-circles
 - g) quarter-circles

Answers:

1. $\frac{8}{3}$	2. A	3. 0.461	4. 1.554
5. C	6. a) 25.20575 b) 75.61725 c) 10.91441 d) 12.60287 e) 6.301437 f) 9.898275 g) 19.79655		

2

4

1	
	(Calculator Permitted) Let R be the region in the first quadrant bounded by the graph of $y = 8 - x^{3/2}$,
	the x -axis, and the y -axis. Which of the following gives the best approximation of the volume of the
	solid generated when R is revolved about the x-axis?

- (A) 60.3
- (B) 115.2
- (C) 225.4
- (D) 319.7
- (E) 361.9

Let R be the region enclosed by the graph of $v = x^2$, the line x = 4, and the x-axis. Which of the following gives the best approximation of the volume of the solid generated when R is revolved about the y-axis.

- (A) 64π
- (B) 128π
- (C) 256π
- (D) 360
- (E) 512

3 Let R be the region enclosed by the graphs of $y = e^{-x}$, $y = e^{x}$, and x = 1. Which of the following gives the volume of the solid generated when R is revolved about the x-axis?

(A)
$$\int_{0}^{1} \left(e^{x} - e^{-x}\right) dx$$
 (B) $\int_{0}^{1} \left(e^{2x} - e^{-2x}\right) dx$ (C) $\int_{0}^{1} \left(e^{x} - e^{-x}\right)^{2} dx$

(B)
$$\int_{0}^{1} \left(e^{2x} - e^{-2x}\right) dx$$

(C)
$$\int_{0}^{1} \left(e^{x} - e^{-x} \right)^{2} dx$$

(D)
$$\pi \int_{0}^{1} \left(e^{2x} - e^{-2x}\right) dx$$
 (E) $\pi \int_{0}^{1} \left(e^{x} - e^{-x}\right)^{2} dx$

(Calculator Permitted) Let R be the region bounded by the curves $y = x^2 + 1$ and y = x for $0 \le x \le 1$. Showing all integral set-ups, find the volume of the solid obtained by rotating the region R about the

- a) *x*-axis
- b) line y = -1
- c) line y = 3
- d) y-axis

Answers

1) E	2) B
3) D	4) a) 4.817 b) 10.053 c) 10.890 d) 2.617
	b) 10.053
	c) 10.890
	d) 2.617

1	

Let R be the region in the first quadrant bounded by the graph of $y = 3x - x^2$ and the x-axis. A solid is generated when R is revolved about the vertical line x = -1. Set up, but do not evaluate, the definite integral that gives the volume of this solid.

(A)
$$\int_{0}^{3} 2\pi (x+1) (3x-x^{2}) dx$$
 (B) $\int_{-1}^{3} 2\pi (x+1) (3x-x^{2}) dx$ (C) $\int_{0}^{3} 2\pi (x) (3x-x^{2}) dx$ (D) $\int_{0}^{3} 2\pi (3x-x^{2})^{2} dx$ (E) $\int_{0}^{3} (3x-x^{2}) dx$

2

(Calculator Permitted) Let R be the region bounded by the graphs of $y = \sqrt{x}$, $y = e^{-x}$, and the y-axis.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the line y = -1.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a semicircle whose diameter runs from the graph of $y = \sqrt{x}$ to the graph of $y = e^{-x}$. Find the volume of this solid.

3

(Calculator Permitted)

Find the volume of the solid formed when the R enclosed by the curves y = x and $y = x^2$ is rotated about the following axes:

- a) the *x*-axis
- b) the line y = 2
- c) the line y = -5
- d) the y-axis
- e) the line x = -1
- f) the line x = 17.

Answers:

1) A	2) a) 0.161 b) 1.630 c) 0.034	3) a) 0.418 b) 1.675 c) 5.654
		d) 0.523 e) 1.570 f) 17.278

2

3

4

5

6

('88 BC) The length of the curve $y = x^3$ from x = 0 to x = 2 is given by

- (A) $\int_{0}^{2} \sqrt{1+x^{6}} dx$ (B) $\int_{0}^{2} \sqrt{1+3x^{2}} dx$ (C) $\pi \int_{0}^{2} \sqrt{1+9x^{4}} dx$
 - (D) $2\pi \int_{0}^{2} \sqrt{1+9x^4} dx$ (E) $\int_{0}^{2} \sqrt{1+9x^4} dx$

('03 BC) The length of a curve from x = 1 to x = 4 is given by $\int_{1}^{4} \sqrt{1 + 9x^4} dx$. If the curve contains the point (1,6), which of the following could be an equation for this curve?

> (A) $y = 3 + 3x^2$ (B) $y = 5 + x^3$ (C) $y = 6 + x^3$ (D) $y = 6 - x^3$ (E) $y = \frac{16}{5} + x + \frac{9}{5}x^5$

(Calculator Permitted) Which of the following gives the best approximation of the length of the arc of $y = \cos(2x)$ from x = 0 to $x = \frac{\pi}{4}$?

- (A) 0.785 (B) 0.955 (C) 1.0
- (D) 1.318
- (E) 1.977

Which of the following gives the length of the graph of $x = y^3$ from y = -2 to y = 2?

- (A) $\int_{-2}^{2} (1+y^6) dy$ (B) $\int_{-2}^{2} \sqrt{1+y^6} dy$ (C) $\int_{2}^{2} \sqrt{1+9y^4} dy$ (D) $\int_{2}^{2} \sqrt{1+x^2} dx$ (E) $\int_{2}^{2} \sqrt{1+x^4} dx$

Find the length of the curve described by $y = \frac{2}{3}x^{3/2}$ from x = 0 to x = 8.

- (A) $\frac{26}{3}$ (B) $\frac{52}{3}$ (C) $\frac{512\sqrt{2}}{15}$ (D) $\frac{512\sqrt{2}}{15} + 8$

Which of the following expressions should be used to find the length of the curve $y = x^{2/3}$ from x = -1 to x = 1?

- (A) $2\int_{1}^{1} \sqrt{1 + \frac{9}{4}y} dy$ (B) $\int_{1}^{1} \sqrt{1 + \frac{9}{4}y} dy$ (C) $\int_{1}^{1} \sqrt{1 + y^{3}} dy$ (D) $\int_{1}^{1} \sqrt{1 + y^{6}} dy$ (E) $\int_{1}^{1} \sqrt{1 + y^{9/4}} dy$

(AP BC 2002B-3) (Calculator Permitted) Let R be the region in the first quadrant bounded by the y-axis and the graphs of $y = 4x - x^3 + 1$ and $y = \frac{3}{4}x$.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the x-axis.
- (c) Write an expression involving one or more integrals that gives the perimeter of R. Do not evaluate.

2011 AP® CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

Graph of f

- 4. The graph of the differentiable function y = f(x) with domain $0 \le x \le 10$ is shown in the figure above. The area of the region enclosed between the graph of f and the x-axis for $0 \le x \le 5$ is 10, and the area of the region enclosed between the graph of f and the x-axis for $5 \le x \le 10$ is 27. The arc length for the portion of the graph of f between f between f and f between f and f between f and f between f are 10 is 18. The function f has exactly two critical points that are located at f and f and f between f and f and f between f and f and f between f and f and f and f between f and f
 - (a) Find the average value of f on the interval $0 \le x \le 5$.
 - (b) Evaluate $\int_0^{10} (3f(x) + 2) dx$. Show the computations that lead to your answer.
 - (c) Let $g(x) = \int_5^x f(t) dt$. On what intervals, if any, is the graph of g both concave up and decreasing? Explain your reasoning.
 - (d) The function h is defined by $h(x) = 2f\left(\frac{x}{2}\right)$. The derivative of h is $h'(x) = f'\left(\frac{x}{2}\right)$. Find the arc length of the graph of y = h(x) from x = 0 to x = 20.

No Calculator on this problem

- 1. Let R be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the y axis, as shown in the figure above.
 - a) Find the area of R.
 - b) Write, but do not solve, an integral expression that can be used to find the perimeter of *R*.
 - c) Region *R* forms the base of solid. Write, but do not evaluate, an integral expression that can be used to find the volume of this solid if cross-sections taken perpendicular to the *x*-axis are semicircles.
 - d) Region R is rotated around the line y = 6 to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.
 - e) Region *R* is rotated around the *x*-axis to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.
 - f) Region *R* is rotated around the *y*-axis to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.
 - g) Region R is rotated around the line x = 9 to form a solid. Write, but do not solve, an integral expression that can be used to find the volume of the solid.

A calculator may be used for these problems.

- 2. In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y = 4\ln(3-x)$, the horizontal line y = 6, and the vertical line x = 2.
 - a) Find the area of R.
 - b) Find the perimeter of R.
 - c) The region *R* is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is a square. Find the volume of the solid.
 - d) The region *R* is the base of a solid. For this solid, each cross section perpendicular to the *y*-axis is a quarter-circle. Find the volume of the solid.
 - e) Find the volume of the solid generated when R is revolved about the horizontal line y = 6.
 - f) Find the volume of the solid generated when R is revolved about the horizontal line y = 8.
 - g) Find the volume of the solid generated when R is revolved about the vertical line x = 2.
 - h) Find the volume of the solid generated when R is revolved about the vertical line x = -11.