AP Calculus – Final Review Sheet

When you see the words	This is what you think of doing
1. Find the zeros	Set function $= 0$, factor or use quadratic equation if
	quadratic, graph to find zeros on calculator
2. Find equation of the line tangent to $f(x)$ on	Take derivative - $f'(a) = m$ and use
[a,b]	$y - y_1 = m(x - x_1)$
3. Find equation of the line normal to $f(x)$ on $[a,b]$	Same as above but $m = \frac{-1}{f'(a)}$ Show that $f(-x) = f(x)$ - symmetric to y-axis
4. Show that $f(x)$ is even	Show that $f(-x) = f(x)$ - symmetric to y-axis
5. Show that $f(x)$ is odd	Show that $f(-x) = -f(x)$ - symmetric to origin
6. Find the interval where $f(x)$ is increasing	Find $f'(x)$, set both numerator and denominator to
	zero to find critical points, make sign chart of $f'(x)$
	and determine where it is positive.
7. Find interval where the slope of $f(x)$ is	Find the derivative of $f'(x) = f''(x)$, set both
increasing	numerator and denominator to zero to find critical
	points, make sign chart of $f''(x)$ and determine where
	it is positive.
8. Find the minimum value of a function	Make a sign chart of $f'(x)$, find all relative
	minimums and plug those values back into $f(x)$ and
	choose the smallest.
9. Find the minimum slope of a function	Make a sign chart of the derivative of $f'(x) = f''(x)$,
	find all relative minimums and plug those values back
	into $f'(x)$ and choose the smallest.
10. Find critical values	Express $f'(x)$ as a fraction and set both numerator
	and denominator equal to zero.
11. Find inflection points	Express $f''(x)$ as a fraction and set both numerator
	and denominator equal to zero. Make sign chart of
	f''(x) to find where $f''(x)$ changes sign. (+ to - or -
	to +)
12. Show that $\lim_{x \to a} f(x)$ exists	Show that $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$
13. Show that $f(x)$ is continuous	Show that 1) $\lim_{x \to a} f(x)$ exists $(\lim_{x \to a^-} f(x)) = \lim_{x \to a^+} f(x)$)
	Since the first of the first o
	2) $f(a)$ exists
	3) $\lim_{x \to a} f(x) = f(a)$
14. Find vertical asymptotes of $f(x)$	Do all factor/cancel of $f(x)$ and set denominator = 0
15. Find horizontal asymptotes of $f(x)$	Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$
16. Find the average rate of change of $f(x)$ on $[a,b]$	Find $\frac{f(b)-f(a)}{d}$
	Find $\frac{b-a}{b-a}$

17. Find instantaneous rate of change of $f(x)$ at <i>a</i>	Find $f'(a)$
18. Find the average value of $f(x)$ on $[a,b]$	Find $f'(a)$ $\int_{a}^{b} f(x) dx$
	Find $\frac{a}{b-a}$
19. Find the absolute maximum of $f(x)$ on $[a,b]$	Make a sign chart of $f'(x)$, find all relative
	maximums and plug those values back into $f(x)$ as
	well as finding $f(a)$ and $f(b)$ and choose the largest.
20. Show that a piecewise function is differentiable at the point <i>a</i> where the function rule splits	First, be sure that the function is continuous at $x = a$. Take the derivative of each piece and show that $\lim_{x \to a^{-}} f'(x) = \lim_{x \to a^{+}} f'(x)$
21. Given $s(t)$ (position function), find $v(t)$	Find $v(t) = s'(t)$
22. Given $v(t)$, find how far a particle travels on $[a,b]$	Find $\int_{a}^{b} v(t) dt$
23. Find the average velocity of a particle on $[a,b]$	Find $\frac{\int_{a}^{b} v(t)dt}{b-a} = \frac{s(b)-s(a)}{b-a}$ Find $v(k)$ and $a(k)$. Multiply their signs. If both
24. Given $v(t)$, determine if a particle is speeding	Find $v(k)$ and $a(k)$. Multiply their signs. If both
up	positive, the particle is speeding up, if different signs,
at $t = k$ 25. Given $v(t)$ and $s(0)$, find $s(t)$	then the particle is slowing down.
	$s(t) = \int v(t) dt + C$ Plug in $t = 0$ to find C
26. Show that Rolle's Theorem holds on $[a,b]$	Show that f is continuous and differentiable on the interval. If $f(a) = f(b)$ then find some a in $[a, b]$
	interval. If $f(a) = f(b)$, then find some c in $[a,b]$ such that $f'(c) = 0$.
27. Show that Mean Value Theorem holds on $[a,b]$	Show that f is continuous and differentiable on the
	interval. Then find some c such that
	$f'(c) = \frac{f(b) - f(a)}{b - a}.$
28. Find domain of $f(x)$	Assume domain is $(-\infty,\infty)$. Restrictable domains:
	denominators $\neq 0$, square roots of only non negative
	numbers, log or ln of only positive numbers.
29. Find range of $f(x)$ on $[a,b]$	Use max/min techniques to rind relative max/mins. Then examine $f(a), f(b)$
20. Find range of $f(x)$ on $(-x, x)$	Use max/min techniques to rind relative max/mins.
30. Find range of $f(x)$ on $(-\infty,\infty)$	Then examine $\lim_{x \to \pm \infty} f(x)$.
31. Find $f'(x)$ by definition	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ or}$ $f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
	$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

32. Find derivative of inverse to $f(x)$ at $x = a$	Latensher as whith we Solve for dy implicitly (in terms
	Interchange x with y. Solve for $\frac{dy}{dx}$ implicitly (in terms
	of y). Plug your x value into the inverse relation and dy
	solve for y. Finally, plug that y into your $\frac{dy}{dx}$.
33. <i>y</i> is increasing proportionally to y	$\frac{dy}{dt} = ky$ translating to $y = Ce^{kt}$
34. Find the line $x = c$ that divides the area under $f(x)$ on $[a,b]$ to two equal areas	$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx$
$35. \frac{d}{dx} \int_{a}^{x} f(t) dt =$	2^{nd} FTC: Answer is $f(x)$
$36. \ \frac{d}{dx} \int_{a}^{u} f(t) dt$	2 nd FTC: Answer is $f(u)\frac{du}{dx}$
37. The rate of change of population is	$\frac{dP}{dt} = \dots$
38. The line $y = mx + b$ is tangent to $f(x)$ at	Two relationships are true. The two functions share
(x_1, y_1)	the same slope ($m = f'(x)$) and share the same y
20 Find area using left Daimonn sums	value at x_1 .
39. Find area using left Reimann sums	$A = base[x_0 + x_1 + x_2 + \dots + x_{n-1}]$
40. Find area using right Reimann sums	$A = base[x_1 + x_2 + x_3 + + x_n]$
41. Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles.
42. Find area using trapezoids	$A = \frac{base}{2} \left[x_0 + 2x_1 + 2x_2 + \dots + 2x_{n-1} + x_n \right]$
	This formula only works when the base is the same. If not, you have to do individual trapezoids.
43. Solve the differential equation	Separate the variables $-x$ on one side, y on the other. The dx and dy must all be upstairs.
44. Meaning of $\int_{a}^{x} f(t) dt$	The accumulation function – accumulated area under the function $f(x)$ starting at some constant <i>a</i> and ending at <i>x</i> .
45. Given a base, cross sections perpendicular to the	The area between the curves typically is the base of
<i>x</i> -axis are squares	your square. So the volume is $\int_{a}^{b} (base^{2}) dx$
46. Find where the tangent line to $f(x)$ is horizontal	Write $f'(x)$ as a fraction. Set the numerator equal to
	zero.
47. Find where the tangent line to $f(x)$ is vertical	Write $f'(x)$ as a fraction. Set the denominator equal to zero.

48. Find the minimum acceleration given $v(t)$	First find the acceleration $a(t) = v'(t)$. Then minimize
48. Find the minimum acceleration given <i>v</i> (<i>i</i>)	
	the acceleration by examining $a'(t)$.
49. Approximate the value of $f(0.1)$ by using the	Find the equation of the tangent line to f using
tangent line to f at $x = 0$	$y - y_1 = m(x - x_1)$ where $m = f'(0)$ and the point is
	(0, f(0)). Then plug in 0.1 into this line being sure to
	use an approximate (\approx)sign.
50. Given the value of $F(a)$ and the fact that the	Usually, this problem contains an antiderivative you
anti-	cannot take. Utilize the fact that if $F(x)$ is the
derivative of f is F, find $F(b)$ 1	antiderivative of f, then $\int_{a}^{b} F(x) dx = F(b) - F(a)$. So
	solve for $F(b)$ using the calculator to find the definite
51. Find the derivative of $f(g(x))$	integral. $f'(g(x)) \cdot g'(x)$
f(x)	
52. Given $\int_{a}^{b} f(x) dx$, find $\int_{a}^{b} [f(x)+k] dx$	$\int_{a}^{b} [f(x)+k] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$ Make a sign chart of $f'(x)$ and determine where
53. Given a picture of $f'(x)$, find where $f(x)$ is	Make a sign chart of $f'(x)$ and determine where
increasing	f'(x) is positive.
54. Given $v(t)$ and $s(0)$, find the greatest distance	Generate a sign chart of $v(t)$ to find turning points.
from the origin of a particle on $[a, b]$	Then integrate $v(t)$ using $s(0)$ to find the constant to
from the origin of a particle on [a,b]	find $s(t)$. Finally, find $s(all turning points)$ which will
	give you the distance from your starting point. Adjust
	for the origin.
55. Given a water tank with g gallons initially being	
filled at the rate of $F(t)$ gallons/min and	t_2
emptied	$g + \int_{-\infty}^{\infty} (F(t) - E(t)) dt$
at the rate of $E(t)$ gallons/min on $[t_1, t_2]$, find	t
a) the amount of water in the tank at m minutes	
56. b) the rate the water amount is changing at m	$\frac{d}{dt}\int_{t}^{m} (F(t) - E(t))dt = F(m) - E(m)$
57. c) the time when the water is at a minimum	F(m) - E(m) = 0, testing the endpoints as well.
58. Given a chart of x and $f(x)$ on selected values	Straddle c , using a value k greater than c and a value h
	f(k) - f(h)
between a and b, estimate $f'(c)$ where c is	less than c. so $f'(c) \approx \frac{f(k) - f(h)}{k - h}$
between <i>a</i> and b.	
59. Given $\frac{dy}{dx}$, draw a slope field	Use the given points and plug them into $\frac{dy}{dx}$, drawing
dx, draw a slope field dx	
	little lines with the indicated slopes at the points.
60. Find the area between curves $f(x)g(x)$ on $[a,b]$	$A = \int_{a}^{b} [f(x) - g(x)] dx$, assuming that the <i>f</i> curve is
	above the g curve.

61. Find the volume if the area between $f(x)g(x)$ is rotated about the <i>x</i> -axis	$A = \int_{a}^{b} \left[f(x) \right]^{2} - \left(g(x) \right)^{2} dx$ assuming that the <i>f</i> curve is
	above the <i>g</i> curve.

AP Calculus – Final Review Sheet

When you see the words	This is what you think of doing
1. Find the zeros	
2. Find equation of the line tangent to $f(x)$ at (a,b)	
3. Find equation of the line normal to $f(x)$ at (a,b)	
4. Show that $f(x)$ is even	
5. Show that $f(x)$ is odd	
6. Find the interval where $f(x)$ is increasing	
0. This mereasing	
7. Find internal where the slare of $f(x)$ is	
7. Find interval where the slope of $f(x)$ is increasing	
8. Find the minimum value of a function	
8. Find the minimum value of a function	
9. Find the minimum slope of a function	
10. Find critical values	
11. Find inflection points	
12. Show that $\lim_{x \to a} f(x)$ exists	
13. Show that $f(x)$ is continuous	
14. Find vertical asymptotes of $f(x)$	

15. Find horizontal asymptotes of $f(x)$	
16. Find the average rate of change of $f(x)$ on $[a,b]$	
17 Find instantaneous rate of shange of $f(x)$ at a	
17. Find instantaneous rate of change of $f(x)$ at <i>a</i>	
18. Find the average value of $f(x)$ on $[a,b]$	
19. Find the absolute maximum of $f(x)$ on $[a,b]$	
20. Show that a piecewise function is differentiable	
at the point <i>a</i> where the function rule splits	
21. Given $s(t)$ (position function), find $v(t)$	
22. Given $v(t)$, find how far a particle travels on	
[a,b]	
23. Find the average velocity of a particle on $[a,b]$	
24. Given $v(t)$, determine if a particle is speeding up	
at $t = k$	
25. Given $v(t)$ and $s(0)$, find $s(t)$	
26. Show that Rolle's Theorem holds on $[a,b]$	
27. Show that Mean Value Theorem holds on $[a,b]$	
27. Show that Weah value Theorem holds on $[a,b]$	
28. Find domain of $f(x)$	
20 Find range of $f(x)$ on $\begin{bmatrix} z \\ -z \end{bmatrix}$	
29. Find range of $f(x)$ on $[a,b]$	
30. Find range of $f(x)$ on $(-\infty,\infty)$	
31. Find $f'(x)$ by definition	

32. Find derivative of inverse to $f(x)$ at $x = a$	
22 vis increasing proportionally to v	
33. y is increasing proportionally to y	
34. Find the line $x = c$ that divides the area under	
f(x) on $[a,b]$ to two equal areas	
$25 d \int c(x) dx$	
$35. \frac{d}{dx} \int_{a}^{x} f(t) dt =$	
$36. \ \frac{d}{dx} \int_{a}^{u} f(t) dt$	
$36. \frac{1}{dx} \int_{a}^{b} f(t) dt$	
37. The rate of change of population is	
38. The line $y = mx + b$ is tangent to $f(x)$ at (a,b)	
39. Find area using left Reimann sums	
40. Find area using right Reimann sums	
40. Find area using fight Kennahn sums	
41. Find area using midpoint rectangles	
42. Find area using trapezoids	
43. Solve the differential equation	
x x	
44. Meaning of $\int f(t) dt$	
45. Given a base, cross sections perpendicular to the	
<i>x</i> -axis are squares	
46. Find where the tangent line to $f(x)$ is horizontal	
47. Find where the tangent line to $f(x)$ is vertical	
48. Find the minimum acceleration given $v(t)$	

49. Approximate the value of $f(0.1)$ by using the tangent line to f at $x = 0$	
50. Given the value of $f(a)$ and the fact that the anti- derivative of f is F, find $F(b)$	
51. Find the derivative of $f(g(x))$	
52. Given $\int_{a}^{b} f(x)dx$, find $\int_{a}^{b} [f(x)+k]dx$ 53. Given a picture of $f'(x)$, find where $f(x)$ is	
53. Given a picture of $f'(x)$, find where $f(x)$ is increasing	
54. Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a,b]$	
55. Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $[t_1, t_2]$, find	
a) the amount of water in the tank at <i>m</i> minutes56. b) the rate the water amount is changing at <i>m</i>	
57. c) the time when the water is at a minimum	
58. Given a chart of x and $f(x)$ on selected values between a and b, estimate $f'(c)$ where c is between a and b.	
59. Given $\frac{dy}{dx}$, draw a slope field	
60. Find the area between curves $f(x)g(x)$ on $[a,b]$	
61. Find the volume if the area between $f(x)g(x)$ is rotated about the <i>x</i> -axis	