When you see the words	This is what you think of doing
1. Find the zeros	Set function $=0$, factor or use quadratic equation if quadratic, graph to find zeros on calculator
2. Find equation of the line tangent to $f(x)$ on $[a, b]$	Take derivative $-f^{\prime}(a)=m$ and use $y-y_{1}=m\left(x-x_{1}\right)$
3. Find equation of the line normal to $f(x)$ on $[a, b]$	Same as above but $m=\frac{-1}{f^{\prime}(a)}$
4. Show that $f(x)$ is even	Show that $f(-x)=f(x)$ - symmetric to y-axis
5. Show that $f(x)$ is odd	Show that $f(-x)=-f(x)$ - symmetric to origin
6. Find the interval where $f(x)$ is increasing	Find $f^{\prime}(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f^{\prime}(x)$ and determine where it is positive.
7. Find interval where the slope of $f(x)$ is increasing	Find the derivative of $f^{\prime}(x)=f^{\prime \prime}(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f^{\prime \prime}(x)$ and determine where it is positive.
8. Find the minimum value of a function	Make a sign chart of $f^{\prime}(x)$, find all relative minimums and plug those values back into $f(x)$ and choose the smallest.
9. Find the minimum slope of a function	Make a sign chart of the derivative of $f^{\prime}(x)=f^{\prime \prime}(x)$, find all relative minimums and plug those values back into $f^{\prime}(x)$ and choose the smallest.
10. Find critical values	Express $f^{\prime}(x)$ as a fraction and set both numerator and denominator equal to zero.
11. Find inflection points	Express $f^{\prime \prime}(x)$ as a fraction and set both numerator and denominator equal to zero. Make sign chart of $f^{\prime \prime}(x)$ to find where $f^{\prime \prime}(x)$ changes sign. (+ to - or to +)
12. Show that $\lim _{x \rightarrow a} f(x)$ exists	Show that $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$
13. Show that $f(x)$ is continuous	Show that 1) $\lim _{x \rightarrow a} f(x)$ exists $\left(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)\right)$ 2) $f(a)$ exists 3) $\lim _{x \rightarrow a} f(x)=f(a)$
14. Find vertical asymptotes of $f(x)$	Do all factor/cancel of $f(x)$ and set denominator $=0$
15. Find horizontal asymptotes of $f(x)$	Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
16. Find the average rate of change of $f(x)$ on $[a, b]$	$\text { Find } \frac{f(b)-f(a)}{b-a}$

17. Find instantaneous rate of change of $f(x)$ at a	Find $f^{\prime}(a)$
18. Find the average value of $f(x)$ on $[a, b]$	$\text { Find } \frac{\int_{a}^{b} f(x) d x}{b-a}$
19. Find the absolute maximum of $f(x)$ on $[a, b]$	Make a sign chart of $f^{\prime}(x)$, find all relative maximums and plug those values back into $f(x)$ as well as finding $f(a)$ and $f(b)$ and choose the largest.
20. Show that a piecewise function is differentiable at the point a where the function rule splits	First, be sure that the function is continuous at $x=a$. Take the derivative of each piece and show that $\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a+} f^{\prime}(x)$
21. Given $s(t)$ (position function), find $v(t)$	Find $v(t)=s^{\prime}(t)$
22. Given $v(t)$, find how far a particle travels on $[a, b]$	Find $\int_{a}^{b} \mid v(t) d t$
23. Find the average velocity of a particle on $[a, b]$	Find $\frac{\int_{a}^{b} v(t) d t}{b-a}=\frac{s(b)-s(a)}{b-a}$
24. Given $v(t)$, determine if a particle is speeding up at $t=k$	Find $v(k)$ and $a(k)$. Multiply their signs. If both positive, the particle is speeding up, if different signs, then the particle is slowing down.
25. Given $v(t)$ and $s(0)$, find $s(t)$	$s(t)=\int v(t) d t+C \quad$ Plug in $t=0$ to find C
26. Show that Rolle's Theorem holds on $[a, b]$	Show that f is continuous and differentiable on the interval. If $f(a)=f(b)$, then find some c in $[a, b]$ such that $f^{\prime}(c)=0$.
27. Show that Mean Value Theorem holds on $[a, b]$	Show that f is continuous and differentiable on the interval. Then find some c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
28. Find domain of $f(x)$	Assume domain is $(-\infty, \infty)$. Restrictable domains: denominators $\neq 0$, square roots of only non negative numbers, \log or \ln of only positive numbers.
29. Find range of $f(x)$ on $[a, b]$	Use max/min techniques to rind relative max/mins. Then examine $f(a), f(b)$
30. Find range of $f(x)$ on $(-\infty, \infty)$	Use max/min techniques to rind relative max/mins. Then examine $\lim _{x \rightarrow \pm \infty} f(x)$.
31. Find $f^{\prime}(x)$ by definition	$\begin{aligned} & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { or } \\ & f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \end{aligned}$

32. Find derivative of inverse to $f(x)$ at $x=a$	Interchange x with y. Solve for $\frac{d y}{d x}$ implicitly (in terms of y). Plug your x value into the inverse relation and solve for y. Finally, plug that y into your $\frac{d y}{d x}$.
33. y is increasing proportionally to y	$\frac{d y}{d t}=k y$ translating to $y=C e^{k t}$
34. Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ to two equal areas	$\int_{a}^{c} f(x) d x=\int_{c}^{b} f(x) d x$
35. $\frac{d}{d x} \int_{a}^{x} f(t) d t=$	$2^{\text {nd }}$ FTC: Answer is $f(x)$
$\text { 36. } \frac{d}{d x} \int_{a}^{4} f(t) d t$	$2^{\text {nd }}$ FTC: Answer is $f(u) \frac{d u}{d x}$
37. The rate of change of population is ...	$\frac{d P}{d t}=\ldots$
38. The line $y=m x+b$ is tangent to $f(x)$ at $\left(x_{1}, y_{1}\right)$	Two relationships are true. The two functions share the same slope ($m=f^{\prime}(x)$) and share the same y value at x_{1}.
39. Find area using left Reimann sums	$A=\operatorname{base}\left[x_{0}+x_{1}+x_{2}+\ldots+x_{n-1}\right]$
40. Find area using right Reimann sums	$A=\operatorname{base}\left[x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right]$
41. Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles.
42. Find area using trapezoids	$A=\frac{\text { base }}{2}\left[x_{0}+2 x_{1}+2 x_{2}+\ldots+2 x_{n-1}+x_{n}\right]$ This formula only works when the base is the same. If not, you have to do individual trapezoids.
43. Solve the differential equation ...	Separate the variables - x on one side, y on the other. The $d x$ and $d y$ must all be upstairs.
44. Meaning of $\int_{a}^{x} f(t) d t$	The accumulation function - accumulated area under the function $f(x)$ starting at some constant a and ending at x.
45. Given a base, cross sections perpendicular to the x-axis are squares	The area between the curves typically is the base of your square. So the volume is $\int_{a}^{b}\left(\right.$ base $\left.^{2}\right) d x$
46. Find where the tangent line to $f(x)$ is horizontal	Write $f^{\prime}(x)$ as a fraction. Set the numerator equal to zero.
47. Find where the tangent line to $f(x)$ is vertical	Write $f^{\prime}(x)$ as a fraction. Set the denominator equal to zero.

48. Find the minimum acceleration given $v(t)$	First find the acceleration $a(t)=v^{\prime}(t)$. Then minimize the acceleration by examining $a^{\prime}(t)$.
49. Approximate the value of $f(0.1)$ by using the tangent line to f at $x=0$	Find the equation of the tangent line to f using $y-y_{1}=m\left(x-x_{1}\right)$ where $m=f^{\prime}(0)$ and the point is $(0, f(0))$. Then plug in 0.1 into this line being sure to use an approximate (\approx) sign.
50. Given the value of $F(a)$ and the fact that the anti- derivative of f is F, find $F(b) 1$	Usually, this problem contains an antiderivative you cannot take. Utilize the fact that if $F(x)$ is the antiderivative of f, then $\int_{a}^{b} F(x) d x=F(b)-F(a)$. So solve for $F(b)$ using the calculator to find the definite integral.
51. Find the derivative of $f(g(x))$	$f^{\prime}(g(x)) \cdot g^{\prime}(x)$
52. Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$	$\int_{a}^{b}[f(x)+k] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} k d x$
53. Given a picture of $f^{\prime}(x)$, find where $f(x)$ is increasing	Make a sign chart of $f^{\prime}(x)$ and determine where $f^{\prime}(x)$ is positive.
54. Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a, b]$	Generate a sign chart of $v(t)$ to find turning points. Then integrate $v(t)$ using $s(0)$ to find the constant to find $s(t)$. Finally, find s (all turning points) which will give you the distance from your starting point. Adjust for the origin.
55. Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons $/ \mathrm{min}$ and emptied at the rate of $E(t)$ gallons $/ \mathrm{min}$ on $\left[t_{1}, t_{2}\right]$, find a) the amount of water in the tank at m minutes	$g+\int_{t}^{t_{2}}(F(t)-E(t)) d t$
56. b) the rate the water amount is changing at m	$\frac{d}{d t} \int_{t}^{m}(F(t)-E(t)) d t=F(m)-E(m)$
57. c) the time when the water is at a minimum	$F(m)-E(m)=0$, testing the endpoints as well.
58. Given a chart of x and $f(x)$ on selected values between a and b, estimate $f^{\prime}(c)$ where c is between a and b .	Straddle c, using a value k greater than c and a value h less than c. so $f^{\prime}(c) \approx \frac{f(k)-f(h)}{k-h}$
59. Given $\frac{d y}{d x}$, draw a slope field	Use the given points and plug them into $\frac{d y}{d x}$, drawing little lines with the indicated slopes at the points.
60 . Find the area between curves $f(x), g(x)$ on $[a, b]$	$A=\int_{a}^{b}[f(x)-g(x)] d x$, assuming that the f curve is above the g curve.

61. Find the volume if the area between $f(x), g(x)$ is rotated about the x-axis	$A=\int_{a}^{b}[f(x))^{2}-(g(x))^{2} \Phi x$ assuming that the f curve is above the g curve.

AP Calculus - Final Review Sheet

When you see the words

This is what you think of doing

1. Find the zeros	
2. Find equation of the line tangent to $f(x)$ at (a, b)	
3. Find equation of the line normal to $f(x)$ at (a, b)	
4. Show that $f(x)$ is even	
5. Show that $f(x)$ is odd	
6. Find the interval where $f(x)$ is increasing	
7. Find interval where the slope of $f(x)$ is increasing	
8. Find the minimum value of a function	
9. Find the minimum slope of a function	
10. Find critical values	
11. Find inflection points	
13. Show that $f(x)$ is continuous	

15. Find horizontal asymptotes of $f(x)$	
16. Find the average rate of change of $f(x)$ on $[a, b]$	
17. Find instantaneous rate of change of $f(x)$ at a	
18. Find the average value of $f(x)$ on $[a, b]$	
19. Find the absolute maximum of $f(x)$ on $[a, b]$	
20. Show that a piecewise function is differentiable point a where the function rule splits	
at the	
21. Given $s(t)$ (position function), find $v(t)$	
32. Find range of $f(x)$ on $(-\infty, \infty)$ $[a, b]$	
31. Find $f^{\prime}(x)$ by definition	
23. Find the average velocity of a particle on $[a, b]$	
26. Find how far a particle travels on	
25. Given $v(t)$, determine if a particle is speeding up	
at $t=k$	
25. Fiven $v(t)$ and $s(0)$, find $s(t)$	

32. Find derivative of inverse to $f(x)$ at $x=a$	
33. y is increasing proportionally to y	
34. Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ to two equal areas	
35. $\frac{d}{d x} \int_{a}^{x} f(t) d t=$	
$\text { 36. } \frac{d}{d x} \int_{a}^{4} f(t) d t$	
37. The rate of change of population is ...	
38. The line $y=m x+b$ is tangent to $f(x)$ at (a, b)	
39. Find area using left Reimann sums	
40. Find area using right Reimann sums	
41. Find area using midpoint rectangles	
42. Find area using trapezoids	
43. Solve the differential equation ...	
44. Meaning of $\int_{a}^{x} f(t) d t$	
45. Given a base, cross sections perpendicular to the x-axis are squares	
46. Find where the tangent line to $f(x)$ is horizontal	
47. Find where the tangent line to $f(x)$ is vertical	
48. Find the minimum acceleration given $v(t)$	

49. Approximate the value of $f(0.1)$ by using the tangent line to f at $x=0$	
50. Given the value of $f(a)$ and the fact that the anti- derivative of f is F, find $F(b)$	
51. Find the derivative of $f(g(x))$	
52. Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$	
53. Given a picture of $f^{\prime}(x)$, find where $f(x)$ is increasing	
54. Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a, b]$	
55. Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $\left[t_{1}, t_{2}\right]$, find a) the amount of water in the tank at m minutes	
56. b) the rate the water amount is changing at m between a and b, estimate $f^{\prime}(c)$ where c is between a and b. rotated about the x-axis 57. c) the time when the water is at a minimum 59. Given $\frac{d y}{d x}$, draw a slope field 60. Find the area between curves $f(x), g(x)$ on $[a, b]$	

