
MOST UP-TO-DATE REVIEW
AND PRACTICE TESTS

CURRENTLY AVAILABLE

7TH EDITION
Roselyn Teukolsky, M.S.

n � 4 full-length practice tests with explained
answers, including one online

n � Expert advice on the best way to approach
the test

n � Review covers all relevant topics, including the
new AP Computer Science A labs and changes to
the Java subset

BARRON’S
The Leader in Test Preparation

*AP and Advanced Placement Program are registered trademarks of the College Board, which was not
involved in the production of, and does not endorse, this product.

with BARRON’S
SCORE HIGHER

ISBN: 978-1-4380-0594-2

EA
N

$18.99 Canada $21.99
www.barronseduc.com

PRINTED
IN THE
USA

B
A

R
R

O
N

’S
Teukolsky

AP
COMPUTER
SCIENCE A

*A
P

STUDYGREEN.

STUDYGREEN.

STUDYGREEN.

STUDYGREEN.

S
T

U

D Y G R E

E
N

.

Printed on partially recycled paper
Fully recyclable

C
O

M
P

U
T

E
R

 SC
IE

N
C

E
 A

*
BARRON’S GIVES YOU THE ANSWERS!
Every question in this book comes with a comprehensive answer explanation.

New chapter on
the Computer
Science A labs

BOOK

ONLINEONLINE

7
TH

 E
D

ITIO
N

Everything you need
to get a 55

For 70 years, BARRON’S experts have been helping students
surpass their expectations on standardized tests. This is the only
book you will need to get the score you want on the AP Computer
Science A test.

4 �Proven test-taking strategies that make the difference
between a good score and a great score

4 �One full-length diagnostic test to help you pinpoint your
strengths and weaknesses

4 �Two additional full-length practice tests to boost your
confidence

4 �The most up-to-date subject review that covers the specific
material you need to know for the test

4 �Access to a full-length sample AP Computer Science A exam
with answer explanations and automatic scoring

BOOK

ONLINE
See inside front cover for details.

4-0594-AP-ComputerScienceA-fbs.indd All Pages 11/7/14 12:41 PM

Now Available!
Go to

barronsbooks.com/AP/compsci/
to take a free sample

AP Computer Science A test,
complete with

answer explanations and
automated scoring.

BARRON’S
Online

AP Exams

*This online test was created for devices that support Adobe Flash Player. To access the test on an
Apple iPad or iPhone you will need to install a web browser that supports Flash (check the iTunes
App Store for free options).

4-0594-AP-ComputerScienceA-IFC.indd All Pages 11/5/14 12:54 PM

Roselyn Teukolsky, M.S.
Formerly, Ithaca High School

Ithaca, New York

BARRON’S

*AP and Advanced Placement Program are registered trademarks of the College Board, which was not involved in the production of, and does not endorse, this book.

7TH EDITION

COMPUTER
SCIENCE A

AP
*

4-0594-APComputerScienceA-tp.indd 1 10/7/14 9:09 AM

✐

✐

“ap” — 2014/11/4 — 11:10 — page ii — #2
✐

✐

✐

✐

✐

✐

About the Author:

Roselyn Teukolsky has an M.S. degree from Cornell University, and has been teaching programming and com-
puter science since 1980. She has published articles in The Mathematics Teacher and in the National Council
of Teachers of Mathematics Yearbook. She is the author of Barron’s ACT Math and Science Workbook and co-
author of Barron’s SAT 2400: Aiming for the Perfect Score. She has received the Edyth May Sliffe Award for
Distinguished Mathematics Teaching and the Alfred Kalfus Distinguished Coach Award from the New York
State Math League (NYSML).

c© Copyright 2015, 2013, 2010 by Barron’s Educational Series, Inc.
Previous editions c© copyright 2007 under the title
AP Computer Science Levels A and AB, 2003 under the title
How to Prepare for the AP Computer Science Advanced
Placement Examination, JAVA Version, and 2001
under the title How to Prepare for the AP Computer
Science Advanced Placement Examination
by Barron’s Educational Series, Inc.

All rights reserved.

No part of this publication may be reproduced or
distributed in any form or by any means without the written
permission of the copyright owner.

All inquiries should be addressed to:
Barron’s Educational Series, Inc.
250 Wireless Boulevard
Hauppauge, New York 11788
www.barronseduc.com

ISBN: 978-1-4380-0594-2
ISBN (with CD-ROM): 978-1-4380-7553-2

ISSN (Print): 2169-5571
ISSN (Print with CD-ROM): 2169-558X

PRINTED IN THE UNITED STATES OF AMERICA

9 8 7 6 5 4 3 2 1

✐

✐

“ap” — 2014/11/4 — 11:10 — page iii — #3
✐

✐

✐

✐

✐

✐

Contents

Preface ix

Introduction xi

General Information About the Exam . xi
Hints for Taking the Exam . xii

The Multiple-Choice Section . xii
The Free-Response Section . xii

How to Use This Book . xiii

Practice Exam One / Diagnostic Test 1

Computer Science Section I . 5
Computer Science Section II . 33
Answer Key (Section I) . 45
Diagnostic Chart for Practice Exam . 45
Answers Explained . 47

Chapter 1. Introductory Java Language Features 57

Packages and Classes . 57
Javadoc Comments . 59

Types and Identifiers . 60
Identifiers . 60
Built-in Types . 60
Storage of Numbers . 61
Hexadecimal and Octal Numbers . 62
Final Variables . 63

Operators . 63
Arithmetic Operators . 63
Relational Operators . 64
Logical Operators . 65
Assignment Operators . 66
Increment and Decrement Operators . 66
Operator Precedence . 67

Input/Output . 67
Input . 67
Output . 67
Escape Sequences . 68

Control Structures . 69
Decision-Making Control Structures . 69
Iteration . 71

Errors and Exceptions . 74
Multiple-Choice Questions on Introductory Java Language Concepts . . 77
Answer Key . 88
Answers Explained . 88

iii

✐

✐

“ap” — 2014/11/4 — 11:10 — page iv — #4
✐

✐

✐

✐

✐

✐

iv Contents

Chapter 2. Classes and Objects 92

Objects . 92
Classes . 93
Public, Private, and Static . 94
Methods . 95

Headers . 95
Types of Methods . 95
Method Overloading . 99

Scope . 100
The this Keyword . 100

References . 101
Reference vs. Primitive Data Types . 101
The Null Reference . 103
Method Parameters . 103

Multiple-Choice Questions on Classes and Objects 111
Answer Key . 126
Answers Explained . 126

Chapter 3. Inheritance and Polymorphism 131

Inheritance . 131
Superclass and Subclass . 131
Inheritance Hierarchy . 131
Implementing Subclasses . 132
Declaring Subclass Objects . 137

Polymorphism . 138
Dynamic Binding (Late Binding) . 138
Using super in a Subclass . 139

Type Compatibility . 140
Downcasting . 140
The ClassCastException . 142

Abstract Classes . 142
Abstract Class . 142
The abstract Keyword . 142

Interfaces . 144
Interface . 144
Defining an Interface . 145
The implements Keyword . 145
The Comparable Interface . 145

Multiple-Choice Questions on Inheritance and Polymorphism 150
Answer Key . 169
Answers Explained . 169

Chapter 4. Some Standard Classes 174

The Object Class . 174
The Universal Superclass . 174
Methods in Object . 174

The String Class . 177
StringObjects . 177
Constructing StringObjects . 177
The Concatenation Operator . 178

✐

✐

“ap” — 2014/11/4 — 11:10 — page v — #5
✐

✐

✐

✐

✐

✐

Contents v

Comparison of StringObjects . 178
Other StringMethods . 179

Wrapper Classes . 180
The Integer Class . 181
The Double Class . 182

The Math Class . 183
Random Numbers . 184

Multiple-Choice Questions on Standard Classes 187
Answer Key . 200
Answers Explained . 200

Chapter 5. Program Design and Analysis 207

The Software Development Life Cycle . 207
The Waterfall Model . 207
Program Specification . 208
Program Design . 208
Program Implementation . 208
Testing and Debugging . 208
Program Maintenance . 210

Object-Oriented Program Design . 210
Identifying Classes . 210
Identifying Behaviors . 211
Determining Relationships Between Classes 211
UML Diagrams . 212
Implementing Classes . 212
Implementing Methods . 213
Vocabulary Summary . 219

Program Analysis . 219
Program Correctness . 219
Assertions . 219
Efficiency . 220

Multiple-Choice Questions on Program Design and Analysis 221
Answer Key . 230
Answers Explained . 230

Chapter 6. Arrays and Array Lists 233

One-Dimensional Arrays . 233
Initialization . 233
Length of Array . 234
Traversing an Array . 235
Arrays as Parameters . 235
Array Variables in a Class . 238
Array of Class Objects . 239
Analyzing Array Algorithms . 240

Array Lists . 241
The Collections API . 241
The Collections Hierarchy . 242
Collections and Generics . 242
Auto-Boxing and -Unboxing . 242

The List<E> Interface . 243

✐

✐

“ap” — 2014/11/4 — 11:10 — page vi — #6
✐

✐

✐

✐

✐

✐

vi Contents

The Methods of List<E> . 243
The ArrayList<E> Class . 244
Using ArrayList<E> . 245

Collections and Iterators . 247
Definition of an Iterator . 247
The Iterator<E> Interface . 247
Using a Generic Iterator . 247

Two-Dimensional Arrays . 249
Declarations . 250
Matrix as Array of Row Arrays . 250
Processing a Two-Dimensional Array . 251
Two-Dimensional Array as Parameter . 253

Multiple-Choice Questions on Arrays and Array Lists 255
Answer Key . 284
Answers Explained . 284

Chapter 7. Recursion 290

Recursive Methods . 290
General Form of Simple Recursive Methods 291
Writing Recursive Methods . 293
Analysis of Recursive Methods . 294
Sorting Algorithms That Use Recursion . 295
Recursive Helper Methods . 295
Recursion in Two-Dimensional Grids . 298

Sample Free-Response Question 1 . 300
Sample Free-Response Question 2 . 303

Multiple-Choice Questions on Recursion . 308
Answer Key . 319
Answers Explained . 319

Chapter 8. Sorting and Searching 324

Sorts: Selection and Insertion Sorts . 324
Selection Sort . 324
Insertion Sort . 325

Recursive Sorts: Mergesort and Quicksort . 325
Mergesort . 325
Quicksort . 327

Sorting Algorithms in Java . 328
Sequential Search . 329
Binary Search . 329
Multiple-Choice Questions on Sorting and Searching 331
Answer Key . 346
Answers Explained . 346

Chapter 9. The AP Computer Science A Labs 351

The Magpie Lab . 351
Special Emphasis . 352

The Elevens Lab . 353
Special Emphasis . 354

✐

✐

“ap” — 2014/11/4 — 11:10 — page vii — #7
✐

✐

✐

✐

✐

✐

Contents vii

The Picture Lab . 356
Special Emphasis . 356

Multiple-Choice Questions on the Lab Concepts 360
Answer Key . 373
Answers Explained . 373

Practice Exams 377

Practice Exam Two 379

Computer Science Section I . 381
Computer Science Section II . 408
Answer Key (Section I) . 420
Answers Explained . 420

Practice Exam Three 433

Computer Science Section I . 435
Computer Science Section II . 460
Answer Key (Section I) . 472
Answers Explained . 472

AAppendix: Glossary of Useful Computer Terms 482

Index 485

✐

✐

“ap” — 2014/11/4 — 11:10 — page viii — #8

✐

✐

✐

✐

✐

✐

5
Barron’s
Essential

As you review the content in this book to work toward
earning that 5 on your AP Computer Science A exam, here
are five things that you MUST know above everything else:

1 The Basics. Every AP exam question uses at least one of these:

• Types and Identifiers (p. 60)

• Operators (p. 63)

• Control structures (p. 69)

2 Objects, Classes, and Inheritance. You may have to write your own class.

You’ll definitely need to interpret at least one class that’s given.

• Methods (p. 95)

• Subclasses (p. 131)

• Abstract classes (p. 142)

• Interfaces (p. 144)

3 Lists and Arrays. Learn to manipulate a list. Search, delete an item, insert an

item. It seems as if every second question on the AP exam uses a list!

• One-dimensional arrays (p. 233)

• ArrayLists (p. 244)

4
Two-dimensional Arrays. Learn to manipulate a matrix. This topic has become

more prominent on the AP exam in recent years.

• Two-dimensional arrays (p. 249)

• Row-column traversal (p. 251)

• for-each loop traversal (p. 251)

• Row-by-row array processing (p. 251)

5 Sorting and Searching. Know these algorithms!

• Selection Sort (p. 324)

• Insertion Sort (p. 325)

• Merge Sort (p. 325)

• Binary Search (p. 329)

✐

✐

“ap” — 2014/11/4 — 11:10 — page ix — #9

✐

✐

✐

✐

✐

✐

Preface

This book is aimed at students reviewing for the AP Computer Science A exam. It
would normally be used at the completion of an AP course. However, it contains
a complete summary of all topics for the exam, and it can be used for self-study if
accompanied by a suitable textbook.

The book provides a review of object-oriented programming, algorithm analysis,
and data structures. It can therefore be used as a supplement to first-year college
courses where Java is the programming language and as a resource for teachers of high
school and introductory college courses.

This seventh edition includes all features of Java that will be tested on the AP exam.
The AP Computer Science Development Committee is placing greater emphasis on

two-dimensional arrays. As a result, the following new sections have been added:

• using a for-each loop traversal

• treating a matrix as an array of arrays

All students should be able to create, initialize, modify, and traverse two-dimensional
arrays. More questions on two-dimensional arrays have been added for this edition.

The GridWorld Case Study is gone! Starting in May 2015 there will be no questions
on GridWorld. All GridWorld questions in the practice exams have been replaced by
new questions, both multiple-choice and free-response.

The AP Computer Science Labs were developed as a replacement for GridWorld.
However, there will be no questions on the specific content of the labs on the AP
exam. Instead, there will be questions that test the concepts developed in the labs.

This seventh edition has a new chapter that summarizes the labs and highlights the
concepts that are emphasized in them. The chapter contains a new section of multiple-
choice questions based on these concepts. A new symbol in the margin, as shown here,
is used throughout the book to draw attention to these concepts.

Another topic that is gone is the Comparable interface, which will no longer be
tested on the AP exam. Students will, however, be expected to understand how the
compareTo method is used for type String.

The style of all questions and examples in the book has been revamped to better
reflect the style of recent exams.

There are three complete practice exams. The exams follow the format of the AP
exam, with multiple-choice and free-response sections. One exam is presented after
the introduction to the book for possible use as a diagnostic test. A diagnostic chart
accompanies this test. Detailed solutions with explanations are provided for all exams.
Two additional exams are provided on the optional CD-ROM. This edition contains
several new questions. There is no overlap of questions between the exams.

Note that the scoring worksheets that accompany each exam, in both the book and
CD-ROM, have been updated in this edition. They reflect the new College Board
policy of not penalizing students for wrong answers on the multiple-choice section.

ix

✐

✐

“ap” — 2014/11/4 — 11:10 — page x — #10

✐

✐

✐

✐

✐

✐

x Preface

ACKNOWLEDGMENTS

I owe thanks to many people who helped in the creation of this book.
I am most grateful to my excellent editor, Linda Turner, of Barron’s, for her friendly

guidance and moral support throughout this project, over many years. I also thank all
the other members of the Barron’s staff who worked on the production of the book.

I am grateful to Steven Andrianoff and David Levine of St. Bonaventure University,
New York, for their outstanding workshops that gave me a leg up in computer science.
Many ideas from their Java workshops found their way into early editions of this book.

Thanks also to Robert Glen Martin for invaluable advice and suggestions.
Many thanks to the four wonderful students who helped me check the new ques-

tions for this edition: Lilia Escobedo, Rob Schlom, Irene Yoon, and Aryeh Zax.
Thank you to all of the computer science teachers throughout the country who

took time to write to me with suggestions for the new edition, including my colleague
at Ithaca High School, Fred Deppe.

A very special thank you to Judy Hromcik and Chris Nevison, who went way
beyond the call of duty to help me with this new edition.

My husband, Saul, continues to be my partner in this project—typesetting the
manuscript, producing the figures, and giving advice and moral support every step
of the way. This book is dedicated to him.

Roselyn Teukolsky
Ithaca, NY

July 2014

✐

✐

“ap” — 2014/11/4 — 11:10 — page xi — #11

✐

✐

✐

✐

✐

✐

Introduction

Computer Science: The boring art
of coping with a large number of trivialities.

—Stan Kelly-Bootle, The Devil’s DP Dictionary (1981)

GENERAL INFORMATION ABOUT THE EXAM

The AP Computer Science exam is a three-hour written exam. No books, calculators,
or computers are allowed! The exam consists of two parts that have equal weight:

• Section I: 40 multiple-choice questions in 1 hour and 15 minutes.

• Section II: 4 free-response questions in 1 hour and 45 minutes.

Section I is scored by machine—you will bubble your answers with a pencil on a
mark-sense sheet. Each question correctly answered is worth 1 point. There are no
deductions for incorrect answers, and a question left blank is ignored.

SCORING
REMINDER

There is no penalty
for wrong answers
on the multiple-
choice section.

Section II is scored by human readers—you will write your answers in a booklet
provided. Free-response questions typically involve writing methods in Java to solve
a given problem. Sometimes there are questions analyzing algorithms or designing
and modifying data structures. You may be asked to write or design an entire class.
To ensure consistency in the grading, each grader follows the same rubric, and each
of your four answers may be examined by more than one reader. Each question is
worth 9 points, with partial credit awarded where applicable. Your name and school
are hidden from the readers.

Your raw score for both sections is converted to an integer score from 1 to 5, where 1
represents “Not at all qualified” and 5 represents “Extremely well qualified.” Be aware
that the awarding of AP credit varies enormously from college to college. The exam
covers roughly a one-semester introductory college course.

The language of the AP exam is Java. Only a subset of the Java language will be
tested on the exam. In writing your solutions to the free-response questions, how-
ever, you may use any Java features, including those that are not in the AP sub-
set. For a complete description of this subset, see the College Board website at
http://www.collegeboard.com/student/testing/ap/subjects.html. Every language topic
in this review book is part of the AP Java subset unless explicitly stated otherwise.
Note that the entire subset is covered in the book.

For both the multiple-choice and free-response sections of the exam, there will be a
quick reference in the appendix. You can look at this ahead of time at http://apcentral.
collegeboard.com/apc/public/repository/ap_comp_sci_a_quick_reference.pdf.

The quick reference contains The standard Java interfaces and classes with lists of
their required methods.

xi

✐

✐

“ap” — 2014/11/4 — 11:10 — page xii — #12

✐

✐

✐

✐

✐

✐

xii Introduction

HINTS FOR TAKING THE EXAM

The Multiple-Choice Section

• Since there are no deductions for wrong answers, you should guess when you’ve
eliminated what you can.

• You have a little less than two minutes per question, so don’t waste time on any
given question. You can always come back to it if you have time at the end.

• Seemingly complicated array questions can often be solved by hand tracing the
code with a small array of two or three elements. The same is true for matrices.

• Many questions ask you to compare two pieces of code that supposedly imple-
ment the same algorithm. Often one program segment will fail because it doesn’t
handle endpoint conditions properly (e.g., num == 0). Be aware of endpoint con-
ditions throughout the exam.

• Since the mark-sense sheet is scanned by machine, make sure that you erase com-
pletely if you change an answer.

The Free-Response Section

• Each free-response question is worth 9 points. Take a minute to read through
the whole exam so that you can start with a question that you feel confident
about. It gives you a psychological leg up to have a solid question in the bag.

• Don’t omit a question just because you can’t come up with a complete solution.
Remember, partial credit is awarded. Also, if you can’t do part (a) of a question,
don’t omit part (b)—they are graded independently.

• In writing solutions to a question, you must use the public methods of classes
provided in that question wherever possible. If you write a significant chunk of
code that can be replaced by a call to one of these methods, you will probably
not receive full credit for the question.

• If an algorithm is suggested to solve a problem, just follow it. Don’t reinvent the
wheel.

• Don’t waste time writing comments: the graders generally ignore them. The
occasional brief comment that clarifies a segment of code is OK.

• Points are not deducted for inefficient code unless efficiency is an issue in the
question.

• Most of the standard Java library methods are not included in the AP subset.
They are accepted on the exam if you use them correctly. However, there is
always an alternative solution that uses the AP subset and you should try to find
it.

• Don’t cross out an answer until you have written a replacement. Graders are
instructed not to read anything crossed out, even if it would have gotten credit.

• Have some awareness that this section is graded by humans. It is in your interest
to have the graders understand your solutions. With this in mind,

– Use a sharp pencil, write legibly, space your answers, and indent correctly.

– Use self-documenting names for variables, methods, and so on.

✐

✐

“ap” — 2014/11/4 — 11:10 — page xiii — #13

✐

✐

✐

✐

✐

✐

Introduction xiii

– Use the identifiers that are given in a question. You will lose usage points
if you persist in using the wrong names.

– Write clear readable code. This is your goal. Don’t write one obscure
convoluted statement when you can write two short clear statements. The
APCS exam is not the place to demonstrate that you’re a genius.

HOW TO USE THIS BOOK

Each chapter in the book contains a comprehensive review of a topic, multiple-choice
questions that focus on the topic, and detailed explanations of answers. These focus
questions help you to review parts of the Java subset that you should know. A few
questions are not typical AP exam questions—for example, questions that test low-
level details of syntax. Most of the focus questions, however, and all the multiple-
choice questions in the practice exams are representative of actual exam questions.

You should also note that several groups of focus questions are preceded by a single
piece of code to which the questions refer. Be aware that the AP exam will usually
restrict the number of questions per code example to two.

In both the text and questions/explanations, a special code font is used for parts of
the text that are Java code.

//This is an example of code font

A different font is used for pseudo-code.

< Here is pseudo-code font. >

A small number of optional topics that are not part of the AP Java subset are in-
cluded in the book because they are useful in the free-response questions. Sections in
the text and multiple-choice questions that are optional topics are clearly marked as
such. Some sections are marked by a lightning bolt, as shown here in the margin. This
means wake up! Here is a concept that is likely to be tested on the AP exam because it
was emphasized in the new AP Computer Science labs.

Three complete practice exams are provided in the book. One exam is at the start of
the book and may be used as a diagnostic test. It is accompanied by a diagnostic chart
that refers you to related topics in the review book. The other two exams are at the
end of the book. There are two additional exams on the optional CD-ROM provided
with the book.

Each of the five exams has an answer key, complete solutions and explanations for
the free-response questions, and detailed explanations for the multiple-choice ques-
tions. There is no overlap in the questions.

An answer sheet is provided for the Section I questions of each exam. When you
have completed an entire exam, and have checked your answers, you may wish to
calculate your approximate AP score. Use the scoring worksheet provided on the
back of the answer sheet.

An appendix at the end of the book provides a glossary of computer terms that
occasionally crop up on the exam.

A final hint about the book: Try the questions before you peek at the answers.
Good luck!

✐

✐

“ap” — 2014/11/4 — 11:10 — page xiv — #14

✐

✐

✐

✐

✐

✐

✐

✐

“ap” — 2014/11/4 — 11:10 — page 1 — #15

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 1

PRACTICE EXAM ONE / DIAGNOSTIC TEST

The exam that follows has the same format as that used on the actual AP exam. There
are two ways you may use it:

1. As a diagnostic test before you start reviewing. Following the answer key is a
diagnostic chart that relates each question to sections that you should review.
In addition, complete explanations are provided for each solution.

2. As a practice exam when you have completed your review.
Complete solutions with explanations are provided for the free-response

questions.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 2 — #16

✐

✐

✐

✐

✐

✐

✐

✐

“ap” — 2014/11/4 — 11:10 — page 3 — #17

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Answer Sheet: Practice Exam One

1. A B C D E

2. A B C D E

3. A B C D E

4. A B C D E

5. A B C D E

6. A B C D E

7. A B C D E

8. A B C D E

9. A B C D E

10. A B C D E

11. A B C D E

12. A B C D E

13. A B C D E

14. A B C D E

15. A B C D E

16. A B C D E

17. A B C D E

18. A B C D E

19. A B C D E

20. A B C D E

21. A B C D E

22. A B C D E

23. A B C D E

24. A B C D E

25. A B C D E

26. A B C D E

27. A B C D E

28. A B C D E

29. A B C D E

30. A B C D E

31. A B C D E

32. A B C D E

33. A B C D E

34. A B C D E

35. A B C D E

36. A B C D E

37. A B C D E

38. A B C D E

39. A B C D E

40. A B C D E

✐

✐

“ap” — 2014/11/4 — 11:10 — page 4 — #18

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t How to Calculate Your (Approximate) AP Computer Science Score

Multiple Choice

Number correct (out of 40) = ⇐= Multiple-Choice Score

Free Response

Question 1
(out of 9)

Question 2
(out of 9)

Question 3
(out of 9)

Question 4
(out of 9)

Total × 1.11 = ⇐= Free-Response Score
(Do not round.)

Final Score

Multiple-
Choice
Score

+
Free-

Response
Score

=
Final Score

(Round to nearest
whole number.)

Chart to Convert to AP Grade
Computer Science

Final AP Gradea

Score Range

62–80 5
47–61 4
37–46 3
29–36 2
0–28 1

aThe score range corresponding to
each grade varies from exam to exam
and is approximate.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 5 — #19

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 5

Practice Exam One
COMPUTER SCIENCE

SECTION I

Time—1 hour and 15 minutes
Number of questions—40
Percent of total grade—50

Directions: Determine the answer to each of the following questions or in-
complete statements, using the available space for any necessary scratchwork.
Then decide which is the best of the choices given and fill in the corresponding
oval on the answer sheet. Do not spend too much time on any one problem.

Notes:
• Assume that the classes in the Quick Reference have been imported where

needed.
• Assume that variables and methods are declared within the context of an

enclosing class.
• Assume that method calls that have no object or class name prefixed, and

that are not shown within a complete class definition, appear within the
context of an enclosing class.
• Assume that parameters in method calls are not null unless otherwise

stated.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 6 — #20

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

6 Practice Exam

1. Consider this inheritance hierarchy, in which Novel and Textbook are subclasses
of Book.

Book

Novel Textbook

Which of the following is a false statement about the classes shown?
(A) The Textbook class can have private instance variables that are in neither

Book nor Novel.
(B) Each of the classes—Book, Novel, and Textbook—can have a method

computeShelfLife, whose code in Book and Novel is identical, but differ-
ent from the code in Textbook.

(C) If the Book class has private instance variables title and author, then Novel

and Textbook cannot directly access them.
(D) Both Novel and Textbook inherit the constructors in Book.
(E) If the Book class has a private method called readFile, this method may not

be accessed in either the Novel or Textbook classes.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 7 — #21

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 7

2. A programmer is designing a program to catalog all books in a library. He plans
to have a Book class that stores features of each book: author, title, isOnShelf,
and so on, with operations like getAuthor, getTitle, getShelfInfo, and
setShelfInfo. Another class, LibraryList, will store an array of Book objects.
The LibraryList class will include operations such as listAllBooks, addBook,
removeBook, and searchForBook. The programmer plans to implement and test
the Book class first, before implementing the LibraryList class. The program-
mer’s plan to write the Book class first is an example of
(A) top-down development.
(B) bottom-up development.
(C) procedural abstraction.
(D) information hiding.
(E) a driver program.

3. The color of a pixel can be represented using the RGB (Red, Green, Blue) color
model, which stores values for red, green, and blue, each ranging from 0 to 255.
How many bits (binary digits) would be needed to represent a color in the RGB
model?
(A) 8
(B) 16
(C) 24
(D) 32
(E) 40

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 8 — #22

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

8 Practice Exam

Questions 4–5 refer to the Card and Deck classes shown below.

public class Card

{

private String suit;

private int value; //0 to 12

public Card(String cardSuit, int cardValue)

{ /* implementation */ }

public String getSuit()

{ return suit; }

public int getValue()

{ return value; }

public String toString()

{

String faceValue = "";

if (value == 11)

faceValue = "J";

else if (value == 12)

faceValue = "Q";

else if (value == 0)

faceValue = "K";

else if (value == 1)

faceValue = "A";

if (value >= 2 && value <= 10)

return value + " of " + suit;

else

return faceValue + " of " + suit;

}

}

public class Deck

{

private Card[] deck;

public final static int NUMCARDS = 52;

public Deck()

{ ...

/** Simulate shuffling the deck. */

public void shuffle()

{ ...

//Other methods are not shown.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 9 — #23

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 9

4. Which of the following represents correct /* implementation */ code for the con-
structor in the Card class?

(A) suit = cardSuit;

value = cardValue;

(B) cardSuit = suit;

cardValue = value;

(C) Card = new Card(suit, value);

(D) Card = new Card(cardSuit, cardValue);

(E) suit = getSuit();

value = getValue();

5. Consider the implementation of a writeDeck method that is added to the Deck

class.

/** Write the cards in deck, one per line. */

public void writeDeck()

{

/* implementation code */

}

Which of the following is correct /* implementation code */?

I System.out.println(deck);

II for (Card card : deck)

System.out.println(card);

III for (Card card : deck)

System.out.println((String) card);

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 10 — #24

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

10 Practice Exam

6. Refer to the following method that finds the smallest value in an array.

/** Precondition: arr is initialized with int values.

* @param arr the array to be processed

* @return the smallest value in arr

*/

public static int findMin(int[] arr)

{

int min = /* some value */;

int index = 0;

while (index < arr.length)

{

if (arr[index] < min)

min = arr[index];

index++;

}

return min;

}

Which replacement(s) for /* some value */ will always result in correct execu-
tion of the findMin method?

I Integer.MIN_VALUE

II Integer.MAX_VALUE

III arr[0]

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 11 — #25

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 11

7. Consider the following loop, where n is some positive integer.

for (int i = 0; i < n; i += 2)

{

if (/* test */)

/* perform some action */

}

In terms of n, which Java expression represents the maximum number of times
that /* perform some action */ could be executed?
(A) n / 2

(B) (n + 1) / 2

(C) n

(D) n - 1

(E) (n - 1) / 2

8. A method is to be written to search an array for a value that is larger than a
given item and return its index. The problem specification does not indicate
what should be returned if there are several such values in the array. Which of
the following actions would be best?
(A) The method should be written on the assumption that there is only one

value in the array that is larger than the given item.
(B) The method should be written so as to return the index of every occurrence

of a larger value.
(C) The specification should be modified to indicate what should be done if

there is more than one index of larger values.
(D) The method should be written to output a message if more than one larger

value is found.
(E) The method should be written to delete all subsequent larger items after a

suitable index is returned.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 12 — #26

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

12 Practice Exam

9. When will method whatIsIt cause a stack overflow (i.e., cause computer mem-
ory to be exhausted)?

public static int whatIsIt(int x, int y)

{

if (x > y)

return x * y;

else

return whatIsIt(x - 1, y);

}

(A) Only when x < y
(B) Only when x ≤ y
(C) Only when x > y
(D) For all values of x and y
(E) The method will never cause a stack overflow.

10. The boolean expression a[i] == max || !(max != a[i]) can be simplified to
(A) a[i] == max

(B) a[i] != max

(C) a[i] < max || a[i] > max

(D) true

(E) false

11. Suppose the characters 0,1, . . . , 8,9,A,B,C, D,E,F are used to represent a hex-
adecimal (base-16) number. Here A= 10, B= 11, . . . ,F= 15. What is the largest
base-10 integer that can be represented with a two-digit hexadecimal number,
such as 14 or 3A?
(A) 32
(B) 225
(C) 255
(D) 256
(E) 272

12. Consider a Clown class that has a default constructor. Suppose a list
ArrayList<Clown> list is initialized. Which of the following will not cause an
IndexOutOfBoundsException to be thrown?

(A) for (int i = 0; i <= list.size(); i++)

list.set(i, new Clown());

(B) list.add(list.size(), new Clown());

(C) Clown c = list.get(list.size());

(D) Clown c = list.remove(list.size());

(E) list.add(-1, new Clown());

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 13 — #27

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 13

Refer to the following class for Questions 13 and 14.

public class Tester

{

private int[] testArray = {3, 4, 5};

/** @param n an int to be incremented by 1 */

public void increment (int n)

{ n++; }

public void firstTestMethod()

{

for (int i = 0; i < testArray.length; i++)

{

increment(testArray[i]);

System.out.print(testArray[i] + " ");

}

}

public void secondTestMethod()

{

for (int element : testArray)

{

increment(element);

System.out.print(element + " ");

}

}

}

13. What output will be produced by invoking firstTestMethod for a Tester object?
(A) 3 4 5

(B) 4 5 6

(C) 5 6 7

(D) 0 0 0

(E) No output will be produced. An ArrayIndexOutOfBoundsException will
be thrown.

14. What output will be produced by invoking secondTestMethod for a Tester ob-
ject, assuming that testArray contains 3,4,5?
(A) 3 4 5

(B) 4 5 6

(C) 5 6 7

(D) 0 0 0

(E) No output will be produced. An ArrayIndexOutOfBoundsException will
be thrown.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 14 — #28

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

14 Practice Exam

Questions 15–17 refer to the Point, Quadrilateral, and Rectangle classes below:

public class Point

{

private int xCoord;

private int yCoord;

//constructor

public Point(int x, int y)

{

...

}

//accessors

public int get_x()

{

...

}

public int get_y()

{

...

}

//Other methods are not shown.

}

public abstract class Quadrilateral

{

private String labels; //e.g., "ABCD"

//constructor

public Quadrilateral(String quadLabels)

{ labels = quadLabels; }

public String getLabels()

{ return labels; }

public abstract int perimeter();

public abstract int area();

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 15 — #29

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 15

public class Rectangle extends Quadrilateral

{

private Point topLeft; //coords of top left corner

private Point botRight; //coords of bottom right corner

//constructor

public Rectangle(String theLabels, Point theTopLeft, Point theBotRight)

{ /* implementation code */ }

public int perimeter()

{ /* implementation not shown */ }

public int area()

{ /* implementation not shown */ }

//Other methods are not shown.

}

15. Which statement about the Quadrilateral class is false?
(A) The perimeter and area methods are abstract because there’s no suitable

default code for them.
(B) The getLabels method is not abstract because any subclasses of

Quadrilateralwill have the same code for this method.
(C) If the Quadrilateral class is used in a program, it must be used as a super-

class for at least one other class.
(D) No instances of a Quadrilateral object can be created in a program.
(E) Any subclasses of the Quadrilateral class must provide implementation

code for the perimeter and area methods.

16. Which represents correct /* implementation code */ for the Rectangle construc-
tor?

I super(theLabels);

II super(theLabels, theTopLeft, theBotRight);

III super(theLabels);

topLeft = theTopLeft;

botRight = theBotRight;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 16 — #30

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

16 Practice Exam

17. Refer to the Parallelogram and Square classes below.

public class Parallelogram extends Quadrilateral

{

//Private instance variables and constructor are not shown.

...

public int perimeter()

{ /* implementation not shown */ }

public int area()

{ /* implementation not shown */ }

}

public class Square extends Rectangle

{

//Private instance variables and constructor are not shown.

...

public int perimeter()

{ /* implementation not shown */ }

public int area()

{ /* implementation not shown */ }

}

Consider an ArrayList<Quadrilateral> quadList whose elements are of type
Rectangle, Parallelogram, or Square.
Refer to the following method, writeAreas:

/** Precondition: quadList contains Rectangle, Parallelogram, or

* Square objects in an unspecified order.

* @param quadList the list of quadrilaterals

*/

public static void writeAreas(List<Quadrilateral> quadList)

{

for (Quadrilateral quad : quadList)

System.out.println("Area of " + quad.getLabels()

+ " is " + quad.area());

}

What is the effect of executing this method?
(A) The area of each Quadrilateral in quadList will be printed.
(B) A compile-time error will occur, stating that there is no area method in

abstract class Quadrilateral.
(C) A compile-time error will occur, stating that there is no getLabels method

in classes Rectangle, Parallelogram, or Square.
(D) A NullPointerExceptionwill be thrown.
(E) A ClassCastExceptionwill be thrown.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 17 — #31

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 17

18. Refer to the doSomething method:

// postcondition
public static void doSomething(List<SomeType> list, int i, int j)

{

SomeType temp = list.get(i);

list.set(i, list.get(j));

list.set(j, temp);

}

Which best describes the postcondition for doSomething?
(A) Removes from list the objects indexed at i and j.
(B) Replaces in list the object indexed at i with the object indexed at j.
(C) Replaces in list the object indexed at j with the object indexed at i.
(D) Replaces in list the objects indexed at i and j with temp.
(E) Interchanges in list the objects indexed at i and j.

19. Consider the NegativeReal class below, which defines a negative real number
object.

public class NegativeReal

{

private Double negReal;

/** Constructor. Creates a NegativeReal object whose value is num.

* @param num a negative real number

*/

public NegativeReal(double num)

{ /* implementation not shown */ }

/** @return the value of this NegativeReal */

public double getValue()

{ /* implementation not shown */ }

/** @return this NegativeReal rounded to the nearest integer */

public int getRounded()

{ /* implementation */ }

}

Here are some rounding examples:

Negative real number Rounded to nearest integer

−3.5 −4
−8.97 −9
−5.0 −5
−2.487 −2
−0.2 0

Which /* implementation */ of getRounded produces the desired postcondition?
(A) return (int) (getValue() - 0.5);

(B) return (int) (getValue() + 0.5);

(C) return (int) getValue();

(D) return (double) (getValue() - 0.5);

(E) return (double) getValue();

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 18 — #32

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

18 Practice Exam

20. Consider the following method.

public static void whatsIt(int n)

{

if (n > 10)

whatsIt(n / 10);

System.out.print(n % 10);

}

What will be output as a result of the method call whatsIt(347)?
(A) 74

(B) 47

(C) 734

(D) 743

(E) 347

21. A large list of numbers is to be sorted into ascending order. Assuming that a “data
movement” is a swap or reassignment of an element, which of the following is a
true statement?
(A) If the array is initially sorted in descending order, then insertion sort will

be more efficient than selection sort.
(B) The number of comparisons for selection sort is independent of the initial

arrangement of elements.
(C) The number of comparisons for insertion sort is independent of the initial

arrangement of elements.
(D) The number of data movements in selection sort depends on the initial ar-

rangement of elements.
(E) The number of data movements in insertion sort is independent of the ini-

tial arrangement of elements.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 19 — #33

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 19

22. Refer to the definitions of ClassOne and ClassTwo below.

public class ClassOne

{

public void methodOne()

{

...

}

//Other methods are not shown.

}

public class ClassTwo extends ClassOne

{

public void methodTwo()

{

...

}

//Other methods are not shown.

}

Consider the following declarations in a client class. You may assume that
ClassOne and ClassTwo have default constructors.

ClassOne c1 = new ClassOne();

ClassOne c2 = new ClassTwo();

Which of the following method calls will cause an error?

I c1.methodTwo();

II c2.methodTwo();

III c2.methodOne();

(A) None
(B) I only
(C) II only
(D) III only
(E) I and II only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 20 — #34

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

20 Practice Exam

23. Consider the code segment

if (n == 1)

k++;

else if (n == 4)

k += 4;

Suppose that the given segment is rewritten in the form

if (/* condition */)

/* assignment statement */;

Given that n and k are integers and that the rewritten code performs the same
task as the original code, which of the following could be used as

(1) /* condition */ and (2) /* assignment statement */?

(A) (1) n == 1 && n == 4 (2) k += n

(B) (1) n == 1 && n == 4 (2) k += 4

(C) (1) n == 1 || n == 4 (2) k += 4

(D) (1) n == 1 || n == 4 (2) k += n

(E) (1) n == 1 || n == 4 (2) k = n - k

24. Which of the following will execute without throwing an exception?

I String s = null;

String t = "";

if (s.equals(t))

System.out.println("empty strings?");

II String s = "holy";

String t = "moly";

if (s.equals(t))

System.out.println("holy moly!");

III String s = "holy";

String t = s.substring(4);

System.out.println(s + t);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 21 — #35

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 21

25. Three numbers a, b , and c are said to be a Pythagorean Triple if and only if the
sum of the squares of two of the numbers equals the square of the third. A pro-
grammer writes a method isPythTriple to test if its three parameters form a
Pythagorean Triple:

//Returns true if a * a + b * b == c * c; otherwise returns false.

public static boolean isPythTriple(double a, double b, double c)

{

double d = Math.sqrt(a * a + b * b);

return d == c;

}

When the method was tested with known Pythagorean Triples, isPythTriple
sometimes erroneously returned false. What was the most likely cause of the
error?
(A) Round-off error was caused by calculations with floating-point numbers.
(B) Type boolean was not recognized by an obsolete version of Java.
(C) An overflow error was caused by entering numbers that were too large.
(D) c and d should have been cast to integers before testing for equality.
(E) Bad test data were selected.

26. Refer to the following class, containing the mystery method.

public class SomeClass

{

private int[] arr;

/** Constructor. Initializes arr to contain nonnegative

* integers k such that 0 <= k <= 9.

*/

public SomeClass()

{ /* implementation not shown */ }

public int mystery()

{

int value = arr[0];

for (int i = 1; i < arr.length; i++)

value = value * 10 + arr[i];

return value;

}

}

Which best describes what the mystery method does?
(A) It sums the elements of arr.
(B) It sums the products 10*arr[0]+10*arr[1]+ · · ·+10*arr[arr.length-1].
(C) It builds an integer of the form d1d2d3 . . . dn , where d1 = arr[0],

d2 = arr[1], . . . , dn = arr[arr.length-1].
(D) It builds an integer of the form d1d2d3 . . . dn , where

d1 = arr[arr.length-1], d2 = arr[arr.length-2], . . . , dn = arr[0].
(E) It converts the elements of arr to base-10.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 22 — #36

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

22 Practice Exam

Questions 27 and 28 refer to the search method in the Searcher class below.

public class Searcher

{

private int[] arr;

/** Constructor. Initializes arr with integers. */

public Searcher()

{ /* implementation not shown */ }

/** Precondition: arr[first]...arr[last] sorted in ascending order.

* Postcondition: Returns index of key in arr. If key not in arr,

* returns -1.

*/

public int search(int first, int last, int key)

{

int mid;

while (first <= last)

{

mid = (first + last) / 2;

if (arr[mid] == key) //found key, exit search

return mid;

else if (arr[mid] < key) //key to right of arr[mid]

first = mid + 1;

else //key to left of arr[mid]

last = mid - 1;

}

return -1; //key not in list

}

}

27. Which assertion is true just before each execution of the while loop?
(A) arr[first] < key < arr[last]

(B) arr[first] ≤ key ≤ arr[last]

(C) arr[first] < key < arr[last] or key is not in arr

(D) arr[first] ≤ key ≤ arr[last] or key is not in arr

(E) key ≤ arr[first] or key ≥ arr[last] or key is not in arr

28. Consider the array a with values as shown:

4, 7, 19, 25, 36, 37, 50, 100, 101, 205, 220, 271, 306, 321

where 4 is a[0] and 321 is a[13]. Suppose that the search method is called with
first= 0 and last= 13 to locate the key 205. How many iterations of the while
loop must be made in order to locate it?
(A) 3
(B) 4
(C) 5
(D) 10
(E) 13

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 23 — #37

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 23

29. Consider the following RandomList class.

public class RandomList

{

private int[] ranList;

public RandomList()

{ ranList = getList(); }

/** @return array with random Integers from 0 to 100

* inclusive */

public int[] getList()

{

System.out.println("How many integers? ");

int listLength = IO.readInt(); //read user input

int[] list = new int[listLength];

for (int i = 0; i < listLength; i++)

{

/* code to add integer to list */

}

return list;

}

/** Print all elements of this list. */

public void printList()

{ ...

}

Which represents correct /* code to add integer to list */?

(A) list[i] = (int) (Math.random() * 101);

(B) list.add((int) (Math.random() * 101));

(C) list[i] = (int) (Math.random() * 100);

(D) list.add(new Integer(Math.random() * 100))

(E) list[i] = (int) (Math.random() * 100) + 1;

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 24 — #38

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

24 Practice Exam

30. Refer to method insert described here. The insert method has two string pa-
rameters and one integer parameter. The method returns the string obtained by
inserting the second string into the first starting at the position indicated by the
integer parameter pos. For example, if str1 contains xy and str2 contains cat,
then

insert(str1, str2, 0) returns catxy

insert(str1, str2, 1) returns xcaty

insert(str1, str2, 2) returns xycat

Method insert follows:

/** Precondition: 0 <= pos <= str1.length().

* Postcondition: If str1= a0a1 . . . an−1 and str2= b0b1 . . . bm−1,
returns a0a1 . . . apos−1b0b1 . . . bm−1aposapos + 1 . . . an−1

public static String insert(String str1, String str2, int pos)

{

String first, last;

/* more code */

return first + str2 + last;

}

Which of the following is a correct replacement for /* more code */?

(A) first = str1.substring(0, pos);

last = str1.substring(pos);

(B) first = str1.substring(0, pos - 1);

last = str1.substring(pos);

(C) first = str1.substring(0, pos + 1);

last = str1.substring(pos + 1);

(D) first = str1.substring(0, pos);

last = str1.substring(pos + 1, str1.length());

(E) first = str1.substring(0, pos);

last = str1.substring(pos, str1.length() + 1);

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 25 — #39

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 25

31. A matrix (two-dimensional array) is declared as

int[][] mat = new int[2][3];

Consider the following method:

public static void changeMatrix(int[][] mat)

{

for (int r = 0; r < mat.length; r++)

for (int c = 0; c < mat[r].length; c++)

if (r == c)

mat[r][c] = Math.abs(mat[r][c]);

}

If mat is initialized to be

-1 -2 -6

-2 -4 5

which matrix will be the result of a call to changeMatrix(mat)?

(A) 1 -2 -6

-2 4 5

(B) -1 2 -6

2 -4 5

(C) -1 -2 -6

-2 -4 -5

(D) 1 2 -6

2 4 5

(E) 1 2 6

2 4 5

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 26 — #40

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

26 Practice Exam

Use the following program description for Questions 32–34.

A programmer plans to write a program that simulates a small bingo game (no more
than six players). Each player will have a bingo card with 20 numbers from 0 to 90 (no
duplicates). Someone will call out numbers one at a time, and each player will cross
out a number on his card as it is called. The first player with all the numbers crossed
out is the winner. In the simulation, as the game is in progress, each player’s card is
displayed on the screen.

The programmer envisions a short driver class whose main method has just two
statements:

BingoGame b = new BingoGame();

b.playBingo();

The BingoGame class will have several objects: a Display, a Caller, and a PlayerGroup.
The PlayerGroupwill have a list of Players, and each Player will have a BingoCard.

32. The relationship between the PlayerGroup and Player classes is an example of
(A) an interface.
(B) encapsulation.
(C) composition.
(D) inheritance.
(E) independent classes.

33. Which is a reasonable data structure for a BingoCard object? Recall that there are
20 integers from 0 to 90 on a BingoCard, with no duplicates. There should also be
mechanisms for crossing off numbers that are called, and for detecting a winning
card (i.e., one where all the numbers have been crossed off).

I int[] bingoCard; //will contain 20 integers

//bingoCard[k] is crossed off by setting it to -1.

int numCrossedOff; //player wins when numCrossedOff reaches 20.

II boolean[] bingoCard; //will contain 91 boolean values, of which

//20 are true. All the other values are false.

//Thus, if bingoCard[k] is true, then k is

//on the card, 0 <= k <= 90. A number k is

//crossed off by changing the value of

//bingoCard[k] to false.

int numCrossedOff; //player wins when numCrossedOff reaches 20.

III ArrayList<Integer> bingoCard; //will contain 20 integers.

//A number is crossed off by removing it from the ArrayList.

//Player wins when bingoCard.size() == 0.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 27 — #41

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 27

34. The programmer decides to use a List<Integer>, which is implemented as an
ArrayList<Integer>, to store the numbers to be called by the Caller:

public class Caller

{

private List<Integer> numbers;

public Caller()

{

numbers = getList();

shuffleNumbers();

}

/** @return the numbers 0...90 in order */

private List<Integer> getList()

{ /* implementation not shown */ }

/** Shuffle the numbers. */

private void shuffleNumbers()

{ /* implementation not shown */ }

}

When the programmer tests the constructor of the Caller class, she gets a
NullPointerException. Which could be the cause of this error?
(A) The Caller object in the driver class was not created with new.
(B) The programmer forgot the return statement in getList that returns the

list of Integers.
(C) The declaration of numbers is incorrect. It needed to be

private List<Integer> numbers = null;

(D) In the getList method, an attempt was made to add an Integer to an
ArrayList that had not been created with new.

(E) The shuffleNumbers algorithm went out of range, causing a null Integer

to be shuffled into the ArrayList.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 28 — #42

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

28 Practice Exam

35. Consider method findSomething below:

/** Precondition: a.length is equal to b.length. */

public static boolean findSomething(int[] a, int[] b)

{

for (int aValue: a)

{

boolean found = false;

for (int bValue: b)

{

if (bValue == aValue)

found = true;

}

if (!found)

return false;

}

return true;

}

Which best describes what method findSomethingdoes? Method findSomething

returns true only if
(A) Arrays a and b contain identical elements in the same order.
(B) Arrays a and b contain identical elements in reverse order.
(C) Arrays a and b are permutations of each other.
(D) Array a contains at least one element that is also in b.
(E) Every element of array a is also in b, and every element of array b is also

in a.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 29 — #43

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 29

36. Consider a program that has a two-dimensional array mat of int values. The
program has several methods that change mat by reflecting elements of mat across
a mirror placed symmetrically on the matrix. Here are five such methods:

mirrorVerticalLeftToRight transforms

2 4 6

1 3 5

8 9 0

to

2 4 2

1 3 1

8 9 8

mirrorVerticalRightToLeft transforms

2 4 6

1 3 5

8 9 0

to

6 4 6

5 3 5

0 9 0

mirrorHorizontalTopToBottom transforms

2 4 6

1 3 5

8 9 0

to

2 4 6

1 3 5

2 4 6

mirrorHorizontalBottomToTop transforms

2 4 6

1 3 5

8 9 0

to

8 9 0

1 3 5

8 9 0

mirrorDiagonalRightToLeft transforms

2 4 6

1 3 5

8 9 0

to

2 4 6

4 3 5

6 5 0

Consider the following method that transforms the matrix in one of the ways
shown above:

public static void someMethod(int[][] mat)

{

int height = mat.length;

int numCols = mat[0].length;

for (int col = 0; col < numCols; col++)

for (int row = 0; row < height/2; row++)

mat[height - row - 1][col] = mat[row][col];

}

Which method described above corresponds to someMethod?
(A) mirrorVerticalLeftToRight

(B) mirrorVerticalRightToLeft

(C) mirrorHorizontalTopToBottom

(D) mirrorHorizontalBottomToTop

(E) mirrorDiagonalRightToLeft

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 30 — #44

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

30 Practice Exam

Refer to the following for Questions 37 and 38.

A word creation game uses a set of small letter tiles, all of which are initially in a tile
bag. A partial implementation of a TileBag class is shown below.

public class TileBag

{

//tiles contains all the tiles in the bag

private List<Tile> tiles;

//size is the number of not-yet-used tiles

private int size;

//Constructors and other methods are not shown.

}

Consider the following method in the TileBag class that allows a player to get a new
tile from the TileBag.

public Tile getNewTile()

{

if (size == 0) //no tiles left

return null;

int index = (int) (Math.random() * size);

size--;

Tile temp = tiles.get(index);

/* code to swap tile at position size with tile at position index */

return temp;

}

37. Which /* code to swap tile at position size with tile at position index */

performs the swap correctly?

(A) tiles.set(size, temp);

tiles.set(index, tiles.get(size));

(B) tiles.set(index, tiles.get(size));

tiles.set(size, temp);

(C) tiles.swap(index, size);

(D) tiles.get(size, temp);

tiles.get(index, tiles.set(size));

(E) tiles.get(index, tiles.set(size));

tiles.get(size, temp);

38. Which is true about the getNewTile algorithm?
(A) The algorithm allows the program to keep track of both used and unused

tiles.
(B) The tiles list becomes one element shorter when getNewTile is executed.
(C) The algorithm selects a random Tile from all tiles in the list.
(D) The tiles list has used tiles in the beginning and unused tiles at the end.
(E) The tiles list contains only tiles that have not been used.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 31 — #45

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 31

39. Consider the following two classes.

public class Bird

{

public void act()

{

System.out.print("fly ");

makeNoise();

}

public void makeNoise()

{

System.out.print("chirp ");

}

}

public class Dove extends Bird

{

public void act()

{

super.act();

System.out.print("waddle ");

}

public void makeNoise()

{

super.makeNoise();

System.out.print("coo ");

}

}

Suppose the following declaration appears in a class other than Bird or Dove:

Bird pigeon = new Dove();

What is printed as a result of the call pigeon.act()?
(A) fly

(B) fly chirp

(C) fly chirp waddle

(D) fly chirp waddle coo

(E) fly chirp coo waddle

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 32 — #46

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

32 Practice Exam

40. Consider a method partialProd that returns an integer array prod such that
for all k, prod[k] is equal to arr[0] * arr[1] * · · · arr[k]. For example, if
arr contains the values {2,5,3,4,10}, the array prod will contain the values
{2,10,30,120,1200}.

public static int[] partialProd(int[] arr)

{

int[] prod = new int[arr.length];

for (int j = 0; j < arr.length; j++)

prod[j] = 1;

/* missing code */

return prod;

}

Consider the following two implementations of /* missing code */.
Implementation 1

for (int j = 1; j < arr.length; j++)

{

prod[j] = prod[j - 1] * arr[j];

}

Implementation 2

for (int j = 0; j < arr.length; j++)

for (int k = 0; k <= j; k++)

{

prod[j] = prod[j] * arr[k];

}

Which of the following statements is true?
(A) Both implementations work as intended but Implementation 1 is faster than

Implementation 2.
(B) Both implementations work as intended but Implementation 2 is faster than

Implementation 1.
(C) Both implementations work as intended and are equally fast.
(D) Implementation 1 doesn’t work as intended because the elements of prod

are incorrectly assigned.
(E) Implementation 2 doesn’t work as intended because the elements of prod

are incorrectly assigned.

END OF SECTION I

✐

✐

“ap” — 2014/11/4 — 11:10 — page 33 — #47

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 33

COMPUTER SCIENCE

SECTION II

Time—1 hour and 45 minutes
Number of questions—4
Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT
PROGRAM SEGMENTS ARE TO BE WRITTEN IN Java.

Write your answers in pencil only in the booklet provided.

Notes:

• Assume that the classes in the Quick Reference have been imported where
needed.

• Unless otherwise stated, assume that parameters in method calls are not
null and that methods are called only when their preconditions are satis-
fied.

• In writing solutions for each question, you may use any of the accessible
methods that are listed in classes defined in that question. Writing signifi-
cant amounts of code that can be replaced by a call to one of these methods
may not receive full credit.

1. This question manipulates one-dimensional and two-dimensional arrays. In
part (a) you will write a method to reverse elements of a one-dimensional ar-
ray. In parts (b) and (c) you will write methods to reverse elements of a two-
dimensional array.

(a) Consider the following incomplete ArrayUtil class, which contains a static
reverseArraymethod.

public class ArrayUtil

{

/** Reverses elements of array arr.

* Precondition: arr.length > 0.

* Postcondition: The elements of arr have been reversed.

* @param arr the array to manipulate

*/

public static void reverseArray(int[] arr)

{ /* to be implemented in part (a) */ }

//Other methods are not shown.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 34 — #48

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

34 Practice Exam

Write the ArrayUtilmethod reverseArray. For example, if arr is the array
{2,7,5,1,0}, the call to reverseArray changes arr to be {0,1,5,7,2}.

Complete method reverseArray below.

/** Reverses elements of array arr.

* Precondition: arr.length > 0.

* Postcondition: The elements of arr have been reversed.

* @param arr the array to manipulate

*/

public static void reverseArray(int[] arr)

(b) Consider the following incomplete Matrix class, which represents a two-
dimensional matrix of integers. Assume that the matrix contains at least
one integer.

public class Matrix

{

private int[][] mat;

/** Constructs a matrix of integers. */

public Matrix (int[][] m)

{ mat = m; }

/** Reverses the elements in each row of mat.

* Postcondition: The elements in each row have been reversed.

*/

public void reverseAllRows()

{ /* to be implemented in part (b) */ }

/** Reverses the elements of mat.

* Postcondition:
* - The final elements of mat, when read in row-major order,

* are the same as the original elements of mat when read

* from the bottom corner, right to left, going upward.

* - mat[0][0] contains what was originally the last element.

* - mat[mat.length-1][mat[0].length-1] contains what was

* originally the first element.

*/

public void reverseMatrix()

{ /* to be implemented in part (c) */ }

//Other instance variables, constructors and methods are not shown.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 35 — #49

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 35

Write the Matrix method reverseAllRows. This method reverses the ele-
ments of each row. For example, if mat1 refers to a Matrix object, then the
call mat1.reverseAllRows()will change the matrix as shown below.

Before call After call

0 1 2 3 0 1 2 3

0 1 2 3 4 0 4 3 2 1

1 5 6 7 8 1 8 7 6 5

2 9 10 11 12 2 12 11 10 9

In writing reverseAllRows, you must call the reverseArraymethod in part
(a). Assume that reverseArray works correctly regardless of what you
wrote in part (a).

Complete method reverseAllRows below.

/** Reverses the elements in each row of mat.

* Postcondition: The elements in each row have been reversed.

*/

public void reverseAllRows()

(c) Write the Matrix method reverseMatrix. This method reverses the ele-
ments of a matrix such that the final elements of the matrix, when read in
row-major order, are the same as the original elements when read from the
bottom corner, right to left, going upward. Again let mat1 be a reference to
a Matrix object. The the call mat1.reverseMatrix()will change the matrix
as shown below.

Before call After call

0 1 0 1

0 1 2 0 6 5

1 3 4 1 4 3

2 5 6 2 2 1

In writing reverseMatrix, you must call the reverseAllRows method in
part (b). Assume that reverseAllRows works correctly regardless of what
you wrote in part (b).

Complete method reverseMatrix below.

/** Reverses the elements of mat.

* Postcondition:
* - The final elements of mat, when read in row-major order,

* are the same as the original elements of mat when read

* from the bottom corner, right to left, going upward.

* - mat[0][0] contains what was originally the last element.

* - mat[mat.length-1][mat[0].length-1] contains what was

* originally the first element.

*/

public void reverseMatrix()

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 36 — #50

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

36 Practice Exam

2. A text-editing program uses a Sentence class that manipulates a single sentence.
A sentence contains letters, blanks, and punctuation. The first character in a
sentence is a letter, and the last character is a punctuation mark. Any two words
in the sentence are separated by a single blank. A partial implementation of the
Sentence class is as follows.

public class Sentence

{

/** The sentence to manipulate */

private String sentence;

/** @return an ArrayList of integer positions containing a

* blank in this sentence. If there are no blanks in the

* sentence, returns an empty list.

*/

public List<Integer> getBlankPositions()

{ /* to be implemented in part (a) */ }

/** @return the number of words in this sentence

* Precondition: Sentence contains at least one word.

*/

public int countWords()

{ /* to be implemented in part (b) */ }

/** @return the array of words in this sentence

* Precondition:
* - Any two words in the sentence are separated by one blank.

* - The sentence contains at least one word.

* Postcondition: String[] returned containing the words in

* this sentence.

*/

public String[] getWords()

{ /* to be implemented in part (c) */ }

//Constructor and other methods are not shown.

}

(a) Write the Sentencemethod getBlankPositions,which returns an ArrayList

of integers that represent the positions in a sentence containing blanks. If
there are no blanks in the sentence, getBlankPositions should return an
empty list.
Some results of calling getBlankPositions are shown below.

Sentence Result of call to getBlankPositions

I love you! [1, 6]

The cat sat on the mat. [3, 7, 11, 14, 18]

Why? []

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 37 — #51

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 37

Complete method getBlankPositions below.

/** @return an ArrayList of integer positions containing a

* blank in this sentence. If there are no blanks in the

* sentence, returns an empty list.

*/

public List<Integer> getBlankPositions()

(b) Write the Sentencemethod countWords, which returns the number of words
in a sentence. Words are sequences of letters or punctuation, separated by
a single blank. You may assume that every sentence contains at least one
word.
For example:

Sentence Result returned by countWords

I love you! 3

The cat sat on the mat. 6

Why? 1

Complete method countWords below.

/** @return the number of words in this sentence

* Precondition: Sentence contains at least one word.

*/

public int countWords()

(c) Write the Sentence method getWords, which returns an array of words in
the sentence. A word is defined as a string of letters and punctuation, and
does not contain any blanks. You may assume that a sentence contains at
least one word.
Some examples of calling getWords are shown below.

Sentence Result returned by getWords

The bird flew away. {The, bird, flew, away.}

Wow! {Wow!}

Hi! How are you? {Hi!, How, are, you?}

In writing method getWords, you must use methods getBlankPositions

and countWords, which were written in parts (a) and (b). You may assume
that these methods work correctly, irrespective of what you wrote in parts
(a) and (b).

Complete method getWords below.

/** @return the array of words in this sentence

* Precondition:
* - Any two words in the sentence are separated by one blank.

* - The sentence contains at least one word.

* Postcondition: String[] returned containing the words in

* this sentence.

*/

public String[] getWords()

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 38 — #52

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

38 Practice Exam

3. In this question you will implement two methods for a class Tournament that
keeps track of the players who have registered for a tournament. The Tournament
class uses the Player class shown below. A Player has a name and player number
specified when a player is constructed.

public class Player

{

public Player(String name, int playerNumber)

{ /* implementation not shown */ }

public int getPlayerNumber()

{ /* implementation not shown */ }

//Private instance variables and other methods are not shown.

}

An incomplete declaration for the Tournament class is shown below. There are
100 available slots for players in the tournament, and the players are numbered
0,1,2, . . . , 99.

public class Tournament

{

/** The list of slots in the tournament.

* Each element corresponds to a slot in the tournament.

* If slots[i] is null, the slot is not yet taken;

* otherwise it contains a reference to a Player.

* For example, slots[i].getPlayerNumber() returns i.

*/

private Player[] slots;

/** The list of names of players who wish to participate in

* the tournament, but cannot because all slots are taken.

*/

private List<String> waitingList;

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 39 — #53

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 39

/** If there are any empty slots (slots with no Player)

* assign the player with the specified playerName to an

* empty slot. Create and return the new Player.

* If there are no available slots, add the player’s name

* to the end of the waiting list and return null.

* @playerName the name of the person requesting a slot

* @return the new Player

*/

public Player requestSlot(String playerName)

{ /* to be implemented in part (a) */ }

/** Release the slot for player p, thus removing that player

* from the tournament. If there are any names in waitingList,

* remove the first name and create a Player in the

* canceled slot for this person. Return the new Player.

* If waitingList is empty, mark the slot specified by p as

* empty and return null.

* Precondition: p is a valid Player for some slot in

* this tournament.

* @param p the player who will be removed from the tournament

* @return the new Player placed in the canceled slot

*/

public Player cancelAndReassignSlot(Player p)

{ /* to be implemented in part (b) */ }

//Constructor and other methods are not shown.

}

(a) Write the Tournament method requestSlot. Method requestSlot tries to
reserve a slot in the tournament for a given player. If there are any available
slots in the tournament, one of them is assigned to the named player, and
the newly created Player is returned. If there are no available slots, the
player’s name is added to the end of the waiting list and null is returned.

Complete method requestSlot below.

/** If there are any empty slots (slots with no Player)

* assign the player with the specified playerName to an

* empty slot. Create and return the new Player.

* If there are no available slots, add the player’s name

* to the end of the waiting list and return null.

* @playerName the name of the person requesting a slot

* @return the new Player

*/

public Player requestSlot(String playerName)

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 40 — #54

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

40 Practice Exam

(b) Write the Tournament method cancelAndReassignSlot. This method re-
leases a previous player’s slot. If the waiting list for the tournament con-
tains any names, the newly available slot is reassigned to the person at the
front of the list. That person’s name is removed from the waiting list, and
the newly created Player is returned. If the waiting list is empty, the newly
released slot is marked as empty, and null is returned.

In writing cancelAndReassignSlot, you may use any accessible methods
in the Player and Tournament classes. Assume that these methods work as
specified.

Information repeated from the beginning of the question

public class Player

public Player(String name, int playerNumber)

public int getPlayerNumber()

public class Tournament

private Player[] slots

private List<String> waitingList

public Player requestSlot(String playerName)

public Player cancelAndReassignSlot(Player p)

Complete method cancelAndReassignSlot below.

/** Release the slot for player p, thus removing that player

* from the tournament. If there are any names in waitingList,

* remove the first name and create a Player in the

* canceled slot for this person. Return the new Player.

* If waitingList is empty, mark the slot specified by p as

* empty and return null.

* Precondition: p is a valid Player for some slot in

* this tournament.

* @param p the player who will be removed from the tournament

* @return the new Player placed in the canceled slot

*/

public Player cancelAndReassignSlot(Player p)

4. A chemical solution is said to be acidic if it has a pH integer value from 1 to 6,
inclusive. The lower the pH, the more acidic the solution.
An experiment has a large number of chemical solutions arranged in a line and a
mechanical arm that moves back and forth along the line, so that the acidity of
each solution can be altered by adding various chemicals. A chemical solution is
specified by the Solution interface below.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2015/3/24 — 19:36 — page 41 — #55

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 41

public interface Solution

{

/** @return an integer value that ranges from 1 (very acidic)

* to 14 */

int getPH();

/** Set PH to newValue.

* @param newValue the new PH value */

void setPH(int newValue);

}

The experiment keeps track of the solutions and the mechanical arm. The figure
below represents the solutions and mechanical arm in an experiment. The arm,
indicated by the arrow, is currently at index 4 and is facing left. The second row
of integers represents the pH values of the solutions.

index 0 1 2 3 4 5 6

pH 7 4 10 5 6 7 13

In this experiment, the most acidic solution is at index 1, since its pH value is the
lowest.
The state of the mechanical arm includes the index of its location and direction
it is facing (to the right or to the left). A mechanical arm is specified by the
MechanicalArm interface below.

public interface MechanicalArm

{

/** @return the index of the current location of the

* mechanical arm */

int getCurrentIndex();

/** @return true if the mechanical arm is facing right

* (toward solutions with larger indexes),

* false if the mechanical arm is facing left

* (toward solutions with smaller indexes)

*/

boolean isFacingRight();

/** Changes the current direction of the mechanical arm */

void changeDirection();

/** Moves the mechanical arm forward in its current direction

* by the number of locations specified.

* @param numLocs the number of locations to move

* Precondition: numLocs >= 0.

*/

void moveForward(int numLocs);

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 42 — #56

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

42 Practice Exam

An experiment is represented by the Experiment class shown below.

public class Experiment

{

/** The mechanical arm used to process the solutions */

private MechanicalArm arm;

/** The list of solutions */

private List<Solution> solutions;

/** Resets the experiment.

* Postcondition:
* - The mechanical arm has a current index of 0.

* - It is facing right.

*/

public void reset()

{ /* to be implemented in part (a) */ }

/** Finds and returns the index of the most acidic solution.

* @return index the location of the most acidic solution

* or -1 if there are no acidic solutions

* Postcondition:
* - The mechanical arm is facing right.

* - Its current index is at the most acidic solution, or at

* 0 if there are no acidic solutions.

*/

public int mostAcidic()

{ /* to be implemented in part (b) */ }

}

(a) Write the Experiment method reset that places the mechanical arm facing
right, at index 0.
For example, suppose the experiment contains the solutions with pH values
shown. The arrow represents the mechanical arm.

index 0 1 2 3 4 5 6

pH 7 4 10 5 6 7 13

A call to reset will result in

index 0 1 2 3 4 5 6

pH 7 4 10 5 6 7 13

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 43 — #57

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Practice Exam One / Diagnostic Test 43

Information repeated from the beginning of the question

public interface Solution

int getPH()

void setPH(int newValue)

public interface MechanicalArm

int getCurrentIndex()

boolean isFacingRight()

void changeDirection()

void moveForward(int numLocs)

public class Experiment

private MechanicalArm arm

private List<Solution> solutions

public void reset()

public int mostAcidic()

Complete method reset below.

/** Resets the experiment.

* Postcondition:
* - The mechanical arm has a current index of 0.

* - It is facing right.

*/

public void reset()

(b) Write the Experiment method mostAcidic that returns the index of the
most acidic solution and places the mechanical arm facing right at the lo-
cation of the most acidic solution. A solution is acidic if its pH is less than
7. The lower the pH, the more acidic the solution. If there are no acidic
solutions in the experiment, the mostAcidic method should return -1 and
place the mechanical arm at index 0, facing right.
For example, suppose the experiment has this state:

index 0 1 2 3 4 5 6

pH 7 4 10 5 6 7 13

A call to mostAcidic should return the value 1 and result in the following
state for the experiment:

index 0 1 2 3 4 5 6

pH 7 4 10 5 6 7 13

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 44 — #58

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

44 Practice Exam

If the experiment has this state,

index 0 1 2 3 4 5 6

pH 7 9 8 8 12 13 14

a call to mostAcidic should return the value -1 and result in the following
state for the experiment:

index 0 1 2 3 4 5 6

pH 7 9 8 8 12 13 14

Information repeated from the beginning of the question

public interface Solution

int getPH()

void setPH(int newValue)

public interface MechanicalArm

int getCurrentIndex()

boolean isFacingRight()

void changeDirection()

void moveForward(int numLocs)

public class Experiment

private MechanicalArm arm

private List<Solution> solutions

public void reset()

public int mostAcidic()

Complete method mostAcidic below.

/** Finds and returns the index of the most acidic solution.

* @return index the location of the most acidic solution

* or -1 if there are no acidic solutions

* Postcondition:
* - The mechanical arm is facing right.

* - Its current index is at the most acidic solution, or at

* 0 if there are no acidic solutions.

*/

public int mostAcidic()

END OF EXAMINATION

✐

✐

“ap” — 2014/11/4 — 11:10 — page 45 — #59

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Diagnostic Chart for Practice Exam 45

ANSWER KEY (Section I)

1. D

2. B

3. C

4. A

5. B

6. E

7. B

8. C

9. B

10. A

11. C

12. B

13. A

14. A

15. E

16. C

17. A

18. E

19. A

20. E

21. B

22. E

23. D

24. E

25. A

26. C

27. D

28. B

29. A

30. A

31. A

32. C

33. E

34. D

35. E

36. C

37. B

38. A

39. E

40. D

DIAGNOSTIC CHART FOR PRACTICE EXAM

Each multiple-choice question has a complete explanation (p. 47).
The following table relates each question to sections that you should review. For

any given question, the topic(s) in the chart represent the concept(s) tested in the ques-
tion. These topics are explained on the corresponding page(s) in the chart and should
provide further insight into answering that question.

✐

✐

“ap” — 2015/2/1 — 20:23 — page 46 — #60

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

46 Practice Exam

Question Topic Page

1 Inheritance 135
2 Implementing classes 212
3 Storage of integers 61
4 Constructors 95
5 The toString method 176

ClassCastException 142
6 Integer.MIN_VALUE and Integer.MAX_VALUE 61
7 for loop 71
8 Program specification 208
9 Recursion 291

10 Boolean expressions 65
11 Hexadecimal 62
12 IndexOutOfBoundsException for ArrayList 244
13 Passing parameters 236
14 Passing parameters 236
15 Abstract classes 142
16 Subclass constructors and super keyword 135
17 Polymorphism 138
18 swap method 237
19 Rounding real numbers 61
20 Recursion 293
21 Selection and insertion sort 324
22 Subclass method calls 141
23 Compound boolean expressions 65
24 String class equals method 178

String class substringmethod 180
25 Round-off error 62
26 Array processing 235
27 Assertions about algorithms 219

Binary search 329
28 Binary search 329
29 Random integers 185
30 String class substringmethod 180
31 Two-dimensional arrays 249
32 Relationships between classes 216
33 Array of objects 239

ArrayList 244
34 NullPointerException 103
35 Traversing an array 235

The if statement 69
36 Processing a 2-D array 251

Mirror images 357
37 Using ArrayList 245
38 Using ArrayList 245
39 Using super in a subclass 139
40 One-dimensional arrays 233

✐

✐

“ap” — 2014/11/4 — 11:10 — page 47 — #61

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Answers Explained 47

ANSWERS EXPLAINED

Section I

1. (D) Constructors are never inherited. If a subclass has no constructor, the de-
fault constructor for the superclass is generated. If the superclass does not have a
default constructor, a compile-time error will occur.

2. (B) The programmer is using an object-oriented approach to writing the program
and plans to test the simplest classes first. This is bottom-up development. In top-
down development (choice A), high-level classes are broken down into subsidiary
classes. Procedural abstraction (choice C) is the use of helper methods in a class.
Information hiding (choice D) is restriction of access to private data and methods
in a class. Choice E is wrong because a driver program is one whose sole purpose
is to test a given method or class. Implementing the simplest classes first may
involve driver programs that test the various methods, but the overall plan is not
an example of a driver program.

3. (C) 8 bits (1 byte) are required to represent the values from 0 to 255. The base 2
number 11111111 represents 1+2+4+8+16+32+64+128= 255. Since there
are 3 such values in an RGB representation, (8)(3) = 24 bits are needed.

4. (A) In the constructor, the private instance variables suit and value must be
initialized to the appropriate parameter values. Choice A is the only choice that
does this.

5. (B) Implementation II invokes the toStringmethod of the Card class. Implemen-
tation I fails because there is no default toString method for arrays. Implemen-
tation III will cause a ClassCastException: You cannot cast a Card to a String.

6. (E) Since the values in arr cannot be greater than Integer.MAX_VALUE, the test
in the while loop will be true at least once and will lead to the smallest element
being stored in min. (If all the elements of the array are Integer.MAX_VALUE, the
code still works.) Similarly, initializing min to arr[0], the first element in the
array, ensures that all elements in arr will be examined and the smallest will be
found. Choice I, Integer.MIN_VALUE, fails because the test in the loop will always
be false! There is no array element that will be less than the smallest possible
integer. The method will (incorrectly) return Integer.MIN_VALUE.

7. (B) The maximum number will be achieved if /* test */ is true in each pass
through the loop. So the question boils down to: How many times is the loop
executed? Try one odd and one even value of n:

If n= 7, i= 0,2,4,6 Ans = 4

If n= 8, i= 0,2,4,6 Ans = 4

Notice that choice B is the only expression that works for both n= 7 and n= 8.

8. (C) Here is one of the golden rules of programming: Don’t start planning the
program until every aspect of the specification is crystal clear. A programmer
should never make unilateral decisions about ambiguities in a specification.

9. (B) When x ≤ y, a recursive call is made to whatIsIt(x-1, y). If x decreases
at every recursive call, there is no way to reach a successful base case. Thus, the
method never terminates and eventually exhausts all available memory.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 48 — #62

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

48 Practice Exam

10. (A) The expression !(max != a[i]) is equivalent to max == a[i], so the given
expression is equivalent to a[i] == max || max == a[i], which is equivalent to
a[i] == max.

11. (C) A base-b number can be represented with b characters. Thus, base-2 uses
0,1 for example, and base-10 uses 0,1, . . . , 8,9. A hexadecimal (base-16) number
is represented with 16 characters: 0,1, . . . , 8,9,A,B,C, D,E,F, where A= 10,B=
11, . . . ,F= 15. The largest two-place base-2 integer is

11= 1× 20+ 1× 21 = 3

The largest two-place base-10 integer is

99= 9× 100+ 9× 101

The largest two-place base-16 integer is

FF= F× 160+F× 161

The character F represents 15, so

FF= 15× 160+ 15× 161= 255

Here’s another way to think about this problem: Each hex digit is 4 binary digits
(bits), since 16 = 24. Therefore a two-digit hex number is 8 bits. The largest
base-10 number that can be represented with 8 bits is 28− 1= 255.

12. (B) The index range for ArrayList is 0≤ index≤ size()-1. Thus, for methods
get, remove, and set, the last in-bounds index is size()-1. The one exception is
the add method—to add an element to the end of the list takes an index parameter
list.size().

13. (A) The array will not be changed by the increment method. Here are the
memory slots:

Before the first call, increment(3): Just after the first call:

testArray

3 4 5

testArray

3 4 5

n

3

Just before exiting increment(3): Just after exiting increment(3):

testArray

3 4 5

n

4

testArray

3 4 5

The same analysis applies to the method calls increment(4) and increment(5).

14. (A) As in the previous question, the array will not be changed by the increment

method. Nor will the local variable element! What will be changed by increment

is the copy of the parameter during each pass through the loop.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 49 — #63

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Answers Explained 49

15. (E) Subclasses of Quadrilateral may also be abstract, in which case they will
inherit perimeter and/or area as abstract methods.

16. (C) Segment I starts correctly but fails to initialize the additional private vari-
ables of the Rectangle class. Segment II is wrong because by using super

with theTopLeft and theBotRight, it implies that these values are used in the
Quadrilateral superclass. This is false—there isn’t even a constructor with three
arguments in the superclass.

17. (A) During execution the appropriate area method for each quad in quadList

will be determined (polymorphism or dynamic binding).

18. (E) The algorithm has three steps:

1. Store the object at i in temp.
2. Place at location i the object at j.
3. Place temp at location j.

This has the effect of swapping the objects at i and j. Notice that choices B and
C, while incomplete, are not incorrect. The question, however, asks for the best
description of the postcondition, which is found in choice E.

19. (A) Subtracting 0.5 from a negative real number and then truncating it produces
the number correctly rounded to the nearest integer. Note that casting to an int

truncates a real number. The expression in choice B is correct for rounding a
positive real number. Choice C won’t round correctly. For example,−3.7 will be
rounded to −3 instead of −4. Choices D and E don’t make sense. Why cast to
double if you’re rounding to the nearest integer?

20. (E) The method call whatsIt(347) puts on the stack System.out.print(7).
The method call whatsIt(34) puts on the stack System.out.print(4).
The method call whatsIt(3) is a base case and writes out 3.
Now the stack is popped from the top, and the 3 that was printed is followed by
4, then 7. The result is 347.

21. (B) Recall that insertion sort takes each element in turn and (a) finds its insertion
point and (b) moves elements to insert that element in its correct place. Thus, if
the array is in reverse sorted order, the insertion point will always be at the front
of the array, leading to the maximum number of comparisons and data moves—
very inefficient. Therefore choices A, C, and E are false.

Selection sort finds the smallest element in the array and swaps it with a[0]

and then finds the smallest element in the rest of the array and swaps it with
a[1], and so on. Thus, the same number of comparisons and moves will occur,
irrespective of the original arrangement of elements in the array. So choice B is
true, and choice D is false.

22. (E) Method call I fails because ClassOne does not have access to the methods of
its subclass. Method call II fails because c2 needs to be cast to ClassTwo to be able
to access methodTwo. Thus, the following would be OK:

((ClassTwo) c2).methodTwo();

Method call III works because ClassTwo inherits methodOne from its superclass,
ClassOne.

23. (D) Notice that in the original code, if n is 1, k is incremented by 1, and if n is 4,
k is incremented by 4. This is equivalent to saying “if n is 1 or 4, k is incremented

✐

✐

“ap” — 2014/11/4 — 11:10 — page 50 — #64

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

50 Practice Exam

by n.”

24. (E) Segment I will throw a NullPointerException when s.equals... is in-
voked, because s is a null reference. Segment III looks suspect, but when
the startIndex parameter of the substring method equals s.length(), the
value returned is the empty string. If, however, startIndex > s.length(), a
StringIndexOutOfBoundsException is thrown.

25. (A) Since results of calculations with floating-point numbers are not always rep-
resented exactly (round-off error), direct tests for equality are not reliable. Instead
of the boolean expression d == c, a test should be done to check whether the dif-
ference of d and c is within some acceptable tolerance interval (see the Box on
comparing floating-point numbers, p. 65).

26. (C) If arr has elements 2, 3, 5, the values of value are

2 //after initialization

2*10 + 3 = 23 //when i = 1

23*10 + 5 = 235 //when i = 2

27. (D) The point of the binary search algorithm is that the interval containing key

is repeatedly narrowed down by splitting it in half. For each iteration of the
while loop, if key is in the list, arr[first] ≤ key ≤ arr[last]. Note that (i)
the endpoints of the interval must be included, and (ii) key is not necessarily in
the list.

28. (B)

first last mid a[mid]

After first iteration 0 13 6 50

After second iteration 7 13 10 220

After third iteration 7 9 8 101

After fourth iteration 9 9 9 205

29. (A) The data structure is an array, not an ArrayList, so you cannot use the add

method for inserting elements into the list. This eliminates choices B and D. The
expression to return a random integer from 0 to k-1 inclusive is

(int) (Math.random() * k)

Thus, to get integers from 0 to 100 requires k to be 101, which eliminates choice
C. Choice E fails because it gets integers from 1 to 100.

30. (A) Suppose str1 is strawberry and str2 is cat. Then insert(str1, str2, 5)

will return the following pieces, concatenated:

straw + cat + berry

Recall that s.substring(k, m) (a method of String) returns a substring of s

starting at position k and ending at position m-1. String str1 must be split
into two parts, first and last. Then str2 will be inserted between them.
Since str2 is inserted starting at position 5 (the "b"), first = straw, namely
str1.substring(0,pos). (Start at 0 and take all the characters up to and includ-
ing location pos-1, namely 4.) Notice that last, the second substring of str1,
must start at the index for "b", which is pos, the index at which str2 was in-
serted. The expression str1.substring(pos) returns the substring of str1 that
starts at pos and continues to the end of the string, which was required. Note

✐

✐

“ap” — 2014/11/4 — 11:10 — page 51 — #65

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Answers Explained 51

that you don’t need any “special case” tests. In the cases where str2 is inserted at
the front of str1 (i.e., pos is 0) or the back of str1 (i.e., pos is str1.length()),
the code for the general case works.

31. (A) Method changeMatrix examines each element and changes it to its absolute
value if its row number equals its column number. The only two elements that
satisfy the condition r == c are mat[0][0] and mat[1][1]. Thus, -1 is changed
to 1 and -4 is changed to 4, resulting in the matrix in choice A.

32. (C) Composition is the has-a relationship. A PlayerGroup has-a Player (several
of them, in fact). Inheritance, (choice D) is the is-a relationship, which doesn’t
apply here. None of the choices A, B, or E apply in this example: An interface
is a single class composed of only abstract methods (see p. 144); encapsulation is
the bundling together of data fields and operations into a single unit, a class (see
p. 93); and PlayerGroup and Player are clearly dependent on each other since
PlayerGroup contains several Player objects (see p. 212).

33. (E) All of these data structures are reasonable. They all represent 20 bingo num-
bers in a convenient way and provide easy mechanisms for crossing off numbers
and recognizing a winning card. Notice that data structure II provides a very
quick way of searching for a number on the card. For example, if 48 is called,
bingoCard[48] is inspected. If it is true, then it was one of the 20 original num-
bers on the card and gets crossed out. If false, 48 was not on that player’s card.
Data structures I and II require a linear search to find any given number that is
called. (Note: There is no assumption that the array is sorted, which would allow
a more efficient binary search.)

34. (D) A NullPointerException is thrown whenever an attempt is made to invoke
a method with an object that hasn’t been created with new. Choice A doesn’t
make sense: To test the Caller constructor requires a statement of the form

Caller c = new Caller();

Choice B is wrong: A missing return statement in a method triggers a compile-
time error. Choice C doesn’t make sense: In the declaration of numbers, its de-
fault initialization is to null. Choice E is bizarre. Hopefully you eliminated it
immediately!

35. (E) For each element in a, found is switched to true if that element is found
anywhere in b. Notice that for any element in a, if it is not found in b, the method
returns false. Thus, to return true, every element in a must also be in b. Notice
that this doesn’t necessarily mean that a and b are permutations of each other.
For example, consider the counterexample of a=[1,1,2,3] and b=[1,2,2,3].

36. (C) In the example given, height = 3, height/2= 1, and numCols = 3. Notice
that in each pass through the loop, row has value 0, while col goes from 0 through
2. So here are the assignments:

mat[2][0] = mat[0][0]

mat[2][1] = mat[0][1]

mat[2][2] = mat[0][2]

From this you should see that row 2 is being replaced by row 0.

37. (B) Eliminate choices D and E immediately, since assignment of new values in an
ArrayList is done with the set method, not get. Eliminate choice C since you
do not know that the TileBag class has a swap method. Choice A fails because it

✐

✐

“ap” — 2014/11/4 — 11:10 — page 52 — #66

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

52 Practice Exam

replaces the element at position size before storing it. Choice B works because
the element at position index has been saved in temp.

38. (A) The size variable stores the number of unused tiles, which are in the tiles

list from position 0 to position size. A random int is selected in this range,
giving the index of the Tile that will be swapped to the end of the unused part of
the tiles list. Note that the length of the tiles ArrayList stays constant. Each
execution of getNewTile decreases the “unused tiles” part of the list and increases
the “already used” part at the end of the list. In this way, both used and unused
tiles are stored.

39. (E) When pigeon.act() is called, the act method of Dove is called. (This is an
example of polymorphism.) The act method of Dove starts with super.act()

which goes to the act method of Bird, the superclass. This prints fly, then calls
makeNoise(). Using polymorphism, the makeNoise method in Dove is called,
which starts with super.makeNoise(), which prints chirp. Completing the
makeNoise method in Dove prints coo. Thus, so far we’ve printed fly chirp

coo. But we haven’t completed Dove’s act method, which ends with printing out
waddle! The rule of thumb is: When super is used, find the method in the su-
perclass. But if that method calls a method that’s been overridden in the subclass,
go back there for the overridden method. You also mustn’t forget to check that
you’ve executed any pending lines of code in that superclass method!

40. (D) In Implementation 1, the first element assigned is prod[1], and it multi-
plies arr[1] by prod[0], which was initialized to 1. To fix this implementa-
tion, you need a statement preceding the loop, which correctly assigns prod[0]:
prod[0]=arr[0];

✐

✐

“ap” — 2014/11/4 — 11:10 — page 53 — #67

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Answers Explained 53

Section II

1. (a) public static void reverseArray(int[] arr)

{

int mid = arr.length/2;

for (int i = 0; i < mid; i++)

{

int temp = arr[i];

arr[i] = arr[arr.length - i - 1];

arr[arr.length - i - 1] = temp;

}

}

(b) public void reverseAllRows()

{

for (int[] row: mat)

ArrayUtil.reverseArray (row);

}

(c) public void reverseMatrix()

{

reverseAllRows();

int mid = mat.length/2;

for (int i = 0; i < mid; i++)

{

for (int col = 0; col < mat[0].length; col++)

{

int temp = mat[i][col];

mat[i][col] = mat[mat.length - i - 1][col];

mat[mat.length - i - 1][col] = temp;

}

}

}

Alternative solution:

public void reverseMatrix()

{

reverseAllRows();

int mid = mat.length/2;

for (int i = 0; i < mid; i++)

{

int[] temp = mat[i];

mat[i] = mat[mat.length - i - 1];

mat[mat.length - i - 1] = temp;

}

}

NOTE
• Parts (a) and the alternative solution in part (c) use the same algorithm,

swapping the first and last elements, then the second and second last, etc.,
moving toward the middle. If there is an odd number of elements, the
middle element does not move. In part (a) the elements are integers. In
part (c) they are rows in the matrix.
• In the first solution of part (c), start by reversing all rows. Then for each

column, swap the elements in the first and last rows, then the second and
second last, and so on, moving toward the middle.
• The alternative solution in part (c) is more elegant. It is not, however, part

of the AP subset to replace one row of a matrix with a different array.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 54 — #68

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

54 Practice Exam

2. (a) public List<Integer> getBlankPositions()

{

List<Integer> posList = new ArrayList<Integer>();

for (int i = 0; i < sentence.length(); i++)

{

if (sentence.substring(i, i + 1).equals(" "))

posList.add(i);

}

return posList;

}

Alternatively (an inferior, unnecessarily complicated solution!),

public List<Integer> getBlankPositions()

{

List<Integer> posList = new ArrayList<Integer>();

String s = sentence;

int diff = 0;

int index = s.indexOf(" ");

while (index >= 0)

{

posList.add(index + diff);

diff = sentence.length() - (s.substring(index + 1)).length();

s = s.substring(index + 1);

index = s.indexOf(" ");

}

return posList;

}

(b) public int countWords()

{

return getBlankPositions().size() + 1;

}

(c) public String[] getWords()

{

List<Integer> posList = getBlankPositions();

int numWords = countWords();

String[] wordArr = new String[numWords];

for (int i = 0; i < numWords; i++)

{

if (i == 0)

{

if (posList.size() != 0)

wordArr[i] = sentence.substring(0, posList.get(0));

else

wordArr[i] = sentence;

}

else if (i == posList.size())

wordArr[i] = sentence.substring(posList.get(i - 1));

else

wordArr[i] = sentence.substring(posList.get(i - 1),

posList.get(i));

}

return wordArr;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 55 — #69

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

Answers Explained 55

NOTE

• In part (a), it would also work to have the test

i < sentence.length() - 1;

in the for loop. But you don’t need the -1 because the last character is a
punctuation mark, not a blank.
• In the alternative part (a), you can’t just store the positions of index as

you loop over the sentence. Finding s.indexOf(" ") will give a value
that is too small, because you are successively taking shorter substrings of
s. The local variable, diff, represents the difference between the length
of the original sentence and the length of the current substring. This is
what must be added to the current value of index, so that you get the
position of the blank in the original sentence.
• Part (b) takes advantage of the precondition that there is one and only one

blank between words. This means that the number of words will always
be the number of blanks plus one.
• In part (c), you have to be careful when you get the first word. If there’s

only one word in the sentence, there are no blanks, which means posList
is empty, and you can’t use posList.get(0) (because that will throw an
IndexOutOfBoundsException!).
• Also in part (c), the second test deals with getting the last word in the

sentence. You have to distinguish between the cases of more than one
word in the sentence and exactly one word in the sentence.

3. (a) public Player requestSlot(String playerName)

{

for (int i = 0; i < slots.length; i++)

{

if (slots[i] == null)

{

Player p = new Player(playerName, i);

slots[i] = p;

return p;

}

}

waitingList.add(playerName);

return null;

}

(b) public Player cancelAndReassignSlot(Player p)

{

int i = p.getPlayerNumber();

if (waitingList.size() != 0)

{

slots[i] = new Player(waitingList.get(0), i);

waitingList.remove(0);

}

else

{

slots[i] = null;

}

return slots[i];

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 56 — #70

✐

✐

✐

✐

✐

✐

D
ia
gn
os
ti
c
T
es
t

56 Practice Exam

NOTE

• In part (a), the last two lines of the method will be executed only if you
are still in the method, namely no available slot was found.
• In part (b), the final line will return either a new player, or null if the

waiting list was empty.

4. (a) public void reset()

{

if(arm.isFacingRight())

arm.changeDirection();

arm.moveForward(arm.getCurrentIndex());

arm.changeDirection();

}

(b) public int mostAcidic()

{

reset();

int minPH = Integer.MAX_VALUE, minIndex = 0;

int index = 0;

while (index < solutions.size())

{

Solution s = solutions.get(index);

if (s.getPH() < minPH)

{

minPH = s.getPH();

minIndex = index;

}

index++;

}

if (minPH >= 7)

return -1;

else

{

arm.moveForward(minIndex);

return minIndex;

}

}

NOTE

• In part (b), a for-each loop won’t work, because you need to save an index.
• In part (b), notice that resetting the mechanical arm causes the arm to face

right.
• In part (b), you could initialize minPH to any integer greater than or equal

to 7 for this algorithm to work. You just must be careful not to set it to
an “acidic” number, namely 1 to 6.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 57 — #71

✐

✐

✐

✐

✐

✐

Introductory Java

Language Features

CHAPTER 1

Fifty loops shalt thou make . . .
—Exodus 26:5

Chapter Goals

• Packages and classes

• Types and identifiers

• Operators

• Input/output

• Storage of numbers

• Binary and hexadecimal
numbers

• Control structures

• Errors and exceptions

The AP Computer Science course includes algorithm analysis, data structures,
and the techniques and methods of modern programming, specifically, object-

oriented programming. A high-level programming language is used to explore these
concepts. Java is the language currently in use on the AP exam.

Java was developed by James Gosling and a team at Sun Microsystems in Califor-
nia; it continues to evolve. The AP exam covers a clearly defined subset of Java lan-
guage features that are presented throughout this book. The College Board website,
http://www.collegeboard.com/student/testing/ap/subjects.html, contains a complete list-
ing of this subset.

Java provides basic control structures such as the if-else statement, for loop, for-
each loop, and while loop, as well as fundamental built-in data types. But the power
of the language lies in the manipulation of user-defined types called objects, many of
which can interact in a single program.

PACKAGES AND CLASSES

A typical Java program has user-defined classes whose objects interact with those from
Java class libraries. In Java, related classes are grouped into packages, many of which
are provided with the compiler. You can put your own classes into a package—this
facilitates their use in other programs.

57

✐

✐

“ap” — 2014/11/4 — 11:10 — page 58 — #72

✐

✐

✐

✐

✐

✐

58 Chapter 1 Introductory Java Language Features

The package java.lang, which contains many commonly used classes, is automati-
cally provided to all Java programs. To use any other package in a program, an import

statement must be used. To import all of the classes in a package called packagename,
use the form

import packagename.*;

To import a single class called ClassName from the package, use

import packagename.ClassName;

Java has a hierarchy of packages and subpackages. Subpackages are selected using
multiple dots:

import packagename.subpackagename.ClassName;

The import statement allows the programmer to use the objects and methods de-
fined in the designated package. By convention Java package names are lowercase. The
AP exam does not require knowledge of packages. You will not be expected to write
any import statements.

A Java program must have at least one class, the one that contains the main method.
The java files that comprise your program are called source files.

A compiler converts source code into machine-readable form called bytecode.
Here is a typical source file for a Java program.

/** Program FirstProg.java

Start with a comment, giving the program name and a brief

description of what the program does.

*/

import package1.*;

import package2.subpackage.ClassName;

public class FirstProg //note that the file name is FirstProg.java

{

public static type1 method1(parameter list)
{

< code for method 1 >
}

public static type2 method2(parameter list)
{

< code for method 2 >
}

...

public static void main(String[] args)

{

< your code >
}

}

NOTE

1. All Java methods must be contained in a class, and all program statements must
be placed inside a method.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 59 — #73

✐

✐

✐

✐

✐

✐

Packages and Classes 59

2. Typically, the class that contains the main method does not contain many addi-
tional methods.

3. The words class, public, static, void, and main are reserved words, also called
keywords.

4. The keyword public signals that the class or method is usable outside of the
class, whereas private data members or methods (see Chapter 2) are not.

5. The keyword static is used for methods that will not access any objects of a
class, such as the methods in the FirstProg class in the example on the previous
page. This is typically true for all methods in a source file that contains no
instance variables (see Chapter 2). Most methods in Java do operate on objects
and are not static. The main method, however, must always be static.

6. The program shown on the previous page is a Java application. This is not to
be confused with a Java applet, a program that runs inside a web browser or
applet viewer. Applets are not part of the AP subset.

Javadoc Comments

The Javadoc comments @param, @return, and @throws are part of the AP Java subset.
Here is an example.

/** Puts obj at location loc in this grid, and returns

* the object previously at this location.

* Returns null if loc was previously unoccupied.

* Precondition: obj is not null, and loc is valid in this grid.

* @param loc the location where the object will be placed

* @param obj the object to be placed

* @return the object previously at the specified location

* @throws NullPointerException if the object is null

*/

public E put(Location loc, E obj)

This will produce the following Javadoc output:

put
public E put (Location loc, E obj)

Puts obj at location loc in this grid, and returns
the object previously at this location.
Returns null if loc was previously unoccupied.
Precondition: obj is not null, and loc is valid in this grid.

Parameters:
loc - the location where the object will be placed
obj - the object to be placed

Returns:
the object previously at the specified location

Throws:
NullPointerException - if the object is null

✐

✐

“ap” — 2014/11/4 — 11:10 — page 60 — #74

✐

✐

✐

✐

✐

✐

60 Chapter 1 Introductory Java Language Features

TYPES AND IDENTIFIERS

Identifiers

An identifier is a name for a variable, parameter, constant, user-defined method, or user-
defined class. In Java an identifier is any sequence of letters, digits, and the underscore
character. Identifiers may not begin with a digit. Identifiers are case-sensitive, which
means that age and Age are different. Wherever possible identifiers should be concise
and self-documenting. A variable called area is more illuminating than one called a.

By convention identifiers for variables and methods are lowercase. Uppercase letters
are used to separate these into multiple words, for example getName, findSurfaceArea,
preTaxTotal, and so on. Note that a class name starts with a capital letter. Reserved
words are entirely lowercase and may not be used as identifiers.

Built-in Types

Every identifier in a Java program has a type associated with it. The primitive or built-
in types that are included in the AP Java subset are

int An integer. For example, 2, -26, 3000
boolean A boolean. Just two values, true or false
double A double precision floating-point number.

For example, 2.718, -367189.41, 1.6e4

(Note that primitive type char is not included in the AP Java subset.)
Integer values are stored exactly. Because there’s a fixed amount of memory set aside

for their storage, however, integers are bounded. If you try to store a value whose
magnitude is too big in an int variable, you’ll get an overflow error. (Java gives you no
warning. You just get a wrong result!)

An identifier, for example a variable, is introduced into a Java program with a dec-
laration that specifies its type. A variable is often initialized in its declaration. Some
examples follow:

int x;

double y,z;

boolean found;

int count = 1; //count initialized to 1

double p = 2.3, q = 4.1; //p and q initialized to 2.3 and 4.1

One type can be cast to another compatible type if appropriate. For example,

int total, n;

double average;

...

average = (double) total/n; //total cast to double to ensure

//real division is used

Alternatively,

average = total/(double) n;

Assigning an int to a double automatically casts the int to double. For example,

✐

✐

“ap” — 2014/11/4 — 11:10 — page 61 — #75

✐

✐

✐

✐

✐

✐

Types and Identifiers 61

int num = 5;

double realNum = num; //num is cast to double

Assigning a double to an int without a cast, however, causes a compile-time error. For
example,

double x = 6.79;

int intNum = x; //Error. Need an explicit cast to int

Note that casting a floating-point (real) number to an integer simply truncates the
number. For example,

double cost = 10.95;

int numDollars = (int) cost; //sets numDollars to 10

If your intent was to round cost to the nearest dollar, you needed to write

int numDollars = (int) (cost + 0.5); //numDollars has value 11

To round a negative number to the nearest integer:

double negAmount = -4.8;

int roundNeg = (int) (negAmount - 0.5); //roundNeg has value -5

The strategy of adding or subtracting 0.5 before casting correctly rounds in all cases.

Storage of Numbers

INTEGERS

Integer values in Java are stored exactly, as a string of bits (binary digits). One of the
bits stores the sign of the integer, 0 for positive, 1 for negative.

The Java built-in integral type, byte, uses one byte (eight bits) of storage.

0 1 1 1 1 1 1 1

The picture represents the largest positive integer that can be stored using type byte:
27− 1.

Type int in Java uses four bytes (32 bits). Taking one bit for a sign, the largest pos-
sible integer stored is 231 − 1. In general, an n-bit integer uses n/8 bytes of storage,
and stores integers from −2n−1 to 2n−1 − 1. (Note that the extra value on the nega-
tive side comes from not having to store −0.) There are two Java constants that you
should know. Integer.MAX_VALUE holds the maximum value an int can hold, 231− 1.
Integer.MIN_VALUE holds the minimum value an int can hold, −231.

Built-in types in Java are byte (one byte), short (two bytes), int (four bytes), and
long (eight bytes). Of these, only int is in the AP Java subset.

FLOATING-POINT NUMBERS

There are two built-in types in Java that store real numbers: float, which uses four
bytes, and double, which uses eight bytes. A floating-point number is stored in two
parts: a mantissa, which specifies the digits of the number, and an exponent. The JVM
(Java Virtual Machine) represents the number using scientific notation:

sign ∗mantissa ∗ 2exponent

✐

✐

“ap” — 2014/11/4 — 11:10 — page 62 — #76

✐

✐

✐

✐

✐

✐

62 Chapter 1 Introductory Java Language Features

In this expression, 2 is the base or radix of the number. In type double eleven bits are
allocated for the exponent, and (typically) 52 bits for the mantissa. One bit is allocated
for the sign. This is a double-precision number. Type float, which is single-precision, is
not in the AP Java subset.

When floating-point numbers are converted to binary, most cannot be represented
exactly, leading to round-off error. These errors are compounded by arithmetic opera-
tions. For example,

0.1*26 6= 0.1+0.1+ · · ·+0.1 (26 terms)

In Java, no exceptions are thrown for floating-point operations. There are two situ-
ations you should be aware of:

• When an operation is performed that gives an undefined result, Java expresses
this result as NaN, “not a number.” Examples of operations that produce NaN are:
taking the square root of a negative number, and 0.0 divided by 0.0.

• An operation that gives an infinitely large or infinitely small number, like divi-
sion by zero, produces a result of Infinity or -Infinity in Java.

Hexadecimal and Octal Numbers

A hexadecimal number or hex number uses base (radix) 16 and is represented with the
symbols 0 – 9 and A – F (occasionally a – f), where A represents 10, and F represents 15.
To denote a hex number in Java, the prefix "0x" or "0X" is used, for example, 0xC2A.
On the AP exam, the representation is likely to be with the subscript hex: C2Ahex. In
expanded form, this number means

(C)(162)+ (2)(161)+ (A)(160)

= (12)(162)+ (2)(16)+ (10)(1)

= 3114, or 3114dec

The advantages of hex numbers are their compactness, and the ease of conversion
between hex and binary. Notice that any hex digit expands to four bits. For example,

5hex = 0101bin and Fhex = 1111bin

Thus, 5Fhex = 01011111bin, which is 1011111bin.
Similarly, to convert a binary number to hex, convert in groups of four from right

to left. If necessary, pad with zeroes to complete the last group of four. For example,

1011101bin= 0101 1101bin

= 5 Dhex

= 5Dhex

An octal number uses base 8, and is represented with the symbols 0 – 7. On the AP
exam, the representation is likely to be with the subscript oct: 132oct. In expanded
form, 132oct means

(1)(82)+ (3)(81)+ (2)(80)

= (1)(64)+ (3)(8)+ (2)(1)

= 64+ 24+ 2

= 90, or 90dec

✐

✐

“ap” — 2014/11/4 — 11:10 — page 63 — #77

✐

✐

✐

✐

✐

✐

Operators 63

Final Variables

A final variable or user-defined constant, identified by the keyword final, is used to
name a quantity whose value will not change. Here are some examples of final decla-
rations:

final double TAX_RATE = 0.08;

final int CLASS_SIZE = 35;

NOTE

1. Constant identifiers are, by convention, capitalized.
2. A final variable can be declared without initializing it immediately. For ex-

ample,

final double TAX_RATE;

if (< some condition >)
TAX_RATE = 0.08;

else

TAX_RATE = 0.0;

// TAX_RATE can be given a value just once: its value is final!

3. A common use for a constant is as an array bound. For example,

final int MAXSTUDENTS = 25;

int[] classList = new int[MAXSTUDENTS];

4. Using constants makes it easier to revise code. Just a single change in the final
declaration need be made, rather than having to change every occurrence of a
value.

OPERATORS

Arithmetic Operators

Operator Meaning Example

+ addition 3 + x

- subtraction p - q

* multiplication 6 * i

/ division 10 / 4 //returns 2, not 2.5!

% mod (remainder) 11 % 8 //returns 3

NOTE

1. These operators can be applied to types int and double, even if both types
occur in the same expression. For an operation involving a double and an int,
the int is promoted to double, and the result is a double.

2. The mod operator %, as in the expression a % b, gives the remainder when a is
divided by b. Thus 10 % 3 evaluates to 1, whereas 4.2 % 2.0 evaluates to 0.2.

3. Integer division a/b where both a and b are of type int returns the integer
quotient only (i.e., the answer is truncated). Thus, 22/6 gives 3, and 3/4 gives
0. If at least one of the operands is of type double, then the operation becomes

✐

✐

“ap” — 2014/11/4 — 11:10 — page 64 — #78

✐

✐

✐

✐

✐

✐

64 Chapter 1 Introductory Java Language Features

regular floating-point division, and there is no truncation. You can control the
kind of division that is carried out by explicitly casting (one or both of) the
operands from int to double and vice versa. Thus

3.0 / 4 → 0.75

3 / 4.0 → 0.75

(int) 3.0 / 4 → 0

(double) 3 / 4 → 0.75

You must, however, be careful:

(double) (3 / 4) → 0.0

since the integer division 3/4 is computed first, before casting to double.
4. The arithmetic operators follow the normal precedence rules (order of opera-

tions):

(1) parentheses, from the inner ones out (highest precedence)
(2) *, /, %
(3) +, - (lowest precedence)

Here operators on the same line have the same precedence, and, in the ab-
sence of parentheses, are invoked from left to right. Thus, the expression
19 % 5 * 3 + 14 / 5 evaluates to 4 * 3 + 2 = 14. Note that casting has
precedence over all of these operators. Thus, in the expression (double) 3/4,
3 will be cast to double before the division is done.

Relational Operators

Operator Meaning Example

== equal to if (x == 100)

!= not equal to if (age != 21)

> greater than if (salary > 30000)

< less than if (grade < 65)

>= greater than or equal to if (age >= 16)

<= less than or equal to if (height <= 6)

NOTE

1. Relational operators are used in boolean expressions that evaluate to true or
false.

boolean x = (a != b); //initializes x to true if a != b,

// false otherwise

return p == q; //returns true if p equals q, false otherwise

2. If the operands are an int and a double, the int is promoted to a double as for
arithmetic operators.

3. Relational operators should generally be used only in the comparison of prim-
itive types (i.e., int, double, or boolean). User-defined types are compared
using the equals and compareTo methods (see pp. 145 and 176).

4. Be careful when comparing floating-point values! Since floating-point numbers

Do not routinely use
== to test for equality
of floating-point
numbers.

cannot always be represented exactly in the computer memory, they should
not be compared directly using relational operators.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 65 — #79

✐

✐

✐

✐

✐

✐

Operators 65

Optional topic
Comparing Floating-Point Numbers

Because of round-off errors in floating-point numbers, you can’t
rely on using the == or != operators to compare two double

values for equality. They may differ in their last significant digit
or two because of round-off error. Instead, you should test that
the magnitude of the difference between the numbers is less than
some number about the size of the machine precision. The ma-
chine precision is usually denoted ε and is typically about 10−16

for double precision (i.e., about 16 decimal digits). So you would
like to test something like |x− y| ≤ ε. But this is no good if x and
y are very large. For example, suppose x = 1234567890.123456
and y = 1234567890.123457. These numbers are essentially equal
to machine precision, since they differ only in the 16th significant
digit. But |x − y| = 10−6, not 10−16. So in general you should
check the relative difference:

|x − y|
max(|x |, |y|) ≤ ε

To avoid problems with dividing by zero, code this as

|x − y| ≤ εmax(|x |, |y|)

An example of code that uses a correct comparison of real numbers can be found in
the Shape class on p. 146.

Logical Operators

Operator Meaning Example

! NOT if (!found)

&& AND if (x < 3 && y > 4)

|| OR if (age < 2 || height < 4)

NOTE

1. Logical operators are applied to boolean expressions to form compound boolean
expressions that evaluate to true or false.

2. Values of true or false are assigned according to the truth tables for the logical
operators.

&& T F

T T F
F F F

|| T F

T T T
F T F

!

T F
F T

For example, F && T evaluates to F, while T || F evaluates to T.
3. Short-circuit evaluation. The subexpressions in a compound boolean expres-

sion are evaluated from left to right, and evaluation automatically stops as

✐

✐

“ap” — 2014/11/4 — 11:10 — page 66 — #80

✐

✐

✐

✐

✐

✐

66 Chapter 1 Introductory Java Language Features

soon as the value of the entire expression is known. For example, consider
a boolean OR expression of the form A || B, where A and B are some boolean
expressions. If A is true, then the expression is true irrespective of the value
of B. Similarly, if A is false, then A && B evaluates to false irrespective of the
second operand. So in each case the second operand is not evaluated. For ex-
ample,

if (numScores != 0 && scoreTotal/numScores > 90)

will not cause a run-time ArithmeticException (division-by-zero error) if the
value of numScores is 0. This is because numScores != 0 will evaluate to false,
causing the entire boolean expression to evaluate to false without having to
evaluate the second expression containing the division.

Assignment Operators

Operator Example Meaning

= x = 2 simple assignment
+= x += 4 x = x + 4

-= y -= 6 y = y - 6

*= p *= 5 p = p * 5

/= n /= 10 n = n / 10

%= n %= 10 n = n % 10

NOTE

1. All these operators, with the exception of simple assignment, are called com-
pound assignment operators.

2. Chaining of assignment statements is allowed, with evaluation from right to
left.

int next, prev, sum;

next = prev = sum = 0; //initializes sum to 0, then prev to 0

//then next to 0

Increment and Decrement Operators

Operator Example Meaning

++ i++ or ++i i is incremented by 1

-- k-- or --k k is decremented by 1

Note that i++ (postfix) and ++i (prefix) both have the net effect of incrementing
i by 1, but they are not equivalent. For example, if i currently has the value 5,
then System.out.println(i++) will print 5 and then increment i to 6, whereas
System.out.println(++i) will first increment i to 6 and then print 6. It’s easy to
remember: if the ++ is first, you first increment. A similar distinction occurs between
k-- and --k. (Note: You do not need to know these distinctions for the AP exam.)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 67 — #81

✐

✐

✐

✐

✐

✐

Input/Output 67

Operator Precedence

highest precedence → (1) !, ++, --

(2) *, /, %

(3) +, -

(4) <, >, <=, >=

(5) ==, !=

(6) &&

(7) ||

lowest precedence → (8) =, +=, -=, *=, /=, %=

Here operators on the same line have equal precedence. The evaluation of the opera-
tors with equal precedence is from left to right, except for rows (1) and (8) where the
order is right to left. It is easy to remember: The only “backward” order is for the
unary operators (row 1) and for the various assignment operators (row 8).

Example

What will be output by the following statement?

System.out.println(5 + 3 < 6 - 1);

Since + and - have precedence over <, 5 + 3 and 6 - 1 will be evaluated before evalu-
ating the boolean expression. Since the value of the expression is false, the statement
will output false.

INPUT/OUTPUT

Input

Since there are so many ways to provide input to a program, user input is not a part of
the AP Java subset. If reading input is a necessary part of a question on the AP exam,
it will be indicated something like this:

double x = call to a method that reads a floating-point number

or

double x = IO.readDouble(); //read user input

NOTE

The Scanner class (since Java 5.0) simplifies both console and file input. It will not,
however, be tested on the AP exam.

Output

Testing of output will be restricted to System.out.print and System.out.println.
Formatted output will not be tested.

System.out is an object in the System class that allows output to be displayed on the
screen. The println method outputs an item and then goes to a new line. The print

method outputs an item without going to a new line afterward. An item to be printed
can be a string, or a number, or the value of a boolean expression (true or false).
Here are some examples:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 68 — #82

✐

✐

✐

✐

✐

✐

68 Chapter 1 Introductory Java Language Features

System.out.print("Hot");

System.out.println("dog");

�

prints Hotdog

System.out.println("Hot");

System.out.println("dog");

�

prints
Hot

dog

System.out.println(7 + 3); } prints 10

System.out.println(7 == 2 + 5); } prints true

int x = 27;

System.out.println(x); } prints 27

System.out.println("Value of x is " + x);

prints Value of x is 27

In the last example, the value of x, 27, is converted to the string "27", which is then
concatenated to the string "Value of x is ".

To print the “values” of user-defined objects, the toString()method is invoked (see
p. 175).

Escape Sequences

An escape sequence is a backslash followed by a single character. It is used to print
special characters. The three escape sequences that you should know for the AP exam
are

Escape Sequence Meaning

\n newline
\" double quote
\\ backslash

Here are some examples:

System.out.println("Welcome to\na new line");

prints

Welcome to

a new line

The statement

System.out.println("He is known as \"Hothead Harry\".");

prints

He is known as "Hothead Harry".

The statement

System.out.println("The file path is d:\\myFiles\\..");

prints

The file path is d:\myFiles\..

✐

✐

“ap” — 2014/11/4 — 11:10 — page 69 — #83

✐

✐

✐

✐

✐

✐

Control Structures 69

CONTROL STRUCTURES

Control structures are the mechanism by which you make the statements of a pro-
gram run in a nonsequential order. There are two general types: decision making and
iteration.

Decision-Making Control Structures

These include the if, if...else, and switch statements. They are all selection control
structures that introduce a decision-making ability into a program. Based on the truth
value of a boolean expression, the computer will decide which path to follow. The
switch statement is not part of the AP Java subset.

THE if STATEMENT

if (boolean expression)
{

statements
}

Here the statements will be executed only if the boolean expression is true. If it is false,
control passes immediately to the first statement following the if statement.

THE if...else STATEMENT

if (boolean expression)
{

statements
}

else

{

statements
}

Here, if the boolean expression is true, only the statements immediately following the
test will be executed. If the boolean expression is false, only the statements following
the else will be executed.

NESTED if STATEMENT

If the statement part of an if statement is itself an if statement, the result is a nested
if statement.

Example 1

if (boolean expr1)
if (boolean expr2)

statement;

This is equivalent to

if (boolean expr1 && boolean expr2)
statement;

✐

✐

“ap” — 2014/11/4 — 11:10 — page 70 — #84

✐

✐

✐

✐

✐

✐

70 Chapter 1 Introductory Java Language Features

Example 2

Beware the dangling else! Suppose you want to read in an integer and print it if it’s
positive and even. Will the following code do the job?

int n = IO.readInt(); //read user input

if (n > 0)

if (n % 2 == 0)

System.out.println(n);

else

System.out.println(n + " is not positive");

A user enters 7 and is surprised to see the output

7 is not positive

The reason is that else always gets matched with the nearest unpaired if, not the first
if as the indenting would suggest.

There are two ways to fix the preceding code. The first is to use {} delimiters to
group the statements correctly.

int n = IO.readInt(); //read user input

if (n > 0)

{

if (n % 2 == 0)

System.out.println(n);

}

else

System.out.println(n + " is not positive");

The second way of fixing the code is to rearrange the statements.

int n = IO.readInt(); //read user input

if (n <= 0)

System.out.println(n + " is not positive");

else

if (n % 2 == 0)

System.out.println(n);

EXTENDED if STATEMENT

For example,

String grade = IO.readString(); //read user input

if (grade.equals("A"))

System.out.println("Excellent!");

else if (grade.equals("B"))

System.out.println("Good");

else if (grade.equals("C") || grade.equals("D"))

System.out.println("Poor");

else if (grade.equals("F"))

System.out.println("Egregious!");

else

System.out.println("Invalid grade");

If any of A, B, C, D, or F are entered, an appropriate message will be written, and control
will go to the statement immediately following the extended if statement. If any other
string is entered, the final else is invoked, and the message Invalid grade will be
written.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 71 — #85

✐

✐

✐

✐

✐

✐

Control Structures 71

Iteration

Java has three different control structures that allow the computer to perform iterative
tasks: the for loop, while loop, and do...while loop. The do...while loop is not in
the AP Java subset.

THE for LOOP

The general form of the for loop is

for (initialization; termination condition; update statement)
{

statements //body of loop

}

The termination condition is tested at the top of the loop; the update statement is
performed at the bottom.

Example 1

//outputs 1 2 3 4

for (i = 1; i < 5; i++)

System.out.print(i + " ");

Here’s how it works. The loop variable i is initialized to 1, and the termination con-
dition i < 5 is evaluated. If it is true, the body of the loop is executed, and then the
loop variable i is incremented according to the update statement. As soon as the termi-
nation condition is false (i.e., i >= 5), control passes to the first statement following
the loop.

Example 2

//outputs 20 19 18 17 16 15

for (k = 20; k >= 15; k--)

System.out.print(k + " ");

Example 3

//outputs 2 4 6 8 10

for (j = 2; j <= 10; j += 2)

System.out.print(j + " ");

NOTE

1. The loop variable should not have its value changed inside the loop body.
2. The initializing and update statements can use any valid constants, variables,

or expressions.
3. The scope (see p. 100) of the loop variable can be restricted to the loop body by

combining the loop variable declaration with the initialization. For example,

for (int i = 0; i < 3; i++)

{

...

}

4. The following loop is syntactically valid:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 72 — #86

✐

✐

✐

✐

✐

✐

72 Chapter 1 Introductory Java Language Features

for (int i = 1; i <= 0; i++)

{

...

}

The loop body will not be executed at all, since the exiting condition is true
before the first execution.

THE FOR-EACH LOOP

This is used to iterate over an array or collection. The general form of the loop is

for (SomeType element : collection)

{

statements
}

(Read the top line as “For each element of type SomeType in collection . . . ”)

Example

//Outputs all elements of arr, one per line.

for (int element : arr)

System.out.println(element);

NOTE

1. The for-each loop cannot be used for replacing or removing elements as you
traverse.

2. The loop hides the index variable that is used with arrays.

THE while LOOP

The general form of the while loop is

while (boolean test)
{

statements //loop body

}

The boolean test is performed at the beginning of the loop. If true, the loop body is
executed. Otherwise, control passes to the first statement following the loop. After
execution of the loop body, the test is performed again. If true, the loop is executed
again, and so on.

Example 1

int i = 1, mult3 = 3;

while (mult3 < 20)

{

System.out.print(mult3 + " ");

i++;

mult3 *= i;

} //outputs 3 6 18

✐

✐

“ap” — 2014/11/4 — 11:10 — page 73 — #87

✐

✐

✐

✐

✐

✐

Control Structures 73

NOTE

1. It is possible for the body of a while loop never to be executed. This will
happen if the test evaluates to false the first time.

2. Disaster will strike in the form of an infinite loop if the test can never be false.

The body of a while
loop must contain a
statement that leads
to termination.

Don’t forget to change the loop variable in the body of the loop in a way that
leads to termination!

Example 2

int power2 = 1;

while (power2 != 20)

{

System.out.println(power2);

power2 *= 2;

}

Since power2 will never exactly equal 20, the loop will grind merrily along eventually
causing an integer overflow.

Example 3

/* Screen out bad data.

* The loop won’t allow execution to continue until a valid

* integer is entered.

*/

System.out.println("Enter a positive integer from 1 to 100");

int num = IO.readInt(); //read user input

while (num < 1 || num > 100)

{

System.out.println("Number must be from 1 to 100.");

System.out.println("Please reenter");

num = IO.readInt();

}

Example 4

/* Uses a sentinel to terminate data entered at the keyboard.

* The sentinel is a value that cannot be part of the data.

* It signals the end of the list.

*/

final int SENTINEL = -999;

System.out.println("Enter list of positive integers," +

" end list with " + SENTINEL);

int value = IO.readInt(); //read user input

while (value != SENTINEL)

{

process the value
value = IO.readInt(); //read another value

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 74 — #88

✐

✐

✐

✐

✐

✐

74 Chapter 1 Introductory Java Language Features

NESTED LOOPS

You create a nested loop when a loop is a statement in the body of another loop.

Example 1

for (int k = 1; k <= 3; k++)

{

for (int i = 1; i <= 4; i++)

System.out.print("*");

System.out.println();

}

Think:

for each of 3 rows
{

print 4 stars
go to next line

}

Output:

Example 2

This example has two loops nested in an outer loop.

for (int i = 1; i <= 6; i++)

{

for (int j = 1; j <= i; j++)

System.out.print("+");

for (int j = 1; j <= 6 - i; j++)

System.out.print("*");

System.out.println();

}

Output:

+*****

++****

+++***

++++**

+++++*

++++++

ERRORS AND EXCEPTIONS

An exception is an error condition that occurs during the execution of a Java pro-
gram. For example, if you divide an integer by zero, an ArithmeticException will
be thrown. If you use a negative array index, an ArrayIndexOutOfBoundsException

will be thrown.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 75 — #89

✐

✐

✐

✐

✐

✐

Errors and Exceptions 75

An unchecked exception is one where you don’t provide code to deal with the er-
ror. Such exceptions are automatically handled by Java’s standard exception-handling
methods, which terminate execution. You now need to fix your code!

A checked exception is one where you provide code to handle the exception, either a
try/catch/finally statement, or an explicit throw new ...Exception clause. These
exceptions are not necessarily caused by an error in the code. For example, an unex-
pected end-of-file could be due to a broken network connection. Checked exceptions
are not part of the AP Java subset.

The following exceptions are in the AP Java subset:

Exception Discussed on page

ArithmeticException on the previous page
NullPointerException 103
ClassCastException 142
ArrayIndexOutOfBoundsException 233
IndexOutOfBoundsException 244
IllegalArgumentException this page

See also NoSuchElementException (pp. 247, 248) and IllegalStateException (pp. 247,
249), which refer to iterators, an optional topic.

Java allows you to write code that throws a standard unchecked exception. Here are
typical examples:

Example 1

if (numScores == 0)

throw new ArithmeticException("Cannot divide by zero");

else

findAverageScore();

Example 2

public void setRadius(int newRadius)

{

if (newRadius < 0)

throw new IllegalArgumentException

("Radius cannot be negative");

else

radius = newRadius;

}

NOTE

1. throw and new are both reserved words.
2. The error message is optional: The line in Example 1 could have read

throw new ArithmeticException();

The message, however, is useful, since it tells the person running the program
what went wrong.

3. An IllegalArgumentException is thrown to indicate that a parameter does not
satisfy a method’s precondition.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 76 — #90

✐

✐

✐

✐

✐

✐

76 Chapter 1 Introductory Java Language Features

Chapter Summary

Be sure that you understand the difference between primitive and user-defined types
and between the following types of operators: arithmetic, relational, logical, and as-
signment. Know which conditions lead to what types of errors.

You should be able to work with numbers—know how to compare them and how
to convert between decimal, binary, and hexadecimal numbers. Know how integers
and floating-point numbers are stored in memory, and be aware of the conditions that
can lead to round-off error.

You should know the Integer constants Integer.MIN_VALUEand Integer.MAX_VALUE.
Be familiar with each of the following control structures: conditional statements,

for loops, while loops, and for-each loops.
Be aware of the AP exam expectations concerning input and output.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 77 — #91

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Introductory Java Language Concepts 77

MULTIPLE-CHOICE QUESTIONS ON INTRODUCTORY
JAVA LANGUAGE CONCEPTS

1. Which of the following pairs of declarations will cause an error message?

I double x = 14.7;

int y = x;

II double x = 14.7;

int y = (int) x;

III int x = 14;

double y = x;

(A) None
(B) I only
(C) II only
(D) III only
(E) I and III only

2. What output will be produced by

System.out.print("* This is not\n a comment *\\");

(A) * This is not a comment *

(B) * This is not a comment *\

(C) * This is not

a comment *

(D) * This is not

a comment *\\

(E) * This is not

a comment *\

3. Consider the following code segment

if (n != 0 && x / n > 100)

statement1;
else

statement2;

If n is of type int and has a value of 0 when the segment is executed, what will
happen?
(A) An ArithmeticExceptionwill be thrown.
(B) A syntax error will occur.
(C) statement1, but not statement2, will be executed.
(D) statement2, but not statement1, will be executed.
(E) Neither statement1 nor statement2 will be executed; control will pass to the

first statement following the if statement.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 78 — #92

✐

✐

✐

✐

✐

✐

78 Chapter 1 Introductory Java Language Features

4. Refer to the following code fragment:

double answer = 13 / 5;

System.out.println("13 / 5 = " + answer);

The output is

13 / 5 = 2.0

The programmer intends the output to be

13 / 5 = 2.6

Which of the following replacements for the first line of code will not fix the
problem?
(A) double answer = (double) 13 / 5;

(B) double answer = 13 / (double) 5;

(C) double answer = 13.0 / 5;

(D) double answer = 13 / 5.0;

(E) double answer = (double) (13 / 5);

5. What value is stored in result if

int result = 13 - 3 * 6 / 4 % 3;

(A) −5
(B) 0
(C) 13
(D) −1
(E) 12

6. Suppose that addition and subtraction had higher precedence than multiplication
and division. Then the expression

2 + 3 * 12 / 7 - 4 + 8

would evaluate to which of the following?
(A) 11
(B) 12
(C) 5
(D) 9
(E) −4

7. Which is true of the following boolean expression, given that x is a variable of
type double?

3.0 == x * (3.0 / x)

(A) It will always evaluate to false.
(B) It may evaluate to false for some values of x.
(C) It will evaluate to false only when x is zero.
(D) It will evaluate to false only when x is very large or very close to zero.
(E) It will always evaluate to true.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 79 — #93

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Introductory Java Language Concepts 79

8. Let x be a variable of type double that is positive. A program contains the
boolean expression (Math.pow(x,0.5) == Math.sqrt(x)). Even though x1/2 is
mathematically equivalent to

p
x, the above expression returns the value false

in a student’s program. Which of the following is the most likely reason?
(A) Math.pow returns an int, while Math.sqrt returns a double.
(B) x was imprecisely calculated in a previous program statement.
(C) The computer stores floating-point numbers with 32-bit words.
(D) There is round-off error in calculating the pow and sqrt functions.
(E) There is overflow error in calculating the pow function.

9. What will the output be for the following poorly formatted program segment, if
the input value for num is 22?

int num = call to a method that reads an integer;
if (num > 0)

if (num % 5 == 0)

System.out.println(num);

else System.out.println(num + " is negative");

(A) 22

(B) 4

(C) 2 is negative

(D) 22 is negative

(E) Nothing will be output.

10. What values are stored in x and y after execution of the following program seg-
ment?

int x = 30, y = 40;

if (x >= 0)

{

if (x <= 100)

{

y = x * 3;

if (y < 50)

x /= 10;

}

else

y = x * 2;

}

else

y = -x;

(A) x = 30 y = 90

(B) x = 30 y = -30

(C) x = 30 y = 60

(D) x = 3 y = -3

(E) x = 30 y = 40

✐

✐

“ap” — 2014/11/4 — 11:10 — page 80 — #94

✐

✐

✐

✐

✐

✐

80 Chapter 1 Introductory Java Language Features

11. Which of the following will evaluate to true only if boolean expressions A, B, and
C are all false?
(A) !A && !(B && !C)

(B) !A || !B || !C

(C) !(A || B || C)

(D) !(A && B && C)

(E) !A || !(B || !C)

12. Assume that a and b are integers. The boolean expression

!(a <= b) && (a * b > 0)

will always evaluate to true given that
(A) a = b

(B) a > b

(C) a < b

(D) a > b and b > 0

(E) a > b and b < 0

13. Given that a, b, and c are integers, consider the boolean expression

(a < b) || !((c == a * b) && (c < a))

Which of the following will guarantee that the expression is true?
(A) c < a is false.
(B) c < a is true.
(C) a < b is false.
(D) c == a * b is true.
(E) c == a * b is true, and c < a is true.

14. In the following code segment, you may assume that a, b, and n are all type int.

if (a != b && n / (a - b) > 90)

{

/* statement 1 */

}

else

{

/* statement 2 */

}

/* statement 3 */

What will happen if a == b is false?
(A) /* statement 1 */ will be executed.
(B) /* statement 2 */ will be executed.
(C) Either /* statement 1 */ or /* statement 2 */ will be executed.
(D) A compile-time error will occur.
(E) An exception will be thrown.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 81 — #95

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Introductory Java Language Concepts 81

15. Given that n and count are both of type int, which statement is true about the
following code segments?

I for (count = 1; count <= n; count++)

System.out.println(count);

II count = 1;

while (count <= n)

{

System.out.println(count);

count++;

}

(A) I and II are exactly equivalent for all input values n.
(B) I and II are exactly equivalent for all input values n ≥ 1, but differ when

n≤ 0.
(C) I and II are exactly equivalent only when n= 0.
(D) I and II are exactly equivalent only when n is even.
(E) I and II are not equivalent for any input values of n.

16. The following fragment intends that a user will enter a list of positive integers at
the keyboard and terminate the list with a sentinel:

int value = 0;

final int SENTINEL = -999;

while (value != SENTINEL)

{

//code to process value

...

value = IO.readInt(); //read user input

}

The fragment is not correct. Which is a true statement?
(A) The sentinel gets processed.
(B) The last nonsentinel value entered in the list fails to get processed.
(C) A poor choice of SENTINEL value causes the loop to terminate before all

values have been processed.
(D) The code will always process a value that is not on the list.
(E) Entering the SENTINEL value as the first value causes a run-time error.

17. Suppose that base-2 (binary) numbers and base-16 (hexadecimal) numbers can be
denoted with subscripts, as shown below:

2Ahex = 101010bin

Which is equal to 3Dhex?
(A) 111101bin

(B) 101111bin

(C) 10011bin

(D) 110100bin

(E) 101101bin

✐

✐

“ap” — 2014/11/4 — 11:10 — page 82 — #96

✐

✐

✐

✐

✐

✐

82 Chapter 1 Introductory Java Language Features

18. A common use of hexadecimal numerals is to specify colors on web pages. Ev-
ery color has a red, green, and blue component. In decimal notation, these are
denoted with an ordered triple (x , y, z), where x , y, and z are the three compo-
nents, each an int from 0 to 255. For example, a certain shade of red, whose red,
green, and blue components are 238, 9, and 63, is represented as (238,9,63).

In hexadecimal, a color is represented in the format #RRGGBB, where RR,
GG, and BB are hex values for the red, green, and blue. Using this notation, the
color (238,9,63) would be coded as #EE093F.

Which of the following hex codes represents the color (14,20,255)?
(A) #1418FE
(B) #0E20FE
(C) #0E14FF
(D) #0FE5FE
(E) #0D14FF

19. In Java, a variable of type int is represented internally as a 32-bit signed integer.
Suppose that one bit stores the sign, and the other 31 bits store the magnitude of
the number in base 2. In this scheme, what is the largest value that can be stored
as type int?
(A) 232

(B) 232− 1
(C) 231

(D) 231− 1
(E) 230

20. Consider this code segment:

int x = 10, y = 0;

while (x > 5)

{

y = 3;

while (y < x)

{

y *= 2;

if (y % x == 1)

y += x;

}

x -= 3;

}

System.out.println(x + " " + y);

What will be output after execution of this code segment?
(A) 1 6

(B) 7 12

(C) -3 12

(D) 4 12

(E) -3 6

✐

✐

“ap” — 2014/11/4 — 11:10 — page 83 — #97

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Introductory Java Language Concepts 83

Questions 21 and 22 refer to the following method, checkNumber, which checks the
validity of its four-digit integer parameter.

/** @param n a 4-digit integer

* @return true if n is valid, false otherwise

*/

boolean checkNumber(int n)

{

int d1,d2,d3,checkDigit,nRemaining,rem;

//strip off digits

checkDigit = n % 10;

nRemaining = n / 10;

d3 = nRemaining % 10;

nRemaining /= 10;

d2 = nRemaining % 10;

nRemaining /= 10;

d1 = nRemaining % 10;

//check validity

rem = (d1 + d2 + d3) % 7;

return rem == checkDigit;

}

A program invokes method checkNumberwith the statement

boolean valid = checkNumber(num);

21. Which of the following values of num will result in valid having a value of true?
(A) 6143

(B) 6144

(C) 6145

(D) 6146

(E) 6147

22. What is the purpose of the local variable nRemaining?
(A) It is not possible to separate n into digits without the help of a temporary

variable.
(B) nRemaining prevents the parameter num from being altered.
(C) nRemaining enhances the readability of the algorithm.
(D) On exiting the method, the value of nRemaining may be reused.
(E) nRemaining is needed as the left-hand side operand for integer division.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 84 — #98

✐

✐

✐

✐

✐

✐

84 Chapter 1 Introductory Java Language Features

23. What output will be produced by this code segment? (Ignore spacing.)

for (int i = 5; i >= 1; i--)

{

for (int j = i; j >= 1; j--)

System.out.print(2 * j - 1);

System.out.println();

}

(A) 9 7 5 3 1

9 7 5 3

9 7 5

9 7

9

(B) 9 7 5 3 1

7 5 3 1

5 3 1

3 1

1

(C) 9 7 5 3 1

7 5 3 1 -1

5 3 1 -1 -3

3 1 -1 -3 -5

1 -1 -3 -5 -7

(D) 1

1 3

1 3 5

1 3 5 7

1 3 5 7 9

(E) 1 3 5 7 9

1 3 5 7

1 3 5

1 3

1

✐

✐

“ap” — 2014/11/4 — 11:10 — page 85 — #99

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Introductory Java Language Concepts 85

24. Which of the following program fragments will produce this output? (Ignore
spacing.)

2 - - - - -

- 4 - - - -

- - 6 - - -

- - - 8 - -

- - - - 10 -

- - - - - 12

I for (int i = 1; i <= 6; i++)

{

for (int k = 1; k <= 6; k++)

if (k == i)

System.out.print(2 * k);

else

System.out.print("-");

System.out.println();

}

II for (int i = 1; i <= 6; i++)

{

for (int k = 1; k <= i - 1; k++)

System.out.print("-");

System.out.print(2 * i);

for (int k = 1; k <= 6 - i; k++)

System.out.print("-");

System.out.println();

}

III for (int i = 1; i <= 6; i++)

{

for (int k = 1; k <= i - 1; k++)

System.out.print("-");

System.out.print(2 * i);

for (int k = i + 1; k <= 6; k++)

System.out.print("-");

System.out.println();

}

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 86 — #100

✐

✐

✐

✐

✐

✐

86 Chapter 1 Introductory Java Language Features

25. Consider this program segment:

int newNum = 0, temp;

int num = k; //k is some predefined integer value ≥ 0

while (num > 10)

{

temp = num % 10;

num /= 10;

newNum = newNum * 10 + temp;

}

System.out.print(newNum);

Which is a true statement about the segment?

I If 100 ≤ num ≤ 1000 initially, the final value of newNummust be in the range
10 ≤ newNum ≤ 100.

II There is no initial value of num that will cause an infinite while loop.
III If num ≤ 10 initially, newNum will have a final value of 0.

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 87 — #101

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Introductory Java Language Concepts 87

26. Consider the method reverse:

/** Precondition: n > 0.

* Postcondition:
* - Returns n with its digits reversed.

* - Example: If n = 234, method reverse returns 432.

* @param n a positive integer

* @return n with its digits reversed

*/

int reverse(int n)

{

int rem, revNum = 0;

/* code segment */

return revNum;

}

Which of the following replacements for /* code segment */ would cause the
method to work as intended?

I for (int i = 0; i <= n; i++)

{

rem = n % 10;

revNum = revNum * 10 + rem;

n /= 10;

}

II while (n != 0)

{

rem = n % 10;

revNum = revNum * 10 + rem;

n /= 10;

}

III for (int i = n; i != 0; i /= 10)

{

rem = i % 10;

revNum = revNum * 10 + rem;

}

(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 88 — #102

✐

✐

✐

✐

✐

✐

88 Chapter 1 Introductory Java Language Features

ANSWER KEY

1. B

2. E

3. D

4. E

5. E

6. C

7. B

8. D

9. D

10. A

11. C

12. D

13. A

14. C

15. A

16. D

17. A

18. C

19. D

20. D

21. B

22. C

23. B

24. E

25. D

26. D

ANSWERS EXPLAINED

1. (B) When x is converted to an integer, as in segment I, information is lost. Java
requires that an explicit cast to an int be made, as in segment II. Note that seg-
ment II will cause x to be truncated: The value stored in y is 14. By requiring the
explicit cast, Java doesn’t let you do this accidentally. In segment III y will con-
tain the value 14.0. No explicit cast to a double is required since no information
is lost.

2. (E) The string argument contains two escape sequences: ‘\\’, which means print
a backslash (\), and ‘\n’, which means go to a new line. Choice E is the only
choice that does both of these.

3. (D) Short-circuit evaluation of the boolean expression will occur. The expres-
sion (n != 0) will evaluate to false, which makes the entire boolean expression
false. Therefore the expression (x / n > 100) will not be evaluated. Hence
no division by zero will occur, causing an ArithmeticException to be thrown.
When the boolean expression has a value of false, only the else part of the
statement, statement2, will be executed.

4. (E) For this choice, the integer division 13/5 will be evaluated to 2, which will
then be cast to 2.0. The output will be 13/5 = 2.0. The compiler needs a way
to recognize that real-valued division is required. All the other options provide a
way.

5. (E) The operators *, /, and % have equal precedence, all higher than -, and must
be performed first, from left to right.

13 - 3 * 6 / 4 % 3

= 13 - 18 / 4 % 3

= 13 - 4 % 3

= 13 - 1

= 12

6. (C) The expression must be evaluated as if parenthesized like this:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 89 — #103

✐

✐

✐

✐

✐

✐

Answers Explained 89

(2 + 3) * 12 / (7 - 4 + 8)

This becomes 5 * 12 / 11 = 60 / 11 = 5.

7. (B) Although the expression is always algebraically true for nonzero x, the ex-
pression may evaluate to false. This could occur because of round-off error in
performing the division and multiplication operations. Whether the right-hand
side of the expression evaluates to exactly 3.0 depends on the value of x. Note
that if x is zero, the expression will be evaluated to false because the right-hand
side will be assigned a value of Infinity.

8. (D) Anytime arithmetic operations are done with floating-point numbers, round-
off error occurs. The Math class methods (see p. 183) such as pow and sqrt use
various approximations to generate their answers to the required accuracy. Since
they do different internal arithmetic, however, the round-off will usually not re-
sult in exactly the same answers. Note that choice A is not correct because both
Math.pow and Math.sqrt return type double. Choice B is wrong because no mat-
ter how x was previously calculated, the same x is input to pow and sqrt. Choice
C is wrong since round-off error occurs no matter how many bits are used to rep-
resent numbers. Choice E is wrong because if x is representable on the machine
(i.e., hasn’t overflowed), then its square root, x1/2, will not overflow.

9. (D) Each else gets paired with the nearest unpaired if. Thus when the test
(22 % 5 == 0) fails, the else part indicating that 22 is negative will be exe-
cuted. This is clearly not the intent of the fragment, which can be fixed using
delimiters:

int num = call to a method that reads an integer;
if (num > 0)

{

if (num % 5 == 0)

System.out.println(num);

}

else

System.out.println(num + " is negative");

10. (A) Since the first test (x >= 0) is true, the matching else part, y = -x, will not
be executed. Since (x <= 100) is true, the matching else part, y = x * 2, will
not be executed. The variable y will be set to x * 3 (i.e., 90) and will now fail
the test y < 50. Thus, x will never be altered in this algorithm. Final values are
x = 30 and y = 90.

11. (C) In order for !(A || B || C) to be true, (A || B || C) must evaluate to
false. This will happen only if A, B, and C are all false. Choice A evaluates to true
when A and B are false and C is true. In choice B, if any one of A, B, or C is false,
the boolean expression evaluates to true. In choice D, if any one of A, B, or C is
false, the boolean expression evaluates to true since we have !(false). All that’s
required for choice E to evaluate to true is for A to be false. Since true||(any)

evaluates to true, both B and C can be either true or false.

12. (D) To evaluate to true, the expression must reduce to true && true. We there-
fore need !(false) && true. Choice D is the only condition that guarantees
this: a > b provides !(false) for the left-hand expression, and a > b and b > 0

implies both a and b positive, which leads to true for the right-hand expression.
Choice E, for example, will provide true for the right-hand expression only if a
< 0. You have no information about a and can’t make assumptions about it.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 90 — #104

✐

✐

✐

✐

✐

✐

90 Chapter 1 Introductory Java Language Features

13. (A) If (c < a) is false, ((c == a*b) && (c < a)) evaluates to false irrespec-
tive of the value of c == a*b. In this case, !(c == a*b && c < a) evaluates to
true. Then (a < b) || true evaluates to true irrespective of the value of the
test (a < b). In all the other choices, the given expression may be true. There is
not enough information given to guarantee this, however.

14. (C) If a == b is false, then a != b is true. Thus, the second piece of the com-
pound test must be evaluated before the value of the whole test is known. Since
a == b is false, a - b is not equal to zero. Thus, there is no division by zero,
and no exception will be thrown. Also, since the relative values of a, b, and n

are unknown, the value of the test n / (a - b) > 90 is unknown, and there is
insufficient information to determine whether the compound test is true or false.
Thus, either /* statement 1 */ or /* statement 2 */ will be executed.

15. (A) If n≥ 1, both segments will print out the integers from 1 through n. If n≤ 0,
both segments will fail the test immediately and do nothing.

16. (D) The (value != SENTINEL) test occurs before a value has been read from the
list. This will cause 0 to be processed, which may cause an error. The code must
be fixed by reading the first value before doing the test:

final int SENTINEL = -999;

int value = IO.readInt();

while (value != SENTINEL)

{

//code to process value

value = IO.readInt();

}

17. (A) Quick method: Convert each hex digit to binary.

3 Dhex

= 0011 1101 (where D equals 13 in base 10)

= 111101bin

Slow method: Convert 3Dhex to base 10.

3Dhex = (3)(161)+ (D)(160)

= 48+ 13

= 61dec

Now convert 61dec to binary. Write 61 as a sum of descending powers of 2:

61= 32+ 16+ 8+ 4+ 1

= 1(25)+ 1(24)+ 1(23)+ 1(22)+ 0(21)+ 1(20)

= 111101bin

18. (C) Start by converting each of the three numbers to hexadecimal:

14= (0)(161)+ (14)(160) = 0E

20= (1)(161)+ (4)(160) = 14

255= (15)(161)+ (15)(160) = FF

Therefore (14,20,255) = #0E14FF.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 91 — #105

✐

✐

✐

✐

✐

✐

Answers Explained 91

19. (D) Think of the integer as having 31 slots for storage. If there were just one slot,
the maximum binary number would be 1 = 21− 1. If there were just two slots,
the maximum binary number would be 11= 22− 1 = 3. If there were just eight
slots, the maximum binary number would be 11111111= 28− 1. So for 31 slots,
the maximum value is 231− 1.

20. (D) Here is a trace of the values of x and y during execution. Note that the
condition (y % x == 1) is never true in this example.

x 10 7 4

y 3 6 12 3 6 12

The while loop terminates when x is 4 since the test while (x > 5) fails.

21. (B) The algorithm finds the remainder when the sum of the first three digits of
n is divided by 7. If this remainder is equal to the fourth digit, checkDigit, the
method returns true, otherwise false. Note that (6+1+4) % 7 equals 4. Thus,
only choice B is a valid number.

22. (C) As n gets broken down into its digits, nRemaining is the part of n that remains
after each digit is stripped off. Thus, nRemaining is a self-documenting name that
helps describe what is happening. Choice A is false because every digit can be
stripped off using some sequence of integer division and mod. Choice B is false
because num is passed by value and therefore will not be altered when the method
is exited (see p. 104). Eliminate choice D: When the method is exited, all local
variables are destroyed. Choice E is nonsense.

23. (B) The outer loop produces five rows of output. Each pass through the inner
loop goes from i down to 1. Thus five odd numbers starting at 9 are printed in
the first row, four odd numbers starting at 7 in the second row, and so on.

24. (E) All three algorithms produce the given output. The outer for (int i ...)

loop produces six rows, and the inner for (int k ...) loops produce the sym-
bols in each row.

25. (D) Statement I is false, since if 100 ≤ num ≤ 109, the body of the while loop
will be executed just once. (After this single pass through the loop, the value of
num will be 10, and the test if (num > 10) will fail.) With just one pass, newNum
will be a one-digit number, equal to temp (which was the original num % 10).
Note that statement II is true: There cannot be an infinite loop since num /= 10

guarantees termination of the loop. Statement III is true because if num≤ 10, the
loop will be skipped, and newNum will keep its original value of 0.

26. (D) The algorithm works by stripping off the rightmost digit of n (stored in
rem), multiplying the current value of revNum by 10, and adding that rightmost
digit. When n has been stripped down to no digits (i.e., n == 0 is true), revNum
is complete. Both segments II and III work. Segment I fails to produce the right
output whenever the input value n has first digit less than (number of digits− 1).
For these cases the output has the first digit of the original number missing from
the end of the returned number.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 92 — #106

✐

✐

✐

✐

✐

✐

Classes and Objects CHAPTER 2

Work is the curse of the drinking classes.
—Oscar Wilde

Chapter Goals

• Objects and classes

• Encapsulation

• References

• Keywords public, private, and
static

• Methods

• Scope of variables

OBJECTS

Every program that you write involves at least one thing that is being created or ma-
nipulated by the program. This thing, together with the operations that manipulate it,
is called an object.

Consider, for example, a program that must test the validity of a four-digit code
number that a person will enter to be able to use a photocopy machine. Rules for
validity are provided. The object is a four-digit code number. Some of the operations
to manipulate the object could be readNumber, getSeparateDigits, testValidity,
and writeNumber.

Any given program can have several different types of objects. For example, a pro-
gram that maintains a database of all books in a library has at least two objects:

1. A Book object, with operations like getTitle, isOnShelf, isFiction, and
goOutOfPrint.

2. A ListOfBooks object, with operations like search, addBook, removeBook, and
sortByAuthor.

An object is characterized by its state and behavior. For example, a book has a state
described by its title, author, whether it’s on the shelf, and so on. It also has behavior,
like going out of print.

Notice that an object is an idea, separate from the concrete details of a programming
language. It corresponds to some real-world object that is being represented by the
program.

92

✐

✐

“ap” — 2014/11/4 — 11:10 — page 93 — #107

✐

✐

✐

✐

✐

✐

Classes 93

All object-oriented programming languages have a way to represent an object as a
variable in a program. In Java, a variable that represents an object is called an object
reference.

CLASSES

A class is a software blueprint for implementing objects of a given type. An object is a
single instance of the class. In a program there will often be several different instances
of a given class type.

The current state of a given object is maintained in its data fields or instance variables,
provided by the class. The methods of the class provide both the behaviors exhibited
by the object and the operations that manipulate the object. Combining an object’s
data and methods into a single unit called a class is known as encapsulation.

Here is the framework for a simple bank account class:

public class BankAccount

{

private String password;

private double balance;

public static final double OVERDRAWN_PENALTY = 20.00;

//constructors

/** Default constructor.

* Constructs bank account with default values. */

public BankAccount()

{ /* implementation code */ }

/** Constructs bank account with specified password and balance. */

public BankAccount(String acctPassword, double acctBalance)

{ /* implementation code */ }

//accessor

/** @return balance of this account */

public double getBalance()

{ /* implementation code */ }

//mutators

/** Deposits amount in bank account with given password.

* @param acctPassword the password of this bank account

* @param amount the amount to be deposited

*/

public void deposit(String acctPassword, double amount)

{ /* implementation code */ }

/** Withdraws amount from bank account with given password.

* Assesses penalty if balance is less than amount.

* @param acctPassword the password of this bank account

* @param amount the amount to be withdrawn

*/

public void withdraw(String acctPassword, double amount)

{ /* implementation code */ }

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 94 — #108

✐

✐

✐

✐

✐

✐

94 Chapter 2 Classes and Objects

PUBLIC, PRIVATE, AND STATIC

The keyword public preceding the class declaration signals that the class is usable by
all client programs. If a class is not public, it can be used only by classes in its own
package. In the AP Java subset, all classes are public.

Similarly, public methods are accessible to all client programs. Clients, however, are
not privy to the class implementation and may not access the private instance variables
and private methods of the class. Restriction of access is known as information hiding.
In Java, this is implemented by using the keyword private. Private methods and vari-
ables in a class can be accessed only by methods of that class. Even though Java allows
public instance variables, in the AP Java subset all instance variables are private.

A static variable (class variable) contains a value that is shared by all instances of the
class. “Static” means that memory allocation happens once.

Typical uses of a static variable are to

• keep track of statistics for objects of the class.

• accumulate a total.

• provide a new identity number for each new object of the class.

For example:

public class Employee

{

private String name;

private static int employeeCount = 0; //number of employees

public Employee(< parameter list >)

{

< initialization of private instance variables >
employeeCount++; //increment count of all employees

}

...

}

Notice that the static variable was initialized outside the constructor and that its value
can be changed.

Static final variables (constants) in a class cannot be changed. They are often de-
clared public (see some examples of Math class constants on p. 183). The variable
OVERDRAWN_PENALTY is an example in the BankAccount class. Since the variable is
public, it can be used in any client method. The keyword static indicates that
there is a single value of the variable that applies to the whole class, rather than a
new instance for each object of the class. A client method would refer to the vari-
able as BankAccount.OVERDRAWN_PENALTY. In its own class it is referred to as simply
OVERDRAWN_PENALTY.

See p. 97 for static methods.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 95 — #109

✐

✐

✐

✐

✐

✐

Methods 95

METHODS

Headers

All method headers, with the exception of constructors (see below) and static methods
(p. 97), look like this:

public
︸ ︷︷ ︸

void
︸︷︷︸

withdraw
︸ ︷︷ ︸

(String password, double amount)
︸ ︷︷ ︸

access specifier return type method name parameter list

NOTE

1. The access specifier tells which other methods can call this method (see Public,

Private, and Static on the previous page).
2. A return type of void signals that the method does not return a value.
3. Items in the parameter list are separated by commas.

The implementation of the method directly follows the header, enclosed in a {}

block.

Types of Methods

CONSTRUCTORS

A constructor creates an object of the class. You can recognize a constructor by its
name—always the same as the class. Also, a constructor has no return type.

Having several constructors provides different ways of initializing class objects. For
example, there are two constructors in the BankAccount class.

1. The default constructor has no arguments. It provides reasonable initial values
for an object. Here is its implementation:

/** Default constructor.

* Constructs a bank account with default values. */

public BankAccount()

{

password = "";

balance = 0.0;

}

In a client method, the declaration

BankAccount b = new BankAccount();

constructs a BankAccount object with a balance of zero and a password equal
to the empty string. The new operator returns the address of this newly con-
structed object. The variable b is assigned the value of this address—we say “b
is a reference to the object.” Picture the setup like this:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 96 — #110

✐

✐

✐

✐

✐

✐

96 Chapter 2 Classes and Objects

b

BankAccount

password ""

balance 0

2. The constructor with parameters sets the instance variables of a BankAccount

object to the values of those parameters.
Here is the implementation:

/** Constructor. Constructs a bank account with

* specified password and balance. */

public BankAccount(String acctPassword, double acctBalance)

{

password = acctPassword;

balance = acctBalance;

}

In a client program a declaration that uses this constructor needs matching
parameters:

BankAccount c = new BankAccount("KevinC", 800.00);

c

BankAccount

password "KevinC"

balance 800.00

NOTE

b and c are object variables that store the addresses of their respective BankAccount ob-
jects. They do not store the objects themselves (see References on p. 101).

ACCESSORS

An accessor method accesses a class object without altering the object. An accessor
returns some information about the object.

The BankAccount class has a single accessor method, getBalance(). Here is its im-
plementation:

/** @return the balance of this account */

public double getBalance()

{ return balance; }

A client program may use this method as follows:

BankAccount b1 = new BankAccount("MattW", 500.00);

BankAccount b2 = new BankAccount("DannyB", 650.50);

if (b1.getBalance() > b2.getBalance())

...

✐

✐

“ap” — 2014/11/4 — 11:10 — page 97 — #111

✐

✐

✐

✐

✐

✐

Methods 97

NOTE

The . operator (dot operator) indicates that getBalance() is a method of the class to
which b1 and b2 belong, namely the BankAccount class.

MUTATORS

A mutator method changes the state of an object by modifying at least one of its in-
stance variables.

Here are the implementations of the deposit and withdrawmethods, each of which
alters the value of balance in the BankAccount class:

/** Deposits amount in a bank account with the given password.

* @param acctPassword the password of this bank account

* @param amount the amount to be deposited

*/

public void deposit(String acctPassword, double amount)

{

if (!acctPassword.equals(password))

/* throw an exception */

else

balance += amount;

}

/** Withdraws amount from bank account with given password.

* Assesses penalty if balance is less than amount.

* @param acctPassword the password of this bank account

* @param amount the amount to be withdrawn

*/

public void withdraw(String acctPassword, double amount)

{

if (!acctPassword.equals(password))

/* throw an exception */

else

{

balance -= amount; //allows negative balance

if (balance < 0)

balance -= OVERDRAWN_PENALTY;

}

}

A mutator method in a client program is invoked in the same way as an accessor: us-
ing an object variable with the dot operator. For example, assuming valid BankAccount

declarations for b1 and b2:

b1.withdraw("MattW", 200.00);

b2.deposit("DannyB", 35.68);

STATIC METHODS

Static Methods vs. Instance Methods The methods discussed in the preceding
sections—constructors, accessors, and mutators—all operate on individual objects of a
class. They are called instance methods. A method that performs an operation for the
entire class, not its individual objects, is called a static method (sometimes called a class
method).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 98 — #112

✐

✐

✐

✐

✐

✐

98 Chapter 2 Classes and Objects

The implementation of a static method uses the keyword static in its header. There
is no implied object in the code (as there is in an instance method). Thus, if the code
tries to call an instance method or invoke a private instance variable for this nonex-
istent object, a syntax error will occur. A static method can, however, use a static
variable in its code. For example, in the Employee example on p. 94, you could add a
static method that returns the employeeCount:

public static int getEmployeeCount()

{ return employeeCount; }

Here’s an example of a static method that might be used in the BankAccount class.
Suppose the class has a static variable intRate, declared as follows:

private static double intRate;

The static method getInterestRatemay be as follows:

public static double getInterestRate()

{

System.out.println("Enter interest rate for bank account");

System.out.println("Enter in decimal form:");

intRate = IO.readDouble(); // read user input

return intRate;

}

Since the rate that’s read in by this method applies to all bank accounts in the class,
not to any particular BankAccount object, it’s appropriate that the method should be
static.

Recall that an instance method is invoked in a client program by using an object
variable followed by the dot operator followed by the method name:

BankAccount b = new BankAccount(); //invokes the deposit method for

b.deposit(acctPassword, amount); //BankAccount object b

A static method, by contrast, is invoked by using the class name with the dot operator:

double interestRate = BankAccount.getInterestRate();

Static Methods in a Driver Class Often a class that contains the main()method
is used as a driver program to test other classes. Usually such a class creates no objects
of the class. So all the methods in the class must be static. Note that at the start of
program execution, no objects exist yet. So the main() method must always be static.

For example, here is a program that tests a class for reading integers entered at the
keyboard.

import java.util.*;

public class GetListTest

{

/** @return a list of integers from the keyboard */

public static List<Integer> getList()

{

List<Integer> a = new ArrayList<Integer>();

< code to read integers into a>

return a;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 99 — #113

✐

✐

✐

✐

✐

✐

Methods 99

/** Write contents of List a.

* @param a the list

*/

public static void writeList(List<Integer> a)

{

System.out.println("List is : " + a);

}

public static void main(String[] args)

{

List<Integer> list = getList();

writeList(list);

}

}

NOTE

1. The calls to writeList(list) and getList() do not need to be preceded by
GetListTest plus a dot because main is not a client program: It is in the same
class as getList and writeList.

2. If you omit the keyword static from the getList or writeList header, you
get an error message like the following:

Can’t make static reference to method getList()

in class GetListTest

The compiler has recognized that there was no object variable preceding the
method call, which means that the methods were static and should have been
declared as such.

Method Overloading

Overloaded methods are two or more methods in the same class that have the same
name but different parameter lists. For example,

public class DoOperations

{

public int product(int n) { return n * n; }

public double product(double x) { return x * x; }

public double product(int x, int y) { return x * y; }

...

The compiler figures out which method to call by examining the method’s signature.
The signature of a method consists of the method’s name and a list of the parameter
types. Thus, the signatures of the overloaded product methods are

product(int)

product(double)

product(int, int)

Note that for overloading purposes, the return type of the method is irrelevant.
You can’t have two methods with identical signatures but different return types. The
compiler will complain that the method call is ambiguous.

Having more than one constructor in the same class is an example of overloading.
Overloaded constructors provide a choice of ways to initialize objects of the class.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 100 — #114

✐

✐

✐

✐

✐

✐

100 Chapter 2 Classes and Objects

SCOPE

The scope of a variable or method is the region in which that variable or method is
visible and can be accessed.

The instance variables, static variables, and methods of a class belong to that class’s
scope, which extends from the opening brace to the closing brace of the class defi-
nition. Within the class all instance variables and methods are accessible and can be
referred to simply by name (no dot operator!).

A local variable is defined inside a method. It can even be defined inside a statement.
Its scope extends from the point where it is declared to the end of the block in which
its declaration occurs. A block is a piece of code enclosed in a {} pair. When a block is
exited, the memory for a local variable is automatically recycled.

Local variables take precedence over instance variables with the same name. (Using
the same name, however, creates ambiguity for the programmer, leading to errors. You
should avoid the practice.)

The this Keyword

An instance method is always called for a particular object. This object is an implicit
parameter for the method and is referred to with the keyword this. You are expected
to know this vocabulary for the exam.

In the implementation of instance methods, all instance variables can be written
with the prefix this followed by the dot operator.

Example 1

In the method call obj.doSomething("Mary",num), where obj is some class object
and doSomething is a method of that class, "Mary" and num, the parameters in paren-
theses, are explicit parameters, whereas obj is an implicit parameter.

Example 2

Here’s an example where this is used as a parameter.

public class Person

{

private String name;

private int age;

public Person(String aName, int anAge)

{

name = aName;

age = anAge;

}

/** @return the String form of this person */

public String toString()

{ return name + " " + age; }

public void printPerson()

{ System.out.println(this); }

//Other variables and methods are not shown.

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 101 — #115

✐

✐

✐

✐

✐

✐

References 101

Suppose a client class has these lines of code:

Person p = new Person("Dan", 10);

p.printPerson();

The statement

System.out.println(this);

in the printPerson method means “print the current Person object.” The output
should be: Dan 10. Note that System.out.println invokes the toString method of
the Person class.

Example 3

The deposit method of the BankAccount class can refer to balance as follows:

public void deposit(String acctPassword, double amount)

{

this.balance += amount;

}

The use of this is unnecessary in the above example.

Example 4

Consider a rational number class called Rational, which has two private instance
variables:

private int num; //numerator

private int denom; //denominator

Now consider a constructor for the Rational class:

public Rational(int num, int denom)

{

this.num = num;

this.denom = denom;

}

It is definitely not a good idea to use the same name for the explicit parameters and the
private instance variables. But if you do, you can avoid errors by referring to this.num

and this.denom for the current object that is being constructed. (This particular use
of this will not be tested on the exam.)

REFERENCES

Reference vs. Primitive Data Types

All of the numerical data types, like double and int, as well as types char and boolean,
are primitive data types. All objects are reference data types. The difference lies in the
way they are stored.

Consider the statements

✐

✐

“ap” — 2014/11/4 — 11:10 — page 102 — #116

✐

✐

✐

✐

✐

✐

102 Chapter 2 Classes and Objects

int num1 = 3;

int num2 = num1;

The variables num1 and num2 can be thought of as memory slots, labeled num1 and num2,
respectively:

num1

3

num2

3

If either of the above variables is now changed, the other is not affected. Each has its
own memory slot.

Contrast this with the declaration of a reference data type. Recall that an object is
created using new:

Date d = new Date(2, 17, 1948);

This declaration creates a reference variable d that refers to a Date object. The value of
d is the address in memory of that object:

d

Date

month 2

day 17

year 1948

Suppose the following declaration is now made:

Date birthday = d;

This statement creates the reference variable birthday, which contains the same ad-
dress as d:

d

birthday

Date

month 2

day 17

year 1948

Having two references for the same object is known as aliasing. Aliasing can cause
unintended problems for the programmer. The statement

d.changeDate();

will automatically change the object referred to by birthday as well.
What the programmer probably intended was to create a second object called

birthday whose attributes exactly matched those of d. This cannot be accomplished
without using new. For example,

Date birthday = new Date(d.getMonth(), d.getDay(), d.getYear());

The statement d.changeDate()will now leave the birthday object unchanged.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 103 — #117

✐

✐

✐

✐

✐

✐

References 103

The Null Reference

The declaration

BankAccount b;

defines a reference b that is uninitialized. (To construct the object that b refers to
requires the new operator and a BankAccount constructor.) An uninitialized object
variable is called a null reference or null pointer. You can test whether a variable refers
to an object or is uninitialized by using the keyword null:

if (b == null)

If a reference is not null, it can be set to null with the statement

b = null;

An attempt to invoke an instance method with a null reference may cause your
program to terminate with a NullPointerException. For example,

public class PersonalFinances

{

BankAccount b; //b is a null reference

...

b.withdraw(acctPassword, amt); //throws a NullPointerException

... //if b not constructed with new

NOTE

If you fail to initialize a local variable in a method before you use it, you will get a
compile-time error. If you make the same mistake with an instance variable of a class,
the compiler provides reasonable default values for primitive variables (0 for numbers,
false for booleans), and the code may run without error. However, if you don’t
initialize reference instance variables in a class, as in the above example, the compiler

Do not make a
method call with an
object whose value is
null.

will set them to null. Any method call for an object of the class that tries to access
the null reference will cause a run-time error: The program will terminate with a
NullPointerException.

Method Parameters

FORMAL VS. ACTUAL PARAMETERS

The header of a method defines the parameters of that method. For example, consider
the withdraw method of the BankAccount class:

public class BankAccount

{ ...

public void withdraw(String acctPassword, double amount)

...

This method has two explicit parameters, acctPassword and amount. These are dummy
or formal parameters. Think of them as placeholders for the pair of actual parameters
or arguments that will be supplied by a particular method call in a client program.

For example,

✐

✐

“ap” — 2014/11/4 — 11:10 — page 104 — #118

✐

✐

✐

✐

✐

✐

104 Chapter 2 Classes and Objects

BankAccount b = new BankAccount("TimB", 1000);

b.withdraw("TimB", 250);

Here "TimB" and 250 are the actual parameters that match up with acctPassword and
amount for the withdraw method.

NOTE

1. The number of arguments in the method call must equal the number of param-
eters in the method header, and the type of each argument must be compatible
with the type of each corresponding parameter.

2. In addition to its explicit parameters, the withdraw method has an implicit
parameter, this, the BankAccount from which money will be withdrawn. In
the method call

b.withdraw("TimB", 250);

the actual parameter that matches up with this is the object reference b.

PASSING PRIMITIVE TYPES AS PARAMETERS

Parameters are passed by value. For primitive types this means that when a method is
called, a new memory slot is allocated for each parameter. The value of each argument
is copied into the newly created memory slot corresponding to each parameter.

During execution of the method, the parameters are local to that method. Any
changes made to the parameters will not affect the values of the arguments in the calling
program. When the method is exited, the local memory slots for the parameters are
erased.

Here’s an example: What will the output be?

public class ParamTest

{

public static void foo(int x, double y)

{

x = 3;

y = 2.5;

}

public static void main(String[] args)

{

int a = 7;

double b = 6.5;

foo(a, b);

System.out.println(a + " " + b);

}

}

The output will be

7 6.5

The arguments a and b remain unchanged, despite the method call!
This can be understood by picturing the state of the memory slots during execution

of the program.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 105 — #119

✐

✐

✐

✐

✐

✐

References 105

Just before the foo(a, b) method call:
a

7

b

6.5

At the time of the foo(a, b) method call:
a

7

x

7

b

6.5

y

6.5

Just before exiting the method: Note that the values of x and y have been changed.
a

7

x

3

b

6.5

y

2.5

After exiting the method: Note that the memory slots for x and y have been reclaimed.
The values of a and b remain unchanged.

a

7

b

6.5

PASSING OBJECTS AS PARAMETERS

In Java both primitive types and object references are passed by value. When an ob-
ject’s reference is a parameter, the same mechanism of copying into local memory is
used. The key difference is that the address (reference) is copied, not the values of the
individual instance variables. As with primitive types, changes made to the parameters
will not change the values of the matching arguments. What this means in practice is
that it is not possible for a method to replace an object with another one—you can’t
change the reference that was passed. It is, however, possible to change the state of the
object to which the parameter refers through methods that act on the object.

Example 1

A method that changes the state of an object.

/** Subtracts fee from balance in b if current balance too low. */

public static void chargeFee(BankAccount b, String password,

double fee)

{

final double MIN_BALANCE = 10.00;

if (b.getBalance() < MIN_BALANCE)

b.withdraw(password, fee);

}

public static void main(String[] args)

{

final double FEE = 5.00;

BankAccount andysAccount = new BankAccount("AndyS", 7.00);

chargeFee(andysAccount, "AndyS", FEE);

...

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 106 — #120

✐

✐

✐

✐

✐

✐

106 Chapter 2 Classes and Objects

Here are the memory slots before the chargeFee method call:

FEE

5

andysAccount

BankAccount

password "AndyS"

balance 7

At the time of the chargeFeemethod call, copies of the matching parameters are made:

FEE

5

fee

5

andysAccount

b

BankAccount

password "AndyS"

balance 7

password

"AndyS"

Just before exiting the method: The balance field of the BankAccount object has been
changed.

FEE

5

fee

5

andysAccount

b

BankAccount

password "AndyS"

balance 2

password

"AndyS"

After exiting the method: All parameter memory slots have been erased, but the object
remains altered.

FEE

5

andysAccount

BankAccount

password "AndyS"

balance 2

NOTE

The andysAccount reference is unchanged throughout the program segment. The ob-
ject to which it refers, however, has been changed. This is significant. Contrast this
with Example 2 below in which an attempt is made to replace the object itself.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 107 — #121

✐

✐

✐

✐

✐

✐

References 107

Example 2

A chooseBestAccountmethod attempts—erroneously—to set its betterFundparam-
eter to the BankAccountwith the higher balance:

public static void chooseBestAccount(BankAccount better,

BankAccount b1, BankAccount b2)

{

if (b1.getBalance() > b2.getBalance())

better = b1;

else

better = b2;

}

public static void main(String[] args)

{

BankAccount briansFund = new BankAccount("BrianL", 10000);

BankAccount paulsFund = new BankAccount("PaulM", 90000);

BankAccount betterFund = null;

chooseBestAccount(betterFund, briansFund, paulsFund);

...

}

The intent is that betterFund will be a reference to the paulsFund object after ex-
ecution of the chooseBestAccount statement. A look at the memory slots illustrates
why this fails.

Before the chooseBestAccountmethod call:

briansFund

BankAccount

password "BrianL"

balance 10000

paulsFund

BankAccount

password "PaulM"

balance 90000

betterFund

At the time of the chooseBestAccountmethod call: Copies of the matching references
are made.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 108 — #122

✐

✐

✐

✐

✐

✐

108 Chapter 2 Classes and Objects

briansFund

b1

BankAccount

password "BrianL"

balance 10000

paulsFund

b2

BankAccount

password "PaulM"

balance 90000

betterFund

better

Just before exiting the method: The value of better has been changed; betterFund,
however, remains unchanged.

briansFund

b1

BankAccount

password "BrianL"

balance 10000

paulsFund

b2

BankAccount

password "PaulM"

balance 90000

betterFund

better

After exiting the method: All parameter slots have been erased.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 109 — #123

✐

✐

✐

✐

✐

✐

References 109

briansFund

BankAccount

password "BrianL"

balance 10000

paulsFund

BankAccount

password "PaulM"

balance 90000

betterFund

Note that the betterFund reference continues to be null, contrary to the program-
mer’s intent.

The way to fix the problem is to modify the method so that it returns the better
account. Returning an object from a method means that you are returning the address
of the object.

public static BankAccount chooseBestAccount(BankAccount b1,

BankAccount b2)

{

BankAccount better;

if (b1.getBalance() > b2.getBalance())

better = b1;

else

better = b2;

return better;

}

public static void main(String[] args)

{

BankAccount briansFund = new BankAccount("BrianL", 10000);

BankAccount paulsFund = new BankAccount("PaulM", 90000);

BankAccount betterFund = chooseBestAccount(briansFund, paulsFund);

...

}

NOTE

The effect of this is to create the betterFund reference, which refers to the same object
as paulsFund:

paulsFund

betterFund

BankAccount

password "PaulM"

balance 90000

✐

✐

“ap” — 2014/11/4 — 11:10 — page 110 — #124

✐

✐

✐

✐

✐

✐

110 Chapter 2 Classes and Objects

What the method does not do is create a new object to which betterFund refers. To do
that would require the keyword new and use of a BankAccount constructor. Assuming
that a getPassword()accessor has been added to the BankAccount class, the code would
look like this:

public static BankAccount chooseBestAccount(BankAccount b1,

BankAccount b2)

{

BankAccount better;

if (b1.getBalance() > b2.getBalance())

better = new BankAccount(b1.getPassword(), b1.getBalance());

else

better = new BankAccount(b2.getPassword(), b2.getBalance());

return better;

}

Using this modified method with the same main() method above has the following
effect:

briansFund

BankAccount

password "BrianL"

balance 10000

paulsFund

BankAccount

password "PaulM"

balance 90000

betterFund

BankAccount

password "PaulM"

balance 90000

Modifying more than one object in a method can be accomplished using a wrapper
class (see p. 180).

Chapter Summary

By now you should be able to write code for any given object, with its private data
fields and methods encapsulated in a class. Be sure that you know the various types of
methods—static, instance, and overloaded.

You should also understand the difference between storage of primitive types and
the references used for objects.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 111 — #125

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 111

MULTIPLE-CHOICE QUESTIONS ON CLASSES AND
OBJECTS

Questions 1–3 refer to the Time class declared below:

public class Time

{

private int hrs;

private int mins;

private int secs;

public Time()

{ /* implementation not shown */ }

public Time(int h, int m, int s)

{ /* implementation not shown */ }

/** Resets time to hrs = h, mins = m, secs = s. */

public void resetTime(int h, int m, int s)

{ /* implementation not shown */ }

/** Advances time by one second. */

public void increment()

{ /* implementation not shown */ }

/** @return true if this time equals t, false otherwise */

public boolean equals(Time t)

{ /* implementation not shown */ }

/** @return true if this time is earlier than t, false otherwise */

public boolean lessThan(Time t)

{ /* implementation not shown */ }

/** @return a String with the time in the form hrs:mins:secs */

public String toString()

{ /* implementation not shown */ }

}

1. Which of the following is a false statement about the methods?
(A) equals, lessThan, and toString are all accessor methods.
(B) increment is a mutator method.
(C) Time() is the default constructor.
(D) The Time class has three constructors.
(E) There are no static methods in this class.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 112 — #126

✐

✐

✐

✐

✐

✐

112 Chapter 2 Classes and Objects

2. Which of the following represents correct implementation code for the constructor
with parameters?

(A) hrs = 0;

mins = 0;

secs = 0;

(B) hrs = h;

mins = m;

secs = s;

(C) resetTime(hrs, mins, secs);

(D) h = hrs;

m = mins;

s = secs;

(E) Time = new Time(h, m, s);

3. A client class has a display method that writes the time represented by its pa-
rameter:

/** Outputs time t in the form hrs:mins:secs.

* @param t the time

*/

public void display (Time t)

{

/* method body */

}

Which of the following are correct replacements for /* method body */?

I Time T = new Time(h, m, s);

System.out.println(T);

II System.out.println(t.hrs + ":" + t.mins + ":" + t.secs);

III System.out.println(t);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

4. Which statement about parameters is false?
(A) The scope of parameters is the method in which they are defined.
(B) Static methods have no implicit parameter this.
(C) Two overloaded methods in the same class must have parameters with dif-

ferent names.
(D) All parameters in Java are passed by value.
(E) Two different constructors in a given class can have the same number of

parameters.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 113 — #127

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 113

Questions 5–11 refer to the following Date class declaration:

public class Date

{

private int day;

private int month;

private int year;

public Date() //default constructor

{

...

}

public Date(int mo, int da, int yr) //constructor

{

...

}

public int month() //returns month of Date

{

...

}

public int day() //returns day of Date

{

...

}

public int year() //returns year of Date

{

...

}

//Returns String representation of Date as "m/d/y", e.g. 4/18/1985.

public String toString()

{

...

}

}

5. Which of the following correctly constructs a Date object in a client class?

(A) Date d = new (2, 13, 1947);

(B) Date d = new Date(2, 13, 1947);

(C) Date d;

d = new (2, 13, 1947);

(D) Date d;

d = Date(2, 13, 1947);

(E) Date d = Date(2, 13, 1947);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 114 — #128

✐

✐

✐

✐

✐

✐

114 Chapter 2 Classes and Objects

6. Which of the following will cause an error message?

I Date d1 = new Date(8, 2, 1947);

Date d2 = d1;

II Date d1 = null;

Date d2 = d1;

III Date d = null;

int x = d.year();

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

7. A client program creates a Date object as follows:

Date d = new Date(1, 13, 2002);

Which of the following subsequent code segments will cause an error?
(A) String s = d.toString();

(B) int x = d.day();

(C) Date e = d;

(D) Date e = new Date(1, 13, 2002);

(E) int y = d.year;

8. Consider the implementation of a write()method that is added to the Date class:

/** Write the date in the form m/d/y, for example 2/17/1948. */

public void write()

{

/* implementation code */

}

Which of the following could be used as /* implementation code */?

I System.out.println(month + "/" + day + "/" + year);

II System.out.println(month() + "/" + day() + "/" + year());

III System.out.println(this);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 115 — #129

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 115

9. Here is a client program that uses Date objects:

public class BirthdayStuff

{

public static Date findBirthdate()

{

/* code to get birthDate */

return birthDate;

}

public static void main(String[] args)

{

Date d = findBirthdate();

...

}

}

Which of the following is a correct replacement for
/* code to get birthDate */?

I System.out.println("Enter birthdate: mo, day, yr: ");

int m = IO.readInt(); //read user input

int d = IO.readInt(); //read user input

int y = IO.readInt(); //read user input

Date birthDate = new Date(m, d, y);

II System.out.println("Enter birthdate: mo, day, yr: ");

int birthDate.month() = IO.readInt(); //read user input

int birthDate.day() = IO.readInt(); //read user input

int birthDate.year() = IO.readInt(); //read user input

Date birthDate = new Date(birthDate.month(), birthDate.day(),

birthDate.year());

III System.out.println("Enter birthdate: mo, day, yr: ");

int birthDate.month = IO.readInt(); //read user input

int birthDate.day = IO.readInt(); //read user input

int birthDate.year = IO.readInt(); //read user input

Date birthDate = new Date(birthDate.month, birthDate.day,

birthDate.year);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 116 — #130

✐

✐

✐

✐

✐

✐

116 Chapter 2 Classes and Objects

10. A method in a client program for the Date class has this declaration:

Date d1 = new Date(mo, da, yr);

where mo, da, and yr are previously defined integer variables. The same method
now creates a second Date object d2 that is an exact copy of the object d1 refers
to. Which of the following code segments will not do this correctly?

I Date d2 = d1;

II Date d2 = new Date(mo, da, yr);

III Date d2 = new Date(d1.month(), d1.day(), d1.year());

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

11. The Date class is modified by adding the following mutator method:

public void addYears(int n) //add n years to date

Here is part of a poorly coded client program that uses the Date class:

public static void addCentury(Date recent, Date old)

{

old.addYears(100);

recent = old;

}

public static void main(String[] args)

{

Date oldDate = new Date(1, 13, 1900);

Date recentDate = null;

addCentury(recentDate, oldDate);

...

}

Which will be true after executing this code?
(A) A NullPointerException is thrown.
(B) The oldDate object remains unchanged.
(C) recentDate is a null reference.
(D) recentDate refers to the same object as oldDate.
(E) recentDate refers to a separate object whose contents are the same as those

of oldDate.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 117 — #131

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 117

12. Here are the private instance variables for a Frog object:

public class Frog

{

private String species;

private int age;

private double weight;

private Position position; //position (x,y) in pond

private boolean amAlive;

...

Which of the following methods in the Frog class is the best candidate for being
a static method?

(A) swim //frog swims to new position in pond

(B) getPondTemperature //returns temperature of pond

(C) eat //frog eats and gains weight

(D) getWeight //returns weight of frog

(E) die //frog dies with some probability based

//on frog’s age and pond temperature

13. What output will be produced by this program?

public class Mystery

{

public static void strangeMethod(int x, int y)

{

x += y;

y *= x;

System.out.println(x + " " + y);

}

public static void main(String[] args)

{

int a = 6, b = 3;

strangeMethod(a, b);

System.out.println(a + " " + b);

}

}

(A) 36

9

(B) 3 6

9

(C) 9 27

9 27

(D) 6 3

9 27

(E) 9 27

6 3

✐

✐

“ap” — 2014/11/4 — 11:10 — page 118 — #132

✐

✐

✐

✐

✐

✐

118 Chapter 2 Classes and Objects

Questions 14–17 refer to the following definition of the Rational class:

public class Rational

{

private int numerator;

private int denominator;

/** default constructor */

Rational()

{ /* implementation not shown */ }

/** Constructs a Rational with numerator n and

* denominator 1. */

Rational(int n)

{ /* implementation not shown */ }

/** Constructs a Rational with specified numerator and

* denominator. */

Rational(int numer, int denom)

{ /* implementation not shown */ }

/** @return numerator */

int numerator()

{ /* implementation not shown */ }

/** @return denominator */

int denominator()

{ /* implementation not shown */ }

/** Returns (this + r). Leaves this unchanged.

* @return this rational number plus r

* @param r a rational number to be added to this Rational

*/

public Rational plus(Rational r)

{ /* implementation not shown */ }

//Similarly for times, minus, divide

...

/** Ensures denominator > 0. */

private void fixSigns()

{ /* implementation not shown */ }

/** Ensures lowest terms. */

private void reduce()

{ /* implementation not shown */ }

}

14. The method reduce() is not a public method because
(A) methods whose return type is void cannot be public.
(B) methods that change this cannot be public.
(C) the reduce()method is not intended for use by clients of the Rational class.
(D) the reduce() method is intended for use only by clients of the Rational

class.
(E) the reduce() method uses only the private data fields of the Rational class.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 119 — #133

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 119

15. The constructors in the Rational class allow initialization of Rational objects in
several different ways. Which of the following will cause an error?
(A) Rational r1 = new Rational();

(B) Rational r2 = r1;

(C) Rational r3 = new Rational(2,-3);

(D) Rational r4 = new Rational(3.5);

(E) Rational r5 = new Rational(10);

16. Here is the implementation code for the plus method:

/** Returns (this + r). Leaves this unchanged.

* @return this rational number plus r

* @param r a rational number to be added to this Rational

*/

public Rational plus(Rational r)

{

fixSigns();

r.fixSigns();

int denom = denominator * r.denominator;

int numer = numerator * r.denominator

+ r.numerator * denominator;

/* more code */

}

Which of the following is a correct replacement for /* more code */?

(A) Rational rat(numer, denom);

rat.reduce();

return rat;

(B) return new Rational(numer, denom);

(C) reduce();

Rational rat = new Rational(numer, denom);

return rat;

(D) Rational rat = new Rational(numer, denom);

Rational.reduce();

return rat;

(E) Rational rat = new Rational(numer, denom);

rat.reduce();

return rat;

17. Assume these declarations:

Rational a = new Rational();

Rational r = new Rational(numer, denom);

int n = value;

//numer, denom, and value are valid integer values

Which of the following will cause a compile-time error?
(A) r = a.plus(r);

(B) a = r.plus(new Rational(n));

(C) r = r.plus(r);

(D) a = n.plus(r);

(E) r = r.plus(new Rational(n));

✐

✐

“ap” — 2014/11/4 — 11:10 — page 120 — #134

✐

✐

✐

✐

✐

✐

120 Chapter 2 Classes and Objects

Questions 18–20 refer to the Temperature class shown below:

public class Temperature

{

private String scale; //valid values are "F" or "C"

private double degrees;

/** constructor with specified degrees and scale */

public Temperature(double tempDegrees, String tempScale)

{ /* implementation not shown */ }

/** Mutator. Converts this Temperature to degrees Fahrenheit.

* Precondition: Temperature is a valid temperature

* in degrees Celsius.

* @return this temperature in degrees Fahrenheit

*/

public Temperature toFahrenheit()

{ /* implementation not shown */ }

/** Mutator. Converts this Temperature to degrees Celsius.

* Precondition: Temperature is a valid temperature

* in degrees Fahrenheit.

* @return this temperature in degrees Celsius

*/

public Temperature toCelsius()

{ /* implementation not shown */ }

/** Mutator.

* @param amt the number of degrees to raise this temperature

* @return this temperature raised by amt degrees

*/

public Temperature raise(double amt)

{ /* implementation not shown */ }

/** Mutator.

* @param amt the number of degrees to lower this temperature

* @return this temperature lowered by amt degrees

*/

public Temperature lower(double amt)

{ /* implementation not shown */ }

/** @param tempDegrees the number of degrees

* @param tempScale the temperature scale

* @return true if tempDegrees is a valid temperature

* in the given temperature scale, false otherwise

*/

public static boolean isValidTemp(double tempDegrees,

String tempScale)

{ /* implementation not shown */ }

//Other methods are not shown.

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 121 — #135

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 121

18. A client method contains this code segment:

Temperature t1 = new Temperature(40, "C");

Temperature t2 = t1;

Temperature t3 = t2.lower(20);

Temperature t4 = t1.toFahrenheit();

Which statement is true following execution of this segment?
(A) t1, t2, t3, and t4 all represent the identical temperature, in degrees Celsius.
(B) t1, t2, t3, and t4 all represent the identical temperature, in degrees Fahren-

heit.
(C) t4 represents a Fahrenheit temperature, while t1, t2, and t3 all represent

degrees Celsius.
(D) t1 and t2 refer to the same Temperature object; t3 refers to a Temperature

object that is 20 degrees lower than t1 and t2, while t4 refers to an object
that is t1 converted to Fahrenheit.

(E) A NullPointerExceptionwas thrown.

19. Consider the following code:

public class TempTest

{

public static void main(String[] args)

{

System.out.println("Enter temperature scale: ");

String tempScale = IO.readString(); //read user input

System.out.println("Enter number of degrees: ");

double tempDegrees = IO.readDouble(); //read user input

/* code to construct a valid temperature from user input */

}

}

Which is a correct replacement for /* code to construct. . . */?

I Temperature t = new Temperature(tempDegrees, tempScale);

if (!t.isValidTemp(tempDegrees,tempScale))

/* error message and exit program */

II if (isValidTemp(tempDegrees,tempScale))

Temperature t = new Temperature(tempDegrees, tempScale);

else

/* error message and exit program */

III if (Temperature.isValidTemp(tempDegrees,tempScale))

Temperature t = new Temperature(tempDegrees, tempScale);

else

/* error message and exit program */

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 122 — #136

✐

✐

✐

✐

✐

✐

122 Chapter 2 Classes and Objects

20. The formula to convert degrees Celsius C to Fahrenheit F is

F = 1.8C + 32

For example, 30◦C is equivalent to 86◦F.

An inFahrenheit() accessor method is added to the Temperature class. Here is
its implementation:

/** Precondition: The temperature is a valid temperature

* in degrees Celsius.

* Postcondition:
* - An equivalent temperature in degrees Fahrenheit has been

* returned.

* - Original temperature remains unchanged.

* @return an equivalent temperature in degrees Fahrenheit

*/

public Temperature inFahrenheit()

{

Temperature result;

/* more code */

return result;

}

Which of the following correctly replaces /* more code */ so that the postcondi-
tion is achieved?

I result = new Temperature(degrees * 1.8 + 32, "F");

II result = new Temperature(degrees * 1.8, "F");

result = result.raise(32);

III degrees *= 1.8;

this = this.raise(32);

result = new Temperature(degrees, "F");

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 123 — #137

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 123

21. Consider this program:

public class CountStuff

{

public static void doSomething()

{

int count = 0;

...

//code to do something - no screen output produced

count++;

}

public static void main(String[] args)

{

int count = 0;

System.out.println("How many iterations?");

int n = IO.readInt(); //read user input

for (int i = 1; i <= n; i++)

{

doSomething();

System.out.println(count);

}

}

}

If the input value for n is 3, what screen output will this program subsequently
produce?

(A) 0

0

0

(B) 1

2

3

(C) 3

3

3

(D) ?

?

?
where ? is some undefined value.

(E) No output will be produced.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 124 — #138

✐

✐

✐

✐

✐

✐

124 Chapter 2 Classes and Objects

22. This question refers to the following class:

public class IntObject

{

private int num;

public IntObject() //default constructor

{ num = 0; }

public IntObject(int n) //constructor

{ num = n; }

public void increment() //increment by 1

{ num++; }

}

Here is a client program that uses this class:

public class IntObjectTest

{

public static IntObject someMethod(IntObject obj)

{

IntObject ans = obj;

ans.increment();

return ans;

}

public static void main(String[] args)

{

IntObject x = new IntObject(2);

IntObject y = new IntObject(7);

IntObject a = y;

x = someMethod(y);

a = someMethod(x);

}

}

Just before exiting this program, what are the object values of x, y, and a, respec-
tively?
(A) 9, 9, 9
(B) 2, 9, 9
(C) 2, 8, 9
(D) 3, 8, 9
(E) 7, 8, 9

✐

✐

“ap” — 2014/11/4 — 11:10 — page 125 — #139

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Classes and Objects 125

23. Consider the following program:

public class Tester

{

public void someMethod(int a, int b)

{

int temp = a;

a = b;

b = temp;

}

}

public class TesterMain

{

public static void main(String[] args)

{

int x = 6, y = 8;

Tester tester = new Tester();

tester.someMethod(x, y);

}

}

Just before the end of execution of this program, what are the values of x, y, and
temp, respectively?
(A) 6, 8, 6
(B) 8, 6, 6
(C) 6, 8, ?, where ? means undefined
(D) 8, 6, ?, where ? means undefined
(E) 8, 6, 8

✐

✐

“ap” — 2014/11/4 — 11:10 — page 126 — #140

✐

✐

✐

✐

✐

✐

126 Chapter 2 Classes and Objects

ANSWER KEY

1. D

2. B

3. C

4. C

5. B

6. C

7. E

8. E

9. A

10. A

11. C

12. B

13. E

14. C

15. D

16. E

17. D

18. B

19. C

20. D

21. A

22. A

23. C

ANSWERS EXPLAINED

1. (D) There are just two constructors. Constructors are recognizable by having
the same name as the class, and no return type.

2. (B) Each of the private instance variables should be assigned the value of the
matching parameter. Choice B is the only choice that does this. Choice D con-
fuses the order of the assignment statements. Choice A gives the code for the
default constructor, ignoring the parameters. Choice C would be correct if it
were resetTime(h, m, s). As written, it doesn’t assign the parameter values h,
m, and s to hrs, mins, and secs. Choice E is wrong because the keyword new

should be used to create a new object, not to implement the constructor!

3. (C) Replacement III will automatically print time t in the required form since a
toString method was defined for the Time class. Replacement I is wrong because
it doesn’t refer to the parameter, t, of the method. Replacement II is wrong
because a client program may not access private data of the class.

4. (C) The parameter names can be the same—the signatures must be different. For
example,

public void print(int x) //prints x

public void print(double x) //prints x

The signatures (method name plus parameter types) here are print(int) and
print(double), respectively. The parameter name x is irrelevant. Choice A is
true: All local variables and parameters go out of scope (are erased) when the
method is exited. Choice B is true: Static methods apply to the whole class.
Only instance methods have an implicit this parameter. Choice D is true even
for object parameters: Their references are passed by value. Note that choice
E is true because it’s possible to have two different constructors with different
signatures but the same number of parameters (e.g., one for an int argument and
one for a double).

5. (B) Constructing an object requires the keyword new and a constructor of the
Date class. Eliminate choices D and E since they omit new. The class name Date

should appear on the right-hand side of the assignment statement, immediately
following the keyword new. This eliminates choices A and C.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 127 — #141

✐

✐

✐

✐

✐

✐

Answers Explained 127

6. (C) Segment III will cause a NullPointerException to be thrown since d is a null
reference. You cannot invoke a method for a null reference. Segment II has the
effect of assigning null to both d1 and d2—obscure but not incorrect. Segment I
creates the object reference d1 and then declares a second reference d2 that refers
to the same object as d1.

7. (E) A client program cannot access a private instance variable.

8. (E) All are correct. Since write() is a Date instance method, it is OK to use the
private data members in its implementation code. Segment III prints this, the
current Date object. This usage is correct since write() is part of the Date class.
The toString() method guarantees that the date will be printed in the required
format (see p. 175).

9. (A) The idea here is to read in three separate variables for month, day, and year
and then to construct the required date using new and the Date class constructor
with three parameters. Code segment II won’t work because month(), day(), and
year() are accessor methods that access existing values and may not be used to
read new values into bDate. Segment III is wrong because it tries to access private
instance variables from a client program.

10. (A) Segment I will not create a second object. It will simply cause d2 to refer to
the same object as d1, which is not what was required. The keyword new must be
used to create a new object.

11. (C) When recentDate is declared in main(), its value is null. Recall that a method
is not able to replace an object reference, so recentDate remains null. Note that
the intent of the program is to change recentDate to refer to the updated oldDate

object. The code, however, doesn’t do this. Choice A is false: No methods are
invoked with a null reference. Choice B is false because addYears() is a mutator
method. Even though a method doesn’t change the address of its object parame-
ter, it can change the contents of the object, which is what happens here. Choices
D and E are wrong because the addCentury()method cannot change the value of
its recentDate argument.

12. (B) The method getPondTemperature is the only method that applies to more
than one frog. It should therefore be static. All of the other methods relate
directly to one particular Frog object. So f.swim(), f.die(), f.getWeight(),
and f.eat() are all reasonable methods for a single instance f of a Frog. On
the other hand, it doesn’t make sense to say f.getPondTemperature(). It makes
more sense to say Frog.getPondTemperature(), since the same value will apply
to all frogs in the class.

13. (E) Here are the memory slots at the start of strangeMethod(a, b):

a

6

x

6

b

3

y

3

Before exiting strangeMethod(a, b):

✐

✐

“ap” — 2014/11/4 — 11:10 — page 128 — #142

✐

✐

✐

✐

✐

✐

128 Chapter 2 Classes and Objects

a

6

x

9

b

3

y

27

Note that 9 27 is output before exiting. After exiting strangeMethod(a, b), the
memory slots are

a

6

b

3

The next step outputs 6 3.

14. (C) The reduce() method will be used only in the implementation of the in-
stance methods of the Rational class.

15. (D) None of the constructors in the Rational class takes a real-valued parame-
ter. Thus, the real-valued parameter in choice D will need to be converted to an
integer. Since in general truncating a real value to an integer involves a loss of
precision, it is not done automatically—you have to do it explicitly with a cast.
Omitting the cast causes a compile-time error.

16. (E) A new Rational object must be created using the newly calculated numer

and denom. Then it must be reduced before being returned. Choice A is wrong
because it doesn’t correctly create the new object. Choice B returns a correctly
constructed object, but one that has not been reduced. Choice C reduces the
current object, this, instead of the new object, rat. Choice D is wrong because
it invokes reduce() for the Rational class instead of the specific rat object.

17. (D) The plus method of the Rational class can only be invoked by Rational

objects. Since n is an int, the statement in choice D will cause an error.

18. (B) This is an example of aliasing. The keyword new is used just once, which
means that just one object is constructed. Here are the memory slots after each
declaration:

t1

Temperature

scale "C"

degrees 40

t1

t2

Temperature

scale "C"

degrees 40

After declaration for t1 After declaration for t2

✐

✐

“ap” — 2014/11/4 — 11:10 — page 129 — #143

✐

✐

✐

✐

✐

✐

Answers Explained 129

t1

t2

t3

Temperature

scale "C"

degrees 20

t1

t2

t3

t4

Temperature

scale "F"

degrees 68

After declaration for t3 After declaration for t4

19. (C) Notice that isValidTemp is a static method for the Temperature class, which
means that it cannot be invoked with a Temperature object. Thus, segment I is
incorrect: t.isValidTemp is wrong. Segment II fails because isValidTemp is not
a method of the TempTest class. It therefore must be invoked with its class name,
which is what happens (correctly) in segment III: Temperature.isValidTemp.

20. (D) A new Temperature object must be constructed to prevent the current
Temperature from being changed. Segment I, which applies the conversion for-
mula directly to degrees, is the best way to do this. Segment II, while not the
best algorithm, does work. The statement

result = result.raise(32);

has the effect of raising the result temperature by 32 degrees, and completing
the conversion. Segment III fails because

degrees *= 1.8;

alters the degrees instance variable of the current object, as does

this = this.raise(32);

To be correct, these operations must be applied to the result object.

21. (A) This is a question about the scope of variables. The scope of the count

variable that is declared in main() extends up to the closing brace of main(). In
doSomething(), count is a local variable. After the method call in the for loop,
the local variable count goes out of scope, and the value that’s being printed is
the value of the count in main(), which is unchanged from 0.

22. (A) Here are the memory slots before the first someMethod call:

x
IntObject

num 2

y

a

IntObject

num 7

Just before exiting x = someMethod(y):

✐

✐

“ap” — 2014/11/4 — 11:10 — page 130 — #144

✐

✐

✐

✐

✐

✐

130 Chapter 2 Classes and Objects

x
IntObject

num 2

y

a

obj

ans

IntObject

num 8

After exiting

x = someMethod(y);

x has been reassigned, so the object with num = 2 has been recycled:

y

a

x

IntObject

num 8

After exiting a = someMethod(x):

y

a

x

IntObject

num 9

23. (C) Recall that when primitive types are passed as parameters, copies are made
of the actual arguments. All manipulations in the method are performed on the
copies, and the arguments remain unchanged. Thus x and y retain their values of
6 and 8. The local variable temp goes out of scope as soon as someMethod is exited
and is therefore undefined just before the end of execution of the program.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 131 — #145

✐

✐

✐

✐

✐

✐

Inheritance and

Polymorphism

CHAPTER 3

Say not you know another entirely,
till you have divided an inheritance with him.

—Johann Kaspar Lavatar, Aphorisms on Man

Chapter Goals

• Superclasses and subclasses

• Inheritance hierarchy

• Polymorphism

• Type compatibility

• Abstract classes

• Interfaces

INHERITANCE

Superclass and Subclass

Inheritance defines a relationship between objects that share characteristics. Specifi-
cally it is the mechanism whereby a new class, called a subclass, is created from an exist-
ing class, called a superclass, by absorbing its state and behavior and augmenting these
with features unique to the new class. We say that the subclass inherits characteristics
of its superclass.

Don’t get confused by the names: a subclass is bigger than a superclass—it contains
more data and more methods!

Inheritance provides an effective mechanism for code reuse. Suppose the code for
a superclass has been tested and debugged. Since a subclass object shares features of a
superclass object, the only new code required is for the additional characteristics of the
subclass.

Inheritance Hierarchy

A subclass can itself be a superclass for another subclass, leading to an inheritance hier-
archy of classes.

For example, consider the relationship between these objects: Person, Employee,
Student, GradStudent, and UnderGrad.

131

✐

✐

“ap” — 2014/11/4 — 11:10 — page 132 — #146

✐

✐

✐

✐

✐

✐

132 Chapter 3 Inheritance and Polymorphism

Person

Student

GradStudent UnderGrad

Employee

For any of these classes, an arrow points to its superclass. The arrow designates an
inheritance relationship between classes, or, informally, an is-a relationship. Thus, an
Employee is-a Person; a Student is-a Person; a GradStudent is-a Student; an UnderGrad

is-a Student. Notice that the opposite is not necessarily true: A Person may not be a
Student, nor is a Student necessarily an UnderGrad.

Note that the is-a relationship is transitive: If a GradStudent is-a Student and a
Student is-a Person, then a GradStudent is-a Person.

Every subclass inherits the public or protected variables and methods of its super-
class (see p. 135). Subclasses may have additional methods and instance variables that
are not in the superclass. A subclass may redefine a method it inherits. For example,
GradStudent and UnderGrad may use different algorithms for computing the course
grade, and need to change a computeGrade method inherited from Student. This is
called method overriding. If part of the original method implementation from the su-
perclass is retained, we refer to the rewrite as partial overriding (see p. 135).

Implementing Subclasses

THE extends KEYWORD

The inheritance relationship between a subclass and a superclass is specified in the
declaration of the subclass, using the keyword extends. The general format looks like
this:

public class Superclass

{

//private instance variables

//other data members

//constructors

//public methods

//private methods

}

public class Subclass extends Superclass

{

//additional private instance variables

//additional data members

//constructors (Not inherited!)

//additional public methods

//inherited public methods whose implementation is overridden

//additional private methods

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 133 — #147

✐

✐

✐

✐

✐

✐

Inheritance 133

For example, consider the following inheritance hierarchy:

Student

GradStudent UnderGrad

The implementation of the classes may look something like this (discussion follows
the code):

public class Student

{

//data members

public final static int NUM_TESTS = 3;

private String name;

private int[] tests;

private String grade;

//constructor

public Student()

{

name = "";

tests = new int[NUM_TESTS];

grade = "";

}

//constructor

public Student(String studName, int[] studTests, String studGrade)

{

name = studName;

tests = studTests;

grade = studGrade;

}

public String getName()

{ return name; }

public String getGrade()

{ return grade; }

public void setGrade(String newGrade)

{ grade = newGrade; }

public void computeGrade()

{

if (name.equals(""))

grade = "No grade";

else if (getTestAverage() >= 65)

grade = "Pass";

else

grade = "Fail";

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 134 — #148

✐

✐

✐

✐

✐

✐

134 Chapter 3 Inheritance and Polymorphism

public double getTestAverage()

{

double total = 0;

for (int score : tests)

total += score;

return total/NUM_TESTS;

}

}

public class UnderGrad extends Student

{

public UnderGrad() //default constructor

{ super(); }

//constructor

public UnderGrad(String studName, int[] studTests, String studGrade)

{ super(studName, studTests, studGrade); }

public void computeGrade()

{

if (getTestAverage() >= 70)

setGrade("Pass");

else

setGrade("Fail");

}

}

public class GradStudent extends Student

{

private int gradID;

public GradStudent() //default constructor

{

super();

gradID = 0;

}

//constructor

public GradStudent(String studName, int[] studTests,

String studGrade, int gradStudID)

{

super(studName, studTests, studGrade);

gradID = gradStudID;

}

public int getID()

{ return gradID; }

public void computeGrade()

{

//invokes computeGrade in Student superclass

super.computeGrade();

if (getTestAverage() >= 90)

setGrade("Pass with distinction");

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 135 — #149

✐

✐

✐

✐

✐

✐

Inheritance 135

INHERITING INSTANCE METHODS AND VARIABLES

The semantics of talking about inheritance is tricky. Subclasses do not inherit the
private instance variables or private methods of their superclasses. However, objects of
subclasses contain memory for those private instance variables, even though they can’t
directly access them. A subclass inherits all the public and protected data members of
its parent.

In the Student example, the UnderGrad and GradStudent subclasses inherit all of
the methods of the Student superclass. Notice, however, that the Student instance
variables name, tests, and grade are private and are therefore not inherited or directly
accessible to the methods in the UnderGrad and GradStudent subclasses. A subclass
can, however, directly invoke the public accessor and mutator methods of the super-
class. Thus, both UnderGrad and GradStudentuse getTestAverage. Additionally, both
UnderGrad and GradStudent use setGrade to access indirectly—and modify—grade.

If, instead of private, the access specifier for the instance variables in Student were
public or protected, then the subclasses could directly access these variables. The
keyword protected is not part of the AP Java subset.

Classes on the same level in a hierarchy diagram do not inherit anything from each
other (for example, UnderGrad and GradStudent). All they have in common is the
identical code they inherit from their superclass.

METHOD OVERRIDING AND THE super KEYWORD

Any public method in a superclass can be overridden in a subclass by defining a method
with the same return type and signature (name and parameter types). For example, the
computeGrade method in the UnderGrad subclass overrides the computeGrade method
in the Student superclass.

Sometimes the code for overriding a method includes a call to the superclass method.
This is called partial overriding. Typically this occurs when the subclass method wants
to do what the superclass does, plus something extra. This is achieved by using the
keyword super in the implementation. The computeGrademethod in the GradStudent
subclass partially overrides the matching method in the Student class. The statement

super.computeGrade();

signals that the computeGrade method in the superclass should be invoked here. The
additional test

if (getTestAverage() >= 90)

...

allows a GradStudent to have a grade Pass with distinction. Note that this option
is open to GradStudents only.

NOTE

Private methods cannot be overridden.

CONSTRUCTORS AND super

Constructors are never inherited! If no constructor is written for a subclass, the su-
perclass default constructor with no parameters is generated. If the superclass does

✐

✐

“ap” — 2014/11/4 — 11:10 — page 136 — #150

✐

✐

✐

✐

✐

✐

136 Chapter 3 Inheritance and Polymorphism

not have a default (zero-parameter) constructor, but only a constructor with param-
eters, a compiler error will occur. If there is a default constructor in the superclass,
inherited data members will be initialized as for the superclass. Additional instance
variables in the subclass will get a default initialization—0 for primitive types and null

for reference types.

Be sure to provide at
least one constructor
when you write a
subclass.
Constructors are
never inherited from
the superclass.

A subclass constructor can be implemented with a call to the super method,
which invokes the superclass constructor. For example, the default constructor in
the UnderGrad class is identical to that of the Student class. This is implemented with
the statement

super();

The second constructor in the UnderGrad class is called with parameters that match
those in the constructor of the Student superclass.

public UnderGrad(String studName, int[] studTests, String studGrade)

{ super(studName, studTests, studGrade); }

For each constructor, the call to super has the effect of initializing the instance vari-
ables name, tests, and grade exactly as they are initialized in the Student class.

Contrast this with the constructors in GradStudent. In each case, the instance vari-
ables name, tests, and grade are initialized as for the Student class. Then the new
instance variable, gradID, must be explicitly initialized.

public GradStudent()

{

super();

gradID = 0;

}

public GradStudent(String studName, int[] studTests,

String studGrade, int gradStudID)

{

super(studName, studTests, studGrade);

gradID = gradStudID;

}

NOTE

1. If super is used in the implementation of a subclass constructor, it must be used
in the first line of the constructor body.

2. If no constructor is provided in a subclass, the compiler provides the following
default constructor:

public SubClass()

{

super(); //calls default constructor of superclass

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 137 — #151

✐

✐

✐

✐

✐

✐

Inheritance 137

Rules for Subclasses

• A subclass can add new private instance variables.

• A subclass can add new public, private, or static methods.

• A subclass can override inherited methods.

• A subclass may not redefine a public method as private.

• A subclass may not override static methods of the superclass.

• A subclass should define its own constructors.

• A subclass cannot directly access the private members of its
superclass. It must use accessor or mutator methods.

Declaring Subclass Objects
When a superclass object is declared in a client program, that reference can refer not
only to an object of the superclass, but also to objects of any of its subclasses. Thus,
each of the following is legal:

Student s = new Student();

Student g = new GradStudent();

Student u = new UnderGrad();

This works because a GradStudent is-a Student, and an UnderGrad is-a Student.
Note that since a Student is not necessarily a GradStudent nor an UnderGrad, the

following declarations are not valid:

GradStudent g = new Student();

UnderGrad u = new Student();

Consider these valid declarations:

Student s = new Student("Brian Lorenzen", new int[] {90,94,99},

"none");

Student u = new UnderGrad("Tim Broder", new int[] {90,90,100},

"none");

Student g = new GradStudent("Kevin Cristella",

new int[] {85,70,90}, "none", 1234);

Suppose you make the method call

s.setGrade("Pass");

The appropriate method in Student is found and the new grade assigned. The method
calls

g.setGrade("Pass");

and

u.setGrade("Pass");

achieve the same effect on g and u since GradStudent and UnderGrad both inherit the
setGrade method from Student. The following method calls, however, won’t work:

int studentNum = s.getID();

int underGradNum = u.getID();

Neither Student s nor UnderGrad u inherit the getID method from the GradStudent

class: A superclass does not inherit from a subclass.
Now consider the following valid method calls:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 138 — #152

✐

✐

✐

✐

✐

✐

138 Chapter 3 Inheritance and Polymorphism

s.computeGrade();

g.computeGrade();

u.computeGrade();

Since s, g, and u have all been declared to be of type Student, will the appropriate
method be executed in each case? That is the topic of the next section, polymorphism.

NOTE

The initializer list syntax used in constructing the array parameters—for example, new
int[] {90,90,100}— will not be tested on the AP exam.

POLYMORPHISM

A method that has been overridden in at least one subclass is said to be polymorphic.
An example is computeGrade, which is redefined for both GradStudent and UnderGrad.

Polymorphism is the mechanism of selecting the appropriate method for a particu-
lar object in a class hierarchy. The correct method is chosen because, in Java, method
calls are always determined by the type of the actual object, not the type of the ob-
ject reference. For example, even though s, g, and u are all declared as type Student,
s.computeGrade(), g.computeGrade(), and u.computeGrade() will all perform the
correct operations for their particular instances. In Java, the selection of the correct
method occurs during the run of the program.

Dynamic Binding (Late Binding)

Making a run-time decision about which instance method to call is known as dynamic
binding or late binding. Contrast this with selecting the correct method when methods
are overloaded (see p. 99) rather than overridden. The compiler selects the correct
overloaded method at compile time by comparing the methods’ signatures. This is
known as static binding, or early binding. In polymorphism, the actual method that
will be called is not determined by the compiler. Think of it this way: The compiler
determines if a method can be called (i.e., is it legal?), while the run-time environment
determines how it will be called (i.e., which overridden form should be used?).

Example 1

Student s = null;

Student u = new UnderGrad("Tim Broder", new int[] {90,90,100},

"none");

Student g = new GradStudent("Kevin Cristella",

new int[] {85,70,90}, "none", 1234);

System.out.print("Enter student status: ");

System.out.println("Grad (G), Undergrad (U), Neither (N)");

String str = IO.readString(); //read user input

if (str.equals("G"))

s = g;

else if (str.equals("U"))

s = u;

else

s = new Student();

s.computeGrade();

✐

✐

“ap” — 2014/11/4 — 11:10 — page 139 — #153

✐

✐

✐

✐

✐

✐

Polymorphism 139

When this code fragment is run, the computeGrade method used will depend on the
type of the actual object s refers to, which in turn depends on the user input.

Example 2

public class StudentTest

{

public static void computeAllGrades(Student[] studentList)

{

for (Student s : studentList)

if (s != null)

s.computeGrade();

}

public static void main(String[] args)

{

Student[] stu = new Student[5];

stu[0] = new Student("Brian Lorenzen",

new int[] {90,94,99}, "none");

stu[1] = new UnderGrad("Tim Broder",

new int[] {90,90,100}, "none");

stu[2] = new GradStudent("Kevin Cristella",

new int[] {85,70,90}, "none", 1234);

computeAllGrades(stu);

}

}

Here an array of five Student references is created, all of them initially null. Three of

Polymorphism
applies only to
overridden methods
in subclasses.

these references, stu[0], stu[1], and stu[2], are then assigned to actual objects. The
computeAllGradesmethod steps through the array invoking for each of the objects the
appropriate computeGrade method, using dynamic binding in each case. The null test
in computeAllGrades is necessary because some of the array references could be null.

Using super in a Subclass

A subclass can call a method in its superclass by using super. Suppose that the super-
class method then calls another method that has been overridden in the subclass. By
polymorphism, the method that is executed is the one in the subclass. The computer
keeps track and executes any pending statements in either method.

Example

public class Dancer

{

public void act()

{

System.out.print (" spin");

doTrick();

}

public void doTrick()

{

System.out.print (" float");

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 140 — #154

✐

✐

✐

✐

✐

✐

140 Chapter 3 Inheritance and Polymorphism

public class Acrobat extends Dancer

{

public void act()

{

super.act();

System.out.print (" flip");

}

public void doTrick()

{

System.out.print (" somersault");

}

}

Suppose the following declaration appears in a class other than Dancer or Acrobat:

Dancer a = new Acrobat();

What is printed as a result of the call a.act()?
When a.act() is called, the act method of Acrobat is executed. This is an example

of polymorphism. The first line, super.act(), goes to the act method of Dancer, the
superclass. This prints spin, then calls doTrick(). Again, using polymorphism, the
doTrick method in Acrobat is called, printing somersault. Now, completing the act

method of Acrobat, flip is printed. So what all got printed?

spin somersault flip

NOTE

Even though there are no constructors in either the Dancer or Acrobat classes, the
declaration

Dancer a = new Acrobat();

compiles without error. This is because Dancer, while not having an explicit super-
class, has an implicit superclass, Object, and gets its default (no-argument) constructor
slotted into its code. Similarly the Acrobat class gets this constructor slotted into its
code.

The statement Dancer a = new Acrobat();will not compile, however, if the Dancer
class has at least one constructor with parameters but no default constructor.

TYPE COMPATIBILITY

Downcasting

Consider the statements

Student s = new GradStudent();

GradStudent g = new GradStudent();

int x = s.getID(); //compile-time error

int y = g.getID(); //legal

Both s and g represent GradStudent objects, so why does s.getID() cause an error?
The reason is that s is of type Student, and the Student class doesn’t have a getID

method. At compile time, only nonprivate methods of the Student class can appear

✐

✐

“ap” — 2014/11/4 — 11:10 — page 141 — #155

✐

✐

✐

✐

✐

✐

Type Compatibility 141

to the right of the dot operator when applied to s. Don’t confuse this with polymor-
phism: getID is not a polymorphic method. It occurs in just the GradStudent class
and can therefore be called only by a GradStudent object.

The error shown above can be fixed by casting s to the correct type:

int x = ((GradStudent) s).getID();

Since s (of type Student) is actually representing a GradStudent object, such a cast can
be carried out. Casting a superclass to a subclass type is called a downcast.

NOTE

1. The outer parentheses are necessary:

int x = (GradStudent) s.getID();

will still cause an error, despite the cast. This is because the dot operator has
higher precedence than casting, so s.getID() is invoked before s is cast to
GradStudent.

2. The statement

int y = g.getID();

compiles without problem because g is declared to be of type GradStudent, and
this is the class that contains getID. No cast is required.

Type Rules for Polymorphic Method Calls

a.method(b)

Method selected by
type of a at run
time

Parameter bmust be
of correct type at
compile time

• For a declaration like

Superclass a = new Subclass();

the type of a at compile time is Superclass; at run time it is
Subclass.

• At compile time, method must be found in the class of a,
that is, in Superclass. (This is true whether the method is
polymorphic or not.) If method cannot be found in the class
of a, you need to do an explicit cast on a to its actual type.

• For a polymorphic method, at run time the actual type of
a is determined—Subclass in this example—and method is
selected from Subclass. This could be an inherited method
if there is no overriding method.

• The type of parameter b is checked at compile time. You
may need to do an explicit cast to the subclass type to make
this correct.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 142 — #156

✐

✐

✐

✐

✐

✐

142 Chapter 3 Inheritance and Polymorphism

The ClassCastException

The ClassCastException is a run-time exception thrown to signal an attempt to cast
an object to a class of which it is not an instance.

Student u = new UnderGrad();

System.out.println((String) u); //ClassCastException

//u is not an instance of String

int x = ((GradStudent) u).getID(); //ClassCastException

//u is not an instance of GradStudent

ABSTRACT CLASSES

Abstract Class

An abstract class is a superclass that represents an abstract concept, and therefore should
not be instantiated. For example, a maze program could have several different maze
components—paths, walls, entrances, and exits. All of these share certain features (e.g.,
location, and a way of displaying). They can therefore all be declared as subclasses of
the abstract class MazeComponent. The program will create path objects, wall objects,
and so on, but no instances of MazeComponent.

An abstract class may contain abstract methods. An abstract method has no imple-
mentation code, just a header. The rationale for an abstract method is that there is no
good default code for the method. Every subclass will need to override this method,
so why bother with a meaningless implementation in the superclass? The method
appears in the abstract class as a placeholder. The implementation for the method oc-
curs in the subclasses. If a class contains any abstract methods, it must be declared an
abstract class.

The abstract Keyword

An abstract class is declared with the keyword abstract in the header:

public abstract class AbstractClass

{ ...

The keyword extends is used as before to declare a subclass:

public class SubClass extends AbstractClass

{ ...

If a subclass of an abstract class does not provide implementation code for all the
abstract methods of its superclass, it too becomes an abstract class and must be declared
as such to avoid a compile-time error:

public abstract class SubClass extends AbstractClass

{ ...

Here is an example of an abstract class, with two concrete (nonabstract) subclasses.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 143 — #157

✐

✐

✐

✐

✐

✐

Abstract Classes 143

public abstract class Shape

{

private String name;

//constructor

public Shape(String shapeName)

{ name = shapeName; }

public String getName()

{ return name; }

public abstract double area();

public abstract double perimeter();

public double semiPerimeter()

{ return perimeter() / 2; }

}

public class Circle extends Shape

{

private double radius;

//constructor

public Circle(double circleRadius, String circleName)

{

super(circleName);

radius = circleRadius;

}

public double perimeter()

{ return 2 * Math.PI * radius; }

public double area()

{ return Math.PI * radius * radius; }

}

public class Square extends Shape

{

private double side;

//constructor

public Square(double squareSide, String squareName)

{

super(squareName);

side = squareSide;

}

public double perimeter()

{ return 4 * side; }

public double area()

{ return side * side; }

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 144 — #158

✐

✐

✐

✐

✐

✐

144 Chapter 3 Inheritance and Polymorphism

NOTE

1. It is meaningless to define perimeter and area methods for Shape—thus, these
are declared as abstract methods.

2. An abstract class can have both instance variables and concrete (nonabstract)
methods. See, for example, name, getName, and semiPerimeter in the Shape

class.
3. Abstract methods are declared with the keyword abstract. There is no method

body. The header is terminated with a semicolon.
4. A concrete (non-abstract) subclass of an abstract superclass must provide imple-

mentation code for all abstract methods of the superclass. Therefore both the
Circle and Square classes implement both the perimeter and area methods.

5. It is possible for an abstract class to have no abstract methods. (An abstract sub-
class of an abstract superclass inherits the abstract methods without explicitly
declaring them.)

6. An abstract class may or may not have constructors.
7. No instances can be created for an abstract class:

Shape a = new Shape("blob"); //Illegal.

//Can’t create instance of abstract class.

Shape c = new Circle(1.5, "small circle"); //legal

8. Polymorphism works with abstract classes as it does with concrete classes:

Shape circ = new Circle(10, "circle");

Shape sq = new Square(9.4, "square");

Shape s = null;

System.out.println("Which shape?");

String str = IO.readString(); //read user input

if (str.equals("circle"))

s = circ;

else

s = sq;

System.out.println("Area of " + s.getName() + " is "

+ s.area());

INTERFACES

Interface

An interface is a collection of related methods, either abstract (headers only) or default
(implementation provided in the interface). Default methods are new in Java 8, and
will not be tested on the AP exam. Non-default (i.e., abstract) methods will be tested
on the exam and are discussed below.

Students may be required to design, create, or modify classes that implement inter-
faces with abstract methods.

The non-default methods are both public and abstract—no need to explicitly include
these keywords. As such, they provide a framework of behavior for any class.

The classes that implement a given interface may represent objects that are vastly
different. They all, however, have in common a capability or feature expressed in the
methods of the interface. An interface called FlyingObject, for example, may have the
methods fly and isFlying. Some classes that implement FlyingObject could be Bird,

✐

✐

“ap” — 2014/11/4 — 11:10 — page 145 — #159

✐

✐

✐

✐

✐

✐

Interfaces 145

Airplane, Missile, Butterfly, and Witch. A class called Turtle would be unlikely to
implement FlyingObject because turtles don’t fly.

An interface called Computable may have just three methods: add, subtract,
and multiply. Classes that implement Computable could be Fraction, Matrix,
LongInteger, and ComplexNumber. It would not be meaningful, however, for a
TelevisionSet to implement Computable—what does it mean, for example, to mul-
tiply two TelevisionSet objects?

A class that implements an interface can define any number of methods. In par-
ticular, it contracts to provide implementations for all the non-default (i.e., abstract)
methods declared in the interface. If it fails to implement any of the methods, the class
must be declared abstract.

A nonabstract class
that implements an
interface must
implement every
abstract method of
the interface.

Defining an Interface

An interface is declared with the interface keyword. For example,

public interface FlyingObject

{

void fly(); //method that simulates flight of object

boolean isFlying(); //true if object is in flight,

//false otherwise

}

The implements Keyword

Interfaces are implemented using the implements keyword. For example,

public class Bird implements FlyingObject

{

...

This declaration means that two of the methods in the Bird class must be fly and
isFlying. Note that any subclass of Bird will automatically implement the interface
FlyingObject, since fly and isFlying will be inherited by the subclass.

A class that extends a superclass can also directly implement an interface. For exam-
ple,

public class Mosquito extends Insect implements FlyingObject

{

...

NOTE

1. The extends clause must precede the implements clause.
2. A class can have just one superclass, but it can implement any number of inter-

faces:

public class SubClass extends SuperClass

implements Interface1, Interface2, ...

The Comparable Interface

Starting in 2015, this will not be tested on the AP exam. Students will, however, be
required to use compareTo for comparison of strings (p. 178).

Optional topicThe standard java.lang package contains the Comparable interface, which provides a
useful method for comparing objects.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 146 — #160

✐

✐

✐

✐

✐

✐

(continued)

146 Chapter 3 Inheritance and Polymorphism

public interface Comparable

{

int compareTo(Object obj);

}

Any class that implements Comparablemust provide a compareTomethod. This method

Classes written for
objects that need to
be compared
should implement
Comparable.

compares the implicit object (this) with the parameter object (obj) and returns a nega-
tive integer, zero, or a positive integer depending on whether the implicit object is less
than, equal to, or greater than the parameter. If the two objects being compared are
not type compatible, a ClassCastException is thrown by the method.

Example

The abstract Shape class defined previously (p. 143) is modified to implement the
Comparable interface:

public abstract class Shape implements Comparable

{

private String name;

//constructor

public Shape(String shapeName)

{ name = shapeName; }

public String getName()

{ return name; }

public abstract double area();

public abstract double perimeter();

public double semiPerimeter()

{ return perimeter() / 2; }

public int compareTo(Object obj)

{

final double EPSILON = 1.0e-15; //slightly bigger than

//machine precision

Shape rhs = (Shape) obj;

double diff = area() - rhs.area();

if (Math.abs(diff) <= EPSILON * Math.abs(area()))

return 0; //area of this shape equals area of obj

else if (diff < 0)

return -1; //area of this shape less than area of obj

else

return 1; //area of this shape greater than area of obj

}

}

NOTE

1. The Circle, Square, and other subclasses of Shapewill all automatically imple-
ment Comparable and inherit the compareTo method.

2. It is tempting to use a simpler test for equality of areas, namely

if (diff == 0)

return 0;

✐

✐

“ap” — 2014/11/4 — 11:10 — page 147 — #161

✐

✐

✐

✐

✐

✐

(continued)

Interfaces 147

But recall that real numbers can have round-off errors in their storage (Box
p. 65). This means that the simple test may return false even though the two
areas are essentially equal. A more robust test is implemented in the code given,
namely to test if the relative error in diff is small enough to be considered zero.

3. The Object class is a universal superclass (see p. 174). This means that the
compareTo method can take as a parameter any object reference that imple-
ments Comparable.

4. One of the first steps of a compareTo method must cast the Object argument
to the class type, in this case Shape. If this is not done, the compiler won’t find
the area method—remember, an Object is not necessarily a Shape.

5. The algorithm one chooses in compareTo should in general be consistent with
the equals method (see p. 176): Whenever object1.equals(object2) returns
true, object1.compareTo(object2) returns 0.

Here is a program that finds the larger of two Comparable objects.

public class FindMaxTest

{

/** Return the larger of two objects a and b. */

public static Comparable max(Comparable a, Comparable b)

{

if (a.compareTo(b) > 0) //if a > b ...

return a;

else

return b;

}

/** Test max on two Shape objects. */

public static void main(String[] args)

{

Shape s1 = new Circle(3.0, "circle");

Shape s2 = new Square(4.5, "square");

System.out.println("Area of " + s1.getName() + " is " +

s1.area());

System.out.println("Area of " + s2.getName() + " is " +

s2.area());

Shape s3 = (Shape) max(s1, s2);

System.out.println("The larger shape is the " +

s3.getName());

}

}

Here is the output:

Area of circle is 28.27

Area of square is 20.25

The larger shape is the circle

NOTE

1. The maxmethod takes parameters of type Comparable. Since s1 is-a Comparable
object and s2 is-a Comparableobject, no casting is necessary in the method call.

2. The max method can be called with any two Comparable objects, for example,
two String objects or two Integer objects (see Chapter 4).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 148 — #162

✐

✐

✐

✐

✐

✐

(continued)

148 Chapter 3 Inheritance and Polymorphism

3. The objects must be type compatible (i.e., it must make sense to compare
them). For example, in the program shown, if s1 is-a Shape and s2 is-a String,
the compareTo method will throw a ClassCastException at the line

Shape rhs = (Shape) obj;

4. The cast is needed in the line

Shape s3 = (Shape) max(s1, s2);

since max(s1, s2) returns a Comparable.
5. A primitive type is not an object and therefore cannot be passed as Comparable.

You can, however, use a wrapper class and in this way convert a primitive type
to a Comparable (see p. 180).

ABSTRACT CLASS VS. INTERFACE

Consider writing a program that simulates a game of Battleships. The program may
have a Ship class with subclasses Submarine, Cruiser, Destroyer, and so on. The
various ships will be placed in a two-dimensional grid that represents a part of the
ocean.

An abstract class Ship is a good design choice. There will not be any instances of
Ship objects because the specific features of the subclasses must be known in order
to place these ships in the grid. A Grid interface that manipulates objects in a two-
dimensional setting suggests itself for the two-dimensional grid.

Notice that the abstract Ship class is specific to the Battleships application, whereas
the Grid interface is not. You could use the Grid interface in any program that has a
two-dimensional grid.

Interface vs. Abstract Class

• Use an abstract class for an object that is application-specific
but incomplete without its subclasses.

• Consider using an interface when its methods are suitable
for your program but could be equally applicable in a vari-
ety of programs.

• An interface typically doesn’t provide implementations for
any of its methods, whereas an abstract class does. (In Java 8,
implementation of default methods is allowed in interfaces.)

• An interface cannot contain instance variables, whereas an
abstract class can.

• It is not possible to create an instance of an interface object
or an abstract class object.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 149 — #163

✐

✐

✐

✐

✐

✐

Interfaces 149

Chapter Summary

You should be able to write your own subclasses, given any superclass, and also
design, create, or modify a class that implements an interface.

Be sure you understand the use of the keyword super, both in writing constructors
and calling methods of the superclass.

You should understand what polymorphism is: Recall that it only operates when
methods have been overridden in at least one subclass. You should also be able to
explain the difference between the following concepts:

• An abstract class and an interface.

• An overloaded method and an overridden method.

• Dynamic binding (late binding) and static binding (early binding).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 150 — #164

✐

✐

✐

✐

✐

✐

150 Chapter 3 Inheritance and Polymorphism

MULTIPLE-CHOICE QUESTIONS ON INHERITANCE AND
POLYMORPHISM

Questions 1–10 refer to the BankAccount,SavingsAccount, and CheckingAccountclasses
defined below:

public class BankAccount

{

private double balance;

public BankAccount()

{ balance = 0; }

public BankAccount(double acctBalance)

{ balance = acctBalance; }

public void deposit(double amount)

{ balance += amount; }

public void withdraw(double amount)

{ balance -= amount; }

public double getBalance()

{ return balance; }

}

public class SavingsAccount extends BankAccount

{

private double interestRate;

public SavingsAccount()

{ /* implementation not shown */ }

public SavingsAccount(double acctBalance, double rate)

{ /* implementation not shown */ }

public void addInterest() //Add interest to balance

{ /* implementation not shown */ }

}

public class CheckingAccount extends BankAccount

{

private static final double FEE = 2.0;

private static final double MIN_BALANCE = 50.0;

public CheckingAccount(double acctBalance)

{ /* implementation not shown */ }

/** FEE of $2 deducted if withdrawal leaves balance less

* than MIN_BALANCE. Allows for negative balance. */

public void withdraw(double amount)

{ /* implementation not shown */ }

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 151 — #165

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 151

1. Of the methods shown, how many different nonconstructor methods can be
invoked by a SavingsAccount object?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

2. Which of the following correctly implements the default constructor of the
SavingsAccount class?

I interestRate = 0;

super();

II super();

interestRate = 0;

III super();

(A) II only
(B) I and II only
(C) II and III only
(D) III only
(E) I, II, and III

3. Which is a correct implementation of the constructor with parameters in the
SavingsAccount class?

(A) balance = acctBalance;

interestRate = rate;

(B) getBalance() = acctBalance;

interestRate = rate;

(C) super();

interestRate = rate;

(D) super(acctBalance);

interestRate = rate;

(E) super(acctBalance, rate);

4. Which is a correct implementation of the CheckingAccount constructor?

I super(acctBalance);

II super();

deposit(acctBalance);

III deposit(acctBalance);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 152 — #166

✐

✐

✐

✐

✐

✐

152 Chapter 3 Inheritance and Polymorphism

5. Which is correct implementation code for the withdraw method in the
CheckingAccount class?

(A) super.withdraw(amount);

if (balance < MIN_BALANCE)

super.withdraw(FEE);

(B) withdraw(amount);

if (balance < MIN_BALANCE)

withdraw(FEE);

(C) super.withdraw(amount);

if (getBalance() < MIN_BALANCE)

super.withdraw(FEE);

(D) withdraw(amount);

if (getBalance() < MIN_BALANCE)

withdraw(FEE);

(E) balance -= amount;

if (balance < MIN_BALANCE)

balance -= FEE;

6. Redefining the withdraw method in the CheckingAccount class is an example of
(A) method overloading.
(B) method overriding.
(C) downcasting.
(D) dynamic binding (late binding).
(E) static binding (early binding).

Use the following for Questions 7–9.
A program to test the BankAccount, SavingsAccount, and CheckingAccount classes has
these declarations:

BankAccount b = new BankAccount(1400);

BankAccount s = new SavingsAccount(1000, 0.04);

BankAccount c = new CheckingAccount(500);

7. Which method call will cause an error?
(A) b.deposit(200);

(B) s.withdraw(500);

(C) c.withdraw(500);

(D) s.deposit(10000);

(E) s.addInterest();

8. In order to test polymorphism, which method must be used in the program?
(A) Either a SavingsAccount constructor or a CheckingAccount constructor
(B) addInterest

(C) deposit

(D) withdraw

(E) getBalance

✐

✐

“ap” — 2014/11/4 — 11:10 — page 153 — #167

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 153

9. Which of the following will not cause a ClassCastException to be thrown?
(A) ((SavingsAccount) b).addInterest();

(B) ((CheckingAccount) b).withdraw(200);

(C) ((CheckingAccount) c).deposit(800);

(D) ((CheckingAccount) s).withdraw(150);

(E) ((SavingsAccount) c).addInterest();

10. A new method is added to the BankAccount class.

/** Transfer amount from this BankAccount to another BankAccount.

* Precondition: balance > amount

* @param another a different BankAccount object

* @param amount the amount to be transferred

*/

public void transfer(BankAccount another, double amount)

{

withdraw(amount);

another.deposit(amount);

}

A program has these declarations:

BankAccount b = new BankAccount(650);

SavingsAccount timsSavings = new SavingsAccount(1500, 0.03);

CheckingAccount daynasChecking = new CheckingAccount(2000);

Which of the following will transfer money from one account to another without
error?

I b.transfer(timsSavings, 50);

II timsSavings.transfer(daynasChecking, 30);

III daynasChecking.transfer(b, 55);

(A) I only
(B) II only
(C) III only
(D) I, II, and III
(E) None

✐

✐

“ap” — 2014/11/4 — 11:10 — page 154 — #168

✐

✐

✐

✐

✐

✐

154 Chapter 3 Inheritance and Polymorphism

11. Consider these class declarations:

public class Person

{

...

}

public class Teacher extends Person

{

...

}

Which is a true statement?

I Teacher inherits the constructors of Person.
II Teacher can add new methods and private instance variables.

III Teacher can override existing private methods of Person.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

12. Which statement about abstract classes and interfaces is false?
(A) An interface cannot implement any non-default instance methods, whereas

an abstract class can.
(B) A class can implement many interfaces but can have only one superclass.
(C) An unlimited number of unrelated classes can implement the same inter-

face.
(D) It is not possible to construct either an abstract class object or an interface

object.
(E) All of the methods in both an abstract class and an interface are public.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 155 — #169

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 155

13. Consider the following hierarchy of classes:

Bird

Parrot

Parakeet

Owl

A program is written to print data about various birds:

public class BirdStuff

{

public static void printName(Bird b)

{ /* implementation not shown */ }

public static void printBirdCall(Parrot p)

{ /* implementation not shown */ }

//several more Bird methods

public static void main(String[] args)

{

Bird bird1 = new Bird();

Bird bird2 = new Parrot();

Parrot parrot1 = new Parrot();

Parrot parrot2 = new Parakeet();

/* more code */

}

}

Assuming that none of the given classes is abstract and all have default construc-
tors, which of the following segments of /* more code */ will not cause an error?

(A) printName(parrot2);

printBirdCall((Parrot) bird2);

(B) printName((Parrot) bird1);

printBirdCall(bird2);

(C) printName(bird2);

printBirdCall(bird2);

(D) printName((Parakeet) parrot1);

printBirdCall(parrot2);

(E) printName((Owl) parrot2);

printBirdCall((Parakeet) parrot2);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 156 — #170

✐

✐

✐

✐

✐

✐

156 Chapter 3 Inheritance and Polymorphism

Refer to the classes below for Questions 14 and 15.

public class ClassA

{

//default constructor not shown ...

public void method1()

{ /* implementation of method1 */ }

}

public class ClassB extends ClassA

{

//default constructor not shown ...

public void method1()

{ /* different implementation from method1 in ClassA*/ }

public void method2()

{ /* implementation of method2 */ }

}

14. The method1 method in ClassB is an example of
(A) method overloading.
(B) method overriding.
(C) polymorphism.
(D) information hiding.
(E) procedural abstraction.

15. Consider the following declarations in a client class.

ClassA ob1 = new ClassA();

ClassA ob2 = new ClassB();

Which of the following method calls will cause an error?

I ob1.method2();

II ob2.method2();

III ((ClassB) ob1).method2();

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 157 — #171

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 157

Use the declarations below for Questions 16–18.

public abstract class Solid

{

private String name;

//constructor

public Solid(String solidName)

{ name = solidName; }

public String getName()

{ return name; }

public abstract double volume();

}

public class Sphere extends Solid

{

private double radius;

//constructor

public Sphere(String sphereName, double sphereRadius)

{

super(sphereName);

radius = sphereRadius;

}

public double volume()

{ return (4.0/3.0) * Math.PI * radius * radius * radius; }

}

public class RectangularPrism extends Solid

{

private double length;

private double width;

private double height;

//constructor

public RectangularPrism(String prismName, double l, double w,

double h)

{

super(prismName);

length = l;

width = w;

height = h;

}

public double volume()

{ return length * width * height; }

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 158 — #172

✐

✐

✐

✐

✐

✐

158 Chapter 3 Inheritance and Polymorphism

16. A program that tests these classes has the following declarations and assignments:

Solid s1, s2, s3, s4;

s1 = new Solid("blob");

s2 = new Sphere("sphere", 3.8);

s3 = new RectangularPrism("box", 2, 4, 6.5);

s4 = null;

How many of the above lines of code are incorrect?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

17. Which is false?
(A) If a program has several objects declared as type Solid, the decision about

which volume method to call will be resolved at run time.
(B) If the Solid class were modified to provide a default implementation for the

volume method, it would no longer need to be an abstract class.
(C) If the Sphere and RectangularPrism classes failed to provide an implemen-

tation for the volume method, they would need to be declared as abstract
classes.

(D) The fact that there is no reasonable default implementation for the volume

method in the Solid class suggests that it should be an abstract method.
(E) Since Solid is abstract and its subclasses are nonabstract, polymorphism no

longer applies when these classes are used in a program.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 159 — #173

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 159

18. Here is a program that prints the volume of a solid:

public class SolidMain

{

/** Output volume of Solid s. */

public static void printVolume(Solid s)

{

System.out.println("Volume = " + s.volume() +

" cubic units");

}

public static void main(String[] args)

{

Solid sol;

Solid sph = new Sphere("sphere", 4);

Solid rec = new RectangularPrism("box", 3, 6, 9);

int flipCoin = (int) (Math.random() * 2); //0 or 1

if (flipCoin == 0)

sol = sph;

else

sol = rec;

printVolume(sol);

}

}

Which is a true statement about this program?
(A) It will output the volume of the sphere or box, as intended.
(B) It will output the volume of the default Solid s, which is neither a sphere

nor a box.
(C) A ClassCastExceptionwill be thrown.
(D) A compile-time error will occur because there is no implementation code

for volume in the Solid class.
(E) A run-time error will occur because of parameter type mismatch in the

method call printVolume(sol).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 160 — #174

✐

✐

✐

✐

✐

✐

160 Chapter 3 Inheritance and Polymorphism

19. Consider the Computable interface below for performing simple calculator oper-
ations:

public interface Computable

{

/** Return this Object + y. */

Object add(Object y);

/** Return this Object - y. */

Object subtract(Object y);

/** Return this Object * y. */

Object multiply(Object y);

}

Which of the following is the least suitable class for implementing Computable?

(A) LargeInteger //integers with 100 digits or more

(B) Fraction //implemented with numerator and

//denominator of type int

(C) IrrationalNumber //nonrepeating, nonterminating decimal

(D) Length //implemented with different units, such

//as inches, centimeters, etc.

(E) BankAccount //implemented with balance

Refer to the Player interface shown below for Questions 20–23.

public interface Player

{

/** Return an integer that represents a move in a game. */

int getMove();

/** Display the status of the game for this Player after

* implementing the next move. */

void updateDisplay();

}

20. HumanPlayer is a class that implements the Player interface. Another class,
SmartPlayer, is a subclass of HumanPlayer. Which statement is false?
(A) SmartPlayer automatically implements the Player interface.
(B) HumanPlayermust contain implementations of both the updateDisplayand

getMove methods, or be declared as abstract.
(C) It is not possible to declare a reference of type Player.
(D) The SmartPlayer class can override the methods updateDisplay and

getMove of the HumanPlayer class.
(E) A method in a client program can have Player as a parameter type.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 161 — #175

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 161

21. A programmer plans to write programs that simulate various games. In each
case he will have several classes, each representing a different kind of com-
petitor in the game, such as ExpertPlayer, ComputerPlayer, RecklessPlayer,
CheatingPlayer, Beginner, IntermediatePlayer, and so on. It may or may not
be suitable for these classes to implement the Player interface, depending on the
particular game being simulated. In the games described below, which is the least
suitable for having the competitor classes implement the given Player interface?

(A) High-Low Guessing Game: The computer thinks of a number and the com-
petitor who guesses it with the least number of guesses wins. After each
guess, the computer tells whether its number is higher or lower than the
guess.

(B) Chips: Start with a pile of chips. Each player in turn removes some number
of chips. The winner is the one who removes the final chip. The first player
may remove any number of chips, but not all of them. Each subsequent
player must remove at least one chip and at most twice the number removed
by the preceding player.

(C) Chess: Played on a square board of 64 squares of alternating colors. There
are just two players, called White and Black, the colors of their respective
pieces. The players each have a set of pieces on the board that can move
according to a set of rules. The players alternate moves, where a move con-
sists of moving any one piece to another square. If that square is occupied
by an opponent’s piece, the piece is captured and removed from the board.

(D) Tic-Tac-Toe: Two players alternate placing “X” or “O” on a 3× 3 grid. The
first player to get three in a row, where a row can be vertical, horizontal, or
diagonal, wins.

(E) Battleships: There are two players, each with a 10× 10 grid hidden from
his opponent. Various “ships” are placed on the grid. A move consists
of calling out a grid location, trying to “hit” an opponent’s ship. Players
alternate moves. The first player to sink his opponent’s fleet wins.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 162 — #176

✐

✐

✐

✐

✐

✐

162 Chapter 3 Inheritance and Polymorphism

Consider these declarations for Questions 22 and 23:

public class HumanPlayer implements Player

{

private String name;

//Constructors not shown ...

//Code to implement getMove and updateDisplay not shown ...

public String getName()

{ /* implementation not shown */ }

}

public class ExpertPlayer extends HumanPlayer

{

private int rating;

//Constructors not shown ...

public int compareTo(ExpertPlayer expert)

{ /* implementation not shown */ }

}

22. Which code segment in a client program will cause an error?

I Player p1 = new HumanPlayer();

Player p2 = new ExpertPlayer();

int x1 = p1.getMove();

int x2 = p2.getMove();

II int x;

Player c1 = new ExpertPlayer(/* correct parameter list */);

Player c2 = new ExpertPlayer(/* correct parameter list */);

if (c1.compareTo(c2) < 0)

x = c1.getMove();

else

x = c2.getMove();

III int x;

HumanPlayer h1 = new HumanPlayer(/* correct parameter list */);

HumanPlayer h2 = new HumanPlayer(/* correct parameter list */);

if (h1.compareTo(h2) < 0)

x = h1.getMove();

else

x = h2.getMove();

(A) II only
(B) III only
(C) II and III only
(D) I, II, and III
(E) None

✐

✐

“ap” — 2014/11/4 — 11:10 — page 163 — #177

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 163

23. Which of the following is correct implementation code for the compareTomethod
in the ExpertPlayer class?

I if (rating == expert.rating)

return 0;

else if (rating < expert.rating)

return -1;

else

return 1;

II return rating - expert.rating;

III if (getName().equals(expert.getName()))

return 0;

else if (getName().compareTo(expert.getName()) < 0)

return -1;

else

return 1;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 164 — #178

✐

✐

✐

✐

✐

✐

164 Chapter 3 Inheritance and Polymorphism

24. Which of the following classes is the least suitable candidate for containing a
compareTo method?

(A) public class Point

{

private double x;

private double y;

//various methods follow

...

}

(B) public class Name

{

private String firstName;

private String lastName;

//various methods follow

...

}

(C) public class Car

{

private int modelNumber;

private int year;

private double price;

//various methods follow

...

}

(D) public class Student

{

private String name;

private double gpa;

//various methods follow

...

}

(E) public class Employee

{

private String name;

private int hireDate;

private double salary;

//various methods follow

...

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 165 — #179

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 165

25. A programmer has the task of maintaining a database of students of a large uni-
versity. There are two types of students, undergraduates and graduate students.
About a third of the graduate students are doctoral candidates.

All of the students have the same personal information stored, like name, ad-
dress, and phone number, and also student information like courses taken and
grades. Each student’s GPA is computed, but differently for undergraduates and
graduates. The doctoral candidates have information about their dissertations
and faculty advisors.

The programmer will write a Java program to handle all the student informa-
tion. Which of the following is the best design, in terms of programmer efficiency
and code reusability? Note: { ... } denotes class code.

(A) public interface Student { ...}

public class Undergraduate implements Student { ... }

public class Graduate implements Student { ... }

public class DocStudent extends Graduate { ... }

(B) public abstract class Student { ...}

public class Undergraduate extends Student { ... }

public class Graduate extends Student { ... }

public class DocStudent extends Graduate { ... }

(C) public class Student { ...}

public class Undergraduate extends Student { ... }

public class Graduate extends Student { ... }

public class DocStudent extends Graduate { ... }

(D) public abstract class Student { ...}

public class Undergraduate extends Student { ... }

public class Graduate extends Student { ... }

public class DocStudent extends Student { ... }

(E) public interface PersonalInformation { ... }

public class Student implements PersonalInformation { ...}

public class Undergraduate extends Student { ... }

public abstract class Graduate extends Student { ... }

public class DocStudent extends Graduate { ... }

✐

✐

“ap” — 2014/11/4 — 11:10 — page 166 — #180

✐

✐

✐

✐

✐

✐

166 Chapter 3 Inheritance and Polymorphism

26. Consider the Orderable interface and the partial implementation of the
Temperature class defined below:

public interface Orderable

{

/** Returns -1, 0, or 1 depending on whether the implicit

* object is less than, equal to, or greater than other.

*/

int compareTo (Object other);

}

public class Temperature implements Orderable

{

private String scale;

private double degrees;

//default constructor

public Temperature ()

{ /* implementation not shown */ }

//constructor

public Temperature(String tempScale, double tempDegrees)

{ /* implementation not shown */ }

public int compareTo(Object obj)

{ /* implementation not shown */ }

public String toString()

{ /* implementation not shown */ }

//Other methods are not shown.

}

Here is a program that finds the lowest of three temperatures:

public class TemperatureMain

{

/** Find smaller of objects a and b. */

public static Orderable min(Orderable a, Orderable b)

{

if (a.compareTo(b) < 0)

return a;

else

return b;

}

/** Find smallest of objects a, b, and c. */

public static Orderable minThree(Orderable a,

Orderable b, Orderable c)

{

return min(min(a, b), c);

}

public static void main(String[] args)

{

/* code to test minThree method */

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 167 — #181

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Inheritance and Polymorphism 167

Which are correct replacements for /* code to test minThree method */?

I Temperature t1 = new Temperature("C", 85);

Temperature t2 = new Temperature("F", 45);

Temperature t3 = new Temperature("F", 120);

System.out.println("The lowest temperature is " +

minThree(t1, t2, t3));

II Orderable c1 = new Temperature("C", 85);

Orderable c2 = new Temperature("F", 45);

Orderable c3 = new Temperature("F", 120);

System.out.println("The lowest temperature is " +

minThree(c1, c2, c3));

III Orderable c1 = new Orderable("C", 85);

Orderable c2 = new Orderable("F", 45);

Orderable c3 = new Orderable("F", 120);

System.out.println("The lowest temperature is " +

minThree(c1, c2, c3));

(A) II only
(B) I and II only
(C) II and III only
(D) I and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 168 — #182

✐

✐

✐

✐

✐

✐

168 Chapter 3 Inheritance and Polymorphism

27. A certain interface provided by a Java package contains just a single method:

public interface SomeName

{

int method1(Object o);

}

A programmer adds some functionality to this interface by adding another ab-
stract method to it, method2:

public interface SomeName

{

int method1(Object ob1);

void method2(Object ob2);

}

As a result of this addition, which of the following is true?
(A) A ClassCastExceptionwill occur if ob1 and ob2 are not compatible.
(B) All classes that implement the original SomeName interface will need to be

rewritten because they no longer implement SomeName.
(C) A class that implements the original SomeName interface will need to modify

its declaration as follows:

public class ClassName implements SomeName extends method2

{ ...

(D) SomeName will need to be changed to an abstract class and provide imple-
mentation code for method2, so that the original and upgraded versions of
SomeName are compatible.

(E) Any new class that implements the upgraded version of SomeName will not
compile.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 169 — #183

✐

✐

✐

✐

✐

✐

Answers Explained 169

ANSWER KEY

1. D

2. C

3. D

4. E

5. C

6. B

7. E

8. D

9. C

10. D

11. B

12. E

13. A

14. B

15. E

16. B

17. E

18. A

19. E

20. C

21. C

22. C

23. E

24. A

25. B

26. B

27. B

ANSWERS EXPLAINED

1. (D) The methods are deposit, withdraw, and getBalance, all inherited from
the BankAccount class, plus addInterest, which was defined just for the class
SavingsAccount.

2. (C) Implementation I fails because super() must be the first line of the imple-
mentation whenever it is used in a constructor. Implementation III may appear
to be incorrect because it doesn’t initialize interestRate. Since interestRate,
however, is a primitive type—double—the compiler will provide a default initial-
ization of 0, which was required.

3. (D) First, the statement super(acctBalance) initializes the inherited private
variable balance as for the BankAccount superclass. Then the statement
interestRate = rate initializes interestRate, which belongs uniquely to the
SavingsAccount class. Choice E fails because interestRate does not belong to
the BankAccount class and therefore cannot be initialized by a super method.
Choice A is wrong because the SavingsAccount class cannot directly access the
private instance variables of its superclass. Choice B assigns a value to an ac-
cessor method, which is meaningless. Choice C is incorrect because super()

invokes the default constructor of the superclass. This will cause balance of the
SavingsAccount object to be initialized to 0, rather than acctBalance, the pa-
rameter value.

4. (E) The constructor must initialize the inherited instance variable balance to
the value of the acctBalance parameter. All three segments achieve this. Im-
plementation I does it by invoking super(acctBalance), the constructor in the
superclass. Implementation II first initializes balance to 0 by invoking the default
constructor of the superclass. Then it calls the inherited deposit method of the
superclass to add acctBalance to the account. Implementation III works because
super() is automatically called as the first line of the constructor code if there is
no explicit call to super.

5. (C) First the withdrawmethod of the BankAccount superclass is used to withdraw
amount. A prefix of super must be used to invoke this method, which eliminates

✐

✐

“ap” — 2014/11/4 — 11:10 — page 170 — #184

✐

✐

✐

✐

✐

✐

170 Chapter 3 Inheritance and Polymorphism

choices B and D. Then the balance must be tested using the accessor method
getBalance, which is inherited. You can’t test balance directly since it is private
to the BankAccount class. This eliminates choices A and E, and provides another
reason for eliminating choice B.

6. (B) When a superclass method is redefined in a subclass, the process is called
method overriding. Which method to call is determined at run time. This is
called dynamic binding (p. 138). Method overloading is two or more methods with
different signatures in the same class (p. 99). The compiler recognizes at compile
time which method to call. This is early binding. The process of downcasting is
unrelated to these principles (p. 140).

7. (E) The addInterest method is defined only in the SavingsAccount class. It
therefore cannot be invoked by a BankAccount object. The error can be fixed by
casting s to the correct type:

((SavingsAccount) s).addInterest();

The other method calls do not cause a problem because withdraw and deposit

are both methods of the BankAccount class.

8. (D) The withdraw method is the only method that has one implementation in
the superclass and a different implementation in a subclass. Polymorphism is
the mechanism of selecting the correct method from the different possibilities in
the class hierarchy. Notice that the deposit method, for example, is available to
objects of all three bank account classes, but it’s the same code in all three cases.
So polymorphism isn’t tested.

9. (C) You will get a ClassCastException whenever you try to cast an object to a
class of which it is not an instance. Choice C is the only statement that doesn’t
attempt to do this. Look at the other choices: In choice A, b is not an instance of
SavingsAccount. In choice B, b is not an instance of CheckingAccount. In choice
D, s is not an instance of CheckingAccount. In choice E, c is not an instance of
SavingsAccount.

10. (D) It is OK to use timsSavings and daynasChecking as parameters since each of
these is-a BankAccountobject. It is also OK for timsSavings and daynasChecking

to call the transfermethod (statements II and III), since they inherit this method
from the BankAccount superclass.

11. (B) Statement I is false: A subclass must specify its own constructors. Otherwise
the default constructor of the superclass will automatically be invoked. Note that
statement III is false: Private instance methods cannot be overridden.

12. (E) All of the methods in an interface are by default public (the public keyword
isn’t needed). An abstract class can have both private and public methods. Note
that choice A would be false if it simply stated “An interface cannot implement
any methods, whereas an abstract class can.” Java 8 allows an interface to imple-
ment default methods.

13. (A) There are two quick tests you can do to find the answer to this question:

(1) Test the is-a relationship, namely the parameter for printName is-a Bird?
and the parameter for printBirdCall is-a Parrot?

(2) A reference cannot be cast to something it’s not an instance of.

Choice A passes both of these tests: parrot2 is-a Bird, and (Parrot) bird2

✐

✐

“ap” — 2014/11/4 — 11:10 — page 171 — #185

✐

✐

✐

✐

✐

✐

Answers Explained 171

is-a Parrot. Also bird2 is an instance of a Parrot (as you can see by look-
ing at the right-hand side of the assignment), so the casting is correct. In
choice B, printBirdCall(bird2) is wrong because bird2 is-a Bird and the
printBirdCall method is expecting a Parrot. Therefore bird2 must be
downcast to a Parrot. Also, the method call printName((Parrot) bird1)

fails because bird1 is an instance of a Bird and therefore cannot be cast
to a Parrot. In choice C, printName(bird2) is correct: bird2 is-a Bird.
However, printBirdCall(bird2) fails as already discussed. In choice D,
(Parakeet) parrot1 is an incorrect cast: parrot1 is an instance of a Parrot.
Note that printBirdCall(parrot2) is OK since parrot2 is-a Parrot. In choice
E, (Owl) parrot2 is an incorrect cast: parrot2 is an instance of Parakeet. Note
that printBirdCall((Parakeet) parrot2) is correct: A Parakeet is-a Parrot,
and parrot2 is an instance of a Parakeet.

14. (B) Method overriding occurs whenever a method in a superclass is redefined in
a subclass. Method overloading is a method in the same class that has the same
name but different parameter types. Polymorphism is when the correct overrid-
den method is called for a particular subclass object during run time. Information
hiding is the use of private to restrict access. Procedural abstraction is the use of
helper methods.

15. (E) All will cause an error!
I: An object of a superclass does not have access to a new method of its subclass.
II: ob2 is declared to be of type ClassA, so a compile-time error will occur with
a message indicating that there is no method2 in ClassA. Casting ob2 to ClassB

would correct the problem.
III: A ClassCastExceptionwill be thrown, since ob1 is of type ClassA, and there-
fore cannot be cast to ClassB.

16. (B) The only incorrect line is s1 = new Solid("blob"): You can’t create an
instance of an abstract class. Abstract class references can, however, refer to ob-
jects of concrete (nonabstract) subclasses. Thus, the assignments for s2 and s3 are
OK. Note that an abstract class reference can also be null, so the final assignment,
though redundant, is correct.

17. (E) The point of having an abstract method is to postpone until run time the
decision about which subclass version to call. This is what polymorphism is—
calling the appropriate method at run time based on the type of the object.

18. (A) This is an example of polymorphism: The correct volume method is se-
lected at run time. The parameter expected for printVolume is a Solid reference,
which is what it gets in main(). The reference sol will refer either to a Sphere

or a RectangularPrism object depending on the outcome of the coin flip. Since
a Sphere is a Solid and a RectangularPrism is a Solid, there will be no type mis-
match when these are the actual parameters in the printVolume method. (Note:
The Math.random method is discussed in Chapter 4.)

19. (E) Each of choices A though D represent Computable objects: It makes sense
to add, subtract, or multiply two large integers, two fractions, two irrational
numbers, and two lengths. (One can multiply lengths to get an area, for example.)
While it may make sense under certain circumstances to add or subtract two bank
accounts, it does not make sense to multiply them!

20. (C) You can declare a reference of type Player. What you cannot do is construct
an object of type Player. The following declarations are therefore legal:

✐

✐

“ap” — 2015/3/24 — 19:36 — page 172 — #186

✐

✐

✐

✐

✐

✐

172 Chapter 3 Inheritance and Polymorphism

SmartPlayer s = new SmartPlayer();

Player p1 = s;

Player p2 = new HumanPlayer();

21. (C) Remember, to implement the Player interface a class must provide imple-
mentations for getMove and updateDisplay. The updateDisplaymethod is suit-
able for all five games described. The getMove method returns a single integer,
which works well for the High-Low game of choice A and the Chips game of
choice B. In Tic-Tac-Toe (choice D) and Battleships (choice E) a move consists of
giving a grid location. This can be provided by a single integer if the grid loca-
tions are numbered in a unique way. It’s not ideal, but certainly doable. In the
Chess game, however, it’s neither easy nor intuitive to describe a move with a
single integer. The player needs to specify both the grid location he is moving
the piece to and which piece he is moving. The getMove method would need to
be altered in a way that changes its return type. This makes the Player interface
unsuitable.

22. (C) Segments II and III have errors in the compareTo calls. References c1 and c2

are of type Player, which doesn’t have a compareTo method, and references h1
and h2 are of type HumanPlayer, which also doesn’t have a compareTo method.
Note that Segment II can be fixed by downcasting c1 and c2 to ExpertPlayer:

if (((ExpertPlayer) c1).compareTo((ExpertPlayer) c2) < 0)

A cast won’t work in Segment III, because you can’t cast a HumanPlayer to an
ExpertPlayer. In Segments I, II, and III, the getMove calls are all correct, because
p1, p2, c1, and c2 are all of type Player which has a getMove method; and h1

and h2 are of type HumanPlayer which implements Player and therefore has a
getMove method.

23. (E) All implementations are correct. This is not a question about whether it
is better to compare ExpertPlayers based on their ratings or their names! One
might need an alphabetized list of players, or one might need a list according
to ranking. In practice, the program specification will instruct the programmer
which to use. Note that segment II is correct because compareTo doesn’t need to
return 1 or−1. Any positive or negative integer is OK. Note also that in segments
I and II it is OK to use expert.rating, since expert is of type ExpertPlayer, the
current class being written. Normally, a parameter of some class type cannot
access the private instance variables of another class.

24. (A) While it is certainly possible to write a compareTo method for a Point class,
there’s no good intuitive way to compare points. Two points (x1, y1) and (x2, y2)
are equal if and only if x1 = x2 and y1 = y2. But if points P1 and P2 are not equal,
what will determine if P1 < P2 or P1 > P2? You could try using the distance from
the origin. Define P1 > P2 if and only if OP1 > OP2, and P1 < P2 if and only if
OP1 <OP2, where O is (0,0). This definition means that points (a, b) and (b ,a)
are equal, which violates the definition of equals! The problem is that there is
no way to map the two-dimensional set of points to a one-dimensional distance
function and still be consistent with the definition of equals. The objects in each
of the other classes can be compared without a problem. In choice B, two Name

objects can be ordered alphabetically. In choice C, two Car objects can be ordered
by year or by price. In choice D, two Student objects can be ordered by name
or GPA. In choice E, two Employee objects can be ordered by name or seniority
(date of hire).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 173 — #187

✐

✐

✐

✐

✐

✐

Answers Explained 173

25. (B) Here is the hierarchy of classes:

Student

Undergraduate Graduate

DocStudent

Eliminate choice D which fails to make DocStudent a subclass of Graduate. This
is a poor design choice since a DocStudent is-a Graduate. Making Student an
abstract class is desirable since the methods that are common to all students can
go in there with implementations provided. The method to calculate the GPA,
which differs among student types, will be declared in Student as an abstract
method. Then unique implementations will be provided in both the Graduate

and Undergraduate classes. Choice A is a poor design because making Student

an interface means that all of its methods will need to be implemented in both
the Undergraduate and Graduate classes. Many of these methods will have the
same implementations. As far as possible, you want to arrange for classes to in-
herit common methods and to avoid repeated code. Choice C is slightly inferior
to choice B because you are told that all students are either graduates or under-
graduates. Having the Student class abstract guarantees that you won’t create an
instance of a Student (who is neither a graduate nor an undergraduate). Choice E
has a major design flaw: making Graduate an abstract class means that you can’t
create any instances of Graduate objects. Disaster! If the keyword abstract is re-
moved from choice E, it becomes a fine design, as good as that in choice B. Once
Student has implemented all the common PersonalInformationmethods, these
are inherited by each of the subclasses.

26. (B) Segment III is wrong because you can’t construct an interface object. Seg-
ments I and II both work because the minThreemethod is expecting three param-
eters, each of which is an Orderable. Since Temperature implements Orderable,
each of the Temperatureobjects is an Orderable and can be used as a parameter in
this method. Note that the program assumes that the compareTo method is able
to compare Temperature objects with different scales. This is an internal detail
that would be dealt with in the compareTo method, and hidden from the client.
When a class implements Orderable there is an assumption that the compareTo

method will be implemented in a reasonable way.

27. (B) Classes that implement an interface must provide implementation code for
all non-default (i.e., abstract) methods in the interface. Adding method2 to the
SomeName interface means that all of those classes need to be rewritten with im-
plementation code for method2. (This is not good—it violates the sacred prin-
ciple of code reusability, and programmers relying on the interface will squeal.)
Choices A, C, and D are all meaningless garbage. Choice E may be true if there
is some other error in the new class. Otherwise, as long as the new class provides
implementation code for both method1 and method2, the class will compile.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 174 — #188

✐

✐

✐

✐

✐

✐

Some Standard Classes CHAPTER 4

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

—John von Neumann (1951)

Chapter Goals

• The Object class

• The String class

• Wrapper classes

• The Math class

• Random numbers

THE Object CLASS

The Universal Superclass

Think of Object as the superclass of the universe. Every class automatically extends
Object, which means that Object is a direct or indirect superclass of every other class.
In a class hierarchy tree, Object is at the top:

Object

Animal

Fish Fowl Mammal

Vegetable Mineral

Methods in Object

There are many methods in Object, all of them inherited by every other class. Since
Object is not an abstract class, all of its methods have implementations. The expecta-
tion is that these methods will be overridden in any class where the default implemen-
tation is not suitable. The methods of Object in the AP Java subset are toString and
equals.

174

✐

✐

“ap” — 2014/11/4 — 11:10 — page 175 — #189

✐

✐

✐

✐

✐

✐

The Object Class 175

THE toString METHOD

public String toString()

This method returns a version of your object in String form.
When you attempt to print an object, the inherited default toString method is

invoked, and what you will see is the class name followed by an @ followed by a mean-
ingless number (the address in memory of the object). For example,

SavingsAccount s = new SavingsAccount(500);

System.out.println(s);

produces something like

SavingsAccount@fea485c4

To have more meaningful output, you need to override the toString method for
your own classes. Even if your final program doesn’t need to output any objects, you
should define a toString method for each class to help in debugging.

Example 1

public class OrderedPair

{

private double x;

private double y;

//constructors and other methods ...

/** @return this OrderedPair in String form */

public String toString()

{

return "(" + x + "," + y + ")";

}

}

Now the statements

OrderedPair p = new OrderedPair(7,10);

System.out.println(p);

will invoke the overridden toString method and produce output that looks like an
ordered pair:

(7,10)

Example 2

For a BankAccount class the overridden toString method may look something like
this:

/** @return this BankAccount in String form */

public String toString()

{

return "Bank Account: balance = $" + balance;

}

The statements

✐

✐

“ap” — 2014/11/4 — 11:10 — page 176 — #190

✐

✐

✐

✐

✐

✐

176 Chapter 4 Some Standard Classes

BankAccount b = new BankAccount(600);

System.out.println(b);

will produce output that looks like this:

Bank Account: balance = $600

NOTE

1. The + sign is a concatenation operator for strings (see p. 178).
2. Array objects are unusual in that they do not have a toString method. To

print the elements of an array, the array must be traversed and each element
must explicitly be printed.

THE equals METHOD

public boolean equals(Object other)

All classes inherit this method from the Object class. It returns true if this object and
other are the same object, false otherwise. Being the same object means referencing
the same memory slot. For example,

Date d1 = new Date("January", 14, 2001);

Date d2 = d1;

Date d3 = new Date("January", 14, 2001);

The test if (d1.equals(d2)) returns true, but the test if (d1==d3) returns false,

Do not use == to test
objects for equality.
Use the equals
method.

since d1 and d3 do not refer to the same object. Often, as in this example, you may
want two objects to be considered equal if their contents are the same. In that case, you
have to override the equals method in your class to achieve this. Some of the standard
classes described later in this chapter have overridden equals in this way. You will not
be required to write code that overrides equals on the AP exam.

NOTE

1. The default implementation of equals is equivalent to the == relation for ob-
jects: In the Date example above, the test if (d1 == d2) returns true; the test
if (d1 == d3) returns false.

2. The operators <, >, and so on, are not overloaded in Java. To compare objects,
one must use either the equals method or define a compareTo method for the
class.

Optional topic THE hashCode METHOD

Every class inherits the hashCode method from Object. The value returned by
hashCode is an integer produced by some formula that maps your object to an address
in a hash table. A given object must always produce the same hash code. Also, two ob-
jects that are equal should produce the same hash code; that is, if obj1.equals(obj2)
is true, then obj1 and obj2 should have the same hash code. Note that the opposite is
not necessarily true. Hash codes do not have to be unique—two objects with the same
hash code are not necessarily equal.

To maintain the condition that obj1.equals(obj2) is true implies that obj1 and
obj2 have the same hash code, overriding equals means that you should override
hashCode at the same time. You will not be required to do this on the AP exam.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 177 — #191

✐

✐

✐

✐

✐

✐

(continued)

The String Class 177

You should, however, understand that every object is associated with an integer value
called its hash code, and that objects that are equal have the same hash code.

THE String CLASS

String Objects

An object of type String is a sequence of characters. All string literals, such as "yikes!",
are implemented as instances of this class. A string literal consists of zero or more char-
acters, including escape sequences, surrounded by double quotes. (The quotes are not
part of the String object.) Thus, each of the following is a valid string literal:

"" //empty string

"2468"

"I must\n go home"

String objects are immutable, which means that there are no methods to change
them after they’ve been constructed. You can, however, always create a new String

that is a mutated form of an existing String.

Constructing String Objects

A String object is unusual in that it can be initialized like a primitive type:

String s = "abc";

This is equivalent to

String s = new String("abc");

in the sense that in both cases s is a reference to a String object with contents "abc"
(see Box on p. 179).

It is possible to reassign a String reference:

String s = "John";

s = "Harry";

This is equivalent to

String s = new String("John");

s = new String("Harry");

Notice that this is consistent with the immutable feature of String objects. "John" has
not been changed; he has merely been discarded! The fickle reference s now refers to a
new String, "Harry". It is also OK to reassign s as follows:

s = s + " Windsor";

s now refers to the object "Harry Windsor".
Here are other ways to initialize String objects:

String s1 = null; //s1 is a null reference

String s2 = new String(); //s2 is an empty character sequence

String state = "Alaska";

String dessert = "baked " + state; //dessert has value "baked Alaska"

✐

✐

“ap” — 2014/11/4 — 11:10 — page 178 — #192

✐

✐

✐

✐

✐

✐

178 Chapter 4 Some Standard Classes

The Concatenation Operator

The dessert declaration above uses the concatenation operator, +, which operates on
String objects. Given two String operands lhs and rhs, lhs + rhs produces a sin-
gle String consisting of lhs followed by rhs. If either lhs or rhs is an object other
than a String, the toString method of the object is invoked, and lhs and rhs are
concatenated as before. If one of the operands is a String and the other is a primitive
type, then the non-String operand is converted to a String, and concatenation occurs
as before. If neither lhs nor rhs is a String object, an error occurs. Here are some
examples:

int five = 5;

String state = "Hawaii-";

String tvShow = state + five + "-0"; //tvShow has value

//"Hawaii-5-0"

int x = 3, y = 4;

String sum = x + y; //error: can’t assign int 7 to String

Suppose a Date class has a toString method that outputs dates that look like this:
2/17/1948.

Date d1 = new Date(8, 2, 1947);

Date d2 = new Date(2, 17, 1948);

String s = "My birthday is " + d2; //s has value

//"My birthday is 2/17/1948"

String s2 = d1 + d2; //error: + not defined for objects

String s3 = d1.toString() + d2.toString(); //s3 has value

//8/2/19472/17/1948

Comparison of String Objects

There are two ways to compare String objects:

1. Use the equals method that is inherited from the Object class and overridden
to do the correct thing:

if (string1.equals(string2)) ...

This returns true if string1 and string2 are identical strings, false other-
wise.

2. Use the compareTo method. The String class has a compareTo method:

int compareTo(String otherString)

It compares strings in dictionary (lexicographical) order:

• If string1.compareTo(string2) < 0, then string1 precedes string2 in
the dictionary.

• If string1.compareTo(string2) > 0, then string1 follows string2 in
the dictionary.

• If string1.compareTo(string2) == 0, then string1 and string2 are iden-
tical. (This test is an alternative to string1.equals(string2).)

Be aware that Java is case-sensitive. Thus, if s1 is "cat" and s2 is "Cat", s1.equals(s2)
will return false.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 179 — #193

✐

✐

✐

✐

✐

✐

The String Class 179

Characters are compared according to their position in the ASCII chart. All you
need to know is that all digits precede all capital letters, which precede all lowercase
letters. Thus "5" comes before "R", which comes before "a". Two strings are com-
pared as follows: Start at the left end of each string and do a character-by-character
comparison until you reach the first character in which the strings differ, the kth char-
acter, say. If the kth character of s1 comes before the kth character of s2, then s1 will
come before s2, and vice versa. If the strings have identical characters, except that s1
terminates before s2, then s1 comes before s2. Here are some examples:

String s1 = "HOT", s2 = "HOTEL", s3 = "dog";

if (s1.compareTo(s2) < 0)) //true, s1 terminates first

...

if (s1.compareTo(s3) > 0)) //false, "H" comes before "d"

Don’t Use == to Test Strings!

The expression if(string1 == string2) tests whether string1

and string2 are the same reference. It does not test the actual
strings. Using == to compare strings may lead to unexpected
results.

Example 1

String s = "oh no!";

String t = "oh no!";

if (s == t) ...

The test returns true even though it appears that s and t are dif-
ferent references. The reason is that for efficiency Java makes only
one String object for equivalent string literals. This is safe in that
a String cannot be altered.

Example 2

String s = "oh no!";

String t = new String("oh no!");

if (s == t) ...

The test returns false because use of new creates a new object, and
s and t are different references in this example!

The moral of the story? Use equals not == to test strings. It
always does the right thing.

Other String Methods

The Java String class provides many methods, only a small number of which are in
the AP Java subset. In addition to the constructors, comparison methods, and con-
catenation operator + discussed so far, you should know the following methods:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 180 — #194

✐

✐

✐

✐

✐

✐

180 Chapter 4 Some Standard Classes

int length()

Returns the length of this string.

String substring(int startIndex)

Returns a new string that is a substring of this string. The substring starts with the
character at startIndex and extends to the end of the string. The first character is
at index zero. The method throws an IndexOutOfBoundsException if startIndex is
negative or larger than the length of the string. Note that if you’re using Java 7 or
above, you will see the error StringIndexOutOfBoundsException. However, the AP
Java subset lists only IndexOutOfBoundsException, which is what they will use on the
AP exam.

String substring(int startIndex, int endIndex)

Returns a new string that is a substring of this string. The substring starts at in-
dex startIndex and extends to the character at endIndex-1. (Think of it this way:
startIndex is the first character that you want; endIndex is the first character that you
don’t want.) The method throws a StringIndexOutOfBoundsException if startIndex
is negative, or endIndex is larger than the length of the string, or startIndex is larger
than endIndex.

int indexOf(String str)

Returns the index of the first occurrence of str within this string. If str is not a
substring of this string, -1 is returned. The method throws a NullPointerException

if str is null.
Here are some examples:

"unhappy".substring(2) //returns "happy"

"cold".substring(4) //returns "" (empty string)

"cold".substring(5) //StringIndexOutOfBoundsException

"strawberry".substring(5,7) //returns "be"

"crayfish".substring(4,8) //returns "fish"

"crayfish".substring(4,9) //StringIndexOutOfBoundsException

"crayfish".substring(5,4) //StringIndexOutOfBoundsException

String s = "funnyfarm";

int x = s.indexOf("farm"); //x has value 5

x = s.indexOf("farmer"); //x has value -1

int y = s.length(); //y has value 9

WRAPPER CLASSES

A wrapper class takes either an existing object or a value of primitive type, “wraps” or
“boxes” it in an object, and provides a new set of methods for that type. The point of
a wrapper class is to provide extended capabilities for the boxed quantity:

• It can be used in generic Java methods that require objects as parameters.

• It can be used in Java container classes that require the items be objects (see
p. 242).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 181 — #195

✐

✐

✐

✐

✐

✐

Wrapper Classes 181

In each case, the wrapper class allows

1. Construction of an object from a single value (wrapping or boxing the primi-
tive in a wrapper object).

2. Retrieval of the primitive value (unwrapping or unboxing from the wrapper
object).

Java provides a wrapper class for each of its primitive types. The two that you
should know for the AP exam are the Integer and Double classes.

The Integer Class

The Integer class wraps a value of type int in an object. An object of type Integer

contains just one instance variable whose type is int.
Here are the Integer methods you should know for the AP exam:

Integer(int value)

Constructs an Integer object from an int. (Boxing.)

int compareTo(Integer other)

Returns 0 if the value of this Integer is equal to the value of other, a negative integer
if it is less than the value of other, and a positive integer if it is greater than the value
of other.

int intValue()

Returns the value of this Integer as an int. (Unboxing.)

boolean equals(Object obj)

Returns true if and only if this Integer has the same int value as obj.

NOTE

1. This method overrides equals in class Object.
2. This method throws a ClassCastException if obj is not an Integer.

String toString()

Returns a String representing the value of this Integer.

Here are some examples to illustrate the Integer methods:

Integer intObj = new Integer(6); //boxes 6 in Integer object

int j = intObj.intValue(); //unboxes 6 from Integer object

System.out.println("Integer value is " + intObj);

//calls toString() for intObj

//output is

//Integer value is 6

✐

✐

“ap” — 2014/11/4 — 11:10 — page 182 — #196

✐

✐

✐

✐

✐

✐

182 Chapter 4 Some Standard Classes

Object object = new Integer(5); //Integer is a subclass of Object

Integer intObj2 = new Integer(3);

int k = intObj2.intValue();

if (intObj.equals(intObj2)) //OK, evaluates to false

...

if (intObj.intValue() == intObj2.intValue())

... //OK, since comparing primitive types

if (k.equals(j)) //error, k and j not objects

...

if ((intObj.intValue()).compareTo(intObj2.intValue()) < 0)

... //error, can’t use compareTo on primitive types

if (intObj.compareTo(object) < 0) //Error. Parameter needs Integer cast

if (intObj.compareTo((Integer) object) < 0) //OK

...

if (object.compareTo(intObj) < 0) //error, no compareTo in Object

...

if (((Integer) object).compareTo(intObj) < 0) //OK

...

The Double Class

The Double class wraps a value of type double in an object. An object of type Double

contains just one instance variable whose type is double.
The methods you should know for the AP exam are analogous to those for type

Integer.

Double(double value)

Constructs a Double object from a double. (Boxing.)

double doubleValue()

Returns the value of this Double as a double. (Unboxing.)

int compareTo(Double other)

Returns 0 if the value of this Double is equal to the value of other, a negative integer if
it is less than the value of other, and a positive integer if it is greater than the value of
other.

boolean equals(Object obj)

This method overrides equals in class Object and throws a ClassCastException if
obj is not a Double. Otherwise it returns true if and only if this Double has the same
double value as obj.

String toString()

Returns a String representing the value of this Double.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 183 — #197

✐

✐

✐

✐

✐

✐

The Math Class 183

Here are some examples: Remember:
Integer, Double,
and String all have a
compareTomethod.

Double dObj = new Double(2.5); //boxes 2.5 in Double object

double d = dObj.doubleValue(); //unboxes 2.5 from Double object

Object object = new Double(7.3); //Double is a subclass of Object

Object intObj = new Integer(4);

if (dObj.compareTo(object) > 0) //Error. Parameter needs cast to Double

if (dObj.compareTo((Double) object) > 0) //OK

...

if (dObj.compareTo(intObj) > 0) //ClassCastException

... //can’t compare Integer to Double

NOTE

1. Integer and Double objects are immutable: There are no mutator methods in
the classes.

2. See p. 242 for a discussion of auto-boxing and -unboxing. This useful feature
will not be tested on the AP exam.

THE Math CLASS

This class implements standard mathematical functions such as absolute value, square
root, trigonometric functions, the log function, the power function, and so on. It also
contains mathematical constants such as π and e .

Here are the functions you should know for the AP exam:

static int abs(int x)

Returns the absolute value of integer x .

static double abs(double x)

Returns the absolute value of real number x .

static double pow(double base, double exp)

Returns baseexp. Assumes base> 0, or base= 0 and exp> 0, or base< 0 and exp is
an integer.

static double sqrt(double x)

Returns
p

x, x ≥ 0.

static double random()

Returns a random number r , where 0.0 ≤ r < 1.0. (See the next section, Random

Numbers.)

All of the functions and constants are implemented as static methods and variables,
which means that there are no instances of Math objects. The methods are invoked
using the class name, Math, followed by the dot operator.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 184 — #198

✐

✐

✐

✐

✐

✐

184 Chapter 4 Some Standard Classes

Here are some examples of mathematical formulas and the equivalent Java state-
ments.

1. The relationship between the radius and area of a circle:

r =
Æ

A/π

In code:

radius = Math.sqrt(area / Math.PI);

2. The amount of money A in an account after ten years, given an original deposit
of P and an interest rate of 5% compounded annually, is

A= P (1.05)10

In code:

a = p * Math.pow(1.05, 10);

3. The distance D between two points P (xP , y) and Q(xQ , y) on the same hori-

zontal line is
D = |xP − xQ |

In code:

d = Math.abs(xp - xq);

NOTE

The static import construct allows you to use the static members of a class without the
class name prefix. For example, the statement

import static java.lang.Math.*;

allows use of all Math methods and constants without the Math prefix. Thus, the state-
ment in formula 1 above could be written

radius = sqrt(area / PI);

Static imports are not part of the AP subset.

Random Numbers

RANDOM REALS

The statement

double r = Math.random();

produces a random real number in the range 0.0 to 1.0, where 0.0 is included and 1.0
is not.

This range can be scaled and shifted. On the AP exam you will be expected to write
algebraic expressions involving Math.random() that represent linear transformations
of the original interval 0.0≤ x < 1.0.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 185 — #199

✐

✐

✐

✐

✐

✐

The Math Class 185

Example 1

Produce a random real value x in the range 0.0≤ x < 6.0.

double x = 6 * Math.random();

Example 2

Produce a random real value x in the range 2.0≤ x < 3.0.

double x = Math.random() + 2;

Example 3

Produce a random real value x in the range 4.0≤ x < 6.0.

double x = 2 * Math.random() + 4;

In general, to produce a random real value in the range lowValue≤ x < highValue:

double x = (highValue - lowValue) * Math.random() + lowValue;

RANDOM INTEGERS

Using a cast to int, a scaling factor, and a shifting value, Math.random() can be used to
produce random integers in any range.

Example 1

Produce a random integer, from 0 to 99.

int num = (int) (Math.random() * 100);

In general, the expression

(int) (Math.random() * k)

produces a random int in the range 0,1, . . . , k − 1, where k is called the scaling factor.
Note that the cast to int truncates the real number Math.random() * k.

Example 2

Produce a random integer, from 1 to 100.

int num = (int) (Math.random() * 100) + 1;

In general, if k is a scaling factor, and p is a shifting value, the statement

int n = (int) (Math.random() * k) + p;

produces a random integer n in the range p , p + 1, . . . , p + (k − 1).

Example 3

Produce a random integer from 5 to 24.

int num = (int) (Math.random() * 20) + 5;

Note that there are 20 possible integers from 5 to 24, inclusive.

NOTE

There is further discussion of strings and random numbers, plus additional questions,
in Chapter 9 (The AP Computer Science Labs).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 186 — #200

✐

✐

✐

✐

✐

✐

186 Chapter 4 Some Standard Classes

Chapter Summary

All students should know about overriding the equals and toString methods of
the Object class and should be familiar with the Integer and Double wrapper classes.

Know the AP subset methods of the Math class, especially the use of Math.random()
for generating random integers. Know the String methods substring and indexOf

like the back of your hand, including knowing where exceptions are thrown in the
String methods.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 187 — #201

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 187

MULTIPLE-CHOICE QUESTIONS ON STANDARD
CLASSES

1. Here is a program segment to find the quantity baseexp. Both base and exp are
entered at the keyboard.

System.out.println("Enter base and exponent: ");

double base = IO.readDouble(); //read user input

double exp = IO.readDouble(); //read user input

/* code to find power, which equals baseexp */

System.out.print(base + " raised to the power " + exp);

System.out.println(" equals " + power);

Which is a correct replacement for
/* code to find power, which equals baseexp */?

I double power;

Math m = new Math();

power = m.pow(base, exp);

II double power;

power = Math.pow(base, exp);

III int power;

power = Math.pow(base, exp);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 188 — #202

✐

✐

✐

✐

✐

✐

188 Chapter 4 Some Standard Classes

2. Consider the squareRoot method defined below:

/** @param d a real number such that d >= 0

* Postcondition: Returns a Double whose value is the square

* root of the value represented by d.

*/

public Double squareRoot(Double d)

{

/* implementation code */

}

Which /* implementation code */ satisfies the postcondition?

I double x = d.doubleValue();

x = Math.sqrt(x);

return new Double(x);

II return new Double(Math.sqrt(d.doubleValue()));

III return (Double) Math.sqrt(d.doubleValue());

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

3. Here are some examples of negative numbers rounded to the nearest integer.

Negative real number Rounded to nearest integer

−3.5 −4
−8.97 −9
−5.0 −5
−2.487 −2
−0.2 0

Refer to the declaration

double d = -4.67;

Which of the following correctly rounds d to the nearest integer?

(A) int rounded = Math.abs(d);

(B) int rounded = (int) (Math.random() * d);

(C) int rounded = (int) (d - 0.5);

(D) int rounded = (int) (d + 0.5);

(E) int rounded = Math.abs((int) (d - 0.5));

✐

✐

“ap” — 2014/11/4 — 11:10 — page 189 — #203

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 189

4. A program is to simulate plant life under harsh conditions. In the program, plants
die randomly according to some probability. Here is part of a Plant class defined
in the program.

public class Plant

{

/** probability that plant dies, a real number between 0 and 1 */

private double probDeath;

public Plant(double plantProbDeath, < other parameters >)
{

probDeath = plantProbDeath;

< initialization of other instance variables >
}

/** Plant lives or dies. */

public void liveOrDie()

{

/* statement to generate random number */

if (/* test to determine if plant dies */)

< code to implement plant’s death >
else

< code to make plant continue living >
}

//Other variables and methods are not shown.

}

Which of the following are correct replacements for
(1) /* statement to generate random number */ and
(2) /* test to determine if plant dies */?

(A) (1) double x = Math.random();

(2) x == probDeath

(B) (1) double x = (int) (Math.random());

(2) x > probDeath

(C) (1) double x = Math.random();

(2) x < probDeath

(D) (1) int x = (int) (Math.random() * 100);

(2) x < (int) probDeath

(E) (1) int x = (int) (Math.random() * 100) + 1;

(2) x == (int) probDeath

5. A program simulates fifty slips of paper, numbered 1 through 50, placed in a
bowl for a raffle drawing. Which of the following statements stores in winner a
random integer from 1 to 50?
(A) int winner = (int) (Math.random() * 50) + 1;

(B) int winner = (int) (Math.random() * 50);

(C) int winner = (int) (Math.random() * 51);

(D) int winner = (int) (Math.random() * 51) + 1;

(E) int winner = (int) (1 + Math.random() * 49);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 190 — #204

✐

✐

✐

✐

✐

✐

190 Chapter 4 Some Standard Classes

6. Consider the code segment

Integer i = new Integer(20);

/* more code */

Which of the following replacements for /* more code */ correctly sets i to have
an integer value of 25?

I i = new Integer(25);

II i.intValue() = 25;

III Integer j = new Integer(25);

i = j;

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

7. Consider these declarations:

Integer intOb = new Integer(3);

Object ob = new Integer(4);

Double doubOb = new Double(3.0);

Which of the following will not cause an error?
(A) if ((Integer) ob.compareTo(intOb) < 0) ...

(B) if (ob.compareTo(intOb) < 0) ...

(C) if (intOb.compareTo(doubOb) < 0) ...

(D) if (intOb.compareTo(ob) < 0) ...

(E) if (intOb.compareTo((Integer) ob) < 0) ...

8. Refer to these declarations:

Integer k = new Integer(8);

Integer m = new Integer(4);

Which test will not generate an error?

I if (k.intValue() == m.intValue())...

II if ((k.intValue()).equals(m.intValue()))...

III if ((k.toString()).equals(m.toString()))...

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 191 — #205

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 191

9. Consider the code fragment

Object intObj = new Integer(9);

System.out.println((String) intObj);

What will be output as a result of running the fragment?
(A) No output. A ClassCastExceptionwill be thrown.
(B) No output. An ArithmeticExceptionwill be thrown.
(C) 9

(D) "9"

(E) nine

10. Consider these declarations:

String s1 = "crab";

String s2 = new String("crab");

String s3 = s1;

Which expression involving these strings evaluates to true?

I s1 == s2

II s1.equals(s2)

III s3.equals(s2)

(A) I only
(B) II only
(C) II and III only
(D) I and II only
(E) I, II, and III

11. Suppose that strA = "TOMATO", strB = "tomato", and strC = "tom". Given
that "A" comes before "a" in dictionary order, which is true?

(A) strA.compareTo(strB) < 0 && strB.compareTo(strC) < 0

(B) strB.compareTo(strA) < 0 || strC.compareTo(strA) < 0

(C) strC.compareTo(strA) < 0 && strA.compareTo(strB) < 0

(D) !(strA.equals(strB)) && strC.compareTo(strB) < 0

(E) !(strA.equals(strB)) && strC.compareTo(strA) < 0

12. This question refers to the following declaration:

String line = "Some more silly stuff on strings!";

//the words are separated by a single space

What string will str refer to after execution of the following?

int x = line.indexOf("m");

String str = line.substring(10, 15) + line.substring(25, 25 + x);

(A) "sillyst"

(B) "sillystr"

(C) "silly st"

(D) "silly str"

(E) "sillystrin"

✐

✐

“ap” — 2014/11/4 — 11:10 — page 192 — #206

✐

✐

✐

✐

✐

✐

192 Chapter 4 Some Standard Classes

13. A program has a String variable fullName that stores a first name, followed by
a space, followed by a last name. There are no spaces in either the first or last
names. Here are some examples of fullName values: "Anthony Coppola", "Jimmy
Carroll", and "Tom DeWire". Consider this code segment that extracts the last
name from a fullName variable, and stores it in lastName with no surrounding
blanks:

int k = fullName.indexOf(" "); //find index of blank

String lastName = /* expression */

Which is a correct replacement for /* expression */?

I fullName.substring(k);

II fullName.substring(k + 1);

III fullName.substring(k + 1, fullName.length());

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I and III only

14. One of the rules for converting English to Pig Latin states: If a word begins with
a consonant, move the consonant to the end of the word and add “ay”. Thus
“dog” becomes “ogday,” and “crisp” becomes “rispcay”. Suppose s is a String

containing an English word that begins with a consonant. Which of the following
creates the correct corresponding word in Pig Latin? Assume the declarations

String ayString = "ay";

String pigString;

(A) pigString = s.substring(0, s.length()) + s.substring(0,1)

+ ayString;

(B) pigString = s.substring(1, s.length()) + s.substring(0,0)

+ ayString;

(C) pigString = s.substring(0, s.length()-1) + s.substring(0,1)

+ ayString;

(D) pigString = s.substring(1, s.length()-1) + s.substring(0,0)

+ ayString;

(E) pigString = s.substring(1, s.length()) + s.substring(0,1)

+ ayString;

✐

✐

“ap” — 2014/11/4 — 11:10 — page 193 — #207

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 193

15. This question refers to the getString method shown below:

public static String getString(String s1, String s2)

{

int index = s1.indexOf(s2);

return s1.substring(index, index + s2.length());

}

Which is true about getString? It may return a string that

I Is equal to s2.
II Has no characters in common with s2.

III Is equal to s1.

(A) I and III only
(B) II and III only
(C) I and II only
(D) I, II, and III
(E) None is true.

16. Consider this method:

public static String doSomething(String s)

{

final String BLANK = " "; //BLANK contains a single space

String str = ""; //empty string

String temp;

for (int i = 0; i < s.length(); i++)

{

temp = s.substring(i, i + 1);

if (!(temp.equals(BLANK)))

str += temp;

}

return str;

}

Which of the following is the most precise description of what doSomethingdoes?
(A) It returns s unchanged.
(B) It returns s with all its blanks removed.
(C) It returns a String that is equivalent to s with all its blanks removed.
(D) It returns a String that is an exact copy of s.
(E) It returns a String that contains s.length() blanks.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 194 — #208

✐

✐

✐

✐

✐

✐

194 Chapter 4 Some Standard Classes

Questions 17 and 18 refer to the classes Position and PositionTest below.

public class Position

{

/** row and col are both >= 0 except in the default

* constructor where they are initialized to -1.

*/

private int row, col;

public Position() //constructor

{

row = -1;

col = -1;

}

public Position(int r, int c) //constructor

{

row = r;

col = c;

}

/** @return row of Position */

public int getRow()

{ return row; }

/** @return column of Position */

public int getCol()

{ return col; }

/** @return Position north of (up from) this position */

public Position north()

{ return new Position(row - 1, col); }

//Similar methods south, east, and west

...

/** Compares this Position to another Position object.

* @param p a Position object

* @return -1 (less than), 0 (equals), or 1 (greater than)

*/

public int compareTo(Position p)

{

if (this.getRow() < p.getRow() || this.getRow() == p.getRow()

&& this.getCol() < p.getCol())

return -1;

if (this.getRow() > p.getRow() || this.getRow() == p.getRow()

&& this.getCol() > p.getCol())

return 1;

return 0; //row and col both equal

}

/** @return string form of Position */

public String toString()

{ return "(" + row + "," + col + ")"; }

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 195 — #209

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 195

public class PositionTest

{

public static void main(String[] args)

{

Position p1 = new Position(2, 3);

Position p2 = new Position(4, 1);

Position p3 = new Position(2, 3);

//tests to compare positions

...

}

}

17. Which is true about the value of p1.compareTo(p2)?
(A) It equals true.
(B) It equals false.
(C) It equals 0.
(D) It equals 1.
(E) It equals -1.

18. Which boolean expression about p1 and p3 is true?

I p1 == p3

II p1.equals(p3)

III p1.compareTo(p3) == 0

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 196 — #210

✐

✐

✐

✐

✐

✐

196 Chapter 4 Some Standard Classes

Questions 19 and 20 deal with the problem of swapping two integer values. Three
methods are proposed to solve the problem, using primitive int types, Integer ob-
jects, and IntPair objects, where IntPair is defined as follows:

public class IntPair

{

private int firstValue;

private int secondValue;

public IntPair(int first, int second)

{

firstValue = first;

secondValue = second;

}

public int getFirst()

{ return firstValue; }

public int getSecond()

{ return secondValue; }

public void setFirst(int a)

{ firstValue = a; }

public void setSecond(int b)

{ secondValue = b;}

}

19. Here are three different swap methods, each intended for use in a client program.
I public static void swap(int a, int b)

{

int temp = a;

a = b;

b = temp;

}

II public static void swap(Integer obj_a, Integer obj_b)

{

Integer temp = new Integer(obj_a.intValue());

obj_a = obj_b;

obj_b = temp;

}

III public static void swap(IntPair pair)

{

int temp = pair.getFirst();

pair.setFirst(pair.getSecond());

pair.setSecond(temp);

}

When correctly used in a client program with appropriate parameters, which
method will swap two integers, as intended?
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 197 — #211

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 197

20. Consider the following program that uses the IntPair class:

public class TestSwap

{

public static void swap(IntPair pair)

{

int temp = pair.getFirst();

pair.setFirst(pair.getSecond());

pair.setSecond(temp);

}

public static void main(String[] args)

{

int x = 8, y = 6;

/* code to swap x and y */

}

}

Which is a correct replacement for /* code to swap x and y */?

I IntPair iPair = new IntPair(x, y);

swap(x, y);

x = iPair.getFirst();

y = iPair.getSecond();

II IntPair iPair = new IntPair(x, y);

swap(iPair);

x = iPair.getFirst();

y = iPair.getSecond();

III IntPair iPair = new IntPair(x, y);

swap(iPair);

x = iPair.setFirst();

y = iPair.setSecond();

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) None is correct.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 198 — #212

✐

✐

✐

✐

✐

✐

198 Chapter 4 Some Standard Classes

Refer to the Name class below for Questions 21 and 22.

public class Name

{

private String firstName;

private String lastName;

public Name(String first, String last) //constructor

{

firstName = first;

lastName = last;

}

public String toString()

{ return firstName + " " + lastName; }

public boolean equals(Object obj)

{

Name n = (Name) obj;

return n.firstName.equals(firstName) &&

n.lastName.equals(lastName);

}

public int hashCode()

{ /* implementation not shown */ }

public int compareTo(Name n)

{

/* more code */

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 199 — #213

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Standard Classes 199

21. The compareTomethod implements the standard name-ordering algorithm where
last names take precedence over first names. Lexicographic or dictionary order-
ing of Strings is used. For example, the name Scott Dentes comes before Nick
Elser, and Adam Cooper comes before Sara Cooper.

Which of the following is a correct replacement for /* more code */?

I int lastComp = lastName.compareTo(n.lastName);

if (lastComp != 0)

return lastComp;

else

return firstName.compareTo(n.firstName);

II if (lastName.equals(n.lastName))

return firstName.compareTo(n.firstName);

else

return 0;

III if (!(lastName.equals(n.lastName)))

return firstName.compareTo(n.firstName);

else

return lastName.compareTo(n.lastName);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

22. Which statement about the Name class is false?
(A) Name objects are immutable.
(B) It is possible for the methods in Name to throw a NullPointerException.
(C) If n1 and n2 are Name objects in a client class, then the expressions

n1.equals(n2) and n1.compareTo(n2) == 0 must have the same value.
(D) The compareTomethod throws a run-time exception if the parameter is null.
(E) Since the Name class has a compareTo method, it must provide an implemen-

tation for an equals method.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 200 — #214

✐

✐

✐

✐

✐

✐

200 Chapter 4 Some Standard Classes

ANSWER KEY

1. B

2. B

3. C

4. C

5. A

6. D

7. E

8. D

9. A

10. C

11. D

12. A

13. D

14. E

15. A

16. C

17. E

18. C

19. C

20. B

21. A

22. E

ANSWERS EXPLAINED

1. (B) All the Math class methods are static methods, which means you can’t use a
Math object that calls the method. The method is invoked using the class name,
Math, followed by the dot operator. Thus segment II is correct, and segment I is
incorrect. Segment III will cause an error: Since the parameters of pow are of type
double, the result should be stored in a double.

2. (B) The Math.sqrt method must be invoked on a primitive type double, which
is the reason d.doubleValue() is used. (Note that auto-unboxing would apply if
you failed to use d.doubleValue(), and used just d instead.) A correct segment
must create a Double object using new, which eliminates segment III.

3. (C) The value −4.67 must be rounded to −5. Subtracting 0.5 gives a value of
−5.17. Casting to int truncates the number (chops off the decimal part) and
leaves a value of −5. None of the other choices produces−5. Choice A gives the
absolute value of d: 4.67. Choice B is an incorrect use of Random. The parameter
for nextInt should be an integer n, n ≥ 2. The method then returns a random
int k, where 0≤ k < n. Choice D is the way to round a positive real number to
the nearest integer. In the actual case it produces−4. Choice E gives the absolute
value of −5, namely 5.

4. (C) The statement double x = Math.random(); generates a random double in
the range 0≤ x< 1. Suppose probDeath is 0.67, or 67%. Assuming that random
doubles are uniformly distributed in the interval, one can expect that 67% of
the time x will be in the range 0 ≤ x < 0.67. You can therefore simulate the
probability of death by testing if x is between 0 and 0.67, that is, if x < 0.67.
Thus, x < probDeath is the desired condition for plant death, eliminating choices
A and B. Choices D and E fail because (int) probDeath truncates probDeath to
0. The test x < 0 will always be false, and the test x == 0 will only be true if the
random number generator returned exactly 0, an extremely unlikely occurrence!
Neither of these choices correctly simulates the probability of death.

5. (A) The expression

(int) (Math.random() * 50);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 201 — #215

✐

✐

✐

✐

✐

✐

Answers Explained 201

returns an int from 0 to 49. Therefore, adding 1 shifts the range to be 1 to 50,
which was required.

6. (D) The Integer class has no methods that can change the contents of i. How-
ever, i can be reassigned so that it refers to another object. This happens in both
segments I and III. Segment II is wrong because intValue is an accessor—it cannot
be used to change the value of object i.

7. (E) Choice D fails because you can’t compare an Integer to an Object. You need
to cast ob to Integer, as is done in choice E, the correct answer. Choice D will
give the error message

compareTo(java.lang.Integer) in java.lang.Integer cannot

be applied to (java.lang.Object)

Choice C will cause a ClassCastException since the calling and parameter ob-
jects are incompatible types. The compareTo method will try erroneously to cast
its parameter to the type of the object calling the method. Choice A almost
works: It fails because the dot operator has higher precedence than casting, which
means that ob.compareTo is parsed before ob is cast to Integer, generating a mes-
sage that the compareTo method is not in class Object. Choice A can be fixed
with an extra pair of parentheses:

if (((Integer) ob).compareTo(intOb) < 0) ...

Choice B causes the same error message as choice A: no compareTo method in
class Object.

8. (D) Test I is correct because it’s OK to compare primitive types (in this case
int values) using ==. Test III works because k.toString() and m.toString() are
Strings, which should be compared with equals. Test II is wrong because you
can’t invoke a method (in this case equals) on an int.

9. (A) An Integer cannot be cast to a String. Don’t confuse this with

System.out.println(intObj.toString()); //outputs 9

Note that if the first line of the code fragment were

Integer intObj = new Integer(9);

then the error would be detected at compile time.

10. (C) Here are the memory slots:

s1

s3

String

"crab"

s2
String

"crab"

Statements II and III are true because the contents of s1 and s2 are the same, and
the contents of s3 and s2 are the same. Statement I is false because s1 and s2 are
not the same reference. Note that the expression s1 == s3 would be true since
s1 and s3 are the same reference.

11. (D) Note that "TOMATO" precedes both "tomato" and "tom", since "T" precedes
"t". Also, "tom" precedes "tomato" since the length of "tom" is less than the
length of "tomato". Therefore each of the following is true:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 202 — #216

✐

✐

✐

✐

✐

✐

202 Chapter 4 Some Standard Classes

strA.compareTo(strB) < 0

strA.compareTo(strC) < 0

strC.compareTo(strB) < 0

So

Choice A is T and F which evaluates to F

Choice B is F or F which evaluates to F

Choice C is F and T which evaluates to F

Choice D is T and T which evaluates to T

Choice E is T and F which evaluates to F

12. (A) x contains the index of the first occurrence of "m" in line, namely 2. (Re-
member that "S" is at index 0.) The method call line.substring(10,15) returns
"silly", the substring starting at index 10 and extending though index 14. The
method call line.substring(25,27) returns "st" (don’t include the character at
index 27!). The concatenation operator, +, joins these.

13. (D) The first character of the last name starts at the first character after the space.
Thus, startIndex for substring must be k+1. This eliminates expression I. Ex-
pression II takes all the characters from position k+1 to the end of the fullName

string, which is correct. Expression III takes all the characters from position k+1

to position fullName.length()-1, which is also correct.

14. (E) Suppose s contains "cat". You want pigString = "at" + "c" + "ay".
Now the string "at" is the substring of s starting at position 1 and ending at
position s.length()-1. The correct substring call for this piece of the word is
s.substring(1,s.length()), which eliminates choices A, C, and D. (Recall that
the first parameter is the starting position, and the second parameter is one po-
sition past the last index of the substring.) The first letter of the word—"c" in
the example—starts at position 0 and ends at position 0. The correct expression
is s.substring(0,1), which eliminates choice B.

15. (A) Statement I is true whenever s2 occurs in s1. For example, if strings
s1 = "catastrophe" and s2 = "cat", then getString returns "cat". Statement
II will never happen. If s2 is not contained in s1, the indexOf call will re-
turn -1. Using a negative integer as the first parameter of substring will cause
a StringIndexOutOfBoundsException. Statement III will be true whenever s1

equals s2.

16. (C) The String temp represents a single-character substring of s. The method
examines each character in s and, if it is a nonblank, appends it to str, which
is initially empty. Each assignment str += temp assigns a new reference to str.
Thus, str ends up as a copy of s but without the blanks. A reference to the final
str object is returned. Choice A is correct in that s is left unchanged, but it is
not the best characterization of what the method does. Choice B is not precise
because an object parameter is never modified: Changes, if any, are performed on
a copy. Choices D and E are wrong because the method removes blanks.

17. (E) The compareTo method returns an int, so eliminate choices A and B. In the
implementation of compareTo, the code segment that applies to the particular
example is

if (this.getRow() < p.getRow() || ...

return -1;

Since 2< 4, the value -1 is returned.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 203 — #217

✐

✐

✐

✐

✐

✐

Answers Explained 203

18. (C) Expression III is true: The compareTo method is implemented to return 0

if two Position objects have the same row and column. Expression I is false
because object1 == object2 returns true only if object1 and object2 are the
same reference. Expression II is tricky. One would like p1 and p3 to be equal
since they have the same row and column values. This is not going to happen
automatically, however. The equals method must explicitly be overridden for
the Position class. If this hasn’t been done, the default equals method, which
is inherited from class Object, will return true only if p1 and p3 are the same
reference, which is not true.

19. (C) Recall that primitive types and object references are passed by value. This
means that copies are made of the actual arguments. Any changes that are made
are made to the copies. The actual parameters remain unchanged. Thus, in
methods I and II, the parameters will retain their original values and remain
unswapped.

To illustrate, for example, why method II fails, consider this piece of code that
tests it:

public static void main(String[] args)

{

int x = 8, y = 6;

Integer xObject = new Integer(x);

Integer yObject = new Integer(y);

swap(xObject, yObject);

x = xObject.intValue(); //surprise! still has value 8

y = yObject.intValue(); //surprise! still has value 6

...

}

Here are the memory slots before swap is called:

x

8

y

6

xObject Integer

8

yObject Integer

6

Here they are when swap is invoked:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 204 — #218

✐

✐

✐

✐

✐

✐

204 Chapter 4 Some Standard Classes

x

8

y

6

xObject

obj_a

Integer

8

temp
Integer

8

yObject

obj_b

Integer

6

Just before exiting the swap method:

x

8

y

6

xObject
Integer

8

temp

obj_b

Integer

8

yObject

obj_a

Integer

6

After exiting, xObject and yObject have retained their original values:

x

8

y

6

xObject Integer

8

yObject Integer

6

The reason method III works is that instead of the object references being changed,
the object contents are changed. Thus, after exiting the method, the IntPair ref-
erence is as it was, but the first and second values have been interchanged. (See
explanation to next question for diagrams of the memory slots.) In this question,
IntPair is used as a wrapper class for a pair of integers whose values need to be
swapped.

20. (B) The swap method has just a single IntPair parameter, which eliminates seg-
ment I. Segment III fails because setFirst and setSecond are used incorrectly.
These are mutator methods that change an IntPair object. What is desired is to
return the (newly swapped) first and second values of the pair: Accessor methods

✐

✐

“ap” — 2014/11/4 — 11:10 — page 205 — #219

✐

✐

✐

✐

✐

✐

Answers Explained 205

getFirst and getSecond do the trick. To see why this swap method works, look
at the memory slots.

Before the swap method is called:

x

8

y

6

iPair

IntPair

firstValue 8

secondValue 6

Just after the swap method is called:

x

8

temp

8

y

6

iPair

pair

IntPair

firstValue 8

secondValue 6

Just before exiting the swap method:

x

8

temp

8

y

6

iPair

pair

IntPair

firstValue 6

secondValue 8

Just after exiting the swap method:

x

8

y

6

iPair

IntPair

firstValue 6

secondValue 8

After the statements:

x = iPair.getFirst();

y = iPair.getSecond();

x

6

y

8

iPair

IntPair

firstValue 6

secondValue 8

Notice that x and y have been swapped!

✐

✐

“ap” — 2014/11/4 — 11:10 — page 206 — #220

✐

✐

✐

✐

✐

✐

206 Chapter 4 Some Standard Classes

21. (A) The first statement of segment I compares last names. If these are differ-
ent, the method returns the int value lastComp, which is negative if lastName
precedes n.lastName, positive otherwise. If last names are the same, the method
returns the int result of comparing first names. Segments II and III use incorrect
algorithms for comparing names. Segment II would be correct if the else part
were

return lastName.compareTo(n.lastName);

Segment III would be correct if the two return statements were interchanged.

22. (E) It is wise to have an equals method that is compatible with the compareTo

method, namely, n1.equals(n2) and n1.compareTo(n2)==0 have the same value
if n1 and n2 are Name objects. However, nothing in the Java language mandates
that if a class has a compareTo method, it must also have an equals method.
Choice A is true. You know this because the Name class has no mutator methods.
Thus, Name objects can never be changed. Choice B is true: If a Name is initialized
with null references, each of the methods will throw a NullPointerException.
Choice C is true: If n1.equals(n2) is true, then n1.compareTo(n2) == 0 is true,
because both are conditions for equality of n1 and n2 and should therefore be
consistent. Choice D is true: If the parameter is null, the compareTomethod will
throw a NullPointerException.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 207 — #221

✐

✐

✐

✐

✐

✐

Program Design and

Analysis

CHAPTER 5

Weeks of coding can save you hours of planning.
—Anonymous

Chapter Goals

• Program development,
including design and testing

• Object-oriented program design

• Relationships between classes

• Program analysis

• Efficiency

Students of introductory computer science typically see themselves as program-
mers. They no sooner have a new programming project in their heads than

they’re at the computer, typing madly to get some code up and running. (Is this you?)
To succeed as a programmer, however, you have to combine the practical skills of a

software engineer with the analytical mindset of a computer scientist. A software engi-
neer oversees the life cycle of software development: initiation of the project, analysis
of the specification, and design of the program, as well as implementation, testing, and
maintenance of the final product. A computer scientist (among other things!) ana-
lyzes the implementation, correctness, and efficiency of algorithms. All these topics
are tested on the APCS exam.

THE SOFTWARE DEVELOPMENT LIFE CYCLE

The Waterfall Model

The waterfall model of software development came about in the 1960s in order to
bring structure and efficiency into the process of creating large programs.

Each step in the process flows into the next: The picture resembles a waterfall.

207

✐

✐

“ap” — 2014/11/4 — 11:10 — page 208 — #222

✐

✐

✐

✐

✐

✐

208 Chapter 5 Program Design and Analysis

Analysis of the
Specification

Program Design

Implementation

Testing & Debugging

Maintenance

Program Specification

The specification is a written description of the project. Typically it is based on a cus-
tomer’s requirements. The first step in writing a program is to analyze the specifi-
cation, make sure you understand it, and clarify with the customer anything that is
unclear.

Program Design

Even for a small-scale program a good design can save programming time and enhance
the reliability of the final program. The design is a fairly detailed plan for solving the
problem outlined in the specification. It should include all objects that will be used in
the solution, the data structures that will implement them, plus a detailed list of the
tasks to be performed by the program.

A good design provides a fairly detailed overall plan at a glance, without including
the minutiae of Java code.

Program Implementation

Program implementation is the coding phase. Design and implementation are dis-
cussed in more detail on p. 210.

Testing and Debugging

TEST DATA

Not every possible input value can be tested, so a programmer should be diligent in
selecting a representative set of test data. Typical values in each part of a domain of the
program should be selected, as well as endpoint values and out-of-range values. If only
positive input is required, your test data should include a negative value just to check
that your program handles it appropriately.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 209 — #223

✐

✐

✐

✐

✐

✐

The Software Development Life Cycle 209

Example

A program must be written to insert a value into its correct position in this sorted
list:

2 5 9

Test data should include

• A value less than 2

• A value between 2 and 5

• A value between 5 and 9

• A value greater than 9

• 2, 5, and 9

• A negative value

TYPES OF ERRORS (BUGS)

• A compile-time error occurs during compilation of the program. The compiler
is unable to translate the program into bytecode and prints an appropriate er-
ror message. A syntax error is a compile-time error caused by violating the
rules of the programming language. Some examples are omitting semicolons
or braces, using undeclared identifiers, using keywords inappropriately, having
parameters that don’t match in type and number, and invoking a method for an
object whose class definition doesn’t contain that method.

• A run-time error occurs during execution of the program. The Java run-time
environment throws an exception, which means that it stops execution and prints
an error message. Typical causes of run-time errors include attempting to divide
an integer by zero, using an array index that is out of bounds, attempting to
open a file that cannot be found, and so on. An error that causes a program to
run forever (“infinite loop”) can also be regarded as a run-time error. (See also
Errors and Exceptions, p. 74.)

• An intent or logic error is one that fails to carry out the specification of the
program. The program compiles and runs but does not do the job. These are
sometimes the hardest types of errors to fix.

ROBUSTNESS

Always assume that any user of your program is not as smart as you are. You must
therefore aim to write a robust program, namely one that

• Won’t give inaccurate answers for some input data.

• Won’t crash if the input data are invalid.

• Won’t allow execution to proceed if invalid data are entered.

Examples of bad input data include out-of-range numbers, characters instead of numer-
ical data, and a response of “maybe” when “yes” or “no” was asked for.

Note that bad input data that invalidates a computation won’t be detected by Java.
Your program should include code that catches the error, allows the error to be fixed,
and allows program execution to resume.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 210 — #224

✐

✐

✐

✐

✐

✐

210 Chapter 5 Program Design and Analysis

Program Maintenance

Program maintenance involves upgrading the code as circumstances change. New fea-
tures may be added. New programmers may come on board. To make their task easier,
the original program must have clear and precise documentation.

OBJECT-ORIENTED PROGRAM DESIGN

Object-oriented programming has been the dominant programming methodology since
the mid 1990s. It uses an approach that blurs the lines of the waterfall model. Anal-
ysis of the problem, development of the design, and pieces of the implementation all
overlap and influence one another.

Here are the steps in object-oriented design:

• Identify classes to be written.

• Identify behaviors (i.e., methods) for each class.

• Determine the relationships between classes.

• Write the interface (public method headers) for each class.

• Implement the methods.

Identifying Classes

Identify the objects in the program by picking out the nouns in the program speci-
fication. Ignore pronouns and nouns that refer to the user. Select those nouns that
seem suitable as classes, the “big-picture” nouns that describe the major objects in the
application. Some of the other nouns may end up as attributes of the classes.

Many applications have similar object types: a low-level basic component; a collec-
tion of low-level components; a controlling object that puts everything together; and
a display object that could be a GUI (graphical user interface) but doesn’t have to be.

Example 1

Write a program that maintains an inventory of stock items for a small store.

Nouns to consider: inventory, item, store.

Basic Object: StockItem

Collection: Inventory (a list of StockItems)
Controller: Store (has an Inventory, uses a StoreDisplay)
Display: StoreDisplay (could be a GUI)

Example 2

Write a program that simulates a game of bingo. There should be at least two play-
ers, each of whom has a bingo card, and a caller who calls the numbers.

Nouns to consider: game, players, bingo card, caller.

Basic Objects: BingoCard, Caller
Collection: Players (each has a BingoCard)
Controller: GameMaster (sets up the Players and Caller)
Display: BingoDisplay (shows each player’s card and displays winners, etc.)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 211 — #225

✐

✐

✐

✐

✐

✐

Object-Oriented Program Design 211

Example 3

Write a program that creates random bridge deals and displays them in a specified
format. (The specification defines a “deal” as consisting of four hands. It also describes
a deck of cards, and shows how each card should be displayed.)

Nouns to consider: deal, hand, format, deck, card.

Basic Object: Card

Collection: Deck (has an array of Cards)
Hand (has an array of Cards)
Deal (has an array of Hands)
Dealer (has a Deck, or several Decks)

Controller: Formatter (has a Deal and a TableDisplay)
Display: TableDisplay (could be a GUI)

Identifying Behaviors

Find all verbs in the program description that help lead to the solution of the program-
ming task. These are likely behaviors that will probably become the methods of the
classes. Now decide which methods belong in which classes. Recall that the process of
bundling a group of methods and data fields into a class is called encapsulation.

Think carefully about who should do what. Do not ask a basic object to perform
operations for the group. For example, a StockItem should keep track of its own
details (price, description, how many on the shelf, etc.) but should not be required
to search for another item. A Card should know its value and suit but should not be
responsible for keeping track of how many cards are left in a deck. A Caller in a
bingo game should be responsible for keeping track of the numbers called so far and
for producing the next number but not for checking whether a player has bingo: That
is the job of an individual player (element of Players) and his BingoCard.

You will also need to decide which data fields each class will need and which data
structures should store them. For example, if an object represents a list of items, con-
sider an array or ArrayList as the data structure.

Determining Relationships Between Classes

INHERITANCE RELATIONSHIPS

Look for classes with common behaviors. This will help identify inheritance relation-
ships. Recall the is-a relationship—if object1 is-a object2, then object2 is a candidate
for a superclass.

COMPOSITION RELATIONSHIPS

Composition relationships are defined by the has-a relationship. For example, a Nurse

has-a Uniform. Typically, if two classes have a composition relationship, one of them
contains an instance variable whose type is the other class.

Note that a wrapper class always implements a has-a relationship with any objects
that it wraps.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 212 — #226

✐

✐

✐

✐

✐

✐

212 Chapter 5 Program Design and Analysis

UML Diagrams

An excellent way to keep track of the relationships between classes and show the in-
heritance hierarchy in your programs is with a UML (Unified Modeling Language)
diagram. This is a standard graphical scheme used by object-oriented programmers.
Although it is not part of the AP subset, on the AP exam you may be expected to
interpret simple UML diagrams and inheritance hierarchies.

Here is a simplified version of the UML rules:

• Represent classes with rectangles.

• Use angle brackets with the word “abstract” or “interface” to indicate either an
abstract class or interface.

• Show the is-a relationship between classes with an open up-arrow.

• Show the is-a relationship that involves an interface with an open, dotted up-
arrow.

• Show the has-a relationship with a down arrow or sideways arrow (indicates
composition).

Example

Rankable

<<interface>>

Player

<<abstract>>

GoodPlayer BadPlayer

Tutor

Board

ScoreCard

From this diagram you can see at a glance that GoodPlayer and BadPlayer are subclasses
of an abstract class Player, and that each Player implements the Rankable interface.
Every Player has a Board and a ScoreCard, while only the BadPlayer has a Tutor.

Implementing Classes

BOTTOM-UP DEVELOPMENT

For each method in a class, list all of the other classes needed to implement that partic-
ular method. These classes are called collaborators. A class that has no collaborators is
independent.

To implement the classes, often an incremental, bottom-up approach is used. This
means that independent classes are fully implemented and tested before being incorpo-
rated into the overall project. Typically, these are the basic objects of the program, like
StockItem, Card, and BingoCard. Unrelated classes in a programming project can be
implemented by different programmers.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 213 — #227

✐

✐

✐

✐

✐

✐

Object-Oriented Program Design 213

Note that a class can be tested using a dummy Tester class that will be discarded
when the methods of the class are working. Constructors, then methods, should be
added, and tested, one at a time. A driver class that contains a main method can be used
to test the program as you go. The purpose of the driver is to test the class fully before
incorporating it as an object in a new class.

When each of the independent classes is working, classes that depend on just one
other class are implemented and tested, and so on. This may lead to a working, bare
bones version of the project. New features and enhancements can be added later.

Design flaws can be corrected at each stage of development. Remember, a design is
never set in stone: It simply guides the implementation.

TOP-DOWN DEVELOPMENT

In a top-down design, the programmer starts with an overview of the program, select-
ing the highest-level controlling object and the tasks needed. During development of
the program, subsidiary classes may be added to simplify existing classes.

Implementing Methods

PROCEDURAL ABSTRACTION

A good programmer avoids chunks of repeated code wherever possible. To this end,
if several methods in a class require the same task, like a search or a swap, you should
use helper methods. The reduce method in the Rational class on p. 118 is an example
of such a method. Also, wherever possible you should enhance the readability of your
code by using helper methods to break long methods into smaller tasks. The use of
helper methods within a class is known as procedural abstraction and is an example of
top-down development within a class. This process of breaking a long method into a
sequence of smaller tasks is sometimes called stepwise refinement.

INFORMATION HIDING

Instance variables and helper methods are generally declared as private, which pre-
vents client classes from accessing them. This strategy is called information hiding.

STUB METHOD

Sometimes it makes more sense in the development of a class to test a calling method
before testing a method it invokes. A stub is a dummy method that stands in for a
method until the actual method has been written and tested. A stub typically has an
output statement to show that it was called in the correct place, or it may return some
reasonable values if necessary.

ALGORITHM

An algorithm is a precise step-by-step procedure that solves a problem or achieves a
goal. Don’t write any code for an algorithm in a method until the steps are completely
clear to you.

Example 1

A program must test the validity of a four-digit code number that a person will enter
to be able to use a photocopy machine. The number is valid if the fourth digit equals
the remainder when the sum of the first three digits is divided by seven.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 214 — #228

✐

✐

✐

✐

✐

✐

214 Chapter 5 Program Design and Analysis

Classes in the program may include an IDNumber, the four-digit code; Display,
which would handle input and output; and IDMain, the driver for the program. The
data structure used to implement an IDNumber could be an instance variable of type
int, or an instance variable of type String, or four instance variables of type int—one
per digit, and so on.

A top-down design for the program that tests the validity of the number is reflected
in the steps of the main method of IDMain:

Create Display
Read in IDNumber

Check validity
Print message

Each method in this design is tested before the next method is added to main. If the
display will be handled in a GUI (graphical user interface), stepwise refinement of the
design might look like this:

Create Display

Construct a Display

Create window panels
Set up text fields
Add panels and fields to window

Read in IDNumber

Prompt and read

Check validity of IDNumber
Check input

Check characters
Check range

Separate into digits
Check validity property

Print message
Write number
State if valid

NOTE

1. The IDNumber class, which contains the four-digit code, is responsible for the
following operations:

Split value into separate digits
Check condition for validity

The Display class, which contains objects to read and display, must also con-
tain an IDNumber object. It is responsible for the following operations:

Set up display
Read in code number
Display validity message

Creating these two classes with their data fields (instance variables) and opera-
tions (methods) is an example of encapsulation.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 215 — #229

✐

✐

✐

✐

✐

✐

Object-Oriented Program Design 215

2. The Display method readCodeNumber needs private helper methods to check
the input: checkCharacters and checkRange. This is an example of procedu-
ral abstraction (use of helper methods) and information hiding (making them
private).

3. Initially the programmer had just an IDNumber class and a driver class. The
Display class was added as a refinement, when it was realized that handling
the input and message display was separate from checking the validity of the
IDNumber. This is an example of top-down development (adding an auxiliary
class to clarify the code).

4. The IDNumber class contains no data fields that are objects. It is therefore an in-
dependent class. The Display class, which contains an IDNumber data member,
has a composition relationship with IDNumber (Display has-a IDNumber).

5. When testing the final program, the programmer should be sure to include
each of the following as a user-entered code number: a valid four-digit number,
an invalid four-digit number, an n-digit number, where n 6= 4, and a “number”
that contains a nondigit character. A robust program should be able to deal
with all these cases.

Example 2

A program must create a teacher’s grade book. The program should maintain a class
list of students for any number of classes in the teacher’s schedule. A menu should be
provided that allows the teacher to

• Create a new class of students.

• Enter a set of scores for any class.

• Correct any data that’s been entered.

• Display the record of any student.

• Calculate the final average and grade for all students in a class.

• Print a class list, with or without grades.

• Add a student, delete a student, or transfer a student to another class.

• Save all the data in a file.

IDENTIFYING CLASSES

Use the nouns in the specification as a starting point for identifying classes in the
program. The nouns are: program, teacher, grade book, class list, class, student,

Use nouns in the
specification to
identify possible
classes.

schedule, menu, set of scores, data, record, average, grade, and file.
Eliminate each of the following:

program (Always eliminate “program” when used in this context.)
teacher (Eliminate, because he or she is the user.)
schedule (This will be reflected in the name of the external file for

each class, e.g., apcs_period3.dat.)
data, record (These are synonymous with student name, scores, grades,

etc., and will be covered by these features.)
class (This is synonymous with class list.)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 216 — #230

✐

✐

✐

✐

✐

✐

216 Chapter 5 Program Design and Analysis

The following seem to be excellent candidates for classes: GradeBook, ClassList,
Student, and FileHandler. Other possibilities are Menu, ScoreList, and a GUI_Display.

On further thought: Basic independent objects are Student, Menu, Score, and
FileHandler. Group objects are ClassList (collection of students), ScoreList (col-
lection of scores), and AllClasses (collection of ClassLists). The controlling class is
the GradeBook. A Display class is essential for many of the grade book operations, like
showing a class list or displaying information for a single student.

RELATIONSHIPS BETWEEN CLASSES

There are no inheritance relationships. There are many composition relationships
between objects, however. The GradeBook has-a Menu, the ClassList has-a Student

(several, in fact!), a Student has-a name, average, grade, list_of_scores, etc. The
programmer must decide whether to code these attributes as classes or data fields.

IDENTIFYING BEHAVIORS

Use the verbs in the specification to identify required operations in the program.
The verbs are: maintain <list>, provide <menu>, allow <user>, create <list>,

Use verbs in the
specification to
identify possible
methods.

enter <scores>, correct <data>, display <record>, calculate <average>, calculate
<grade>, print <list>, add <student>, delete <student>, transfer <student>, and
save <data>.

You must make some design decisions about which class is responsible for which
behavior. For example, will a ClassList display the record of a single Student, or
will a Student display his or her own record? Who will enter scores—the GradeBook, a
ClassList, or a Student? Is it desirable for a Student to enter scores of other Students?
Probably not!

DECISIONS

Here are some preliminary decisions. The GradeBook will provideMenu. The menu
selection will send execution to the relevant object.

The ClassList will maintain an updated list of each class. It will have these public
methods: addStudent, deleteStudent, transferStudent, createNewClass,
printClassList,printScores, and updateList. A good candidate for a helper method
in this class is search for a given student.

Each Student will have complete personal and grade information. Public methods
will include setName, getName, enterScore, correctData, findAverage, getAverage,
getGrade, and displayRecord.

Saving and retrieving information is crucial to this program. The FileHandler will
take care of openFileForReading, openFileForWriting, closeFiles, loadClass, and
saveClass. The FileHandler class should be written and tested right at the beginning,
using a small dummy class list.

Score, ScoreList, and Student are easy classes to implement. When these are work-
ing, the programmer can go on to ClassList. Finally the Display GUI class, which
will have the GradeBook, can be developed. This is an example of bottom-up develop-
ment.

Example 3

A program simulates a game of Battleships, which is a game between two players,

✐

✐

“ap” — 2014/11/4 — 11:10 — page 217 — #231

✐

✐

✐

✐

✐

✐

Object-Oriented Program Design 217

each of whom has a grid where ships are placed. Each player has five ships:

battleship o o o o o

cruiser o o o o

submarine o o o

destroyer o o

frigate o

The grids of the players’ fleets may look like this. Any two adjacent squares that are
taken must belong to the same ship, i.e., different ships shouldn’t “touch.”

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 o 0 o o o

1 o o o o o 1 o o

2 2 o o

3 o 3 o o

4 o o 4 o o

5 o o 5

6 o o 6 o o o o

7 o o 7

Player 1 Player 2

Each player’s grid is hidden from the other player. Players alternate “shooting” at
each other’s ships by calling out a position, a row and column number. A player must
make an honest response, “hit” or “miss.” If it’s a hit, a player gets another turn. If the
whole ship has been hit, the owner must say something like, “You sank my cruiser.”
Each player must keep track of hits and misses. The first player to sink his opponent’s
fleet is the winner.

IDENTIFYING CLASSES

The nouns in the specification are program, game, players, grid, ship, battleship, cruiser,
submarine, destroyer, frigate, square, position, opponent, row, column, turn, hits,
misses, fleet, winner.

Eliminate each of the following:

program Always eliminate.
row, col These are parts of a given position or square, more suitable

as instance variables for a position or square object.
hits, misses These are simply marked positions and probably don’t need

their own class.
turn Taking a turn is an action and will be described by a method

rather than a class.
opponent This is another word for player.

The following seem to be good candidates for classes: Player, Grid, Position, Ship,
Battleship, Cruiser, Submarine, Destroyer, and Frigate. Additionally, it seems
there should be a GameManager and Display.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 218 — #232

✐

✐

✐

✐

✐

✐

218 Chapter 5 Program Design and Analysis

RELATIONSHIP BETWEEN CLASSES

This program provides two examples of inheritance relationships. Each of the five
ships is-a Ship, and shares common features, like isHit, isSunk, and array of positions.
However, each has a unique name, length, and position in the grid. This means that
Ship is a good candidate for an abstract class with abstract methods like getLength,
getName, and getPositions, which depend on the kind of ship.

The second inheritance relationship is between the grids. There are two types of
grids for each player: his own FleetGrid (the current state of his own ships) and
his opponent’s HitGrid, which keeps track of his hits and misses. Each of these
grids is-a Grid. A grid is a candidate for an interface, with a list of methods like
getAdjacentNeighbors, getRightNeighbor, etc. Each of FleetGrid and HitGridwould
implement Grid.

There are several composition relationships in this program. A Player has-a HitGrid
and a FleetGrid and also has five ships. The GameManager has each of the two Player

objects and also has-a Display. The Display has each of the grids.

IDENTIFYING BEHAVIORS

Use the verbs to identify key methods in the program: simulate <game>, place
<ships>, shoot <at position>, call out <position>, respond <hit or miss>, sink
<ship>, inform that <ship was sunk>, keep track of <hits or misses>, sink
<opponent’s fleet>, win <game>.

You need to decide who will do what. There’s no definitive way of implementing
the program, but it seems clear that the GameManager should run the game and declare
the winner. Should the GameManager also be in charge of announcing if a ship is sunk?
It makes sense because the game manager can see both players’ grids. Each player
should keep track of his calls, so that he can make an intelligent next call and also
respond “hit” or “miss.” Will each player have a display? Or will the Display have
both players? You have to set it up so that a player can’t see his opponent’s FleetGrid,
but he can see his own and also a grid showing the state of the calls he has made. Should
each player have a list of his ships, so he can keep track of the state of his fleet? And
what about each ship in the fleet? Should a ship have a list of its positions, and should
it keep track of if it’s hit or sunk?

Saving and retrieving updated information is crucial to this program. It seems a
bit overwhelming. Where should you start? The Ship classes are low-level classes,
independent of the players and grids. Start with these and test that you can get accu-
rate information about each ship. In your driver program create an ArrayList<Ship>.
Have a loop that prints information about each ship. Polymorphism will take care of
getting the correct information about each ship.

Now try the Grid classes. This is a complicated program where each small piece
should be coded and tested with simple output. For example, a Grid can be displayed
with a two-dimensional array of 0’s and 1’s to show the positions of ships. Other
symbols can be used to show what’s been hit and what’s been sunk.

When everything is working with the grids, you could add a Display class that has
Grid variables and a display method.

Try a Player. Give him a list of ships, two grids and a Display.
Then create a GameManager. Give her two Player variables and be sure she has a

playGame method.
The program development shown above is an example of bottom-up development.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 219 — #233

✐

✐

✐

✐

✐

✐

Program Analysis 219

Vocabulary Summary

Know these terms for the AP exam:

Vocabulary Meaning

software development Writing a program
object-oriented program Uses interacting objects
program specification Description of a task
program design A written plan, an overview of the solution
program implementation The code
test data Input to test the program
program maintenance Keeping the program working and up to date
top-down development Implement main classes first, subsidiary classes later
independent class Doesn’t use other classes of the program in its code
bottom-up development Implement lowest level, independent classes first
driver class Used to test other classes; contains main method
inheritance relationship is-a relationship between classes
composition relationship has-a relationship between classes
inheritance hierarchy Inheritance relationship shown in a tree-like diagram
UML diagram Tree-like representation of relationship between classes
data structure Java construct for storing a data field (e.g., array)
encapsulation Combining data fields and methods in a class
information hiding Using private to restrict access
stepwise refinement Breaking methods into smaller methods
procedural abstraction Using helper methods
algorithm Step-by-step process that solves a problem
stub method Dummy method called by another method being tested
debugging Fixing errors
robust program Screens out bad input
compile-time error Usually a syntax error; prevents program from compiling
syntax error Bad language usage (e.g., missing brace)
run-time error Occurs during execution (e.g., int division by 0)
exception Run-time error thrown by Java method
logic error Program runs but does the wrong thing

PROGRAM ANALYSIS

Program Correctness

Testing that a program works does not prove that the program is correct. After all, you
can hardly expect to test programs for every conceivable set of input data. Computer
scientists have developed mathematical techniques to prove correctness in certain cases,
but these are beyond the scope of the APCS course. Nevertheless, you are expected
to be able to make assertions about the state of a program at various points during its
execution.

Assertions

An assertion is a precise statement about a program at any given point. The idea is
that if an assertion is proved to be true, then the program is working correctly at that
point.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 220 — #234

✐

✐

✐

✐

✐

✐

220 Chapter 5 Program Design and Analysis

An informal step on the way to writing correct algorithms is to be able to make
different kinds of assertions about your code.

PRECONDITION

The precondition for any piece of code, whether it is a method, loop, or block, is a
statement of what is true immediately before execution of that code.

POSTCONDITION

The postcondition for a piece of code is a statement of what is true immediately after
execution of that code.

Efficiency

An efficient algorithm is one that is economical in the use of

• CPU time. This refers to the number of machine operations required to carry
out the algorithm (arithmetic operations, comparisons, data movements, etc.).

• Memory. This refers to the number and complexity of the variables used.

Some factors that affect run-time efficiency include unnecessary tests, excessive move-
ment of data elements, and redundant computations, especially in loops.

Always aim for early detection of output conditions: Your sorting algorithm should
halt when the list is sorted; your search should stop if the key element has been found.

In discussing efficiency of an algorithm, we refer to the best case, worst case, and
average case. The best case is a configuration of the data that causes the algorithm to
run in the least possible amount of time. The worst case is a configuration that leads to
the greatest possible run time. Typical configurations (i.e., not specially chosen data)
give the average case. It is possible that best, worst, and average cases don’t differ much
in their run times.

For example, suppose that a list of distinct random numbers must be searched for a
given key value. The algorithm used is a sequential search starting at the beginning of
the list. In the best case, the key will be found in the first position examined. In the
worst case, it will be in the last position or not in the list at all. On average, the key
will be somewhere in the middle of the list.

Chapter Summary

There’s a lot of vocabulary that you are expected to know in this chapter. Learn the
words!

Never make assumptions about a program specification, and always write a design
before starting to write code. Even if you don’t do this for your own programs, these
are the answers you will be expected to give on the AP exam. You are certain to get
questions about program design. Know the procedures and terminology involved in
developing an object-oriented program.

Be sure you understand what is meant by best case, worst case, and average case for
an algorithm. There will be questions about efficiency on the AP exam.

By now you should know what a precondition and postcondition are.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 221 — #235

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Program Design and Analysis 221

MULTIPLE-CHOICE QUESTIONS ON PROGRAM DESIGN
AND ANALYSIS

1. A program that reads in a five-digit identification number is to be written. The
specification does not state whether zero can be entered as a first digit. The pro-
grammer should
(A) write the code to accept zero as a first digit since zero is a valid digit.
(B) write the code to reject zero as a first digit since five-digit integers do not

start with zero.
(C) eliminate zero as a possibility for any of the digits.
(D) treat the identification number as a four-digit number if the user enters a

number starting with zero.
(E) check with the writer of the specification whether zero is acceptable as a

first digit.

2. Refer to the following three program descriptions:

I Test whether there exists at least one three-digit integer whose value equals
the sum of the squares of its digits.

II Read in a three-digit code number and check if it is valid according to some
given formula.

III Passwords consist of three digits and three capital letters in any order. Read
in a password, and check if there are any repeated characters.

For which of the preceding program descriptions would a ThreeDigitNumber

class be suitable?
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

3. Top-down programming is illustrated by which of the following?
(A) Writing a program from top to bottom in Java
(B) Writing an essay describing how the program will work, without including

any Java code
(C) Using driver programs to test all methods in the order that they’re called in

the program
(D) Writing and testing the lowest level methods first and then combining them

to form appropriate abstract operations
(E) Writing the program in terms of the operations to be performed and then

refining these operations by adding more detail

✐

✐

“ap” — 2014/11/4 — 11:10 — page 222 — #236

✐

✐

✐

✐

✐

✐

222 Chapter 5 Program Design and Analysis

4. Which of the following should influence your choice of a particular algorithm?

I The run time of the algorithm
II The memory requirements of the algorithm

III The ease with which the logic of the algorithm can be understood

(A) I only
(B) III only
(C) I and III only
(D) I and II only
(E) I, II, and III

5. A list of numbers is stored in a sorted array. It is required that the list be main-
tained in sorted order. This requirement leads to inefficient execution for which
of the following processes?

I Summing the five smallest numbers in the list
II Finding the maximum value in the list

III Inserting and deleting numbers

(A) I only
(B) III only
(C) II and III only
(D) I and III only
(E) I, II, and III

6. Which of the following is not necessarily a feature of a robust program?
(A) Does not allow execution to proceed with invalid data
(B) Uses algorithms that give correct answers for extreme data values
(C) Will run on any computer without modification
(D) Will not allow division by zero
(E) Will anticipate the types of errors that users of the program may make

7. A certain freight company charges its customers for shipping overseas according
to this scale:

$80 per ton for a weight of 10 tons or less
$40 per ton for each additional ton over 10 tons but

not exceeding 25 tons
$30 per ton for each additional ton over 25 tons

For example, to ship a weight of 12 tons will cost 10(80)+ 2(40)= $880. To ship
26 tons will cost 10(80)+ 15(40)+ 1(30)= $1430.

A method takes as parameter an integer that represents a valid shipping weight
and outputs the charge for the shipment. Which of the following is the smallest
set of input values for shipping weights that will adequately test this method?
(A) 10, 25
(B) 5, 15, 30
(C) 5, 10, 15, 25, 30
(D) 0, 5, 10, 15, 25, 30
(E) 5, 10, 15, 20, 25, 30

✐

✐

“ap” — 2014/11/4 — 11:10 — page 223 — #237

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Program Design and Analysis 223

8. A code segment calculates the mean of values stored in integers n1, n2, n3, and n4

and stores the result in average, which is of type double. What kind of error is
caused with this statement?

double average = n1 + n2 + n3 + n4 / (double) 4;

(A) Logic
(B) Run-time
(C) Overflow
(D) Syntax
(E) Type mismatch

9. A program evaluates binary arithmetic expressions that are read from an input
file. All of the operands are integers, and the only operators are +, -, *, and
/. In writing the program, the programmer forgot to include a test that checks
whether the right-hand operand in a division expression equals zero. When will
this oversight be detected by the computer?
(A) At compile time
(B) While editing the program
(C) As soon as the data from the input file is read
(D) During evaluation of the expressions
(E) When at least one incorrect value for the expressions is output

10. Which best describes the precondition of a method? It is an assertion that
(A) describes precisely the conditions that must be true at the time the method

is called.
(B) initializes the parameters of the method.
(C) describes the effect of the method on its postcondition.
(D) explains what the method does.
(E) states what the initial values of the local variables in the method must be.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 224 — #238

✐

✐

✐

✐

✐

✐

224 Chapter 5 Program Design and Analysis

11. Consider the following code fragment:

/** Precondition: a1, a2, a3 contain 3 distinct integers.

* Postcondition: max contains the largest of a1, a2, a3.

*/

//first set max equal to larger of a1 and a2

if (a1 > a2)

max = a1;

else

max = a2;

//set max equal to larger of max and a3

if (max < a3)

max = a3;

For this algorithm, which of the following initial setups for a1, a2, and a3 will
cause

(1) the least number of computer operations (best case) and
(2) the greatest number of computer operations (worst case)?

(A) (1) largest value in a1 or a2 (2) largest value in a3

(B) (1) largest value in a2 or a3 (2) largest value in a1

(C) (1) smallest value in a1 (2) largest value in a2

(D) (1) largest value in a2 (2) smallest value in a3

(E) (1) smallest value in a1 or a2 (2) largest value in a3

12. Refer to the following code segment.

/** Compute the mean of integers 1 .. N.

* N is an integer >= 1 and has been initialized.

*/

int k = 1;

double mean, sum = 1.0;

while (k < N)

{

/* loop body */

}

mean = sum / N;

What is the precondition for the while loop?
(A) k ≥ N, sum = 1.0

(B) sum = 1 + 2 + 3 + ... + k

(C) k < N, sum = 1.0

(D) N ≥ 1, k = 1, sum = 1.0

(E) mean = sum / N

✐

✐

“ap” — 2014/11/4 — 11:10 — page 225 — #239

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Program Design and Analysis 225

13. The sequence of Fibonacci numbers is 1, 1, 2, 3, 5, 8, 13, 21, The first two
Fibonacci numbers are each 1. Each subsequent number is obtained by adding
the previous two. Consider this method:

/** Precondition: n >= 1.

* Postcondition: The nth Fibonacci number has been returned.

*/

public static int fib(int n)

{

int prev = 1, next = 1, sum = 1;

for (int i = 3; i <= n; i++)

{

/* assertion */

sum = next + prev;

prev = next;

next = sum;

}

return sum;

}

Which of the following is a correct /* assertion */ about the loop variable i?
(A) 1 ≤ i ≤ n

(B) 0 ≤ i ≤ n

(C) 3 ≤ i ≤ n

(D) 3 < i ≤ n

(E) 3 < i < n+1

14. Refer to the following method.

/** Precondition: a and b are initialized integers.

*/

public static int mystery(int a, int b)

{

int total = 0, count = 1;

while (count <= b)

{

total += a;

count++;

}

return total;

}

What is the postcondition for method mystery?
(A) total= a+ b
(B) total= ab

(C) total= b a

(D) total= a ∗ b
(E) total= a/b

✐

✐

“ap” — 2014/11/4 — 11:10 — page 226 — #240

✐

✐

✐

✐

✐

✐

226 Chapter 5 Program Design and Analysis

15. A program is to be written that prints an invoice for a small store. A copy of the
invoice will be given to the customer and will display

• A list of items purchased.

• The quantity, unit price, and total price for each item.

• The amount due.

Three candidate classes for this program are Invoice, Item, and ItemList, where
an Item is a single item purchased and ItemList is the list of all items purchased.
Which class is a reasonable choice to be responsible for the amountDue method,
which returns the amount the customer must pay?

I Item

II ItemList

III Invoice

(A) I only
(B) III only
(C) I and II only
(D) II and III only
(E) I, II, and III

16. Which is a false statement about classes in object-oriented program design?
(A) If a class C1 has an instance variable whose type is another class, C2, then C1

has-a C2.
(B) If a class C1 is associated with another class, C2, then C1 depends on C2 for

its implementation.
(C) If classes C1 and C2 are related such that C1 is-a C2, then C2 has-a C1.
(D) If class C1 is independent, then none of its methods will have parameters

that are objects of other classes.
(E) Classes that have common methods do not necessarily define an inheritance

relationship.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 227 — #241

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Program Design and Analysis 227

17. A Java program maintains a large database of vehicles and parts for a car dealer-
ship. Some of the classes in the program are Vehicle, Car, Truck, Tire, Circle,
SteeringWheel, and AirBag. The declarations below show the relationships be-
tween classes. Which is a poor choice?

(A) public class Vehicle

{ ...

private Tire[] tires;

private SteeringWheel sw;

...

}

(B) public class Tire extends Circle

{ ...

//inherits methods that compute circumference

//and center point

}

(C) public class Car extends Vehicle

{ ...

//inherits private Tire[] tires from Vehicle class

//inherits private SteeringWheel sw from Vehicle class

...

}

(D) public class Tire

{ ...

private String rating; //speed rating of tire

private Circle boundary;

}

(E) public class SteeringWheel

{ ...

private AirBag ab; //AirBag is stored in SteeringWheel

private Circle boundary;

}

18. A Java programmer has completed a preliminary design for a large program. The
programmer has developed a list of classes, determined the methods for each
class, established the relationships between classes, and written an outline for
each class. Which class(es) should be implemented first?
(A) Any superclasses
(B) Any subclasses
(C) All collaborator classes (classes that will be used to implement other classes)
(D) The class that represents the dominant object in the program
(E) All independent classes (classes that have no references to other classes)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 228 — #242

✐

✐

✐

✐

✐

✐

228 Chapter 5 Program Design and Analysis

Use the program description below for Questions 19–21.

A program is to be written that simulates bumper cars in a video game. The cars
move on a square grid and are located on grid points (x , y), where x and y are integers
between−20 and 20. A bumper car moves in a random direction, either left, right, up,
or down. If it reaches a boundary (i.e., x or y is ±20), then it reverses direction. If it is
about to collide with another bumper car, it reverses direction. Your program should
be able to add bumper cars and run the simulation. One step of the simulation allows
each car in the grid to move. After a bumper car has reversed direction twice, its turn
is over and the next car gets to move.

19. To identify classes in the program, the nouns in the specification are listed:

program, bumper car, grid, grid point, integer, direction, boundary,
simulation

How many nouns in the list should immediately be discarded because they are
unsuitable as classes for the program?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

✐

✐

“ap” — 2014/11/4 — 11:10 — page 229 — #243

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Program Design and Analysis 229

A programmer decides to include the following classes in the program. Refer to them
for Questions 20 and 21.

• Simulation will run the simulation.

• Display will show the state of the game.

• BumperCarwill know its identification number, position in the grid, and current
direction when moving.

• GridPoint will be a position in the grid. It will be represented by two integer
fields, x_coord and y_coord.

• Grid will keep track of all bumper cars in the game, the number of cars, and
their positions in the grid. It will update the grid each time a car moves. It will
be implemented with a two-dimensional array of BumperCar.

20. Which operation should not be the responsibility of the GridPoint class?

(A) isEmpty returns false if grid point contains a BumperCar, true
otherwise

(B) atBoundary returns true if x or y coordinate = ±20, false other-
wise

(C) left if not at left boundary, change grid point to 1 unit left
of current point

(D) up if not at top of grid, change grid point to 1 unit above
current point

(E) get_x return x -coordinate of this point

21. Which method is not suitable for the BumperCar class?

(A) public boolean atBoundary()

//Returns true if BumperCar at boundary, false otherwise.

(B) public void selectRandomDirection()

//Select random direction (up, down, left, or right)

// at start of turn.

(C) public void reverseDirection()

//Move to grid position that is in direction opposite to

// current direction.

(D) public void move()

//Take turn to move. Stop move after two changes

// of direction.

(E) public void update()

//Modify Grid to reflect new position after each stage

// of move.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 230 — #244

✐

✐

✐

✐

✐

✐

230 Chapter 5 Program Design and Analysis

ANSWER KEY

1. E

2. D

3. E

4. E

5. B

6. C

7. C

8. A

9. D

10. A

11. A

12. D

13. C

14. D

15. D

16. C

17. B

18. E

19. C

20. A

21. E

ANSWERS EXPLAINED

1. (E) A programmer should never make unilateral decisions about a program spec-
ification. When in doubt, check with the person who wrote the specification.

2. (D) In I and II a three-digit number is the object being manipulated. For III,
however, the object is a six-character string, which suggests a class other than a
ThreeDigitNumber.

3. (E) Top-down programming consists of listing the methods for the main object
and then using stepwise refinement to break each method into a list of subtasks.
Eliminate choices A, C, and D: Top-down programming refers to the design and
planning stage and does not involve any actual writing of code. Choice B is closer
to the mark, but “top-down” implies a list of operations, not an essay describing
the methods.

4. (E) All three considerations are valid when choosing an algorithm. III is espe-
cially important if your code will be part of a larger project created by several
programmers. Yet even if you are the sole writer of a piece of software, be aware
that your code may one day need to be modified by others.

5. (B) A process that causes excessive data movement is inefficient. Inserting an
element into its correct (sorted) position involves moving elements to create a
slot for this element. In the worst case, the new element must be inserted into the
first slot, which involves moving every element up one slot. Similarly, deleting
an element involves moving elements down a slot to close the “gap.” In the worst
case, where the first element is deleted, all elements in the array will need to
be moved. Summing the five smallest elements in the list means summing the
first five elements. This requires no testing of elements and no excessive data
movement, so it is efficient. Finding the maximum value in a sorted list is very
fast—just select the element at the appropriate end of the list.

6. (C) “Robustness” implies the ability to handle all data input by the user and to
give correct answers even for extreme values of data. A program that is not robust
may well run on another computer without modification, and a robust program
may need modification before it can run on another computer.

7. (C) Eliminate choice D because 0 is an invalid weight, and you may infer from the
method description that invalid data have already been screened out. Eliminate

✐

✐

“ap” — 2014/11/4 — 11:10 — page 231 — #245

✐

✐

✐

✐

✐

✐

Answers Explained 231

choice E because it tests two values in the range 10–25. (This is not wrong, but
choice C is better.) Eliminate choice A since it tests only the endpoint values.
Eliminate B because it tests no endpoint values.

8. (A) The statement is syntactically correct, but as written it will not find the
mean of the integers. The bug is therefore an intent or logic error. To execute as
intended, the statement needs parentheses:

double average = (n1 + n2 + n3 + n4) / (double) 4;

9. (D) The error that occurs is a run-time error caused by an attempt to divide
by zero (ArithmeticException). Don’t be fooled by choice C. Simply reading an
expression 8/0 from the input file won’t cause the error. Note that if the operands
were of type double, the correct answer would be E. In this case, dividing by zero
does not cause an exception; it gives an answer of Infinity. Only on inspecting
the output would it be clear that something was wrong.

10. (A) A precondition does not concern itself with the action of the method, the
local variables, the algorithm, or the postcondition. Nor does it initialize the
parameters. It simply asserts what must be true directly before execution of the
method.

11. (A) The best case causes the fewest computer operations, and the worst case
leads to the maximum number of operations. In the given algorithm, the initial
test if (a1 > a2) and the assignment to max will occur irrespective of which
value is the largest. The second test, if (max < a3), will also always occur. The
final statement, max = a3, will occur only if the largest value is in a3; thus, this
represents the worst case. So the best case must have the biggest value in a1 or
a2.

12. (D) The precondition is an assertion about the variables in the loop just before
the loop is executed. Variables N, k, and sum have all been initialized to the values
shown in choice D. Choice C is wrong because k may equal N. Choice A is wrong
because k may be less than N. Choice E is wrong because mean is not defined until
the loop has been exited. Choice B is wrong because it omits the assertions about
N and k.

13. (C) Eliminate choices A and B, since i is initialized to 3 in the for loop. Choices
D and E are wrong because i is equal to 3 the first time through the loop.

14. (D) a is being added to total b times, which means that at the end of execution
total = a*b.

15. (D) It makes sense for an Item to be responsible for its name, unit price, quantity,
and total price. It is not reasonable for it to be responsible for other Items. Since
an ItemList, however, will contain information for all the Items purchased, it is
reasonable to have it also compute the total amountDue. It makes just as much
sense to give an Invoice the responsibility for displaying information for the
items purchased, as well as providing a final total, amountDue.

16. (C) The is-a relationship defines inheritance, while the has-a relationship defines
association. These types of relationship are mutually exclusive. For example, a
graduate student is-a student. It doesn’t make sense to say a student has-a graduate
student!

17. (B) Even though it’s convenient for a Tire object to inherit Circle methods, an
inheritance relationship between a Tire and a Circle is incorrect: It is false to say

✐

✐

“ap” — 2014/11/4 — 11:10 — page 232 — #246

✐

✐

✐

✐

✐

✐

232 Chapter 5 Program Design and Analysis

that a Tire is-a Circle. A Tire is a car part, while a Circle is a geometric shape.
Notice that there is an association relationship between a Tire and a Circle: A
Tire has-a Circle as its boundary.

18. (E) Independent classes do not have relationships with other classes and can
therefore be more easily coded and tested.

19. (C) The word “program” is never included when it’s used in this context. The
word “integer” describes the type of coordinates x and y and has no further use
in the specification. While words like “direction,” “boundary,” and “simulation”
may later be removed from consideration as classes, it is not unreasonable to keep
them as candidates while you ponder the design.

20. (A) A GridPoint object knows only its x and y coordinates. It has no informa-
tion about whether a BumperCar is at that point. Notice that operations in all of
the other choices depend on the x and y coordinates of a GridPoint object. An
isEmpty method should be the responsibility of the Grid class that keeps track of
the status of each position in the grid.

21. (E) A BumperCar is responsible for itself—keeping track of its own position, se-
lecting an initial direction, making a move, and reversing direction. It is not,
however, responsible for maintaining and updating the grid. That should be done
by the Grid class.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 233 — #247

✐

✐

✐

✐

✐

✐

Arrays and Array Lists CHAPTER 6

Should array indices start at 0 or 1?
My compromise of 0.5 was rejected,

without, I thought, proper consideration.
—S. Kelly-Bootle

Chapter Goals

• One-dimensional arrays

• The ArrayList<E> class

• Two-dimensional arrays

• The List<E> interface

ONE-DIMENSIONAL ARRAYS

An array is a data structure used to implement a list object, where the elements in the
list are of the same type; for example, a class list of 25 test scores, a membership list of
100 names, or a store inventory of 500 items.

For an array of N elements in Java, index values (“subscripts”) go from 0 to N − 1.
Individual elements are accessed as follows: If arr is the name of the array, the elements
are arr[0], arr[1], . . . , arr[N-1]. If a negative subscript is used, or a subscript k where
k ≥N , an ArrayIndexOutOfBoundsException is thrown.

Initialization

In Java, an array is an object; therefore, the keyword new must be used in its creation.
The size of an array remains fixed once it has been created. As with String objects,
however, an array reference may be reassigned to a new array of a different size.

Example

All of the following are equivalent. Each creates an array of 25 double values and
assigns the reference data to this array.

1. double[] data = new double[25];

2. double data[] = new double[25];

3. double[] data;

data = new double[25];

A subsequent statement like

233

✐

✐

“ap” — 2014/11/4 — 11:10 — page 234 — #248

✐

✐

✐

✐

✐

✐

234 Chapter 6 Arrays and Array Lists

data = new double[40];

reassigns data to a new array of length 40. The memory allocated for the previous
data array is recycled by Java’s automatic garbage collection system.

When arrays are declared, the elements are automatically initialized to zero for the
primitive numeric data types (int and double), to false for boolean variables, or to
null for object references.

It is possible to declare several arrays in a single statement. For example,

int[] intList1, intList2; //declares intList1 and intList2 to

//contain int values

int[] arr1 = new int[15], arr2 = new int[30]; //reserves 15 slots

//for arr1, 30 for arr2

INITIALIZER LIST

Small arrays whose values are known can be declared with an initializer list. For exam-
ple, instead of writing

int[] coins = new int[4];

coins[0] = 1;

coins[1] = 5;

coins[2] = 10;

coins[3] = 25;

you can write

int[] coins = {1, 5, 10, 25};

This construction is the one case where new is not required to create an array.

Length of Array

A Java array has a final public instance variable (i.e., a constant), length, which can be
accessed when you need the number of elements in the array. For example,

String[] names = new String[25];

< code to initialize names >

//loop to process all names in array

for (int i = 0; i < names.length; i++)

< process names >

NOTE

1. The array subscripts go from 0 to names.length-1; therefore, the test on i in
the for loop must be strictly less than names.length.

2. length is not a method and therefore is not followed by parentheses. Contrast
this with String objects, where length is a method and must be followed by
parentheses. For example,

String s = "Confusing syntax!";

int size = s.length(); //assigns 17 to size

✐

✐

“ap” — 2014/11/4 — 11:10 — page 235 — #249

✐

✐

✐

✐

✐

✐

One-Dimensional Arrays 235

Traversing an Array

Use a for-each loop whenever you need access to every element in an array without
replacing or removing any elements. Use a for loop in all other cases: to access the
index of any element, to replace or remove elements, or to access just some of the

Do not use a for-each
loop to remove or
replace elements of
an array.elements.

Note that if you have an array of objects (not primitive types), you can use the for-
each loop and mutator methods of the object to modify the fields of any instance (see
the shuffleAll method on p. 239).

Example 1

/** @return the number of even integers in array arr of integers */

public static int countEven(int[] arr)

{

int count = 0;

for (int num : arr)

if (num % 2 == 0) //num is even

count++;

return count;

}

Example 2

/** Change each even-indexed element in array arr to 0.

* Precondition: arr contains integers.

* Postcondition: arr[0], arr[2], arr[4], ... have value 0.

*/

public static void changeEven(int[] arr)

{

for (int i = 0; i < arr.length; i += 2)

arr[i] = 0;

}

Arrays as Parameters

Since arrays are treated as objects, passing an array as a parameter means passing its
object reference. No copy is made of the array. Thus, the elements of the actual array
can be accessed—and modified.

Example 1

Array elements accessed but not modified:

/** @return index of smallest element in array arr of integers */

public static int findMin (int[] arr)

{

int min = arr[0];

int minIndex = 0;

for (int i = 1; i < arr.length; i++)

if (arr[i] < min) //found a smaller element

{

min = arr[i];

minIndex = i;

}

return minIndex;

}

To call this method (in the same class that it’s defined):

✐

✐

“ap” — 2014/11/4 — 11:10 — page 236 — #250

✐

✐

✐

✐

✐

✐

236 Chapter 6 Arrays and Array Lists

int[] array;

< code to initialize array >
int min = findMin(array);

Example 2

Array elements modified:

/** Add 3 to each element of array b. */

public static void changeArray(int[] b)

{

for (int i = 0; i < b.length; i++)

b[i] += 3;

}

To call this method (in the same class):

int[] list = {1, 2, 3, 4};

changeArray(list);

System.out.print("The changed list is ");

for (int num : list)

System.out.print(num + " ");

The output produced is

The changed list is 4 5 6 7

Look at the memory slots to see how this happens:

When an array is
passed as a parameter,
it is possible to alter
the contents of the
array. Before the method call: At the start of the method call:

list

1 2 3 4

list

1 2 3 4

b

Just before exiting the method: After exiting the method:

list

4 5 6 7

b

list

4 5 6 7

Example 3

Contrast the changeArray method with the following attempt to modify one array
element:

/** Add 3 to an element. */

public static void changeElement(int n)

{ n += 3; }

Here is some code that invokes this method:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 237 — #251

✐

✐

✐

✐

✐

✐

One-Dimensional Arrays 237

int[] list = {1, 2, 3, 4};

System.out.print("Original array: ");

for (int num : list)

System.out.print(num + " ");

changeElement(list[0]);

System.out.print("\nModified array: ");

for (int num : list)

System.out.print(num + " ");

Contrary to the programmer’s expectation, the output is

Original array: 1 2 3 4

Modified array: 1 2 3 4

A look at the memory slots shows why the list remains unchanged.

Before the method call: At the start of the method call:

list

1 2 3 4

list

1 2 3 4

n

1

Just before exiting the method: After exiting the method:

list

1 2 3 4

n

4

list

1 2 3 4

The point of this is that primitive types—including single array elements of type int

or double—are passed by value. A copy is made of the actual parameter, and the copy
is erased on exiting the method.

Example 4

/** Swap arr[i] and arr[j] in array arr. */

public static void swap(int[] arr, int i, int j)

{

int temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

To call the swap method:

int[] list = {1, 2, 3, 4};

swap(list, 0, 3);

System.out.print("The changed list is: ");

for (int num : list)

System.out.print(num + " ");

The output shows that the program worked as intended:

The changed list is: 4 2 3 1

✐

✐

“ap” — 2014/11/4 — 11:10 — page 238 — #252

✐

✐

✐

✐

✐

✐

238 Chapter 6 Arrays and Array Lists

Example 5

/** @return array containing NUM_ELEMENTS integers read from the keyboard

* Precondition: Array undefined.

* Postcondition: Array contains NUM_ELEMENTS integers read from

* the keyboard.

*/

public int[] getIntegers()

{

int[] arr = new int[NUM_ELEMENTS];

for (int i = 0; i < arr.length; i++)

{

System.out.println("Enter integer: ");

arr[i] = IO.readInt(); //read user input

}

return arr;

}

To call this method:

int[] list = getIntegers();

Array Variables in a Class

Consider a simple Deck class in which a deck of cards is represented by the integers 0
to 51.

public class Deck

{

private int[] deck;

public static final int NUMCARDS = 52;

/** constructor */

public Deck()

{

deck = new int[NUMCARDS];

for (int i = 0; i < NUMCARDS; i++)

deck[i] = i;

}

/** Write contents of Deck. */

public void writeDeck()

{

for (int card : deck)

System.out.print(card + " ");

System.out.println();

System.out.println();

}

/** Swap arr[i] and arr[j] in array arr. */

private void swap(int[] arr, int i, int j)

{

int temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 239 — #253

✐

✐

✐

✐

✐

✐

One-Dimensional Arrays 239

/** Shuffle Deck: Generate a random permutation by picking a

* random card from those remaining and putting it in the

* next slot, starting from the right.

*/

public void shuffle()

{

int index;

for (int i = NUMCARDS - 1; i > 0; i--)

{

//generate an int from 0 to i

index = (int) (Math.random() * (i + 1));

swap(deck, i, index);

}

}

}

Here is a simple driver class that tests the Deck class:

public class DeckMain

{

public static void main(String args[])

{

Deck d = new Deck();

d.shuffle();

d.writeDeck();

}

}

NOTE

There is no evidence of the array that holds the deck of cards—deck is a private instance
variable and is therefore invisible to clients of the Deck class.

Array of Class Objects

Suppose a large card tournament needs to keep track of many decks. The code to do
this could be implemented with an array of Deck:

public class ManyDecks

{

private Deck[] allDecks;

public static final int NUMDECKS = 500;

/** constructor */

public ManyDecks()

{

allDecks = new Deck[NUMDECKS];

for (int i = 0; i < NUMDECKS; i++)

allDecks[i] = new Deck();

}

/** Shuffle the Decks. */

public void shuffleAll()

{

for (Deck d : allDecks)

d.shuffle();

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 240 — #254

✐

✐

✐

✐

✐

✐

240 Chapter 6 Arrays and Array Lists

/** Write contents of all the Decks. */

public void printDecks()

{

for (Deck d : allDecks)

d.writeDeck();

}

}

NOTE

1. The statement

allDecks = new Deck[NUMDECKS];

creates an array, allDecks, of 500 Deck objects. The default initialization for
these Deck objects is null. In order to initialize them with actual decks, the
Deck constructor must be called for each array element. This is achieved with
the for loop of the ManyDecks constructor.

2. In the shuffleAll method, it’s OK to use a for-each loop to modify each deck
in the array with the mutator method shuffle.

Analyzing Array Algorithms

Example 1

Discuss the efficiency of the countNegsmethod below. What are the best and worst
case configurations of the data?

/** Precondition: arr[0],...,arr[arr.length-1] contain integers.

* @return the number of negative values in arr

*/

public static int countNegs(int[] arr)

{

int count = 0;

for (int num : arr)

if (num < 0)

count++;

return count;

}

Solution:
This algorithm sequentially examines each element in the array. In the best case, there
are no negative elements, and count++ is never executed. In the worst case, all the
elements are negative, and count++ is executed in each pass of the for loop.

Example 2

The code fragment below inserts a value, num, into its correct position in a sorted
array of integers. Discuss the efficiency of the algorithm.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 241 — #255

✐

✐

✐

✐

✐

✐

Array Lists 241

/** Precondition:
* - arr[0],...,arr[n-1] contain integers sorted in increasing order.

* - n < arr.length.

* Postcondition: num has been inserted in its correct position.

*/

{

//find insertion point

int i = 0;

while (i < n && num > arr[i])

i++;

//if necessary, move elements arr[i]...arr[n-1] up 1 slot

for (int j = n; j >= i + 1; j--)

arr[j] = arr[j-1];

//insert num in i-th slot and update n

arr[i] = num;

n++;

}

Solution:
In the best case, num is greater than all the elements in the array: Because it gets inserted
at the end of the list, no elements must be moved to create a slot for it. The worst case
has num less than all the elements in the array. In this case, num must be inserted in the
first slot, arr[0], and every element in the array must be moved up one position to
create a slot.

This algorithm illustrates a disadvantage of arrays: Insertion and deletion of an ele-
ment in an ordered list is inefficient, since, in the worst case, it may involve moving all
the elements in the list.

ARRAY LISTS

An ArrayList provides an alternative way of storing a list of objects and has the fol-
lowing advantages over an array:

• An ArrayList shrinks and grows as needed in a program, whereas an array has
a fixed length that is set when the array is created.

• In an ArrayList list, the last slot is always list.size()-1, whereas in a par-
tially filled array, you, the programmer, must keep track of the last slot currently
in use.

• For an ArrayList, you can do insertion or deletion with just a single statement.
Any shifting of elements is handled automatically. In an array, however, inser-
tion or deletion requires you to write the code that shifts the elements.

The Collections API

The ArrayList class is in the Collections API (Application Programming Interface),
which is a library provided by Java. Most of the API is in java.util. This library gives
the programmer access to prepackaged data structures and the methods to manipulate
them. The implementations of these container classes are invisible and should not be
of concern to the programmer. The code works. And it is reusable.

All of the collections classes, including ArrayList, have the following features in
common:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 242 — #256

✐

✐

✐

✐

✐

✐

242 Chapter 6 Arrays and Array Lists

• They are designed to be both memory and run-time efficient.

• They provide methods for insertion and removal of items (i.e., they can grow
and shrink).

• They provide for iteration over the entire collection.

The Collections Hierarchy

Inheritance is a defining feature of the Collections API. The interfaces that are used
to manipulate the collections specify the operations that must be defined for any con-
tainer class that implements that interface.

The diagram below shows that the ArrayList class implements the List interface.

List

<<interface>>

ArrayList

Collections and Generics

The collections classes are generic, with type parameters. Thus, List<E> and
ArrayList<E> contain elements of type E.

When a generic class is declared, the type parameter is replaced by an actual object
type. For example,

private ArrayList<Clown> clowns;

NOTE

1. The clowns list must contain only Clownobjects. An attempt to add an Acrobat

to the list, for example, will cause a compile-time error.
2. Since the type of objects in a generic class is restricted, the elements can be

accessed without casting.
3. All of the type information in a program with generic classes is examined at

compile time. After compilation the type information is erased. This feature
of generic classes is known as erasure. During execution of the program, any
attempt at incorrect casting will lead to a ClassCastException.

Auto-Boxing and -Unboxing

There are no primitive types in collections classes. An ArrayListmust contain objects,
not types like double and int. Numbers must therefore be boxed—placed in wrapper
classes like Integer and Double—before insertion into an ArrayList.

Auto-boxing is the automatic wrapping of primitive types in their wrapper classes.
To retrieve the numerical value of an Integer (or Double) stored in an ArrayList,

the intValue() (or doubleValue()) method must be invoked (unwrapping). Auto-
unboxing is the automatic conversion of a wrapper class to its corresponding prim-
itive type. This means that you don’t need to explicitly call the intValue() or

✐

✐

“ap” — 2014/11/4 — 11:10 — page 243 — #257

✐

✐

✐

✐

✐

✐

The List<E> Interface 243

doubleValue() methods. Be aware that if a program tries to auto-unbox null, the
method will throw a NullPointerException.

Note that while auto-boxing and -unboxing cut down on code clutter, these oper-
ations must still be performed behind the scenes, leading to decreased run-time effi-
ciency. It is much more efficient to assign and access primitive types in an array than
an ArrayList. You should therefore consider using an array for a program that manip-
ulates sequences of numbers and does not need to use objects.

NOTE

Auto-boxing and -unboxing is a feature in Java 5.0 and later versions and will not be
tested on the AP exam. It is OK, however, to use this convenient feature in code that
you write in the free-response questions.

THE List<E> INTERFACE

A class that implements the List<E> interface—ArrayList<E>, for example—is a list of
elements of type E. In a list, duplicate elements are allowed. The elements of the list
are indexed, with 0 being the index of the first element.

A list allows you to

• Access an element at any position in the list using its integer index.

• Insert an element anywhere in the list.

• Iterate over all elements using ListIteratoror Iterator (not in the AP subset).

The Methods of List<E>

Here are the methods you should know.

boolean add(E obj)

Appends obj to the end of the list. Always returns true. If the specified element is not
of type E, throws a ClassCastException.

int size()

Returns the number of elements in the list.

E get(int index)

Returns the element at the specified index in the list.

E set(int index, E element)

Replaces item at specified index in the list with specified element. Returns the element
that was previously at index. Throws a ClassCastException if the specified element
is not of type E.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 244 — #258

✐

✐

✐

✐

✐

✐

244 Chapter 6 Arrays and Array Lists

void add(int index, E element)

Inserts element at specified index. Elements from position index and higher have 1
added to their indices. Size of list is incremented by 1.

E remove(int index)

Removes and returns the element at the specified index. Elements to the right of
position index have 1 subtracted from their indices. Size of list is decreased by 1.

Optional topic Iterator<E> iterator()

Returns an iterator over the elements in the list, in proper sequence, starting at the
first element.

The ArrayList<E> Class

This is an array implementation of the List<E> interface. The main difference between
an array and an ArrayList is that an ArrayList is resizable during run time, whereas
an array has a fixed size at construction.

Shifting of elements, if any, caused by insertion or deletion, is handled automatically
by ArrayList. Operations to insert or delete at the end of the list are very efficient. Be
aware, however, that at some point there will be a resizing; but, on average, over time,
an insertion at the end of the list is a single, quick operation. In general, insertion or
deletion in the middle of an ArrayList requires elements to be shifted to accommodate
a new element (add), or to close a “hole” (remove).

THE METHODS OF ArrayList<E>

In addition to the two add methods, and size, get, set, and remove, you must know
the following constructor.

ArrayList()

Constructs an empty list.

NOTE

Each method above that has an index parameter—add, get, remove, and set—throws
an IndexOutOfBoundsException if index is out of range. For get, remove, and set,
index is out of range if

index < 0 || index >= size()

For add, however, it is OK to add an element at the end of the list. Therefore index is
out of range if

index < 0 || index > size()

✐

✐

“ap” — 2014/11/4 — 11:10 — page 245 — #259

✐

✐

✐

✐

✐

✐

The List<E> Interface 245

Using ArrayList<E>

Example 1

//Create an ArrayList containing 0 1 4 9.

List<Integer> list = new ArrayList<Integer>(); //An ArrayList is-a List

for (int i = 0; i < 4; i++)

list.add(i * i); //example of auto-boxing

//i*i wrapped in an Integer before insertion

Integer intOb = list.get(2); //assigns Integer with value 4 to intOb.

//Leaves list unchanged.

int n = list.get(3); //example of auto-unboxing

//Integer is retrieved and converted to int

//n contains 9

Integer x = list.set(3, 5); //list is 0 1 4 5

//x contains Integer with value 9

x = list.remove(2); //list is 0 1 5

//x contains Integer with value 4

list.add(1, 7); //list is 0 7 1 5

list.add(2, 8); //list is 0 7 8 1 5

Example 2

//Traversing an ArrayList of Integer.

//Print the elements of list, one per line.

for (Integer num : list)

System.out.println(num);

Example 3

/** Precondition: List list is an ArrayList that contains Integer

* values sorted in increasing order.

* Postcondition: value inserted in its correct position in list.

*/

public static void insert(List<Integer> list, Integer value)

{

int index = 0;

//find insertion point

while (index < list.size() &&

value.compareTo(list.get(index)) > 0)

index++;

//insert value

list.add(index, value);

}

NOTE

Suppose value is larger than all the elements in list. Then the insert method will
throw an IndexOutOfBoundsException if the first part of the test is omitted, namely
index < list.size().

✐

✐

“ap” — 2014/11/4 — 11:10 — page 246 — #260

✐

✐

✐

✐

✐

✐

246 Chapter 6 Arrays and Array Lists

Example 4
/** @return an ArrayList of random integers from 0 to 100 */

public static List<Integer> getRandomIntList()

{

List<Integer> list = new ArrayList<Integer>();

System.out.print("How many integers? ");

int length = IO.readInt(); //read user input

for (int i = 0; i < length; i++)

{

int newNum = (int) (Math.random() * 101);

list.add(new Integer(newNum));

}

return list;

}

NOTE
1. The variable list is declared to be of type List<Integer> (the interface) but is

instantiated as type ArrayList<Integer> (the implementation).
2. The add method in getRandomIntList is the List method that appends its

parameter to the end of the list.

Example 5

/** Swap two values in list, indexed at i and j. */

public static void swap(List<E> list, int i, int j)

{

E temp = list.get(i);

list.set(i, list.get(j));

list.set(j, temp);

}

Example 6

/** Print all negatives in list a.

* Precondition: a contains Integer values.

*/

public static void printNegs(List<Integer> a)

{

System.out.println("The negative values in the list are: ");

for (Integer i : a)

if (i.intValue() < 0)

System.out.println(i);

}

Example 7

/** Change every even-indexed element of strList to the empty string.

* Precondition: strList contains String values.

*/

public static void changeEvenToEmpty(List<String> strList)

{

boolean even = true;

int index = 0;

while (index < strList.size())

{

if (even)

strList.set(index, "");

index++;

even = !even;

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 247 — #261

✐

✐

✐

✐

✐

✐

Collections and Iterators 247

Optional topic

COLLECTIONS AND ITERATORS

Definition of an Iterator

An iterator is an object whose sole purpose is to traverse a collection, one element
at a time. During iteration, the iterator object maintains a current position in the
collection, and is the controlling object in manipulating the elements of the collection.

The Iterator<E> Interface

The package java.util provides a generic interface, Iterator<E>, whose methods are
hasNext, next, and remove. The Java Collections API allows iteration over each of its
collections classes.

THE METHODS OF Iterator<E>

boolean hasNext()

Returns true if there’s at least one more element to be examined, false otherwise.

E next()

Returns the next element in the iteration. If no elements remain, the method throws a
NoSuchElementException.

void remove()

Deletes from the collection the last element that was returned by next. This method
can be called only once per call to next. It throws an IllegalStateException if the
next method has not yet been called, or if the remove method has already been called
after the last call to next.

Using a Generic Iterator

To iterate over a parameterized collection, you must use a parameterized iterator whose
parameter is the same type.

Example 1

List<String> list = new ArrayList<String>();

< code to initialize list with strings>
//Print strings in list, one per line.

Iterator<String> itr = list.iterator();

while (itr.hasNext())

System.out.println(itr.next());

NOTE

1. Only classes that allow iteration can use the for-each loop. This is because the
loop operates by using an iterator. Thus, the loop in the above example is
equivalent to

✐

✐

“ap” — 2014/11/4 — 11:10 — page 248 — #262

✐

✐

✐

✐

✐

✐

(continued)

248 Chapter 6 Arrays and Array Lists

for (String str : list) //no iterator in sight!

System.out.println(str);

2. Recall, however, that a for-each loop cannot be used to remove elements from
the list. The easiest way to “remove all occurrences of . . . ” from an ArrayList

is to use an iterator.

Example 2

/** Remove all 2-character strings from strList.

* Precondition: strList initialized with String objects.

*/

public static void removeTwos(List<String> strList)

{

Iterator<String> itr = strList.iterator();

while (itr.hasNext())

if (itr.next().length() == 2)

itr.remove();

}

Example 3

/** Assume a list of integer strings.

* Remove all occurrences of "6" from the list.

*/

Iterator<String> itr = list.iterator();

while (itr.hasNext())

{

String num = itr.next();

if (num.equals("6"))

{

itr.remove();

System.out.println(list);

}

}

If the original list is 2 6 6 3 5 6 the output will be

[2, 6, 3, 5, 6]

[2, 3, 5, 6]

[2, 3, 5]

Example 4

/** Illustrate NoSuchElementException. */

Iterator<SomeType> itr = list.iterator();

while (true)

System.out.println(itr.next());

The list elements will be printed, one per line. Then an attempt will be made to move
past the end of the list, causing a NoSuchElementException to be thrown. The loop
can be corrected by replacing true with itr.hasNext().

✐

✐

“ap” — 2014/11/4 — 11:10 — page 249 — #263

✐

✐

✐

✐

✐

✐

(continued)

Two-Dimensional Arrays 249

Example 5

/** Illustrate IllegalStateException. */

Iterator<SomeType> itr = list.iterator();

SomeType ob = itr.next();

itr.remove();

itr.remove();

Every remove call must be preceded by a next. The second itr.remove() statement
will therefore cause an IllegalStateException to be thrown.

NOTE

In a given program, the declaration

Iterator<SomeType> itr = list.iterator();

must be made every time you need to initialize the iterator to the beginning of the list.

Example 6

/** Remove all negatives from intList.

* Precondition: intList contains Integer objects.

*/

public static void removeNegs(List<Integer> intList)

{

Iterator<Integer> itr = intList.iterator();

while (itr.hasNext())

if (itr.next().intValue() < 0)

itr.remove();

}

NOTE

1. In Example 6 on p. 246 a for-each loop is used because each element is accessed
without changing the list. An iterator operates unseen in the background.
Contrast this with Example 6 above, where the list is changed by removing

Every call to
remove must be
preceded by next.

elements. Here you cannot use a for-each loop.
2. To test for a negative value, you could use

if (itr.next() < 0)

because of auto-unboxing.
3. Use a for-each loop for accessing and modifying objects in a list. Use an iterator

for removal of objects.

TWO-DIMENSIONAL ARRAYS

A two-dimensional array (matrix) is often the data structure of choice for objects like
board games, tables of values, theater seats, and mazes.

Look at the following 3 × 4 matrix:

2 6 8 7
1 5 4 0
9 3 2 8

✐

✐

“ap” — 2014/11/4 — 11:10 — page 250 — #264

✐

✐

✐

✐

✐

✐

250 Chapter 6 Arrays and Array Lists

If mat is the matrix variable, the row subscripts go from 0 to 2 and the column sub-
scripts go from 0 to 3. The element mat[1][2] is 4, whereas mat[0][2] and mat[2][3]

are both 8. As with one-dimensional arrays, if the subscripts are out of range, an
ArrayIndexOutOfBoundsException is thrown.

Declarations

Each of the following declares a two-dimensional array:

int[][] table; //table can reference a 2-D array of integers

//table is currently a null reference

double[][] matrix = new double[3][4]; //matrix references a 3 × 4

//array of real numbers.

//Each element has value 0.0

String[][] strs = new String[2][5]; //strs references a 2 × 5

//array of String objects.

//Each element is null

An initializer list can be used to specify a two-dimensional array:

int[][] mat = { {3, 4, 5}, //row 0

{6, 7, 8} }; //row 1

This defines a 2×3 rectangular array (i.e., one in which each row has the same number
of elements).

The initializer list is a list of lists in which each inside list represents a row of the
matrix.

Matrix as Array of Row Arrays

A matrix is implemented as an array of rows, where each row is a one-dimensional
array of elements. Suppose mat is the 3× 4 matrix

2 6 8 7

1 5 4 0

9 3 2 8

Then mat is an array of three arrays:

mat[0] contains {2, 6, 8, 7}

mat[1] contains {1, 5, 4, 0}

mat[2] contains {9, 3, 2, 8}

The quantity mat.length represents the number of rows. In this case it equals 3 be-
cause there are three row-arrays in mat. For any given row k, where 0≤ k< mat.length,
the quantity mat[k].length represents the number of elements in that row, namely
the number of columns. (Java allows a variable number of elements in each row.
Since these “jagged arrays” are not part of the AP Java subset, you can assume that
mat[k].length is the same for all rows k of the matrix, i.e., that the matrix is rectan-
gular.)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 251 — #265

✐

✐

✐

✐

✐

✐

Two-Dimensional Arrays 251

Processing a Two-Dimensional Array

There are three common ways to traverse a two-dimensional array:

• row-column (for accessing elements, modifying elements that are class objects,
or replacing elements)

• for-each loop (for accessing elements or modifying elements that are class objects,
but no replacement)

• row-by-row array processing (for accessing, modifying, or replacement)

Example 1

Find the sum of all elements in a matrix mat. Here is a row-column traversal.

/** Precondition: mat is initialized with integer values. */

int sum = 0;

for (int r = 0; r < mat.length; r++)

for (int c = 0; c < mat[r].length; c++)

sum += mat[r][c];

NOTE

1. mat[r][c] represents the rth row and the cth column.
2. Rows are numbered from 0 to mat.length-1, and columns are numbered from

0 to mat[r].length-1. Any index that is outside these bounds will generate an
ArrayIndexOutOfBoundsException.

Since elements are not being replaced, nested for-each loops can be used instead:

for (int[] row : mat) //for each row array in mat

for (int element : row) //for each element in this row

sum += element;

NOTE

Starting in 2015, you will need to know how to use a nested for-each traversal. You
will also need to know how to process a matrix as shown below, using the third type of
traversal, row-by-row array processing. This traversal assumes access to a method that
processes an array. So, continuing with the example to find the sum of all elements in
mat: In the class where mat is defined, suppose you have the method sumArray.

/** @return the sum of integers in arr */

public int sumArray(int[] arr)

{ /* implementation not shown */ }

You could use this method to sum all the elements in mat as follows:

int sum = 0;

for (int row = 0; row < mat.length; row++) //for each row in mat,

sum += sumArray(mat[row]); //add that row’s total to sum

Note how, since mat[row] is an array of int for 0 ≤ row < mat.length, you can use
the sumArray method for each row in mat.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 252 — #266

✐

✐

✐

✐

✐

✐

252 Chapter 6 Arrays and Array Lists

Example 2

Add 10 to each element in row 2 of matrix mat.

for (int c = 0; c < mat[2].length; c++)

mat[2][c] += 10;

NOTE

1. In the for loop, you can use c < mat[k].length, where 0 ≤ k < mat.length,
since each row has the same number of elements.

2. You cannot use a for-each loop here because elements are being replaced.
3. You can, however, use row-by-row array processing. Suppose you have method

addTen shown below.

/** Add 10 to each int in arr */

public void addTen(int[] arr)

{

for (int i = 0; i < arr.length; i++)

arr[i] += 10;

}

You could add 10 to each element in row 2 with the single statement

addTen(mat[2]);

You could also add 10 to every element in mat:

for (int row = 0; row < mat.length; row++)

addTen(mat[row]);

Example 3

Suppose Card objects have a mutator method changeValue:

public void changeValue(int newValue)

{ value = newValue; }

Now consider the declaration

Card[][] cardMatrix;

Suppose cardMatrix is initialized with Card objects. A piece of code that traverses the
cardMatrix and changes the value of each Card to v is

for (Card[] row : cardMatrix) //for each row array in cardMatrix,

for (Card c : row) //for each Card in that row,

c.changeValue(v); //change the value of that card

Alternatively:

for (int row = 0; row < cardMatrix.length; row++)

for (int col = 0; col < cardMatrix[0].length; col++)

cardMatrix[row][col].changeValue(v);

NOTE

The use of the nested for-each loop is OK. Modifying the objects in the matrix with a
mutator method is fine. What you can’t do is replace the Card objects with new Cards.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 253 — #267

✐

✐

✐

✐

✐

✐

Two-Dimensional Arrays 253

Example 4

The major and minor diagonals of a square matrix are shown below:

Major diagonal Minor diagonal

You can process the diagonals as follows:

int[][] mat = new int[SIZE][SIZE]; //SIZE is a constant int value

for (int i = 0; i < SIZE; i++)

Process mat[i][i]; //major diagonal

OR
Process mat[i][SIZE - i - 1]; //minor diagonal

Two-Dimensional Array as Parameter

Example 1

Here is a method that counts the number of negative values in a matrix.

/** Precondition: mat is initialized with integers.

* @return count of negative values in mat

*/

public static int countNegs (int[][] mat)

{

int count = 0;

for (int[] row : mat)

for (int num : row)

if (num < 0)

count++;

return count;

}

A method in the same class can invoke this method with a statement such as

int negs = countNegs(mat);

Example 2

Reading elements into a matrix:

/** Precondition: Number of rows and columns known.

* @return matrix containing rows × cols integers

* read from the keyboard

*/

public static int[][] getMatrix(int rows, int cols)

{

int[][] mat = new int[rows][cols]; //initialize slots

System.out.println("Enter matrix, one row per line:");

System.out.println();

//read user input and fill slots

for (int r = 0; r < rows; r++)

for (int c = 0; c < cols; c++)

mat[r][c] = IO.readInt(); //read user input

return mat;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 254 — #268

✐

✐

✐

✐

✐

✐

254 Chapter 6 Arrays and Array Lists

To call this method:

//prompt for number of rows and columns

int rows = IO.readInt(); //read user input

int cols = IO.readInt(); //read user input

int[][] mat = getMatrix(rows, cols);

NOTE

You cannot use a for-each loop in getMatrix because elements in mat are being re-
placed. (Their current value is the initialized value of 0. The new value is the input
value from the keyboard.)

There is further discussion of arrays and matrices, plus additional questions, in
Chapter 9 (The AP Computer Science Labs).

Chapter Summary

Manipulation of one-dimensional arrays, two-dimensional arrays, and array lists
should be second nature to you by now. Know the Java subset methods for the List<E>
class. You must also know when these methods throw an IndexOutOfBoundsException

and when an ArrayIndexOutOfBoundsException can occur.

When traversing an ArrayList:

• Use a for-each loop to access each element without changing it, or to modify
each object in the list using a mutator method.

• Use an Iterator to remove elements. (This is not in the AP subset, but it is the
easiest way to remove elements from an ArrayList.)

A matrix is an array of row arrays. The number of rows is mat.length. The number
of columns is mat[0].length.

When traversing a matrix:

• Use a row-column traversal to access, modify, or replace elements.

• Use a nested for loop to access or modify elements, but not replace them.

• Know how to do row-by-row array processing if you have an appropriate method
that takes an array parameter.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 255 — #269

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 255

MULTIPLE-CHOICE QUESTIONS ON ARRAYS AND
ARRAY LISTS

1. Which of the following correctly initializes an array arr to contain four elements
each with value 0?

I int[] arr = {0, 0, 0, 0};

II int[] arr = new int[4];

III int[] arr = new int[4];

for (int i = 0; i < arr.length; i++)

arr[i] = 0;

(A) I only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III

2. The following program segment is intended to find the index of the first negative
integer in arr[0] . . .arr[N-1], where arr is an array of N integers.

int i = 0;

while (arr[i] >= 0)

{

i++;

}

location = i;

This segment will work as intended
(A) always.
(B) never.
(C) whenever arr contains at least one negative integer.
(D) whenever arr contains at least one nonnegative integer.
(E) whenever arr contains no negative integers.

3. Refer to the following code segment. You may assume that arr is an array of int
values.

int sum = arr[0], i = 0;

while (i < arr.length)

{

i++;

sum += arr[i];

}

Which of the following will be the result of executing the segment?
(A) Sum of arr[0], arr[1], . . . , arr[arr.length-1]will be stored in sum.
(B) Sum of arr[1], arr[2], . . . , arr[arr.length-1]will be stored in sum.
(C) Sum of arr[0], arr[1], . . . , arr[arr.length]will be stored in sum.
(D) An infinite loop will occur.
(E) A run-time error will occur.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 256 — #270

✐

✐

✐

✐

✐

✐

256 Chapter 6 Arrays and Array Lists

4. Refer to the following code segment. You may assume that array arr1 contains
elements arr1[0], arr1[1], . . . , arr1[N-1], where N= arr1.length.

int count = 0;

for (int i = 0; i < N; i++)

if (arr1[i] != 0)

{

arr1[count] = arr1[i];

count++;

}

int[] arr2 = new int[count];

for (int i = 0; i < count; i++)

arr2[i] = arr1[i];

If array arr1 initially contains the elements 0, 6, 0, 4, 0, 0, 2 in this order, what
will arr2 contain after execution of the code segment?
(A) 6, 4, 2
(B) 0, 0, 0, 0, 6, 4, 2
(C) 6, 4, 2, 4, 0, 0, 2
(D) 0, 6, 0, 4, 0, 0, 2
(E) 6, 4, 2, 0, 0, 0, 0

5. Consider this program segment:

for (int i = 2; i <= k; i++)

if (arr[i] < someValue)

System.out.print("SMALL");

What is the maximum number of times that SMALL can be printed?
(A) 0

(B) 1

(C) k - 1

(D) k - 2

(E) k

✐

✐

“ap” — 2014/11/4 — 11:10 — page 257 — #271

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 257

6. What will be output from the following code segment, assuming it is in the same
class as the doSomethingmethod?

int[] arr = {1, 2, 3, 4};

doSomething(arr);

System.out.print(arr[1] + " ");

System.out.print(arr[3]);

...

public void doSomething(int[] list)

{

int[] b = list;

for (int i = 0; i < b.length; i++)

b[i] = i;

}

(A) 0 0

(B) 2 4

(C) 1 3

(D) 0 2

(E) 0 3

7. Consider writing a program that reads the lines of any text file into a sequential
list of lines. Which of the following is a good reason to implement the list with
an ArrayList of String objects rather than an array of String objects?
(A) The get and set methods of ArrayList are more convenient than the []

notation for arrays.
(B) The size method of ArrayList provides instant access to the length of the

list.
(C) An ArrayList can contain objects of any type, which leads to greater gen-

erality.
(D) If any particular text file is unexpectedly long, the ArrayList will automat-

ically be resized. The array, by contrast, may go out of bounds.
(E) The Stringmethods are easier to use with an ArrayList than with an array.

8. Consider writing a program that produces statistics for long lists of numerical
data. Which of the following is the best reason to implement each list with an ar-
ray of int (or double), rather than an ArrayList of Integer (or Double) objects?
(A) An array of primitive number types is more efficient to manipulate than an

ArrayList of wrapper objects that contain numbers.
(B) Insertion of new elements into a list is easier to code for an array than for

an ArrayList.
(C) Removal of elements from a list is easier to code for an array than for an

ArrayList.
(D) Accessing individual elements in the middle of a list is easier for an array

than for an ArrayList.
(E) Accessing all the elements is more efficient in an array than in an ArrayList.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 258 — #272

✐

✐

✐

✐

✐

✐

258 Chapter 6 Arrays and Array Lists

Refer to the following classes for Questions 9–12.

public class Address

{

private String name;

private String street;

private String city;

private String state;

private String zip;

//constructors

...

//accessors

public String getName()

{ return name; }

public String getStreet()

{ return street; }

public String getCity()

{ return city; }

public String getState()

{ return state; }

public String getZip()

{ return zip; }

}

public class Student

{

private int idNum;

private double gpa;

private Address address;

//constructors

...

//accessors

public Address getAddress()

{ return address; }

public int getIdNum()

{ return idNum; }

public double getGpa()

{ return gpa; }

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 259 — #273

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 259

9. A client method has this declaration, followed by code to initialize the list:

Address[] list = new Address[100];

Here is a code segment to generate a list of names only.

for (Address a : list)

/* line of code */

Which is a correct /* line of code */?
(A) System.out.println(Address[i].getName());

(B) System.out.println(list[i].getName());

(C) System.out.println(a[i].getName());

(D) System.out.println(a.getName());

(E) System.out.println(list.getName());

10. The following code segment is to print out a list of addresses:

for (Address addr : list)

{

/* more code */

}

Which is a correct replacement for /* more code */?

I System.out.println(list[i].getName());

System.out.println(list[i].getStreet());

System.out.print(list[i].getCity() + ", ");

System.out.print(list[i].getState() + " ");

System.out.println(list[i].getZip());

II System.out.println(addr.getName());

System.out.println(addr.getStreet());

System.out.print(addr.getCity() + ", ");

System.out.print(addr.getState() + " ");

System.out.println(addr.getZip());

III System.out.println(addr);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 260 — #274

✐

✐

✐

✐

✐

✐

260 Chapter 6 Arrays and Array Lists

11. A client method has this declaration:

Student[] allStudents = new Student[NUM_STUDS]; //NUM_STUDS is

//an int constant

Here is a code segment to generate a list of Student names only. (You may assume
that allStudents has been initialized.)

for (Student student : allStudents)

/* code to print list of names */

Which is a correct replacement for /* code to print list of names */?
(A) System.out.println(allStudents.getName());

(B) System.out.println(student.getName());

(C) System.out.println(student.getAddress().getName());

(D) System.out.println(allStudents.getAddress().getName());

(E) System.out.println(student[i].getAddress().getName());

✐

✐

“ap” — 2014/11/4 — 11:10 — page 261 — #275

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 261

12. Here is a method that locates the Student with the highest idNum:

/** Precondition: Array stuArr of Student is initialized.

* @return Student with highest idNum

*/

public static Student locate(Student[] stuArr)

{

/* method body */

}

Which of the following could replace /* method body */ so that the method
works as intended?

I int max = stuArr[0].getIdNum();

for (Student student : stuArr)

if (student.getIdNum() > max)

{

max = student.getIdNum();

return student;

}

return stuArr[0];

II Student highestSoFar = stuArr[0];

int max = stuArr[0].getIdNum();

for (Student student : stuArr)

if(student.getIdNum() > max)

{

max = student.getIdNum();

highestSoFar = student;

}

return highestSoFar;

III int maxPos = 0;

for(int i = 1; i < stuArr.length; i++)

if(stuArr[i].getIdNum() > stuArr[maxPos].getIdNum())

maxPos = i;

return stuArr[maxPos];

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 262 — #276

✐

✐

✐

✐

✐

✐

262 Chapter 6 Arrays and Array Lists

Questions 13–15 refer to the Ticket and Transaction classes below.

public class Ticket

{

private String row;

private int seat;

private double price;

//constructor

public Ticket(String aRow, int aSeat, double aPrice)

{

row = aRow;

seat = aSeat;

price = aPrice;

}

//accessors getRow(), getSeat(), and getPrice()

...

}

public class Transaction

{

private int numTickets;

private Ticket[] tickList;

//constructor

public Transaction(int numTicks)

{

numTickets = numTicks;

tickList = new Ticket[numTicks];

String theRow;

int theSeat;

double thePrice;

for (int i = 0; i < numTicks; i++)

{

< read user input for theRow, theSeat, and thePrice >

...

/* more code */

}

}

/** @return total amount paid for this transaction */

public double totalPaid()

{

double total = 0.0;

/* code to calculate amount */

return total;

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 263 — #277

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 263

13. Which of the following correctly replaces /* more code */ in the Transaction

constructor to initialize the tickList array?

(A) tickList[i] = new Ticket(getRow(), getSeat(), getPrice());

(B) tickList[i] = new Ticket(theRow, theSeat, thePrice);

(C) tickList[i] = new tickList(getRow(), getSeat(), getPrice());

(D) tickList[i] = new tickList(theRow, theSeat, thePrice);

(E) tickList[i] = new tickList(numTicks);

14. Which represents correct /* code to calculate amount */ in the totalPaid

method?

(A) for (Ticket t : tickList)

total += t.price;

(B) for (Ticket t : tickList)

total += tickList.getPrice();

(C) for (Ticket t : tickList)

total += t.getPrice();

(D) Transaction T;

for (Ticket t : T)

total += t.getPrice();

(E) Transaction T;

for (Ticket t : T)

total += t.price;

15. Suppose it is necessary to keep a list of all ticket transactions. Assuming that
there are NUMSALES transactions, a suitable declaration would be
(A) Transaction[] listOfSales = new Transaction[NUMSALES];

(B) Transaction[] listOfSales = new Ticket[NUMSALES];

(C) Ticket[] listOfSales = new Transaction[NUMSALES];

(D) Ticket[] listOfSales = new Ticket[NUMSALES];

(E) Transaction[] Ticket = new listOfSales[NUMSALES];

✐

✐

“ap” — 2014/11/4 — 11:10 — page 264 — #278

✐

✐

✐

✐

✐

✐

264 Chapter 6 Arrays and Array Lists

16. The following code fragment is intended to find the smallest value in
arr[0] . . .arr[n-1].

/** Precondition:
* - arr is an array, arr.length = n.

* - arr[0]...arr[n-1] initialized with integers.

* Postcondition: min = smallest value in arr[0]...arr[n-1].

*/

int min = arr[0];

int i = 1;

while (i < n)

{

i++;

if (arr[i] < min)

min = arr[i];

}

This code is incorrect. For the segment to work as intended, which of the follow-
ing modifications could be made?

I Change the line

int i = 1;

to

int i = 0;

Make no other changes.

II Change the body of the while loop to

{

if (arr[i] < min)

min = arr[i];

i++;

}

Make no other changes.

III Change the test for the while loop as follows:

while (i <= n)

Make no other changes.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 265 — #279

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 265

17. Refer to method match below:

/** @param v an array of int sorted in increasing order

* @param w an array of int sorted in increasing order

* @param N the number of elements in array v

* @param M the number of elements in array w

* @return true if there is an integer k that occurs

* in both arrays; otherwise returns false

* Precondition:
* v[0]..v[N-1] and w[0]..w[M-1] initialized with integers.

* v[0] < v[1] < .. < v[N-1] and w[0] < w[1] < .. < w[M-1].

*/

public static boolean match(int[] v, int[] w, int N, int M)

{

int vIndex = 0, wIndex = 0;

while (vIndex < N && wIndex < M)

{

if (v[vIndex] == w[wIndex])

return true;

else if (v[vIndex] < w[wIndex])

vIndex++;

else

wIndex++;

}

return false;

}

Assuming that the method has not been exited, which assertion is true at the end
of every execution of the while loop?
(A) v[0]..v[vIndex-1] and w[0]..w[wIndex-1] contain no common value,

vIndex ≤ N and wIndex ≤ M.
(B) v[0]..v[vIndex] and w[0]..w[wIndex] contain no common value,

vIndex ≤ N and wIndex ≤ M.
(C) v[0]..v[vIndex-1] and w[0]..w[wIndex-1] contain no common value,

vIndex ≤ N-1 and wIndex ≤ M-1.
(D) v[0]..v[vIndex] and w[0]..w[wIndex] contain no common value,

vIndex ≤ N-1 and wIndex ≤ M-1.
(E) v[0]..v[N-1] and w[0]..w[M-1] contain no common value,

vIndex ≤ N and wIndex ≤ M.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 266 — #280

✐

✐

✐

✐

✐

✐

266 Chapter 6 Arrays and Array Lists

18. Consider this class:

public class Book

{

private String title;

private String author;

private boolean checkoutStatus;

public Book(String bookTitle, String bookAuthor)

{

title = bookTitle;

author = bookAuthor;

checkoutStatus = false;

}

/** Change checkout status. */

public void changeStatus()

{ checkoutStatus = !checkoutStatus; }

//Other methods are not shown.

}

A client program has this declaration:

Book[] bookList = new Book[SOME_NUMBER];

Suppose bookList is initialized so that each Book in the list has a title, author, and
checkout status. The following piece of code is written, whose intent is to change
the checkout status of each book in bookList.

for (Book b : bookList)

b.changeStatus();

Which is true about this code?
(A) The bookList array will remain unchanged after execution.
(B) Each book in the bookList array will have its checkout status changed, as

intended.
(C) A NullPointerExceptionmay occur.
(D) A run-time error will occur because it is not possible to modify objects

using the for-each loop.
(E) A logic error will occur because it is not possible to modify objects in an

array without accessing the indexes of the objects.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 267 — #281

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 267

Consider this class for Questions 19 and 20:

public class BingoCard

{

private int[] card;

/** Default constructor: Creates BingoCard with

* 20 random digits in the range 1 - 90.

*/

public BingoCard()

{ /* implementation not shown */ }

/* Display BingoCard. */

public void display()

{ /* implementation not shown */ }

...

}

A program that simulates a bingo game declares an array of BingoCard. The array
has NUMPLAYERS elements, where each element represents the card of a different player.
Here is a code segment that creates all the bingo cards in the game:

/* declare array of BingoCard */

/* construct each BingoCard */

19. Which of the following is a correct replacement for

/* declare array of BingoCard */?

(A) int[] BingoCard = new BingoCard[NUMPLAYERS];

(B) BingoCard[] players = new int[NUMPLAYERS];

(C) BingoCard[] players = new BingoCard[20];

(D) BingoCard[] players = new BingoCard[NUMPLAYERS];

(E) int[] players = new BingoCard[NUMPLAYERS];

20. Assuming that players has been declared as an array of BingoCard, which of the
following is a correct replacement for

/* construct each BingoCard */

I for (BingoCard card : players)

card = new BingoCard();

II for (BingoCard card : players)

players[card] = new BingoCard();

III for (int i = 0; i < players.length; i++)

players[i] = new BingoCard();

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 268 — #282

✐

✐

✐

✐

✐

✐

268 Chapter 6 Arrays and Array Lists

21. Which declaration will cause an error?

I List<String> stringList = new ArrayList<String>();

II List<int> intList = new ArrayList<int>();

III ArrayList<String> compList = new ArrayList<String>();

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

22. Consider these declarations:

List<String> strList = new ArrayList<String>();

String ch = " ";

Integer intOb = new Integer(5);

Which statement will cause an error?
(A) strList.add(ch);

(B) strList.add(new String("handy andy"));

(C) strList.add(intOb.toString());

(D) strList.add(ch + 8);

(E) strList.add(intOb + 8);

23. Let list be an ArrayList<Integer> containing these elements:

2 5 7 6 0 1

Which of the following statements would not cause an error to occur? Assume
that each statement applies to the given list, independent of the other statements.
(A) Object ob = list.get(6);

(B) Integer intOb = list.add(3.4);

(C) list.add(6, 9);

(D) Object x = list.remove(6);

(E) Object y = list.set(6, 8);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 269 — #283

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 269

24. Refer to method insert below:

/** @param list an ArrayList of String objects

* @param element a String object

* Precondition: list contains String values sorted

* in decreasing order.

* Postcondition: element inserted in its correct position in list.

*/

public void insert(List<String> list, String element)

{

int index = 0;

while (element.compareTo(list.get(index)) < 0)

index++;

list.add(index, element);

}

Assuming that the type of element is compatible with the objects in the list,
which is a true statement about the insert method?
(A) It works as intended for all values of element.
(B) It fails for all values of element.
(C) It fails if element is greater than the first item in list and works in all other

cases.
(D) It fails if element is smaller than the last item in list and works in all other

cases.
(E) It fails if element is either greater than the first item or smaller than the last

item in list and works in all other cases.

25. Consider the following code segment, applied to list, an ArrayList of Integer
values.

int len = list.size();

for (int i = 0; i < len; i++)

{

list.add(i + 1, new Integer(i));

Object x = list.set(i, new Integer(i + 2));

}

If list is initially 6 1 8, what will it be following execution of the code segment?
(A) 2 3 4 2 1 8

(B) 2 3 4 6 2 2 0 1 8

(C) 2 3 4 0 1 2

(D) 2 3 4 6 1 8

(E) 2 3 3 2

✐

✐

“ap” — 2014/11/4 — 11:10 — page 270 — #284

✐

✐

✐

✐

✐

✐

270 Chapter 6 Arrays and Array Lists

Questions 26 and 27 are based on the Coin and Purse classes given below:

/* A simple coin class */

public class Coin

{

private double value;

private String name;

//constructor

public Coin(double coinValue, String coinName)

{

value = coinValue;

name = coinName;

}

/** @return the value of this coin */

public double getValue()

{ return value; }

/** @return the name of this coin */

public String getName()

{ return name; }

/** @param obj a Coin object

* @return true if this coin equals obj; otherwise false

*/

public boolean equals(Object obj)

{ return name.equals(((Coin) obj).name); }

//Other methods are not shown.

}

/* A purse holds a collection of coins */

public class Purse

{

private List<Coin> coins;

/** Creates an empty purse. */

public Purse()

{ coins = new ArrayList<Coin>(); }

/** Adds aCoin to the purse.

* @param aCoin the coin to be added to the purse

*/

public void add(Coin aCoin)

{ coins.add(aCoin); }

/** @return the total value of coins in purse */

public double getTotal()

{ /* implementation not shown */}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 271 — #285

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 271

26. Here is the getTotal method from the Purse class:

/** @return the total value of coins in purse */

public double getTotal()

{

double total = 0;

/* more code */

return total;

}

Which of the following is a correct replacement for /* more code */?

(A) for (Coin c : coins)

{

c = coins.get(i);

total += c.getValue();

}

(B) for (Coin c : coins)

{

Coin value = c.getValue();

total += value;

}

(C) for (Coin c : coins)

{

Coin c = coins.get(i);

total += c.getValue();

}

(D) for (Coin c : coins)

{

total += coins.getValue();

}

(E) for (Coin c : coins)

{

total += c.getValue();

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 272 — #286

✐

✐

✐

✐

✐

✐

272 Chapter 6 Arrays and Array Lists

27. Two coins are said to match each other if they have the same name or the same
value. You may assume that coins with the same name have the same value and
coins with the same value have the same name. A boolean method find is added
to the Purse class:

/** @return true if the purse has a coin that matches aCoin,

* false otherwise

*/

public boolean find(Coin aCoin)

{

for (Coin c : coins)

{

/* code to find match */

}

return false;

}

Which is a correct replacement for /* code to find match */?

I if (c.equals(aCoin))

return true;

II if ((c.getName()).equals(aCoin.getName()))

return true;

III if ((c.getValue()).equals(aCoin.getValue()))

return true;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

28. Which of the following initializes an 8× 10 matrix with integer values that are
perfect squares? (0 is a perfect square.)

I int[][] mat = new int[8][10];

II int[][] mat = new int[8][10];

for (int r = 0; r < mat.length; r++)

for (int c = 0; c < mat[r].length; c++)

mat[r][c] = r * r;

III int[][] mat = new int[8][10];

for (int c = 0; c < mat[r].length; c++)

for (int r = 0; r < mat.length; r++)

mat[r][c] = c * c;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 273 — #287

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 273

29. Consider a class that has this private instance variable:

private int[][] mat;

The class has the following method, alter.

public void alter(int c)

{

for (int i = 0; i < mat.length; i++)

for (int j = c + 1; j < mat[0].length; j++)

mat[i][j-1] = mat[i][j];

}

If a 3× 4 matrix mat is

1 3 5 7

2 4 6 8

3 5 7 9

then alter(1) will change mat to

(A) 1 5 7 7

2 6 8 8

3 7 9 9

(B) 1 5 7

2 6 8

3 7 9

(C) 1 3 5 7

3 5 7 9

(D) 1 3 5 7

3 5 7 9

3 5 7 9

(E) 1 7 7 7

2 8 8 8

3 9 9 9

✐

✐

“ap” — 2014/11/4 — 11:10 — page 274 — #288

✐

✐

✐

✐

✐

✐

274 Chapter 6 Arrays and Array Lists

30. Consider the following method that will alter the matrix mat:

/** @param mat the initialized matrix

* @param row the row number

*/

public static void matStuff(int[][] mat, int row)

{

int numCols = mat[0].length;

for (int col = 0; col < numCols; col++)

mat[row][col] = row;

}

Suppose mat is originally

1 4 9 0
2 7 8 6
5 1 4 3

After the method call matStuff(mat,2), matrix mat will be

(A) 1 4 9 0
2 7 8 6
2 2 2 2

(B) 1 4 9 0
2 2 2 2
5 1 4 3

(C) 2 2 2 2
2 2 2 2
2 2 2 2

(D) 1 4 2 0
2 7 2 6
5 1 2 3

(E) 1 2 9 0
2 2 8 6
5 2 4 3

✐

✐

“ap” — 2014/11/4 — 11:10 — page 275 — #289

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 275

31. Assume that a square matrix mat is defined by

int[][] mat = new int[SIZE][SIZE];

//SIZE is an integer constant >= 2

What does the following code segment do?

for (int i = 0; i < SIZE - 1; i++)

for (int j = 0; j < SIZE - i - 1; j++)

swap(mat, i, j, SIZE - j - 1, SIZE - i - 1);

You may assume the existence of this swap method:

/** Interchange mat[a][b] and mat[c][d]. */

public void swap(int[][] mat, int a, int b, int c, int d)

(A) Reflects mat through its major diagonal. For example,

2 6 2 4
−→

4 3 6 3

(B) Reflects mat through its minor diagonal. For example,

2 6 3 6
−→

4 3 4 2

(C) Reflects mat through a horizontal line of symmetry. For example,

2 6 4 3
−→

4 3 2 6

(D) Reflects mat through a vertical line of symmetry. For example,

2 6 6 2
−→

4 3 3 4

(E) Leaves mat unchanged.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 276 — #290

✐

✐

✐

✐

✐

✐

276 Chapter 6 Arrays and Array Lists

32. Consider a class MatrixStuff that has a private instance variable:

private int[][] mat;

Refer to method alter below that occurs in the MatrixStuff class. (The lines
are numbered for reference.)

Line 1: /** @param mat the matrix initialized with integers

Line 2: * @param c the column to be removed

Line 3: * Postcondition:
Line 4: * - Column c has been removed.

Line 5: * - The last column is filled with zeros.

Line 6: */

Line 7: public void alter(int[][] mat, int c)

Line 8: {

Line 9: for (int i = 0; i < mat.length; i++)

Line 10: for (int j = c; j < mat[0].length; j++)

Line 11: mat[i][j] = mat[i][j+1];

Line 12: //code to insert zeros in rightmost column

Line 13: ...

Line 14: }

The intent of the method alter is to remove column c. Thus, if the input matrix
mat is

2 6 8 9
1 5 4 3
0 7 3 2

the method call alter(mat, 1) should change mat to

2 8 9 0
1 4 3 0
0 3 2 0

The method does not work as intended. Which of the following changes will
correct the problem?

I Change line 10 to

for (int j = c; j < mat[0].length - 1; j++)

and make no other changes.

II Change lines 10 and 11 to

for (int j = c + 1; j < mat[0].length; j++)

mat[i][j-1] = mat[i][j];

and make no other changes.

III Change lines 10 and 11 to

for (int j = mat[0].length - 1; j > c; j--)

mat[i][j-1] = mat[i][j];

and make no other changes.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 277 — #291

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 277

33. This question refers to the following method:

public static boolean isThere(String[][] mat, int row, int col,

String symbol)

{

boolean yes;

int i, count = 0;

for (i = 0; i < SIZE; i++)

if (mat[i][col].equals(symbol))

count++;

yes = (count == SIZE);

count = 0;

for (i = 0; i < SIZE; i++)

if (mat[row][i].equals(symbol))

count++;

return (yes || count == SIZE);

}

Now consider this code segment:

public final int SIZE = 8;

String[][] mat = new String[SIZE][SIZE];

Which of the following conditions on a matrix mat of the type declared in the
code segment will by itself guarantee that

isThere(mat, 2, 2, "$")

will have the value true when evaluated?

I The element in row 2 and column 2 is "$"
II All elements in both diagonals are "$"

III All elements in column 2 are "$"

(A) I only
(B) III only
(C) I and II only
(D) I and III only
(E) II and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 278 — #292

✐

✐

✐

✐

✐

✐

278 Chapter 6 Arrays and Array Lists

34. The method changeNegs below should replace every occurrence of a negative
integer in its matrix parameter with 0.

/** @param mat the matrix

* Precondition: mat is initialized with integers.

* Postcondition: All negative values in mat replaced with 0.

*/

public static void changeNegs(int[][] mat)

{

/* code */

}

Which is correct replacement for /* code */?

I for (int r = 0; r < mat.length; r++)

for (int c = 0; c < mat[r].length; c++)

if (mat[r][c] < 0)

mat[r][c] = 0;

II for (int c = 0; c < mat[0].length; c++)

for (int r = 0; r < mat.length; r++)

if (mat[r][c] < 0)

mat[r][c] = 0;

III for (int[] row : mat)

for (int element : row)

if (element < 0)

element = 0;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 279 — #293

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 279

35. A two-dimensional array of double, rainfall, will be used to represent the daily
rainfall for a given year. In this scheme, rainfall[month][day] represents the
amount of rain on the given day and month. For example,

rainfall[1][15] is the amount of rain on Jan. 15
rainfall[12][25] is the amount of rain on Dec. 25

The array can be declared as follows:

double[][] rainfall = new double[13][32];

This creates 13 rows indexed from 0 to 12 and 32 columns indexed from 0 to 31,
all initialized to 0.0. Row 0 and column 0 will be ignored. Column 31 in row 4

will be ignored, since April 31 is not a valid day. In years that are not leap years,
columns 29, 30, and 31 in row 2 will be ignored since Feb. 29, 30, and 31 are not
valid days.

Consider the method averageRainfall below:

/** Precondition:
* - rainfall is initialized with values representing amounts

* of rain on all valid days.

* - Invalid days are initialized to 0.0.

* - Feb 29 is not a valid day.

* Postcondition: Returns average rainfall for the year.

*/

public double averageRainfall(double rainfall[][])

{

double total = 0.0;

/* more code */

}

Which of the following is a correct replacement for /* more code */ so that the
postcondition for the method is satisfied?

I for (int month = 1; month < rainfall.length; month++)

for (int day = 1; day < rainfall[month].length; day++)

total += rainfall[month][day];

return total / (13 * 32);

II for (int month = 1; month < rainfall.length; month++)

for (int day = 1; day < rainfall[month].length; day++)

total += rainfall[month][day];

return total / 365;

III for (double[] month : rainfall)

for (double rainAmt : month)

total += rainAmt;

return total / 365;

(A) None
(B) I only
(C) II only
(D) III only
(E) II and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 280 — #294

✐

✐

✐

✐

✐

✐

280 Chapter 6 Arrays and Array Lists

36. This question is based on the Point class below:

public class Point

{

/** The coordinates. */

private int x;

private int y;

public Point (int xValue, int yValue)

{

x = xValue;

y = yValue;

}

/** @return the x-coordinate of this point */

public int getx()

{ return x; }

/** @return the y-coordinate of this point */

public int gety()

{ return y; }

/** Set x and y to new_x and new_y. */

public void setPoint(int new_x, int new_y)

{

x = new_x;

y = new_y;

}

//Other methods are not shown.

}

The method changeNegs below takes a matrix of Point objects as parameter and
replaces every Point that has as least one negative coordinate with the Point

(0,0).

/** @param pointMat the matrix of points

* Precondition: pointMat is initialized with Point objects.

* Postcondition: Every point with at least one negative coordinate

* has been changed to have both coordinates

* equal to zero.

*/

public static void changeNegs (Point [][] pointMat)

{

/* code */

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 281 — #295

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 281

Which is a correct replacement for /* code */?

I for (int r = 0; r < pointMat.length; r++)

for (int c = 0; c < pointMat[r].length; c++)

if (pointMat[r][c].getx() < 0

|| pointMat[r][c].gety() < 0)

pointMat[r][c].setPoint(0, 0);

II for (int c = 0; c < pointMat[0].length; c++)

for (int r = 0; r < pointMat.length; r++)

if (pointMat[r][c].getx() < 0

|| pointMat[r][c].gety() < 0)

pointMat[r][c].setPoint(0, 0);

III for (Point[] row : pointMat)

for (Point p : row)

if (p.getx() < 0 || p.gety() < 0)

p.setPoint(0, 0);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 282 — #296

✐

✐

✐

✐

✐

✐

282 Chapter 6 Arrays and Array Lists

37. A simple Tic-Tac-Toe board is a 3× 3 array filled with either X’s, O’s, or blanks.
Here is a class for a game of Tic-Tac-Toe:

X

X

O

O

public class TicTacToe

{

private String[][] board;

private static final int ROWS = 3;

private static final int COLS = 3;

/** Construct an empty board. */

public TicTacToe()

{

board = new String[ROWS][COLS];

for (int r = 0; r < ROWS; r++)

for (int c = 0; c < COLS; c++)

board[r][c] = " ";

}

/** @param r the row number

* @param c the column number

* @param symbol the symbol to be placed on board[r][c]

* Precondition: The square board[r][c] is empty.

* Postcondition: symbol placed in that square.

*/

public void makeMove(int r, int c, String symbol)

{

board[r][c] = symbol;

}

/** Creates a string representation of the board, e.g.

* |o |

* |xx |

* | o|

* @return the string representation of board

*/

public String toString()

{

String s = ""; //empty string

/* more code */

return s;

}

}

Which segment represents a correct replacement for /* more code */ for the
toString method?

(A) for (int r = 0; r < ROWS; r++)

{

for (int c = 0; c < COLS; c++)

{

s = s + "|";

s = s + board[r][c];

s = s + "|\n";

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 283 — #297

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Arrays and Array Lists 283

(B) for (int r = 0; r < ROWS; r++)

{

s = s + "|";

for (int c = 0; c < COLS; c++)

{

s = s + board[r][c];

s = s + "|\n";

}

}

(C) for (int r = 0; r < ROWS; r++)

{

s = s + "|";

for (int c = 0; c < COLS; c++)

s = s + board[r][c];

}

s = s + "|\n";

(D) for (int r = 0; r < ROWS; r++)

s = s + "|";

for (int c = 0; c < COLS; c++)

{

s = s + board[r][c];

s = s + "|\n";

}

(E) for (int r = 0; r < ROWS; r++)

{

s = s + "|";

for (int c = 0; c < COLS; c++)

s = s + board[r][c];

s = s + "|\n";

}

✐

✐

“ap” — 2015/2/1 — 20:23 — page 284 — #298

✐

✐

✐

✐

✐

✐

284 Chapter 6 Arrays and Array Lists

ANSWER KEY

1. E

2. C

3. E

4. A

5. C

6. C

7. D

8. A

9. D

10. B

11. C

12. E

13. B

14. C

15. A

16. B

17. A

18. B

19. D

20. C

21. B

22. E

23. C

24. D

25. A

26. E

27. D

28. D

29. A

30. A

31. B

32. D

33. B

34. D

35. E

36. E

37. E

ANSWERS EXPLAINED

1. (E) Segment I is an initializer list which is equivalent to

int[] arr = new int[4];

arr[0] = 0;

arr[1] = 0;

arr[2] = 0;

arr[3] = 0;

Segment II creates four slots for integers, which by default are initialized to 0. The
for loop in segment III is therefore unnecessary. It is not, however, incorrect.

2. (C) If arr contains no negative integers, the value of i will eventually exceed N-1,
and arr[i] will cause an ArrayIndexOutOfBoundsException to be thrown.

3. (E) The intent is to sum elements arr[0], arr[1], . . . , arr[arr.length-1].
Notice, however, that when i has the value arr.length-1, it is incremented to
arr.length in the loop, so the statement sum += arr[i] uses arr[arr.length],
which is out of range.

4. (A) The code segment has the effect of removing all occurrences of 0 from array
arr1. The algorithm copies the nonzero elements to the front of arr1. Then it
transfers them to array arr2.

5. (C) If arr[i] < someValue for all i from 2 to k, SMALL will be printed on each
iteration of the for loop. Since there are k - 1 iterations, the maximum number
of times that SMALL can be printed is k - 1.

6. (C) Array arr is changed by doSomething. Here are the memory slots:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 285 — #299

✐

✐

✐

✐

✐

✐

Answers Explained 285

Just before doSomething is called: Just after doSomething is called,
but before the for loop is executed:

arr

1 2 3 4

arr

1 2 3 4

list

b

Just before exiting doSomething: Just after exiting doSomething:

arr

0 1 2 3

list

b

arr

0 1 2 3

7. (D) Arrays are of fixed length and do not shrink or grow if the size of the data
set varies. An ArrayList automatically resizes the list. Choice A is false: The []

notation is compact and easy to use. Choice B is not a valid reason because an
array arr also provides instant access to its length with the quantity arr.length.
Choice C is invalid because an array can also contain objects. Also, generality is
beside the point in the given program: The list must hold String objects. Choice
E is false: Whether a Stringobject is arr[i]or list.get(i), the Stringmethods
are equally easy to invoke.

8. (A) In order for numerical elements to be added to an ArrayList, each element
must be wrapped in a wrapper class before insertion into the list. Then, to re-
trieve a numerical value from the ArrayList, the element must be unboxed using
the intValue or doubleValue methods. Even though these operations can be
taken care of with auto-boxing and -unboxing, there are efficiency costs. In an
array, you simply use the [] notation for assignment (as in arr[i] = num) or re-
trieval (value = arr[i]). Note that choices B and C are false statements: Both
insertion and deletion for an array involve writing code to shift elements. An
ArrayList automatically takes care of this through its add and remove methods.
Choice D is a poor reason for choosing an array. While the get and set methods
of ArrayList might be slightly more awkward than using the [] notation, both
mechanisms work pretty easily. Choice E is false: Efficiency of access is roughly
the same.

9. (D) For each Address object a in list, access the name of the object with
a.getName().

10. (B) Since the Address class does not have a toStringmethod, each data field must
explicitly be printed. Segment III would work if there were a toString method
for the class (but there isn’t, so it doesn’t!). Segment I fails because of incorrect
use of the for-each loop: The array index should not be accessed.

11. (C) Each Student name must be accessed through the Address class accessor
getName(). The expression student.getAddress() accesses the entire address of

✐

✐

“ap” — 2014/11/4 — 11:10 — page 286 — #300

✐

✐

✐

✐

✐

✐

286 Chapter 6 Arrays and Array Lists

that student. The name field is then accessed using the getName() accessor of the
Address class.

12. (E) Both correct solutions are careful not to lose the student who has the
highest idNum so far. Segment II does it by storing a reference to the student,
highestSoFar. Segment III does it by storing the array index of that student.
Code segment I is incorrect because it returns the first student whose idNum is
greater than max, not necessarily the student with the highest idNum in the list.

13. (B) For each i, tickList[i] is a new Ticket object that must be constructed
using the Ticket constructor. Therefore eliminate choices C, D, and E. Choice
A is wrong because getRow(), getSeat(), and getPrice() are accessors for val-
ues that already exist for some Ticket object. Note also the absence of the dot
member construct.

14. (C) To access the price for each Ticket in the tickList array, the getPrice()

accessor in the Ticket class must be used, since price is private to that class. This
eliminates choices A and E. Choice B uses the array name incorrectly. Choices
D and E incorrectly declare a Transaction object. (The method applies to an
existing Transaction object.)

15. (A) An array of type Transaction is required. This eliminates choices C and D.
Additionally, choices B and D incorrectly use type Ticket on the right-hand side.
Choice E puts the identifier listOfSales in the wrong place.

16. (B) There are two problems with the segment as given:

1. arr[1] is not tested.
2. When i has a value of n-1, incrementing i will lead to an out-of-range

error for the if(arr[i] < min) test.

Modification II corrects both these errors. The change suggested in III corrects
neither of these errors. The change in I corrects (1) but not (2).

17. (A) Notice that either vIndex or wIndex is incremented at the end of the loop.
This means that, when the loop is exited, the current values of v[vIndex] and
w[wIndex] have not been compared. Therefore, you can only make an assertion
for values v[0]..v[vIndex-1] and w[0]..w[wIndex-1]. Also, notice that if there
is no common value in the arrays, the exiting condition for the while loop will
be that the end of one of the arrays has been reached, namely vIndex equals N or
wIndex equals M.

18. (B) Objects in an array can be changed in a for-each loop by using mutator meth-
ods of the objects’ class. The changeStatus method, a mutator in the Book class,
will work as intended in the given code. Choice C would be true if it were not
given that each Book in bookList was initialized. If any given b had a value of
null, then a NullPointerExceptionwould be thrown.

19. (D) The declaration must start with the type of value in the array, namely
BingoCard. This eliminates choices A and E. Eliminate choice B: The type on
the right of the assignment should be BingoCard. Choice C is wrong because the
number of slots in the array should be NUMPLAYERS, not 20.

20. (C) Segment III is the only segment that works, since the for-each loop cannot
be used to replace elements in an array. After the declaration

BingoCard[] players = new BingoCard[NUMPLAYERS];

✐

✐

“ap” — 2014/11/4 — 11:10 — page 287 — #301

✐

✐

✐

✐

✐

✐

Answers Explained 287

each element in the players array is null. The intent in the given code is to
replace each null reference with a newly constructed BingoCard.

21. (B) The type parameter in a generic ArrayListmust be a class type, not a primi-
tive. Declaration II would be correct if it were

List<Integer> intList = new ArrayList<Integer>();

22. (E) All elements added to strList must be of type String. Each choice satisfies
this except choice E. Note that in choice D, the expression ch + 8 becomes a
String since ch is a String (just one of the operands needs to be a String to
convert the whole expression to a String). In choice E, neither intOb nor 8 is a
String.

23. (C) The effect of choice C is to adjust the size of the list to 7 and to add the
Integer 9 to the last slot (i.e., the slot with index 6). Choices A, D, and E will
all cause an IndexOutOfBoundsException because there is no slot with index 6:
the last slot has index 5. Choice B will cause a compile-time error, since it is
attempting to add an element of type Double to a list of type Integer.

24. (D) If element is smaller than the last item in the list, it will be compared with
every item in the list. Eventually index will be incremented to a value that is out
of bounds. To avoid this error, the test in the while loop should be

while(index < list.size() &&

element.compareTo(list.get(index)) < 0)

Notice that if element is greater than or equal to at least one item in list, the test
as given in the problem will eventually be false, preventing an out-of-range error.

25. (A) Recall that add(index, obj) shifts all elements, starting at index, one unit
to the right, then inserts obj at position index. The set(index, obj) method
replaces the element in position index with obj. So here is the state of list after
each change:

i = 0 6 0 1 8

2 0 1 8

i = 1 2 0 1 1 8

2 3 1 1 8

i = 2 2 3 1 2 1 8

2 3 4 2 1 8

26. (E) The value of each Coin c in coinsmust be accessed with c.getValue(). This
eliminates choice D. Eliminate choices A and B: The loop accesses each Coin

in the coins ArrayList, which means that there should not be any statements
attempting to get the next Coin. Choice B would be correct if the first statement
in the loop body were

double value = c.getValue();

27. (D) Code segment III is wrong because the equals method is defined for ob-
jects only. Since getValue returns a double, the quantities c.getValue() and
aCoin.getValue() must be compared either using ==, or as described in the box
on p. 65 (better).

28. (D) Segment II is the straightforward solution. Segment I is correct because it
initializes all slots of the matrix to 0, a perfect square. (By default, all arrays of
int or double are initialized to 0.) Segment III fails because r is undefined in the
condition c < mat[r].length. In order to do a column-by-column traversal, you
need to get the number of columns in each row. The outer for loop could be

✐

✐

“ap” — 2014/11/4 — 11:10 — page 288 — #302

✐

✐

✐

✐

✐

✐

288 Chapter 6 Arrays and Array Lists

for (int c = 0; c < mat[0].length; c++)

Now segment III works. Note that since the array is rectangular, you can use
any index k in the conditional c < mat[k].length, provided that k satisfies the
condition 0≤ k< mat.length (the number of rows).

29. (A) Method alter shifts all the columns, starting at column c+1, one column
to the left. Also, it does it in a way that overwrites column c. Here are the
replacements for the method call alter(1):

mat[0][1] = mat[0][2]

mat[0][2] = mat[0][3]

mat[1][1] = mat[1][2]

mat[1][2] = mat[1][3]

mat[2][1] = mat[2][2]

mat[2][2] = mat[2][3]

30. (A) matStuff processes the row selected by the row parameter, 2 in the method
call. The row value, 2, overwrites each element in row 2. Don’t make the mistake
of selecting choice B—the row labels are 0, 1, 2.

31. (B) Hand execute this for a 2×2 matrix. i goes from 0 to 0, j goes from 0 to 0, so
the only interchange is swap mat[0][0] with mat[1][1], which suggests choice
B. Check with a 3× 3 matrix:

i = 0 j = 0 swap mat[0][0] with mat[2][2]

j = 1 swap mat[0][1] with mat[1][2]

i = 1 j = 0 swap mat[1][0] with mat[2][1]

The elements to be interchanged are shown paired in the following figure. The
result will be a reflection through the minor diagonal.

2 4 6

1 3 5

7 9 0

32. (D) The method as given will throw an ArrayIndexOutOfBoundsException. For
the matrix in the example, mat[0].length is 4. The call mat.alter(1) gives c a
value of 1. Thus, in the inner for loop, j goes from 1 to 3. When j is 3, the line
mat[i][j] = mat[i][j+1] becomes mat[i][3] = mat[i][4]. Since columns go
from 0 to 3, mat[i][4] is out of range. The changes in segments I and II both
fix this problem. In each case, the correct replacements are made for each row
i: mat[i][1] = mat[i][2] and mat[i][2] = mat[i][3]. Segment III makes the
following incorrect replacements as j goes from 3 to 2: mat[i][2] = mat[i][3]

and mat[i][1] = mat[i][2]. This will cause both columns 1 and 2 to be over-
written. Before inserting zeros in the last column, mat will be

2 9 9 9
1 3 3 3
0 2 2 2

This does not achieve the intended postcondition of the method.

33. (B) For the method call isThere(mat, 2, 2, "$"), the code counts how many
times "$" appears in row 2 and how many times in column 2. The method re-
turns true only if count == SIZE for either the row or column pass (i.e., the

✐

✐

“ap” — 2014/11/4 — 11:10 — page 289 — #303

✐

✐

✐

✐

✐

✐

Answers Explained 289

whole of row 2 or the whole of column 2 contains the symbol "$"). This elimi-
nates choices I and II.

34. (D) Segment I is a row-by-row traversal; segment II is a column-by-column traver-
sal. Each achieves the correct postcondition. Segment III traverses the matrix but
does not alter it. All that is changed is the local variable element. You cannot use
this kind of loop to replace elements in an array.

35. (E) Since there are 365 valid days in a year, the divisor in calculating the average
must be 365. It may appear that segments II and III are incorrect because they
include rainfall for invalid days in total. Since these values are initialized to 0.0,
however, including them in the total won’t affect the final result.

36. (E) This is similar to the previous question, but in this case segment III is also
correct. This is because instead of replacing a matrix element, you are modifying
it using a mutator method.

37. (E) There are three things that must be done in each row:

• Add an opening boundary line:

s = s + "|";

• Add the symbol in each square:

for (int c = 0; c < COLS; c++)

s = s + board[r][c];

• Add a closing boundary line and go to the next line:

s = s + "|\n";

All of these statements must therefore be enclosed in the outer for loop, that is,

for (int r = ...)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 290 — #304

✐

✐

✐

✐

✐

✐

Recursion CHAPTER 7

recursion n. See recursion.
—Eric S. Raymond, The New Hacker’s Dictionary (1991)

Chapter Goals

• Understanding recursion

• Recursive methods

• Recursion in two-dimensional
grids

• Recursive helper methods

• Analysis of recursive algorithms

• Tracing recursive algorithms

RECURSIVE METHODS

A recursive method is a method that calls itself. For example, here is a program that
calls a recursive method stackWords.

In the multiple-choice
section of the AP
exam, you will be
asked to understand
and trace recursive
methods. You will
not, however, be
asked to come up
with code for
recursive methods in
the free-response part
of the exam.

public class WordPlay

{

public static void stackWords()

{

String word = IO.readString(); //read user input

if (word.equals("."))

System.out.println();

else

stackWords();

System.out.println(word);

}

public static void main(String args[])

{

System.out.println("Enter list of words, one per line.");

System.out.println("Final word should be a period (.)");

stackWords();

}

}

Here is the output if you enter

hold

my

hand

.

290

✐

✐

“ap” — 2014/11/4 — 11:10 — page 291 — #305

✐

✐

✐

✐

✐

✐

General Form of Simple Recursive Methods 291

You get

.

hand

my

hold

The program reads in a list of words terminated with a period, and prints the list in
reverse order, starting with the period. How does this happen?

Each time the recursive call to stackWords() is made, execution goes back to the
start of a new method call. The computer must remember to complete all the pending
calls to the method. It does this by stacking the statements that must still be executed
as follows: The first time stackWords() is called, the word "hold" is read and tested for
being a period. No it’s not, so stackWords() is called again. The statement to output
"hold" (which has not yet been executed) goes on a stack, and execution goes to the
start of the method. The word "my" is read. No, it’s not a period, so the command to
output "my" goes on the stack. And so on. The stack looks something like this before
the recursive call in which the period is read:

System.out.println("hand");

System.out.println("my");

System.out.println("hold");

Imagine that these statements are stacked like plates. In the final stackWords() call,
word has the value ".". Yes, it is a period, so the stackWords() line is skipped, the
period is printed on the screen, and the method call terminates. The computer now
completes each of the previous method calls in turn by “popping” the statements off
the top of the stack. It prints "hand", then "my", then "hold", and execution of method
stackWords() is complete.1

NOTE

1. Each time stackWords() is called, a new local variable word is created.
2. The first time the method actually terminates, the program returns to complete

the most recently invoked previous call. That’s why the words get reversed in
this example.

GENERAL FORM OF SIMPLE RECURSIVE METHODS

Every recursive method has two distinct parts:

• A base case or termination condition that causes the method to end.

• A nonbase case whose actions move the algorithm toward the base case and ter-
mination.

1Actually, the computer stacks the pending statements in a recursive method call more efficiently than
the way described. But conceptually this is how it is done.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 292 — #306

✐

✐

✐

✐

✐

✐

292 Chapter 7 Recursion

Here is the framework for a simple recursive method that has no specific return
type.

public void recursiveMeth(...)

{

if (base case)
< Perform some action >

else

{

< Perform some other action >
recursiveMeth(...); //recursive method call

}

}

The base case typically occurs for the simplest case of the problem, such as when an
integer has a value of 0 or 1. Other examples of base cases are when some key is found,
or an end-of-file is reached. A recursive algorithm can have more than one base case.

In the else or nonbase case of the framework shown, the code fragment < Perform

some other action > and the method call recursiveMeth can sometimes be interchanged
without altering the net effect of the algorithm. Be careful though, because what does
change is the order of executing statements. This can sometimes be disastrous. (See the
eraseBlob example on p. 299.)

Example 1

public void drawLine(int n)

{

if (n == 0)

System.out.println("That’s all, folks!");

else

{

for (int i = 1; i <= n; i++)

System.out.print("*");

System.out.println();

drawLine(n - 1);

}

}

The method call drawLine(3) produces this output:

**

*

That’s all, folks!

NOTE

1. A method that has no pending statements following the recursive call is an
example of tail recursion. Method drawLine is such a case, but stackWords is
not.

2. The base case in the drawLine example is n == 0. Notice that each subsequent
call, drawLine(n - 1), makes progress toward termination of the method. If
your method has no base case, or if you never reach the base case, you will
create infinite recursion. This is a catastrophic error that will cause your com-
puter eventually to run out of memory and give you heart-stopping messages
like java.lang.StackOverflowError

✐

✐

“ap” — 2014/11/4 — 11:10 — page 293 — #307

✐

✐

✐

✐

✐

✐

Writing Recursive Methods 293

Example 2

//Illustrates infinite recursion.

public void catastrophe(int n)

{

System.out.println(n);

catastrophe(n);

}

Try running the case catastrophe(1) if you have lots of time to waste! A recursive method
must have a base case.

WRITING RECURSIVE METHODS

Optional topicTo come up with a recursive algorithm, you have to be able to frame a process re-
cursively (i.e., in terms of a simpler case of itself). This is different from framing it
iteratively, which repeats a process until a final condition is met. A good strategy for
writing recursive methods is to first state the algorithm recursively in words.

Example 1

Write a method that returns n! (n factorial).

n! defined iteratively n! defined recursively

0!= 1 0!= 1
1!= 1 1!= (1)(0!)
2!= (2)(1) 2!= (2)(1!)
3!= (3)(2)(1) 3!= (3)(2!)
.

The general recursive definition for n! is

n!=

(

1 n = 0

n(n− 1)! n > 0

The definition seems to be circular until you realize that if 0! is defined, all higher fac-
torials are defined. Code for the recursive method follows directly from the recursive
definition:

/** Compute n! recursively.

* @param n a nonnegative integer

* @return n!

*/

public static int factorial(int n)

{

if (n == 0) //base case

return 1;

else

return n * factorial(n - 1);

}

Example 2

Write a recursive method revDigs that outputs its integer parameter with the digits
reversed. For example,

✐

✐

“ap” — 2014/11/4 — 11:10 — page 294 — #308

✐

✐

✐

✐

✐

✐

(continued)

294 Chapter 7 Recursion

revDigs(147) outputs 741

revDigs(4) outputs 4

First, describe the process recursively: Output the rightmost digit. Then, if there are
still digits left in the remaining number n/10, reverse its digits. Repeat this until n/10
is 0. Here is the method:

/** @param n a nonnegative integer

* @return n with its digits reversed

*/

public static void revDigs(int n)

{

System.out.print(n % 10); //rightmost digit

if (n / 10 != 0) //base case

revDigs(n / 10);

}

NOTE

On the AP exam, you are expected to “understand and evaluate” recursive methods.
This means that you would not be asked to come up with the code for methods such
as factorial and revDigs (as shown above). You could, however, be asked to identify
output for any given call to factorial or revDigs.

ANALYSIS OF RECURSIVE METHODS

Recall the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, The nth Fibonacci number equals
the sum of the previous two numbers if n ≥ 3. Recursively,

Fib(n) =

(

1, n = 1,2

Fib(n− 1)+Fib(n− 2), n ≥ 3

Here is the method:

/** @param n a positive integer

* @return the nth Fibonacci number

*/

public static int fib(int n)

{

if (n == 1 || n == 2)

return 1;

else

return fib(n - 1) + fib(n - 2);

}

Notice that there are two recursive calls in the last line of the method. So to find Fib(5),
for example, takes eight recursive calls to fib!

Fib(5)

Fib(4)

Fib(3)

Fib(2) Fib(1)

Fib(2)

Fib(3)

Fib(2) Fib(1)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 295 — #309

✐

✐

✐

✐

✐

✐

Recursive Helper Methods 295

In general, each call to fib makes two more calls, which is the tipoff for an expo-
nential algorithm (i.e., one that is very inefficient). This is much slower than the run
time of the corresponding iterative algorithm (see Chapter 5, Question 13).

You may ask: Since every recursive algorithm can be written iteratively, when
should programmers use recursion? Bear in mind that recursive algorithms can incur
extra run time and memory. Their major plus is elegance and simplicity of code.

General Rules for Recursion

1. Avoid recursion for algorithms that involve large local
arrays—too many recursive calls can cause memory over-
flow.

2. Use recursion when it significantly simplifies code.
3. Avoid recursion for simple iterative methods like factorial,

Fibonacci, and the linear search on the next page.
4. Recursion is especially useful for

• Branching processes like traversing trees or directo-
ries.

• Divide-and-conquer algorithms like mergesort and
binary search.

SORTING ALGORITHMS THAT USE RECURSION

Mergesort and quicksort are discussed in Chapter 8.

RECURSIVE HELPER METHODS

Optional topicA common technique in designing recursive algorithms is to have a public nonrecur-
sive driver method that calls a private recursive helper method to carry out the task.
The main reasons for doing this are

• To hide the implementation details of the recursion from the user.

• To enhance the efficiency of the program.

Example 1

Consider the simple example of recursively finding the sum of the first n positive
integers.

/** @param n a positive integer

* @return 1 + 2 + 3 + ... + n

*/

public static int sum(int n)

{

if (n == 1)

return 1;

else

return n + sum(n - 1);

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 296 — #310

✐

✐

✐

✐

✐

✐

(continued)

296 Chapter 7 Recursion

Notice that you get infinite recursion if n ≤ 0. Suppose you want to include a test
for n > 0 before you execute the algorithm. Placing this test in the recursive method
is inefficient because if n is initially positive, it will remain positive in subsequent
recursive calls. You can avoid this problem by using a driver method called getSum,
which does the test on n just once. The recursive method sum becomes a private helper
method.

public class FindSum

{

/** Private recursive helper method.

* @param n a positive integer

* @return 1 + 2 + 3 + ... + n

*/

private static int sum(int n)

{

if (n == 1)

return 1;

else

return n + sum(n - 1);

}

/* Driver method */

public static int getSum(int n)

{

if (n > 0)

return sum(n);

else

{

throw new IllegalArgumentException

("Error: n must be positive");

}

}

}

NOTE

This is a trivial method used to illustrate a private recursive helper method. In practice,
you would never use recursion to find a simple sum!

Example 2

Consider a recursive solution to the problem of doing a sequential search for a key
in an array of strings. If the key is found, the method returns true, otherwise it returns
false.

The solution can be stated recursively as follows:

• If the key is in a[0], then the key is found.

• If not, recursively search the array starting at a[1].

• If you are past the end of the array, then the key wasn’t found.

Here is a straightforward (but inefficient) implementation:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 297 — #311

✐

✐

✐

✐

✐

✐

(continued)

Recursive Helper Methods 297

public class Searcher

{

/** Recursively search array a for key.

* @param a the array of String objects

* @param key a String object

* @return true if a[k] equals key for 0 <= k < a.length;

* false otherwise

*/

public boolean search(String[] a, String key)

{

if (a.length == 0) //base case. key not found

return false;

else if (a[0].compareTo(key) == 0) //base case

return true; //key found

else

{

String[] shorter = new String[a.length-1];

for (int i = 0; i < shorter.length; i++)

shorter[i] = a[i+1];

return search(shorter, key);

}

}

public static void main(String[] args)

{

String[] list = {"Mary", "Joe", "Lee", "Jake"};

Searcher s = new Searcher();

System.out.println("Enter key: Mary, Joe, Lee or Jake.");

String key = IO.readString(); //read user input

boolean result = s.search(list, key);

if (!result)

System.out.println(key + " was not found.");

else

System.out.println(key + " was found.");

}

}

Notice how horribly inefficient the search method is: For each recursive call, a new
array shorter has to be created! It is much better to use a parameter, startIndex, to
keep track of where you are in the array. Replace the search method above with the
following one, which calls the private helper method recurSearch:

/** Driver method. Searches array a for key.

* Precondition: a contains at least one element.

* @param a the array of String objects

* @param key a String object

* @return true if a[k] equals key for 0 <= k < a.length;

* false otherwise

*/

public boolean search(String[] a, String key)

{

return recurSearch(a, 0, key);

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 298 — #312

✐

✐

✐

✐

✐

✐

(continued)

298 Chapter 7 Recursion

/** Recursively search array a for key, starting at startIndex.

* Precondition:
* - a contains at least one element.

* - 0 <= startIndex <= a.length.

* @return true if a[k] equals key for 0 <= k < a.length;

* false otherwise

*/

private boolean recurSearch(String[] a, int startIndex,

String key)

{

if(startIndex == a.length) //base case. key not found

return false;

else if(a[startIndex].compareTo(key) == 0) //base case

return true; //key found

else

return recurSearch(a, startIndex+1, key);

}

NOTE

1. Using the parameter startIndex avoids having to create a new array object for
each recursive call. Making startIndex a parameter of a helper method hides
implementation details from the user.

Use a recursive
helper method to
hide private coding
details from a
client.

2. The helper method is private because it is called only by search within the
Searcher class.

3. It’s easy to modify the search method to return the index in the array where
the key is found: Make the return type int and return startIndex if the key is
found, -1 (say) if it isn’t.

RECURSION IN TWO-DIMENSIONAL GRIDS

Here is a commonly used technique: using recursion to traverse a two-dimensional
array. The problem comes in several different guises, for example,

1. A game board from which you must remove pieces.
2. A maze with walls and paths from which you must try to escape.
3. White “containers” enclosed by black “walls” into which you must “pour paint.”

In each case, you will be given a starting position (row, col) and instructions on
what to do. The recursive solution typically involves these steps:

Check that the starting position is not out of range:
If (starting position satisfies some requirement)

Perform some action to solve problem
RecursiveCall(row+ 1, col)
RecursiveCall(row− 1, col)
RecursiveCall(row, col+ 1)
RecursiveCall(row, col− 1)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 299 — #313

✐

✐

✐

✐

✐

✐

(continued)

Recursion in Two-Dimensional Grids 299

Example

On the right is an image represented as a square grid
of black and white cells. Two cells in an image are part
of the same “blob” if each is black and there is a sequence
of moves from one cell to the other, where each move is
either horizontal or vertical to an adjacent black cell. For
example, the diagram represents an image that contains
two blobs, one of them consisting of a single cell.

Assuming the following Image class declaration, you
are to write the body of the eraseBlob method, using a
recursive algorithm.

public class Image

{

private final int BLACK = 1;

private final int WHITE = 0;

private int[][] image; //square grid

private int size; //number of rows and columns

public Image() //constructor

{ /* implementation not shown */ }

public void display() //displays Image

{ /* implementation not shown */ }

/** Precondition: Image is defined with either BLACK or WHITE cells.

* Postcondition: If 0 <= row < size, 0 <= col < size, and

* image[row][col] is BLACK, set all cells in the

* same blob to WHITE. Otherwise image is unchanged.

* @param row the given row

* @param col the given column

*/

public void eraseBlob(int row, int col)

/* your code goes here */

}

Solution:

public void eraseBlob(int row, int col)

{

if (row >= 0 && row < size && col >= 0 && col < size)

if (image[row][col] == BLACK)

{

image[row][col] = WHITE;

eraseBlob(row - 1, col);

eraseBlob(row + 1, col);

eraseBlob(row, col - 1);

eraseBlob(row, col + 1);

}

}

NOTE

1. The ordering of the four recursive calls is irrelevant.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 300 — #314

✐

✐

✐

✐

✐

✐

(continued)

300 Chapter 7 Recursion

2. The test

if (image[row][col] == BLACK)

can be included as the last piece of the test in the first line:

if (row >= 0 && ...

If row or col is out of range, the test will short-circuit, avoiding the dreaded
ArrayIndexOutOfBoundsException.

3. If you put the statement

image[row][col] = WHITE;

after the four recursive calls, you get infinite recursion if your blob has more
than one cell. This is because, when you visit an adjacent cell, one of its recur-
sive calls visits the original cell. If this cell is still BLACK, yet more recursive calls
are generated, ad infinitum.

A final thought: Recursive algorithms can be tricky. Try to state the solution recur-
sively in words before you launch into code. Oh, and don’t forget the base case!

Sample Free-Response Question 1

Here is a sample free-response question that uses recursion in a two-dimensional array.
See if you can answer it before looking at the solution.

A color grid is defined as a two-dimensional array whose elements are character
strings having values "b" (blue), "r" (red), "g" (green), or "y" (yellow). The elements
are called pixels because they represent pixel locations on a computer screen. For
example,

b b g r
g r g r

r r r r r

y g r
b y g
g r b
b b g

A connected region for any pixel is the set of all pixels of the same color that can
be reached through a direct path along horizontal or vertical moves starting at that
pixel. A connected region can consist of just a single pixel or the entire color grid.
For example, if the two-dimensional array is called pixels, the connected region for
pixels[1][0] is as shown here for three different arrays.

b b g r

g r g r

y g r b

g g y g

b g r g

b b

b b

The class ColorGrid, whose declaration is shown below, is used for storing, displaying,
and changing the colors in a color grid.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 301 — #315

✐

✐

✐

✐

✐

✐

(continued)

Recursion in Two-Dimensional Grids 301

public class ColorGrid

{

private String[][] pixels;

private int rows;

private int cols;

/** Creates numRows × numCols ColorGrid from String s.

* @param s the string containing colors of the ColorGrid

* @param numRows the number of rows in the ColorGrid

* @param numCols the number of columns in the ColorGrid

*/

public ColorGrid(String s, int numRows, int numCols)

{ /* to be implemented in part (a) */ }

/** Precondition:
* - pixels[row][col] is oldColor, one of "r", "b","g", or "y".

* - newColor is one of "r","b","g", or "y".

* Postcondition:
* - If 0 <= row < rows and 0 <= col < cols, paints the

* connected region of pixels[row][col] the newColor.

* - Does nothing if oldColor is the same as newColor.

* @param row the given row

* @param col the given column

* @param newColor the new color for painting

* @param oldColor the current color of pixels[row][col]

*/

public void paintRegion(int row, int col, String newColor,

String oldColor)

{ /* to be implemented in part (b) */ }

//Other methods are not shown.

}

(a) Write the implementation code for the ColorGrid constructor. The constructor
should initialize the pixels matrix of the ColorGrid as follows: The dimensions
of pixels are numRows× numCols. String s contains numRows× numCols char-
acters, where each character is one of the colors of the grid—"r", "g", "b", or
"y". The characters are contained in s row by row from top to bottom and
left to right. For example, given that numRows is 3, and numCols is 4, if s is
"brrygrggyyyr", pixels should be initialized to be

b r r y

g r g g

y y y r

Complete the constructor below:

/** Creates numRows × numCols ColorGrid from String s.

* @param s the string containing colors of the ColorGrid

* @param numRows the number of rows in the ColorGrid

* @param numCols the number of columns in the ColorGrid

*/

public ColorGrid(String s, int numRows, int numCols)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 302 — #316

✐

✐

✐

✐

✐

✐

(continued)

302 Chapter 7 Recursion

(b) Write the implementation of the paintRegion method as started below. Note:
You must write a recursive solution. The paintRegion paints the connected
region of the given pixel, specified by row and col, a different color specified
by the newColor parameter. If newColor is the same as oldColor, the color of
the given pixel, paintRegion does nothing. To visualize what paintRegion does,
imagine that the different colors surrounding the connected region of a given
pixel form a boundary. When paint is poured onto the given pixel, the new color
will fill the connected region up to the boundary.

For example, the effect of the method call c.paintRegion(2, 3, "b", "r") on
the ColorGrid c is shown here. (The starting pixel is shown in a frame, and its
connected region is shaded.)

before

r r b g y y

b r b y r r

g g r r r b

y r r y r b

after

r r b g y y

b r b y b b

g g b b b b

y b b y b b

Complete the method paintRegion below. Note: Only a recursive solution
will be accepted.

/** Precondition:
* - pixels[row][col] is oldColor, one of "r", "b","g", or "y".

* - newColor is one of "r","b","g", or "y".

* Postcondition:
* - If 0 <= row < rows and 0 <= col < cols, paints the

* connected region of pixels[row][col] the newColor.

* - Does nothing if oldColor is the same as newColor.

* @param row the given row

* @param col the given column

* @param newColor the new color for painting

* @param oldColor the current color of pixels[row][col]

*/

public void paintRegion(int row, int col, String newColor,

String oldColor)

Solution

(a) public ColorGrid(String s, int numRows, int numCols)

{

rows = numRows;

cols = numCols;

pixels = new String[numRows][numCols];

int stringIndex = 0;

for (int r = 0; r < numRows; r++)

for (int c = 0; c < numCols; c++)

{

pixels[r][c] = s.substring(stringIndex,

stringIndex + 1);

stringIndex++;

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 303 — #317

✐

✐

✐

✐

✐

✐

(continued)

Recursion in Two-Dimensional Grids 303

(b) public void paintRegion(int row, int col, String newColor,

String oldColor)

{

if (row >= 0 && row < rows && col >= 0 && col < cols)

if (!pixels[row][col].equals(newColor) &&

pixels[row][col].equals(oldColor))

{

pixels[row][col] = newColor;

paintRegion(row + 1, col, newColor, oldColor);

paintRegion(row - 1, col, newColor, oldColor);

paintRegion(row, col + 1, newColor, oldColor);

paintRegion(row, col - 1, newColor, oldColor);

}

}

NOTE

• In part (a), you don’t need to test if stringIndex is in range: The precondition
states that the number of characters in s is numRows× numCols.
• In part (b), each recursive call must test whether row and col are in the correct

range for the pixels array; otherwise, your algorithm may sail right off the
edge!
• Don’t forget to test if newColor is different from that of the starting pixel.

Method paintRegion does nothing if the colors are the same.
• Also, don’t forget to test if the current pixel is oldColor—you don’t want to

overwrite all the colors, just the connected region of oldColor!
• The color-change assignment pixels[row][col] = newColormust precede the

recursive calls to avoid infinite recursion.

Sample Free-Response Question 2

Here is another sample free-response question that uses recursion.

This question refers to the Sentence class below. Note: A word is a string of con-
secutive nonblank (and nonwhitespace) characters. For example, the sentence

“Hello there!” she said.

consists of the four words

"Hello there!" she said.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 304 — #318

✐

✐

✐

✐

✐

✐

(continued)

304 Chapter 7 Recursion

public class Sentence

{

private String sentence;

private int numWords;

/** Constructor. Creates sentence from String str.

* Finds the number of words in sentence.

* Precondition: Words in str separated by exactly one blank.

* @param str the string containing a sentence

*/

public Sentence(String str)

{ /* to be implemented in part (a) */ }

public int getNumWords()

{ return numWords; }

public String getSentence()

{ return sentence; }

/** @param s the specified string

* @return a copy of String s with all blanks removed

* Postcondition: Returned string contains just one word.

*/

private static String removeBlanks(String s)

{ /* implementation not shown */ }

/** @param s the specified string

* @return a copy of String s with all letters in lowercase

* Postcondition: Number of words in returned string equals

* number of words in s.

*/

private static String lowerCase(String s)

{ /* implementation not shown */ }

/** @param s the specified string

* @return a copy of String s with all punctuation removed

* Postcondition: Number of words in returned string equals

* number of words in s.

*/

private static String removePunctuation(String s)

{ /* implementation not shown */ }

}

(a) Complete the Sentence constructor as started below. The constructor assigns
str to sentence. You should write the subsequent code that assigns a value to
numWords, the number of words in sentence.

Complete the constructor below:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 305 — #319

✐

✐

✐

✐

✐

✐

(continued)

Recursion in Two-Dimensional Grids 305

/** Constructor. Creates sentence from String str.

* Finds the number of words in sentence.

* Precondition: Words in str separated by exactly one blank.

* @param str the string containing a sentence

*/

public Sentence(String str)

{

sentence = str;

(b) Consider the problem of testing whether a string is a palindrome. A palindrome
reads the same from left to right and right to left, ignoring spaces, punctuation,
and capitalization. For example,

A Santa lived as a devil at NASA.
Flo, gin is a sin! I golf.
Eva, can I stab bats in a cave?

A public method isPalindrome is added to the Sentence class. Here is the method
and its implementation:

/** @return true if sentence is a palindrome, false otherwise

*/

public boolean isPalindrome()

{

String temp = removeBlanks(sentence);

temp = removePunctuation(temp);

temp = lowerCase(temp);

return isPalindrome(temp, 0, temp.length() - 1);

}

The overloaded isPalindromemethod contained in the code is a private recursive
helper method, also added to the Sentence class. You are to write the implemen-
tation of this method. It takes a “purified” string as a parameter, namely one that
has been stripped of blanks and punctuation and is all lowercase letters. It also
takes as parameters the first and last index of the string. It returns true if this
“purified” string is a palindrome, false otherwise.

A recursive algorithm for testing if a string is a palindrome is as follows:

• If the string has length 0 or 1, it’s a palindrome.

• Remove the first and last letters.

• If those two letters are the same, and the remaining string is a palindrome,
then the original string is a palindrome. Otherwise it’s not.

Complete the isPalindromemethod below:

/** Private recursive helper method that tests whether a substring

* of string s is a palindrome.

* @param s the given string

* @param start the index of the first character of the substring

* @param end the index of the last character of the substring

* @return true if the substring is a palindrome, false otherwise

* Precondition: s contains no spaces, punctuation, or capitals.

*/

private static boolean isPalindrome(String s, int start, int end)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 306 — #320

✐

✐

✐

✐

✐

✐

(continued)

306 Chapter 7 Recursion

Solution

(a) public Sentence(String str)

{

sentence = str;

numWords = 1;

int k = str.indexOf(" ");

while (k != -1) //while there are still blanks in str

{

numWords++;

str = str.substring(k + 1); //substring after blank

k = str.indexOf(" "); //get index of next blank

}

}

(b) private static boolean isPalindrome(String s, int start,

int end)

{

if (start >= end) //substring has length 0 or 1

return true;

else

{

String first = s.substring(start, start + 1);

String last = s.substring(end, end + 1);

if (first.equals(last))

return isPalindrome(s, start + 1, end - 1);

else

return false;

}

}

NOTE

• In part (a), for every occurrence of a blank in sentence, numWords must be
incremented. (Be sure to initialize numWords to 1!)
• In part (a), the code locates all the blanks in sentence by replacing str with the

substring that consists of the piece of str directly following the most recently
located blank.
• Recall that indexOf returns -1 if its String parameter does not occur as a sub-

string in its String calling object.
• In part (b), the start and end indexes move toward each other with each sub-

sequent recursive call. This shortens the string to be tested in each call. When
start and end meet, the base case has been reached.
• Notice the private static methods in the Sentence class, including the helper

method you were asked to write. They are static because they are not invoked
by a Sentence object (no dot member construct). The only use of these meth-
ods is to help achieve the postconditions of other methods in the class.

Chapter Summary

On the AP exam you will be expected to calculate the results of recursive method
calls. Recursion becomes second nature when you practice a lot of examples. For the

✐

✐

“ap” — 2014/11/4 — 11:10 — page 307 — #321

✐

✐

✐

✐

✐

✐

Recursion in Two-Dimensional Grids 307

more difficult questions, untangle the statements with either repeated method calls
(like that shown in the solution to Question 5 on p. 319), or box diagrams (as shown
in the solution to Question 12 on p. 320).

You should understand that recursive algorithms can be very inefficient.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 308 — #322

✐

✐

✐

✐

✐

✐

308 Chapter 7 Recursion

MULTIPLE-CHOICE QUESTIONS ON RECURSION

1. Which of the following statements about recursion are true?

I Every recursive algorithm can be written iteratively.
II Tail recursion is always used in “divide-and-conquer” algorithms.

III In a recursive definition, a process is defined in terms of a simpler case of
itself.

(A) I only
(B) III only
(C) I and II only
(D) I and III only
(E) II and III only

2. Which of the following, when used as the /* body */ of method sum, will enable
that method to compute 1+ 2+ · · ·+ n correctly for any n > 0?

/** @param n a positive integer

* @return 1 + 2 + ... + n

*/

public int sum(int n)

{

/* body */

}

I return n + sum(n - 1);

II if (n == 1)

return 1;

else

return n + sum(n - 1);

III if (n == 1)

return 1;

else

return sum(n) + sum(n - 1);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 309 — #323

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Recursion 309

3. Refer to the method stringRecur:

public void stringRecur(String s)

{

if (s.length() < 15)

System.out.println(s);

stringRecur(s + "*");

}

When will method stringRecur terminate without error?
(A) Only when the length of the input string is less than 15
(B) Only when the length of the input string is greater than or equal to 15
(C) Only when an empty string is input
(D) For all string inputs
(E) For no string inputs

4. Refer to method strRecur:

public void strRecur(String s)

{

if (s.length() < 15)

{

System.out.println(s);

strRecur(s + "*");

}

}

When will method strRecur terminate without error?
(A) Only when the length of the input string is less than 15
(B) Only when the length of the input string is greater than or equal to 15
(C) Only when an empty string is input
(D) For all string inputs
(E) For no string inputs

Questions 5 and 6 refer to method result:

public int result(int n)

{

if (n == 1)

return 2;

else

return 2 * result(n - 1);

}

5. What value does result(5) return?
(A) 64
(B) 32
(C) 16
(D) 8
(E) 2

✐

✐

“ap” — 2014/11/4 — 11:10 — page 310 — #324

✐

✐

✐

✐

✐

✐

310 Chapter 7 Recursion

6. If n > 0, how many times will result be called to evaluate result(n) (including
the initial call)?
(A) 2
(B) 2n

(C) n
(D) 2n
(E) n2

7. Refer to method mystery:

public int mystery(int n, int a, int d)

{

if (n == 1)

return a;

else

return d + mystery(n - 1, a, d);

}

What value is returned by the call mystery(3, 2, 6)?
(A) 20
(B) 14
(C) 10
(D) 8
(E) 2

8. Refer to method f:

public int f(int k, int n)

{

if (n == k)

return k;

else

if (n > k)

return f(k, n - k);

else

return f(k - n, n);

}

What value is returned by the call f(6, 8)?
(A) 8
(B) 4
(C) 3
(D) 2
(E) 1

✐

✐

“ap” — 2014/11/4 — 11:10 — page 311 — #325

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Recursion 311

9. What does method recur do?

/** @param x an array of n integers

* @param n a positive integer

*/

public int recur(int[] x, int n)

{

int t;

if (n == 1)

return x[0];

else

{

t = recur(x, n - 1);

if (x[n-1] > t)

return x[n-1];

else

return t;

}

}

(A) It finds the largest value in x and leaves x unchanged.
(B) It finds the smallest value in x and leaves x unchanged.
(C) It sorts x in ascending order and returns the largest value in x.
(D) It sorts x in descending order and returns the largest value in x.
(E) It returns x[0] or x[n-1], whichever is larger.

10. Which best describes what the printString method below does?

public void printString(String s)

{

if (s.length() > 0)

{

printString(s.substring(1));

System.out.print(s.substring(0, 1));

}

}

(A) It prints string s.
(B) It prints string s in reverse order.
(C) It prints only the first character of string s.
(D) It prints only the first two characters of string s.
(E) It prints only the last character of string s.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 312 — #326

✐

✐

✐

✐

✐

✐

312 Chapter 7 Recursion

11. Refer to the method power:

/** @param base a nonzero real number

* @param expo an integer

* @return base raised to the expo power

*/

public double power(double base, int expo)

{

if (expo == 0)

return 1;

else if (expo > 0)

return base * power(base, expo - 1);

else

return /* code */;

}

Which /* code */ correctly completes method power?
(Recall that a−n = 1/an, a 6= 0; for example, 2−3 = 1/23 = 1/8.)
(A) (1 / base) * power(base, expo + 1)

(B) (1 / base) * power(base, expo - 1)

(C) base * power(base, expo + 1)

(D) base * power(base, expo - 1)

(E) (1 / base) * power(base, expo)

12. Consider the following method:

public void doSomething(int n)

{

if (n > 0)

{

doSomething(n - 1);

System.out.print(n);

doSomething(n - 1);

}

}

What would be output following the call doSomething(3)?
(A) 3211211

(B) 1121213

(C) 1213121

(D) 1211213

(E) 1123211

✐

✐

“ap” — 2014/11/4 — 11:10 — page 313 — #327

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Recursion 313

13. A user enters several positive integers at the keyboard and terminates the list with
a sentinel (-999). A writeEven method reads those integers and outputs the even
integers only, in the reverse order that they are read. Thus, if the user enters

3 5 14 6 1 8 -999

the output for the writeEven method will be

8 6 14

Assume that the user enters at least one positive integer and terminates the list
with −999. Here is the method:

/** Postcondition: All even integers in the list are output in

* reverse order.

*/

public static void writeEven()

{

int num = IO.readInt(); //read user input

if (num != -999)

{

/* code */

}

}

Which /* code */ satisfies the postcondition of method writeEven?

I if (num % 2 == 0)

System.out.print(num + " ");

writeEven();

II if (num % 2 == 0)

writeEven();

System.out.print(num + " ");

III writeEven();

if (num % 2 == 0)

System.out.print(num + " ");

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 314 — #328

✐

✐

✐

✐

✐

✐

314 Chapter 7 Recursion

14. Refer to the following recursive method.

public int mystery(int n)

{

if (n < 0)

return 2;

else

return mystery(n - 1) + mystery(n - 3);

}

What value is returned by the call mystery(3)?
(A) 12
(B) 10
(C) 8
(D) 6
(E) 4

✐

✐

“ap” — 2014/11/4 — 11:10 — page 315 — #329

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Recursion 315

Questions 15 and 16 refer to method t:

/** @param n a positive integer */

public int t(int n)

{

if (n == 1 || n == 2)

return 2 * n;

else

return t(n - 1) - t(n - 2);

}

15. What will be returned by t(5)?
(A) 4
(B) 2
(C) 0
(D) −2
(E) −4

16. For the method call t(6), how many calls to t will be made, including the origi-
nal call?
(A) 6
(B) 7
(C) 11
(D) 15
(E) 25

17. This question refers to methods f1 and f2 that are in the same class:

public int f1(int a, int b)

{

if (a == b)

return b;

else

return a + f2(a - 1, b);

}

public int f2(int p, int q)

{

if (p < q)

return p + q;

else

return p + f1(p - 2, q);

}

What value will be returned by a call to f1(5, 3)?
(A) 5
(B) 6
(C) 7
(D) 12
(E) 15

✐

✐

“ap” — 2014/11/4 — 11:10 — page 316 — #330

✐

✐

✐

✐

✐

✐

316 Chapter 7 Recursion

18. Consider method foo:

public int foo(int x)

{

if (x == 1 || x == 3)

return x;

else

return x * foo(x - 1);

}

Assuming no possibility of integer overflow, what will be the value of z after
execution of the following statement?

int z = foo(foo(3) + foo(4));

(A) (15!)/(2!)
(B) 3!+ 4!
(C) (7!)!
(D) (3!+ 4!)!
(E) 15

Questions 19 and 20 refer to the IntFormatter class below.

public class IntFormatter

{

/** Write 3 digits adjacent to each other.

* @param n a nonnegative integer

*/

public static void writeThreeDigits(int n)

{

System.out.print(n / 100);

System.out.print((n / 10) % 10);

System.out.print(n % 10);

}

/** Insert commas in n, every 3 digits starting at the right.

* @param n a nonnegative integer

*/

public static void writeWithCommas(int n)

{

if (n < 1000)

System.out.print(n);

else

{

writeThreeDigits(n % 1000);

System.out.print(",");

writeWithCommas(n / 1000);

}

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 317 — #331

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Recursion 317

19. The method writeWithCommas is supposed to print its nonnegative int argu-
ment with commas properly inserted (every three digits, starting at the right).
For example, the integer 27048621 should be printed as 27,048,621. Method
writeWithCommas does not always work as intended, however. Assuming no
integer overflow, which of the following integer arguments will not be printed
correctly?
(A) 896
(B) 251462251
(C) 365051
(D) 278278
(E) 4

20. Which change in the code of the given methods will cause method
writeWithCommas to work as intended?
(A) Interchange the lines System.out.print(n / 100) and

System.out.print(n % 10) in method writeThreeDigits.
(B) Interchange the lines writeThreeDigits(n % 1000) and

writeWithCommas(n / 1000) in method writeWithCommas.
(C) Change the test in writeWithCommas to if (n > 1000).
(D) In the method writeWithCommas, change the line

writeThreeDigits(n % 1000) to writeThreeDigits(n / 1000).
(E) In the method writeWithCommas, change the recursive call

writeWithCommas(n / 1000) to writeWithCommas(n % 1000).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 318 — #332

✐

✐

✐

✐

✐

✐

318 Chapter 7 Recursion

21. Consider the following method:

y

x

public static void sketch(int x1, int y1, int x2, int y2, int n)

{

if (n <= 0)

drawLine(x1, y1, x2, y2);

else

{

int xm = (x1 + x2 + y1 - y2) / 2;

int ym = (y1 + y2 + x2 - x1) / 2;

sketch(x1, y1, xm, ym, n - 1);

sketch(xm, ym, x2, y2, n - 1);

}

}

Assume that the screen looks like a Cartesian coordinate
system with the origin at the center, and that drawLine
connects (x1,y1) to (x2,y2). Assume also that x1, y1, x2,
and y2 are never too large or too small to cause errors.
Which picture best represents the sketch drawn by the
method call

sketch(a, 0, -a, 0, 2)

where a is a positive integer?

(A) y

x−a

a

a

−a

(C) y

x−a

a

a

−a

(E) y

x−a

a

a

−a

(B) y

x

−a

a

a

−a

(D) y

x−a

a

a

−a

✐

✐

“ap” — 2014/11/4 — 11:10 — page 319 — #333

✐

✐

✐

✐

✐

✐

Answers Explained 319

ANSWER KEY

1. D

2. B

3. E

4. D

5. B

6. C

7. B

8. D

9. A

10. B

11. A

12. C

13. C

14. A

15. E

16. D

17. E

18. A

19. C

20. B

21. B

ANSWERS EXPLAINED

1. (D) Tail recursion is when the recursive call of a method is made as the last
executable step of the method. Divide-and-conquer algorithms like those used in
mergesort or quicksort have recursive calls before the last step. Thus, statement
II is false.

2. (B) Code segment I is wrong because there is no base case. Code segment
III is wrong because, besides anything else, sum(n) prevents the method from
terminating—the base case n == 1 will not be reached.

3. (E) When stringRecur is invoked, it calls itself irrespective of the length of s.
Since there is no action that leads to termination, the method will not terminate
until the computer runs out of memory (run-time error).

4. (D) The base case is s.length() ≥ 15. Since s gets longer on each method call,
the method will eventually terminate. If the original length of s is ≥ 15, the
method will terminate without output on the first call.

5. (B) Letting R denote the method result, we have

R(5) = 2 ∗R(4)

= 2 ∗ (2 ∗ (R(3)))
= · · ·
= 2 ∗ (2 ∗ (2 ∗ (2 ∗R(1))))

= 25

= 32

6. (C) For result(n) there will be (n−1) recursive calls before result(1), the base
case, is reached. Adding the initial call gives a total of n method calls.

7. (B) This method returns the nth term of an arithmetic sequence with first term
a and common difference d. Letting M denote method mystery, we have

M (3,2,6) = 6+M (2,2,6)

= 6+ (6+M (1,2,6)) (base case)

= 6+ 6+ 2

= 14

✐

✐

“ap” — 2014/11/4 — 11:10 — page 320 — #334

✐

✐

✐

✐

✐

✐

320 Chapter 7 Recursion

8. (D) Here are the recursive calls that are made, in order: f (6,8) → f (6,2) →
f (4,2)→ f (2,2), base case. Thus, 2 is returned.

9. (A) If there is only one element in x, then recur returns that element. Having
the recursive call at the beginning of the else part of the algorithm causes the if

part for each method call to be stacked until t eventually gets assigned to x[0].
The pending if statements are then executed, and t is compared to each element
in x. The largest value in x is returned.

10. (B) Since the recursive call is made directly following the base case, the
System.out.print... statements are stacked up. If printString("cat") is
called, here is the sequence of recursive calls and pending statements on the stack:

printString("at") → print "c"

printString("t") → print "a"

printString("") → print "t"

print "t"

print "a"

print "c"

Execution stack

When printString(""), the base case, is called, the print statements are then
popped off the stack in reverse order, which means that the characters of the
string will be printed in reverse order.

11. (A) The required code is for a negative expo. For example, power(2, -3) should
return 2−3 = 1/8. Notice that

2−3 = 1
2

�

2−2
�

2−2 = 1
2

�

2−1
�

2−1 = 1
2

�

20
�

In general:
2n = 1

2
(2n+1) whenever n < 0

This is equivalent to (1 / base) * power(base, expo + 1).

12. (C) Each box in the diagram below represents a recursive call to doSomething.
The numbers to the right of the boxes show the order of execution of the state-
ments. Let D denote doSomething.

D(3)

D(2)
print 3

D(2)

1

11

12

D(2)
D(1)

print 2

D(1)

2
6
7

D(2)

D(1)
print 2

D(1)

13

17
18

D(1)
D(0)

print 1

D(0)

3
4
5

D(1)
D(0)

print 1

D(0)

8
9
10

D(1)

D(0)
print 1

D(0)

14

15

16

D(1)

D(0)
print 1

D(0)

19

20

21

✐

✐

“ap” — 2014/11/4 — 11:10 — page 321 — #335

✐

✐

✐

✐

✐

✐

Answers Explained 321

The numbers in each box refer to that method call only. D(0) is the base case, so
the statement immediately following it is executed next. When all statements in a
given box (method call) have been executed, backtrack along the arrow to find the
statement that gets executed next. The circled numbers represent the statements
that produce output. Following them in order, statements 4, 6, 9, 11, 15, 17, and
20 produce the output in choice C.

13. (C) Since even numbers are printed before the recursive call in segment I, they
will be printed in the order in which they are read from the keyboard. Contrast
this with the correct choice, segment III, in which the recursive call is made before
the test for evenness. These tests will be stacked until the last number is read.
Recall that the pending statements are removed from the stack in reverse order
(most recent recursive call first), which leads to even numbers being printed in
reverse order. Segment II is wrong because all numbers entered will be printed,
irrespective of whether they are even or not. Note that segment II would work if
the input list contained only even numbers.

14. (A) Let mystery(3) be denoted m(3). Picture the execution of the method as
follows:

m(3)

m(2)

m(1)

m(0)

m(−1) m(−3)

m(−2)

m(−1)

m(0)

m(−1) m(−3)

The base cases are shaded. Note that each of the six base case calls returns 2,
resulting in a total of 12.

15. (E) The method generates a sequence. The first two terms, t (1) and t (2), are 2
and 4. Each subsequent term is generated by subtracting the previous two terms.
This is the sequence: 2, 4, 2,−2,−4,−2, 2, 4, Thus, t (5) =−4. Alternatively,

t (5) = t (4)− t (3)

= [t (3)− t (2)]− t (3)

=−t (2)

=−4

16. (D) 15. Count them! (Note that you stop at t (2) since it’s a base case.)

t (6)

t (5)

t (4)

t (3)

t (2) t (1)

t (2)

t (3)

t (2) t (1)

t (4)

t (3)

t (2) t (1)

t (2)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 322 — #336

✐

✐

✐

✐

✐

✐

322 Chapter 7 Recursion

17. (E) This is an example of mutual recursion, where two methods call each other.

f1(5,3) = 5+ f2(4,3)

= 5+ (4+ f1(2,3))

= 5+ (4+ (2+ f2(1,3)))

= 5+ (4+ (2+ 4))

= 15

Note that f2(1,3) is a base case.

18. (A) foo(3) = 3 (This is a base case). Also, foo(4) = 4× foo(3) = 12. So you need
to find foo(foo(3)+ foo(4)) = foo(15).

foo(15) = 15× foo(14)

= 15× (14× foo(13))

= · · ·
= 15× 14× · · ·× 4× foo(3)

= 15× 14× · · ·× 4× 3

= (15)!/(2!)

19. (C) Suppose that n = 365051. The method call writeWithCommas(365051) will
write 051 and then execute the call writeWithCommas(365). This is a base case,
so 365 will be written out, resulting in 051,365. A number like 278278 (two sets
of three identical digits) will be written out correctly, as will a “symmetrical”
number like 251462251. Also, any n < 1000 is a base case and the number will
be written out correctly as is.

20. (B) The cause of the problem is that the numbers are being written out with the
sets of three digits in the wrong order. The problem is fixed by interchanging
writeThreeDigits(n % 1000) and writeWithCommas(n / 1000). For example,
here is the order of execution for writeWithCommas(365051).

writeWithCommas(365)→ Base case. Writes 365
System.out.print(",");→ 365,

writeThreeDigits(051)→ 365,051 which is correct

21. (B) Here is the “box diagram” for the recursive method calls, showing the order
of execution of statements. Notice that the circled statements are the base case
calls, the only statements that actually draw a line. Note also that the first time
you reach a base case (see circled statement 6), you can get the answer: The picture
in choice B is the only one that has a line segment joining (a,0) to (a,-a).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 323 — #337

✐

✐

✐

✐

✐

✐

Answers Explained 323

sketch(a,0,-a,0,2)

xm = 0

ym = -a

sketch(a,0,0,-a,1)

sketch(0,-a,-a,0,1)

1

2

3

8

sketch(a,0,0,-a,1)

xm = a

ym = -a

sketch(a,0,a,-a,0)

sketch(a,-a,0,-a,0)

4

5

6

7

sketch(0,-a,-a,0,1)

xm = -a

ym = -a

sketch(0,-a,-a,-a,0)

sketch(-a,-a,-a,0,0)

9

10

11

12
y

x
12

11 7

6

−a

a

a

−a

✐

✐

“ap” — 2014/11/4 — 11:10 — page 324 — #338

✐

✐

✐

✐

✐

✐

Sorting and Searching CHAPTER 8

Critics search for ages for the wrong word, which,
to give them credit, they eventually find.

—Peter Ustinov (1952)

Chapter Goals

• Java implementation of sorting
algorithms

• Selection and insertion sorts

• Recursive sorts: mergesort and
quicksort

• Sequential search and binary
search

In each of the following sorting algorithms, assume that an array of n elements, a[0],
a[1], . . . , a[n-1], is to be sorted in ascending order.

SORTS: SELECTION AND INSERTION SORTS

Selection Sort

This is a “search-and-swap” algorithm. Here’s how it works.
Find the smallest element in the array and exchange it with a[0], the first element.

Now find the smallest element in the subarray a[1] . . .a[n-1] and swap it with a[1],
the second element in the array. Continue this process until just the last two elements
remain to be sorted, a[n-2] and a[n-1]. The smaller of these two elements is placed
in a[n-2]; the larger, in a[n-1]; and the sort is complete.

Trace these steps with a small array of four elements. The unshaded part is the
subarray still to be searched.

8 1 4 6

1 8 4 6 after first pass

1 4 8 6 after second pass

1 4 6 8 after third pass

324

✐

✐

“ap” — 2014/11/4 — 11:10 — page 325 — #339

✐

✐

✐

✐

✐

✐

Recursive Sorts: Mergesort and Quicksort 325

NOTE

1. For an array of n elements, the array is sorted after n− 1 passes.
2. After the kth pass, the first k elements are in their final sorted position.

Insertion Sort

Think of the first element in the array, a[0], as being sorted with respect to itself. The
array can now be thought of as consisting of two parts, a sorted list followed by an
unsorted list. The idea of insertion sort is to move elements from the unsorted list
to the sorted list one at a time; as each item is moved, it is inserted into its correct
position in the sorted list. In order to place the new item, some elements may need to
be moved down to create a slot.

Here is the array of four elements. In each case, the boxed element is “it,” the next
element to be inserted into the sorted part of the list. The shaded area is the part of
the list sorted so far.

8 1 4 6

1 8 4 6 after first pass

1 4 8 6 after second pass

1 4 6 8 after third pass

NOTE

1. For an array of n elements, the array is sorted after n− 1 passes.
2. After the kth pass, a[0], a[1], . . . , a[k] are sorted with respect to each other

but not necessarily in their final sorted positions.
3. The worst case for insertion sort occurs if the array is initially sorted in reverse

order, since this will lead to the maximum possible number of comparisons
and moves.

4. The best case for insertion sort occurs if the array is already sorted in increasing
order. In this case, each pass through the array will involve just one compari-
son, which will indicate that “it” is in its correct position with respect to the

Both insertion and
selection sorts are
inefficient for large n.sorted list. Therefore, no elements will need to be moved.

RECURSIVE SORTS: MERGESORT AND QUICKSORT

Selection and insertion sorts are inefficient for large n, requiring approximately n
passes through a list of n elements. More efficient algorithms can be devised using
a “divide-and-conquer” approach, which is used in both the sorting algorithms that
follow.

Mergesort

Here is a recursive description of how mergesort works:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 326 — #340

✐

✐

✐

✐

✐

✐

326 Chapter 8 Sorting and Searching

If there is more than one element in the array
Break the array into two halves.
Mergesort the left half.
Mergesort the right half.
Merge the two subarrays into a sorted array.

Mergesort uses a merge method to merge two sorted pieces of an array into a single
sorted array. For example, suppose array a[0] . . . a[n-1] is such that a[0] . . . a[k] is

The main
disadvantage of
mergesort is that it
uses a temporary
array.

sorted and a[k+1] . . . a[n-1] is sorted, both parts in increasing order. Example:

a[0] a[1] a[2] a[3] a[4] a[5]

2 5 8 9 1 6

In this case, a[0] . . .a[3] and a[4] . . .a[5] are the two sorted pieces. The method call
merge(a,0,3,5) should produce the “merged” array:

a[0] a[1] a[2] a[3] a[4] a[5]

1 2 5 6 8 9

The middle numerical parameter in merge (the 3 in this case) represents the index
of the last element in the first “piece” of the array. The first and third numerical
parameters are the lowest and highest index, respectively, of array a.

Here’s what happens in mergesort:

1. Start with an unsorted list of n elements.
2. The recursive calls break the list into n sublists, each of length 1. Note that

these n arrays, each containing just one element, are sorted!
3. Recursively merge adjacent pairs of lists. There are then approximately n/2

lists of length 2; then, approximately n/4 lists of approximate length 4, and so
on, until there is just one list of length n.

An example of mergesort follows:

5 −3 2 4 0 6

5 −3 2 4 0 6

5 −3 2 4 0 6

5 −3 2 4 0 6

−3 5 2 0 4 6

−3 2 5 0 4 6

−3 0 2 4 5 6

Merge adjacent
pairs of lists









Break list into
n sublists of
length 1









✐

✐

“ap” — 2014/11/4 — 11:10 — page 327 — #341

✐

✐

✐

✐

✐

✐

Recursive Sorts: Mergesort and Quicksort 327

Analysis of Mergesort:

1. The major disadvantage of mergesort is that it needs a temporary array that is
as large as the original array to be sorted. This could be a problem if space is a
factor.

2. Mergesort is not affected by the initial ordering of the elements. Thus, best,
worst, and average cases have similar run times.

Quicksort

Optional topicFor large n, quicksort is, on average, the fastest known sorting algorithm. Here is a
recursive description of how quicksort works:

If there are at least two elements in the array
Partition the array.
Quicksort the left subarray.
Quicksort the right subarray.

The partition method splits the array into two subarrays as follows: a pivot ele-
ment is chosen at random from the array (often just the first element) and placed so
that all items to the left of the pivot are less than or equal to the pivot, whereas those
to the right are greater than or equal to it.

For example, if the array is 4, 1, 2, 7, 5, −1, 8, 0, 6, and a[0] = 4 is the pivot, the
partition method produces

−1 1 2 0 4 5 8 7 6

Here’s how the partitioning works: Let a[0], 4 in this case, be the pivot. Markers
up and down are initialized to index values 0 and n− 1, as shown. Move the up marker
until a value less than the pivot is found, or down equals up. Move the downmarker until
a value greater than the pivot is found, or down equals up. Swap a[up] and a[down].
Continue the process until down equals up. This is the pivot position. Swap a[0] and
a[pivotPosition].

4 1 2 7 5 −1 8 0 6

4 1 2 0 5 −1 8 7 6

4 1 2 0 −1 5 8 7 6

−1 1 2 0 4 5 8 7 6

down

down

down

up

up

up

Notice that the pivot element, 4, is in its final sorted position.

Analysis of Quicksort:

1. For the fastest run time, the array should be partitioned into two parts of

The main
disadvantage of
quicksort is that its
worst case
behavior is very
inefficient.

roughly the same size.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 328 — #342

✐

✐

✐

✐

✐

✐

(continued)

328 Chapter 8 Sorting and Searching

2. If the pivot happens to be the smallest or largest element in the array, the split is
not much of a split—one of the subarrays is empty! If this happens repeatedly,
quicksort degenerates into a slow, recursive version of selection sort and is very
inefficient.

3. The worst case for quicksort occurs when the partitioning algorithm repeat-
edly divides the array into pieces of size 1 and n − 1. An example is when the
array is initially sorted in either order and the first or last element is chosen
as the pivot. Some algorithms avoid this situation by initially shuffling up the
given array (!) or selecting the pivot by examining several elements of the array
(such as first, middle, and last) and then taking the median.

NOTE

For both quicksort and mergesort, when a subarray gets down to some small size m,
it becomes faster to sort by straight insertion. The optimal value of m is machine-
dependent, but it’s approximately equal to 7.

SORTING ALGORITHMS IN JAVA

Unlike the container classes like ArrayList, whose elements must be objects, arrays
can hold either objects or primitive types like int or double.

A common way of organizing code for sorting arrays is to create a sorter class with
an array private instance variable. The class holds all the methods for a given type
of sorting algorithm, and the constructor assigns the user’s array to the private array
variable.

Example

Selection sort for an array of int.

/* A class that sorts an array of ints from

* largest to smallest using selection sort. */

public class SelectionSort

{

private int[] a;

public SelectionSort(int[] arr)

{ a = arr; }

/** Swap a[i] and a[j] in array a.

* @param i an index for array a

* @param j an index for array a

*/

private void swap(int i, int j)

{

int temp = a[i];

a[i] = a[j];

a[j] = temp;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 329 — #343

✐

✐

✐

✐

✐

✐

Binary Search 329

/** Sort array a from largest to smallest using selection sort.

* Precondition: a is an array of ints.

*/

public void selectionSort()

{

int maxPos, max;

for (int i = 0; i < a.length - 1; i++)

{

//find max element in a[i+1] to a[a.length-1]

max = a[i];

maxPos = i;

for (int j = i + 1; j < a.length; j++)

if (max < a[j])

{

max = a[j];

maxPos = j;

}

swap(i, maxPos); //swap a[i] and a[maxPos]

}

}

}

Note that in order to sort objects, there must be a compareTo method in the class,
since you need to be able to compare elements.

SEQUENTIAL SEARCH

Assume that you are searching for a key in a list of n elements. A sequential search
starts at the first element and compares the key to each element in turn until the key
is found or there are no more elements to examine in the list. If the list is sorted,
in ascending order, say, stop searching as soon as the key is less than the current list
element.

Analysis:

1. The best case has key in the first slot.
2. The worst case occurs if the key is in the last slot or not in the list. In the worst

case, all n elements must be examined.
3. On average, there will be n/2 comparisons.

BINARY SEARCH

If the elements are in a sorted array, a divide-and-conquer approach provides a much
more efficient searching algorithm. The following recursive pseudo-code algorithm

Binary search works
only if the array is
sorted on the search
key.shows how the binary search works.

Assume that a[low] . . . a[high] is sorted in ascending order and that a method
binSearch returns the index of key. If key is not in the array, it returns −1.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 330 — #344

✐

✐

✐

✐

✐

✐

330 Chapter 8 Sorting and Searching

if (low > high) //Base case. No elements left in array.

return -1;

else

{

mid = (low + high)/2;

if (key is equal to a[mid]) //found the key

return mid;

else if (key is less than a[mid]) //key in left half of array

< binSearch for key in a[low] to a[mid-1] >

else //key in right half of array

< binSearch for key in a[mid+1] to a[high] >

}

NOTE

When low and high cross, there are no more elements to examine, and key is not in
the array.

Example: suppose 5 is the key to be found in the following array:

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

1 4 5 7 9 12 15 20 21

First pass: mid = (8+0)/2 = 4. Check a[4].
Second pass: mid = (0+3)/2 = 1. Check a[1].
Third pass: mid = (2+3)/2 = 2. Check a[2]. Yes! Key is found.

Analysis of Binary Search:

1. In the best case, the key is found on the first try (i.e., (low + high)/2 is the
index of key).

2. In the worst case, the key is not in the list or is at either end of a sublist.
Here the n elements must be divided by 2 until there is just one element, and
then that last element must be tested. An easy way to find the number of
comparisons in the worst case is to round n up to the next power of 2 and take
the exponent. For example, in the array above, n = 9. Suppose 21 were the key.
Round 9 up to 16, which equals 24. Thus you would need four comparisons to
find it. Try it!

Chapter Summary

You should not memorize any sorting code. You must, however, be familiar with
the mechanism used in each of the sorting algorithms. For example, you should be
able to explain how the merge method of mergesort works, or how many elements
are in their final sorted position after a certain number of passes through the selection
sort loop. You should know the best and worst case situations for each of the sorting
algorithms.

Be familiar with the sequential and binary search algorithms. You should know that
a binary search is more efficient than a sequential search, and that a binary search can
only be used for an array that is sorted on the search key.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 331 — #345

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 331

MULTIPLE-CHOICE QUESTIONS ON SORTING AND
SEARCHING

1. The decision to choose a particular sorting algorithm should be made based on

I Run-time efficiency of the sort
II Size of the array

III Space efficiency of the algorithm

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

2. The following code fragment does a sequential search to determine whether a
given integer, value, is stored in an array a[0] . . .a[n-1].

int i = 0;

while (/* boolean expression */)

{

i++;

}

if (i == n)

return -1; //value not found

else

return i; // value found at location i

Which of the following should replace /* boolean expression */ so that the algo-
rithm works as intended?
(A) value != a[i]

(B) i < n && value == a[i]

(C) value != a[i] && i < n

(D) i < n && value != a[i]

(E) i < n || value != a[i]

3. A feature of data that is used for a binary search but not necessarily used for a
sequential search is
(A) length of list.
(B) type of data.
(C) order of data.
(D) smallest value in the list.
(E) median value of the data.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 332 — #346

✐

✐

✐

✐

✐

✐

332 Chapter 8 Sorting and Searching

4. Array unsortedArr contains an unsorted list of integers. Array sortedArr con-
tains a sorted list of integers. Which of the following operations is more efficient
for sortedArr than unsortedArr? Assume the most efficient algorithms are used.

I Inserting a new element
II Searching for a given element

III Computing the mean of the elements

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

5. An algorithm for searching a large sorted array for a specific value x compares
every third item in the array to x until it finds one that is greater than or equal
to x . When a larger value is found, the algorithm compares x to the previous
two items. If the array is sorted in increasing order, which of the following de-
scribes all cases when this algorithm uses fewer comparisons to find x than would
a binary search?
(A) It will never use fewer comparisons.
(B) When x is in the middle position of the array
(C) When x is very close to the beginning of the array
(D) When x is very close to the end of the array
(E) When x is not in the array

6. Assume that a[0] . . . a[N-1] is an array of N positive integers and that the fol-
lowing assertion is true:

a[0] > a[k] for all k such that 0< k <N

Which of the following must be true?
(A) The array is sorted in ascending order.
(B) The array is sorted in descending order.
(C) All values in the array are different.
(D) a[0] holds the smallest value in the array.
(E) a[0] holds the largest value in the array.

7. The following code is designed to set index to the location of the first occurrence
of key in array a and to set index to −1 if key is not in a.

index = 0;

while (a[index] != key)

index++;

if (a[index] != key)

index = -1;

In which case will this program definitely fail to perform the task described?
(A) When key is the first element of the array
(B) When key is the last element of the array
(C) When key is not in the array
(D) When key equals 0
(E) When key equals a[key]

✐

✐

“ap” — 2014/11/4 — 11:10 — page 333 — #347

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 333

8. Consider the following class.

/** A class that sorts an array of Integer objects from

* largest to smallest using a selection sort.

*/

public class Sorter

{

private Integer[] a;

public Sorter(Integer[] arr)

{ a = arr; }

/** Swap a[i] and a[j] in array a. */

private void swap(int i, int j)

{ /* implementation not shown */ }

/** Sort array a from largest to smallest using selection sort.

* Precondition: a is an array of Integer objects.

*/

public void selectionSort()

{

for (int i = 0; i < a.length - 1; i++)

{

//find max element in a[i+1] to a[n-1]

Integer max = a[i];

int maxPos = i;

for (int j = i + 1; j < a.length; j++)

if (max.compareTo(a[j]) < 0) //max less than a[j]

{

max = a[j];

maxPos = j;

}

swap(i, maxPos); //swap a[i] and a[maxPos]

}

}

}

If an array of Integer contains the following elements, what would the array
look like after the third pass of selectionSort, sorting from high to low?

89 42 − 3 13 109 70 2

(A) 109 89 70 13 42 −3 2
(B) 109 89 70 42 13 2 −3
(C) 109 89 70 −3 2 13 42
(D) 89 42 13 −3 109 70 2
(E) 109 89 42 −3 13 70 2

✐

✐

“ap” — 2014/11/4 — 11:10 — page 334 — #348

✐

✐

✐

✐

✐

✐

334 Chapter 8 Sorting and Searching

9. Refer to method search.

/** @param v an initialized array of integers

* @param key the value to be found

* Postcondition:
* - Returned value k is such that -1 <= k <= v.length-1.

* - If k >= 0 then v[k] == key.

* - If k == -1, then key != any of the elements in v.

*/

public static int search(int[] v, int key)

{

int index = 0;

while (index < v.length && v[index] < key)

index++;

if (v[index] == key)

return index;

else

return -1;

}

Assuming that the method works as intended, which of the following should be
added to the precondition of search?
(A) v is sorted smallest to largest.
(B) v is sorted largest to smallest.
(C) v is unsorted.
(D) There is at least one occurrence of key in v.
(E) key occurs no more than once in v.

Questions 10–14 are based on the binSearch method and the private instance variable
a for some class:

private int[] a;

/** Does binary search for key in array a[0]...a[a.length-1],

* sorted in ascending order.

* @param key the integer value to be found

* Postcondition:
* - index has been returned such that a[index]==key.

* - If key not in a, return -1.

*/

public int binSearch(int key)

{

int low = 0;

int high = a.length - 1;

while (low <= high)

{

int mid = (low + high) / 2;

if (a[mid] == key)

return mid;

else if (a[mid] < key)

low = mid + 1;

else

high = mid - 1;

}

return -1;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 335 — #349

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 335

A binary search will be performed on the following list.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

4 7 9 11 20 24 30 41

10. To find the key value 27, the search interval after the first pass through the while

loop will be
(A) a[0] . . .a[7]
(B) a[5] . . .a[6]
(C) a[4] . . .a[7]
(D) a[2] . . .a[6]
(E) a[6] . . .a[7]

11. How many iterations will be required to determine that 27 is not in the list?
(A) 1
(B) 3
(C) 8
(D) 27
(E) An infinite loop since 27 is not found

12. What will be stored in y after executing the following?

int y = binSearch(4);

(A) 20

(B) 7

(C) 4

(D) 0

(E) -1

13. If the test for the while loop is changed to

while (low < high)

the binSearch method does not work as intended. Which value in the given list
will not be found?
(A) 4
(B) 7
(C) 11
(D) 24
(E) 30

14. For binSearch, which of the following assertions will be true following every
iteration of the while loop?
(A) key= a[mid] or key is not in a.
(B) a[low]≤ key≤ a[high]

(C) low≤ mid≤ high

(D) key= a[mid], or a[low]≤ key≤ a[high]

(E) key= a[mid], or a[low]≤ key≤ a[high], or key is not in array a.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 336 — #350

✐

✐

✐

✐

✐

✐

336 Chapter 8 Sorting and Searching

15. A large sorted array containing about 30,000 elements is to be searched for a value
key using an iterative binary search algorithm. Assuming that key is in the array,
which of the following is closest to the smallest number of iterations that will
guarantee that key is found? Note: 103 ≈ 210.
(A) 15
(B) 30
(C) 100
(D) 300
(E) 3000

For Questions 16–19 refer to the insertionSortmethod and the private instance vari-
able a, both in a Sorter class.

private Integer[] a;

/** Precondition: a[0],a[1]...a[a.length-1] is an unsorted array

* of Integer objects.

* Postcondition: Array a is sorted in descending order.

*/

public void insertionSort()

{

for (int i = 1; i < a.length; i++)

{

Integer temp = a[i];

int j = i - 1;

while (j >= 0 && temp.compareTo(a[j]) > 0)

{

a[j+1] = a[j];

j--;

}

a[j+1] = temp;

}

}

16. An array of Integer is to be sorted biggest to smallest using the insertionSort

method. If the array originally contains

1 7 9 5 4 12

what will it look like after the third pass of the for loop?
(A) 9 7 1 5 4 12
(B) 9 7 5 1 4 12
(C) 12 9 7 1 5 4
(D) 12 9 7 5 4 1
(E) 9 7 12 5 4 1

17. When sorted biggest to smallest with insertionSort, which list will need the
fewest changes of position for individual elements?
(A) 5, 1, 2, 3, 4, 9
(B) 9, 5, 1, 4, 3, 2
(C) 9, 4, 2, 5, 1, 3
(D) 9, 3, 5, 1, 4, 2
(E) 3, 2, 1, 9, 5, 4

✐

✐

“ap” — 2014/11/4 — 11:10 — page 337 — #351

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 337

18. When sorted biggest to smallest with insertionSort, which list will need the
greatest number of changes in position?
(A) 5, 1, 2, 3, 4, 7, 6, 9
(B) 9, 5, 1, 4, 3, 2, 1, 0
(C) 9, 4, 6, 2, 1, 5, 1, 3
(D) 9, 6, 9, 5, 6, 7, 2, 0
(E) 3, 2, 1, 0, 9, 6, 5, 4

19. While typing the insertionSortmethod, a programmer by mistake enters

while (temp.compareTo(a[j]) > 0)

instead of

while (j >= 0 && temp.compareTo(a[j]) > 0)

Despite this mistake, the method works as intended the first time the program-
mer enters an array to be sorted in descending order. Which of the following
could explain this?

I The first element in the array was the largest element in the array.
II The array was already sorted in descending order.

III The first element was less than or equal to all the other elements in the array.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 338 — #352

✐

✐

✐

✐

✐

✐

338 Chapter 8 Sorting and Searching

20. The elements in a long list of integers are roughly sorted in decreasing order. No
more than 5 percent of the elements are out of order. Which of the following is
a valid reason for using an insertion sort rather than a selection sort to sort this
list into decreasing order?

I There will be fewer comparisons of elements for insertion sort.
II There will be fewer changes of position of elements for insertion sort.

III There will be less space required for insertion sort.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

Optional topic
21. The code shown sorts array a[0] . . .a[a.length-1] in descending order.

public static void sort(String[] a)

{

for (int i = 0; i < a.length - 1; i++)

for (int j = 0; j < a.length - i - 1; j++)

if (a[j].compareTo(a[j+1]) < 0)

swap(a, j, j + 1); //swap a[j] and a[j+1]

}

This is an example of
(A) selection sort.
(B) insertion sort.
(C) mergesort.
(D) quicksort.
(E) none of the above.

22. Which of the following is a valid reason why mergesort is a better sorting algo-
rithm than insertion sort for sorting long, randomly ordered lists?

I Mergesort requires less code than insertion sort.
II Mergesort requires less storage space than insertion sort.

III Mergesort runs faster than insertion sort.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

23. A large array of lowercase characters is to be searched for the pattern “pqrs.” The
first step in a very efficient searching algorithm is to look at characters with index
(A) 0, 1, 2, . . . until a “p” is encountered.
(B) 0, 1, 2, . . . until any letter in “p” . . . “s” is encountered.
(C) 3, 7, 11, . . . until an “s” is encountered.
(D) 3, 7, 11, . . . until any letter in “p” . . . “s” is encountered.
(E) 3, 7, 11, . . . until any letter other than “p” . . . “s” is encountered.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 339 — #353

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 339

24. The array names[0], names[1], . . . , names[9999] is a list of 10,000 name strings.
The list is to be searched to determine the location of some name X in the list.
Which of the following preconditions is necessary for a binary search?
(A) There are no duplicate names in the list.
(B) The number of names N in the list is large.
(C) The list is in alphabetical order.
(D) Name X is definitely in the list.
(E) Name X occurs near the middle of the list.

25. Consider the following method:

/** Precondition: a[0],a[1]...a[n-1] contain integers. */

public static int someMethod(int[] a, int n, int value)

{

if (n == 0)

return -1;

else

{

if (a[n-1] == value)

return n - 1;

else

return someMethod(a, n - 1, value);

}

}

The method shown is an example of
(A) insertion sort.
(B) mergesort.
(C) selection sort.
(D) binary search.
(E) sequential search.

Optional topic
26. The partition method for quicksort partitions a list as follows:

(i) A pivot element is selected from the array.
(ii) The elements of the list are rearranged such that all elements to the left

of the pivot are less than or equal to it; all elements to the right of the
pivot are greater than or equal to it.

Partitioning the array requires which of the following?
(A) A recursive algorithm
(B) A temporary array
(C) An external file for the array
(D) A swap algorithm for interchanging array elements
(E) A merge method for merging two sorted lists

27. Assume that mergesort will be used to sort an array arr of n integers into increas-
ing order. What is the purpose of the merge method in the mergesort algorithm?
(A) Partition arr into two parts of roughly equal length, then merge these parts.
(B) Use a recursive algorithm to sort arr into increasing order.
(C) Divide arr into n subarrays, each with one element.
(D) Merge two sorted parts of arr into a single sorted array.
(E) Merge two sorted arrays into a temporary array that is sorted.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 340 — #354

✐

✐

✐

✐

✐

✐

340 Chapter 8 Sorting and Searching

28. A binary search is to be performed on an array with 600 elements. In the worst
case, which of the following best approximates the number of iterations of the
algorithm?
(A) 6
(B) 10
(C) 100
(D) 300
(E) 600

29. A worst case situation for insertion sort would be

I A list in correct sorted order.
II A list sorted in reverse order.

III A list in random order.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 341 — #355

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 341

30. Consider a binary search algorithm to search an ordered list of numbers. Which
of the following choices is closest to the maximum number of times that such
an algorithm will execute its main comparison loop when searching a list of 1
million numbers?
(A) 6
(B) 20
(C) 100
(D) 120
(E) 1000

31. Consider these three tasks:

I A sequential search of an array of n names
II A binary search of an array of n names in alphabetical order

III An insertion sort into alphabetical order of an array of n names that are
initially in random order

For large n, which of the following lists these tasks in order (from least to great-
est) of their average case run times?

(A) II I III
(B) I II III
(C) II III I
(D) III I II
(E) III II I

✐

✐

“ap” — 2014/11/4 — 11:10 — page 342 — #356

✐

✐

✐

✐

✐

✐

342 Chapter 8 Sorting and Searching

Optional topic Questions 32 and 33 are based on the Sort interface and MergeSort and QuickSort

classes shown below.

public interface Sort

{

void sort();

}

public class MergeSort implements Sort

{

private String[] a;

public MergeSort(String[] arr)

{ a = arr; }

/** Merge a[lb] to a[mi] and a[mi+1] to a[ub].

* Precondition: a[lb] to a[mi] and a[mi+1] to a[ub] both sorted

* in increasing order.

*/

private void merge(int lb, int mi, int ub)

{ /* Implementation not shown. */ }

/** Sort a[first]..a[last] in increasing order using mergesort.

* Precondition: a is an array of String objects.

*/

private void sort(int first, int last)

{

int mid;

if (first != last)

{

mid = (first + last) / 2;

sort(first, mid);

sort(mid + 1, last);

merge(first, mid, last);

}

}

/** Sort array a from smallest to largest using mergesort.

* Precondition: a is an array of String objects.

*/

public void sort()

{

sort(0, a.length - 1);

}

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 343 — #357

✐

✐

✐

✐

✐

✐

(continued)

Multiple-Choice Questions on Sorting and Searching 343

public class QuickSort implements Sort

{

private String[] a;

public QuickSort(String[] arr)

{ a = arr; }

/** Swap a[i] and a[j] in array a. */

private void swap(int i, int j)

{ /* Implementation not shown. */ }

/** @return the index pivPos such that a[first] to a[last]

* is partitioned: a[first..pivPos] <= a[pivPos] and

* a[pivPos..last] >= a[pivPos]

*/

private int partition(int first, int last)

{ /* Implementation not shown. */ }

/** Sort a[first]..a[last] in increasing order using quicksort.

* Precondition: a is an array of String objects.

*/

private void sort(int first, int last)

{

if (first < last)

{

int pivPos = partition(first, last);

sort(first, pivPos - 1);

sort(pivPos + 1, last);

}

}

/** Sort array a in increasing order. */

public void sort()

{

sort(0, a.length - 1);

}

}

32. Notice that the MergeSort and QuickSort classes both have a private helper
method that implements the recursive sort routine. For this example, which
of the following is a valid reason for having a helper method?

I The helper method hides the implementation details of the sorting algo-
rithm from the user.

II A method with additional parameters is needed to implement the recursion.
III Providing a helper method increases the run-time efficiency of the sorting

algorithm.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 344 — #358

✐

✐

✐

✐

✐

✐

(continued)

344 Chapter 8 Sorting and Searching

33. A piece of code to test the QuickSort and MergeSort classes is as follows:

//Create an array of String values

String[] strArray = makeArray(strList);

writeList(strArray);

/* more code */

where makeArray creates an array of String from a list strList. Which of the
following replacements for /* more code */ is reasonable code to test QuickSort
and MergeSort? You can assume writeList correctly writes out an array of
String.

(A) Sort q = new QuickSort(strArray);

Sort m = new MergeSort(strArray);

q.sort();

writeList(strArray);

m.sort();

writeList(strArray);

(B) QuickSort q = new Sort(strArray);

MergeSort m = new Sort(strArray);

q.sort();

writeList(strArray);

m.sort();

writeList(strArray);

(C) Sort q = new QuickSort(strArray);

Sort m = new MergeSort(strArray);

String[] copyArray = makeArray(strList);

q.sort(0, strArray.length - 1);

writeList(strArray);

m.sort(0, copyArray.length - 1);

writeList(copyArray);

(D) QuickSort q = new Sort(strArray);

String[] copyArray = makeArray(strList);

MergeSort m = new Sort(strArray);

q.sort();

writeList(strArray);

m.sort();

writeList(copyArray);

(E) Sort q = new QuickSort(strArray);

String[] copyArray = makeArray(strList);

Sort m = new MergeSort(copyArray);

q.sort();

writeList(strArray);

m.sort();

writeList(copyArray);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 345 — #359

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on Sorting and Searching 345

Questions 34–36 refer to the Hi-Lo game described below.

Consider the problem of writing a Hi-Lo game in which a user thinks of an integer
from 1 to 100 inclusive and the computer tries to guess that number. Each time the
computer makes a guess, the user makes one of three responses:

• “lower” (i.e., the number is lower than the computer’s guess)

• “higher” (i.e., the number is higher than the computer’s guess)

• “you got it in < however many > tries!”

34. Suppose the game is programmed so that the computer uses a binary search strat-
egy for making its guesses. What is the maximum number of guesses the com-
puter could make before guessing the user’s number?
(A) 50
(B) 25
(C) 10
(D) 7
(E) 6

35. Suppose the computer used a sequential search strategy for guessing the user’s
number. What is the maximum number of guesses the computer could make
before guessing the user’s number?
(A) 100
(B) 99
(C) 50
(D) 25
(E) 10

36. Using a sequential search strategy, how many guesses on average would the com-
puter need to guess the number?
(A) 100
(B) 51
(C) 50
(D) 25
(E) Fewer than 25

✐

✐

“ap” — 2014/11/4 — 11:10 — page 346 — #360

✐

✐

✐

✐

✐

✐

346 Chapter 8 Sorting and Searching

ANSWER KEY

1. E

2. D

3. C

4. B

5. C

6. E

7. C

8. A

9. A

10. C

11. B

12. D

13. A

14. E

15. A

16. B

17. B

18. A

19. D

20. A

21. E

22. C

23. D

24. C

25. E

26. D

27. D

28. B

29. B

30. B

31. A

32. D

33. E

34. D

35. A

36. C

ANSWERS EXPLAINED

1. (E) The time and space requirements of sorting algorithms are affected by all
three of the given factors, so all must be considered when choosing a particular
sorting algorithm.

2. (D) Choice B doesn’t make sense: The loop will be exited as soon as a value is
found that does not equal a[i]. Eliminate choice A because, if value is not in the
array, a[i] will eventually go out of bounds. You need the i < n

part of the boolean expression to avoid this. The test i < n, however, must pre-
cede value != a[i] so that if i < n fails, the expression will be evaluated as false,
the test will be short-circuited, and an out-of-range error will be avoided. Choice
C does not avoid this error. Choice E is wrong because both parts of the expres-
sion must be true in order to continue the search.

3. (C) The binary search algorithm depends on the array being sorted. Sequential
search has no ordering requirement. Both depend on choice A, the length of the
list, while the other choices are irrelevant to both algorithms.

4. (B) Inserting a new element is quick and easy in an unsorted array—just add
it to the end of the list. Computing the mean involves finding the sum of the
elements and dividing by n, the number of elements. The execution time is the
same whether the list is sorted or not. Operation II, searching, is inefficient for an
unsorted list, since a sequential search must be used. In sortedArr, the efficient
binary search algorithm, which involves fewer comparisons, could be used. In
fact, in a sorted list, even a sequential search would be more efficient than for an
unsorted list: If the search item were not in the list, the search could stop as soon
as the list elements were greater than the search item.

5. (C) Suppose the array has 1000 elements and x is somewhere in the first 8 slots.
The algorithm described will find x using no more than five comparisons. A
binary search, by contrast, will chop the array in half and do a comparison six

✐

✐

“ap” — 2014/11/4 — 11:10 — page 347 — #361

✐

✐

✐

✐

✐

✐

Answers Explained 347

times before examining elements in the first 15 slots of the array (array size after
each chop: 500, 250, 125, 62, 31, 15).

6. (E) The assertion states that the first element is greater than all the other el-
ements in the array. This eliminates choices A and D. Choices B and C are
incorrect because you have no information about the relative sizes of elements
a[1]...a[N-1].

7. (C) When key is not in the array, index will eventually be large enough that
a[index] will cause an ArrayIndexOutOfBoundsException. In choices A and B,
the algorithm will find key without error. Choice D won’t fail if 0 is in the array.
Choice E will work if a[key] is not out of range.

8. (A)

After 1st pass: 109 42 −3 13 89 70 2

After 2nd pass: 109 89 −3 13 42 70 2

After 3rd pass: 109 89 70 13 42 −3 2

9. (A) The algorithm uses the fact that array v is sorted smallest to largest.
The while loop terminates—which means that the search stops—as soon as
v[index] >= key.

10. (C) The first pass uses the interval a[0]...a[7]. Since mid = (0+ 7)/2 = 3,
low gets adjusted to mid + 1 = 4, and the second pass uses the interval
a[4]...a[7].

11. (B) First pass: compare 27 with a[3], since low= 0 high= 7 mid= (0+7)/2= 3.
Second pass: compare 27 with a[5], since low= 4 high= 7 mid= (4+ 7)/2= 5.
Third pass: compare 27 with a[6], since low = 6 high = 7 mid = (6+ 7)/2 = 6.
The fourth pass doesn’t happen, since low = 6, high = 5, and therefore the test
(low <= high) fails. Here’s the general rule for finding the number of iterations
when key is not in the list: If n is the number of elements, round n up to the
nearest power of 2, which is 8 in this case. 8 = 23, which implies 3 iterations of
the “divide-and-compare” loop.

12. (D) The method returns the index of the key parameter, 4. Since a[0] contains
4, binSearch(4)will return 0.

13. (A) Try 4. Here are the values for low, high, and mid when searching for 4:

First pass: low= 0, high= 7, mid = 3
Second pass: low= 0, high= 2, mid = 1

After this pass, high gets adjusted to mid −1, which is 0. Now low equals high,
and the test for the while loop fails. The method returns −1, indicating that 4
wasn’t found.

14. (E) When the loop is exited, either key= a[mid] (and mid has been returned) or
key has not been found, in which case either a[low] ≤ key ≤ a[high] or key is
not in the array. The correct assertion must account for all three possibilities.

15. (A) 30,000 = 1000× 30 ≈ 210 × 25 = 215. Since a successful binary search in
the worst case requires log2 n iterations, 15 iterations will guarantee that key is
found. (Note that 30,000< 210× 25 = 32,768.)

16. (B) Start with the second element in the array.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 348 — #362

✐

✐

✐

✐

✐

✐

348 Chapter 8 Sorting and Searching

After 1st pass: 7 1 9 5 4 12

After 2nd pass: 9 7 1 5 4 12

After 3rd pass: 9 7 5 1 4 12

17. (B) An insertion sort compares a[1] and a[0]. If they are not in the correct
order, a[0] is moved and a[1] is inserted in its correct position. a[2] is then
inserted in its correct position, and a[0] and a[1] are moved if necessary, and so
on. Since B has only one element out of order, it will require the fewest changes.

18. (A) This list is almost sorted in reverse order, which is the worst case for insertion
sort, requiring the greatest number of comparisons and moves.

19. (D) j >= 0 is a stopping condition that prevents an element that is larger than
all those to the left of it from going off the left end of the array. If no error
occurred, it means that the largest element in the array was a[0], which was true
in situations I and II. Omitting the j >= 0 test will cause a run-time (out-of-range)
error whenever temp is bigger than all elements to the left of it (i.e., the insertion
point is 0).

20. (A) Look at a small array that is almost sorted:

10 8 9 6 2

For insertion sort you need four passes through this array.
The first pass compares 8 and 10—one comparison, no moves.
The second pass compares 9 and 8, then 9 and 10. The array becomes
10 9 8 6 2—two comparisons, two moves.
The third and fourth passes compare 6 and 8, and 2 and 6—no moves.
In summary, there are approximately one or two comparisons per pass and no
more than two moves per pass.
For selection sort, there are four passes too.
The first pass finds the biggest element in the array and swaps it into the first
position.
The array is still 10 8 9 6 2—four comparisons. There are two moves if your
algorithm makes the swap in this case, otherwise no moves.
The second pass finds the biggest element from a[1] to a[4] and swaps it into the
second position: 10 9 8 6 2—three comparisons, two moves.
For the third pass there are two comparisons, and one for the fourth. There are
zero or two moves each time.
Summary: 4+ 3+ 2+ 1 total comparisons and a possible two moves per pass.
Notice that reason I is valid. Selection sort makes the same number of compar-
isons irrespective of the state of the array. Insertion sort does far fewer com-
parisons if the array is almost sorted. Reason II is invalid. There are roughly
the same number of data movements for insertion and selection. Insertion may
even have more changes, depending on how far from their insertion points the
unsorted elements are. Reason III is wrong because insertion and selection sorts
have the same space requirements.

Optional topic 21. (E) In the first pass through the outer for loop, the smallest element makes its
way to the end of the array. In the second pass, the next smallest element moves
to the second last slot, and so on. This is different from the sorts in choices A
through D; in fact, it is a bubble sort.

22. (C) Reject reason I. Mergesort requires both a merge and a mergeSort method—

✐

✐

“ap” — 2014/11/4 — 11:10 — page 349 — #363

✐

✐

✐

✐

✐

✐

Answers Explained 349

more code than the relatively short and simple code for insertion sort. Reject
reason II. The merge algorithm uses a temporary array, which means more storage
space than insertion sort. Reason III is correct. For long lists, the “divide-and-
conquer” approach of mergesort gives it a faster run time than insertion sort.

23. (D) Since the search is for a four-letter sequence, the idea in this algorithm is that
if you examine every fourth slot, you’ll find a letter in the required sequence very
quickly. When you find one of these letters, you can then examine adjacent slots
to check if you have the required sequence. This method will, on average, result
in fewer comparisons than the strictly sequential search algorithm in choice A.
Choice B is wrong. If you encounter a “q,” “r,” or “s” without a “p” first, you
can’t have found “pqrs.” Choice C is wrong because you may miss the sequence
completely. Choice E doesn’t make sense.

24. (C) The main precondition for a binary search is that the list is ordered.

25. (E) This algorithm is just a recursive implementation of a sequential search. It
starts by testing if the last element in the array, a[n-1], is equal to value. If so, it
returns the index n - 1. Otherwise, it calls itself with n replaced by n - 1. The
net effect is that it examines a[n-1], a[n-2], The base case, if (n == 0),
occurs when there are no elements left to examine. In this case, the method
returns −1, signifying that value was not in the array.

Optional topic26. (D) The partition algorithm performs a series of swaps until the pivot element
is swapped into its final sorted position (see p. 327). No temporary arrays or
external files are used, nor is a recursive algorithm invoked. The merge method is
used for mergesort, not quicksort.

27. (D) Recall the mergesort algorithm:

Divide arr into two parts.
Mergesort the left side.
Mergesort the right side.
Merge the two sides into a single sorted array.

The merge method is used for the last step of the algorithm. It does not do any
sorting or partitioning of the array, which eliminates choices A, B, and C. Choice
E is wrong because merge starts with a single array that has two sorted parts.

28. (B) Round 600 up to the next power of 2, which is 1024 = 210. For the worst
case, the array will be split in half log2 1024= 10 times.

29. (B) If the list is sorted in reverse order, each pass through the array will involve
the maximum possible number of comparisons and the maximum possible num-
ber of element movements if an insertion sort is used.

30. (B) 1 million = 106 = (103)2 ≈ (210)2 = 220. Thus, there will be on the order of
20 comparisons.

31. (A) A binary search, on average, has a smaller run time than a sequential search.
All of the sorting algorithms have greater run times than a sequential search. This
is because a sequential search looks at each element once. A sorting algorithm,
however, processes other elements in the array for each element it looks at.

Optional topic32. (D) Reason I is valid—it’s always desirable to hide implementation details from
users of a method. Reason II is valid too—since QuickSort and MergeSort imple-
ment the Sort interface, they must have a sort method with no parameters. But
parameters are needed to make the recursion work. Therefore each sort requires

✐

✐

“ap” — 2014/11/4 — 11:10 — page 350 — #364

✐

✐

✐

✐

✐

✐

(continued)

350 Chapter 8 Sorting and Searching

a helper method with parameters. Reason III is invalid in this particular example
of helper methods. There are many examples in which a helper method enhances
efficiency (e.g., Example 2 on p. 296), but the sort example is not one of them.

33. (E) Since Sort is an interface, you can’t create an instance of it. This eliminates
choices B and D. The sort methods alter the contents of strArray. Thus invok-
ing q.sort() followed by m.sort() means that m.sort will always operate on a
sorted array, assuming quicksort works correctly! In order to test both quick-
sort and mergesort on unsorted arrays, you need to make a copy of the original
array or create a different array. Eliminate choice A (and B again!), which does
neither of these. Choice C is wrong because it calls the private sort methods
of the classes. The Sort interface has just a single public method, sort, with no
arguments. The two classes shown must provide an implementation for this sort
method, and it is this method that must be invoked in the client program.

34. (D) The computer should find the number in no more than seven tries. This is
because the guessing interval is halved on each successive try:

(1) 100÷ 2= 50 numbers left to try

(2) 50÷ 2= 25 numbers left to try

(3) 25÷ 2= 13 numbers left to try

(4) 13÷ 2 = 7 numbers left to try

(5) 7÷ 2 = 4 numbers left to try

(6) 4÷ 2 = 2 numbers left to try

(7) 2÷ 2 = 1 number left to try

Seven iterations of the loop leaves just 1 number left to try!

35. (A) The maximum number of guesses is 100. A sequential search means that the
computer starts at the first possible number, namely 1, and tries each successive
number until it gets to 100. If the user’s number is 100, the computer will take
100 guesses to reach it.

36. (C) On average the computer will make 50 guesses. The user is equally likely to
pick any number between 1 and 100. Half the time it will be less than 50; half the
time, greater than 50. So on the average, the distance of the number from 1 is 50.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 351 — #365

✐

✐

✐

✐

✐

✐

The AP Computer

Science A Labs

CHAPTER 9

I don’t like museums, I like labs.
—Amit Kalantri

Chapter Goals

• The Magpie Lab

• The Elevens Lab

• The Picture Lab

The AP Computer Science A labs were developed as a replacement for the Grid-
World case study. Starting in May 2015, there will be no exam questions on

GridWorld. And there will be no specific questions that require knowledge of the con-
tent of the labs. Instead, new test questions will focus on concepts from the AP Java
subset that are emphasized in the labs.

What follows below is a brief summary of the labs, the concepts they illustrate,
the concepts they particularly emphasize, and some sample multiple-choice questions
based on these concepts.

THE MAGPIE LAB

In this lab, students modify a chatbot, which is a computer program designed to sim-
ulate an intelligent conversation between a computer and a human user. Students en-
ter phrases, the computer searches for keywords, then comes up with an intelligent-
seeming response.

Student activities include:

• Working through the Magpie code (if statements)

• Using Magpie and String methods (while loops, strings, and Javadoc)

• Using an array of possible responses in generating a random response from the
computer (arrays, ArrayLists, and random integers)

• Improving the search to find keywords that are complete words, not substrings
buried in other strings (String methods)

• Transforming a computer response based on the format of the statement entered
by the user (String methods)

351

✐

✐

“ap” — 2014/11/4 — 11:10 — page 352 — #366

✐

✐

✐

✐

✐

✐

352 Chapter 9 The AP Computer Science A Labs

Special Emphasis

STRING METHODS

The String methods substring and indexOf are used continually in this lab. Be sure
that you recall

• The first index of a String is 0.

• The method call s.substring(start, end) returns the substring of s starting
at index start but ending at index end-1.

• The method call s.indexOf(sub) returns the index of the first occurrence of sub
in s.

• s.indexOf(sub) returns -1 if sub is not in s.

You should be nimble and well practiced in processing strings.
The following type of code is used repeatedly in the lab to look for multiple occur-

rences of a substring in a given string:

int pos = s.indexOf(someSubstring);

while (pos >= 0) //the substring was found

{

doSomething();

s = s.substring(pos + 1); //throw away all characters of s

//up to and including someSubstring

pos = s.indexOf(someSubstring); //Is there another occurrence

//of someSubstring?

}

A modified version of the above code, using some combination of a loop, indexOf, and
substring, can be used to

• count number of occurrences of substring in str.

• replace all occurrences of substring in str with replacementStr.

• remove all occurrences of substring in str.

On the AP exam, there will almost certainly be at least one free-response question that
requires you to manipulate strings in this way.

RANDOM ELEMENT SELECTION

Another skill that is demonstrated in this lab is returning a random element from
an array or ArrayList. For example, suppose responses is an ArrayList<String> of
surprised responses the computer may make to a user’s crazy input. If the contents of
responses are currently

0 1 2 3 4 5

Oh my! Say what? No! Heavens! You’re kidding me. Jumping Jellybeans!

You should be able to randomly return one of these responses. The key is to select
a random index from 0 to 5, inclusive, and then return the string in the responses list
that is at that index.

Recall that the expression (int)(Math.random()*howMany) generates a random int

in the range 0...howMany-1. In the given example, howMany is 6. The piece of code that
returns a random response is:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 353 — #367

✐

✐

✐

✐

✐

✐

The Elevens Lab 353

int randIndex = (int) (Math.random() * 6);

String response = responses.get(randIndex);

CONDITIONALS: if...else STATEMENT

The Magpie lab is loaded with conditionals, searching for keywords that will trigger
different responses from the chatbot (computer). Using if and if...else should be
second nature to you.

Example

The user will enter a sentence and the chatbot will produce a chatBotReply.

if (sentence.indexOf ("love") != -1)

{

if (sentence.indexOf ("you") != -1)

chatBotReply = "I’m in heaven!";

else

chatBotReply = "But do you love me?";

}

else

chatBotReply = "My heart is in pieces on the floor.";

Here are some possible sentences that the user may enter, with the corresponding
chatBoxReply:

Sentence chatBoxReply

I love chocolate cake. But do you love me?

I love chocolate cake; do you? I’m in heaven.

I hate fudge. My heart is in pieces on the the floor.

If the substring "love" isn’t in the sentence, the opening test will be false, and
execution skips to the else outside the braces, producing the chatBotReply "My heart

is in pieces on the floor". If sentence contains both "love" and "you", the first
test in the braces will be true, and the chatBotReply will be "I’m in heaven!" The
middle response "But do you love me?" will be triggered by a sentence that contains
"love" but doesn’t contain "you", causing the first test in the braces to be false, and
the else part in the braces to be executed.

THE ELEVENS LAB

In this lab, students simulate a game of solitaire, Elevens, and a related game, Thirteens.
A GUI is provided for the labs to make the game interesting and fun to play. You are
not required to know about GUIs.

Student activities include:

• Creating a Card class (objects, classes, and Strings)

• Creating a Deck class (arrays, ArrayLists, conditionals, loops)

• Shuffling the deck (Math.random, list manipulation)

• Writing an ElevensBoard class, using an abstract Board class (inheritance, ab-
stract classes)

• Testing and debugging

• Playing the game

✐

✐

“ap” — 2014/11/4 — 11:10 — page 354 — #368

✐

✐

✐

✐

✐

✐

354 Chapter 9 The AP Computer Science A Labs

Special Emphasis

SHUFFLING

Several different algorithms are discussed for shuffling an array of elements. A key
ingredient of a good shuffle is generation of random integers. For example, to shuffle
a deck of 52 cards in an array may require a random int from 0 to 51:

int cardNum = (int) (Math.random() * 52);

(Recall that the multiplier in parentheses is the number of possible random integers.)
The following code for shuffling an array of Type elements is used often:

for(int k = arr.length - 1; k > 0; k++)

{

//Pick a random index in the array from 0 to k

int index = (int) (Math.random() * (k + 1));

//Swap randomly selected element with element at position k

Type temp = arr[k];

arr[k] = arr[index];

arr[index] = temp;

}

WRITING SUBCLASSES

On the AP exam, you will probably be asked to write a subclass of a given class. Don’t
forget the extends keyword:

public class Subclass extends Superclass

Recall that constructors are not inherited, and if you use the keyword super in writing
a constructor for your subclass, the line containing it should precede any other code
in the constructor.

Example

public class Dog

{

private String name;

private String breed;

public Dog (String aName, String aBreed)

{

name = aName;

breed = aBreed;

}

...

}

public class Poodle extends Dog

{

private boolean needsGrooming;

public Poodle (String aName, String aBreed, boolean grooming)

{

super(aName, aBreed);

needsGrooming = grooming;

}

...

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 355 — #369

✐

✐

✐

✐

✐

✐

The Elevens Lab 355

In the Elevens lab there’s extensive discussion about using an abstract class, Board,
to represent a game board on which the game of Elevens will be played.

The advantage of the abstract class is that its use can be extended for other solitaire
games played on similar boards. In the Elevens lab, the subclass ElevensBoard is writ-
ten, which is specific to the game of Elevens. Further on in the lab, another subclass
ThirteensBoard is discussed, which applies to a different, but similar game, Thirteens.

The abstract Board class contains methods that are common to all games that would
be played on a Board, like deal. But methods that would pertain to moves on the
board, like isLegal, would be different for each of the specific games. These methods
are therefore declared abstract in the superclass, but are overridden in the subclasses.

Note: If you’re writing a concrete (nonabstract) subclass of an abstract superclass,
you must be sure to write an implementation for every abstract method of the super-
class.

POLYMORPHISM

Consider this hierarchy of classes, and the declarations that follow it:

Dog

<<abstract>>

Poodle Pitbull Dachshund ...

Suppose the Dog class has this method:

public abstract void eat();

And each of the subclasses, Poodle, PitBull, Dachshund, etc., has a different, overrid-
den eat method. Now suppose that allDogs is an ArrayList<Dog> where each Dog

declared above has been added to the list. Each Dog in the list will be processed to eat
by the following lines of code:

for (Dog d: allDogs)

d.eat();

Polymorphism is the process of selecting the correct eat method, during run time, for
each of the different dogs.

TESTING AND DEBUGGING

In the Elevens lab, a lot of emphasis is placed on testing and debugging code as you
write it. Here are some general principles:

• Start simple. For example, if writing a Deck class, start with a deck that contains
just 2 or 3 cards.

• Always have a driver class (one with a main method) to test the current class
you’re writing.

• In your class, start with a constructor. You want to be sure you can create your
object.

• After the constructor, write a toString method for clear and easy display. You
want to be able to “see” the results of running your code.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 356 — #370

✐

✐

✐

✐

✐

✐

356 Chapter 9 The AP Computer Science A Labs

SIMULATING RANDOM EVENTS

Flipping a coin, tossing a die, or picking a random card from a deck. Those random
numbers again! If there are k possible outcomes, each of them equally likely, be sure
you can generate a random int from 0 to k-1.

THE PICTURE LAB

In this lab, students manipulate digital pictures using two-dimensional arrays. Code
for the GUI is provided in the lab.

The main concept emphasized is traversal of two-dimensional arrays. Other con-
cepts used are UML diagrams, binary numbers, inheritance, interfaces, abstract meth-
ods, constants, and program analysis.

Student activities include:

• Learning how colors are stored in a program.

• Modifying a picture.

• Creating a mirror image of a picture.

• Mirroring part of a picture.

• Creating a collage.

• Detecting the edge of a picture.

Special Emphasis

PROCESSING A 2-D ARRAY

A matrix is stored as an array of rows, each of which is also an array. In the lab, a
for-each loop is often used for traversal. Here is an example that traverses an array of
int:

for (int[] row : matrix) //for each row array in the matrix

for (int num : row) //for each int element in the current row

doSomething();

Here is what doSomething can do:

• Access each element in the matrix (count, add, compare, etc.)

Here is what doSomething cannot do:

• Replace an element with another.

Suppose the matrix is an array of objects that can be changed with mutator methods.
The for-each loop can be used not only to access elements, but also to modify them.
(No replacing with new elements, however). The following code is OK.

for (Clock[] row : clockMatrix)

for (Clock c : row)

c.setTime(t);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 357 — #371

✐

✐

✐

✐

✐

✐

The Picture Lab 357

MIRROR IMAGES

A large part of the lab is spent coming up with algorithms that create some kind of mir-
ror image of a matrix. Students are asked to reflect across mirrors placed somewhere
in the center of the matrix, horizontally, vertically, or diagonally.

Note that if a vertical mirror is placed down the center of a matrix, so that all
elements to the left of the mirror are reflected across it, the element mat[row][col]
reflects across to element mat[row][numCols-col-1].

You should teach yourself to trace the following type of code:

public static void matrixMethod(int[][] mat)

{

int height = mat.length;

int numCols = mat[0].length;

for (int col = 0; col < numCols; col++)

for (int row = 0; row < height/2; row++)

mat[height - row - 1][col] = mat[row][col];

}

What does it do? How does it transform the matrix below?

2 3 4

5 6 7

8 9 0

1 1 1

Solution: The algorithm reflects the matrix from top to bottom across a horizontal
mirror placed at its center.

height = 4, numCols = 3

col takes on values 0, 1, and 2

row takes on values 0 and 1

Here are the replacements that are made:

col = 0, row = 0: mat[3][0] = mat[0][0]

row = 1: mat[2][0] = mat[1][0]

col = 1, row = 0: mat[3][1] = mat[0][1]

row = 1: mat[2][1] = mat[1][1]

col = 2, row = 0: mat[3][2] = mat[0][2]

row = 1: mat[2][2] = mat[1][2]

This transforms the matrix into

2 3 4

5 6 7

5 6 7

2 3 4

Note that a for-each loop was not used in the traversal, because elements in the
matrix are being replaced.

BASE 2, BASE 8, BASE 16

Binary (base 2) and hexadecimal (base 16) numbers are discussed in the Picture lab as
they apply to storage of colors. You need to be able to convert a given number in base
b to a decimal (base 10) number (see p. 62).

✐

✐

“ap” — 2014/11/4 — 11:10 — page 358 — #372

✐

✐

✐

✐

✐

✐

358 Chapter 9 The AP Computer Science A Labs

Example

Convert the following octal (base 8) number to a decimal number: 123oct

Solution:

123oct = (1)(8
2)+ (2)(81)+ (3)(80)

= 64+ 16+ 3

= 83dec

For a base 16 conversion, you’ll be given that A, B, C, D, E, and F represent 10, 11,
12, 13, 14, and 15, respectively.

Example

Convert A2Bhex to a decimal number.
Solution:

A2Bhex = (A)(162)+ (2)(161)+ (B)(160)

= 2560+ 32+ 11

= 2603dec

Can you go in the other direction, namely, start with a decimal number and convert
it to a different base?

Example

Convert 25 to a binary (base 2) number.
Solution:

Pull out the highest power of 2 less than or equal to 25, which is 16. Thus,

25= 16+ 9

Now pull out the highest power of 2 less than or equal to 9, which is 8. Thus,

25= 16+ 8+ 1

Now write 25 as a sum of powers of 2, making sure to include the missing powers that
are less than the highest power in the first step of the solution:

25= 16+ 8+ 1

= (1)(24)+ (1)(23)+ (0)(22)+ (0)(21)+ (1)(20)

= 11001bin

Note: you must be careful to use 0’s as place holders for the missing powers of 2.

Chapter Summary

String manipulation and matrix processing are the two big topics you should master.
Review the meanings and boundary conditions of the parameters in the String meth-
ods substring and indexOf. For matrices, you should nail down both the row-column
and for-each traversals. Remember, you cannot use a for-each loop for the replacement
of elements.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 359 — #373

✐

✐

✐

✐

✐

✐

The Picture Lab 359

Be sure you can hand-execute tricky matrix algorithms, like those used for modify-
ing matrices using mirror images.

A matrix is an array of row-arrays, so familiarize yourself with the the use of a
method with an array parameter to process the rows of a matrix.

Array manipulation is another big topic. Be sure you know how to shuffle the
elements of an array.

Other concepts emphasized in the labs are inheritance and polymorphism, writing
subclasses, abstract classes, simulation of events using random numbers, multi-base
numbers, and conditional (if...else) statements. You should have all of these at
your fingertips.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 360 — #374

✐

✐

✐

✐

✐

✐

360 Chapter 9 The AP Computer Science A Labs

MULTIPLE-CHOICE QUESTIONS ON THE LAB CONCEPTS

1. For ticket-selling purposes, there are three categories at a certain theater:

Age Category

65 or above Senior
From 18 to 64 inclusive Adult
Below 18 Child

Which of the following code segments will assign the correct string to category

for a given integer age?

I if (age >= 65)

category = "Senior";

if (age >= 18)

category = "Adult";

else

category = "Child";

II if (age >= 65)

category = "Senior";

if (18 <= age <= 64)

category = "Adult";

else

category = "Child";

III if (age >= 65)

category = "Senior";

else if (age >= 18)

category = "Adult";

else

category = "Child";

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 361 — #375

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on the Lab Concepts 361

2. What is the output of the following code segment?

String s = "How do you do?";

int index = s.indexOf("o");

while (index >= 0)

{

System.out.print(index + " ");

s = s.substring(index + 1);

index = s.indexOf("o");

}

(A) 1 3 2 3

(B) 2 4 3 4

(C) 1 5 8 12

(D) 1 5 8 11

(E) No output because of an IndexOutOfBoundsException

3. Consider the following method removeAll that creates and returns a string that
has stripped its input phrase of all occurrences of its single-character String

parameter ch.

Line 1: public static String removeAll(String phrase, String ch)

Line 2: {

Line 3: String str = "";

Line 4: String newPhrase = phrase;

Line 5: int pos = phrase.indexOf(ch);

Line 6: if (pos == -1)

Line 7: return phrase;

Line 8: else

Line 9: {

Line 10: while (pos >= 0)

Line 11: {

Line 12: str = str + newPhrase.substring(0, pos - 1);

Line 13: newPhrase = newPhrase.substring(pos + 1);

Line 14: pos = newPhrase.indexOf(ch);

Line 15: if (pos == -1)

Line 16: str = str + newPhrase;

Line 17: }

Line 18: return str;

Line 19: }

Line 20: }

The method doesn’t work as intended. Which of the following changes to the
removeAll method will make it work as specified?
(A) Change Line 10 to

while (pos >= -1)

(B) Change Line 12 to
str = str + newPhrase.substring(0, pos);

(C) Change Line 13 to
newPhrase = newPhrase.substring(pos);

(D) Change Line 14 to
pos = phrase.indexOf(ch);

(E) Change Line 16 to
str = str + newPhrase.substring(pos + 1);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 362 — #376

✐

✐

✐

✐

✐

✐

362 Chapter 9 The AP Computer Science A Labs

4. A programmer has written a program that “chats” to a human user based on
statements that the human inputs. The program contains a method findKeyWord

that searches an input statement for a given keyword. The findKeyWord method
contains the following line of code:

pos = statement.indexOf(word);

Suppose pos has a value >= 0, that is, word was found. The programmer now
wants to test that an actual word was found, not part of another word. For
example, if “cat” is the keyword, the programmer needs to check that it’s not
part of “catch” or “category.” Here is the code that tests if word is a stand-alone
word. (You may assume that statement is all lowercase and contains only letters
and blanks.)

pos = statement.indexOf(word);

//Check for first or last word

if (pos == 0 || pos + word.length() == statement.length())

{

before = " ";

after = " ";

}

else

{

before = statement.substring(pos - 1, pos);

after = statement.substring(pos + word.length(),

pos + word.length() + 1);

if (/* test */)

//then a stand-alone word was found ...

else

//word was part of a larger word

}

Which replacement for /* test */ will give the desired result?
(A) (before < "a" || before > "z") && (after < "a" || after > "z")

(B) (before > "a" || before < "z") && (after > "a" || after < "z")

(C) (before.compareTo("a") < 0 && before.compareTo("z") > 0) ||

(after.compareTo("a") > 0 && after.compareTo("z") < 0)

(D) (before.compareTo("a") > 0 && before.compareTo("z") < 0) &&

(after.compareTo("a") > 0 && after.compareTo("z") < 0)

(E) (before.compareTo("a") < 0 || before.compareTo("z") > 0) &&

(after.compareTo("a") < 0 || after.compareTo("z") > 0)

✐

✐

“ap” — 2014/11/4 — 11:10 — page 363 — #377

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on the Lab Concepts 363

5. A program that simulates a conversation between a computer and a human user
generates a random response to a user’s comment. All possible responses that the
computer can generate are stored in an array of String called allResponses. The
method given below, getResponse, returns a random response string from the
array.

/** Precondition: array allResponses is initialized with strings.

* Postcondition: returns a random response from allResponses.

*/

public String getResponse();

{ /* implementation */ }

Which is a correct /* implementation */?
(A) int i = (int) (Math.random() * allResponses.length);

return allResponses[i];

(B) return (String) (Math.random() * allResponses.length);

(C) int i = Math.random() * allResponses.length;

return allResponses[i];

(D) int i = (int) (Math.random() * (allResponses.length - 1));

return allResponses[i];

(E) return (int) (Math.random() * allResponses.length);

✐

✐

“ap” — 2014/11/4 — 11:10 — page 364 — #378

✐

✐

✐

✐

✐

✐

364 Chapter 9 The AP Computer Science A Labs

Questions 6 and 7 refer to the Deck class described below.

A Deck class contains an array cards with an even number of Card values and a final

variable NUMCARDS, which is an odd integer.

6. Here are two possible algorithms for shuffling the deck.

Algorithm 1
Initialize an array of Card called shuffled of length NUMCARDS.
Set k to 0.
For j=0 to NUMCARDS/2-1

- Copy cards[j] to shuffled[k]

- Set k to k+2

Set k to 1.
For j=NUMCARDS/2 to NUMCARDS-1

- Copy cards[j] to shuffled[k]

- Set k to k+2

Algorithm 2
Initialize an array of Card called shuffled containing NUMCARDS slots.
For k=0 to NUMCARDS-1

- Repeatedly generate a random integer j from 0 to NUMCARDS-1,
until cards[j] contains a card not marked as empty

- Copy cards[j] to shuffled[k]

- Set cards[j] to empty

Which is a false statement concerning Algorithms 1 and 2?
(A) A disadvantage of Algorithm 1 is that it won’t generate all possible deck

permutations.
(B) For Algorithm 2, to determine the last element shuffled requires an average

of NUMCARDS calls to the random number generator.
(C) Algorithm 2 will lead to more permutations of the deck than Algorithm 1.
(D) In terms of run time, Algorithm 2 is more efficient than Algorithm 1.
(E) If Algorithm 1 is repeated several times, it may return the deck to its original

state.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 365 — #379

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on the Lab Concepts 365

7. The following shuffle method is used to shuffle the cards in the Deck class.

Line 1: public void shuffle()

Line 2: {

Line 3: for (int k = NUMCARDS; k > 0; k--)

Line 4: {

Line 5: int randPos = (int) (Math.random() * (k + 1));

Line 6: //swap randomly selected card with card at position k

Line 7: Card temp = cards[k];

Line 8: cards[k] = cards[randPos];

Line 9: cards[randPos] = temp;

Line 10: }

Line 11: }

The method does not work as intended. Which of the following changes should
be made to correct the method?
(A) Replace Line 3 with

for (int k = NUMCARDS; k >= 0; k--)

(B) Replace Line 3 with
for (int k = NUMCARDS - 1; k > 0; k--)

(C) Replace Line 3 with
for (int k = 1; k <= NUMCARDS; k++)

(D) Replace Line 5 with
int randPos = (int) (Math.random() * k);

(E) Replace Lines 7 – 9 with
Card temp = cards[randPos];

cards[randPos] = cards[k];

cards[k] = temp;

✐

✐

“ap” — 2014/11/4 — 11:10 — page 366 — #380

✐

✐

✐

✐

✐

✐

366 Chapter 9 The AP Computer Science A Labs

8. A programmer wants to simulate several different but related solitaire games,
each of which uses a standard 52-card deck. Each game starts with 10 cards dealt
face up on a table. The game types differ in the rules that allow groups of cards
to be discarded from the table and new cards to be dealt from the remainder of
the deck. For each of the solitaire games, a winning game occurs if there are no
cards left in the pile or on the table. To represent the table for the games, the
programmer will use the inheritance relationship shown below.

Table

<<abstract>>

Game1Table Game2Table Game3Table

Which of the following methods should be abstract in the Table class?

I dealNextCard, which provides the next card for the table

II checkForMove, which returns true if a move is possible, false otherwise

III isWinningGame, which returns true if both the table and deck of cards are
empty

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

Questions 9 and 10 refer to the following.

A word creation game uses letter tiles, where each tile has a letter and a point value for
scoring purposes. A Tile class is used to represent a letter tile.

public class Tile

{

private String letter;

private int pointValue;

//Constructors and other methods are not shown.

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 367 — #381

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on the Lab Concepts 367

9. The Tile class contains a toString method that creates a String containing the
letter and point value of a Tile. The string should be in the following format:

Letter letter (point value = pointValue)

For example,

Letter A (point value = 1)

Letter Z (point value = 10)

Consider the toString method below:

public String toString()

{

return /* code */

}

Which /* code */ leads to correct output?
(A) Letter + "letter " + "(point value = " + pointValue + ")";

(B) "Letter " + letter + ("point value = " + pointValue);

(C) Letter + this.letter + " (point value = " + pointValue + ")";

(D) "Letter " + letter + " (point value = " + (String) pointValue +

")";

(E) "Letter " + letter + " (point value = " + pointValue + ")";

10. Any two tiles in the word game that have the same letter also have the same point
value, but the opposite is not necessarily true. For example, all the vowels have a
point value of 1. Two tiles are said to match if they have the same letter. Consider
the following matches method for the Tile class.

/** @return true if the letter on this tile equals the letter

* on otherTile */

public boolean matches(Tile otherTile)

{ return /* code */; }

Which replacements for /* code */ return the desired result? Note: You may
not assume that the Tile class has its own equals method.

I letter == otherTile.letter

II this.equals(otherTile)

III letter.equals(otherTile.letter)

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I and III only

✐

✐

“ap” — 2014/11/4 — 11:10 — page 368 — #382

✐

✐

✐

✐

✐

✐

368 Chapter 9 The AP Computer Science A Labs

11. Consider the following method.

public static void alterArray(int[] arr)

{

int mid = arr.length/2;

for (int i = 0; i < mid; i++)

{

int temp = arr[i];

arr[i] = arr[arr.length - i - 1];

arr[arr.length - i - 1] = temp;

}

}

If the current state of a matrix mat is

2 7 9 5

8 1 4 3

6 5 0 9

which matrix will result from the method call alterArray(mat[2])?

(A) 2 7 9 5

3 4 1 8

6 5 0 9

(B) 2 7 0 5

8 1 4 3

6 5 9 9

(C) 5 9 7 2

3 4 1 8

9 0 5 6

(D) 2 7 9 5

8 1 4 3

9 0 5 6

(E) 5 9 7 2

8 1 4 3

6 5 0 9

✐

✐

“ap” — 2014/11/4 — 11:10 — page 369 — #383

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on the Lab Concepts 369

12. Consider a program to manipulate images. The inheritance hierarchy is as fol-
lows:

DigitalPicture

<<interface>>

Picture

Landscape Portrait

You may assume that Picture has a default (no-argument) constructor, but that
Landscape and Portrait do not have any constructors. Which of the following
declarations will compile?

I DigitalPicture p = new Portrait();

II Landscape p = new Picture();

III DigitalPicture p = new DigitalPicture();

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 370 — #384

✐

✐

✐

✐

✐

✐

370 Chapter 9 The AP Computer Science A Labs

13. The color of a pixel can be represented using the RGB (Red, Green, Blue) color
model, which stores integer values for red, green, and blue, each ranging from
0 to 255. A value of 0 represents none of that color, while 255 represents the
maximum. Consider a Pixel class that, among other methods, contains methods
getRed, getGreen, and getBlue. These methods return integer values of those
colors for that Pixel. There are also methods setRed, setGreen, and setBlue,
which allow these values to be changed. For example, setBlue(250) would set
the amount of blueness for that pixel to 250.

Consider a Picture class and a private instance variable pixels, where pixels
is a two-dimensional array of Pixel objects. A method removeRed in the Picture
class sets the red value of every pixel to zero:

public void removeRed()

{

for (int row = 0; row < numRows; row++)

for (int col = 0; col < numCols; col++)

{

/* code to set red value to 0 */

}

}

Which is a correct replacement for /* code to set red value to 0 */?

I Pixel p = pixels[row][col];

p.setRed(0);

II pixels[row][col].setRed(0);

III pixels[row][col].getRed() = 0;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

✐

✐

“ap” — 2014/11/4 — 11:10 — page 371 — #385

✐

✐

✐

✐

✐

✐

Multiple-Choice Questions on the Lab Concepts 371

14. Consider a class MatrixStuff that has a private instance variable

private int[][] mat;

The following method uses a vertical mirror down the center of a matrix to reflect
the left half of the matrix onto the right. The following two examples show
the result of mirroring a two-dimensional array of numbers from left to right
vertically. (Another way of saying this is that the right half of the matrix is
replaced by a vertical mirror image of the left half.)

Example 1:

mat mat after mirroring

1 2 3 4 5 1 2 3 2 1

6 7 8 9 10 6 7 8 7 6

11 12 13 14 15 11 12 13 12 11

Example 2:
mat mat after mirroring

1 2 3 4 1 2 2 1

5 6 7 8 5 6 6 5

9 10 11 12 9 10 10 9

public static void mirrorVerticalLeftToRight(int[][] mat)

{

int width = mat[0].length;

int numRows = mat.length;

for (int row = 0; row < numRows; row++)

for (int col = 0; col < width/2; col++)

/* element assignments */

}

Which replacement for /* element assignments */ will make the method work as
intended?
(A) mat[row][col] = mat[row][width - col];

(B) mat[row][width - col] = mat[row][col];

(C) mat[row][width - 1 - col] = mat[row][col];

(D) mat[row][col] = mat[row][width - 1 - col];

(E) mat[row][width - 1 - col] = mat[col][row];

✐

✐

“ap” — 2014/11/4 — 11:10 — page 372 — #386

✐

✐

✐

✐

✐

✐

372 Chapter 9 The AP Computer Science A Labs

15. Consider a square matrix in a class that has a private instance variable mat:

private int[][] mat;

Method alter in the class changes mat:

public void alter()

{

for (int row = 1; row < mat.length; row++)

for (int col = 0; col < row; col++)

mat[col][row] = mat[row][col];

}

If mat has current value

{{1, 2, 3},

{4, 5, 6},

{7, 8, 9}}

what are the contents of mat after method alter has been executed?

(A) {{1, 4, 7},

{4, 5, 8},

{7, 8, 9}}

(B) {{1, 4, 7},

{2, 5, 8},

{3, 6, 9}}

(C) {{1, 2, 3},

{2, 5, 6},

{3, 6, 9}}

(D) {{9, 6, 3},

{8, 5, 6},

{7, 8, 9}}

(E) {{1, 2, 3},

{4, 5, 2},

{7, 4, 1}}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 373 — #387

✐

✐

✐

✐

✐

✐

Answers Explained 373

ANSWER KEY

1. C

2. A

3. B

4. E

5. A

6. D

7. B

8. B

9. E

10. C

11. D

12. A

13. D

14. C

15. A

ANSWERS EXPLAINED

1. (C) Segment III works because if you enter an age of 90, say, category will
correctly be assigned "Senior", and none of the other else pieces of code will be
executed. Similarly, if you enter an age corresponding to an adult or a child, only
the correct assignment is made. Segment I fails because if you enter an age of 90,
category will be assigned "Senior", but then will be changed to "Adult" when
the age passes the second test. Segment II uses incorrect syntax. The segment will
work if you change the second test to

if (age >= 18 && age <= 64)

2. (A) The algorithm prints the current index of "o" in the string, then creates a
new substring containing all remaining characters following that "o". Here is the
series of substrings and the corresponding output for each (the symbol denotes
a blank character):

How do you do? 1

w do you do? 3

 you do? 2

u do? 3

3. (B) Here is a description of the algorithm:

Make a copy of phrase in newPhrase.
Find the first occurrence of ch in newPhrase (pos is the index).
If you found it, concatenate to str the characters in newPhrase from 0 to pos-1.
Change newPhrase to contain all characters from ch to the end, excluding ch.
Repeat the process until there are no more occurrences of ch in newPhrase.

So Line 12 is wrong because newPhrase.substring(0,pos-1) will not include
the character at pos-1, which means that the string returned will lose a character
that is not equal to ch.

4. (E) The program has found a stand-alone word if the characters before and after

are both blank. Choice E tests that they are not letters between "a" and "z", i.e.,
they must be blank. Choices A and B fail because you must use compareTo for
inequality tests on strings. Choices C and D allow at least one of before and
after to be a letter, which would mean that word was not a stand-alone word.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 374 — #388

✐

✐

✐

✐

✐

✐

374 Chapter 9 The AP Computer Science A Labs

5. (A) The first line in choice A returns a random integer that lies between 0 and
allResponses.length-1. This range corresponds to the range of the array in-
dexes so it is correct. Choice B is garbage—you cannot cast a real number to a
string. Choice C fails because Math.random() is type double and you require an
int; you must do the cast to int shown in choice A. Choice D fails because the
element allResponses[allResponses.length-1] will never be returned: i will
contain a random int from 0 to allResponses.length-2. Choice E returns an
int, not a String.

6. (D) The big defect of Algorithm 2 is that it eventually slows down. This is be-
cause every time it selects an empty element, it has to loop again. Each of the
other choices is true. In choice A, for example, the element cards[0] always
moves to shuffled[0], eliminating all permutations that have cards[0] in a dif-
ferent slot. For choice B, by the time you get to assign the last element, all but
two slots of the cards array are marked empty. So, on average, you will need to
go through NUMCARDS tries to find one of those two nonempty slots. For choice
C, even though Algorithm 2 is slow, in theory every element in cards could land
in any given slot in shuffled. This is not true for Algorithm 1, where the first
element never budges out of the first slot. For choice E, because of the precise
ordering of elements in Algorithm 1, the array will always eventually return to
its original state, assuming there are sufficient iterations.

7. (B) If k starts with the value NUMCARDS, the method encounters cards[NUMCARDS]
on Line 7 and throws an ArrayIndexOutOfBoundsException.

8. (B) Since dealNextCard and isWinningGame have the same code irrespective of
which game is being played, they should be regular methods in the Table class.
Method II, checkForMove, is unique to each game and therefore should be abstract
in the superclass and overridden in each subclass.

9. (E) The actual letter and its point value must not be in quotes because their
values must be printed. Everything else, including the parentheses, must be in
quotes. (All text in quotes is printed literally, as is.) Choices A and C fail because
they don’t place the opening word, Letter, in quotes. Choice B doesn’t have the
parentheses in quotes. Choice D incorrectly tries to cast an int to a String.

10. (C) Segment I will only be true if an object and its parameter are the same ref-
erence, which is not necessarily true for two matching tiles. Segment II fails
similarly if the Tile class doesn’t have its own equals method. (The inherited
method from Object compares references.)

11. (D) The matrix mat consists of an array of rows, mat[0], mat[1], mat[2], each
of which is an array. The method alterArray swaps the first and last element of
an array, then the second and second-last elements, and so on, until it reaches the
middle of the array. The method call alterArray(mat[2]) performs this series
of swaps on row 2 of the matrix, resulting in the matrix in choice D.

12. (A) Declaration I works because a Portrait is-a DigitalPicture, and it will
be assigned the default constructor from Picture, its superclass. Declaration II
fails because a Picture is not a Landscape. Declaration III fails because you can’t
create an instance of an interface.

13. (D) Segment I works because p is a reference to the element pixels[row][col].
Changing p with a mutator method will change the array. Segment II changes the
two-dimensional array directly. Segment III is garbage: you cannot assign a value

✐

✐

“ap” — 2014/11/4 — 11:10 — page 375 — #389

✐

✐

✐

✐

✐

✐

Answers Explained 375

through an accessor method.

14. (C) Look at Example 2 for this question:

mat mat after mirroring

1 2 3 4 1 2 2 1

5 6 7 8 5 6 6 5

9 10 11 12 9 10 10 9

Now consider one element, 12 say. It must be replaced by its vertical mirror
image 9, i.e., mat[2][3]=mat[2][0]. The value of width is 4. See which expres-
sion in the answer choices correctly makes this assignment. Eliminate choices
A and D right away because col can only have the values 0 and 1 in this algo-
rithm, so mat[2][3] will not be assigned. In choice B, when col has value 1,
mat[2][3]=mat[2][1], an incorrect assignment. Choice C works: when row is 2
and col is 0, mat[2][3]=mat[2][0]. In choice E, when row is 2 and col is 0, the
assignment mat[2][3]=mat[0][2] is incorrect.

15. (A) Method alter places a mirror along the major diagonal and reflects the ele-
ments from left to right across this diagonal.

1 2 3

4 5 6

7 8 9

In this algorithm, when row is 1, col can only be 0, and when row is 2, col takes
on the values 0 and 1. Thus, only 3 elements are altered: mat[0][1], mat[0][2],
and mat[1][2]. (Note that the method assigns values to mat[col][row].) These
elements are all to the right of the diagonal. Choice A is the only choice that
leaves elements to the left of the diagonal unchanged.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 376 — #390

✐

✐

✐

✐

✐

✐

✐

✐

“ap” — 2014/11/4 — 11:10 — page 377 — #391

✐

✐

✐

✐

✐

✐

Practice

Exams

✐

✐

“ap” — 2014/11/4 — 11:10 — page 378 — #392

✐

✐

✐

✐

✐

✐

✐

✐

“ap” — 2014/11/4 — 11:10 — page 379 — #393

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answer Sheet: Practice Exam Two

1. A B C D E

2. A B C D E

3. A B C D E

4. A B C D E

5. A B C D E

6. A B C D E

7. A B C D E

8. A B C D E

9. A B C D E

10. A B C D E

11. A B C D E

12. A B C D E

13. A B C D E

14. A B C D E

15. A B C D E

16. A B C D E

17. A B C D E

18. A B C D E

19. A B C D E

20. A B C D E

21. A B C D E

22. A B C D E

23. A B C D E

24. A B C D E

25. A B C D E

26. A B C D E

27. A B C D E

28. A B C D E

29. A B C D E

30. A B C D E

31. A B C D E

32. A B C D E

33. A B C D E

34. A B C D E

35. A B C D E

36. A B C D E

37. A B C D E

38. A B C D E

39. A B C D E

40. A B C D E

✐

✐

“ap” — 2014/11/4 — 11:10 — page 380 — #394

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

How to Calculate Your (Approximate) AP Computer Science Score

Multiple Choice

Number correct (out of 40) = ⇐= Multiple-Choice Score

Free Response

Question 1
(out of 9)

Question 2
(out of 9)

Question 3
(out of 9)

Question 4
(out of 9)

Total × 1.11 = ⇐= Free-Response Score
(Do not round.)

Final Score

Multiple-
Choice
Score

+
Free-

Response
Score

=
Final Score

(Round to nearest
whole number.)

Chart to Convert to AP Grade
Computer Science

Final AP Gradea

Score Range

62–80 5
47–61 4
37–46 3
29–36 2
0–28 1

aThe score range corresponding to
each grade varies from exam to exam
and is approximate.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 381 — #395

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 381

Practice Exam Two
COMPUTER SCIENCE

SECTION I

Time—1 hour and 15 minutes
Number of questions—40
Percent of total grade—50

Directions: Determine the answer to each of the following questions or in-
complete statements, using the available space for any necessary scratchwork.
Then decide which is the best of the choices given and fill in the corresponding
oval on the answer sheet. Do not spend too much time on any one problem.

Notes:
• Assume that the classes in the Quick Reference have been imported where

needed.
• Assume that variables and methods are declared within the context of an

enclosing class.
• Assume that method calls that have no object or class name prefixed, and

that are not shown within a complete class definition, appear within the
context of an enclosing class.
• Assume that parameters in method calls are not null unless otherwise

stated.

1. A large Java program was tested extensively, and no errors were found. What can
be concluded?
(A) All of the preconditions in the program are correct.
(B) All of the postconditions in the program are correct.
(C) The program may have bugs.
(D) The program has no bugs.
(E) Every method in the program may safely be used in other programs.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 382 — #396

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
382 Practice Exams

Questions 2–4 refer to the Worker class below:

public class Worker

{

private String name;

private double hourlyWage;

private boolean isUnionMember;

public Worker()

{ /* implementation not shown */ }

public Worker(String aName, double anHourlyWage, boolean union)

{ /* implementation not shown */ }

//Accessors getName, getHourlyWage, getUnionStatus are not shown.

/** Permanently increase hourly wage by amt.

* @param amt the amount of wage increase

*/

public void incrementWage(double amt)

{ /* implementation of incrementWage */ }

/** Switch value of isUnionMember from true to false and

* vice versa.

*/

public void changeUnionStatus()

{ /* implementation of changeUnionStatus */ }

}

2. Refer to the incrementWagemethod. Which of the following is a correct
/* implementation of incrementWage */?
(A) return hourlyWage + amt;

(B) return getHourlyWage() + amt;

(C) hourlyWage += amt;

(D) getHourlyWage() += amt;

(E) hourlyWage = amt;

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 383 — #397

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 383

3. Consider the method changeUnionStatus. Which is a correct
/* implementation of changeUnionStatus */?

I if (isUnionMember)

isUnionMember = false;

else

isUnionMember = true;

II isUnionMember = !isUnionMember;

III if (isUnionMember)

isUnionMember = !isUnionMember;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

4. A client method computePay will return a worker’s pay based on the number of
hours worked.

/** Precondition: Worker w has worked the given number of hours.

* @param w a Worker

* @param hours the number of hours worked

* @return amount of pay for Worker w

*/

public static double computePay(Worker w, double hours)

{ /* code */ }

Which replacement for /* code */ is correct?
(A) return hourlyWage * hours;

(B) return getHourlyWage() * hours;

(C) return w.getHourlyWage() * hours;

(D) return w.hourlyWage * hours;

(E) return w.getHourlyWage() * w.hours;

5. Consider this program segment. You may assume that wordList has been de-
clared as ArrayList<String>.

for (String s : wordList)

if (s.length() < 4)

System.out.println("SHORT WORD");

What is the maximum number of times that SHORT WORD can be printed?
(A) 3

(B) 4

(C) wordList.size()

(D) wordList.size() - 1

(E) s.length()

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 384 — #398

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
384 Practice Exams

6. Refer to the following method.

public static int mystery(int n)

{

if (n == 1)

return 3;

else

return 3 * mystery(n - 1);

}

What value does mystery(4) return?
(A) 3
(B) 9
(C) 12
(D) 27
(E) 81

7. Refer to the following declarations:

String[] colors = {"red", "green", "black"};

List<String> colorList = new ArrayList<String>();

Which of the following correctly assigns the elements of the colors array to
colorList? The final ordering of colors in colorList should be the same as
in the colors array.

I for (String col : colors)

colorList.add(col);

II for (String col : colorList)

colors.add(col);

III for (int i = colors.length - 1; i >= 0; i--)

colorList.add(i, colors[i]);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 385 — #399

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 385

8. Often the most efficient computer algorithms use a divide-and-conquer ap-
proach, for example, one in which a list is repeatedly split into two pieces until
a desired outcome is reached. Which of the following use a divide-and-conquer
approach?

I Mergesort
II Insertion sort

III Binary search

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

9. An Insect class is to be written, containing the following data fields:
age, which will be initialized to 0 when an Insect is constructed.
nextAvailableID, which will be initialized to 0 outside the constructor and in-
cremented each time an Insect is constructed.
idNum, which will be initialized to the current value of nextAvailableID when
an Insect is constructed.
position, which will be initialized to the location in a garden where the Insect

is placed when it is constructed.
direction, which will be initialized to the direction the Insect is facing when
placed in the garden.

Which variable in the Insect class should be static?
(A) age

(B) nextAvailableID

(C) idNum

(D) position

(E) direction

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 386 — #400

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
386 Practice Exams

Questions 10 and 11 refer to the classes Address and Customer given below.

public class Address

{

private String street;

private String city;

private String state;

private int zipCode;

public Address(String aStreet, String aCity, String aState,

int aZipCode)

{ /* implementation not shown */ }

public String getStreet()

{ /* implementation not shown */ }

public String getCity()

{ /* implementation not shown */ }

public String getState()

{ /* implementation not shown */ }

public int getZipCode()

{ /* implementation not shown */ }

//Other methods are not shown.

}

public class Customer

{

private String name;

private String phone;

private Address address;

private int ID;

public Customer(String aName, String aPhone, Address anAddr,

int anID)

{ /* implementation not shown */ }

public Address getAddress()

{ /* implementation not shown */ }

public String getName()

{ /* implementation not shown */ }

public String getPhone()

{ /* implementation not shown */ }

public int getID()

{ /* implementation not shown */ }

//Other methods are not shown.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 387 — #401

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 387

10. Which of the following correctly creates a Customer object c?

I Address a = new Address("125 Bismark St", "Pleasantville",

"NY", 14850);

Customer c = new Customer("Jack Spratt", "747-1674", a, 7008);

II Customer c = new Customer("Jack Spratt", "747-1674",

"125 Bismark St, Pleasantville, NY 14850", 7008);

III Customer c = new Customer("Jack Spratt", "747-1674",

new Address("125 Bismark St", "Pleasantville", "NY", 14850),

7008);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

11. Consider an AllCustomers class that has private instance variable

private Customer[] custList;

Given the ID number of a particular customer, a method of the class, locate,
must find the correct Customer record and return the name of that customer.
Here is the method locate:

/** Precondition: custList contains a complete list of Customer objects.

* @param idNum the ID number for a Customer

* @return the name of the customer with the specified idNum

*/

public String locate(int idNum)

{

for (Customer c : custList)

if (c.getID() == idNum)

return c.getName();

return null; //idNum not found

}

A more efficient algorithm for finding the matching Customer object could be
used if
(A) Customer objects were in alphabetical order by name.
(B) Customer objects were sorted by phone number.
(C) Customer objects were sorted by ID number.
(D) the custList array had fewer elements.
(E) the Customer class did not have an Address data member.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 388 — #402

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
388 Practice Exams

12. The following shuffling method is used to shuffle an array arr of int values.
The method assumes the existence of a swap method, where swap(arr,i,j) in-
terchanges the elements arr[i] and arr[j].

public static void shuffle (int[] arr)

{

for (int k = arr.length - 1; k > 0; k--)

{

int randIndex = (int) (Math.random() * (k + 1));

swap(arr, k, randIndex);

}

}

Suppose the initial state of arr is 1 2 3 4 5, and when the method is executed
the values generated for randIndex are 3, 2, 0, and 1, in that order. What will be
the final state of arr?
(A) 5 2 1 3 4

(B) 1 2 5 3 4

(C) 5 4 1 3 2

(D) 4 5 1 3 2

(E) 2 5 1 3 4

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 389 — #403

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 389

13. Refer to method removeWord.

/** @param wordList an ArrayList of String objects

* @param word the word to be removed

* Postcondition: All occurrences of word have been removed

* from wordList.

*/

public static void removeWord(ArrayList<String> wordList,

String word)

{

for (int i = 0; i < wordList.size(); i++)

if ((wordList.get(i)).equals(word))

wordList.remove(i);

}

The method does not always work as intended. Consider the method call

removeWord(wordList, "cat");

For which of the following lists will this method call fail?
(A) The cat sat on the mat

(B) The cat cat sat on the mat mat

(C) The cat sat on the cat

(D) cat

(E) The cow sat on the mat

14. A Clock class has hours, minutes, and seconds represented by int values. It also
has each of the following methods: setTime to change the time on a Clock to the
hour, minute, and second specified; getTime to access the time; and toString to
return the time as a String. The Clock class has a constructor that allows a Clock
to be created with three int parameters for hours, minutes, and seconds. Con-
sider a two-dimensional array of Clock values called allClocks. A code segment
manipulating allClocks is as follows:

for (Clock[] row : allClocks)

for (Clock c : row)

/* more code */

Assuming the Clock class works as specified, which replacement for
/* more code */ will cause an error?

I System.out.print(c);

II c.setTime(0, 0, 0);

III c = new Clock(0, 0, 0);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I and II only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 390 — #404

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
390 Practice Exams

15. Consider the following method that will access a square matrix mat:

/** Precondition: mat is initialized and is a square matrix.

*/

public static void printSomething(int[][] mat)

{

for (int r = 0; r < mat.length; r++)

{

for (int c=0; c<=r; c++)

System.out.print(mat[r][c] + " ");

System.out.println();

}

}

Suppose mat is originally

0 1 2 3

4 5 6 7

3 2 1 0

7 6 5 4

After the method call printSomething(mat) the output will be

(A) 0 1 2 3

4 5 6 7

3 2 1 0

7 6 5 4

(B) 0

4 5

3 2 1

7 6 5 4

(C) 0 1 2 3

4 5 6

3 2

7

(D) 0

4

3

7

(E) There will be no output. An ArrayIndexOutOfBoundsException will be
thrown.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 391 — #405

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 391

16. Consider two different ways of storing a set of nonnegative integers in which
there are no duplicates.

Method One: Store the integers explicitly in an array in which the number of
elements is known. For example, in this method, the set {6, 2, 1, 8, 9, 0} can be
represented as follows:

0 1 2 3 4 5

6 2 1 8 9 0
6 elements

Method Two: Suppose that the range of the integers is 0 to MAX. Use a boolean
array indexed from 0 to MAX. The index values represent the possible values
in the set. In other words, each possible integer from 0 to MAX is represented
by a different position in the array. A value of true in the array means that the
corresponding integer is in the set, a value of false means that the integer is not in
the set. For example, using this method for the same set above, {6, 2, 1, 8, 9, 0},
the representation would be as follows (T = true, F = false):

0 1 2 3 4 5 6 7 8 9 10 . . . MAX

T T T F F F T F T T F . . . F

The following operations are to be performed on the set of integers:

I Search for a target value in the set.
II Print all the elements of the set.

III Return the number of elements in the set.

Which statement is true?
(A) Operation I is more efficient if the set is stored using Method One.
(B) Operation II is more efficient if the set is stored using Method Two.
(C) Operation III is more efficient if the set is stored using Method One.
(D) Operation I is equally efficient for Methods One and Two.
(E) Operation III is equally efficient for Methods One and Two.

17. An algorithm for finding the average of N numbers is

average=
sum

N

where N and sum are both integers. In a program using this algorithm, a pro-
grammer forgot to include a test that would check for N equal to zero. If N is
zero, when will the error be detected?
(A) At compile time
(B) At edit time
(C) As soon as the value of N is entered
(D) During run time
(E) When an incorrect result is output

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 392 — #406

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
392 Practice Exams

18. What is wrong with this interface?

public interface Bad

{

void someMethod(String password)

{

System.out.println("Psst! The password is " + password);

}

}

(A) A method in an interface should be declared public.
(B) A method in an interface should be declared abstract.
(C) There should not be a method implementation.
(D) There should be a class implementation provided.
(E) There should not be any method parameters.

19. Consider method getCount below:

public static int getCount(String s, String sub)

{

int count = 0;

int pos = s.indexOf(sub);

while (pos >= 0)

{

s = s.substring(pos);

count++;

pos = s.indexOf(sub);

}

return count;

}

What will the method call getCount("a carrot and car", "car") return?
(A) 0

(B) 1

(C) 2

(D) 3

(E) No value returned. The method is in an infinite loop.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 393 — #407

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 393

20. Consider a program that deals with various components of different vehicles.
Which of the following is a reasonable representation of the relationships among
some classes that may comprise the program? Note that an open up-arrow de-
notes an inheritance relationship and a down-arrow denotes a composition rela-
tionship.

(A)
Vehicle

Car Truck

AirBag

(C)
Vehicle

Car Truck AirBag

(E)
Vehicle

Car Truck

AirBag

(B)
Vehicle

Car Truck AirBag

(D)
Vehicle

Car Truck

AirBag

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 394 — #408

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
394 Practice Exams

21. Consider the following program segment:

/** Precondition: a[0]...a[n-1] is an initialized array of integers,

* and 0 < n <= a.length.

*/

int c = 0;

for (int i = 0; i < n; i++)

if (a[i] >= 0)

{

a[c] = a[i];

c++;

}

n = c;

Which is the best postcondition for the segment?
(A) a[0]...a[n-1] has been stripped of all positive integers.
(B) a[0]...a[n-1] has been stripped of all negative integers.
(C) a[0]...a[n-1] has been stripped of all nonnegative integers.
(D) a[0]...a[n-1] has been stripped of all occurrences of zero.
(E) The updated value of n is less than or equal to the value of n before execution

of the segment.

22. If a, b, and c are integers, which of the following conditions is sufficient to guar-
antee that the expression

a < c || a < b && !(a == c)

evaluates to true?
(A) a < c

(B) a < b

(C) a > b

(D) a == b

(E) a == c

23. Airmail Express charges for shipping small packages by integer values of weight.
The charges for a weight w in pounds are as follows:

0< w ≤ 2 $4.00
2< w ≤ 5 $8.00
5< w ≤ 20 $15.00

The company does not accept packages that weigh more than 20 pounds. Which
of the following represents the best set of data (weights) to test a program that
calculates shipping charges?
(A) 0, 2, 5, 20
(B) 1, 4, 16
(C) −1, 1, 2, 3, 5, 16, 20
(D) −1, 0, 1, 2, 3, 5, 16, 20, 22
(E) All integers from−1 through 22

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 395 — #409

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 395

24. Consider the following instance variable and methods in the same class.

private int[][] matrix;

/** Precondition: array.length > 0.

* @return the largest integer in array

*/

private int max(int[] array)

{ /* implementation not shown */ }

/** @return num1 if num1 >= num2; otherwise return num2

*/

public int max(int num1, int num2)

{ /* implementation not shown */ }

Suppose matrix has a current value of

2 1 4 8

6 0 3 9

5 7 7 6

1 2 3 4

What will be returned by the following method call in the same class?

max(max(matrix[2]), max(matrix[3]))

(A) 9

(B) 8

(C) 7

(D) 4

(E) Compile-time error. No value returned.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 396 — #410

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
396 Practice Exams

Questions 25–26 are based on the following class declaration:

public class AutoPart

{

private String description;

private int partNum;

private double price;

public AutoPart(String desc, int pNum, double aPrice)

{ /* implementation not shown */ }

public String getDescription()

{ return description; }

public int getPartNum()

{ return partNum; }

public double getPrice()

{ return price; }

//Other methods are not shown.

//There is no compareTo method.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 397 — #411

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 397

25. This question refers to the findCheapest method below, which occurs in a class
that has an array of AutoPart as one of its private data fields:

private AutoPart[] allParts;

The findCheapest method examines an array of AutoPart and returns the part
number of the AutoPart with the lowest price whose description matches the
partDescriptionparameter. For example, several of the AutoPart elements may
have "headlight" as their description field. Different headlights will differ in
both price and part number. If the partDescription parameter is "headlight",
then findCheapestwill return the part number of the cheapest headlight.

/** Precondition: allParts contains at least one element whose

* description matches partDescription.

* @param partDescription the description of a part in allParts

* @return the part number of the cheapest AutoPart

* whose description matches partDescription

*/

public int findCheapest(String partDescription)

{

AutoPart part = null; //AutoPart with lowest price so far

double min = LARGE_VALUE; //larger than any valid price

for (AutoPart p : allParts)

{

/* more code */

}

return part.getPartNum();

}

Which of the following replacements for /* more code */ will find the correct
part number?

I if (p.getPrice() < min)

{

min = p.getPrice();

part = p;

}

II if (p.getDescription().equals(partDescription))

if (p.getPrice() < min)

{

min = p.getPrice();

part = p;

}

III if (p.getDescription().equals(partDescription))

if (p.getPrice() < min)

return p.getPartNum();

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 398 — #412

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
398 Practice Exams

26. Consider the following method:

/** Precondition: st1 and st2 are distinct String objects.

* @return smaller of st1 and st2

*/

public static String min(String st1, String st2)

{

if (st1.compareTo(st2) < 0)

return st1;

else

return st2;

}

A method in the same class has these declarations:

AutoPart p1 = new AutoPart(< suitable values >);
AutoPart p2 = new AutoPart(< suitable values >);

Which of the following statements will cause an error?

I System.out.println(min(p1.getDescription(),

p2.getDescription()));

II System.out.println(min(((String) p1).getDescription(),

((String) p2).getDescription()));

III System.out.println(min(p1, p2));

(A) None
(B) I only
(C) II only
(D) III only
(E) II and III only

27. This question is based on the following declarations:

String strA = "CARROT", strB = "Carrot", strC = "car";

Given that all uppercase letters precede all lowercase letters when considering
alphabetical order, which is true?
(A) strA.compareTo(strB) < 0 && strB.compareTo(strC) > 0

(B) strC.compareTo(strB) < 0 && strB.compareTo(strA) < 0

(C) strB.compareTo(strC) < 0 && strB.compareTo(strA) > 0

(D) !(strA.compareTo(strB) == 0) && strB.compareTo(strA) < 0

(E) !(strA.compareTo(strB) == 0) && strC.compareTo(strB) < 0

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 399 — #413

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 399

28. A programmer has a file of names. She is designing a program that sends junk
mail letters to everyone on the list. To make the letters sound personal and
friendly, she will extract each person’s first name from the name string. She plans
to create a parallel file of first names only. For example,

fullName firstName

Ms. Anjali DeSouza Anjali

Dr. John Roufaiel John

Mrs. Mathilda Concia Mathilda

Here is a method intended to extract the first name from a full name string.

/** Precondition:
* - fullName starts with a title followed by a period.

* - A single space separates the title, first name, and last name.

* @param fullName a string containing a title, period, blank,

* and last name

* @return the first name only in fullName

*/

public static String getFirstName(String fullName)

{

final String BLANK = " ";

String temp, firstName;

/* code to extract first name */

return firstName;

}

Which represents correct /* code to extract first name */?

I int k = fullName.indexOf(BLANK);

temp = fullName.substring(k + 1);

k = temp.indexOf(BLANK);

firstName = temp.substring(0, k);

II int k = fullName.indexOf(BLANK);

firstName = fullName.substring(k + 1);

k = firstName.indexOf(BLANK);

firstName = firstName.substring(0, k);

III int firstBlank = fullName.indexOf(BLANK);

int secondBlank = fullName.indexOf(BLANK);

firstName = fullName.substring(firstBlank + 1, secondBlank + 1);

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 400 — #414

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
400 Practice Exams

Questions 29–31 refer to the ThreeDigitInteger and ThreeDigitCode classes below.

public class ThreeDigitInteger

{

private int hundredsDigit;

private int tensDigit;

private int onesDigit;

private int value;

/** @param aValue a 3-digit int */

public ThreeDigitInteger(int aValue)

{ /* implementation not shown */ }

/** @return the sum of digits for this ThreeDigitInteger */

public int digitSum()

{ /* implementation not shown */ }

/** @return the sum of the hundreds digit and tens digit */

public int twoDigitSum()

{ /* implementation not shown */ }

//Other methods are not shown.

}

public class ThreeDigitCode extends ThreeDigitInteger

{

private boolean isValid;

/** @param aValue a 3-digit int */

public ThreeDigitCode(int aValue)

{ /* implementation code */ }

/** A ThreeDigitCode is valid if and only if the remainder when

* the sum of the hundreds and tens digits is divided by 7 equals

* the ones digit. Thus 362 is valid while 364 is not.

* @return true if ThreeDigitCode is valid, false otherwise

*/

public boolean isValid()

{ /* implementation not shown */ }

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 401 — #415

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 401

29. Which is a true statement about the classes shown?
(A) The ThreeDigitInteger class inherits the isValid method from the class

ThreeDigitCode.
(B) The ThreeDigitCode class inherits all of the public accessor methods from

the ThreeDigitInteger class.
(C) The ThreeDigitCode class inherits the constructor from the class

ThreeDigitInteger.
(D) The ThreeDigitCode class can directly access all the private variables of the

ThreeDigitInteger class.
(E) The ThreeDigitInteger class can access the isValid instance variable of

the ThreeDigitCode class.

30. Which is correct /* implementation code */ for the ThreeDigitCodeconstructor?

I super(value);

isValid = isValid();

II super(value, valid);

III super(value);

isValid = twoDigitSum() % 7 == onesDigit;

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

31. Refer to these declarations in a client program:

ThreeDigitInteger code = new ThreeDigitCode(127);

ThreeDigitInteger num = new ThreeDigitInteger(456);

Which of the following subsequent tests will not cause an error?

I if (code.isValid())

...

II if (num.isValid())

...

III if (((ThreeDigitCode) code).isValid())

...

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 402 — #416

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
402 Practice Exams

32. Consider the following hierarchy of classes:

Bird

Parrot

Parakeet

Owl

Assuming that each class has a valid default constructor, which of the following
declarations in a client program are correct?

I Bird b1 = new Parrot();

Bird b2 = new Parakeet();

Bird b3 = new Owl();

II Parakeet p = new Parrot();

Owl o = new Bird();

III Parakeet p = new Bird();

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

33. Consider an array arr and a list list that is an ArrayList<String>. Both arr

and list are initialized with string values. Which of the following code segments
correctly appends all the strings in arr to the end of list?

I for (String s : arr)

list.add(s);

II for (String s : arr)

list.add(list.size(), s);

III for (int i = 0; i < arr.length; i++)

list.add(arr[i]);

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 403 — #417

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 403

34. Refer to the nextIntInRangemethod below:

/** @return a random integer in the range low to high, inclusive */

public int nextIntInRange(int low, int high)

{

return /* expression */

}

Which /* expression */ will always return a value that satisfies the postcondi-
tion?

(A) (int) (Math.random() * high) + low;

(B) (int) (Math.random() * (high - low)) + low;

(C) (int) (Math.random() * (high - low + 1)) + low;

(D) (int) (Math.random() * (high + low)) + low;

(E) (int) (Math.random() * (high + low - 1)) + low;

35. Consider the following mergeSort method and the private instance variable a

both in the same Sorter class:

private int[] a;

/** Sorts a[first] to a[last] in increasing order using mergesort. */

public void mergeSort(int first, int last)

{

if (first != last)

{

int mid = (first + last) / 2;

mergeSort(first, mid);

mergeSort(mid + 1, last);

merge(first, mid, last);

}

}

Method mergeSort calls method merge, which has this header:

/** Merge a[lb] to a[mi] and a[mi+1] to a[ub].

* Precondition: a[lb] to a[mi] and a[mi+1] to a[ub] both

* sorted in increasing order.

*/

private void merge(int lb, int mi, int ub)

If the first call to mergeSort is mergeSort(0,3), how many further calls will there
be to mergeSort before an array b[0]...b[3] is sorted?
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 404 — #418

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
404 Practice Exams

36. A large hospital maintains a list of patients’ records in no particular order. To
find the record of a given patient, which represents the most efficient method
that will work?
(A) Do a sequential search on the name field of the records.
(B) Do a binary search on the name field of the records.
(C) Use insertion sort to sort the records alphabetically by name; then do a

sequential search on the name field of the records.
(D) Use mergesort to sort the records alphabetically by name; then do a sequen-

tial search on the name field of the records.
(E) Use mergesort to sort the records alphabetically by name; then do a binary

search on the name field of the records.

Use the following information for Questions 37 and 38.

Here is a diagram that shows the relationship between some of the classes that will be
used in a program to draw a banner with block letters.

BlockLetter

<<abstract>>

LetterA LetterB LetterC LetterZ

Banner

The diagram shows that the Banner class uses BlockLetter objects, and that the
BlockLetter class has 26 subclasses, representing block letters from A to Z.

The BlockLetter class has an abstract draw method

public abstract void draw();

Each of the subclasses shown implements the draw method in a unique way to draw its
particular letter. The Banner class gets an array of BlockLetter and has a method to
draw all the letters in this array.

Here is a partial implementation of the Banner class:

public class Banner

{

private BlockLetter[] letters;

private int numLetters;

/** Constructor. Gets the letters for the Banner. */

public Banner()

{

numLetters = < some integer read from user input >
letters = getLetters();

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 405 — #419

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 405

/** @return an array of block letters */

public BlockLetter[] getLetters()

{

String letter;

letters = new BlockLetter[numLetters];

for (int i = 0; i < numLetters; i++)

{

< read in capital letter >

if (letter.equals("A"))

letters[i] = new LetterA();

else if (letter.equals("B"))

letters[i] = new LetterB();

... //similar code for C through Y

else

letters[i] = new LetterZ();

}

return letters;

}

/** Draw all the letters in the Banner. */

public void drawLetters()

{

for (BlockLetter letter : letters)

letter.draw();

}

//Other methods are not shown.

}

37. You are given the information that BlockLetter is an abstract class that is used
in the program. Which of the following can you conclude about the class?

I All of its methods must be abstract.

II It must have at least one subclass.

III No instances of BlockLetter can be created.

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

38. Which is a true statement about method drawLetters?
(A) It is an overloaded method in the Banner class.
(B) It is an overridden method in the Banner class.
(C) It uses polymorphism to draw the correct letters.
(D) It will cause a compile-time error because draw is not implemented in the

BlockLetter class.
(E) It will cause a run-time error because draw is not implemented in the

BlockLetter class.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 406 — #420

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
406 Practice Exams

39. Consider method1 and method2 below, which are identical except for the second
last line of code. Each method returns a new matrix based on the input matrix
mat.

public static int[][] method1(int[][] mat)

{

int numRows = mat.length;

int numCols = mat[0].length;

int[][] newMat = new int[numRows][numCols];

for (int row = 0; row < numRows; row++)

for (int col = 0; col < numCols; col++)

newMat[numRows - row -1][col] = mat[row][col];

return newMat;

}

public static int[][] method2(int[][] mat)

{

int numRows = mat.length;

int numCols = mat[0].length;

int[][] newMat = new int[numRows][numCols];

for (int row = 0; row < numRows; row++)

for (int col = 0; col < numCols; col++)

newMat[row][col] = mat[numRows - row - 1][col];

return newMat;

}

Suppose the same input matrix is used for method1 and method2, and the output
for method1 is matrix1 while the output for method2 is matrix2. Which is a true
statement about matrix1 and matrix2?
(A) matrix1 is identical to matrix2.
(B) The rows of matrix1 are the columns of matrix2.
(C) matrix1 is a reflection of matrix2 across a vertical line on the edge of either

matrix.
(D) matrix1 is a reflection of matrix2 across a horizontal line on the bottom or

top edge of either matrix.
(E) The rows of matrix1 are the rows of matrix2 in reverse order.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 407 — #421

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 407

40. Consider an ArrayList cards of Card objects that needs to be shuffled. The
following algorithm is used for shuffling:

Create a temporary ArrayList<Card>

Do the following cards.size() number of times
− Generate a random integer r that can index any card in cards

− Remove the card found at position r in cards and add it to the end
of the temporary ArrayList

Set cards to the temporary ArrayList

Here is the method that implements this algorithm.

Line 1: public void shuffle()

Line 2: {

Line 3: int size = cards.size();

Line 4: List<Card> temp = new ArrayList<Card>();

Line 5: for (int j = 1; j < size; j++)

Line 6: {

Line 7: int index = (int) (Math.random() * size);

Line 8: temp.add(cards.get(index));

Line 9: }

Line 10: cards = temp;

Line 11: }

The method does not work as intended. Which of the following changes to
shuffle would ensure that it works correctly?

I Replace Line 5 with

for (int j = 0; j < size; j++)

II Replace Line 7 with

int index = (int) (Math.random() * cards.size());

III Replace Line 8 with

temp.add(cards.remove(index));

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

END OF SECTION I

✐

✐

“ap” — 2014/11/4 — 11:10 — page 408 — #422

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
408 Practice Exams

COMPUTER SCIENCE

SECTION II

Time—1 hour and 45 minutes
Number of questions—4
Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT
PROGRAM SEGMENTS ARE TO BE WRITTEN IN Java.

Write your answers in pencil only in the booklet provided.

Notes:

• Assume that the classes in the Quick Reference have been imported where
needed.

• Unless otherwise stated, assume that parameters in method calls are not
null and that methods are called only when their preconditions are satis-
fied.

• In writing solutions for each question, you may use any of the accessible
methods that are listed in classes defined in that question. Writing signifi-
cant amounts of code that can be replaced by a call to one of these methods
may not receive full credit.

1. Consider a system for processing names and addresses from a mailing list. A
Recipients class will be used as part of this system. The lines in the mailing list
are stored in an ArrayList<String>, a private instance variable in the Recipients
class. The blank line that separates recipients in the mailing list is stored as the
empty string in this list, and the final element in the list is an empty string.
A portion of the mailing list is shown below, with the corresponding part of the
ArrayList.

Mr. J. Adams

6 Rose St.

Ithaca, NY 14850

Jack S. Smith

12 Posy Way

Suite 201

Glendale, CA 91203

Ms. M.K. Delgado

2 River Dr.

New York, NY 10013

...

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 409 — #423

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 409

0 1 2 3 4

"Mr. J. Adams" "6 Rose St." "Ithaca, NY 14850" "" "Jack S. Smith"

5 6 7 8 9

"12 Posy Way" "Suite #201" "Glendale, CA 91023" "" "Ms. M.K. Delgado"

10 11 12

"2 River Dr." "New York, NY 10013" "" ...

The Recipients class that processes this data is shown below.

public class Recipients

{

/** The list of lines in the mailing list */

private List<String> lines;

/** Constructor. Fill lines with mailing list data.

* Postcondition:
* - Each element in lines is one line of the mailing list.

* - Lines appear in the list in the same order

* that they appear in the mailing list.

* - Blank line separators in the mailing list are stored

* as empty strings.

*/

public Recipients()

{ /* implementation not shown */ }

/** Postcondition: Returns the city contained in the cityZip

* string of an address.

* @param cityZip contains the city, state, and zipcode

* line of an address

* @return the city substring contained in cityZip

*/

public String extractCity(String cityZip)

{ /* to be implemented in part (a) */ }

/** Precondition: The recipient name is the first line of each

* label on the mailing list.

* Postcondition: Prints a list of recipient names to console,

* one per line.

*/

public void printNames()

{ /* to be implemented in part (b) */ }

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 410 — #424

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
410 Practice Exams

/** Postcondition: Returns the address of the recipient with

* the specified name.

* @param name a name in the lines ArrayList

* @return the address of the recipient with the given name

*/

public String getAddress(String name)

{/* to be implemented in part (c) */}

//Other methods are not shown.

}

(a) Write the extractCity method of the Recipients class. In the cityZip

parameter the city is followed by a comma, then one blank space, then
two capital letters for a state abbreviation, then a space and 5-digit zip
code. For example, if cityZip is "Ithaca, NY 14850", the method call
extractCity(cityZip) should return "Ithaca".

Information repeated from the beginning of the question

public class Recipients

private List<String> lines

public Recipients()

public String extractCity(String cityZip)

public void printNames()

public String getAddress(String name)

Complete method extractCity below.

/** Postcondition: Returns the city contained in the cityZip

* string of an address.

* @param cityZip contains the city, state, and zipcode

* line of an address

* @return the city substring contained in cityZip

*/

public String extractCity(String cityZip)

(b) Write the printNamesmethod of the Recipients class. Method printNames

prints the names of all recipients to the console, one per line. For the sample
part of the mailing list shown at the beginning of the question, the output
for printNames would be:

Mr. J. Adams

Jack S. Smith

Ms. M.K. Delgado

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 411 — #425

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 411

Complete method printNames below.

/** Precondition: The recipient name is the first line of each

* label on the mailing list.

* Postcondition: Prints a list of recipient names to console,

* one per line.

*/

public void printNames()

(c) Write the getAddressmethod of the Recipients class. This method should
return a string that contains only the address of the corresponding name

parameter. For example, if name is "Jack S. Smith", a string containing the
three subsequent lines of his address should be returned. This string should
contain line breaks in appropriate places, including after the last line of the
address. This ensures that the address will have the proper address format
when printed by a client class.

Complete method getAddress below.

/** Postcondition: Returns the address of the recipient with

* the specified name.

* @param name a name in the lines ArrayList

* @return the address of the recipient with the given name

*/

public String getAddress(String name)

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 412 — #426

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
412 Practice Exams

2. A WordSet, whose partial implementation is shown in the class declaration below,
stores a set of String objects in no particular order and contains no duplicates.
Each word is a sequence of capital letters only.

public class WordSet

{

/** Constructor initializes set to empty. */

public WordSet()

{ /* implementation not shown */ }

/** @return the number of words in set */

public int size()

{ /* implementation not shown */ }

/** Adds word to set (no duplicates).

* @param word the word to be added

*/

public void insert(String word)

{ /* implementation not shown */ }

/** Removes word from set if present, else does nothing.

* @param word the word to be removed

*/

public void remove(String word)

{ /* implementation not shown */ }

/** Returns kth word in alphabetical order, where 1 <= k <= size().

* @param k position of word to be returned

* @return the kth word

*/

public String findkth(int k)

{ /* implementation not shown */ }

/** @return true if set contains word, false otherwise */

public boolean contains(String word)

{ /* implementation not shown */ }

//Other instance variables, constructors, and methods are not shown.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 413 — #427

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 413

The findkth method returns the kth word in alphabetical order in the set, even
though the implementation of WordSet may not be sorted. The number k
ranges from 1 (corresponding to first in alphabetical order) to N , where N is
the number of words in the set. For example, if WordSet s stores the words
{"GRAPE", "PEAR", "FIG", "APPLE"}, here are the values when s.findkth(k)

is called.

k values of s.findkth(k)

1 APPLE

2 FIG

3 GRAPE

4 PEAR

(a) Write a client method countA that returns the number of words in WordSet

s that begin with the letter “A.” In writing countA, you may call any of the
methods of the WordSet class. Assume that the methods work as specified.

Complete method countA below.

/** @param s the current WordSet

* @return the number of words in s that begin with "A"

*/

public static int countA(WordSet s)

(b) Write a client method removeA that removes all words that begin with “A.”
If there are no such words in s, then removeA does nothing. In writing
removeA, you may call method countA specified in part (a). Assume that
countA works as specified, regardless of what you wrote in part (a).

Information repeated from the beginning of the question

public class WordSet

public WordSet()

public int size()

public void insert(String word)

public void remove(String word)

public String findkth(int k)

public boolean contains(String word)

Complete method removeA below:

/** @param s the current WordSet

* Postcondition: WordSet s contains no words that begin with

* "A", but is otherwise unchanged.

*/

public static void removeA(WordSet s)

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 414 — #428

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
414 Practice Exams

(c) Write a client method commonElements that returns the WordSet containing
just those elements occurring in both of its WordSet parameters.

For example, if s1 is {"BE", "NOT", "AFRAID"} and s2 is {"TO", "BE",

"OR", "NOT"}, then commonElements(s1, s2) should return the WordSet

{"BE", "NOT"}. (If you are familiar with mathematical set theory,
commonElements returns the intersection of s1 and s2.)

Complete method commonElements below.

/** @param s1 the first given set

* @param s2 the second given set

* @return the WordSet containing only the elements that occur

* in both s1 and s2

*/

public static WordSet commonElements(WordSet s1, WordSet s2)

3. A puzzle-solving competition is held in a large hall with a two-dimensional
arrangement of contestants. Each square below represents one contestant.

0 1 2 CONTESTANTS_PER_ROW-1

0 · · ·

1 · · ·

...
...

...
...

NUM_ROWS-1 · · ·

Since contestants may be moved around during the competition, each contestant
keeps track of his or her location, which is the row number and column number.
A Location object is represented by the class below.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 415 — #429

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 415

public class Location

{

private int rowNumber;

private int colNumber;

/** Create a new Location.

* @param row the row number

* @param col the column number */

public Location (int row, int col)

{

rowNumber = row;

colNumber = col;

}

/** @return the row number of this Location */

public int getRowNumber()

{ return rowNumber; }

/** @return the column number of this Location */

public int getColNumber()

{ return colNumber; }

public String toString()

{ /* implementation not shown */}

}

A contestant in the contest can be represented by a Contestant class, whose par-
tial implementation is shown below.

public class Contestant

{

private String name;

private int score;

private Location loc;

/** @return the name of this contestant */

public String getName()

{ return name; }

/** @return the score of this contestant */

public int getScore()

{ return score; }

/** @return the location of this contestant */

public Location getLocation()

{ return loc; }

/** Changes the location of this contestant to a new row

* and column.

* @param newRow the new row

* @param newCol the new column */

public void updateLocation(int newRow, int newCol)

{ /* to be implemented in part (a) */ }

//Constructor and other methods are not shown.

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 416 — #430

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
416 Practice Exams

(a) Write the Contestant method updateLocation, which changes the contes-
tant’s location to have the new row and column numbers.

Complete method updateLocation below.

/** Changes the location of this contestant to a new row

* and column.

* @param newRow the new row

* @param newCol the new column

*/

public void updateLocation(int newRow, int newCol)

In parts (b) and (c) you will write two methods of a ContestOrganizer class,
whose partial implementation is shown below. A contest organizer keeps track
of contestants in a two-dimensional array.

public class ContestOrganizer

{

/** the number of rows of contestants */

public static final int NUM_ROWS = < some integer >;

/** the number of columns of contestants */

public static final int CONTESTANTS_PER_ROW = < some integer >;

/** The two-dimensional array of contestants */

private Contestant[][] contestants;

/** Sorts arr in increasing order by score.

* Postcondition:
* - arr sorted in increasing order by score.

* - Location of each contestant correctly updated such that

* column number matches contestant’s position in arr.

* @param arr the array to be sorted

*/

private void sort(Contestant[] arr)

{ /* implementation not shown */ }

/** Sorts each row of contestants into increasing order by score.

* Postcondition: Contestant with highest score in row[k] is

* in the rightmost column of row[k], 0<=k<NUM_ROWS.

*/

public void sortAllRows()

{ /* to be implemented in part(b) */ }

/** Returns name of contestant with highest score.

* Precondition:
* - Contestants have not been sorted by score.

* - Top score is unique.

* - Only one contestant has the highest score.

* @return name of contestant with highest score

*/

public String findWinnerName()

{ /* to be implemented in part(c) */ }

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 417 — #431

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 417

(b) Write the ContestOrganizer method sortAllRows. This method should
sort the contestants by score in each row, from lowest to highest.
Example: Suppose contestants are as shown below:

0 1 2

John Mary Jay

0 160 185 22

(0,0) (0,1) (0,2)

Harry Ted Joan

1 190 100 88

(1,0) (1,1) (1,2)

Here is what contestants will be after a call to sortAllRows:

0 1 2

Jay John Mary

0 22 160 185

(0,0) (0,1) (0,2)

Joan Ted Harry

1 88 100 190

(1,0) (1,1) (1,2)

In writing sortAllRows, your method must use the ContestantOrganizer

method sort. You may assume that sort works as specified.

Complete method sortAllRows below.

/** Sorts each row of contestants into increasing order by score.

* Postcondition: Contestant with highest score in row[k] is

* in the rightmost column of row[k], 0<=k<NUM_ROWS.

*/

public void sortAllRows()

(c) Write the Contestant method findWinnerName, which returns the name of
the contestant with the highest score. For example, if the contestants are as
shown above, a call to findWinnerName should return "Harry".
When writing findWinnerName, you should assume that the contestants
have not yet been sorted by score, and that there is only one contestant
with the highest score. In writing your solution, you must use method
sortAllRows. You may assume that sortAllRows works as specified, re-
gardless of what you wrote in part (b).

Complete method findWinnerName below.

/** Returns name of contestant with highest score.

* Precondition:
* - Contestants have not been sorted by score.

* - Top score is unique.

* - Only one contestant has the highest score.

* @return name of contestant with highest score

*/

public String findWinnerName()

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 418 — #432

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
418 Practice Exams

4. Consider the hierarchy of classes shown for a small part of a bird sanctuary.

Bird

<<abstract>>

Owl

<<abstract>>

SnowyOwl ElfOwl

Notice that an Owl is-a Bird, a SnowyOwl is-a Owl, and an ElfOwl is-a Owl.
The class Bird is specified as an abstract class as shown in the following implemen-
tation. Each Bird has a name and a noise that are specified when it is constructed.

public abstract class Bird

{

private String name;

private String noise;

/** Constructor for objects of class Bird */

public Bird(String birdName, String birdNoise)

{

name = birdName;

noise = birdNoise;

}

public String getName()

{ return name; }

public String getNoise()

{ return noise; }

public abstract String getFood();

}

An Owl is a Bird whose noise is "hoot". The food it eats depends on the type of
Owl, which means that getFood cannot be implemented in the Owl class. Here is
the implementation for the Owl class.

public abstract class Owl extends Bird

{

//Constructor

public Owl(String owlName)

{ super(owlName, "hoot"); }

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 419 — #433

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Practice Exam Two 419

(a) A SnowyOwl is an Owl whose name is always "Snowy owl". A SnowyOwl will
randomly eat a hare, a lemming, or a small bird (depending on what’s avail-
able!), where each type of food is equally likely. The SnowyOwl class should
use a random number to determine which food the SnowyOwl will eat. As-
suming that the Owl class has been correctly defined, and given the class hier-
archy shown previously, write a complete declaration of the class SnowyOwl,
including implementation of its constructor and method(s).

(b) Consider the following partial declaration of class BirdSanctuary.

public class BirdSanctuary

{

/** The list of birds */

private Bird[] birdList;

/** Precondition: Each Bird in birdList has a getFood

* method implemented for it.

* Postcondition: For each Bird in the birdList array, its name

* followed by the result of a call to its getFood

* method has been printed, one line per Bird.

*/

public void allEat()

{ /* to be implemented in this part */ }

//The constructor and other methods are not shown.

}

Write the BirdSanctuarymethod allEat. For each Bird in BirdSanctuary,
allEat prints a line with the name of the Bird followed by the result of a
call to its getFood method, one line per Bird.

Complete method allEat below.

/** Precondition: Each Bird in birdList has a getFood

* method implemented for it.

* Postcondition: For each Bird in the birdList array, its name

* followed by the result of a call to its getFood

* method has been printed, one line per Bird.

*/

public void allEat()

END OF EXAMINATION

✐

✐

“ap” — 2014/11/4 — 11:10 — page 420 — #434

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
420 Practice Exams

ANSWER KEY (Section I)

1. C

2. C

3. D

4. C

5. C

6. E

7. A

8. D

9. B

10. E

11. C

12. A

13. B

14. C

15. B

16. C

17. D

18. C

19. E

20. A

21. B

22. A

23. D

24. C

25. B

26. E

27. C

28. D

29. B

30. A

31. C

32. A

33. E

34. C

35. E

36. A

37. D

38. C

39. A

40. E

ANSWERS EXPLAINED

Section I

1. (C) Testing a program thoroughly does not prove that a program is correct. For
a large program, it is generally impossible to test every possible set of input data.

2. (C) The private instance variable hourlyWagemust be incremented by amt. Elim-
inate choice E, which doesn’t increment hourlyWage; it simply replaces it by amt.
Choice D is wrong because you can’t use a method call as the left-hand side of an
assignment. Choices A and B are wrong because the incrementWage method is
void and should not return a value.

3. (D) The value of the boolean instance variable isUnionMember must be changed
to the opposite of what it currently is. Segments I and II both achieve this. Note
that !true has a value of false and !false a value of true. Segment III fails to
do what’s required if the current value of isUnionMember is false.

4. (C) computePay is a client method and, therefore, cannot access the private vari-
ables of the class. This eliminates choices A and D. The method getHourlyWage()

must be accessed with the dot member construct; thus, choice B is wrong, and
choice C is correct. Choice E is way off base—hours is not part of the Worker

class, so w.hours is meaningless.

5. (C) If s.length() < 4 for all strings in wordList, then SHORT WORDwill be printed
on each pass through the for loop. Since there are wordList.size() passes
through the loop, the maximum number of times that SHORT WORD can be printed
is wordList.size().

✐

✐

“ap” — 2014/11/4 — 11:10 — page 421 — #435

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answers Explained 421

6. (E) mystery(4) = 3 ∗mystery(3)

= 3 ∗ 3 ∗mystery(2)

= 3 ∗ 3 ∗ 3 ∗mystery(1)

= 3 ∗ 3 ∗ 3 ∗ 3

= 81

7. (A) The declaration of the colors array makes the following assignments:
colors[0] = "red", colors[1] = "green", and colors[2] = "black". The
loop in segment I adds these values to colorList in the correct order. Segment
II fails because colors is an array and therefore can’t use the get method. The
code also confuses the lists. Segment III, in its first pass through the loop, at-
tempts to add colors[2] to index position 2 of colorList. This will cause an
IndexOutOfBoundsException to be thrown, since index positions 0 and 1 do not
yet exist!

8. (D) Mergesort repeatedly splits an array of n elements in half until there are n
arrays containing one element each. Now adjacent arrays are successively merged
until there is a single merged, sorted array. A binary search repeatedly splits an
array into two, narrowing the region that may contain the key. Insertion sort,
however, does no array splitting. It takes elements one at a time and finds their
insertion point in the sorted piece of the array. Elements are shifted to allow
correct insertion of each element. Even though this algorithm maintains the
array in two parts—a sorted part and yet-to-be-sorted part—this is not a divide-
and-conquer approach.

9. (B) A static variable is shared by all instances of the class. “Static” means that
there will be just one memory slot allocated, no matter how many Insects
are constructed. All instances of Insect access the same information stored
in that slot. When an Insect is created, it will get tagged with the current
value of nextAvailableID for that memory slot, which will then be incremented
for the next Insect created. All of the other variables—age, idNum, position,
direction—are specific to one instance of Insect and should therefore be pri-
vate instance variables in the class.

10. (E) A new Addressobject must be created, to be used as the Addressparameter in
the Customer constructor. To do this correctly requires the keyword new preced-
ing the Address constructor. Segment II omits new and does not use the Address

constructor correctly. (In fact, it inserts a new String object in the Address slot
of the Customer constructor.)

11. (C) The algorithm used in method locate is a sequential search, which may
have to examine all the objects to find the matching one. A binary search, which
repeatedly discards a chunk of the array that does not contain the key, is more
efficient. However, it can only be used if the values being examined—in this
case customer ID numbers—are sorted. Note that it doesn’t help to have the
array sorted by name or phone number since the algorithm doesn’t look at these
values.

12. (A) The values of k are consecutively 4, 3, 2, and 1. The values of randIndex
are consecutively 3, 2, 0, and 1. Thus, the sequence of swaps and corresponding
states of arr will be:

✐

✐

“ap” — 2014/11/4 — 11:10 — page 422 — #436

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
422 Practice Exams

swap arr[4] and arr[3] 1 2 3 5 4

swap arr[3] and arr[2] 1 2 5 3 4

swap arr[2] and arr[0] 5 2 1 3 4

swap arr[1] and arr[1] 5 2 1 3 4

13. (B) The remove method of ArrayList removes the indicated element, shifts the
remaining elements down one slot (i.e., it does not leave gaps in the list), and
adjusts the size of the list. Consider the list in choice B. The index values are
shown:

The cat cat sat on the mat mat

0 1 2 3 4 5 6 7

After the first occurrence of cat has been removed:

The cat sat on the mat mat

0 1 2 3 4 5 6

The value of i, which was 1 when cat was removed, has now been incremented
to 2 in the for loop. This means that the word to be considered next is sat.
The second occurrence of cat has been missed. Thus, the given code will fail
whenever occurrences of the word to be removed are consecutive. You fix it by
not allowing the index to increment when a removal occurs:

int i = 0;

while (i < wordList.size())

{

if ((wordList.get(i)).equals(word))

wordList.remove(i);

else

i++;

}

14. (C) You cannot use a for-each loop to replace elements, only to access (as in
segment I) or modify using a mutator method (as in segment II). Note that seg-
ment III will compile and execute, but won’t replace the clocks in allClocks as
intended.

15. (B) When r is 0, c goes from 0 to 0, and just one element, mat[0][0], will be
printed. When r is 1, c goes from 0 to 1, and two elements, mat[1][0] and
mat[1][1], will be printed, and so on. When r is 3, all four elements of row 3

will be printed.

16. (C) To return the number of elements in the set for Method One requires no
more than returning the number of elements in the array. For Method Two,
however, the number of cells that contain true must be counted, which requires
a test for each of the MAX values. Note that searching for a target value in the
set is more efficient for Method Two. For example, to test whether 2 is in the
set, simply check if a[2] == true. In Method One, a sequential search must be
done, which is less efficient. To print all the elements in Method One, simply
loop over the known number of elements and print. Method Two is less efficient
because the whole array must be examined: Each cell must be tested for true
before printing.

17. (D) An ArithmeticExceptionwill be thrown at run time. Note that if N were of
type double, no exception would be thrown. The variable sum would be assigned
the value Infinity, and the error would only be detected in the output.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 423 — #437

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answers Explained 423

18. (C) An interface should provide method declarations only. No code! Note that
the methods are automatically public and abstract, so there is no need to specify
this explicitly.

19. (E) The first value of pos is 2, the index of the first occurrence of "car" in "a

carrot and car". Then s gets assigned "carrot and car" and pos is now 0.
Since pos is not advanced, it is stuck with a value of 0 and the method has an infi-
nite loop. Notice that you can fix this problem by changing s=s.substring(pos);
to s=s.substring(pos+1);

20. (A) The correct diagram uses two up arrows to show that a Car is-a Vehicle and a
Truck is-a Vehicle (inheritance relationship). The two down arrows indicate that
a Car has-a AirBag and a Truck has-a AirBag (composition relationship). In each
of the incorrect choices, at least one of the relationships does not make sense. For
example, in choice B a Vehicle has-a Truck, and in choice E an AirBag is-a Car.

21. (B) The postcondition should be a true assertion about the major action of the
segment. The segment overwrites the elements of array a with the nonnegative
elements of a. Then n is adjusted so that now the array a[0]...a[n-1] contains
just nonnegative integers. Note that even though choice E is a correct assertion
about the program segment, it is not a good postcondition because it doesn’t
describe the main modification to array a (namely all negative integers have been
removed).

22. (A) Note the order of precedence for the expressions involved: (1) parentheses,
(2) !, (3) <, (4) ==, (5) &&, (6) ||. This means that a < c, a < b, and !(a == b) will
all be evaluated before || and && are considered. The given expression then boils
down to value1 || (value2 && value3), since && has higher precedence than
||. Notice that if value1 is true, the whole expression is true since (true ||

any) evaluates to true. Thus, a < c will guarantee that the expression evaluates
to true. None of the other conditions will guarantee an outcome of true. For
example, suppose a < b (choice B). If a == c, then the whole expression will be
false because you get F || F.

23. (D) Test data should always include a value from each range in addition to all
boundary values. The given program should also handle the cases in which
weights over 20 pounds or any negative weights are entered. Note that choice
E contains redundant data. There is no new information to be gained in testing
two weights from the same range—both 3 and 4 pounds, for example.

24. (C) The max methods shown are overloaded methods (same name but differ-
ent parameter types). In the given statement, matrix[2] and matrix[3] refer to
row 2 and row 3 of the matrix, respectively, each of which is an array of int.
max(matrix[2]) is the largest element in row 2, namely 7, and max(matrix[3])

is the largest element in row 3, namely 4. The given statement is therefore equiv-
alent to max(7,4), which will return 7.

25. (B) Segment II correctly checks that the part descriptions match and keeps track
of the current part with minimum price. If this is not done, the part whose
number must be returned will be lost. Segment I is incorrect because it doesn’t
check that partDescription matches the description of the current part being
examined in the array. Thus, it simply finds the AutoPart with the lowest price,
which is not what was required. Segment III incorrectly returns the part number
of the first part it finds with a matching description.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 424 — #438

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
424 Practice Exams

26. (E) Statement I is fine: The parameters are String objects and can be compared.
Statement II will throw a ClassCastException because an AutoPart cannot be
cast to a String. Statement III will fail because p1 and p2 are not String objects
and min applies to strings. Also, the AutoPart class as currently written does not
have a compareTo method, so AutoPart objects cannot be compared.

27. (C) Ordering of strings involves a character-by-character comparison start-
ing with the leftmost character of each string. Thus, strA precedes strB

(since "A" precedes "a") or strA.compareTo(strB) < 0. This eliminates
choices B and D. Eliminate choices A and E since strB precedes strC (be-
cause "C" precedes "c") and therefore strB.compareTo(strC) < 0. Note that
string1.compareTo(string2) == 0 if and only if string1 and string2 are equal
strings.

28. (D) Suppose fullName is Dr. John Roufaiel. In segment I the expres-
sion fullName.indexOf(BLANK) returns 3. Then temp gets assigned the
value of fullName.substring(4), which is John Roufaiel. Next k gets as-
signed the value temp.indexOf(BLANK), namely 4, and firstName gets assigned
temp.substring(0, 4), which is all the characters from 0 to 3 inclusive, namely
John. Note that segment II works the same way, except firstName gets assigned
John Roufaiel and then reassigned John. This is not good style, since a variable
name should document its contents as precisely as possible. Still, the code works.
Segment III fails because indexOf returns the first occurrence of its String param-
eter. Thus, firstBlank and secondBlank will both contain the same value, 3.

29. (B) ThreeDigitCode is a subclass of ThreeDigitInteger and therefore inherits all
the public methods of ThreeDigitInteger except constructors. All of the state-
ments other than B are false. For choice A, ThreeDigitInteger is the superclass
and therefore cannot inherit from its subclass. For choice C, constructors are
never inherited (see p. 135). For choice D, a subclass can access private variables
of the superclass through accessor methods only (see p. 135). For choice E, a
superclass cannot access any additional instance variables of its subclass.

30. (A) Implementation II is wrong because the constructor has no boolean validity
parameter. Implementation III is wrong because a subclass cannot access a private
instance variable of its superclass.

31. (C) A compile-time error will occur for both tests I and II because at com-
pile time the types of code and num are both ThreeDigitInteger, and the class
ThreeDigitInteger does not have an isValid method. To avoid this error, the
code object must be cast to ThreeDigitCode, its actual type. Note that if you try
to cast num to ThreeDigitCode, you’ll get a run-time error (ClassCastException)
because num is not an instance of ThreeDigitCode.

32. (A) The is-a relationship must work from right-to-left: a Parrot is-a Bird, a
Parakeet is-a Bird, and an Owl is-a Bird. All are correct. This relationship fails
in declarations II and III: a Parrot is not necessarily a Parakeet, a Bird is not
necessarily an Owl, and a Bird is not necessarily a Parakeet.

33. (E) All three segments traverse the array, accessing one element at a time, and
appending it to the end of the ArrayList. In segment II, the first parameter of
the add method is the position in list where the next string s will be added.
Since list.size() increases by one after each insertion, this index is correctly
updated in each pass through the for-each loop.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 425 — #439

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answers Explained 425

34. (C) Suppose you want random integers from 2 to 8, that is, low= 2 and high= 8.
This is 7 possible integers, so you need

(int) (Math.random() * 7)

which produces 0, 1, 2, . . . , or 6. Therefore the quantity

(int) (Math.random() * 7) + 2

produces 2, 3, 4, . . . , or 8. The only expression that yields the right answer with
these values is

(int) (Math.random() * (high - low + 1)) + low;

35. (E) Here is a “box diagram” for mergeSort(0,3). The boldface numbers 1–6
show the order in which the mergeSort calls are made.

mid=(0+3)/2=1

mergeSort(0,1)

mergeSort(2,3)

merge(0,1,3)

mid=(0+1)/2=0

mergeSort(0,0)

mergeSort(1,1)

merge(0,0,1)

mid=(2+3)/2=2

mergeSort(2,2)

mergeSort(3,3)

merge(2,2,3)

mergeSort(0,1)

mergeSort(0,3)

mergeSort(2,3)

1

4

2

3

5

6

The mergeSort calls in which first == last are base case calls, which means
that there will be no further method calls.

36. (A) Since the records are not sorted, the quickest way to find a given name is to
start at the beginning of the list and sequentially search for that name. Choices
C, D, and E will all work, but it’s inefficient to sort and then search because all
sorting algorithms take longer than simply inspecting each element. Choice B
won’t work: A binary search can only be used for a sorted list.

37. (D) Statement I is false: An abstract class may have no abstract methods. The
point about an abstract class is that it represents an abstract concept, and no
instance of it will ever be created. The only instances that will be created are in-
stances of its subclasses. Statement II must be true, since you are told the abstract
class is actually used in the program. Statement III is true because an abstract
class cannot be instantiated.

38. (C) The draw method is polymorphic, which means that it is a superclass method
that is overridden in at least one of its subclasses. During run time, there is dy-
namic binding between the calling object and the method, that is, the actual in-
stance is bound to its particular overridden method. In the drawLettersmethod,
the correct version of draw is called during each iteration of the for loop, and a
banner with the appropriate letters is drawn.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 426 — #440

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
426 Practice Exams

39. (A) method1 creates a mirror image of its parameter mat across a horizontal line
placed under mat. If mat is the matrix

1 2 3

4 5 6

then the mirror image created below it is

4 5 6

1 2 3

method2 also creates a mirror image, this time with the mirror placed above its
parameter mat. Note that the reflection across a horizontal line above

1 2 3

4 5 6

is also

4 5 6

1 2 3

A good general hint to solve a problem like this is to take a very simple matrix
mat and generate some elements of newMat. It won’t take long to see that the two
methods produce the same matrix.

40. (E) All three changes must be made! In order to move all the Card elements to
the temporary ArrayList, the for loop must be executed size times. If you start
j at 1, the loop will be executed size-1 times. The error in Line 7 is subtle. With
each iteration of the loop, the size of the cards ArrayList is being reduced by 1,
so the range of random indexes is getting smaller and smaller. This won’t happen
if you use size, the length of the original cards list. You must use cards.size(),
which is the length of the current, shorter list. If you don’t make correction III,
the random element will not be removed from cards. It will (incorrectly) remain
there while a copy of it will be added to temp. If this error isn’t corrected, execu-
tion of the method is likely to cause the temp list to hold more than one copy of
a given card!

✐

✐

“ap” — 2014/11/4 — 11:10 — page 427 — #441

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answers Explained 427

Section II

1. (a) public String extractCity(String cityZip)

{

int commaPos = cityZip.indexOf(",");

return cityZip.substring(0, commaPos);

}

(b) public void printNames()

{

System.out.println(lines.get(0));

int index = 1;

while(index < lines.size() - 1)

{

if (lines.get(index).equals(""))

System.out.println(lines.get(index + 1));

index++;

}

}

(c) public String getAddress(String name)

{

int index = 0;

while(index < lines.size() && !name.equals(lines.get(index)))

index++;

index++;

String s = "";

while (!(lines.get(index).equals("")))

{

s += lines.get(index) + "\n";

index++;

}

return s;

}

NOTE

• In part (b), the empty string signals that the next element in the list will
be a name. This is why you should be careful that you don’t miss the first
name in the list, which is at index 0. Notice, too, that you can avoid the
empty string at the end of the list by having

index < lines.size() - 1

as the test in the while loop. If you don’t do this, the final

lines.get(index + 1)

will cause an IndexOutOfBoundsException.
• Part (c) first finds the name that matches the parameter, and then builds a

string out of the next two or three lines that comprise the address. Again,
the empty string signals that the end of the address has been reached.
• The escape character string, "\n", inserts a line break into the string.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 428 — #442

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
428 Practice Exams

2. (a) public static int countA(WordSet s)

{

int count = 0;

while (count < s.size() &&

s.findkth(count + 1).substring(0, 1).equals("A"))

count++;

return count;

}

Alternatively,

public static int countA(WordSet s)

{

boolean done = false;

int count = 0;

while (count < s.size() && !done)

{

String nextWord = s.findkth(count + 1);

if (nextWord.substring(0,1).equals("A"))

count++;

else

done = true;

}

return count;

}

(b) public static void removeA(WordSet s)

{

int numA = countA(s);

for (int i = 1; i <= numA; i++)

s.remove(s.findkth(1));

}

Alternatively,

public static void removeA(WordSet s)

{

while (s.size() != 0 &&

s.findkth(1).substring(0, 1).equals("A"))

s.remove(s.findkth(1));

}

(c) public static WordSet commonElements(WordSet s1, WordSet s2)

{

WordSet temp = new WordSet();

for (int i = 1; i <= s1.size(); i++)

{

String nextWord = s1.findkth(i);

if (s2.contains(nextWord))

temp.insert(nextWord);

}

return temp;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 429 — #443

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answers Explained 429

NOTE

• To test whether a word starts with "A", you must compare the first letter
of word, that is, word.substring(0,1), with "A".
• In part (a), you must check that your solution works if s is empty. For

the given algorithm, count < s.size()will fail and short circuit the test,
which is desirable since s.findkth(1) will violate the precondition of
findkth(k), namely that k cannot be greater than size().
• The parameter for s.findkth must be greater than 0. Hence the use of

s.findkth(count+1) in part (a).
• For the first solution in part (b), you get a subtle intent error if your

last step is s.remove(s.findkth(i)). Suppose that s is initially {"FLY",

"ASK", "ANT"}. After the method call s.remove(s.findkth(1)), s will
be {"FLY", "ASK"}. After the statement s.remove(s.findkth(2)),s will
be {"ASK"}!! The point is that s is adjusted after each call to s.remove.
The algorithm that works is this: If N is the number of words that start
with “A”, simply remove the first element in the list N times. Note that
the alternative solution avoids the pitfall described by simply repeatedly
removing the first element if it starts with ‘A.” The alternative solution,
however, has its own pitfall: The algorithm can fail if a test for s being
empty isn’t done for each iteration of the while loop.
• Part (c) could also be accomplished by going through each element in s2

and checking if it’s included in s1.

3. (a) public void updateLocation(int newRow, int newCol)

{

loc = new Location(newRow, newCol);

}

(b) public void sortAllRows()

{

for(Contestant[] row: contestants)

sort(row);

}

(c) public String findWinnerName()

{

sortAllRows();

int max = contestants[0][0].getScore();

String winner = contestants[0][0].getName();

for(int k = 0; k < NUM_ROWS; k++)

{

Contestant c = contestants[k][CONTESTANTS_PER_ROW - 1];

if (c.getScore() > max)

{

winner = c.getName();

max = c.getScore();

}

}

return winner;

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 430 — #444

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2
430 Practice Exams

NOTE

• In part (a), since the Location class does not contain mutator methods
to set a new row and new column, you need to use the constructor of
Location to set those new values.
• Part (b) uses the Java feature that a two-dimensional array is an array of

arrays. Thus, each row, which is an array of Contestant, can be sorted
using the helper method sort.
• Part (c) uses the fact that after you sort all the rows of contestants, the

winning contestant will be in the last column of the matrix of contestants.
When you go through the loop, searching for a score that’s higher than
the current max, be sure to store the name that goes with that score!

4. (a) public class SnowyOwl extends Owl

{

//Constructor

public SnowyOwl()

{ super ("Snowy owl"); }

//Returns type of food for this SnowyOwl

public String getFood()

{

int num = (int)(Math.random()*3);

if (num == 0)

return "hare";

else if (num == 1)

return "lemming";

else

return "small bird";

}

}

(b) public void allEat()

{

for (Bird b: birdList)

System.out.println(b.getName() + " " + b.getFood());

}

NOTE

• The Owl class inherits the abstract getFood method. Since the food type
for an Owl depends on the type of Owl, the Owl class does not provide
implementation code for getFood. This is the reason that the Owl class is
an abstract class.
• In part (a), since SnowyOwl is a concrete (nonabstract) class, it must pro-

vide implementation code for getFood.
• In part (a), super must be used in the constructor because there is no

direct access to the private instance variables of the Bird class.
• Note that the noise for Owl will always be "hoot". Thus, noise does

not need to be provided as a parameter in the SnowyOwl constructor.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 431 — #445

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

2

Answers Explained 431

The statement super(owlName, "hoot") will use the superclass—namely
Bird—constructor to automatically assign "hoot" as an SnowyOwl’s noise.
Similarly, the SnowyOwl does not need any parameters in its constructor:
using the superclass (Owl) constructor will automatically provide it with
its name through the statement super("Snowy owl").
• In part (b), polymorphism will determine which getFoodmethod to print

for the actual instance of each Bird in birdList.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 432 — #446

✐

✐

✐

✐

✐

✐

✐

✐

“ap” — 2014/11/4 — 11:10 — page 433 — #447

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Answer Sheet: Practice Exam Three

1. A B C D E

2. A B C D E

3. A B C D E

4. A B C D E

5. A B C D E

6. A B C D E

7. A B C D E

8. A B C D E

9. A B C D E

10. A B C D E

11. A B C D E

12. A B C D E

13. A B C D E

14. A B C D E

15. A B C D E

16. A B C D E

17. A B C D E

18. A B C D E

19. A B C D E

20. A B C D E

21. A B C D E

22. A B C D E

23. A B C D E

24. A B C D E

25. A B C D E

26. A B C D E

27. A B C D E

28. A B C D E

29. A B C D E

30. A B C D E

31. A B C D E

32. A B C D E

33. A B C D E

34. A B C D E

35. A B C D E

36. A B C D E

37. A B C D E

38. A B C D E

39. A B C D E

40. A B C D E

✐

✐

“ap” — 2014/11/4 — 11:10 — page 434 — #448

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

How to Calculate Your (Approximate) AP Computer Science Score

Multiple Choice

Number correct (out of 40) = ⇐= Multiple-Choice Score

Free Response

Question 1
(out of 9)

Question 2
(out of 9)

Question 3
(out of 9)

Question 4
(out of 9)

Total × 1.11 = ⇐= Free-Response Score
(Do not round.)

Final Score

Multiple-
Choice
Score

+
Free-

Response
Score

=
Final Score

(Round to nearest
whole number.)

Chart to Convert to AP Grade
Computer Science

Final AP Gradea

Score Range

62–80 5
47–61 4
37–46 3
29–36 2
0–28 1

aThe score range corresponding to
each grade varies from exam to exam
and is approximate.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 435 — #449

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 435

Practice Exam Three
COMPUTER SCIENCE

SECTION I

Time—1 hour and 15 minutes
Number of questions—40
Percent of total grade—50

Directions: Determine the answer to each of the following questions or in-
complete statements, using the available space for any necessary scratchwork.
Then decide which is the best of the choices given and fill in the corresponding
oval on the answer sheet. Do not spend too much time on any one problem.

Notes:
• Assume that the classes in the Quick Reference have been imported where

needed.
• Assume that variables and methods are declared within the context of an

enclosing class.
• Assume that method calls that have no object or class name prefixed, and

that are not shown within a complete class definition, appear within the
context of an enclosing class.
• Assume that parameters in method calls are not null unless otherwise

stated.

1. What output is produced by the following line of code?

System.out.println("\"This is\n very strange\"");

(A) \This is\n very strange\

(B) "This is very strange"

(C) This is

very strange

(D) \"This is

very strange\"

(E) "This is

very strange"

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 436 — #450

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
436 Practice Exams

2. A certain class, SomeClass, contains a method with the following header:

public int getValue(int n)

Suppose that methods with the following headers are now added to SomeClass:

I public int getValue()

II public double getValue(int n)

III public int getValue(double n)

Which of the above headers will cause an error?
(A) None
(B) I only
(C) II only
(D) III only
(E) I and III only

3. Consider the following statement:

int num = /* expression */;

Which of the following replacements for /* expression */ creates in num a ran-
dom integer from 2 to 50, including 2 and 50?
(A) (int)(Math.random() * 50) - 2

(B) (int)(Math.random() * 49) - 2

(C) (int)(Math.random() * 49) + 2

(D) (int)(Math.random() * 50) + 2

(E) (int)(Math.random() * 48) + 2

4. Consider the following code segment.

int num = 0, score = 10;

if (num != 0 && score / num > SOME_CONSTANT)

statement1;
else

statement2;

What is the result of executing this statement?
(A) An ArithmeticExceptionwill be thrown.
(B) A syntax error will occur.
(C) statement1, but not statement2, will be executed.
(D) statement2, but not statement1, will be executed.
(E) Neither statement1 nor statement2 will be executed; control will pass to the

first statement following the if statement.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 437 — #451

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 437

5. The following shuffle algorithm is used to shuffle an array of int values, nums.

public void shuffle ()

{

for (int k = nums.length - 1; k > 0; k--)

{

int randPos = (int) (Math.random() * (k + 1));

int temp = nums[k];

nums[k] = nums[randPos];

nums[randPos] = temp;

}

}

Suppose the initial state of nums is 8, 7, 6, 5, 4, and when the method is executed
the values generated for randPos are 3, 2, 0, 0, in that order. What element will
be contained in nums[2] after execution?
(A) 8

(B) 7

(C) 6

(D) 5

(E) 4

6. Consider the following instance variables and method assignValues in the same
class:

private int numRows;

private int numCols;

private int[][] mat;

/** arr has numCols elements */

private void assignValues(int[] arr, int value)

{

for (int k = 0; k < arr.length; k++)

arr[k] = value;

}

Which of the following code segments will correctly assign mat to have the value
100 in each slot? You may assume that the instance variables have all been cor-
rectly initialized.

I for (int row = 0; row < numRows; row++)

assignValues(mat[row], 100);

II for (int col = 0; col < numCols; col++)

assignValues(mat[col], 100);

III for (int[] row: mat)

for (int num: row)

num = 100;

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 438 — #452

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
438 Practice Exams

7. Consider the following inheritance hierarchy.

Cereal

<<abstract>>

WheatCereal RiceCereal

Which of the following declarations will not cause an error? You may assume
that each of the classes above has a default constructor.

I WheatCereal w = new Cereal();

II Cereal c1 = new Cereal();

III Cereal c2 = new RiceCereal();

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 439 — #453

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 439

Questions 8 and 9 refer to the following class definitions.

public interface Class1

{ void method1(); }

public class Class2 implements Class1

{

public void method1()

{ /* implementation not shown */ }

//Private instance variables and other methods are not shown.

}

public class Class3 extends Class2

{

public void method2(Class3 other)

{ /* implementation not shown */ }

//Private instance variables and other methods are not shown.

}

8. Assuming that both Class2 and Class3 have default constructors, which is (are)
valid in a client class?

I Class1 c1 = new Class2();

II Class2 c2 = new Class3();

III Class1 c3 = new Class3();

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

9. Consider the following declarations in a client class.

Class3 ob3 = new Class3();

Class2 ob2 = new Class2();

Which method calls would be legal?

I ob3.method1();

II ob2.method2(ob3);

III ob3.method2(ob2);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 440 — #454

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
440 Practice Exams

10. Refer to the following program segment.

for (int n = 50; n > 0; n = n / 2)

System.out.println(n);

How many lines of output will this segment produce?
(A) 50
(B) 49
(C) 7
(D) 6
(E) 5

11. Let list be an ArrayList<String> containing only these elements:

"John", "Mary", "Harry", "Luis"

Which of the following statements will cause an error to occur?

I list.set(2, "6");

II list.add(4, "Pat");

III String s = list.get(4);

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

12. Consider the following static method.

public static int compute(int n)

{

for (int i = 1; i < 4; i++)

n *= n;

return n;

}

Which of the following could replace the body of compute, so that the new ver-
sion returns the identical result as the original for all n?
(A) return 4 * n;

(B) return 8 * n;

(C) return 64 * n;

(D) return (int) Math.pow(n, 4);

(E) return (int) Math.pow(n, 8);

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 441 — #455

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 441

13. Consider the following instance variable and method.

private int[] nums;

/** Precondition: nums contains int values in no particular order.

*/

public int getValue()

{

for (int k = 0; k < nums.length; k++)

{

if (nums[k] % 2 != 0)

return k;

}

return -1;

}

Suppose the following statement is executed:

int j = getValue();

If the value returned in j is a positive integer, which of the following best de-
scribes the contents of nums?

(A) The only odd int in nums is at position j.
(B) All values in positions 0 through j-1 are odd.
(C) All values in positions 0 through j-1 are even.
(D) All values in positions nums.length-1 down to j+1 are odd.
(E) All values in positions nums.length-1 down to j+1 are even.

14. Consider the following method.

public int mystery (int n)

{

if (n == 0)

return 0;

else if (n % 2 == 1)

return n;

else

return n + mystery(n - 1);

}

What will be returned by a call to mystery(6)?
(A) 6
(B) 11
(C) 12
(D) 27
(E) 30

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 442 — #456

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
442 Practice Exams

15. Consider the following code segment.

int num1 = value1, num2 = value2, num3 = value3;

while (num1 > num2 || num1 > num3)

{

/* body of loop */

}

You may assume that value1, value2, and value3 are int values. Which of the
following is sufficient to guarantee that /* body of loop */will never be executed?
(A) There is no statement in /* body of loop */ that leads to termination
(B) num1 < num2

(C) num1 < num3

(D) num1 > num2 && num1 > num3

(E) num1 < num2 && num1 < num3

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 443 — #457

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 443

16. Consider the following two classes.

public class Performer

{

public void act()

{

System.out.print(" bow");

perform();

}

public void perform()

{

System.out.print(" act");

}

}

public class Singer extends Performer

{

public void act()

{

System.out.print(" rise");

super.act();

System.out.print(" encore");

}

public void perform()

{

System.out.print(" aria");

}

}

Suppose the following declaration appears in a class other than Performer or
Singer:

Performer p = new Singer();

What is printed as a result of the call p.act();?
(A) rise bow aria encore

(B) rise bow act encore

(C) rise bow act

(D) bow act aria

(E) bow aria encore

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 444 — #458

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
444 Practice Exams

Use the program description below for Questions 17–19.

A car dealer needs a program that will maintain an inventory of cars on his lot. There
are three types of cars: sedans, station wagons, and SUVs. The model, year, color, and
price need to be recorded for each car, plus any additional features for the different
types of cars. The program must allow the dealer to

• Add a new car to the lot.

• Remove a car from the lot.

• Correct any data that’s been entered.

• Display information for any car.

17. The programmer decides to have these classes: Car, Inventory, Sedan, SUV, and
StationWagon. Which statement is true about the relationships between these
classes and their attributes?

I There are no inheritance relationships between these classes.
II The Inventory class has-a list of Car objects.

III The Sedan, StationWagon, and SUV classes are independent of each other.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

18. Suppose that the programmer decides to have a Car class and an Inventory class.
The Inventory class will maintain a list of all the cars on the lot. Here are some
of the methods in the program:

addCar //adds a car to the lot

removeCar //removes a car from the lot

displayCar //displays all the features of a given car

setColor //sets the color of a car to a given color

//May be used to correct data

getPrice //returns the price of a car

displayAllCars //displays features for every car on the lot

In each of the following, a class and a method are given. Which is the least suitable
choice of class to be responsible for the given method?
(A) Car, setColor
(B) Car, removeCar
(C) Car, getPrice
(D) Car, displayCar
(E) Inventory, displayAllCars

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 445 — #459

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 445

19. Suppose Car is a superclass and Sedan, StationWagon, and SUV are subclasses of
Car. Which of the following is the most likely method of the Car class to be
overridden by at least one of the subclasses (Sedan, StationWagon, or SUV)?
(A) setColor(newColor) //sets color of Car to newColor

(B) getModel() //returns model of Car

(C) displayCar() //displays all features of Car

(D) setPrice(newPrice) //sets price of Car to newPrice

(E) getYear() //returns year of Car

20. Consider the following segment of code.

String word = "conflagration";

int x = word.indexOf("flag");

String s = word.substring(0, x);

What will be the result of executing the above segment?
(A) A syntax error will occur.
(B) String s will be the empty string.
(C) String s will contain "flag".
(D) String s will contain "conf".
(E) String s will contain "con".

21. Consider the following class declaration:

public abstract class AClass

{

private int v1;

private double v2;

//methods of the class

...

}

Which is true about AClass?
(A) Any program using this class will have an error: An abstract class cannot

contain private instance variables.
(B) AClass must have a constructor with two parameters in order to initialize

v1 and v2.
(C) At least one method of AClass must be abstract.
(D) A program that uses AClass must have another class that is a subclass of

AClass.
(E) In a program that uses AClass, more than one instance of AClass can be

created.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 446 — #460

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
446 Practice Exams

22. A class of 30 students rated their computer science teacher on a scale of 1 to 10
(1 means awful and 10 means outstanding). The responses array is a 30-element
integer array of the student responses. An 11-element array freq will count the
number of occurrences of each response. For example, freq[6] will count the
number of students who responded 6. The quantity freq[0] will not be used.

Here is a program that counts the students’ responses and outputs the results.

public class StudentEvaluations

{

public static void main(String args[])

{

int[] responses = {6,6,7,8,10,1,5,4,6,7,

5,4,3,4,4,9,8,6,7,10,

6,7,8,8,9,6,7,8,9,2};

int[] freq = new int[11];

for (int i = 0; i < responses.length; i++)

freq[responses[i]]++;

//output results

System.out.print("rating" + " " + "frequency\n");

for (int rating = 1; rating < freq.length; rating++)

System.out.print(rating + " " +

freq[rating] + "\n");

}

}

Suppose the last entry in the initializer list for the responses array was incor-
rectly typed as 12 instead of 2. What would be the result of running the program?
(A) A rating of 12 would be listed with a frequency of 1 in the output table.
(B) A rating of 1 would be listed with a frequency of 12 in the output table.
(C) An ArrayIndexOutOfBoundsExceptionwould be thrown.
(D) A StringIndexOutOfBoundsExceptionwould be thrown.
(E) A NullPointerExceptionwould be thrown.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 447 — #461

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 447

Questions 23–25 are based on the three classes below:

public class Employee

{

private String name;

private int employeeNum;

private double salary, taxWithheld;

public Employee(String aName, int empNum, double aSalary,

double aTax)

{ /* implementation not shown */ }

/** @return pre-tax salary */

public double getSalary()

{ return salary; }

public String getName()

{ return name; }

public int getEmployeeNum()

{ return employeeNum; }

public double getTax()

{ return taxWithheld; }

public double computePay()

{ return salary - taxWithheld; }

}

public class PartTimeEmployee extends Employee

{

private double payFraction;

public PartTimeEmployee(String aName, int empNum, double aSalary,

double aTax, double aPayFraction)

{ /* implementation not shown */ }

public double getPayFraction()

{ return payFraction; }

public double computePay()

{ return getSalary() * payFraction - getTax();}

}

public class Consultant extends Employee

{

private static final double BONUS = 5000;

public Consultant(String aName, int empNum, double aSalary,

double aTax)

{ /* implementation not shown */ }

public double computePay()

{ /* implementation code */ }

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 448 — #462

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
448 Practice Exams

23. The computePay method in the Consultant class redefines the computePay

method of the Employee class to add a bonus to the salary after subtracting the tax
withheld. Which represents correct /* implementation code */ of computePay

for Consultant?

I return super.computePay() + BONUS;

II super.computePay();

return getSalary() + BONUS;

III return getSalary() - getTax() + BONUS;

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I and II only

24. Consider these valid declarations in a client program:

Employee e = new Employee("Noreen Rizvi", 304, 65000, 10000);

Employee p = new PartTimeEmployee("Rafael Frongillo", 287, 40000,

7000, 0.8);

Employee c = new Consultant("Dan Lepage", 694, 55000, 8500);

Which of the following method calls will cause an error?
(A) double x = e.computePay();

(B) double y = p.computePay();

(C) String n = c.getName();

(D) int num = p.getEmployeeNum();

(E) double g = p.getPayFraction();

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 449 — #463

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 449

25. Consider the writePayInfomethod:

/** Writes Employee name and pay on one line. */

public static void writePayInfo(Employee e)

{ System.out.println(e.getName() + " " + e.computePay()); }

The following piece of code invokes this method:

Employee[] empList = new Employee[3];

empList[0] = new Employee("Lila Fontes", 1, 10000, 850);

empList[1] = new Consultant("Momo Liu", 2, 50000, 8000);

empList[2] = new PartTimeEmployee("Moses Wilks", 3, 25000, 3750,

0.6);

for (Employee e : empList)

writePayInfo(e);

What will happen when this code is executed?
(A) A list of employees’ names and corresponding pay will be written to the

screen.
(B) A NullPointerExceptionwill be thrown.
(C) A ClassCastExceptionwill be thrown.
(D) A compile-time error will occur, with the message that the getName method

is not in the Consultant class.
(E) A compile-time error will occur, with the message that an instance of an

Employee object cannot be created.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 450 — #464

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
450 Practice Exams

26. Consider an array arr that is initialized with int values. The following code
segment stores in count the number of positive values in arr.

int count = 0, index = 0;

while (index < arr.length)

{

if (arr[index] > 0)

count++;

index++;

}

Which of the following is equivalent to the above segment?

I int count = 0;

for (int num : arr)

{

if (arr[num] > 0)

count++;

}

II int count = 0;

for (int num : arr)

{

if (num > 0)

count++;

}

III int count = 0;

for (int i = 0; i < arr.length; i++)

{

if (arr[i] > 0)

count++;

}

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 451 — #465

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 451

27. A square matrix is declared as

int[][] mat = new int[SIZE][SIZE];

where SIZE is an appropriate integer constant. Consider the following method:

public static void mystery(int[][] mat, int value, int top, int left,

int bottom, int right)

{

for (int i = left; i <= right; i++)

{

mat[top][i] = value;

mat[bottom][i] = value;

}

for (int i = top + 1; i <= bottom - 1; i++)

{

mat[i][left] = value;

mat[i][right] = value;

}

}

Assuming that there are no out-of-range errors, which best describes what
method mystery does?
(A) Places value in corners of the rectangle with corners (top, left) and

(bottom, right).
(B) Places value in the diagonals of the square with corners (top, left) and

(bottom, right).
(C) Places value in each element of the rectangle with corners (top, left) and

(bottom, right).
(D) Places value in each element of the border of the rectangle with corners

(top, left) and (bottom, right).
(E) Places value in the topmost and bottommost rows of the rectangle with

corners (top, left) and (bottom, right).

28. Which of the following statements about a class SomeClass that implements an
interface is (are) true?

I It is illegal to create an instance of SomeClass.

II Any superclass of SomeClass must also implement that interface.

III SomeClass must implement every method of the interface.

(A) None
(B) I only
(C) II only
(D) III only
(E) II and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 452 — #466

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
452 Practice Exams

29. Assume that a Book class has a compareTo method where, if b1 and b2 are Book

objects, b1.compareTo(b2) is a negative integer if b1 is less than b2, a positive
integer if b1 is greater than b2, and 0 if b1 equals b2. The following method is
intended to return the index of the “smallest” book, namely the book that would
appear first in a sorted list of Book objects.

/** Precondition:
* - books is initialized with Book objects.

* - books.length > 0.

*/

public static int findMin(Book[] books)

{

int minPos = 0;

for (int index = 1; index < books.length; index++)

{

if (/* condition */)

{

minPos = index;

}

}

return minPos;

}

Which of the following should be used to replace /* condition */ so that findMin
works as intended?
(A) books[minPos] > books[index]

(B) books[index] > books[minPos]

(C) books[index].compareTo(books[minPos]) > 0

(D) books[index].compareTo(books[minPos]) >= 0

(E) books[index].compareTo(books[minPos]) < 0

30. Refer to the static method removeNegs shown below.

/** Precondition: list is an ArrayList<Integer>.

* Postcondition: All negative values have been removed from list.

* @param list the list of Integer objects

*/

public static void removeNegs(List<Integer> list)

{

int index = 0;

while (index < list.size())

{

if (list.get(index).intValue() < 0)

{

list.remove(index);

}

index++;

}

}

For which of the following lists will the method not work as intended?
(A) 6 -1 -2 5

(B) -1 2 -3 4

(C) 2 4 6 8

(D) -3

(E) 1 2 3 -8
GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 453 — #467

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 453

31. A sorted list of 120 integers is to be searched to determine whether the value 100
is in the list. Assuming that the most efficient searching algorithm is used, what
is the maximum number of elements that must be examined?
(A) 7
(B) 8
(C) 20
(D) 100
(E) 120

32. Consider a sorted array arr of n elements, where n is large and n is even. Under
which conditions will a sequential search of arr be faster than a binary search?

I The target is not in the list.

II The target is in the first position of the list.

III The target is in arr[1 + n/2].

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 454 — #468

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
454 Practice Exams

33. Refer to the following data field and method.

private int[] arr;

/** Precondition: arr.length > 0 and index < arr.length. */

public void remove(int index)

{

int[] b = new int[arr.length - 1];

int count = 0;

for (int i = 0; i < arr.length; i++)

{

if (i != index)

{

b[count] = arr[i];

count++;

}

}

/* assertion */

arr = b;

}

Which of the following assertions is true when the /* assertion */ line is reached
during execution of remove?
(A) b[k] == arr[k] for 0 <= k < arr.length.
(B) b[k] == arr[k + 1] for 0 <= k < arr.length.
(C) b[k] == arr[k] for 0 <= k <= index, and

b[k] == arr[k + 1] for index < k < arr.length - 1.
(D) b[k] == arr[k] for 0 <= k < index, and

b[k] == arr[k + 1] for index <= k < arr.length - 1.
(E) b[k] == arr[k] for 0 <= k < index, and

b[k] == arr[k + 1] for index <= k < arr.length.

34. When an integer is represented in base 16 (hexadecimal), the digits 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B, C, D, E, F are used, where A–F represent the numbers 10–15. If
base 16 is represented with the subscript hex and base 10 is represented with the
subscript dec, then the decimal number 196 could be represented in hexadecimal
as shown below:

196dec =C4hex

Which of the following is equal to 2AFhex?
(A) 27dec

(B) 300dec

(C) 687dec

(D) 4002dec

(E) 6896dec

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 455 — #469

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 455

Questions 35–37 refer to the TennisPlayer, GoodPlayer, and WeakPlayer classes be-
low. These classes are to be used in a program to simulate a game of tennis.

public abstract class TennisPlayer

{

private String name;

public TennisPlayer(String aName)

{ name = aName; }

public String getName()

{ return name; }

public abstract boolean serve();

public abstract boolean serviceReturn();

}

public class GoodPlayer extends TennisPlayer

{

public GoodPlayer(String aName)

{ /* implementation not shown */ }

/** @return true if serve is in (80% probability),

* false if serve is out (20% probability)

*/

public boolean serve()

{ /* implementation not shown */ }

/** @return true if service return is in (70% probability),

* false if service return is out (30% probability)

*/

public boolean serviceReturn()

{ /* implementation not shown */ }

}

public class WeakPlayer extends TennisPlayer

{

public WeakPlayer(String aName)

{ /* implementation not shown */ }

/** @return true if serve is in (45% probability),

* false if serve is out (55% probability)

*/

public boolean serve()

{ /* implementation not shown */ }

/** @return true if service return is in (30% probability),

* false if service return is out (70% probability)

*/

public boolean serviceReturn()

{ /* implementation not shown */ }

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 456 — #470

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
456 Practice Exams

35. Which of the following declarations will cause an error? You may assume all the
constructors are correctly implemented.
(A) TennisPlayer t = new TennisPlayer("Smith");

(B) TennisPlayer g = new GoodPlayer("Jones");

(C) TennisPlayer w = new WeakPlayer("Henry");

(D) TennisPlayer p = null;

(E) WeakPlayer q = new WeakPlayer("Grady");

36. Refer to the serve method in the WeakPlayer class:

/** @return true if serve is in (45% probability),

* false if serve is out (55% probability)

*/

public boolean serve()

{ /* implementation */ }

Which of the following replacements for /* implementation */ satisfy the post-
condition of the serve method?

I double value = Math.random();

return value >= 0 || value < 0.45;

II double value = Math.random();

return value < 0.45;

III int val = (int) (Math.random() * 100);

return val < 45;

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 457 — #471

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 457

37. Consider the following class definition:

public class Beginner extends WeakPlayer

{

private double costOfLessons;

//methods of Beginner class

...

}

Refer to the following declarations and method in a client program:

TennisPlayer g = new GoodPlayer("Sam");

TennisPlayer w = new WeakPlayer("Harry");

TennisPlayer b = new Beginner("Dick");

public void giveEncouragement(WeakPlayer t)

{ /* implementation not shown */ }

Which of the following method calls will not cause an error?
(A) giveEncouragement((WeakPlayer) g);

(B) giveEncouragement((WeakPlayer) b);

(C) giveEncouragement((Beginner) w);

(D) giveEncouragement(w);

(E) giveEncouragement(b);

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 458 — #472

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
458 Practice Exams

38. A matrix class that manipulates matrices contains the following declaration:

private int[][] mat = new[numRows][numCols];

Consider the following method that alters matrix mat.

public void doSomething()

{

int width = mat[0].length;

int numRows = mat.length;

for (int row = 0; row < numRows; row++)

for (int col = 0; col < width/2; col++)

mat[row][col] = mat[row][width - 1 - col];

}

If mat has current value

1 2 3 4 5 6

1 3 5 7 9 11

what will the value of mat be after a call to doSomething?

(A) 1 2 3 3 2 1

1 3 5 5 3 1

(B) 6 5 4 4 5 6

11 9 7 7 9 11

(C) 6 5 4 3 2 1

11 9 7 5 3 1

(D) 1 2 3 4 5 6

1 2 3 4 5 6

(E) 1 3 5 7 9 11

1 3 5 7 9 11

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 459 — #473

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 459

Questions 39 and 40 refer to the following information.

Consider an array arr that is sorted in increasing order, and method findMost given
below. Method findMost is intended to find the value in the array that occurs most
often. If every value occurs exactly once, findMost should return -1. If there is more
than one value that occurs the most, findMost should return any one of those. For ex-
ample, if arr contains the values [1,5,7,7,10], findMost should return 7. If arr con-
tains [2,2,2,7,8,8,9,9,9], findMost should return 2 or 9. If arr contains [1,2,7,8],
findMost should return -1.

Line 1: /** Precondition: arr sorted in increasing order.

Line 2: */

Line 3: public static int findMost(int[] arr)

Line 4: {

Line 5: int index = 0;

Line 6: int count = 1;

Line 7: int maxCountSoFar = 1;

Line 8: int mostSoFar = arr[0];

Line 9: while (index < arr.length - 1)

Line 10: {

Line 11: while (index < arr.length - 1 &&

Line 12: arr[index] == arr[index + 1])

Line 13: {

Line 14: count++;

Line 15: index++;

Line 16: }

Line 17: if (count > maxCountSoFar)

Line 18: {

Line 19: maxCountSoFar = count;

Line 20: mostSoFar = arr[index];

Line 21: }

Line 22: index++;

Line 23: }

Line 24: if (maxCountSoFar == 1)

Line 25: return -1;

Line 26: else

Line 27: return mostSoFar;

Line 28: }

39. The method findMost does not always work as intended. An incorrect result will
be returned if arr contains the values
(A) [1,2,3,4,5]

(B) [6,6,6,6]

(C) [1,2,2,3,4,5]

(D) [1,1,3,4,5,5,5,7]

(E) [2,2,2,4,5,5]

40. Which of the following changes should be made so that method findMost will
work as intended?
(A) Insert the statement count = 1; between Lines 20 and 21.
(B) Insert the statement count = 1; between Lines 21 and 22.
(C) Insert the statement count = 1; between Lines 16 and 17.
(D) Insert the statement count = 0; between Lines 23 and 24.
(E) Insert the statement count = 1; between Lines 23 and 24.

END OF SECTION I

✐

✐

“ap” — 2014/11/4 — 11:10 — page 460 — #474

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
460 Practice Exams

COMPUTER SCIENCE

SECTION II

Time—1 hour and 45 minutes
Number of questions—4
Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT
PROGRAM SEGMENTS ARE TO BE WRITTEN IN Java.

Write your answers in pencil only in the booklet provided.

Notes:

• Assume that the classes in the Quick Reference have been imported where
needed.

• Unless otherwise stated, assume that parameters in method calls are not
null and that methods are called only when their preconditions are satis-
fied.

• In writing solutions for each question, you may use any of the accessible
methods that are listed in classes defined in that question. Writing signifi-
cant amounts of code that can be replaced by a call to one of these methods
may not receive full credit.

1. Consider the problem of keeping track of the available seats in a theater. Theater
seats can be represented with a two-dimensional array of integers, where a value
of 0 shows a seat is available, while a value of 1 indicates that the seat is occupied.
For example, the array below shows the current seat availability for a show in a
small theater.

[0] [1] [2] [3] [4] [5]

[0] 0 0 1 1 0 1

[1] 0 1 0 1 0 1

[2] 1 0 0 0 0 0

The seat at slot [1][3] is taken, but seat [0][4] is still available.
A show can be represented by the Show class shown below.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 461 — #475

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 461

public class Show

{

/** The seats for this show */

private int[][] seats;

private final int SEATS_PER_ROW = < some integer value>;
private final int NUM_ROWS = < some integer value>;

/** Returns true if the seat with the specified row and seat

* number is an aisle seat, false otherwise.

* @param row the row number

* @param seatNumber the seat number

* @return true if an aisle seat, false otherwise

*/

public boolean isAisleSeat (int row, int seatNumber)

{ /* to be implemented in part (a) */ }

/** Reserve two adjacent seats and return true if this was

* successfully done.

* If two adjacent seats could not be found, leave the state

* of the show unchanged, and return false.

* @return true if two adjacent seats were found, false

* otherwise

*/

public boolean twoTogether()

{ /* to be implemented in part (b) */ }

/** Return the lowest seat number in the specified row for a

* block of empty adjacent seats. If no such block exists,

* return -1.

* @param row the row number

* @param seatsNeeded the number of adjacent empty seats needed

* @return lowest seat number for a block of needed adjacent

* seats or -1 if no such block exists

*/

public int findAdjacent(int row, int seatsNeeded)

{ /* to be implemented in part (c) */ }

//There may be instance variables, constructors, and methods

//that are not shown.

}

(a) Write the Show method isAisleSeat, which should return true if the seat
with the specified row and seat number is an aisle seat, false otherwise.
Aisle seats are the first and the last columns of the two-dimensional array
representing the theater. For example, in the diagram shown above, if show
is a Show variable, here are some results of calling the isAisleSeatmethod.

Method call Return value

show.isAisleSeat(2,5) true

show.isAisleSeat(0,4) false

show.isAisleSeat(1,0) true

Complete method isAisleSeat below.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 462 — #476

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
462 Practice Exams

/** Returns true if the seat with the specified row and seat

* number is an aisle seat, false otherwise.

* @param row the row number

* @param seatNumber the seat number

* @return true if an aisle seat, false otherwise

*/

public boolean isAisleSeat (int row, int seatNumber)

(b) Write the Show method twoTogether, which reserves two adjacent seats and
returns true if this was successfully done. If it is not possible to find two
adjacent seats that are unoccupied, the method should leave the show un-
changed and return false. For example, suppose this is the state of a show.

[0] [1] [2] [3] [4] [5]

[0] 0 0 1 1 0 1

[1] 0 1 0 1 0 1

[2] 1 0 0 0 1 1

A call to twoTogether should return true, and the final state of the show
could be any one of the following three configurations.

[0] [1] [2] [3] [4] [5]

[0] 1 1 1 1 0 1

[1] 0 1 0 1 0 1

[2] 1 0 0 0 1 1

OR

[0] [1] [2] [3] [4] [5]

[0] 0 0 1 1 0 1

[1] 0 1 0 1 0 1

[2] 1 1 1 0 1 1

OR

[0] [1] [2] [3] [4] [5]

[0] 0 0 1 1 0 1

[1] 0 1 0 1 0 1

[2] 1 0 1 1 1 1

For the following state of a show, a call to twoTogether should return false

and leave the two-dimensional array as shown.

[0] [1] [2] [3] [4] [5]

[0] 0 1 0 1 1 0

[1] 1 1 0 1 0 1

[2] 0 1 1 1 1 1

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 463 — #477

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 463

Information repeated from the beginning of the question

public class Show

private int[][] seats

private final int SEATS_PER_ROW

private final int NUM_ROWS

public boolean isAisleSeat (int row, int seatNumber)

public boolean twoTogether()

public int findAdjacent(int row, int seatsNeeded)

Complete method twoTogether below.

/** Reserve two adjacent seats and return true if this was

* successfully done.

* If two adjacent seats could not be found, leave the state

* of the show unchanged, and return false.

* @return true if two adjacent seats were found, false

* otherwise

*/

public boolean twoTogether()

(c) Write the Show method findAdjacent, which finds the lowest seat number
in the specified row for a block of empty adjacent seats. If no such block
exists, the findAdjacent method should return -1. No changes should be
made to the state of the show, irrespective of the value returned.
For example, suppose the diagram of seats is as shown.

[0] [1] [2] [3] [4] [5]

[0] 0 1 1 0 0 0

[1] 0 0 0 0 1 1

[2] 1 0 0 1 0 0

The following table shows some examples of calling findAdjacent for show.

Method call Return value

show.findAdjacent(0,3) 3

show.findAdjacent(1,3) 0 or 1

show.findAdjacent(2,2) 1 or 4

show.findAdjacent(1,5) -1

Complete method findAdjacent below.

/** Return the lowest seat number in the specified row for a

* block of empty adjacent seats. If no such block exists,

* return -1.

* @param row the row number

* @param seatsNeeded the number of adjacent empty seats needed

* @return lowest seat number for a block of needed adjacent

* seats or -1 if no such block exists

*/

public int findAdjacent(int row, int seatsNeeded)

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 464 — #478

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
464 Practice Exams

2. A company sends a form letter to all of its potential customers. In order to per-
sonalize each letter, various tokens (symbols) in the form letter are replaced by
either the customer’s name, city, or state, depending on the token. A customer
can be represented by a Customer class, whose partial implementation is shown
below.

public class Customer

{

private String name;

private String city;

private String state;

/** @return the name of this customer */

public String getName()

{ return name; }

/** @return the city of this customer */

public String getCity()

{ return city; }

/** @return the state of this customer */

public String getState()

{ return state; }

//Constructor and other methods are not shown.

}

A FormLetter object has a list of lines that make up the letter, and a list of cus-
tomers who will receive the letter. In this question you will be asked to write two
methods of the FormLetter class, whose partial implementation is shown below.

public class FormLetter

{

/** The list of lines that make up this form letter */

private List<String> lines;

/** The list of customers */

private List<Customer> customers;

/** @return a copy of lines */

public List<String> makeCopy()

{

List<String> newLines = new ArrayList<String>();

for (String line: lines)

newLines.add(line);

return newLines;

}

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 465 — #479

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 465

/** Replace all occurrences of sub in line with replacement

* string, repl.

* @param line a String

* @param sub a substring to be replaced

* @param replacement the replacement string

* Precondition: sub is not a substring of repl,

* the replacement string.

* @return line with each occurrence of sub replaced by replacement

*/

public String replaceAll(String line, String sub, String repl)

{ /* to be implemented in part (a) */ }

/** Write letter for one customer, using personalized lines

* contained in customerLines.

* @param customerLines the personalized lines for one customer

*/

public void writeLetter(List<String> customerLines)

{ /* implementation not shown */ }

/** Creates and prints a personalized form letter for each

* customer in the customers list.

* Postcondition: In each customer letter:

* - every occurrence of "@" is replaced by the customer’s name;

* - every occurrence of "&" is replaced by the customer’s city;

* - every occurrence of "$" is replaced by the customer’s state.

* - A letter with the replacements is printed for each customer.

*/

public void createPersonalizedLetters()

{ /* to be implemented in part (b) */ }

//Constructors and other methods are not shown.

}

(a) Write the FormLetter method replaceAll, which examines a given string
and replaces all occurrences of a specified substring with a replacement
string. In writing your solution, you may not use the replace, replaceAll,
or replaceFirstmethods in the Java String class.
Suppose f is a FormLetter. The following table shows the result of calling
f.replaceAll(line,substring,replacement).

line substring replacement string returned

oh me oh my oh aah aah me aah my

sing to me a sin sin brin bring to me a brin

ooh la la ah oh ooh la la

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 466 — #480

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
466 Practice Exams

Complete method replaceAll below.

/** Replace all occurrences of sub in line with replacement

* string, repl.

* @param line a String

* @param sub a substring to be replaced

* @param replacement the replacement string

* Precondition: sub is not a substring of repl,

* the replacement string.

* @return line with each occurrence of sub replaced by replacement

*/

public String replaceAll(String line, String sub, String repl)

(b) Write the FormLetter method createPersonalizedLetters. For each cus-
tomer in the customers list, method createPersonalizedLetters should
create then print a letter that

• replaces all occurrences of @ in lines, with the customer’s name
• replaces all occurrences of & in lines, with the customer’s city
• replaces all occurrences of $ in lines, with the customer’s state

For example, suppose the first five lines in the form letter are:

Dear @,

If you buy a garden gnome you will

have the best-looking house in &,

heck, @, in the whole state of $!

@, @, @, don’t delay.

The letter generated for a customer Joan from Glendale, California, should
have these replacement lines:

Dear Joan,

If you buy a garden gnome you will

have the best-looking house in Glendale,

heck, Joan, in the whole state of California!

Joan, Joan, Joan, don’t delay.

In writing method createPersonalizedLetters, you must use the method
replaceAll that you wrote in part (a). Assume that replaceAll works as
specified, regardless of what you wrote in part (a).

Complete method createPersonalizedLetters below.

/** Creates and prints a personalized form letter for each

* customer in the customers list.

* Postcondition: In each customer letter:

* - every occurrence of "@" is replaced by the customer’s name;

* - every occurrence of "&" is replaced by the customer’s city;

* - every occurrence of "$" is replaced by the customer’s state.

* - A letter with the replacements is printed for each customer.

*/

public void createPersonalizedLetters()

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 467 — #481

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 467

3. A clothing store sells shoes, pants, and tops. The store also allows a customer
to buy an “outfit,” which consists of three items: one pair of shoes, one pair of
pants, and one top.
Each clothing item has a description and a price. The four types of clothing items
are represented by the four classes Shoes, Pants, Top, and Outfit. All four classes
implement the following ClothingItem interface.

public interface ClothingItem

{

/** @return the description of the clothing item */

String getDescription();

/** @return the price of the clothing item */

double getPrice();

}

The following diagram shows the relationship between the ClothingItem inter-
face and the Shoes, Pants, Top, and Outfit classes.

ClothingItem

<<interface>>

Shoes Pants Top Outfit

The store allows customers to create Outfit clothing items each of which in-
cludes a pair of shoes, pants, and a top. The description of the outfit consists of
the description of the shoes, pants, and top, in that order, separated by "/" and
followed by a space and "outfit". The price of an outfit is calculated as follows.
If the sum of the prices of any two items equals or exceeds $100, there is a 25%
discount on the sum of the prices of all three items. Otherwise there is a 10%
discount.
For example, an outfit consisting of sneakers ($40), blue jeans ($50), and a
T-shirt ($10), would have the name "sneakers/blue jeans/T-shirt outfit"

and a price of 0.90(40 + 50 + 10) = $90.00. An outfit consisting of
loafers ($50), cutoffs ($20), and dress-shirt ($60), would have the description
"loafers/cutoffs/dress-shirt outfit" and price 0.75(50+ 20+ 60)= $97.50.
Write the Outfit class that implements the ClothingItem interface. Your imple-
mentation must include a constructor that takes three parameters representing a
pair of shoes, pants, and a top.
The code segment below should have the following behavior.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 468 — #482

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
468 Practice Exams

Shoes shoes;

Pants pants;

Top top;

/* Code to initialize shoes, pants, and top */

ClothingItem outfit =

new Outfit (shoes, pants, top); //Compiles without error

ClothingItem outfit =

new Outfit (pants, shoes, top); //Compile-time error

ClothingItem outfit =

new Outfit (shoes, top, pants); //Compile-time error

Write your solution below.

4. A word creation game uses letter tiles, each of which has a letter and numerical
value printed on it. A partial implementation of the Tile class is shown below.

public class Tile

{

private String letter;

private int value;

/** @return the value on this Tile */

public int getValue()

{ return value; }

/** @return the letter on this Tile */

public String getLetter()

{ return letter; }

//Constructor and other methods are not shown.

}

All tiles for the word game are called the tile set, which is represented by the
TileSet class, whose partial implementation is shown below.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 469 — #483

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 469

public class TileSet

{

/** tiles contains all the tiles in the word game,

* both used and not-yet-used.

*/

private List<Tile> tiles;

/** unusedSize is the number of tiles that are not yet used. */

private int unusedSize;

/** Determines if there are still unused tiles.

* @return true if all the tiles have been used; false otherwise

*/

public boolean allUsed()

{ return unusedSize == 0; }

/** @return the number of unused tiles in this tile set */

public int getUnusedSize()

{ return unusedSize; }

/** Shuffles the tiles in the tile set, and

* resets unusedSize to the total number of tiles in the set.

*/

public void shuffle()

{ /* to be implemented in part (a) */ }

/** Get an unused tile from this tile set.

* @return an unused tile, or null if all tiles have been used

*/

public Tile getNewTile()

{ /* implementation not shown */ }

//Constructors and other methods are not shown.

}

(a) Write the shuffle method for the TileSet class. Your method should use
the following algorithm.

for k starting at the end of the tiles list and going down to 1:
pick a random index in 0,1,2,...,k

swap the tiles at position index and position k

Reset unusedSize to the number of tiles in the tile set.

Complete method shuffle below.

/** Shuffles the tiles in the tile set, and resets

* unusedSize to the total number of tiles in the set.

*/

public void shuffle()

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 470 — #484

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
470 Practice Exams

For parts (b) and (c) you will write methods from the Player class, whose partial
implementation is shown below. A player in the word game has NUM_LETTERS

tiles in front of her. After she makes a word, she helps herself to unused tiles to
maintain NUM_LETTERS tiles, if possible.

public class Player

{

/** NUM_LETTERS is the number of letter tiles a player should

* have (if tiles have not yet all been used) at the start of

* her turn. */

public static final int NUM_LETTERS = < some integer >;

/** playerTiles is the list of tiles for this player. */

private List<Tile>playerTiles;

/** Adds a sufficient number of unused tiles from tileSet t

* to playerTiles so that this player has NUM_LETTERS tiles.

* If there are insufficient unused tiles, the player should

* take all of the remaining available tiles.

* Precondition: playerTiles.size() < NUM_LETTERS.

* Postcondition: playerTiles.size() <= NUM_LETTERS.

* @param t the tile set for the word game

*/

public void replaceTiles(TileSet t)

{ /* to be implemented in part (b) */ }

/** Returns the score a player receives for using tiles from

* his playerTiles at his turn. The score is the sum of values

* on each tile used. Indexes of tiles used are contained in

* the indexes array. If index[0] is -1, the player

* has used no tiles at his turn and the method returns a

* score of 0. If the player uses all of the tiles in

* playerTiles, a bonus of 20 points is added to his score.

* @param indexes the array of positions of tiles in

* playerTiles that the player uses at his turn

* Precondition:
* - playerTiles contains NUM_LETTERS tiles.

* - indexes[0 .. n] is sorted in increasing order,

* n < NUM_LETTERS.

*/

public int getWordScore(int[] indexes)

{ /* to be implemented in part (c) */ }

}

(b) Write the Player method replaceTiles. This method should, if possible,
add unused tiles to the player’s playerTiles list, until playerTiles contains
NUM_LETTERS tiles. If there are insufficient unused tiles in the tile set, the
player should take all of the remaining tiles.

GO ON TO THE NEXT PAGE.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 471 — #485

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Practice Exam Three 471

Complete method replaceTiles below.

/** Adds a sufficient number of unused tiles from tileSet t

* to playerTiles so that this player has NUM_LETTERS tiles.

* If there are insufficient unused tiles, the player should

* take all of the remaining available tiles.

* Precondition: playerTiles.size() < NUM_LETTERS.

* Postcondition: playerTiles.size() <= NUM_LETTERS.

* @param t the tile set for the word game

*/

public void replaceTiles(TileSet t)

(c) Write the Player method getWordScore. This method returns the total
of the values of tiles in playerTiles whose positions are indicated in the
indexes parameter. If indexes contains {0,1,4}, this means that the player
will use the tiles at positions 0, 1, and 4 in his playerTiles list at his turn,
and his score will be the sum of values of those tiles. If the player uses all of
his tiles at his turn, a bonus of 20 points is added to his score. If the only
value in the indexes array is -1, this means that the player passes at his turn,
and getWordScore should return a value of 0.
For example, suppose NUM_LETTERS is 5, and playerTiles has the following
state before the method call.

0 1 2 3 4

"O" "C" "V" "E" "N"

1 3 4 1 1

State of indexes array Result of getWordScore(indexes)
{0,2,3,4} 7

{0,1,2,3,4} 30

{0,1,4} 5

{-1} 0

Complete method getWordScore below.

/** Returns the score a player receives for using tiles from

* his playerTiles at his turn. The score is the sum of values

* on each tile used. Indexes of tiles used are contained in

* the indexes array. If index[0] is -1, the player

* has used no tiles at his turn and the method returns a

* score of 0. If the player uses all of the tiles in

* playerTiles, a bonus of 20 points is added to his score.

* @param indexes the array of positions of tiles in

* playerTiles that the player uses at his turn

* Precondition:
* - playerTiles contains NUM_LETTERS tiles.

* - indexes[0 .. n] is sorted in increasing order,

* n < NUM_LETTERS.

*/

public int getWordScore(int[] indexes)

END OF EXAMINATION

✐

✐

“ap” — 2014/11/4 — 11:10 — page 472 — #486

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
472 Practice Exams

ANSWER KEY (Section I)

1. E

2. C

3. C

4. D

5. A

6. A

7. C

8. E

9. A

10. D

11. C

12. E

13. C

14. B

15. E

16. A

17. E

18. B

19. C

20. E

21. D

22. C

23. D

24. E

25. A

26. D

27. D

28. A

29. E

30. A

31. A

32. B

33. D

34. C

35. A

36. D

37. B

38. B

39. E

40. B

ANSWERS EXPLAINED

Section I

1. (E) The string parameter in the line of code uses two escape characters:
\", which means print a double quote.
\n, which means print a newline character (i.e., go to the next line).

2. (C) The intent of the programmer is to have overloaded getValue methods
in SomeClass. Overloaded methods have different signatures, where the signa-
ture of a method includes the name and parameter types only. Thus, the sig-
nature of the original method is getValue(int). The signature in header I is
getValue(). The signature in header II is getValue(int). The signature in
header III is getValue(double). Since the signature in header II is the same as
that of the given method, the compiler will flag it and say that the method al-
ready exists in SomeClass. Note: The return type of a method is not included in
its signature.

3. (C) The expression (int)(Math.random() * 49) produces a random integer from
0 through 48. (Note that 49 is the number of possibilities for num.) To shift this
range from 2 to 50, add 2 to the expression.

4. (D) Short-circuit evaluation of the boolean expression will occur. The expres-
sion (num != 0) will evaluate to false, which makes the entire boolean ex-
pression false. Therefore the expression (score/num > SOME_CONSTANT) will
not be evaluated. Hence no division by zero will occur, and there will be no
ArithmeticException thrown. When the boolean expression has a value of
false, only the else part of the statement, statement2, will be executed.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 473 — #487

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Answers Explained 473

5. (A) The values of k are, consecutively, 4, 3, 2, and 1. The values of randPos

are, consecutively, 3, 2, 0, and 0. Thus, the sequence of swaps and corresponding
states of nums will be:

swap nums[4] and nums[3] 8 7 6 4 5

swap nums[3] and nums[2] 8 7 4 6 5

swap nums[2] and nums[0] 4 7 8 6 5

swap nums[1] and nums[0] 7 4 8 6 5

Thus, the element in nums[2] is 8.

6. (A) A matrix is stored as an array of arrays, that is, each row is an array. There-
fore it is correct to call a method with an array parameter for each row, as is done
in Segment I. Segment II fails because mat is not an array of columns. The seg-
ment would cause an error, since mat[col] refers to a row, not a column. (If the
number of rows were less than the number of columns, the method would throw
an ArrayIndexOutOfBoundsException. If the number of rows were greater than
the number of columns, the method would correctly assign the value 100 to the
first n rows, where n is the number of columns. The rest of the rows would retain
the values before execution of the method.) Segment III fails because you cannot
assign new elements in a for-each loop. The matrix remains unchanged.

7. (C) Declarations I and II fail because you can’t create an instance of an abstract
class. Additionally, declaration I fails this test: Cereal is-a WheatCereal? No.
Notice that declaration III passes this test: RiceCereal is-a Cereal? Yes.

8. (E) All satisfy the is-a test! Class2 is-a Class1. Class3 is-a Class2. Class3 is-a
Class1. Note: Since Class3 is a subclass of Class2, it automatically implements
any interfaces implemented by Class2, its superclass.

9. (A) Method call I works because Class3 inherits all the methods of Class2.
Method call II fails because Class2, the superclass, does not inherit the meth-
ods of Class3, its subclass. Method call III uses a parameter that fails the is-a test:
ob2 is not a Class3, which the parameter requires.

10. (D) After each execution of the loop body, n is divided by 2. Thus, the loop will
produce output when n is 50, 25, 12, 6, 3, and 1. The final value of n will be 1 / 2,
which is 0, and the test will fail.

11. (C) Statement III will cause an IndexOutOfBoundsException because there is no
slot 4. The final element, "Luis", is in slot 3. Statement I is correct: It replaces
the string "Harry" with the string "6". It may look peculiar in the list, but the
syntax is correct. Statement II looks like it may be out of range because there is
no slot 4. It is correct, however, because you must be allowed to add an element
to the end of the list.

12. (E) The effect of the given algorithm is to raise n to the 8th power.
When i = 1, the result is n * n= n2.
When i = 2, the result is n2 * n2 = n4.
When i = 3, the result is n4 * n4 = n8.

13. (C) The method traverses nums, starting at position 0, and returns the current po-
sition the first time it finds an odd value. This implies that all values in positions
0 through the current index− 1 contained even numbers.

14. (B) Since n == 6 fails the two base case tests, method call mystery(6) returns
6 + mystery(5). Since 5 satisfies the second base case test, mystery(5) returns 5,
and there are no more recursive calls. Thus, mystery(6)= 6 + 5 = 11.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 474 — #488

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
474 Practice Exams

15. (E) In order for /* body of loop */ not to be executed, the test must be false the
first time it is evaluated. A compound OR test will be false if and only if both
pieces of the test are false. Thus, choices B and C are insufficient. Choice D fails
because it guarantees that both pieces of the test will be true. Choice A is wrong
because /* body of loop */ may be executed many times, until the computer runs
out of memory (an infinite loop!).

16. (A) When p.act() is called, the act method of Singer is executed. This is
an example of polymorphism. The first line prints rise. Then super.act()

goes to the act method of Performer, the superclass. This prints bow, then
calls perform(). Again, using polymorphism, the perform method in Singer

is called, which prints aria. Now, completing the act method of Singer, encore
is printed. The result?

rise bow aria encore

17. (E) Statement I is false: The Sedan, StationWagon, and SUV classes should all be
subclasses of Car. Each one satisfies the is-a Car relationship. Statement II is true:
The main task of the Inventory class should be to keep an updated list of Car
objects. Statement III is true: A class is independent of another class if it does not
require that class to implement its methods.

18. (B) The Inventory class is responsible for maintaining the list of all cars on the
lot. Therefore methods like addCar, removeCar, and displayAllCarsmust be the
responsibility of this class. The Car class should contain the setColor, getPrice,
and displayCar methods, since all these pertain to the attributes of a given Car.

19. (C) Each subclass may contain additional attributes for the particular type of
car that are not in the Car superclass. Since displayCar displays all features of a
given car, this method should be overridden to display the original plus additional
features.

20. (E) The expression word.indexOf("flag") returns the index of the first occur-
rence of "flag" in the calling string, word. Thus, x has value 3. (Recall that the
first character in word is at index 0.) The method call word.substring(0, x) is
equivalent to word.substring(0, 3), which returns the substring in word from
0 to 2, namely "con". The character at index 3 is not included.

21. (D) A program that uses an abstract class must have at least one subclass that is
not abstract, since instances of abstract classes cannot be created. Thus, choice E
is false. Choice A is false: An abstract class can contain any number of private
instance variables. Choice B is wrong—for example v1 and v2 could be initialized
in a default constructor (constructor with no parameters). Choice C is incorrect:
The point of an abstract class is that no instances of it will be created. The class
does not need to contain any abstract methods.

22. (C) If the responses array contained an invalid value like 12, the program would
attempt to add 1 to freq[12]. This is out of bounds for the freq array.

23. (D) Implementation I calls super.computePay(), which is equivalent to the
computePay method in the Employee superclass. The method returns the quan-
tity (salary - taxWithheld). The BONUS is then correctly added to this expres-
sion, as required. Implementation III correctly uses the public accessor meth-
ods getSalary and getTax that the Consultant class has inherited. Note that
the Consultant class does not have direct access to the private instance variables
salary and taxWithheld. Implementation II incorrectly returns the salary plus

✐

✐

“ap” — 2014/11/4 — 11:10 — page 475 — #489

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Answers Explained 475

BONUS—there is no tax withheld. The expression super.computePay() returns a
value equal to salary minus tax. But this is neither stored nor included in the
return statement.

24. (E) Note that p is declared to be of type Employee, and the Employee class
does not have a getPayFraction method. To avoid the error, p must be cast
to PartTimeEmployee as follows:

double g = ((PartTimeEmployee) p).getPayFraction();

25. (A) The code does exactly what it looks like it should. The writePayInfo pa-
rameter is of type Employee and each element of the empList array is-a Employee

and therefore does not need to be downcast to its actual instance type. There is
no ClassCastException (choice C) since nowhere is there an attempt made to
cast an object to a class of which it is not an instance. None of the array ele-
ments is null; therefore, there is no NullPointerException (choice B). Choice D
won’t happen because the getName method is inherited by both the Consultant

and PartTimeEmployee classes. Choice E would occur if the Employee superclass
were abstract, but it’s not.

26. (D) Segment I is incorrect because num is not an index in the loop: It is a value
in the array. Thus, the correct test is if (num > 0), which is correctly used in
segment II. Segment III is a regular for loop, exactly equivalent to the given while

loop.

27. (D) The first for loop places value in the top and bottom rows of the defined
rectangle. The second for loop fills in the remaining border elements on the
sides. Note that the top + 1 and bottom - 1 initializer and terminating condi-
tions avoid filling in the corner elements twice.

28. (A) Statement I is false: An interface may not be instantiated, but a class that
implements the interface can be instantiated, provided it is not an abstract class.
Statement II is false: Any subclass of SomeClass will automatically implement
the interface, but not necessarily the superclass. For example, suppose a super-
class Animal has a subclass Bird. And suppose Bird implements CanFly, which
is an interface with a single method, fly. Clearly, Animal shouldn’t implement
CanFly—not all animals fly. Statement III appears to be true: This is what it
means for a class to implement an interface—it’s a promise that the class will con-
tain all methods of that interface. This is not true, however, if SomeClass is an
abstract class. Any method of the interface that is not implemented in SomeClass

then automatically becomes an abstract method of SomeClass and must be im-
plemented by any nonabstract subclass of SomeClass.

29. (E) Eliminate choices A and B: When comparing Book objects, you cannot use
simple inequality operators; you must use compareTo. For the calling object to be
less than the parameter object, use the less than 0 test (a good way to remember
this!).

30. (A) Method removeNegs will not work whenever there are consecutive negative
values in the list. This is because removal of an element from an ArrayList causes
the elements to the right of it to be shifted left to fill the “hole.” The index in
the given algorithm, however, always moves one slot to the right. Therefore in
choice A, when -1 is removed, -2 will be passed over, and the final list will be
6 -2 5.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 476 — #490

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
476 Practice Exams

31. (A) If the list is sorted, a binary search is the most efficient algorithm to use.
Binary search chops the current part of the array being examined in half, until
you have found the element you are searching for, or there are no elements left
to look at. In the worst case, you will need to divide by 2 seven times:

120/2→ 60

60/2→ 30

30/2→ 15

15/2→ 7

7/2→ 3

3/2→ 1

1/2→ 0

32. (B) For a sequential search, all n elements will need to be examined. For a binary
search, the array will be chopped in half a maximum of log2 n times. When the
target is in the first position of the list, a sequential search will find it in the
first comparison. The binary search, which examines a middle element first,
will not. Condition I is a worst case situation for both the sequential search
and binary search. Condition III is approximately the middle of the list, but it
won’t be found on the first try of the binary search. (The first try examines
arr[n/2].) Still, the target will be located within fewer than log n tries, whereas
the sequential search will need more than n/2 tries.

33. (D) The remove method removes from arr the element arr[index]. It
does this by copying all elements from arr[0] up to but not including
arr[index] into array b. Thus, b[k] == arr[k] for 0 <= k < index is
true. Then it copies all elements from arr[index + 1] up to and including
arr[arr.length - 1] into b. Since no gaps are left in b, b[k] == arr[k + 1]

for index <= k < arr.length - 1. The best way to see this is with a small ex-
ample. If arr is 2, 6, 4, 8, 1, 7, and the element at index 2 (namely the 4) is to be
removed, here is the picture:

0 1 2 3 4 5

arr −→ 2 6 4 8 1 7

0 1 2 3 4

b −→ 2 6 8 1 7

b[0] == arr[0]

b[1] == arr[1]

b[2] == arr[3]

b[3] == arr[4]

b[4] == arr[5]

Notice that arr.length is 6, but k ends at 4.

34. (C) 2AFhex = (F)(160)+ (A)(161)+ (2)(162)

= (15)(1)+ (10)(16)+ (2)(256)

= 15+ 160+ 512

= 687dec

35. (A) Choice A is illegal because you cannot create an instance of an abstract class.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 477 — #491

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Answers Explained 477

36. (D) The statement

double value = Math.random();

generates a random double in the range 0 ≤ value < 1. Since random doubles
are uniformly distributed in this interval, 45 percent of the time you can expect
value to be in the range 0≤ value< 0.45. Therefore, a test for value in this range
can be a test for whether the serve of a WeakPlayerwent in. Since Math.random()
never returns a negative number, the test in implementation II, value < 0.45,
is sufficient. The test in implementation I would be correct if || were changed
to && (“or” changed to “and”—both parts must be true). Implementation III also
works. The expression

(int) (Math.random() * 100)

returns a random integer from 0 to 99, each equally likely. Thus, 45 percent of
the time, the integer val will be in the range 0 ≤ val≤ 44. Therefore, a test for
val in this range can be used to test whether the serve was in.

37. (B) Choice B is fine: b, the Beginner, is-a WeakPlayer. Choices A and C will
each cause a ClassCastException to be thrown: You can’t cast a GoodPlayer to
a WeakPlayer, and you can’t cast a WeakPlayer to a Beginner. Choices D and E
will each cause a compile-time error: The parameter must be of type WeakPlayer,
but w and b are declared to be of type TennisPlayer. Each of these choices can be
corrected by casting the parameter to WeakPlayer.

38. (B) The method copies the elements from columns 3, 4, and 5 into columns
2, 1, and 0, respectively, as if there were a vertical mirror down the middle of
the matrix. To see this, here are the values for the given matrix: width = 6,
width/2 = 3, numRows = 2. The variable row goes from 0 to 1 and column goes
from 0 to 2. The element assignments are

mat[0][0] = mat[0][5]

mat[0][1] = mat[0][4]

mat[0][2] = mat[0][3]

mat[1][0] = mat[1][5]

mat[1][1] = mat[1][4]

mat[1][2] = mat[1][3]

39. (E) In choice E, findMost returns the value 5. This is because count has not
been reset to 1, so that when 5 is encountered, the test count>maxCountSoFar is
true, causing mostSoFar to be incorrectly re-assigned to 5. In choices A, B, and
C, the outer while loop is not entered again, since a second run of equal values
doesn’t exist in the array. So mostSoFar comes out with the correct value. In
choice D, when the outer loop is entered again, the test count>maxCountSoFar
just happens to be true anyway and the correct value is returned. The algorithm
fails whenever a new string of equal values is found whose length is shorter than
a previous string of equal values.

40. (B) The count variable must be reset to 1 as soon as index is incremented in the
outer while loop, so that when a new run of equal values is found, count starts
out as 1.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 478 — #492

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
478 Practice Exams

Section II

1. (a) public boolean isAisleSeat (int row, int seatNumber)

{

return seatNumber == 0 || seatNumber == SEATS_PER_ROW - 1;

}

(b) public boolean twoTogether()

{

for (int r = 0; r < NUM_ROWS; r++)

for (int c = 0; c < SEATS_PER_ROW-1; c++)

if (seats[r][c] == 0 && seats[r][c+1] == 0)

{

seats[r][c] = 1;

seats[r][c+1] = 1;

return true;

}

return false;

}

(c) public int findAdjacent(int row, int seatsNeeded)

{

int index = 0, count = 0, lowIndex = 0;

while (index < SEATS_PER_ROW)

{

while (index < SEATS_PER_ROW && seats[row][index] == 0)

{

count++;

index++;

if (count == seatsNeeded)

return lowIndex;

}

count = 0;

index++;

lowIndex = index;

}

return -1;

}

NOTE

• In part (a), the seat numbers go from 0 to SEATS_PER_ROW - 1.
• In part (b), you need the test c < SEATS_PER_ROW-1, because when you

refer to seats[r][c+1], you must worry about going off the end of the
row and causing an ArrayIndexOutOfBounds exception.
• In part (c), every time you increment index, you need to test that it is in

range. This is why you need this test twice: index < SEATS_PER_ROW.
• In part (c), every time you reset the count, you need to reset the lowIndex,

because this is the value you’re asked to return.
• In parts (b) and (c), the final return statements are executed only if all

rows in the show have been examined unsuccessfully.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 479 — #493

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Answers Explained 479

2. (a) public String replaceAll(String line, String sub, String repl)

{

int pos = line.indexOf(sub);

while (pos >= 0)

{

line = line.substring(0, pos) + repl +

line.substring(pos + sub.length());

pos = line.indexOf(sub);

}

return line;

}

(b) public void createPersonalizedLetters()

{

for (int i = 0; i < customers.size(); i++)

{

List<String> tempLines = makeCopy();

Customer c = customers.get(i);

for (int j = 0; j < tempLines.size(); j++)

{

tempLines.set(j,

replaceAll(tempLines.get(j), "@", c.getName()));

tempLines.set(j,

replaceAll(tempLines.get(j), "&", c.getCity()));

tempLines.set(j,

replaceAll(tempLines.get(j), "$", c.getState()));

}

writeLetter(tempLines);

}

}

NOTE

• In part (a), each time you encounter sub in line, you simply create a new
line that concatenates the “before” substring, the replacement, and the
“after” substring. This guarantees termination of the loop: Eventually
sub won’t be found in line because all occurrences have been replaced,
and line.indexOf(sub)will return -1 (sub not found in line).
• In part (b), you need a nested loop: for each customer, loop through all

the lines and do the replacements.
• In part (b), one of the tricky lines of code is

List<String> tempLines = makeCopy();

You need a fresh, unchanged copy of lines for each customer. If, by
mistake, you use the line

List<String> tempLines = lines;

then tempLines and lines will be the same reference, so any changes to
tempLineswill also be made to lines, and the second (and all subsequent)
customers won’t have a fresh copy of lines with the tokens. Instead,
lines will contain the first customer’s information.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 480 — #494

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3
480 Practice Exams

3. public class Outfit implements ClothingItem

{

private Shoes shoes;

private Pants pants;

private Top top;

public Outfit (Shoes aShoes, Pants aPants, Top aTop)

{

shoes = aShoes;

pants = aPants;

top = aTop;

}

public String getDescription()

{

return shoes.getDescription() + "/" + pants.getDescription()

+ "/" + top.getDescription() + " outfit";

}

public double getPrice()

{

if (shoes.getPrice() + pants.getPrice() >= 100

||shoes.getPrice() + top.getPrice() >= 100

||top.getPrice() + pants.getPrice() >= 100)

return 0.75 * (shoes.getPrice() + pants.getPrice() +

top.getPrice());

else

return 0.90 * (shoes.getPrice() + pants.getPrice() +

top.getPrice());

}

}

NOTE

• To access the price and descriptions of items that make up an outfit, your
class needs to have variables of type Shoes, Pants, and Top.

4. (a) public void shuffle()

{

for (int k = tiles.size() - 1; k > 0; k--)

{

int randIndex = (int) (Math.random() * (k + 1));

Tile temp = tiles.get(k);

tiles.set(k, tiles.get(randIndex));

tiles.set(randIndex, temp);

}

unusedSize = tiles.size();

}

✐

✐

“ap” — 2014/11/4 — 11:10 — page 481 — #495

✐

✐

✐

✐

✐

✐

P
ra
ct
ic
e
E
xa
m

3

Answers Explained 481

(b) public void replaceTiles(TileSet t)

{

int numTiles = NUM_LETTERS - playerTiles.size();

if (numTiles <= t.getUnusedSize())

{

for (int i = 1; i <= numTiles; i++)

playerTiles.add(t.getNewTile());

}

else

{

for (int i = 1; i <= t.getUnusedSize(); i++)

playerTiles.add(t.getNewTile());

}

}

Alternatively

while (NUM_LETTERS > playerTiles.size() && !t.allUsed())

playerTiles.add(t.getNewTile());

(c) public int getWordScore(int[] indexes)

{

if (indexes[0] == -1)

return 0;

int total = 0;

if (indexes.length == NUM_LETTERS)

total += 20;

for (int i = 0; i < indexes.length; i++)

{

total += playerTiles.get(indexes[i]).getValue();

}

return total;

}

NOTE

• In part (a), the line

int randIndex = (int) (Math.random() * (k + 1));

returns a random integer in the range 0,1,2,...,k.
• In part (b), there are two things to check:

1. How many new tiles does the player need?
2. Are there enough unused tiles available?

• In part (c), notice that indexes[i] are the positions of the tiles whose scores
you need to access.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 482 — #496

✐

✐

✐

✐

✐

✐

Appendix: Glossary of

Useful Computer Terms

I hate definitions.
—Benjamin Disraeli, Vivian Grey (1826)

API library: Applications Program Interface library. A library of classes for use in
other programs. The library provides standard interfaces that hide the details of the
implementations.

Applet: A graphical Java program that runs in a web browser or applet viewer.

Application: A stand-alone Java program stored in and executed on the user’s local
computer.

Binary number system: Base 2.

Bit: From “binary digit.” Smallest unit of computer memory, taking on only two
values, 0 or 1.

Buffer: A temporary storage location of limited size. Holds values waiting to be used.

Byte: Eight bits. Similarly, megabyte (MB, 106 bytes) and gigabyte (GB, 109 bytes).

Bytecode: Portable (machine-independent) code, intermediate between source code and
machine language. It is produced by the Java compiler and interpreted (executed) by
the Java Virtual Machine.

Cache: A small amount of “fast” memory for the storage of data. Typically, the most re-
cently accessed data from disk storage or “slow” memory is saved in the main memory
cache to save time if it’s retrieved again.

Compiler: A program that translates source code into object code (machine language).

CPU: The central processing unit (computer’s brain). It controls the interpretation and
execution of instructions. It consists of the arithmetic/logic unit, the control unit, and
some memory, usually called “on-board memory” or cache memory. Physically, the
CPU consists of millions of microscopic transistors on a chip.

Debugger: A program that helps find errors by tracing the values of variables in a
program.

Decimal number system: Base 10.

GUI: Graphical user interface.

Hardware: The physical components of computers. These are the ones you can touch,
for example, the keyboard, monitor, printer, CPU chip.

482

✐

✐

“ap” — 2014/11/4 — 11:10 — page 483 — #497

✐

✐

✐

✐

✐

✐

Glossary of Useful Computer Terms 483

Hertz (Hz): One cycle per second. It refers to the speed of the computer’s internal
clock and gives a measure of the CPU speed. Similarly, megahertz (MHz, 106 Hz) and
gigahertz (GHz, 109 Hz).

Hexadecimal number system: Base 16.

High-level language: A human-readable programming language that enables instruc-
tions that require many machine steps to be coded concisely, for example, Java, C++,
Pascal, BASIC, FORTRAN.

HTML: Hypertext Markup Language. The instructions read by web browsers to for-
mat web pages, link to other websites, and so on.

IDE: Integrated Development Environment. Provides tools such as an editor, compiler,
and debugger that work together, usually with a graphical interface. Used for creating
software in a high-level language.

Interpreter: A program that reads instructions that are not in machine language and
executes them one at a time.

Javadoc: A program that extracts comments from Java source files and produces docu-
mentation files in HTML. These files can then be viewed with a web browser.

JavaScript: (Not to be confused with Java, the programming language.) A dynamic
programming language most commonly used as part of web browsers.

JVM (Java Virtual Machine): An interpreter that reads and executes Java bytecode on
any local machine.

Linker: A program that links together the different modules of a program into a single
executable program after they have been compiled into object code.

Low-level language: Assembly language. This is a human-readable version of machine
language, where each machine instruction is coded as one statement. It is translated
into machine language by a program called an assembler. Each different kind of CPU
has its own assembly language.

Mainframe computer: A large computer, typically used by large institutions, such as
government agencies and big businesses.

Malware: (Short for malicious software.) Any software designed to disrupt computer
operation or gain access to private computer systems. For example, viruses, spyware,
etc.

Microcomputer: Personal computer.

Minicomputer: Small mainframe.

Modem: A device that connects a computer to a phone line or TV cable.

Network: Several computers linked together so that they can communicate with each
other and share resources.

Object code: Machine language. Produced by compiling source code.

Octal number system: Base 8.

Operating system: A program that controls access to and manipulation of the various
files and programs on the computer. It also provides the interface for user interaction
with the computer. Some examples: Windows, MacOS, and Linux.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 484 — #498

✐

✐

✐

✐

✐

✐

484 Appendix: Glossary of Useful Computer Terms

Primary memory: RAM. This gets erased when you turn off your computer.

RAM: Random Access Memory. This stores the current program and the software to
run it.

ROM: Read Only Memory. This is permanent and nonerasable. It contains, for ex-
ample, programs that boot up the operating system and check various components of
the hardware. In particular, ROM contains the BIOS (Basic Input Output System)—a
program that handles low-level communication with the keyboard, disk drives, and so
on.

SDK: Sun’s Java Software Development Kit. A set of tools for developing Java software.

Secondary memory: Hard drive, disk, magnetic tapes, CD-ROM, and so on.

Server: The hub of a network of computers. Stores application programs, data, mail
messages, and so on, and makes them available to all computers on the network.

Software: Computer programs written in some computer language and executed on
the hardware after conversion to machine language. If you can install it on your hard
drive, it’s software (e.g., programs, spreadsheets, word processors).

Source code: A program in a high-level language like Java, C++, Pascal, or FORTRAN.

Swing: A Java toolkit for implementing graphical user interfaces.

Transistor: Microscopic semiconductor device that can serve as an on-off switch.

URL: Uniform Resource Locator. An address of a web page.

USB flash drive: A removable and rewritable device that fits into a USB port of a
computer.

Virus: A computer program that can replicate itself and spread from one computer to
another. A form of malware.

Workstation: Desktop computer that is faster and more powerful than a microcom-
puter.

✐

✐

“ap” — 2014/11/4 — 11:10 — page 485 — #499

✐

✐

✐

✐

✐

✐

Index

Symbols
! operator, 65
!= operator, 64
*= operator, 66
+ operator

concatenation, 178
++ operator, 66
+= operator, 66
-- operator, 66
-= operator, 66
. operator, 97
/ operator, 63
/= operator, 66
< operator, 64
<= operator, 64
== operator, 64
> operator, 64
>= operator, 64
% operator, 63
%= operator, 66
&& operator, 65
|| operator, 65

A
abs method, 183
abstract, 142
abstract class, 142, 355

vs. interface, 148
abstract method, 142, 144, 356
access specifier, 95
accessor, 96
actual parameter, 103
add method

of ArrayList, 244
of List, 243, 244

algorithm, 213, 219
average case, 220
best case, 220
efficiency, 220, 240
worst case, 220

aliasing, 102
AP exam, xi

free-response section, xi, xii
hints for taking, xii
information, xi
mark-sense sheet, xi
multiple-choice section, xi, xii
raw score, xi
Section I, xi
Section II, xi

AP Java subset, xi, 60, 67, 75
APCS labs, see labs

API library, 482
applet, 59, 482
application, 59, 482
argument, 103
arithmetic operators, 63
ArithmeticException, 75
array, 233–254

as parameter, 235
initialization, 234
initializer list, 234, 250
length, 234
of objects, 239
one-dimensional, 233
shuffling, 354
traversing, 235, 245, 251, 356
two-dimensional, 249, 356

ArrayIndexOutOfBoundsException,
75, 233, 250

ArrayList<E> class, 241, 242, 244
methods of, 244
vs. array, 241

assertion, 219
assignment operators, 66
auto-boxing, 183, 242
average case, 220

B
backslash \, 68
base case, 291
behavior, 92
best case, 220
binary number, 62, 356, 357
binary search, 329
bit, 482
block, 100
boolean, 60
boolean expression, 64

compound, 65
short-circuit evaluation, 65

bottom-up development, 212, 219
buffer, 482
bug, 209
built-in type, 60
byte, 482
byte, 61
bytecode, 58, 482

C
cache, 482
casting, 60, 63, 140
CD-ROM, optional, xiii

chaining
of assignment statements, 66

chatbot, see Magpie lab
class, 92–110

abstract, 142, 356
collaborator, 212
independent, 212
instance, 93
wrapper, 110, 180

class method, 97
ClassCastException, 75, 142, 146,

181, 242
classes

ArrayList<E>, 241, 242, 244
Double, 182
Integer, 181
Math, 183
Object, 174
Position, 194
String, 177, 180

client program, 94
collaborator class, 212
Collection<E> interface, 242
collections

and generics, 242
and iterators, 247

Collections API library, 241
College Board web site, 57
Comparable, 145
compareTo method, 64, 146, 178, 181,

182
compile-time error, 209, 219
compiler, 58, 482
composition relationship, 211, 219
compound assignment operator, 66
compound boolean expression, 65
concatenation operator, 178
constant, 94
constructor, 95, 135, 354

default, 95, 135, 136
container class, 241
control structures, 69–74

decision-making, 69–70
iteration, 71–74

CPU, 482

D
dangling else, 70
data field, 93
data structure, 219
debugger, 482
debugging, 207, 208

485

✐

✐

“ap” — 2014/11/4 — 11:10 — page 486 — #500

✐

✐

✐

✐

✐

✐

486 Index

default constructor, 95, 135, 136
default method, 144
division

floating-point, 63
integer, 63

dot operator, 97
Double, 182

methods of, 182
double, 60
double quote \", 68
doubleValue method, 182
downcasting, 140
driver class, 219
dummy parameter, 103
dynamic binding, 138

E
early binding, 138
efficiency, 220, 240
Elevens lab, 353–356
encapsulation, 93, 211, 219
equals method, 176, 181, 182
equals vs. ==, 179
erasure, 242
error, 74, 209

compile-time, 209
intent, 209
logic, 209
overflow, 60
round-off, 65, 147
run-time, 209
syntax, 209

escape sequence, 68
exam, see AP exam
exception, 74, 209, 219

ArithmeticException, 75
ArrayIndexOutOfBoundsException,

75, 233, 250
checked, 75
ClassCastException, 75, 142,

146, 181, 242
IllegalArgumentException, 75
IllegalStateException, 75, 249
IndexOutOfBoundsException,

75, 180, 244, 245
NoSuchElementException, 75,

247, 248
NullPointerException, 75, 103,

180, 243
StringIndexOutOfBoundsException,

180
unchecked, 75

explicit parameter, 100
exponential run time, 295
extended if statement, 70, 351
extends, 132, 142, 145, 354

F
final variable, 63, 94
float, 62
floating-point division, 63

floating-point numbers
comparison of, 65
storage of, 61

for loop, 71
for-each loop, ix, 72, 235, 245, 251

in 2-D array, 251, 356
in array, 235
in ArrayList, 245

formal parameter, 103

G
generics, 242

ArrayList<E>, 242
Iterator<E>, 244
List<E>, 242, 243

get method
of ArrayList, 244
of List, 243

GUI, 482

H
hardware, 482
has-a relationship, 211
hashCode method, 176
hasNext method

of Iterator, 247
header, 95
helper method, 295
Hertz (Hz), 483
hexadecimal number, 12, 62, 357, 483
high-level language, 483
hints

for taking exam, xii
for using this book, xiii

HTML, 483

I
IDE, 483
identifier, 60
if statement, 69
if...else statement, 69, 353
IllegalArgumentException, 75
IllegalStateException, 75, 249
immutable object, 177, 183
implements, 145
implicit parameter, 100
import statement, 58
increment operator, 66
independent class, 212, 219
indexOf method, 180, 352
IndexOutOfBoundsException, 75,

180, 244, 245
infinite loop, 73
infinite recursion, 292
Infinity, 62
information hiding, 94, 219
inheritance, 131–149, 356
inheritance hierarchy, 131, 219
inheritance relationship, 211, 219
inherited instance variable, 135
inherited method, 135
initialization, 103, 234

initializer list, 234, 250
input/output, 67
insertion sort, 325, 328
instance method, 97
instance variable, 59, 93

inherited, 135
protected, 135

int, 60
Integer, 181

methods of, 181
integer division, 63
intent error, 209
interface, 144–148, 356

Collection<E>, 242
Comparable, 145
Iterator<E>, 247
List<E>, 242, 243
vs. abstract class, 148

interpreter, 483
intValue method, 181
is-a relationship, 132, 137, 211
iteration, 71–74

for loop, 71
for-each loop, 72, 235, 251, 356
while loop, 72

iterator
for lists, 243
parameterized, 247

iterator method
of List, 244

Iterator<E> interface, 247
methods of, 247

J
Java

for-each loop, 72, 235, 245, 251
static import, 184

Java application, 59
Java introductory language features,

57–76
Java subset, see AP Java subset
Java virtual machine, 483
java.lang, 58
java.util, 241
Javadoc comments, 59, 483
JavaScript, 483

K
keyword, 59

L
lab

Elevens, 353–356
Magpie, 351–353
Picture, 356–358

labs, 351–359
late binding, 138
length method, 180
linker, 483
List<E> interface, 242, 243

methods of, 243
local variable, 100

✐

✐

“ap” — 2014/11/4 — 11:10 — page 487 — #501

✐

✐

✐

✐

✐

✐

Index 487

logic error, 209, 219
logical operators, 65
long, 61
loop

for, 71
for-each, 72, 235, 251, 356
infinite, 73
nested, 74
while, 72

low-level language, 483

M
Magpie lab, 351–353
main method, 58, 98
mainframe computer, 483
malware, 483
mantissa, 61
Math class, 183
Math.PI, 184
matrix, 249
merge method, 326
mergesort, 325
method, 94

abstract, 144
accessor, 96
class, 97
constructor, 95, 135
default, 144
header, 95
helper, 295
inherited, 135
instance, 97
mutator, 97
non-default, 144
overloaded, 99, 138
overriding, 132, 135
partial overriding, 132, 135
public, 94
recursive, 290, 291
signature, 99
static, 59, 97
stub, 213

method overriding, 132, 135
methods

abs, 183
add, 243, 244
compareTo, 64, 146, 178, 181, 182
doubleValue, 182
equals, 176, 181, 182
get, 243, 244
hashCode, 176
hasNext, 247
indexOf, 180, 352
intValue, 181
iterator, 244
length, 180
main, 58, 98
merge, 326
next, 247
partition, 327
pow, 183

random, 183
remove, 244, 247
set, 243, 244
size, 243, 244
sqrt, 183
substring, 180, 352
swap, 237
toString, 175, 181, 182

microcomputer, 483
minicomputer, 483
mod, 63
modem, 483
mutator, 97

N
NaN, 62
nested if statement, 69
nested loop, 74
network, 483
new, 75, 233
newline \n, 68
next method

of Iterator, 247
non-default method, 144
NoSuchElementException, 75, 247,

248
null, 103
null reference, 103
NullPointerException, 75, 103,

180, 243

O
Object, 174

methods of, 174
object, 92–110

behavior, 92
reference, 93, 95, 101
state, 92
variable, 96

object code, 483
object-oriented program, 219
object-oriented program design, 210,

356
octal number, 62, 357
one-dimensional array, 233
operating system, 483
operator, 63–67

arithmetic, 63
assignment, 66
concatenation, 178
decrement, 66
division, 63
dot, 97
increment, 66
logical, 65
mod, 63
precedence, 64, 67
relational, 64

output, 67
overflow error, 60
overloaded method, 99, 138

P
package, 57
parameter, 95

actual, 103
array, 235
dummy, 103
explicit, 100
formal, 103
implicit, 100
pass by value, 104
passing object as, 105
passing primitive type as, 104
two-dimensional array, 253

parameter list, 95
partial overriding, 132, 135
partition method, 327
PI (π), 184
Picture lab, 356–358
pivot element, 327
polymorphic method calls

rules for, 141
polymorphism, 138–142, 355
Position class, 194
postcondition, 220
pow method, 183
precondition, 220
primary memory, 484
primitive type, 60, 101
private, 59, 94

method, 94
variable, 94

procedural abstraction, 213, 219
program analysis, 219, 356
program correctness, 219
program design, 207–219, 356

object-oriented, 210
program maintenance, 210, 219
program specification, 207, 208, 219
protected, 135
public, 59, 94, 135

method, 94
variable, 94, 135

Q
quicksort, 327

R
RAM, 484
random method, 183
random numbers, 184, 354
random selection, 352
recursion, 290–307

base case, 291
general rules, 295
in 2-D grids, 298
infinite, 292
tail, 292

recursive definition, 293
recursive helper method, 295
recursive method, 290, 291

analysis of, 294
reference, 95, 101

✐

✐

“ap” — 2014/11/4 — 11:10 — page 488 — #502

✐

✐

✐

✐

✐

✐

488 Index

relational operator, 64
remove method

of ArrayList, 244
of Iterator, 247
of List, 244

reserved word, 59
return type, 95
robust program, 209, 219
ROM, 484
round-off error, 65, 147
rounding, 61
row-by-row array processing, 251
run-time error, 209, 219

S
scope, 100

of loop variable, 71
SDK, 484
search

binary, 329
sequential, 329

secondary memory, 484
Section I answer sheet, xiii
selection sort, 324
sentinel, 73
sequential search, 329
server, 484
set method

of ArrayList, 244
of List, 243

short, 61
short-circuit evaluation, 65
shuffle array, 354
signature, 99
size method

of ArrayList, 244
of List, 243

software, 484
software development, 207, 219

waterfall model, 207
sort

insertion, 325, 328

mergesort, 325
quicksort, 327
recursive, 325
selection, 324

sorting, 324–329
algorithms in Java, 328

source code, 484
source file, 58
specification, 207, 208
sqrt method, 183
state, 92
static, 59, 94, 98
static binding, 138
static final variable, 94
static import, 184
static method, 97
static variable, 94
stepwise refinement, 213, 219
storage of numbers, 61
String, 177, 180

comparison, 178
concatenation operator, 178
in Magpie lab, 352
initialization, 177
methods of, 179, 352

string literal, 177
StringIndexOutOfBoundsException,

180
stub method, 213, 219
subclass, 131, 354

rules for, 137
subclass object

declaration of, 137
subpackage, 58
substring method, 180, 352
super, 135, 139, 354
superclass, 131, 139
swap method, 237
Swing, 484
syntax error, 219

T
tail recursion, 292
test data, 208, 219
testing, 207, 208
this, 100
throw, 75
top-down development, 213, 219
toString method, 175, 181, 182
transistor, 484
two-dimensional array, 249–254, 356

as parameter, 253
traversal, 251

type, 60
boolean, 60
built-in, 60
double, 60
int, 60
primitive, 60, 101

type compatibility, 140

U
UML diagram, 212, 219, 356
URL, 484
USB flash drive, 484
user-defined constant, 63

V
variable, 60, 94

final, 63, 94
instance, 59, 93
local, 100
public, 94, 135

variable declaration, 60
virus, 483, 484
void, 95

W
while loop, 72
workstation, 484
worst case, 220
wrapper class, 110, 180–183

Success on Advanced Placement Tests
Starts with Help from BARRON’S

Each May, thousands of college-bound students take one or more Advanced Placement Exams to earn college
credits—and for many years, they’ve looked to Barron’s, the leader in Advanced Placement test preparation.
You can get Barron’s user-friendly manuals for 23 different AP subjects, most with optional CD-ROMs.

BONUS ONLINE PRACTICE TEST: Free access
to one additional full-length online test with purchase.

AP: Art History, 2nd Ed., w/optional CD-ROM
Book: ISBN 978-0-7641-4691-6, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7125-1, $29.99, Can$34.50
AP: Biology, 5th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0500-3, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7518-1, $29.99, Can$34.50
AP: Calculus, 13th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0204-0, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7516-7, $29.99, Can$34.50
AP: Chemistry, 7th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0271-2, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7382-8, $29.99, Can$34.50
AP: Chinese Language and Culture, w/3 Audio CDs, 2nd Ed.
ISBN 978-1-4380-7388-0, $29.99, Can$34.50
AP: Computer Science, 7th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0594-2, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7553-2, $29.99, Can$34.50
AP: English Language and Composition, 6th Ed.,
w/optional CD-ROM
Book: ISBN 978-1-4380-0552-2, $16.99, Can$19.50
Book w/CD-ROM: ISBN 978-1-4380-7515-0, $29.99, Can$34.50
AP: English Literature and Composition, 5th Ed.,
w/optional CD-ROM
Book: ISBN 978-1-4380-0278-1, $16.99, Can$19.50
Book w/CD-ROM: ISBN 978-1-4380-7386-6, $29.99, Can$34.50
AP: Environmental Science, 6th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0132-6, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7534-1, $29.99, Can$34.50
AP: European History, 7th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0277-4, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7385-9, $29.99, Can$34.50
AP: French Language and Culture, w/3 Audio CDs
ISBN 978-1-4380-7259-3, $26.99, Can$31.00
AP: Human Geography, 5th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0282-8, $16.99, Can$19.50
Book w/CD-ROM: ISBN 978-1-4380-7390-3, $29.99, Can$34.50
AP: Italian Language and Culture, w/3 Audio CDs
ISBN 978-0-7641-9368-2, $26.99, Can$32.50
AP: Microeconomics/Macroeconomics, 5th Ed.
ISBN 978-1-4380-0495-2, $16.99, Can$19.50
AP: Music Theory, w/4 Audio CDs, 2nd Ed.
ISBN 978-1-4380-7389-7, $34.99, Can$39.99
AP: Physics 1 and 2, w/optional CD-ROM
Book: ISBN 978-1-4380-0268-2, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7379-8, $29.99, Can$34.50
AP: Physics C, 3rd Ed.
ISBN 978-0-7641-4707-4, $18.99, Can$21.99

AP: Psychology, 6th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0270-5, $16.99, Can$19.50
Book w/CD-ROM: ISBN 978-1-4380-7381-1, $29.99, Can$34.50
AP: Spanish Language and Culture w/4 Audio CDs, 8th Ed.,
and w/optional CD-ROM
Book w/4 audio CDs: ISBN 978-1-4380-7391-0, $26.99, Can$31.00
Book w/4 audio CDs and CD-ROM: ISBN 978-1-4380-7392-7,
$34.99, Can$39.99
AP: Statistics, 8th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0498-3, $18.99, Can$21.00
Book w/CD-ROM: ISBN 978-1-4380-7517-4, $29.99, Can$34.50
AP: U.S. Government and Politics, 8th Ed.,
w/optional CD-ROM
Book: ISBN 978-1-4380-0279-8, $16.99, Can$19.50
Book w/CD-ROM: ISBN 978-1-4380-7387-3, $29.99, Can$34.50
AP: U.S. History, 2nd Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0269-9, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7380-4, $29.99, Can$34.50
AP: World History, 6th Ed., w/optional CD-ROM
Book: ISBN 978-1-4380-0272-9, $18.99, Can$21.99
Book w/CD-ROM: ISBN 978-1-4380-7383-5, $29.99, Can$34.50

In Canada:
Georgetown Book Warehouse
34 Armstrong Ave.
Georgetown, Ontario L7G 4R9
Canadian orders: 1-800-247-7160Prices subject to change without notice.

Available at your local book store or visit www.barronseduc.com

Barron’s Educational Series, Inc.
250 Wireless Blvd.
Hauppauge, NY 11788
Order toll-free: 1-800-645-3476

(#93 R10/14)

BOB93-8.375x10.875_Layout 1 10/16/14 11:05 AM Page 1

How to Use the CD-ROM

The software is not installed on your computer; it runs directly from the CD-ROM.
Barron’s CD-ROM includes an “autorun” feature that automatically launches the
application when the CD is inserted into the CD-ROM drive. In the unlikely event that
the autorun feature is disabled, follow the manual launching instructions below.

Windows®

1. Click on the Start button and choose “My Computer.”
2. Double-click on the CD-ROM drive, which is named AP_Computer Science.
3. Double-click AP_Computer Science to launch the program.

MAC®

1. Double-click the CD-ROM icon.
2. Double-click the AP_Computer Science icon to start the program.

SYSTEM REQUIREMENTS

BARRON’S LICENSING AGREEMENT/DISCLAIMER OF WARRANTY

For books including one or more CD-ROMs and/or Audio CDs

1. Ownership of Rights. The disc(s) in the plastic sleeve was/were created for Barron’s Educational Series, Inc.,
and the editorial contents therein remain the intellectual property of Barron’s. Users may not reproduce the disc(s),
authorize or permit the disc(s) reproduction, transmit the disc(s), or permit any portion thereof to be transmitted for
any purpose whatsoever.

2. License. Barron’s hereby grants to the consumer of this product the limited license to use same solely for personal
use. Any other use shall be in violation of Barron’s rights to the aforesaid intellectual property and in violation of
Barron’s copyright interest in such disc(s).

3. Limited Warranty. Disclaimer of Implied Warranties. If the disc(s) fail(s) to function in a satisfactory manner, Barron’s
sole liability to any purchaser or user shall be limited to refunding the price paid for same by said purchaser or user.
Barron’s makes no other warranties, express or implied, with respect to the disc(s). Barron’s specifically disclaims any
warranty of fitness for a particular purpose or of merchantability.

4. Consequential Damages. Barron’s shall not be liable under any circumstances for indirect, incidental, special,
or consequential damages resulting from the purchase or use of the disc(s).

Microsoft® Windows®

2.33GHz or faster x86-compatible processor,
or Intel Atom™ (1.6GHz or faster processor

for netbook class devices)
 Microsoft® Windows® XP, Windows

Server 2008, Windows Vista® Home
Premium, Business, Ultimate, or Enterprise
(including 64 bit editions) with Service Pack

2, Windows 7, or Windows 8 Classic
 512MB of RAM (1GB recommended)

MAC® OS X
Intel® Core™ Duo 1.83GHz

or faster processor
 Mac OS X v10.6, v10.7, v10.8, or v10.9
 512MB of RAM (1GB recommended)

THE FOLLOWING DOCUMENTATION APPLIES IF YOU PURCHASED
AP Computer Science A, 7th Edition

Now Available!
Go to

barronsbooks.com/AP/compsci/
to take a free sample

AP Computer Science A test,
complete with

answer explanations and
automated scoring.

BARRON’S
Online

AP Exams

*This online test was created for devices that support Adobe Flash Player. To access the test on an
Apple iPad or iPhone you will need to install a web browser that supports Flash (check the iTunes
App Store for free options).

4-0594-AP-ComputerScienceA-IFC.indd All Pages 11/5/14 12:54 PM

MOST UP-TO-DATE REVIEW
AND PRACTICE TESTS

CURRENTLY AVAILABLE

7TH EDITION
Roselyn Teukolsky, M.S.

n � 4 full-length practice tests with explained
answers, including one online

n � Expert advice on the best way to approach
the test

n � Review covers all relevant topics, including the
new AP Computer Science A labs and changes to
the Java subset

BARRON’S
The Leader in Test Preparation

*AP and Advanced Placement Program are registered trademarks of the College Board, which was not
involved in the production of, and does not endorse, this product.

with BARRON’S
SCORE HIGHER

ISBN: 978-1-4380-0594-2

EA
N

$18.99 Canada $21.99
www.barronseduc.com

PRINTED
IN THE
USA

B
A

R
R

O
N

’S
Teukolsky

AP
COMPUTER
SCIENCE A

*A
P

STUDYGREEN.

STUDYGREEN.

STUDYGREEN.

STUDYGREEN.

S
T

U

D Y G R E

E
N

.

Printed on partially recycled paper
Fully recyclable

C
O

M
P

U
T

E
R

 SC
IE

N
C

E
 A

*

BARRON’S GIVES YOU THE ANSWERS!
Every question in this book comes with a comprehensive answer explanation.

New chapter on
the Computer
Science A labs

BOOK

ONLINEONLINE

7
TH

 E
D

ITIO
N

Everything you need
to get a 55

For 70 years, BARRON’S experts have been helping students
surpass their expectations on standardized tests. This is the only
book you will need to get the score you want on the AP Computer
Science A test.

4 �Proven test-taking strategies that make the difference
between a good score and a great score

4 �One full-length diagnostic test to help you pinpoint your
strengths and weaknesses

4 �Two additional full-length practice tests to boost your
confidence

4 �The most up-to-date subject review that covers the specific
material you need to know for the test

4 �Access to a full-length sample AP Computer Science A exam
with answer explanations and automatic scoring

BOOK

ONLINE
See inside front cover for details.

4-0594-AP-ComputerScienceA-fbs.indd All Pages 11/7/14 12:41 PM

	Front Cover
	Copyright
	Contents
	Preface
	Introduction
	PRACTICE EXAM ONE / DIAGNOSTIC TEST
	Introductory Java Language Features
	Classes and Objects
	Inheritance and Polymorphism
	Some Standard Classes
	Program Design and Analysis
	Arrays and Array Lists
	Recursion
	Sorting and Searching
	The AP Computer Science A Labs
	Practice Exam Two
	Practice Exam Three
	Appendix: Glossary of Useful Computer Terms
	Index
	Back Cover

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Create a new document
 Trim: fix size 8.375 x 10.875 inches / 212.7 x 276.2 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20121127131904
 783.0000
 Test Prep
 Blank
 603.0000

 Tall
 1
 1
 No
 662
 199

 None
 Right
 4.5000
 0.0000

 Both
 2
 AllDoc
 3

 CurrentAVDoc

 Uniform
 9.0000
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0j
 Quite Imposing Plus 3
 1

 510
 509
 510

 1

 HistoryList_V1
 QI2base

