MIRRORS

1978 Q5

Solution

Distributior
 of Points

a) 7 points

$\begin{array}{ll}\text { real } & 1 \\ \text { left } & 1\end{array}$
b) 3 points

$$
\mathrm{H}_{\mathrm{o}}=6 \mathrm{~cm}
$$

$$
D_{0}=30 \mathrm{~cm}
$$

$\mathrm{f}=10 \mathrm{~cm}$
$\frac{1}{D_{i}}+\frac{1}{D_{o}}=\frac{1}{f}$
2
$\frac{1}{D_{i}}=\frac{1}{f}-\frac{1}{D_{0}}=\frac{1}{10}-\frac{1}{30}=\frac{2}{30}$
$D_{i}=15 \mathrm{~cm}$
1
Alternate:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{o}}=6 \mathrm{~cm} \\
& \mathrm{~S}_{0}=20 \mathrm{~cm} \\
& \mathrm{f}=10 \mathrm{~cm}
\end{aligned}
$$

$$
S_{i} S_{0}=f^{2}
$$

2

$$
S_{i}=\frac{f^{2}}{S_{o}}=\frac{100}{20}-5 \mathrm{~cm}
$$

1
c) 3 points

$$
\begin{aligned}
& \frac{H_{i}}{H_{o}}=\frac{D_{i}}{D_{0}} \\
& H_{i}=\frac{15}{30}(6)-3 \mathrm{~cm}
\end{aligned}
$$

2

1

Alternate

$$
\begin{aligned}
& \frac{H_{i}}{H_{o}}=\frac{f}{S_{o}}=\frac{S_{i}}{f} \\
& H_{i}=\frac{5}{10}(6) \text { or } H_{i}=\frac{10}{20}(6) \\
& H_{i}-3 \mathrm{~cm}
\end{aligned}
$$

2

1
d) 2 points

See diagram above.
Reflected ray passing through tip of image 2
Showing $\Delta i=\langle r$ at surface of mirror at point Q but not reflected through tip of arrow. 1

AP* Optics Free Response Questions KEY

1983 Q5
Distribution
of points
5. (a) 6 points

There are four principle rays that can be drawn:
(1) Through focal point, reflected parallel to axis.
(2) Through center of curvature, reflected on itself.
(3) Parallel to axis, reflected through focal point.
(4) Reflected where axis intersects mirror.

For any one of these rays
For a second ray
For extrapolating the rays so they intersect
For drawing an arrow at the image position
2 points
2 points
1 point
1 point
(b) 2 points

The image is virtual, because it is behind the mirror and defined only by extrapolation of rays

2 points
(c) 4 points

The object distance D_{0} and the image distance D_{I}
are related by
$\frac{1}{D_{0}}+\frac{1}{D_{1}}=\frac{1}{f}$
1 point
Substitution of $D_{0}=15 \mathrm{~cm}, f=20 \mathrm{~cm}$ gives
$\frac{1}{D_{1}}=\frac{1}{20}-\frac{1}{15}=-\frac{1}{60} \quad 1$ point
So $D_{I}=-60 \mathrm{~cm}$. The image is 60 cm behind the mirror. 2 points
(d) 3 points

The formula for magnification is
$M=\left|\frac{H_{I}}{H_{0}}\right|=\left|\frac{D_{I}}{D_{0}}\right|$
1 point
So $M=\frac{60}{15}=4$
1 point
and the image height is
$H_{I}=4 H_{0}=4 \cdot 3=12 \mathrm{~cm}$

AP* Optics Free Response Questions KEY

1983 Q5 (continued)

Distribution of points

Alternate solution to (c) and (d) using Newton's form of the mirror equation:
(c) $S_{0} S_{I}=f^{2}$
(Where S_{0} and S_{I} are measured from the focal point)
$S_{l}=\frac{f^{2}}{S_{0}}=\frac{20^{2}}{-5}=-80$
So the image is 80 cm to the right of the focal point, 60 cm from the lens.
(d) $M=\frac{f}{S_{0}}=\frac{20}{5}=4$ and so $H_{l}=4 \cdot 3=12 \mathrm{~cm}$
(Alternate points)
(1 point)
(1 point)
(2 points)
(2 points)
(l point)

LENSES

1981 Q5

5. a) 4 points

The image can be located by drawing any two of the three principal rays shown on the diagram below.

Principal ray parallel to axis refracted through F^{\prime} or principal ray through F refracted parallel to axis

2 points
Either or both of the other two principal rays
1 point
Drawing arrow for image at intersection of rays
b) 3 points

The image is real 1 point
Correct explanation, such as
The rays actually meet at the image,
The image is on the opposite side of the lens from the incident light, (2 points
or
The real object is more than one focal length from a converging lens
c) 4 points

Thin lens equation: $\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=\frac{1}{\mathrm{f}} \quad 1$ point
$\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{6}-\frac{1}{18}=\frac{1}{9}$
2 points
Distance of image from lens is
$\mathrm{q}=9 \mathrm{~cm} \quad 1$ point

Alternate method:

Alternate

Newton's equation $s_{0} s_{1}=\mathfrak{f}^{2}$ Points
$\mathrm{s}_{\mathrm{o}}=$ distance from object to $\mathrm{F}=18-6=12 \mathrm{~cm}$
(1 point)
$s_{i}=\frac{6^{2}}{12}=3 \mathrm{~cm}$
(1 point)
Distance from lens to image is
$f+s_{1}=6+3=9 \mathrm{~cm}$
(1 point)

AP* Optics Free Response Questions KEY

1981 Q5 (continued)

d) 4 points

In this case, the principal rays for the first lens are also principal rays for the second lens and can be traced through both lenses to locate the final image.

Principal ray through F of second lens (center of first lens) refracted parallel to axis or principal ray emerging from first lens parallel to axis refracted through F^{\prime}

2 points
1 point
$\begin{array}{c}1 \text { point }\end{array}$
15 points

1982 Q6

6. a) 6 points

The position of the image can be calculated by using the thin lens equation

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

Since the object distance $\mathrm{p}=\frac{3 \mathrm{f}}{2}$,
$\frac{1}{q}=\frac{1}{f}-\frac{1}{3 f / 2}=\frac{1}{f}-\frac{2}{3 f}=\frac{1}{3 f}$
Hence $q=3 f$
2 points
1 point
1 point
Alternative
Points
(2 points)
One can use Newton's form of the thin lens equation, $s s^{\prime}=\mathbf{f}^{2}$.
(1 point)
Here s is the distance of the object to the left of the first focal point, i.e., $s=1 / 2 f$
and so $s^{\prime}=\frac{f^{2}}{1 / 2 f}=2 f$
(1 point)

This means that the image is $2 f$ to the right of the second focal point, i.e., $3 f$ to the right of the lens.
b) 5 points

There are three principal rays that might be traced, as shown on the diagram.
For any one of these three:
2 points
For a second one:
1 point
For extending the rays until they meet and indicating that the image is at their point of intersection:

2 points

c) 4 points

The focal length of the second lens, f_{2}, must be greater.
1 point
Algebraic justification using thin lens equation: Image height h^{\prime} and image distance q are related by
$\frac{\mathbf{h}^{\prime}}{\mathbf{q}}=\frac{\text { object height }}{\mathrm{p}}$
If the new image height is greater, the new image distance q_{2} must be greater than the old image distance q.

2 points

1982 Q6 (continued)

The new focal length \mathfrak{f}_{2} satisfies

$$
\frac{1}{\mathrm{f}_{2}}=\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}_{2}}, \quad \text { while } \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}
$$

Since $q_{2}>q, \frac{1}{q_{2}}<\frac{1}{q}$ and $\frac{1}{f_{2}}<\frac{1}{f}$
1 point

Therefore $\mathrm{f}_{2}>\mathrm{f}$

Alternative

Alternate methods:

Points
Algebraic justification using Newton's equation:
Object height h and image height h^{\prime}
satisfy $\frac{h^{\prime}}{h}=\frac{f}{s}$
(2 points)
By increasing f, which decreases s, one can increase h^{\prime}
(1 point)
Geometric justification:
By drawing a ray diagram with two different focal points f_{1} and f_{2}, both less than p, one sees that image height increases as f increases.

1986 Q6
6.
(a) 3 points

For two correct principal rays
z points
For locating image at intersection of rays
1 point
(t) 2 points
$\frac{y_{i}}{y_{0}}=\left|\frac{s_{i}}{s_{0}}\right|$
1 point
$\frac{y_{i}}{y_{0}}=\frac{b c m}{3 c m}=2$
1 point

Student could also indicate relative sizes of 2:1 on a good, carefully drawn sketch in part (a).
(c) 3 points

For two correct principal rays, extended back as
2 points necessary
For locating image at intersection of rays
1 point
t. (cont)
(d) \quad points

$$
\begin{aligned}
& \frac{1}{E_{0}}+\frac{1}{B_{i}}=\frac{1}{t} \\
& \frac{1}{6}+\frac{1}{\xi_{i}}=\frac{1}{-3} \\
& \frac{1}{s_{i}}=\frac{1}{3}-\frac{1}{6}=-\frac{3}{6}=-\frac{1}{2} \\
& \left|B_{i}\right|=2 \operatorname{cn}
\end{aligned}
$$

1 point

1 point

1 point
(e) 1 point

Virtual
(f) $=$ points

For forming the image of the first lens as in part (a) For using rays from this image to the second lens For obtaining the correct final! image

1 point
1 point
1 point

1989 Q5

5.

(a) 2 points

The image is real
2 points
(b) 3 points

For lens equation: $\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f}$
For correct substitution: $\frac{1}{60 \mathrm{~cm}}+\frac{1}{d_{i}}=\frac{1}{20 \mathrm{~cm}}$
1 point

1 point
$\frac{1}{d_{i}}=\frac{1}{20 \mathrm{~cm}}-\frac{1}{60 \mathrm{~cm}}=\frac{3-1}{60 \mathrm{~cm}}=\frac{2}{60 \mathrm{~cm}}=\frac{1}{30 \mathrm{~cm}}$
$d_{i}=30 \mathrm{~cm}$
1 point
(c) 3 points
$M=\frac{h_{i}}{n_{0}}=-\frac{d_{i}}{d_{0}}$
1 point
For correct substitution: $M=-\frac{30 \mathrm{~cm}}{60 \mathrm{~cm}}$
1 point
$M=-\frac{1}{2}$
1 point

If the answer was inverted $(M=-2)$, 1 point was awarded if
no work was shown, and 2 points were awarded if work was shown.
(d) 4 points

For $d_{i} \rightarrow \infty$ as $d_{0} \longrightarrow f$ from the right 1 point
For $d_{i}=1.5 f$ when $d_{0}=3 f$
1 point
For "concave up" curve between the above points
For an increasingly negative cufve for $d_{0}<f$, asymptotic at $d_{0}=f$

1 point
1 point

AP* Optics Free Response Questions KEY

5. (continued)
(e) 3 points

Focal length decreases
For any valid explanation (which may include ray diagrams)
2 points

For example: Snell's Law indicates that an increase in index of refraction causes increased angle of refraction.
If rays "bend" more, the focal length is decreased.

1992 Q6
(a) 4 points

One point each for up to two correct principal rays
2 points
For correctly locating image at the point where rays
1 point cross, with one end on axis (whether or not rays are correct)

For correct inverted orientation of image (or consistent
1 point with rays drawn)
(Last point was awarded for merely an indication that image is to the right of lens and inverted, without drawing rays)
(b)
i. 3 points

$$
\begin{aligned}
& \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \\
& \begin{aligned}
d_{i} & =\frac{d_{0} f}{d_{0}-f} \\
& =\frac{(45 \mathrm{~cm})(15 \mathrm{~cm})}{45 \mathrm{~cm}-15 \mathrm{~cm}} \\
d_{i} & =22.5 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

2 points

1 point
(b) (continued)
(Alternate solution)
$x_{0} x_{i}=f^{2}$
$x_{i}=f^{2} / x_{0}$
$=(15 \mathrm{~cm})^{2} /(30 \mathrm{~cm})$
$x_{i}=7.5 \mathrm{~cm}$
$d_{i}=22.5 \mathrm{~cm}$
ii. 2 points

Magnification $=\frac{h_{i}}{h_{0}}=\frac{d_{i}}{d_{0}}$
$h_{i}=\frac{d_{i}}{d_{o}} h_{o}$
$=\frac{(22.5 \mathrm{~cm})}{(45 \mathrm{~cm})} 8 \mathrm{~cm}$
$h_{i}=4 \mathrm{~cm}$
(Alternate Solution)
Magnification $=\frac{h_{i}}{h_{0}}=\frac{f}{x_{0}}=\frac{x_{i}}{f}$
$h_{i}=\frac{f h_{0}}{x_{0}}$
$=\frac{(15 \mathrm{~cm})(8 \mathrm{~cm})}{(30 \mathrm{~cm})}$
$h_{i}=4 \mathrm{~cm}$
(c) 3 points

Only effect would be a dimming of the image.
For any indication that there is no change in location
For any indication that there is no change in size
For any indication of a reduction in intensity
(Alternate points)
(1 point)
(1 point)
(1 point)

1 point

1 point
(Alternate points)
(1 point)
(1 point)

1 point
1 point
1 point

AP＊Optics Free Response Questions KEY

6．（continued）
vュ トリカィューロ
（d） 3 points

One point each for up to two correct principal rays
2 points
For correct location and orientation of image（consistent 1 point with rays drawn）

1997 Q5

Question 5 (15 points)
(a) 2 points

For indicating that the lens is converging I point
For a correct explanation 1 point
Examples:
The image from a diverging lens is always on the same side of the lens as the object, so this lens must be converging.
The image from a diverging lens is always closer to the lens than the object, and the image here is farther.
The magnification is greater than 1 .
(b) 3 points

Using the lens equation
$\frac{1}{f}=\frac{1}{s_{\mathrm{i}}}+\frac{1}{s_{0}}$
For correct substitution I point
$\frac{1}{f}=\frac{1}{90 \mathrm{~mm}}+\frac{1}{30 \mathrm{~mm}}$
$\frac{1}{f}=\frac{4}{90 \mathrm{~mm}}$
$f=\frac{90 \mathrm{~mm}}{4}$
$\begin{array}{ll}\text { For the correct numerical answer } & 1 \text { point } \\ \text { For correct units } & 1 \text { point } \\ f=22.5 \mathrm{~mm} & \end{array}$
Full credit can be earned for an answer taken from the student's diagram in part (c) if the student explicitly stated that this was the method used.

Question 5 (continued)
(c) 3 points

For correctly showing a lens at $x=0$
1 point
If just a straight line or only the front surface was drawn, a ray going through the lens had to be present to make it clear that student was treating this as a lens and not a mirror.
For correctly drawing up to two of the principal rays shown (1 point each) 2 points If the ray through the center of the lens is used, and the image is drawn at 90 mm and three times larger than the object, credit was also awarded for a second ray that was any other correct non-principal ray.
(d) 3 points

The image is real.
1 point
The image is larger than the object.
1 point
The image is inverted compared to the object.
1 point
To receive credit, the answers must be consistent with the image that the student drew in part (c), and the image must be drawn or its position indicated by crossed rays.

AP* Optics Free Response Questions KEY

Question 5 (continued)
(e) 4 points

Note: Given the size of the object with respect to the curvature of the mirror, the principal rays used to locate the position of the image are not all paraxial. The result is that these rays do not all meet at one point, and the location of the image depends on the choice of rays. Therefore, a range of image positions was allowed.

For correctly drawing a concave mirror at $x=0 \quad 1$ point
For correctly drawing up to two of the principal rays shown (1 point each)
For having two rays intersecting to indicate an image that is inverted, below the axis, and between 40 and 70 mm

2 points
1 point

AP ${ }^{\circledR}$ PHYSICS B
 2002 SCORING GUIDELINES

Question 4

15 points total
Distribution of points
(a) 4 points

For any two correct rays through the lens
2 points
Two of the three principal rays shown on the diagram above were expected.
One point was subtracted for additional incorrect rays. No credit was awarded for reflected rays.
For correct extension of the rays backward
1 point
For showing the image with correct size, position, and orientation 1 point
(b) 2 points

For stating that the image is virtual, or for stating a choice consistent with the ray
diagram in part (a)
If there were no supporting diagrams or calculations, virtual was the only accepted answer.
For a correct explanation consistent with the choice given, such as:
1 point
The light rays diverge on the left side of the lens, but appear to come from a point behind the object. OR The image is on the same side of the lens as the object.
OR The object is placed between the converging lens and the focal point.
This point was not awarded if additional wrong statements were part of the response.
(c) 3 points

For the lens equation OR for the lens equation with substituted quantities
1 point
$\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}$ OR $\frac{1}{s_{i}}=\frac{1}{10 \mathrm{~cm}}-\frac{1}{6 \mathrm{~cm}}$
For the correct solution
2 points
$s_{i}=-15 \mathrm{~cm}$ (Minus sign was not necessary to receive full credit.)
Only 1 of the 2 answer points was awarded for the correct number without units.

AP ${ }^{\circledR}$ PHYSICS B
 2002 SCORING GUIDELINES

Question 4 (cont'd.)

(c) continued

Alternate Solution
Let $x_{o}=$ distance from object to focal point and $x_{i}=$ distance from image to focal point.
For the correct formula

Distribution of points

$$
\frac{x_{i}}{f}=\frac{f}{x_{o}}
$$

For correct substitutions

$$
\begin{aligned}
& \frac{x_{i}}{10 \mathrm{~cm}}=\frac{10 \mathrm{~cm}}{10 \mathrm{~cm}-6 \mathrm{~cm}} \\
& x_{i}=\frac{(10 \mathrm{~cm})^{2}}{4 \mathrm{~cm}}=25 \mathrm{~cm}
\end{aligned}
$$

For the correct answer
Alternate
points

1 point

1 point

$$
s_{i}=25 \mathrm{~cm}-10 \mathrm{~cm}
$$

1 point
$s_{i}=15 \mathrm{~cm}$
(d) 2 points

For the correct image size to object size ratio with no units, or with units that cancel
2 points
$\frac{h_{i}}{h_{o}}=\frac{s_{i}}{s_{o}}=\frac{15 \mathrm{~cm}}{6 \mathrm{~cm}}=\frac{5}{2}$
Notes:
Students could use either a calculation or a ray diagram to arrive at the final answer.
1 point only was awarded if the correct ratio was imbedded in extra calculations or if units were provided for the answer (for example, 2.5 cm).
No points were given for giving the object size to image size ratio.
(e) 4 points

Since the question asked for a description, a verbal response was expected, although the image position, size, and orientation could be determined from either a calculation or a ray diagram.
For the correct position:
Image on the opposite side of the lens from the object
1 point

Distance from the image to the lens in the range $20 \mathrm{~cm} \pm 3 \mathrm{~cm}$
For the correct size: image size same as object size, or for size consistent with value
1 point
1 point for position
For the correct orientation: image is inverted

INDEX OF REFRACTION

1979 Q6

(a) 5 points

From Snell's law, one has
$\frac{\sin i}{\sin r}=\frac{v_{i}}{v_{r}}$
$\angle i=53^{\circ}, \angle r=37^{\circ}$
$v_{i}=c$
$v_{r}=\left(\sin 37^{\circ} / \sin 53^{\circ}\right) c$
$=(3 / 4) c$

2 points
$\angle \mathrm{i}=53^{\circ}, \angle \mathrm{r}=37^{\circ}$
$v_{r}=\left(\sin 37^{\circ} / \sin 53^{\circ}\right) c$
$=(3 / 4) c$
1 point
1 point
or alternate solution involving index of refraction.
(b) 5 points

Again applying Snell's law one has

$$
\sin r=\left[\frac{c}{(3 / 4) c}\right] \sin 53^{\circ}=16 / 15
$$

Since $\sin r>1$, there is no refracted ray.
1 point
2 points

(c) 5 points

Correct
drawing
1 point

3 points

The rays diverge because medium II is more dense than medium I (or some equivalent statement).
$\frac{2 \text { points }}{15 \text { points }}$

1987 Q5

(a) 2 points
Angle of incidence $=$ angle of refraction (or $\boldsymbol{O}_{1}=3$) 1 poine
$\theta_{3}=30^{\circ} \quad 1$ point
(b) 3 points
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad 1$ point
$(1.6)\left(\sin 30^{\circ}\right)-(1)\left(\sin \theta_{2}\right)$
1 point
$\theta_{2}-\sin ^{-1}(0.8)$ or $\theta_{2}-53.1^{\circ}$
1 point
(c) 3 points
$v-\frac{c}{n}$ or $\frac{v_{1}}{v_{2}}-\frac{n_{2}}{n_{1}}$
1 point
$v_{g}=\frac{3.00 \times 10^{8}}{1.6}$
1 point
$v_{g}-1.875 \times 10^{8} \mathrm{~m} / \mathrm{s}$
1 point
(d) 4 points
$v-f \lambda$ or $\lambda=v / f$
1 point
$\lambda_{g}=\frac{v_{g}}{f}=\frac{1.875 \times 10^{8}}{6 \times 10^{14}}$
1 point
$\lambda_{g}=3.125 \times 10^{-7} \mathrm{~m}$ or $\lambda_{g}-3125 \AA$
2 points
(One point for numerical value, one point for units)

Alternate Method
(Alternate Points)
$\lambda_{a}=\frac{c}{E}$
(for both equations)
$\lambda_{g}-\frac{\lambda_{a}}{n}$
(1 point)
$\lambda_{g}-\frac{c}{E_{n}}$
(for correct substitution)
(1 point)
$\lambda_{g}=\frac{3.00 \times 10^{8}}{\left(6 \times 10^{16}\right)(1.6)}$
$\lambda_{g}-3.125 \times 10^{-7} \mathrm{~m}$ or $\lambda_{g}-3125 \AA$
(2 points)
(One point for numerical value, one point for units)
(e) 3 points

For an indication of the occurrence of either a critical	
angle or total internal reflection,	
or the equation $n_{1} \sin \theta_{1}-\sin 90^{\circ}$	1 point
$1.6 \sin \theta_{1}-\sin 90^{\circ}-1$	1 point
$\theta_{1}-\sin ^{-1}(0.625)$ or $\theta_{1}-38.7^{\circ}$	1 point

1988 Q5

(a) 2 points

Horizontal ray in the prism
1 point
Ray emerging below horizontal (or consistent with Snell's law and ray in prism, if ray in prism is incorrect)

1 point
(b) 5 points

Snell's Law $n_{1} \sin \theta_{1}-n_{2} \sin \theta_{2}$

$$
\sin \theta_{2}-\frac{1.5 \sin 37^{\circ}}{1.0}
$$

1 point
2 points
(1 point for $\sin 37^{\circ}$, 1 point for correct indices
of refraction)
$\theta_{2}-65^{\circ}$
$\alpha=65^{\circ}-37^{\circ}=28^{\circ}$
1 point
1 point
(c) 3 points
$n^{\prime}=1.0 \frac{\sin 90^{\circ}}{\sin 37^{\circ}}$
2 points
(1 point for $\sin 90^{\circ}$, 1 point for correct indices of refraction)
$n^{\prime}=1.67$
1 point
(d) 2 points

horizontal ray in prism
1 point
emerging ray below horizontal (or consistent with Snell's law and ray in prism if ray in prisa incorrect)

1 point
5. (continued)
(e) 3 points

$$
\begin{aligned}
& \sin \theta_{2}-\frac{1.67 \sin 37^{\circ}}{1.33} \\
& \theta_{2}=-49^{\circ} \\
& \alpha-49^{\circ}-37^{\circ}-12^{\circ}
\end{aligned}
$$

1 point
1 point
1 point
(Alternate Points)

Alternate solutions for parts (b) and (e)

For recognition of symmetry and connection with minimum deviation for double prism
as shown above
(2 points)

For Snell's law and minimum deviation formula

$$
\frac{n_{1}}{n_{2}}=\frac{\sin (A / 2+D / 2)}{\sin A / 2}
$$

Application to (b) to obtain D/2 $=28^{\circ}$
Application to (e) to obtain D/2-12*
(2 points)
(2 points)
(2 points)

1990 Q6

(a) 3 points

For some statement that the angle of reflection equals the angle of incidence, or an indication of equal angles on the diagram

2 points
$\theta_{\text {refl }}=\tan ^{-1}\left(\frac{2}{3}\right)$ or $\sin ^{-1}\left(\frac{2}{\sqrt{13}}\right)$ or $\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)=34^{\circ}$
1 point
(b) 3 points
$n_{a} \sin \theta_{a}=n_{W} \sin \theta_{W}$
1 point
$\sin \theta_{a}=\frac{(1.33)}{(1)} \sin 34^{\circ}$
1 point
$\theta_{a}=48^{\circ}$
1 point
(c) 4 points
$\sin \theta_{\text {crit }}=\frac{n_{a}}{n_{W}}$
or some other indication that the critical angle must be calculated

1 point
$\theta_{\text {crit }}=49^{\circ}$
1 point
$\tan \theta_{\text {crit }}=\frac{2}{d}$ (where d is the depth) $\quad 1$ point
$d=1.8 \mathrm{~m}$
1 point
(d) 1 point

For the correct answer, air-oil, and no incorrect answers
1 point
(e) 4 points
$2 t=\left(M+\frac{1}{2}\right) \lambda_{\text {oil }} \quad \begin{aligned} & \text { (where } t \text { is the thickness of the oil } \\ & \text { and } M \text { is an integer) }\end{aligned}$
or some indication that interference is involved 1 point
$\lambda_{\text {air }}=n_{\text {oil }} \lambda_{\text {oil }}=\frac{2\left(1 \times 10^{-7} \mathrm{~m}\right)(1.5)}{(M+1 / 2)} \quad$ or $\quad \lambda_{0 i l}=\frac{2\left(1 \times 10^{-7} \mathrm{~m}\right)}{(M+1 / 2)} \quad 1$ point
$\lambda_{\text {air }}=600 \mathrm{~nm}, 200 \mathrm{~nm} \ldots$ or $\quad \lambda_{\text {oit }}=400 \mathrm{~nm}, 133 \mathrm{~nm} \ldots$
1 point
For selecting the proper $\lambda_{\text {air }}$ that lies in the visible range:
$\lambda_{a i r}=600 \mathrm{~nm}$ or red
or indicating that the visible range is 400 nm to 700 nm

1993 Q4
(a) 2 points

The definition of the index of refraction relates the speed of light in vacuum and in glass.
$n=\frac{c}{v}$
Solving for v :
$v=\frac{c}{n}$
1 point
Substituting:
$v=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) / 1.60$
$v=1.9 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad($ or 0.625 c)
1 point
(b) 2 points

For the relation for the wavelength in glass and in vacuum:
$\lambda_{g}=\frac{\lambda_{v}}{n}$
1 point
$\lambda_{\mathrm{g}}=\left(700 \times 10^{-9} \mathrm{~m}\right) / 1.50$
$\lambda_{\mathrm{g}}=4.7 \times 10^{-9} \mathrm{~m}$
1 point
(c) 3 points

For recognizing that the frequency of the light does not change when the light enters a different medium.

1 point
$f=\frac{c}{\lambda}$
1 point
Substituting:
$f=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(700 \times 10^{-9} \mathrm{~m}\right)$
$f=4.3 \times 10^{14} \mathrm{~Hz}$
1 point
4. (continued)
(d) 4 points

For indicating no refraction at the first surface

1 point

1 point

1 point

1 point
(If refraction is shown at the first surface, the last three points may still be awarded for correctly refracting the incorrect rays at the second surface)
(If no points were earned for ray diagram, 1 point could be awarded for writing Snell's Law in either part (d) or part (e).)
4. (continued)
(e) 4 points

For indicating no refraction at the first surface
1 point
For indicating the red ray bending toward the normal at the second surface.

1 point
For indicating the blue ray bending toward the normal at the second surface.

1 point
For indicating that the blue ray bends more than the red ray
1 point
(If refraction is shown at the first surface, the last three points may still be awarded for correctly refracting the incorrect rays at the second surface)

1994 Q5
5.
(a) 3 points

$$
\begin{aligned}
v & =\frac{c}{n} & & 1 \text { point } \\
& =\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.33} & & 1 \text { point } \\
v & =2.26 \times 10^{8} \mathrm{~m} / \mathrm{s} & & 1 \text { point }
\end{aligned}
$$

(b) 3 points

For straight line in the water from S, with θ_{1} to the right
1 point
[This point also awarded for straight wave propagation, i.e. $\sim \sim \sim \sim \Omega \curvearrowright$]
For straight line in air from the point of intersection of ray with surface to the eye with $\theta_{2}>\theta_{1}$ to the right

1 point
For no incorrect rays
1 point
(c) 3 points

Using Snell's Law:
$n_{w} \sin \theta_{w}=n_{a} \sin \theta_{a}$
1 point
At the critical angle, $\theta_{w}=\theta_{c}$ and $\sin \theta_{a}=1$
$\sin \theta_{c}=\frac{n_{a}}{n_{w}}=\frac{1}{1.33}$
1 point
$\theta_{\mu}=48.8^{\circ}$
1 point
5. (cont.)
(d) 4 points

Using the lens equation:
$\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \quad 1$ point
$\frac{1}{20 \mathrm{~cm}}+\frac{1}{d_{i}}=\frac{1}{30 \mathrm{~cm}}$ 1 point

1 point
The image is 60 cm below the lens but the lens is 20 cm above the bottom of the pool, so the image is $60 \mathrm{~cm}-20 \mathrm{~cm}=40 \mathrm{~cm}$ below the bottom of the pool.
(Alternate solution)
(Alternate points)
$d_{i} d_{o}=f^{2}$
(1 point)
$d_{i}(-10 \mathrm{~cm})=(30 \mathrm{~cm})^{2}$
$d_{i}=-90 \mathrm{~cm}$ (distance from focal point)
(1 point)

Distance from bottom of pool is $90 \mathrm{~cm}-30 \mathrm{~cm}-20 \mathrm{~cm}=40 \mathrm{~cm}$
[Full credit also awarded for a correct solution given from the perspective of being in the air above the water.]
(e) 2 points
i.

There is no refraction at either surface of the lens, so no image is formed other than at the source itself. (Point given for any correct statement describing that the lens has no effect on the light from S.)
ii.

The index of refraction of the material is closer to that of the lens, so the refraction is less than that with water.

The image is smaller and closer to S than in part (d). (Point given for any correct 1 point statement and no incorrect statement.)

AP ${ }^{\circledR}$ PHYSICS B 2006 SCORING GUIDELINES

Question 4

15 points total
(a) 2 points

Trial	θ_{i}	θ_{r}	$\sin \theta_{i}$	$\sin \theta_{r}$
1	30°	20°	0.50	0.34
2	40°	27°	0.64	0.45
3	50°	32°	0.77	0.53
4	60°	37°	0.87	0.60
5	70°	40°	0.94	0.64

For identifying that both quantities to be graphed are the sines of the angles
For correctly calculating the sines using degrees
(b) 4 points

Example:

For correctly labeling both axes with the sines of the angles
For correctly labeling both axes with appropriate numerical scales
For plotting the five points
For correctly drawing a best fit line that includes the entire range of data points and may extend beyond them

Distribution

 of points1 point 1 point

AP ${ }^{\circledR}$ PHYSICS B 2006 SCORING GUIDELINES

Question 4 (continued)

Distribution
 of points

(c) 4 points

For a statement or implicit use of Snell's Law
$n_{1} \sin \theta_{i}=n_{2} \sin \theta_{r}$ (or $\sin \theta_{i}=n_{2} \sin \theta_{r}$ since $n_{1}=n_{\text {air }}=1$)
For indicating that the index of refraction n can be obtained from the slope or inverse
of the slope depending on choice of variable plotted on each axis
Example using graph above
$n=\frac{\sin \theta_{i}}{\sin \theta_{r}}=\frac{1}{\text { slope }}$
For using two sets of points directly from the line to find the slope
slope $=\frac{0.53-0.41}{0.78-0.60}=0.67$
For a correct calculation of the index of refraction consistent with the slope of the graph $n=1 / 0.67=1.5$
(d) 1 point

For checking "The air-oil interface only"
1 point
(e) 4 points

For indicating that the optical path difference between the waves reflecting off the air-oil interface and the oil-water interface is one-half wavelength
$\Delta \ell=\lambda / 2$
For indicating that the wave reflecting off the oil-water interface travels a distance equal to twice the thickness of the oil
$\Delta \ell=2 t$
For indicating that the wavelength of the light in the oil film is different from the wavelength of the light in air
$\lambda_{\text {film }}=\lambda_{\text {air }} / n_{\text {film }}$
The three equations above are combined to relate the film thickness to the wavelength.
$2 t=\lambda_{\text {film }} / 2=\lambda_{\text {air }} / 2 n_{\text {film }}$
$t=\lambda_{\text {air }} / 4 n_{\text {film }}$
$t=6.0 \times 10^{-7} \mathrm{~m} / 4(1.43)$
For the correct answer with appropriate units
1 point

1 point

1 point
$t=1.05 \times 10^{-7} \mathrm{~m}=105 \mathrm{~nm}$
Notes:
A student who checked "The oil-water interface only" in part (d) and then correctly calculated a wavelength of 105 nm for the thickness of the oil was awarded full credit.
A student who checked "Both interfaces" or "Neither interface" in part (d) and then correctly calculated a wavelength of 210 nm for the thickness of the oil was awarded full credit.

Question 6 (10 points)
(a) 6 points

For a verbal description of the procedure
1 point
An example of a complete procedure would be: Place the laser on the table so that the beam will travel along the white screen placed on the tabletop. Locate the plastic block so that the light enters it at an angle to the normal to the surface of the plastic. Draw a line representing the surface of the block and the incident ray. Mark where the ray exits the block and remove the block. Draw a ray from the exit point back to the normal and incident ray. Measure the angle of incidence and the angle of refraction. Use Snell's law and the fact that the index of refraction in air is unity to calculate the index of refraction of the plastic.
(Shorter descriptions were also acceptable for this point.)

Points awarded for diagram

For all the correct rays drawn and meeting at the interface 1 point
For both θ_{1} and θ_{2} measured from the normal 1 point
For $\theta_{2}<\theta_{1} \quad 1$ point
For all quantities being labeled on the diagram, including n_{1} and $n_{2} \quad 1$ point (n_{1} and n_{2} could also be described in the text.)
For the correct equation 1 point

$$
r_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad \text { OR } \quad \frac{\sin \angle i}{\sin \angle r}=n
$$

Question 6 (continued)
(b) 4 points

For diagram that must include laser, diffraction grating, screen, and some indication of bending or spreading of light at the grating, as shown above

1 point

For the labels on the diagram as shown abuve that correspond to those in the equation used
For the equation and any necessary assumptions made
The equation could be any one of the following three.
$n \lambda=d \sin \theta ; d$ and θ must also be shown in the diagram
$n \lambda=x d / L^{\prime} ; d$ and L^{\prime} must be shown in the diagram
$n \lambda=x d / L$; only for small angles using the approximation $\sin \theta=\tan \theta$, and d and L must be shown in the diagram

For indicating in some fashion that n is equal to the number of a particular bright line.
1 point
This could be with a verbal description or by showing successive dots or an interference pattern, as shown in the example below.

Note: Only one diagram was necessary if it included all the features described. For purposes of these standards several diagrams were used to clearly illustrate how the points were awarded.

Question 4 (15 points)
(a) 8 points

For correctly labeling the initial 60° angle of incidence
For each correctly drawn ray with angle of reflection or refraction labeled one point was awarded
For correctly labeling the angle of incidence at the lower interface
1 point
4 points
1 point
Using Snell's law:
$n_{a} \sin \theta_{a}=n_{g} \sin \theta_{g}$
For correct substitution
1 point
$1.0 \sin 60^{\circ}=1.5 \sin \theta_{g}$
For the correct value of θ_{g}
1 point
$\theta_{g}=35.3^{\circ}$ OR 0.61 rad
At each interface, only one point was awarded for a correct sketch of rays with incorrect or missing angle labels.
At each interface, one point was deducted for an incorrect sketch with correct angle labels.
(b)
i. 2 points

Using the relationship between frequency and wavelength:
$c=f \lambda$
For substituting the correct values in air
1 point
$f_{a}=\frac{c}{\lambda_{a}}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5.25 \times 10^{-7} \mathrm{~m}}$
For the correct answer
1 point
$f_{a}=5.71 \times 10^{14} \mathrm{~Hz}$

Question 4 (continued)
ii. 1 point

For a correct answer
1 point
$f_{f}=5.71 \times 10^{14} \mathrm{~Hz} \quad$ OR indicating it's the same value as part i
iii. 2 points

For correctly applying one or more equations, including substitution
1 point
$\lambda_{f}=\frac{\lambda_{a}}{n_{f}} \quad$ OR $\quad v_{f}=\frac{c}{n_{f}} \quad$ and $\lambda_{f}=\frac{v_{f}}{f_{f}}$
$\lambda_{f}=\frac{5.25 \times 10^{-7} \mathrm{~m}}{1.38} \quad$ OR $\quad \lambda_{f}=\frac{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) / 1.38}{5.71 \times 10^{14} \mathrm{~Hz}}$
For the correct answer, with proper units
I point
$\lambda_{f}=3.8 \times 10^{-7} \mathrm{~m}$ OR 380 nm
iv. 2 points

For indicating the correct condition for constructive interference
1 point
$2 L=\lambda_{f}$
$2 L=3.8 \times 10^{-7} \mathrm{~m}$
For the correct answer, with proper units
1 point
$L=1.9 \times 10^{-7} \mathrm{~m}$ OR 190 nm

AP ${ }^{\circ}$ PHYSICS B
 2001 SCORING GUIDELINES

Question 4

15 points total

4. (a) 3 points

Distribution of Points

For using Snell's law OR indicating that the index of refraction is the slope of the graph $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
For substituting or otherwise indicating use of data from the given graph
1 point
$(1)(0.5)=n_{2}(0.8) \quad$ OR \quad slope $=\frac{0.8}{0.5}$
For the correct answer
1 point
$n_{2}=1.60$
1 point

Alternate
points
1 point
$\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
For using data from the graph
1 point
The critical angle occurs when $\sin \theta_{2}=1$. From the graph, $\sin \theta_{2}=\sin \theta_{c}=0.625$
$0.625=\frac{1}{n_{1}}$
For the correct answer
1 point
$n_{2}=1.60$
Two points were awarded for inverting the values from the graph to obtain $n_{2}=0.625$
4. (b) i. 2 points

For using the correct equation with the correct substitutions
1 point
$f=v / \lambda$
$f=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(675 \times 10^{-9} \mathrm{~m}\right)$
For the correct answer
1 point
$f=4.44 \times 10^{14} \mathrm{~Hz}$

AP ${ }^{\text {® }}$ PHYSICS B
 2001 SCORING GUIDELINES

Question 4 (cont.)

4. (b) ii. 2 points

Distribution of Points

For using the correct equation with the correct substitutions
$v=c / n$
$v=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) / 1.60$
For the correct answer
$v=1.88 \times 10^{8} \mathrm{~m} / \mathrm{s}$
If an incorrect answer was carried through to obtain a speed greater than $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, only one point was awarded for the solution. The second point could be earned if there was some indication that the student realized that the value must be incorrect, because it could not be greater than the speed of light.

4. (b) iii. 2 points

For using the correct equation with correct substitutions (consistent with previous answers)
$\lambda=v / f$
$\lambda=\left(1.88 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(4.44 \times 10^{14} \mathrm{~Hz}\right)$
For the correct answer
1 point
$\lambda=423 \times 10^{-9} \mathrm{~m}=423 \mathrm{~nm}$
Units point: For correct units on two of the three answers in part (b)
1 point
4. (c) i. 1 point

For correctly indicating on the figure that θ_{2} increases

AP ${ }^{\circ}$ PHYSICS B
 2001 SCORING GUIDELINES

Question 4 (cont.)

4. (c) ii. 2 points

Distribution

of Points
For a straight line that goes through the origin
For a steeper slope than the given line
1 point
1 point
Full credit was awarded for a line with less steep slope if it was consistent with the answer to part (a)
4. (d) 2 points

For the correct equation for the critical angle

1 point

1 point
$\theta_{c}=37^{\circ}$ or 0.624 radians

DOUBLE SLIT

1991 Q6

6.

(a) 5 points

For the double-slit interference equation:
$m \lambda=d \sin \theta$
1 point
For small angle approximation (or equivalent geometry) $\sin \theta=\tan \theta=y / L$

1 point

For using $m=1$
1 point
$d=\frac{\lambda L}{y}$
For correct substitution:
$d=\left(5.5 \times 10^{-7} \mathrm{~m}\right)(0.85 \mathrm{~m}) /\left(1.2 \times 10^{-2} \mathrm{~m}\right) \quad 1$ point
$d=3.9 \times 10^{-5} \mathrm{~m}$
1 point
(b) 2 points

For a correct relation to allow calculation of y_{a} :
$y_{a}=\frac{\lambda_{a} I}{d} \quad$ or $\quad \frac{y_{a}}{\lambda_{a}}=\frac{y_{b}}{\lambda_{b}}$
1 point
$y_{\mathrm{a}}=\frac{\left(4.4 \times 10^{-7} \mathrm{~m}\right)(0.85 \mathrm{~m})}{\left(3.9 \times 10^{-5} \mathrm{~m}\right)}$

$$
\text { or } y_{\mathrm{a}}=\frac{\left(1.2 \times 10^{-2} \mathrm{~m}\right)\left(4.4 \times 10^{-7} \mathrm{~m}\right)}{\left(5.5 \times 10^{-7} \mathrm{~m}\right)}
$$

$y_{a}=9.6 \times 10^{-3} \mathrm{~m}$
1 point
(c) 3 points

For a correct definition of the work function:
$W_{0}=h f_{0}$
For a correct relationship between f and λ :
$f=c / \lambda$
1 point
$W_{0}=\frac{h c}{\lambda_{0}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(6 \times 10^{-7} \mathrm{~m}\right)}$
$W_{0}=3.3 \times 10^{-19} \mathrm{~J} \quad($ or 2.1 eV$)$
1 point
6. (continued)
(d) 4 points

For attempting to relate the kinetic energy to the work function and photon energy

1 point
For a correct relationship: K.E. $=h f-W_{0}$

For substitution of correct λ
K.E. $=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(4.4 \times 10^{-7} \mathrm{~m}\right)}-3.3 \times 10^{-19} \mathrm{~J}$
K.E. $=1.2 \times 10^{-19} \mathrm{~J}($ or 0.75 eV$)$

For at least one answer with correct units, and no incorrect units

1 point

1996 Q3

Question 3 (15 points)
(a) 2 points

For indicating that interference demonstrates the wave property of light or diffraction, or constructive and destructive interference
(b) 3 points

For realizing that the distance of point P from the center of the in terference pattern is $3 / 2$ the spacing of the pattern, and indicating that the path difference is $3 / 2 \lambda$

Note: An answer of simple $3 / 2$ was awarded 2 points.

(Alternate solution 1)

For a diagram showing the path difference

Path difference $=m \lambda=d \sin \theta$
For using $\sin \theta \approx \tan \theta \approx x / L$
Path difference $=d \times / L=\left(2 \times 10^{-3} \mathrm{~m}\right)\left(1.8 \times 10^{-3} \mathrm{~m}\right) /(5 \mathrm{~m})$
For the correct answer
Path difference $=7.2 \times 10^{-7} \mathrm{~m}$
(Alternate solution 2)

For using the Pythagorean theorem

Using the geometry shown above

$$
a=\sqrt{(0.8 \mathrm{~mm})^{2}+(5000 \mathrm{~mm})^{2}}=25,000,000.64 \mathrm{~mm}
$$

Distribution
 of points

2 points

3 points
(Alternate points)
1 point

1 point
1 point
(Alternate points)

1 point

$$
b=\sqrt{(2.8 \mathrm{~mm})^{2}+(5000 \mathrm{~mm})^{2}}=25,000,007.84 \mathrm{~mm}
$$

For subtracting the two lengths
$\begin{array}{ll}\text { Path difference }=b-a & 1 \text { point }\end{array}$
For the correct answer
Path difference $=7.2 \times 10^{-7} \mathrm{~m}$
1 point
(c) 4 points

There are two methods for this solution corresponding to giving an answer of $3 / 2 \lambda$ in part (c).

Method 1
Path difference $=m \lambda=d \sin \theta$

For correct substitution
Using $\sin \theta$ or $\tan \theta \approx \mathrm{x} / \mathrm{L}$

Substituting the correct value of m corresponding to the value of x

$$
\lambda=\frac{d x}{m L}
$$

Choosing to make the substitutions for point P

$$
\lambda=\frac{\left(2 \times 10^{-3} \mathrm{~m}\right)\left(1.8 \times 10^{-3} \mathrm{~m}\right)}{(3 / 2)(5 \mathrm{~m})}
$$

For a correct answer, in which the units match the magnitude $\lambda=4.8 \times 10^{-7} \mathrm{~m}$

Method 2
$x \approx \frac{m \lambda L}{d}$
For correctly substituting L, d, a value of x that corresponds to a maximum or minimum in the interference pattern, and whole of half integer number for m Substituting the correct value of m corresponding to the value of x

$$
\lambda=\frac{d x}{m L}
$$

Choosing to make the substitutions for point P
$\lambda=\frac{\left(2 \times 10^{-3} \mathrm{~m}\right)\left(1.8 \times 10^{-3} \mathrm{~m}\right)}{(3 / 2)(5 \mathrm{~m})}$
For a correct answer in which the units match the magnitude $\lambda=4.8 \times 10^{-7} \mathrm{~m}$

(Alternate solution)

For setting a numerical answer to part (b) (or a newly calculated value) equal to $2 / 3 \lambda$
For a correct answer, in which the units match the magnitude
(d)
i. 2 points

For indicating that the interference pattern will be compressed toward the central maximum
(Alternate points)
1 point
1 point

1 point

1 point

3 points
1 point

1 point
ii. 2 points

For indicating that there will be a spreading of the pattern, or a larger central maximum in the pattern
For indicating that the new pattern is a one-slit diffraction pattern.
iii. 2 points

For indicating that the interference pattern will be compressed toward the central maximum

For referring to the equation $x \approx \frac{m \lambda L}{d}$, and indicating that as d increases the pattern in compressed

1 point
1 point

1 point

1 point

Note: Allowance was made in all calculations for the small discrepancies in the reading values from the graph

