MIRRORS

1978 Q5

b) 3 points

$H_o = 6 \text{ cm}$	
$D_o = 30 \text{ cm}$	
f – 10 cm	
$\frac{1}{D_i} + \frac{1}{D_o} - \frac{1}{f}$	2
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$	
$\overline{D_i} = \overline{f} = \overline{D_o} = \overline{10} = \overline{30} = \overline{30}$	
D _i = 15 cm	1

Alternate:

$$H_{o} = 6 \text{ cm}$$

$$S_{o} = 20 \text{ cm}$$

$$f = 10 \text{ cm}$$

$$S_{i}S_{o} = f^{2}$$

$$S_{i} = \frac{f^{2}}{S_{o}} = \frac{100}{20} = 5 \text{ cm}$$
1

c) 3 points

$$\frac{H_{i}}{H_{o}} = \frac{D_{i}}{D_{o}}$$

$$H_{i} = \frac{15}{30}(6) = 3 \text{ cm}$$
1

Alternate

$$\frac{H_i}{H_o} = \frac{f}{S_o} = \frac{S_i}{f}$$

$$H_i = \frac{5}{10} (6) \text{ or } H_i = \frac{10}{20} (6)$$

$$H_i = 3 \text{ cm}$$
1

(1) AP[®] is a registered trademark of the College Board. The College Board was not involved in the production of and does not endorse this product. (2) Test Questions are Copyright © 1984-2008 by College Entrance Examination Board, Princeton, NJ. All rights reserved. For face-to-face teaching purposes, classroom teachers are permitted to reproduce the questions. Web or Mass distribution prohibited.

d) 2 points

See diagram above.	
Reflected ray passing through tip of image	2
Showing <i>L</i> i – <i>L</i> r at surface of mirror at point Q	
but not reflected through tip of arrow.	1

1983 Q5

1983 Q5 (continued)

	Distribution of points
Alternate solution to (c) and (d) using Newton's form of the mirror equation:	(Alternate points)
(c) $S_0S_1 = f^2$ (Where S_0 and S_1 are measured from the focal point)	(1 point)
$S_I = \frac{f^2}{S_0} = \frac{20^2}{-5} = -80$	(1 point)
So the image is 80 cm to the right of the focal point, 60 cm from the lens. f = 20	(2 points)
(d) $M = \frac{f}{S_0} = \frac{20}{5} = 4$	(2 points)
and so $H_I = 4 \cdot 3 = 12$ cm	(1 point)

LENSES

1981 Q5

5. a) 4 points

The image can be located by drawing any two of the three principal rays shown on the diagram below.

Principal ray parallel to axis refracted through F' or principal ray through F re fracted parallel to axis	- 2 points
Either or both of the other two principal rays	1 point
Drawing arrow for image at intersection of rays	1 point
b) 3 points	
The image is real	1 point
Correct explanation, such as The rays actually meet at the image, The image is on the opposite side of the lens from the incident light, or The real object is more than one focal length from a converging lens	2 points
c) 4 points	
Thin lens equation: $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$	1 point
$\frac{1}{q} = \frac{1}{f} - \frac{1}{p} = \frac{1}{6} - \frac{1}{18} = \frac{1}{9}$	2 points
Distance of image from lens is $q = 9 \text{ cm}$	1 point
Alternate method:	Alternate Points
Newton's equation $s_0 s_1 = f^2$	(1 point)
s_0 = distance from object to F = 18 - 6 = 12 cm	(1 point)
$s_i = \frac{6^2}{12} = 3 \text{ cm}$	(1 point)
Distance from lens to image is $f + s_i = 6 + 3 = 9 \text{ cm}$	(1 point)

1981 Q5 (continued)

d) 4 points

In this case, the principal rays for the first lens are also principal rays for the second lens and can be traced through both lenses to locate the final image.

1982 Q6

6. a) 6 points

The position of the image can be calculated by using the thin lens equation

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
 2 points

Since the object distance $p = \frac{3f}{2}$,

Hence $q = 3f$	l point
which means that the image is located a distance 3f to the right of the lens.	1 point

which means that the image is located a distance 3f to the right of the lens.

Alternate method:	Alternative Points
One can use Newton's form of the thin lens equation, $s s' = f^2$.	(2 points)
Here s is the distance of the object to the left of the first focal point, i.e.,	(1 point)

$$s = \frac{1}{2} f$$
and so s' = $\frac{f^2}{\frac{1}{2} f} = 2f$
(1 point)

This means that the image is 2f to the right of the second focal point, i.e., 3f to the right of the lens.

b) 5 points

There are three principal rays that might be traced, as shown on the diagram.

For any one of these three:	2 points
	1 point
For a second one:	

For extending the rays until they meet and indicating that the image is at their point of intersection:

c) 4 points

The focal length of the second lens, f2, must be greater.

1 point

(2 points)

2 points

Algebraic justification using thin lens equation: Image height h' and image distance q are related by

$$\frac{h'}{a} = \frac{\text{object height}}{p}$$

If the new image height is greater, the new image distance q₂ must be greater than the old image distance q.

2 points

1982 Q6 (continued)

The new focal length f₂ satisfies

$$\frac{1}{f_2} = \frac{1}{p} + \frac{1}{q_2}, \text{ while } \frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$
Since $q_2 > q$, $\frac{1}{q_2} < \frac{1}{q}$ and $\frac{1}{f_2} < \frac{1}{f}$
1 point

Therefore $f_2 > f$

Alternate methods:Alternative
PointsAlgebraic justification using Newton's equation:
Object height h and image height h'(2 points)satisfy $\frac{h'}{h} = \frac{f}{s}$ (2 points)By increasing f, which decreases s, one can increase h'(1 point)Geometric justification:
By drawing a ray diagram with two different focal points f₁ and f₂, both less than p,
one sees that image height increases as f increases.(3 points)

1986 Q6

6.

(a) 3 points

For two correct principal rays 2 points For locating image at intersection of rays 1 point

(b) 2 points

$$\frac{y_i}{y_o} = \left|\frac{S_i}{S_o}\right| \qquad 1 \text{ point}$$

$$\frac{\gamma_i}{\gamma_0} = \frac{6 \text{ cm}}{3 \text{ cm}} = 2 \qquad 1 \text{ point}$$

Student could also indicate relative sizes of 2:1 on a good, carefully drawn sketch in part (a).

(c) 3 points

For two correct principal rays, extended back as2 pointsnecessaryPoint intersection of rays1 point

6. (cont) (d) 3 points $\frac{1}{5_0} + \frac{1}{5_1} = \frac{1}{7}$ $\frac{1}{6} + \frac{1}{5_1} = \frac{1}{-3}$ $\frac{1}{5_1} = \frac{1}{3} - \frac{1}{6} = -\frac{3}{6} = -\frac{1}{2}$ $|S_1| = 2 \text{ cm}$ 1 point

(e) 1 point Virtual

1 point

(f) 3 points

For forming the image of the first lens as in part (a) 1 point For using rays from this image to the second lens 1 point For obtaining the correct final image 1 point 1989 Q5

5.	-
(a) 2 points	
The image is real	2 points
(b) 3 points	
For lens equation: $\frac{1}{d_0} + \frac{1}{d_1} - \frac{1}{f}$	l point
For correct substitution: $\frac{1}{60 \text{ cm}} + \frac{1}{d_1} = \frac{1}{20 \text{ cm}}$	l point
$\frac{1}{d_{i}} = \frac{1}{20 \text{ cm}} - \frac{1}{60 \text{ cm}} = \frac{3-1}{60 \text{ cm}} = \frac{2}{60 \text{ cm}} = \frac{1}{30 \text{ cm}}$	
$d_{i} = 30 \text{ cm}$	l point
(c) 3 points	
$M = \frac{h_i}{n_0} = -\frac{d_i}{d_0}$	l point
For correct substitution: $M = -\frac{30 \text{ cm}}{60 \text{ cm}}$	l point
$M = -\frac{1}{2}$	1 point
If the answer was inverted $(M = -2)$, 1 point was awarded if no work was shown, and 2 points were awarded if work was shown.	

(d) 4 points

For $d_1 \rightarrow \infty$ as $d_0 \rightarrow f$ from the right	l point
For $d_i = 1.5 f$ when $d_0 = 3f$ For "concave up" curve between the	l point
above points For an increasingly negative curve	l point
for $d_0 < f$, asymptotic at $d_0 = f$	l point

- 5. (continued)
- (e) 3 points

Focal length decreases

2 points

-

For any valid explanation (which may include ray diagrams) 1 point For example: Snell's Law indicates that an increase in index of refraction causes increased angle of refraction. If rays "bend" more, the focal length is decreased.

1992 Q6

(a) 4 points

For correct inverted orientation of image (or consistent 1 point with rays drawn)

(Last point was awarded for merely an indication that image is to the right of lens and inverted, without drawing rays)

(b)

i. 3 points

$$\frac{1}{d_0} + \frac{1}{d_i} = \frac{1}{f}$$
2 points
$$d_i = \frac{d_0 f}{d_0 - f}$$

$$= \frac{(45 \text{ cm})(15 \text{ cm})}{45 \text{ cm} - 15 \text{ cm}}$$

$$d_i = 22.5 \text{ cm}$$
1 point

(b) (continued)	
(Alternate solution)	(Alternate points)
$x_0 x_i = f^2$ $x_i = f^2 / x_0$ $= (15 \text{ cm})^2 / (30 \text{ cm})$	(l point)
$x_i = 7.5$ cm	(1 point)
$d_i = 22.5 \text{ cm}$	(1 point)
ii. 2 points Magnification = $\frac{h_i}{h_o} = \frac{d_i}{d_o}$ $h_i = \frac{d_i}{d_o} h_o$ (22.5 cm) e_i are	1 point
$= \frac{(22.5 \text{ cm})}{(45 \text{ cm})} 8 \text{ cm}$ h _i = 4 cm	1 point
(Alternate Solution)	(Alternate points)
Magnification = $\frac{h_i}{h_0} = \frac{f}{x_0} = \frac{x_i}{f}$	(1 point)
$h_{i} = \frac{fh_{0}}{x_{0}}$ $= \frac{(15 \text{ cm})(8 \text{ cm})}{(30 \text{ cm})}$ $h_{i} = 4 \text{ cm}$	(1 point)
(c) 3 points	
Only effect would be a dimming of the image.	
For any indication that there is no change in location	1 point
For any indication that there is no change in size	l point
For any indication of a reduction in intensity	l point

14

6. (continued)

or bornes

(d) 3 points

One point each for up to two correct principal rays	2 points
For correct location and orientation of image (consistent with rays drawn)	l point

1997 Q5

Question 5 (15 points)

(a) 2 points

For indicating that the lens is converging	l point
For a correct explanation	l point
Examples:	-
The image from a diverging lens is always on the same side of the	
lens as the object, so this lens must be converging.	
The image from a diverging lens is always closer to the lens than the	
object, and the image here is farther.	
The magnification is greater than 1.	

(b) 3 points

Using the lens equation

$$\frac{1}{f} = \frac{1}{s_i} + \frac{1}{s_o}$$
For correct substitution
$$\frac{1}{f} = \frac{1}{90 \text{ mm}} + \frac{1}{30 \text{ mm}}$$

$$\frac{1}{f} = \frac{4}{90 \text{ mm}}$$

$$f = \frac{90 \text{ mm}}{4}$$

For the correct numerical answer For correct units f = 22.5 mm

Full credit can be earned for an answer taken from the student's diagram in part (c) if the student explicitly stated that this was the method used.

1 point

1 point 1 point

Question 5 (continued)

(c) 3 points

the student drew in part (c), and the image must be drawn or its position indicated by crossed rays.

Question 5 (continued)

(e) 4 points

Note: Given the size of the object with respect to the curvature of the mirror, the principal rays used to locate the position of the image are not all paraxial. The result is that these rays do not all meet at one point, and the location of the image depends on the choice of rays. Therefore, a range of image positions was allowed.

For correctly drawing a concave mirror at $x = 0$	1 point
For correctly drawing up to two of the principal rays shown (1 point each)	2 points
For having two rays intersecting to indicate an image that is inverted,	
below the axis, and between 40 and 70 mm	1 point

AP[®] PHYSICS B 2002 SCORING GUIDELINES

Question 4

AP[®] PHYSICS B 2002 SCORING GUIDELINES

Question 4 (cont'd.)

		Distribution of points
(c)	continued	
		Alternate
	Alternate Solution	points
	Let x_o = distance from object to focal point and x_i = distance from image to focal point.	
	For the correct formula	l point
	$\frac{x_i}{f} = \frac{f}{x_o}$	
	$f - \overline{x_o}$	
	For correct substitutions	l point
	x_i 10 cm	
	$\frac{x_i}{10 \text{ cm}} = \frac{10 \text{ cm}}{10 \text{ cm} - 6 \text{ cm}}$	
	$(10 \text{ cm})^2$	
	$x_i = \frac{(10 \text{ cm})^2}{4 \text{ cm}} = 25 \text{ cm}$	
	$s_i = 25 \text{ cm} - 10 \text{ cm}$	
	$S_i = 25 \text{ cm} = 10 \text{ cm}$ For the correct answer	Incint
		l point
	$s_i = 15 \text{ cm}$	
(d)	2 points	
	For the correct image size to object size ratio with no units, or with units that cancel	2 points
		- F • • • • •
	$\frac{h_i}{h_o} = \frac{s_i}{s_o} = \frac{15 \text{ cm}}{6 \text{ cm}} = \frac{5}{2}$	
	Notes:	
	Students could use either a calculation or a ray diagram to arrive at the final answer.	
	1 point only was awarded if the correct ratio was imbedded in extra calculations or if	
	units were provided for the answer (for example, 2.5 cm).	
	No points were given for giving the object size to image size ratio.	
(e)	4 points	
	Since the question asked for a description, a verbal response was expected, although	
	the image position, size, and orientation could be determined from either a calculation	
	or a ray diagram.	
	For the correct position:	
	Image on the opposite side of the lens from the object	1 point
	Distance from the image to the lens in the range 20 cm \pm 3 cm	1 point
	For the correct size: image size same as object size, or for size consistent with value	1 point
	for position	r
	For the correct orientation: image is inverted	1 point

INDEX OF REFRACTION

1979 Q6

(a) 5 points From Snell's law, one has

$\frac{\sin i}{\sin r} = \frac{v_i}{v_r}$	2 points
$2i = 53^{\circ}, 2r = 37^{\circ}$ $v_i = c$	l point 1 point
v, – (sin 37°/sin 53°)c – (3/4)c	l point

or alternate solution involving index of refraction.

(b) 5 points

Again applying Snell's law one has

 $\sin r - \left[\frac{c}{(3/4)c}\right] \sin 53^\circ - 16/15$ 1 point Since sin r > 1, there is no refracted ray. 2 points

Correct drawing

(c) 5 points

Plastic Ai

R

Correct drawing

3 points

2 points

The rays diverge because medium II is more dense than medium I (or some equivalent statement).

2 points Total 15 points 1987 Q5

(a)	2 points Angle of incidence - angle of refraction (or $\theta_1 - \theta_3$) $\theta_3 - 30^\circ$	1 point 1 point
(b)	$n_1 \sin \theta_1 - n_2 \sin \theta_2$	l point
	$(1.6)(\sin 30^{\circ}) = (1)(\sin \theta_2)$	1 point
	$\theta_2 = \sin^{-1}(0.8) \text{ or } \theta_2 = 53.1^\circ$	l point
(c)	3 points	
	$v = \frac{c}{n}$ or $\frac{v_1}{v_2} = \frac{n_2}{n_1}$	l point
	$v_g = \frac{3.00 \times 10^8}{1.6}$	l point
	$v_g = 1.875 \times 10^8 \text{ m/s}$	l point
(d)	4 points	1
	$v = f\lambda$ or $\lambda = v/f$	l point
	$\lambda_g = \frac{\nu_g}{f} = \frac{1.875 \times 10^8}{6 \times 10^{14}}$	l point
	$\lambda_g = 3.125 \times 10^{-7} \text{m}$ or $\lambda_g = 3125 \text{ Å}$	2 points
	(One point for numerical value, one point for units)	•
	Alternate Method (Alt	ernate Points)
	$\lambda_a = \frac{c}{f} $ (for both equations)	
	$\lambda_g = \frac{\lambda_a}{n}$	(1 point)
	$\lambda_g = \frac{c}{fn}$ (for correct substitution)	(1 point)
	$\lambda_{g} = \frac{3.00 \times 10^{8}}{(6 \times 10^{14})(1.6)}$ $\lambda_{g} = 3.125 \times 10^{-7} \text{ m or } \lambda_{g} = 3125 \text{ Å}$	(2 points)
	(One point for numerical value, one point for units)	
(e)	3 points	
	For an indication of the occurrence of either a critica angle or total internal reflection, or the equation $n_1 \sin \theta_1 = \sin 90^\circ$	1 1 point
	1.6 sin θ_1 - sin 90° - 1	l point
	$\theta_1 = \sin^{-1}(0.625) \text{ or } \theta_1 = 38.7^{\circ}$	l point

1988 Q5

(a) 2 points

1 point Horizontal ray in the prism Ray emerging below horizontal (or consistent with Snell's law and ray in prism, if ray in prism is incorrect) 1 point (b) 5 points 1 point Snell's Law $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\sin \theta_2 = \frac{1.5 \sin 37^{\circ}}{1.0}$ 2 points (1 point for sin 37°, 1 point for correct indices of refraction) 1 point 0₂ - 65° 1 point $\alpha = 65^{\circ} - 37^{\circ} = 28^{\circ}$ (c) 3 points $n' = 1.0 \frac{\sin 90^{\circ}}{\sin 37^{\circ}}$ 2 points (1 point for sin 90°, 1 point for correct indices of refraction) 1 point n' = 1.67

(d) 2 points

horizontal ray in prism	l point
emerging ray below horizontal (<u>or</u> consistent with Snell's	
law and ray in prism if ray in prism incorrect)	1 point

- 5. (continued)
- (e) 3 points

$$\sin \theta_{2}' = \frac{1.67 \sin 37^{\circ}}{1.33}$$
$$\theta_{2}' = 49^{\circ}$$
$$\alpha = 49^{\circ} = 37^{\circ} = 12^{\circ}$$

1 point 1 point

1 point

Alternate solutions for parts (b) and (e)

(Alternate Points)

For recognition of symmetry and connection with minimum deviation for double prism	(2 points)
as shown above	
For Snell's law and minimum deviation formula	
	(2 points)
$\frac{n_1}{n_2} = \frac{\sin (A/2 + D/2)}{\sin A/2}$ Application to (b) to obtain $D/2 = 28^{\circ}$ Application to (e) to obtain $D/2 = 12^{\circ}$	(2 points) (2 points)

1990 Q6

(a) 3 points

For some statement that the angle of reflection equals the angle of incidence, or an indication of equal angles on the diagram 2 points

$$\theta_{\text{refl}} = \tan^{-1}\left(\frac{2}{3}\right) \text{ or } \sin^{-1}\left(\frac{2}{\sqrt{13}}\right) \text{ or } \cos^{-1}\left(\frac{3}{\sqrt{13}}\right) = 34^{\circ}$$
 1 point

(b) 3 points

 $n_a \sin \theta_a = n_w \sin \theta_w$ l point

$$\sin \theta_a = \frac{(1.33)}{(1)} \sin 34^\circ \qquad 1 \text{ point}$$

$$\theta_a = 48^{\circ}$$
 l point

(c) 4 points

$$\sin \theta_{\rm crit} = \frac{n_a}{n_w}$$

or some other indication that the critical angle must be calculated

$$\theta_{crit} = 49^{\circ}$$
 l point

$$\tan \theta_{crit} = \frac{2}{d}$$
 (where *d* is the depth) 1 point

(d) 1 pointFor the correct answer, air-oil, and no incorrect answers1 point

(e) 4 points

 $2t = \left(M + \frac{1}{2}\right)\lambda_{\text{oil}} \quad (\text{where } t \text{ is the thickness of the oil} \\ \text{and } M \text{ is an integer})$

or some indication that interference is involved 1 point $\lambda_{air} = n_{oil} \lambda_{oil} = \frac{2(1 \times 10^{-7} \text{ m})(1.5)}{(M + 1/2)} \quad \text{or} \quad \lambda_{oil} = \frac{2(1 \times 10^{-7} \text{ m})}{(M + 1/2)} \quad 1 \text{ point}$ $\lambda_{air} = 600 \text{ nm}, 200 \text{ nm}... \quad \text{or} \quad \lambda_{oil} = 400 \text{ nm}, 133 \text{ nm}... \quad 1 \text{ point}$ For selecting the proper λ_{air} that lies in the visible range: $\lambda_{air} = 600 \text{ nm or red}$ or indicating that the visible range is 400 nm to 700 nm \quad 1 \text{ point}

1 point

1993 Q4

```
(a) 2 points
       The definition of the index of refraction relates the speed
            of light in vacuum and in glass.
      n = \frac{c}{v}
      Solving for v:
      v = \frac{c}{n}
                                                                                                      1 point
      Substituting:
      v = (3 \times 10^8 \text{ m/s}) / 1.60
      v = 1.9 \times 10^8 m/s (or 0.625 c)
                                                                                                      1 point
(b) 2 points
      For the relation for the wavelength in glass and in vacuum:
      \lambda_{g} = \frac{\lambda_{v}}{n}
                                                                                                      1 point
      \lambda_{\rm g} = (700 \times 10^{-9} \text{ m}) / 1.50
      \lambda_g = 4.7 \times 10^{-9} \text{ m}
                                                                                                      1 point
(c) 3 points
      For recognizing that the frequency of the light does not change
                                                                                                      1 point
           when the light enters a different medium.
      f = \frac{c}{\lambda}
                                                                                                      1 point
      Substituting:
      f = (3 \times 10^8 \text{ m/s})/(700 \times 10^{-9} \text{ m})
      f = 4.3 \times 10^{14} \text{ Hz}
                                                                                                      1 point
```

4. (continued)

part (e).)

(d) 4 points

For	indicating no refraction at the first surface	l point
For	indicating the red ray bending away from the normal at second surface (i.e. below horizontal)	l point
For	indicating the blue ray bending away from the normal at second surface	l point
For	indicating that the blue ray bends more than the red ray.	l point
(If	refraction is shown at the first surface, the last three points may still be awarded for correctly refracting the incorrect rays at the second surface)	
(If	no points were earned for ray diagram, l point could be awarded for writing Snell's Law in either part (d) or	

27

4. (continued) (e) 4 points

For	indicating no refraction at the first surface	1	point
For	indicating the red ray bending toward the normal at the second surface.	1	point
For	indicating the blue ray bending toward the normal at the second surface.	1	point
For	indicating that the blue ray bends more than the red ray	1	point
(If	refraction is shown at the first surface, the last three points may still be awarded for correctly refracting the incorrect rays at the second surface)		

1994 Q5

5. (a) 3 points

$$v = \frac{c}{n}$$
1 point
3 × 10⁸ m/s

$$= \frac{3 \times 10^{8} \text{ m/s}}{1.33}$$
1 point

$$v = 2.26 \times 10^8 \,\mathrm{m/s}$$
 1 point

(b) 3 points

For straight line in the water from S, with θ_1 to the right [This point also awarded for straight wave propagation, i.e. \mathcal{M}]	1 point
For straight line in air from the point of intersection of ray with surface to the eye with $\theta_2 > \theta_1$ to the right	1 point
For no incorrect rays	1 point
(c) 3 points	
Using Snell's Law: $n_w \sin \theta_w = n_a \sin \theta_a$ At the critical angle, $\theta_w = \theta_c$ and $\sin \theta_a = 1$	1 point
$\sin \theta_c = \frac{n_a}{n_w} = \frac{1}{1.33}$	1 point
$\theta_{r} = 48.8^{\circ}$	1 point

5. (cont.)

(d) 4 points

Using the lens equation:

(Alternate solution)

$\frac{1}{d_o} + \frac{1}{d_i}$	$ \frac{1}{f}$		1 p	oint
$\frac{1}{20 \text{ cm}} +$	1	1	1 p	oint

$$d_i = -60 \text{ cm} \qquad 1 \text{ point}$$

The image is 60 cm below the lens but the lens is 20 cm above the bottom of the pool, so the image is 60 cm - 20 cm = 40 cm below the bottom of the pool.

(Alternate points)

1 point

$d_i d_a = f^2$	(1 point)
$d_i(-10 \text{ cm}) = (30 \text{ cm})^2$	(1 point)
$d_i = -90$ cm (distance from focal point)	(1 point)
Distance from bottom of pool is 90 cm - 30 cm - 20 cm = 40 cm	(1 point)

[Full credit also awarded for a correct solution given from the perspective of being in the air above the water.]

(e) 2 points

i. There is no refraction at either surface of the lens, so no image is formed other than at the source itself. (Point given for any correct statement describing that the lens has no effect on the light from S .)	1 point
ii. The index of refraction of the material is closer to that of the lens, so the refraction is less than that with water.	
The image is smaller and closer to S than in part (d). (Point given for any correct statement and no incorrect statement.)	1 point

AP[®] PHYSICS B 2006 SCORING GUIDELINES

Question 4

15 points total

(a) 2 points

Trial	$ heta_i$	θ_r	$\sin \theta_i$	$\sin \theta_r$
1	30°	20°	0.50	0.34
2	40°	27°	0.64	0.45
3	50°	32°	0.77	0.53
4	60°	37°	0.87	0.60
5	70°	40°	0.94	0.64

For identifying that both quantities to be graphed are the sines of the angles For correctly calculating the sines using degrees 1 point 1 point

(b) 4 points

For correctly labeling both axes with the sines of the angles	1 point
For correctly labeling both axes with appropriate numerical scales	1 point
For plotting the five points	1 point
For correctly drawing a best fit line that includes the entire range of data points and may	1 point
extend beyond them	_

Distribution of points

AP[®] PHYSICS B 2006 SCORING GUIDELINES

Question 4 (continued)

	Question 4 (continued)	
		Distribution of points
(c)	4 points	
	For a statement or implicit use of Snell's Law $n_1 \sin \theta_i = n_2 \sin \theta_r$ (or $\sin \theta_i = n_2 \sin \theta_r$ since $n_1 = n_{air} = 1$)	1 point
	For indicating that the index of refraction <i>n</i> can be obtained from the slope or inverse of the slope depending on choice of variable plotted on each axis Example using graph above $n = \frac{\sin \theta_i}{\sin \theta_r} = \frac{1}{\text{slope}}$	1 point
	For using two sets of points directly from the line to find the slope $slope = \frac{0.53 - 0.41}{0.78 - 0.60} = 0.67$	1 point
	For a correct calculation of the index of refraction consistent with the slope of the graph $n = 1/0.67 = 1.5$	1 point
(d)	1 point	
	For checking "The air-oil interface only"	1 point
(e)	4 points	
	For indicating that the optical path difference between the waves reflecting off the air-oil interface and the oil-water interface is one-half wavelength $\Delta \ell = \lambda/2$	1 point
	For indicating that the wave reflecting off the oil-water interface travels a distance equal to twice the thickness of the oil $\Delta \ell = 2t$	1 point
	For indicating that the wavelength of the light in the oil film is different from the wavelength of the light in air $\lambda_{film} = \lambda_{air} / n_{film}$	1 point
	The three equations above are combined to relate the film thickness to the wavelength. $2t = \lambda_{film}/2 = \lambda_{air}/2n_{film}$	
	$t = \lambda_{air} / 4n_{film}$	
	$t = 6.0 \times 10^{-7} \mathrm{m/4(1.43)}$	1
	For the correct answer with appropriate units $t = 1.05 \times 10^{-7} \text{ m} = 105 \text{ nm}$	1 point
	$t = 1.05 \times 10^{\circ}$ III = 105 IIII Notes:	
	A student who checked "The oil-water interface only" in part (d) and then correctly calculated a wavelength of 105 nm for the thickness of the oil was awarded full credit.	
	A student who checked "Both interfaces" or "Neither interface" in part (d) and then correctly calculated a wavelength of 210 nm for the thickness of the oil was awarded full credit.	

Ouestion 6 (10 points)

(a) 6 points

For a verbal description of the procedure

An example of a complete procedure would be: Place the laser on the table so that the beam will travel along the white screen placed on the tabletop. Locate the plastic block so that the light enters it at an angle to the normal to the surface of the plastic. Draw a line representing the surface of the block and the incident ray. Mark where the ray exits the block and remove the block. Draw a ray from the exit point back to the normal and incident ray. Measure the angle of incidence and the angle of refraction. Use Snell's law and the fact that the index of refraction in air is unity to calculate the index of refraction of the plastic.

or Li

= 1.00 = nolastia

(Shorter descriptions were also acceptable for this point.) aser

0,or Lr

 $(n_1 \text{ and } n_2 \text{ could also be described in the text.})$

For the correct equation

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 OR $\frac{\sin 2i}{\sin 2r}$

Distribution of points

1 point

1 point

1 point

1 point

1 point

1 point

33

Question 6 (continued)

(b) 4 points

For diagram that must include laser, diffraction grating, screen, and some indication of bending or spreading of light at the grating, as shown above

1 point

For the labels on the diagram as shown above that correspond to those in the equation used 1 point For the equation and any necessary assumptions made 1 point The equation could be any one of the following three.

 $n\lambda = d\sin\theta$; d and θ must also be shown in the diagram

- $n\lambda = xd/L'$; d and L' must be shown in the diagram
- $n\lambda = xd/L$; only for small angles using the approximation $\sin \theta = \tan \theta$, and d and L must be shown in the diagram
- For indicating in some fashion that n is equal to the number of a particular bright line. I point This could be with a verbal description or by showing successive dots or an interference pattern, as shown in the example below.

<u>Note:</u> Only one diagram was necessary if it included all the features described. For purposes of these standards several diagrams were used to clearly illustrate how the points were awarded.

Distribution of points

Distribution of points

Question 4 (15 points)

(a) 8 points

Question 4 (continued)

ii. 1 point

For a correct answer		1 point
$f_f = 5.71 \times 10^{14} \text{ Hz}$ OR	indicating it's the same value as part i	

iii. 2 points

For correctly applying one or more equations, including substitution 1 point $\lambda_f = \frac{\lambda_a}{n_f} \quad \text{OR} \quad v_f = \frac{c}{n_f} \quad \text{and} \quad \lambda_f = \frac{v_f}{f_f}$ $\lambda_f = \frac{5.25 \times 10^{-7} \text{ m}}{1.38} \quad \text{OR} \quad \lambda_f = \frac{(3 \times 10^8 \text{ m/s})/1.38}{5.71 \times 10^{14} \text{ Hz}}$ For the correct answer, with proper units 1 point $\lambda_f = 3.8 \times 10^{-7} \text{ m} \text{ OR} \quad 380 \text{ nm}$

iv. 2 points

For indicating the correct condition for constructive interference	1 point
$2L = \lambda_f$	
$2L = 3.8 \times 10^{-7} \text{ m}$	
For the correct answer, with proper units	1 point
$L = 1.9 \times 10^{-7} \text{ m OR } 190 \text{ nm}$	

Distribution

of points

AP[®] PHYSICS B 2001 SCORING GUIDELINES

Question 4

15 points total	
4. (a) 3 points	Distribution of Points
For using Snell's law OR indicating that the index of refraction is the slope of the graph $n_1 \sin \theta_1 = n_2 \sin \theta_2$	1 point
For substituting or otherwise indicating use of data from the given graph	1 point
$(1)(0.5) = n_2(0.8)$ OR slope $= \frac{0.8}{0.5}$	
For the correct answer $n_2 = 1.60$	1 point
Alternate Solution	Alternate points
For using the expression for the critical angle	1 point
$\sin\theta_c = \frac{n_2}{n_1}$	
For using data from the graph The critical angle $z = 0.625$	1 point
The critical angle occurs when $\sin \theta_2 = 1$. From the graph, $\sin \theta_2 = \sin \theta_c = 0.625$ $0.625 = \frac{1}{n_1}$	
For the correct answer	1 point
$n_2 = 1.60$	
Two points were awarded for inverting the values from the graph to obtain $n_2 = 0.625$	
4. (b) i. 2 points	
For using the correct equation with the correct substitutions $f = v/\lambda$	1 point
$f = (3 \times 10^8 \text{ m/s}) / (675 \times 10^{-9} \text{ m})$	

 $f = (3 \times 10^{\circ} \text{ m/s}) / (67)$ For the correct answer $f = 4.44 \times 10^{14} \text{ Hz}$

1 point

37

AP[®] PHYSICS B 2001 SCORING GUIDELINES

Question 4 (cont.)

4. (b) ii. 2 points	Distribution of Points
For using the correct equation with the correct substitutions $v = c/n$	1 point
$v = (3 \times 10^8 \text{ m/s})/1.60$ For the correct answer $v = 1.88 \times 10^8 \text{ m/s}$	1 point
If an incorrect answer was carried through to obtain a speed greater than 3×10^8 m/s, only o was awarded for the solution. The second point could be earned if there was some indicar student realized that the value must be incorrect, because it could not be greater than the s light.	tion that the
4. (b) iii. 2 points	
For using the correct equation with correct substitutions (consistent with previous answers) $\lambda = v/f$	1 point
$\lambda = (1.88 \times 10^8 \text{ m/s}) / (4.44 \times 10^{14} \text{ Hz})$	
For the correct answer $\lambda = 423 \times 10^{-9} \text{ m} = 423 \text{ nm}$	1 point
Units point: For correct units on two of the three answers in part (b)	1 point

4. (c) i. 1 point

.

- -

For correctly indicating on the figure that θ_2 increases

1 point

AP[®] PHYSICS B 2001 SCORING GUIDELINES

Question 4 (cont.)

Full credit was awarded for a line with less steep slope if it was consistent with the answer to part (a)

4. (d) 2 points

For the correct equation for the critical angle

 $\sin \theta_c = \frac{n_2}{n_1}$ $\sin \theta_c = \frac{1}{1.66} = 0.602$ For the correct answer $\theta_c = 37^\circ \text{ or } 0.624 \text{ radians}$

1 point

1 point

DOUBLE SLIT

1991 Q6

```
6.
        5 points
(a)
         For the double-slit interference equation:
                                                                                                                            1 point
        m\lambda = d \sin \theta
        For small angle approximation (or equivalent geometry)
        \sin \theta \approx \tan \theta = y/L
                                                                                                                            1 point
        For using m = 1
                                                                                                                            1 point
        d = \frac{\lambda L}{\gamma}
        For correct substitution:
d = (5.5 \times 10^{-7} \text{ m})(0.85 \text{ m})/(1.2 \times 10^{-2} \text{ m})
                                                                                                                            1 point
        d = 3.9 \times 10^{-5} m
                                                                                                                            1 point
(b) 2 points
        For a correct relation to allow calculation of y_a:
        y_a = \frac{\lambda_a L}{d}
                                                           \frac{y_a}{\lambda_a} = \frac{y_b}{\lambda_b}
                                           or
                                                                                                                            1 point
        y_a = \frac{(4.4 \times 10^{-7} \text{ m})(0.85 \text{ m})}{(3.9 \times 10^{-5} \text{ m})}
                                         \underline{\text{or}} \ y_{a} = \frac{(1.2 \times 10^{-2} \text{ m})(4.4 \times 10^{-7} \text{ m})}{(5.5 \times 10^{-7} \text{ m})}
        y_{\rm a} = 9.6 \times 10^{-3} {\rm m}
                                                                                                                            1 point
(c) 3 points
        For a correct definition of the work function:
                                                                                                                            1 point
        W_0 = hf_0
        For a correct relationship between f and \lambda:
                                                                                                                            1 point
        f = c/\lambda
       W_0 = \frac{hc}{\lambda_0} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3 \times 10^8 \text{ m/s})}{(6 \times 10^{-7} \text{ m})}
        W_0 = 3.3 \times 10^{-19} \text{ J} (or 2.1 eV)
                                                                                                                            1 point
```

6. (continued)

(d) 4 points For attempting to relate the kinetic energy to the work function and photon energy	l point
For a correct relationship: K.E. — <i>hf</i> — W ₀	l point
For substitution of correct λ	1 point
K.E. = $\frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3 \times 10^8 \text{ m/s})}{(4.4 \times 10^{-7} \text{ m})} = 3.3 \times 10^{-19} \text{J}$ K.E. = $1.2 \times 10^{-19} \text{ J}$ (or 0.75 eV)	l point
$K.E. = 1.2 \times 10^{-17} J (of 0.75 eV)$	i poinc
For at least one answer with correct units, and no incorrect units	l point

41

1996 Q3 Question 3 (15 points)	Distribution of points
 (a) 2 points For indicating that interference demonstrates the wave property of light or diffraction, or constructive and destructive interference 	2 points
 (b) 3 points For realizing that the distance of point P from the center of the in terference pattern is 3/2 the spacing of the pattern, and indicating that the path difference is 3/2 λ 	3 points
Note: An answer of simple 3/2 was awarded 2 points.	
(Alternate solution 1)	(Alternate points)
For a diagram showing the path difference	1 point
Ver Parti Generie	
Path difference $= m\lambda = d\sin\theta$	
For using $\sin\theta \approx \tan\theta \approx x/L$ Path difference $= dx/L = (2 \ge 10^{-3} m)(1.8 \ge 10^{-3} m)/(5m)$ For the correct answer Path difference $= 7.2 \ge 10^{-7} m$	1 point 1 point
(Alternate solution 2)	(Alternate points)
For using the Pythagorean theorem	1 point
$2 \max \left\{ \begin{array}{c} - & - & - & - \\ - & - & - & - \\ - & - &$	

Using the geometry shown above $a = \sqrt{(0.8 \text{ mm})^2 + (5000 \text{ mm})^2} = 25,000,000.64 \text{ mm}$

(1) AP[®] is a registered trademark of the College Board. The College Board was not involved in the production of and does not endorse this product. (2) Test Questions are Copyright © 1984-2008 by College Entrance Examination Board, Princeton, NJ. All rights reserved. For face-to-face teaching purposes, classroom teachers are permitted to reproduce the questions. Web or Mass distribution prohibited.

 $b = \sqrt{(2.8 \text{ mm})^2 + (5000 \text{ mm})^2} = 25,000,007.84 \text{ mm}$ For subtracting the two lengths Path difference = b - a 1 point For the correct answer Path difference $= 7.2 \times 10^{-7} \text{ m}$ 1 point

(c) 4 points

There are two methods for this solution corresponding to giving an answer of $3/2 \lambda$ in part (c).

Method 1	Method 2	
Path difference = $m\lambda = d\sin\theta$	$x \approx \frac{m\lambda L}{d}$	1 point
		1 point
For correct substitution Using $\sin\theta$ or $\tan\theta \approx x/L$	For correctly substituting L, d , a value of x that	•
contraction cont	corresponds to a	
	maximum or minimum in	
	the interference pattern,	
	and whole of half integer number for <i>m</i>	
Substituting the correct	Substituting the correct	1 point
value of <i>m</i> corresponding	value of <i>m</i> corresponding	
to the value of <i>x</i>	to the value of <i>x</i>	
	$\lambda = \frac{dx}{mL}$	
$\lambda = \frac{dx}{mL}$	m L	
Choosing to make the substitutions for point P	Choosing to make the substitutions for point P	
substitutions for point r	substitutions for point f	
$\lambda = \frac{(2 \times 10^{-3} \text{ m})(1.8 \times 10^{-3} \text{ m})}{(3/2)(5 \text{ m})}$	$\lambda = \frac{(2 \times 10^{-3} \text{ m})(1.8 \times 10^{-3} \text{ m})}{(3/2)(5 \text{ m})}$	
For a correct answer, in	For a correct answer in	1 point
which the units match the	which the units match the	
magnitude $\lambda = 4.8 \times 10^{-7} \text{ m}$	magnitude $\lambda = 4.8 \times 10^{-7} \text{ m}$	
(Alternate solution)		(Alternate points)
For setting a numerical answer to	part (b) (or a newly	3 points
calculated value) equal to $2/3 \lambda$		1 point
For a correct answer, in which the	e units match the magnitude	
(d)		
i. 2 points		
For indicating that the interference	e pattern will be compressed	1 point
toward the central maximum		

ii. 2 points

For indicating that there will be a spreading of the pattern, or a larger central maximum in the pattern For indicating that the new pattern is a one-slit diffraction pattern.	1 point 1point
iii. 2 points	
For indicating that the interference pattern will be compressed toward the central maximum	1 point
For referring to the equation $x \approx \frac{m\lambda L}{d}$, and indicating that as <i>d</i> increases the pattern in compressed	1 point

Note: Allowance was made in all calculations for the small discrepancies in the reading values from the graph