AP Physics C: UNIT CONVERSION

1. Convert each of the following measurements into the specified units.
a. $42.3 \mathrm{~cm}=$ \qquad 423 mm
d. $0.023 \mathrm{~mm}=$ \qquad 0.23 cm $1 \mathrm{~cm}=10 \mathrm{~mm}$
b. $6.2 \mathrm{pm}=0.0000000000062 \mathrm{~m}$

$$
1 \text { picometer }=10^{-12} \text { meters }
$$

c. $21 \mathrm{~km}=$ \qquad m
1 kilometer $=10^{3}$ meters
e. $214 \mu \mathrm{~m}=0.000214 \mathrm{~m}$

1 micrometer $=10^{-6}$ meters
f. $570 \mathrm{~nm} _0.00000000057 \mathrm{~km}$

1 nanometer $=10^{-9}$ meters
2. Rank the following mass measurements from smallest to largest:

$$
\begin{gathered}
11.6 \mathrm{mg}=0.0116 \mathrm{gm}, 1021 \mu \mathrm{~g}=0.001021 \mathrm{gm}, 0.0000006 \mathrm{~kg}=0.0006 \mathrm{gm}, 0.31 \mathrm{mg}=0.00031 \mathrm{gm} \\
0.0006 \mathrm{gm}<0.00031 \mathrm{gm}<0.001021 \mathrm{gm}<0.0116 \mathrm{gm}
\end{gathered}
$$

3. Convert each of the quantities to specified equivalents
a. 353 ft to \qquad m
c. $5 \mathrm{~cm}^{3}$ to $0.000005 \mathrm{~m}^{3}$
$353 \mathrm{ft} \times \frac{1 \mathrm{~m}}{3.3 \mathrm{ft}}=106.9 \mathrm{~m}$

$$
5 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.000005 \mathrm{~m}^{3}
$$

b. 2.0 in to 50.5 mm
d. $1000 \mathrm{~m}^{2} /$ day to $\quad 3,974,850 _\mathrm{ft}^{2} /$ year
2.0 in $\times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{1 \mathrm{~m}}{3.3 \mathrm{ft}} \times \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}=50.5 \mathrm{~mm} \quad 1000 \frac{1 \mathrm{~m}^{2}}{\text { day }} \times \frac{365 \mathrm{days}}{1 \mathrm{yr}} \times \frac{3.3 \mathrm{ft}}{1 \mathrm{~m}} \times \frac{3.3 \mathrm{ft}}{1 \mathrm{~m}}=3,974,850 \mathrm{ft}^{2} /$ year

$\mathbf{1}$ Warhol = $\mathbf{1 5}$ minutes of fame based on Andy Warhol's famous line: "Everybody will have $\mathbf{1 5}$ minutes of fame."	$\mathbf{1}$ Wheaton = half a million Twitter ${ }^{\text {TM }}$ followers Based on the number of followers celebrity Will Wheaton had
$\mathbf{1}$ Kardashian = $\mathbf{7 2}$ days	$\mathbf{1 ~ P a r s e c ~}=$ unit of astronomical distance
Based on how long a Kardashian marriage lasts	

4. Use the table of values above to solve the following problem. Mr. Spock ran 5×10^{-12} parsecs in 0.04 Kardashians. For his great feat he was awarded two Warhols during which his Twitter ${ }^{\text {TM }}$ followership increased to 4 Wheatons.
a. \qquad Find Spock's speed (in m/s).

$$
\frac{5 \times 10^{-12} \text { parsecs }}{0.04 \text { Kardashians }} \times \frac{1 \text { Kardashian }}{72 \text { days }} \times \frac{1 \text { day }}{24 \text { hrs. }} \times \frac{1 \mathrm{hr} .}{3600 \mathrm{~s}} \times \frac{3.08567758 \times 10^{16} \mathrm{~m}}{1 \text { parsec }}=0.62 \mathrm{~m} / \mathrm{s}
$$

b. \qquad Find the total time Spock ran + the time he was famous (in hours).
0.04 Kardashians $\times \frac{72 \text { days }}{1 \text { Kardashian }} \times \frac{24 \text { hrs. }}{1 \text { day }}+2$ Warhols $\times \frac{15 \mathrm{~min}}{1 \text { Warhol }} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=69.6 \mathrm{hrs}$.
c. _1111 followers/s \qquad What was the rate of growth of Mr. Spock's Twitter ${ }^{\text {TM }}$ followership (in followers per second)?
$\frac{4 \text { Wheatons }}{2 \text { Warhols }} \times \frac{500,000 \text { followers }}{1 \text { Wheaton }} \times \frac{1 \text { Warhol }}{15 \mathrm{~min} .} \times \frac{1 \mathrm{~min} .}{60 \mathrm{~s}}=1111.11$ followers $/ \mathrm{s}$

AP Physics C: DIMENSIONAL ANALYSIS

The following are dimensions of various physical parameters that will be discussed later on in the year. Here [L], [T], and [M] denote, respectively, fundamental dimensions of length, time, and mass.

UNIT	SYMBOL	DIMENSION	UNIT	SYMBOL	DIMENSION
Distance	x	$[\mathrm{L}]$	Mass	m	$[\mathrm{M}]$
Acceleration	a	$[\mathrm{L}] /[\mathrm{T}]^{2}$	Energy	E	$[\mathrm{M}][\mathrm{L}]^{2} /[\mathrm{T}]^{2}$
Time	t	$[\mathrm{T}]$	Speed	v	$[\mathrm{L}] /[\mathrm{T}]$
Force	F	$[\mathrm{M}][\mathrm{L}] /[\mathrm{T}]^{2}$			

Which of the following equations are dimensionally correct? Show the work that verifies this.

1. $\mathrm{v}_{2}=\mathrm{v}_{1} \cdot \mathrm{t}+\mathrm{a}$
$\frac{L}{T}=\frac{L}{T}(T)+\frac{L}{T^{2}} \rightarrow \frac{L}{T}=L+\frac{L}{T^{2}} \rightarrow \frac{L}{T}=\frac{L\left(T^{2}\right)}{T^{2}}+\frac{L}{T^{2}} \rightarrow \frac{L}{T} \neq \frac{L\left(T^{2}\right)+L}{T^{2}}$
2. $\mathrm{v}_{\mathrm{f}}=\frac{v_{1}+v_{2}}{2}$
$\frac{L}{T}=\frac{L}{T}+\frac{L}{T} \rightarrow \frac{L}{T}=\frac{2 L}{T} \rightarrow \frac{L}{T}=\frac{L}{T}$

$$
\begin{aligned}
& \text { 6. } \mathrm{F}=\mathrm{m} \cdot \mathrm{a} \\
& \qquad \frac{M L}{T^{2}}=(M)\left(\frac{L}{T^{2}}\right) \rightarrow \frac{M L}{T^{2}}=\frac{M L}{T^{2}}
\end{aligned}
$$

7. $x=1 / 2 \cdot a \cdot t^{2}$

$$
L=\left(\frac{L}{T^{2}}\right) \cdot T^{2} \rightarrow L=L
$$

3. $x=v \cdot t^{2}+1 / 2 \cdot a \cdot t$
4. $E=1 / 2 \cdot m \cdot v$
$L=\left(\frac{L}{T}\right) \cdot T^{2}+\frac{L}{T^{2}} \cdot T \rightarrow L=L \cdot T+L \cdot T \rightarrow L \neq L \cdot T$
$\frac{M L^{2}}{T^{2}}=M \cdot \frac{L}{T} \rightarrow \frac{M L^{2}}{T^{2}} \neq \frac{M L}{T}$
5. $v_{2}{ }^{2}=v_{1}^{2}+2 \cdot a \cdot x^{2}$
6. $\mathrm{E}=\mathrm{m} \cdot \mathrm{a} \cdot \mathrm{x}$
$\left(\frac{L}{T}\right)^{2}=\left(\frac{L}{T}\right)^{2}+\frac{L}{T^{2}} \cdot L^{2} \rightarrow \frac{L^{2}}{T^{2}}=\frac{L^{2}}{T^{2}}+\frac{L^{3}}{T^{2}} \rightarrow \frac{L^{2}}{T^{2}} \neq \frac{L^{2}+L^{3}}{T^{2}}$

$$
\frac{M L^{2}}{T^{2}}=(M) \cdot\left(\frac{L}{T^{2}}\right) \cdot L \rightarrow \frac{M L^{2}}{T^{2}}=\frac{M L^{2}}{T^{2}}
$$

5. $x=1 / 2 v \cdot t^{2}+a \cdot t$

Same as 3 above: $L=\left(\frac{L}{T}\right) \cdot T^{2}+\frac{L}{T^{2}} \cdot T \rightarrow L=L \cdot T+L \cdot T \rightarrow L \neq L \cdot T$
10. $\mathrm{v}=\sqrt{\frac{\mathrm{F} \cdot \mathrm{x}}{\mathrm{m}}} \quad \frac{L}{T}=\sqrt{\frac{M L}{T^{2} \cdot L}} \rightarrow \frac{L}{T}=\sqrt{\frac{M L}{T^{2}} \cdot L \div M} \rightarrow \frac{L}{T}=\sqrt{\frac{M^{2} L^{2}}{T^{2}}} \rightarrow \frac{L}{T} \neq \frac{M L}{T}$
11. A spring is hanging down from the ceiling and an object of mass m is attached to the free end. The object oscillates up and down, and the time T required for one complete up-and-down oscillation is given by the equation $T=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$, where k is known as the spring constant. What must be the dimension of k for this
 equation to be dimensionally correct?
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \quad T=\sqrt{\frac{M}{k}} \rightarrow T^{2}=\left(\sqrt{\frac{M}{k}}\right)^{2} \rightarrow T^{2}=\frac{M}{k} \rightarrow k=\frac{M}{T^{2}}=\frac{k g}{s^{2}}$

AP Physics: TRIANGLE GEOMETRY AND TRIGONOMETRY

DIRECTIONS: Find the missing values requested.

$\mathrm{BC} \\| \mathrm{DE}$	$\angle \mathrm{HIJ}=?$	$\overline{\mathrm{~J}}=?$
$\angle \mathrm{BFA}=?$	$\angle \mathrm{IJ}=?$	$\overline{\mathrm{I}}=?$
$\angle \mathrm{AGF}=?$	$\angle \mathrm{IL}=?$	$\overline{\mathrm{HK}}=?$
$\angle \mathrm{FAG}=?$	$\angle \mathrm{HKI}=?$	$\overline{\mathrm{IH}}=?$
$\angle \mathrm{CGJ}=?$	$\angle \mathrm{FGJ}=?$	$\overline{\mathrm{AG}}=?$
$\angle \mathrm{IKH}=?$	$\angle \mathrm{ELM}=?$	$\overline{\mathrm{GF}}=?$

Ans. $\angle B F A=90^{\circ}$, because supplementary angles $=180^{\circ}\left(90^{\circ}+\angle B F A=180^{\circ}\right)$
$\angle A G F=60^{\circ}$ because supplementary angles $=180^{\circ}$ (since $\angle A G C=120^{\circ}$).
$\angle F A G=30^{\circ}$ because the sum of the angles of a triangle $\triangle \mathrm{AFG}=180^{\circ}$
$\angle C G J=60^{\circ}$ because supplementary angles $=180^{\circ}$
$\angle I K H=\angle H K I=60^{\circ}$ because of the following...

- $\angle E L J=120^{\circ}$ since corresponding angles are congruent ($\angle E L \cong \angle A G C$),
- therefore $\angle E L M=60^{\circ}$ because supplementary angles $=180^{\circ}$,
- $\angle \mathrm{JLI}=60^{\circ}$, because vertical angles are congruent ($\angle \mathrm{ELM} \cong \angle \mathrm{JLI}$),
- $\angle \mathrm{IJL}=90^{\circ}$ because supplementary angles $=180^{\circ}$,
- $\angle \mathrm{LIJ}=30^{\circ}$, because the sum of the angles of a triangle $\Delta \mathrm{LIJ}=180^{\circ}$,
- $\angle \mathrm{HIK}=30^{\circ}$ because vertical angles are congruent ($\angle \mathrm{LIJ} \cong \angle \mathrm{HIK}$).
- $\angle \mathrm{IHK}=90^{\circ}$ because $\mathrm{BC} \mid$ DE and $\mathrm{AK} \perp \mathrm{BC}$ so it must also be $\perp \mathrm{DE}$.
$\angle \mathrm{FGJ}=120^{\circ}$ because vertical angles are congruent
$\angle \mathrm{HIJ}=150^{\circ}$ because supplementary angles $=180^{\circ}$
To find $\overline{\mathrm{JI}}: \tan \theta=\frac{\text { opp. }}{\text { adj. }} \rightarrow \tan \angle \mathrm{JLI}=\frac{\overline{\mathrm{I}}}{\overline{\mathrm{J}}} \rightarrow \tan 60^{\circ}=\frac{\overline{\mathrm{I}}}{\overline{3 \mathrm{un}}} \rightarrow \overline{\mathrm{jl}}=3 \cdot \tan 60^{\circ} \rightarrow \overline{\mathrm{l}}=5.20$ un
To find $\overline{\mathrm{L}}: a^{2}+b^{2}=c^{2} \rightarrow \mathrm{c}=\sqrt{a^{2}+b^{2}} \rightarrow \overline{\mathrm{~L}}=\sqrt{3^{2}+5.20^{2}}=\sqrt{36}=6 \mathrm{un}$
To find $\overline{\mathrm{HK}}: \cos \theta=\frac{\text { adj. }}{\mathrm{hyp} .} \rightarrow \cos \angle \mathrm{HKI}=\frac{\overline{\mathrm{HK}}}{\overline{\mathrm{KI}}} \rightarrow \cos 60^{\circ}=\frac{\overline{\mathrm{HK}}}{4 \mathrm{un}} \rightarrow \overline{\mathrm{HK}}=4 \cdot \cos 60^{\circ} \rightarrow \overline{\mathrm{HK}}=2$ un
To find $\overline{\mathrm{IH}}: a^{2}+b^{2}=c^{2} \rightarrow \mathrm{a}=\sqrt{c^{2}-b^{2}} \rightarrow \overline{\mathrm{IH}}=\sqrt{4^{2}-2^{2}}=\sqrt{\mathbf{1 2}}=3.46 \mathrm{un}$
To find $\overline{\mathrm{AG}}: \cos \theta=\frac{\text { adj. }}{\mathrm{hyp} .} \rightarrow \cos \angle \mathrm{FAG}=\frac{\overline{\mathrm{AF}}}{\overline{\mathrm{AG}}} \rightarrow \cos 30^{\circ}=\frac{5 \mathrm{un}}{\overline{\mathrm{AG}}} \rightarrow \overline{\mathrm{AG}}=\frac{5}{\cos 30^{\circ}} \rightarrow \overline{\mathrm{AG}}=\frac{5}{\cos 30^{\circ}}=5.78 \mathrm{un}$
To find $\overline{\mathrm{FG}}: a^{2}+b^{2}=c^{2} \rightarrow \mathrm{a}=\sqrt{c^{2}-b^{2}} \rightarrow \overline{\mathrm{FG}}=\sqrt{5.78^{2}-5^{2}}=\sqrt{8.333}=2.87 \mathrm{un}$

AP Physics: AREA UNDER A CURVE

DIRECTIONS: Find the area under the graph shown.

Ans. Area A + Area B + Area C + Area D $=10 \times 30+1 / 2 \times 10 \times 10+10 \times 10+1 / 2 \times 10 \times 20$

$$
=300+50+100+100
$$

Answer: \qquad
Answer with units included: \qquad
CONCLUSION: The units of your answer reveal that if you find the area between a velocity vs time graph of an object and the x-axis, you have actually found the distance travelled by the object.

DIRECTIONS: Using the vector diagrams drawn, determine the magnitude and direction of each vector quantity.
$A=4$ units, 0°
$\mathrm{G}=8$ units, 0°
$B=6$ units, 270°
$\mathrm{C}=5$ units, 180°

$$
\begin{gathered}
I=\sin \theta=\frac{\text { opp. }}{\text { hyp. }} \rightarrow \sin 60^{\circ}=\frac{6 \mathrm{un.}}{\text { hyp. }} \rightarrow \\
\text { hyp }=\frac{6 \mathrm{un} .}{\sin 60^{\circ} .}=3.46 \mathrm{un}
\end{gathered}
$$

$\mathrm{D}=8$ units, 90°
$\mathrm{E}=\cos \theta=\frac{\text { adj. }}{\text { hyp. }} \rightarrow \cos 30^{\circ}=\frac{5 \mathrm{un} .}{\text { hyp. }}$
\rightarrow hyp $=\frac{5 \text { un. }}{\cos 30^{\circ}}=5.77$ un

$$
\begin{gathered}
\mathrm{F}=\sin \theta=\frac{\text { opp. }}{\text { hyp. }} \rightarrow \sin 45^{\circ}=\frac{7 \mathrm{un.}}{\text { hyp. }} \rightarrow \\
\text { hyp }=\frac{7 \mathrm{un} .}{\sin 45^{\circ} .}=9.89 \mathrm{un}
\end{gathered}
$$

DIRECTIONS: In the blank grids below, perform each vector operation GRAPHICALLY using the head-to-tail method. State the magnitude and direction of the resultant vector.

$$
\sqrt{8^{2}+8^{2}}=\sqrt{128} \text { un, } 45^{\circ}
$$

$\theta=\tan ^{-1} \frac{o p p .}{\text { adj. }}=\tan ^{-1} \frac{3 .}{13}=13.0^{\circ}$

$$
\sqrt{12^{2}+4^{2}}=\sqrt{170} \mathrm{un}
$$

$$
\theta=\tan ^{-1} \frac{o p p .}{\text { adj. }}=\tan ^{-1} \frac{4 .}{12}=18.4^{\circ}
$$

$$
\theta=90^{\circ}+18.4^{\circ}=108.4^{\circ}
$$

AP Physics: DISPLACEMENT, DISTANCE, SPEED, VELOCITY

DIRECTIONS: Use the specific definitions of the terms displacement, distance, speed, and velocity to find the following.

AFTER

DIRECTIONS: The emoji starts at the origin in each of the above cases. Find:
a. The distance the emoji traveled for $A-D$. For $A=5$ units, For $B=15$ units, For $C=5$ units, and For $\mathrm{D}=20$ units
b. The displacement of the emoji from the origin for $A-D$. For $A=5$ units, For $B=-5$ units, For $\mathrm{C}=-5$ units, and For $\mathrm{D}=0$ units
c. The speed of the emoji for A-D if each trip took 5 seconds. $s=\frac{d}{t}$, For $A: s=\frac{5}{5}=1 \mathrm{un} / \mathrm{s}$, For $B: s=\frac{15}{5}=3 \mathrm{un} / \mathrm{s}$, For C: $\mathrm{s}=\frac{5}{5}=1 \mathrm{un} / \mathrm{s}$, and For D: $\mathrm{s}=\frac{20}{5}=4 \mathrm{un} / \mathrm{s}$
d. The velocity of the emoji for $\mathrm{A}-\mathrm{D}$ if each trip took 5 seconds. $\mathrm{v}=\frac{x}{t}$, For $\mathrm{A}: \mathrm{v}=\frac{5}{5}=1 \mathrm{un} / \mathrm{s}$, For $B: v=\frac{-5}{5}=-1 \mathrm{un} / \mathrm{s}$, For $\mathrm{C}: \mathrm{v}=\frac{-5}{5}=-1 \mathrm{un} / \mathrm{s}$, and For $\mathrm{D}: \mathrm{v}=\frac{0}{5}=0 \mathrm{un} / \mathrm{s}$

DIRECTIONS: The emoji goes 2-dimensional and moves on the graph paper as shown at right.
a. The distance the emoji traveled from A - B.
b. Ans. 17 units
c. The displacement of the emoji from A - B

$$
\sqrt{8^{2}+5^{2}}=\sqrt{89} \mathrm{un}
$$

d. The speed of the emoji if it took 10 seconds to cover the distance.
$\mathrm{s}=\frac{17 \mathrm{un}}{10 \mathrm{~s}}=1.7 \mathrm{un} / \mathrm{s}$

e. The velocity of the emoji if the trip took 10 seconds.
$\mathrm{V}=\frac{x}{t}=\frac{\sqrt{89}}{10}=0.94 \mathrm{un} / \mathrm{s}$

