AP Physics C: UNIT CONVERSION

1. Convert each of the following measurements into the specified units.

a. 42.3 cm = 423 mmb. 6.2 pm = 0.000000000062 m1 cm = 10 mm b. 6.2 pm = 0.000000000062 m1 picometer = 10^{-12} meters c. 21 km = 21,000 m1 kilometer = 10^3 meters c. $21 \text{ km} = 10^3$ meter

2. Rank the following mass measurements from smallest to largest:

11.6 mg = 0.0116 gm, 1021 μ g = 0.001021 gm, 0.0000006 kg = 0.0006 gm, 0.31 mg = 0.00031 gm 0.0006 gm < 0.00031 gm < 0.001021 gm < 0.0116 gm

3. Convert each of the quantities to specified equivalents

a. 0.62 m/s Find Spock's speed (in m/s).

a. 353 ft to <mark>106.9</mark> m	c. 5 cm³ to _ <mark>0.000005</mark> _ m³
353 ft $\times \frac{1 m}{3.3 ft}$ = 106.9 m 5 cm ³ :	$\times \frac{1 m}{100 cm} \times \frac{1 m}{100 cm} \times \frac{1 m}{100 cm} = 0.000005 m^{3}$
b. 2.0 in to <u>50.5</u> mm	d. 1000 m²/day to <mark>3,974,850</mark> ft²/year
2.0 in $\times \frac{1 ft}{12 in} \times \frac{1 m}{3.3 ft} \times \frac{1000 mm}{1 m}$ = 50.5 mm	$1000 \frac{1 m^2}{day} \times \frac{365 \ days}{1 \ yr} \times \frac{3.3 \ ft}{1 \ m} \times \frac{3.3 \ ft}{1 \ m} = 3,974,850 \ ft^2/year$

1 Warhol = 15 minutes of fame	1 Wheaton = half a million Twitter [™] followers	
based on Andy Warhol's famous line: "Everybody will	Based on the number of followers celebrity Will	
have 15 minutes of fame."	Wheaton had	
1 Kardashian = 72 days	1 Parsec = unit of astronomical distance	
Based on how long a Kardashian marriage lasts	= 3.08567758 × 10 ¹⁶ meters	

4. Use the table of values above to solve the following problem. Mr. Spock ran 5 x 10⁻¹² *parsecs* in 0.04 *Kardashians*. For his great feat he was awarded two *Warhols* during which his Twitter[™] followership increased to 4 *Wheatons*.

 $\frac{5 \times 10^{-12} \text{ parsecs}}{0.04 \text{ Kardashians}} \times \frac{1 \text{ Kardashian}}{72 \text{ days}} \times \frac{1 \text{ day}}{24 \text{ hrs.}} \times \frac{1 \text{ hr.}}{3600 \text{ s}} \times \frac{3.08567758 \times 10^{16} \text{ m}}{1 \text{ parsec}} = 0.62 \text{ m/s}$ **b. 69.6 hrs.** 0.04 Kardashians $\times \frac{72 \text{ days}}{1 \text{ Kardashian}} \times \frac{24 \text{ hrs.}}{1 \text{ day}} + 2 \text{ Warhols} \times \frac{15 \text{ min}}{1 \text{ Warhol}} \times \frac{1 \text{ hr}}{60 \text{ min}} = 69.6 \text{ hrs.}$

c. <u>1111 followers/s</u> What was the rate of growth of Mr. Spock's Twitter[™] followership (in followers per second)? <u>4 Wheatons</u> 500,000 followers, 1 Warhol, 1 min.

 $\frac{4 \text{ Wheatons}}{2 \text{ Warhols}} \times \frac{500,000 \text{ followers}}{1 \text{ Wheaton}} \times \frac{1 \text{ Warhol}}{15 \text{ min.}} \times \frac{1 \text{ min.}}{60 \text{ s}} = 1111.11 \text{ followers/s}$

AP Physics C: DIMENSIONAL ANALYSIS

The following are dimensions of various physical parameters that will be discussed later on in the year. Here [L], [T], and [M] denote, respectively, fundamental dimensions of length, time, and mass.

UNIT	SYMBOL	DIMENSION	UNIT	SYMBOL	DIMENSION
Distance	х	[L]	Mass	m	[M]
Acceleration	а	[L]/[T] ²	Energy	E	$[M][L]^{2}/[T]^{2}$
Time	t	[T]	Speed	v	[L]/[T]
Force	F	[M][L]/[T] ²			

Which of the following equations are dimensionally correct? Show the work that verifies this.

1.
$$v_2 = v_1 \cdot t + a$$

 $\frac{L}{T} = \frac{L}{T}(T) + \frac{L}{T^2} \rightarrow \frac{L}{T} = L + \frac{L}{T^2} \rightarrow \frac{L}{T} = \frac{L(T^2)}{T^2} + \frac{L}{T^2} \rightarrow \frac{L}{T} \neq \frac{L(T^2) + L}{T^2}$
2. $v_f = \frac{v_1 + v_2}{2}$
4. $v_f = \frac{L}{T} + \frac{L}{T} \rightarrow \frac{L}{T} = \frac{2L}{T} \rightarrow \frac{L}{T} = \frac{L}{T} \checkmark$
4. $v_2^2 = v_1^2 + 2 \cdot a \cdot x^2$
($\frac{L}{T})^2 = (\frac{L}{T})^2 + \frac{L}{T^2} \cdot L^2 \rightarrow \frac{L^2}{T^2} = \frac{L^2}{T^2} + \frac{L^3}{T^2} \rightarrow \frac{L^2}{T^2} \neq \frac{L^2 + L^3}{T^2}$
5. $x = \frac{v_2}{v_1} \cdot v + t = (\frac{L}{T}) \cdot T^2 + \frac{L}{T^2} \cdot T^2 + \frac{L}{T^2} \cdot T^2 + \frac{L}{T^2} \cdot T^2 \rightarrow L = L \cdot T + L \cdot T \rightarrow L = L \cdot T + L \cdot T \rightarrow L \neq L \cdot T$
5. $x = \frac{v_2}{v_1} \cdot v + t^2 + a \cdot t$
5. $x = \frac{v_2}{v_1} \cdot v + t^2 + a \cdot t$
6. $F = m \cdot a$
7. $x = \frac{v_2}{v_2} \cdot t^2$
7. x

10.
$$v = \sqrt{\frac{F \cdot x}{m}} \quad \frac{L}{T} = \sqrt{\frac{\frac{ML}{T^2} \cdot L}{M}} \rightarrow \frac{L}{T} = \sqrt{\frac{ML}{T^2} \cdot L} \div M \rightarrow \frac{L}{T} = \sqrt{\frac{M^2 L^2}{T^2}} \rightarrow \frac{L}{T} \neq \frac{ML}{T}$$

11. A spring is hanging down from the ceiling and an object of mass *m* is attached to the free end. The object oscillates up and down, and the time *T* required for one complete up-and-down oscillation is given by the equation $T = 2\pi \sqrt{\frac{m}{k}}$, where *k* is known as the spring constant. What must be the dimension of *k* for this equation to be dimensionally correct?

$$T = 2\pi \sqrt{\frac{m}{k}} \qquad T = \sqrt{\frac{M}{k}} \rightarrow T^2 = \left(\sqrt{\frac{M}{k}}\right)^2 \rightarrow T^2 = \frac{M}{k} \rightarrow k = \frac{M}{T^2} = \frac{kg}{s^2}$$

AP Physics: TRIANGLE GEOMETRY AND TRIGONOMETRY

DIRECTIONS: Find the missing values requested.

BC DE	∠ HIJ = ?	∏ – 2
∠ BFA = ?	∠ IJL = ?	$\overline{IL} = ?$
∠ AGF= ?	∠ ILJ = ?	$\overline{HK} = ?$
∠ FAG= ?	\angle HKI= ?	IH = ?
∠ CGJ = ?	∠ FGJ = ?	$\overline{AG} = ?$
∕ IKH = ?	∠ ELM = ?	$\overline{GF} = ?$

Ans. \angle BFA = 90°, because supplementary angles = 180° (90° + \angle BFA = 180°) \angle AGF = 60° because supplementary angles = 180° (since \angle AGC = 120°). \angle FAG = 30° because the sum of the angles of a triangle \triangle AFG = 180° \angle CGJ = 60° because supplementary angles = 180° \angle IKH = \angle HKI = 60° because of the following...

- \angle ELJ = 120° since corresponding angles are congruent (\angle ELJ $\cong \angle$ AGC),
- therefore \angle ELM = 60° because supplementary angles = 180°,
- \angle JLI = 60°, because vertical angles are congruent (\angle ELM $\cong \angle$ JLI),
- \angle IJL = 90° because supplementary angles = 180°,
- \angle LIJ = 30°, because the sum of the angles of a triangle \triangle LIJ = 180°,
- \angle HIK = 30° because vertical angles are congruent (\angle LIJ $\cong \angle$ HIK).
- \angle IHK = 90° because BC | | DE and AK \perp BC so it must also be \perp DE.

 \angle FGJ = 120° because vertical angles are congruent

 $\angle \text{HIJ} = 150^{\circ} \text{ because supplementary angles} = 180^{\circ}$ To find $\overline{\text{JI}}$: $\tan \theta = \frac{\text{opp.}}{\text{adj.}} \rightarrow \tan \angle \text{JLI} = \frac{\overline{\text{JI}}}{\overline{\text{JL}}} \rightarrow \tan 60^{\circ} = \frac{\overline{\text{JI}}}{3 \text{ un}} \rightarrow \overline{\text{JI}} = 3 \cdot \tan 60^{\circ} \rightarrow \overline{\text{JI}} = 5.20 \text{ un}$ To find $\overline{\text{IL}}$: $a^2 + b^2 = c^2 \rightarrow c = \sqrt{a^2 + b^2} \rightarrow \overline{\text{IL}} = \sqrt{3^2 + 5.20^2} = \sqrt{36} = 6 \text{ un}$ To find $\overline{\text{HK}}$: $\cos \theta = \frac{\text{adj.}}{\text{hyp.}} \rightarrow \cos \angle \text{HKI} = \frac{\overline{\text{HK}}}{\overline{\text{KI}}} \rightarrow \cos 60^{\circ} = \frac{\overline{\text{HK}}}{4 \text{ un}} \rightarrow \overline{\text{HK}} = 4 \cdot \cos 60^{\circ} \rightarrow \overline{\text{HK}} = 2 \text{ un}$ To find $\overline{\text{IH}}$: $a^2 + b^2 = c^2 \rightarrow a = \sqrt{c^2 - b^2} \rightarrow \overline{\text{IH}} = \sqrt{4^2 - 2^2} = \sqrt{12} = 3.46 \text{ un}$ To find $\overline{\text{AG}}$: $\cos \theta = \frac{\text{adj.}}{\text{hyp.}} \rightarrow \cos \angle \text{FAG} = \frac{\overline{\text{AF}}}{\overline{\text{AG}}} \rightarrow \cos 30^{\circ} = \frac{5 \text{ un}}{\overline{\text{AG}}} \rightarrow \overline{\text{AG}} = \frac{5}{\cos 30^{\circ}} \rightarrow \overline{\text{AG}} = \frac{5}{\cos 30^{\circ}} = 5.78 \text{ un}$ To find $\overline{\text{FG}}$: $a^2 + b^2 = c^2 \rightarrow a = \sqrt{c^2 - b^2} \rightarrow \overline{\text{FG}} = \sqrt{5.78^2 - 5^2} = \sqrt{8.333} = 2.87 \text{ un}$

AP Physics: AREA UNDER A CURVE

DIRECTIONS: Find the area under the graph shown.

CONCLUSION: The units of your answer reveal that if you find the area between a **velocity vs time graph of an object** and the **x-axis**, you have actually found the **distance** travelled by the object.

DIRECTIONS: Using the vector diagrams drawn, determine the magnitude and direction of each vector quantity.

A = <mark>4 units, 0°</mark>	G = <mark>8 units, 0°</mark>
B = <mark>6 units, 270°</mark>	H = <mark>6 units, 90°</mark>
C = <mark>5 units, 180°</mark>	$I = \sin \theta = \frac{\text{opp.}}{\text{hyp.}} \rightarrow \sin 60^\circ = \frac{6 \text{ un.}}{\text{hyp.}} \rightarrow$
	hyp = $\frac{6 \text{ un.}}{\sin 60^\circ}$ = <mark>3.46 un</mark>
D = <mark>8 units, 90°</mark>	J = <mark>9 units, 180°</mark>
$E = \cos \theta = \frac{adj.}{hyp.} \rightarrow \cos 30^{\circ} = \frac{5 \text{ un.}}{hyp.}$ $\rightarrow hyp = \frac{5 \text{ un.}}{\cos 30^{\circ}} = 5.77 \text{ un}$	K = <mark>2 units, 270°</mark>
$F = \sin \theta = \frac{\text{opp.}}{\text{hyp.}} \Rightarrow \sin 45^\circ = \frac{7 \text{ un.}}{\text{hyp.}} \Rightarrow$	L = $\cos \theta = \frac{\text{adj.}}{\text{hyp.}} \rightarrow \cos 20^\circ = \frac{7 \text{ un.}}{\text{hyp.}}$
hyp = $\frac{7 \text{ un.}}{\sin 45^\circ}$ = <mark>9.89 un</mark>	$\Rightarrow hyp = \frac{7 \text{ un.}}{\cos 20^\circ} = 7.45 \text{ un}$

DIRECTIONS: In the blank grids below, perform each vector operation GRAPHICALLY using the head-to-tail method. State the magnitude and direction of the resultant vector.

- a. The distance the emoji traveled for A D. For A = 5 units, For B = 15 units, For C = 5 units, and For D = 20 units
- b. The displacement of the emoji from the origin for A D. For A = 5 units, For B = –5 units, For C = –5 units, and For D = 0 units
- c. The **speed** of the emoji for A D if each trip took 5 seconds. $s = \frac{d}{t}$, For A: $s = \frac{5}{5} = 1$ un/s, For B: $s = \frac{15}{5} = 3$ un/s, For C: $s = \frac{5}{5} = 1$ un/s, and For D: $s = \frac{20}{5} = \frac{4}{5}$ un/s
- d. The velocity of the emoji for A D if each trip took 5 seconds. $v = \frac{x}{t}$, For A: $v = \frac{5}{5} = 1$ un/s, For B: $v = \frac{-5}{5} = -1$ un/s, For C: $v = \frac{-5}{5} = -1$ un/s, and For D: $v = \frac{0}{5} = 0$ un/s

DIRECTIONS: The emoji goes 2-dimensional and moves on the graph paper as shown at right.

- a. The **distance** the emoji traveled from A B.
- b. Ans. 17 units
- c. The displacement of the emoji from A B

 $\sqrt{8^2+5^2} = \sqrt{89} \text{ un}$

d. The **speed** of the emoji if it took 10 seconds to cover the distance. $s = \frac{17 un}{10 s} = 1.7 un/s$

e. The velocity of the emoji if the trip took 10 seconds.

 $v = \frac{x}{t} = \frac{\sqrt{89}}{10} = 0.94 \ un/s$