AP Physics: Newton's Laws 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. A lamp with a mass $m=42.6 \mathrm{~kg}$ is hanging from wires as shown in the figure below. The tension T_{1} in the vertical handle is

a. 209 N .
b. 418 N .
c. 570 N .
d. 360 N .
e. 730 N .
2. The system shown in the figure below is in equilibrium. It follows that the mass m is

a. $\quad 3.5 \mathrm{~kg}$.
c. $\quad 3.5 \tan 40^{\circ} \mathrm{kg}$.
b. $\quad 3.5 \sin 40^{\circ} \mathrm{kg}$.
d. none of the above.
3. An object is suspended from the ceiling of an elevator that is descending at a constant speed of $9.81 \mathrm{~m} / \mathrm{s}$. The tension in the string holding the object is
a. equal to the weight of the object.
c. greater than the weight of the object.
b. less than the weight of the object but not
d. zero.

Name: \qquad
4. Two boxes of mass m_{1} and m_{2} connected together by a massless string are accelerated uniformly on a frictionless surface, as shown in the figure below.

The ratio of the tensions T_{1} / T_{2} is given by
a. $\quad m_{1} / m_{2}$.
b. m_{2} / m_{1}.
c. $\left(m_{1}+m_{2}\right) / m_{2}$.
d. $m_{1} /\left(m_{1}+m_{2}\right)$.
e. $m_{2} /\left(m_{1}+m_{2}\right)$.

Problem

5. For the systems in equilibrium shown below, find the unknown tensions and masses.

(c)

Name: \qquad
6. In the figure below, the objects are attached to spring balances calibrated in newtons. Give the readings of the balances in each case, assuming that the strings are massless and the incline is frictionless.

Name: \qquad
7. A box is held in position by a cable along a frictionless incline as shown in the figure below. (a) If $\theta=60^{\circ}$ and $m=50 \mathrm{~kg}$, find the tension in the cable and the normal force exerted by the incline. (b) Find the tension as a function of θ and m, and check your result for $\theta=0$ and $\theta=90^{\circ}$.

8. A $60-\mathrm{kg}$ girl weighs herself by standing on a scale in an elevator. What does the scale read when (a) the elevator is descending at a constant rate of $10 \mathrm{~m} / \mathrm{s}$; (b) the elevator is descending at $10 \mathrm{~m} / \mathrm{s}$ and gaining speed at a rate of $2 \mathrm{~m} / \mathrm{s}^{2} ;(c)$ the elevator is ascending at $10 \mathrm{~m} / \mathrm{s}$ but its speed is decreasing by $2 \mathrm{~m} / \mathrm{s}$ in each second?
\qquad
9. A box of mass $m_{2}=3.5 \mathrm{~kg}$ rests on a frictionless horizontal shelf and is attached by strings to boxes of masses $m_{l}=1.5 \mathrm{~kg}$ and $m_{3}=2.5 \mathrm{~kg}$, which hang freely, as shown in the figure below. Both pulleys are frictionless and massless. The system is initially held at rest. After it is released, find (a) the acceleration of each of the boxes, and (b) the tension in each string.

10. Two blocks are in contact on a frictionless, horizontal surface. The blocks are accelerated by a horizontal force \vec{F} applIed to one of them (see below). Find the acceleration and the contact force for (a) general values of F, m_{1}, and m_{2}, and (b) for $F=3.2 \mathrm{~N}, m_{1}=2 \mathrm{~kg}$, and $m_{2}=6 \mathrm{~kg}$.

\qquad
11. Two $100-\mathrm{kg}$ blocks are dragged along a frictionless surface with a constant acceleration of $1.6 \mathrm{~m} / \mathrm{s}^{2}$, as shown in the figure below. Each rope has a mass of 1 kg . Find the force F and the tension in the ropes at points A, B, and C .

12.

The apparatus in the figure is called an Atwood's machine and is used to measure the acceleration due to gravity g by measuring the acceleration of the two blocks. Assuming a massless, frictionless pulley and a massless string, show that the magnitude of the acceleration of either body and the tension in the string are

$$
a=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} g \text { and } T=\frac{2 m_{1} m_{2} g}{m_{1}+m_{2}}
$$

\qquad
13. If one of the masses of the Atwood's machine in the figure below is 1.2 kg , what should the other mass be so that the displacement of either mass during the first second following release is 0.3 m ?

14. A simple accelerometer can be made by suspending a small object from a string attached to a fixed point on an accelerating object-to the ceiling of a passenger car, for example. When there is an acceleration, the object will deflect and the string will make some angle with the vertical. (a) How is the direction in which the suspended object deflects related to the direction of the acceleration? (b) Show that the acceleration a is related to the angle θ that the string makes by $a=g \tan \theta$; (c) Suppose the accelerometer is attached to the ceiling of an automobile that brakes to rest from $50 \mathrm{~km} / \mathrm{h}(13.89 \mathrm{~m} / \mathrm{s})$ in a distance of 60 m . What angle will the accelerometer make? Will the object swing forward or backward?

Name: \qquad
15. A $2-\mathrm{kg}$ body rests on a frictionless wedge that has an inclination of 60° and an acceleration a to the right such that the mass remains stationary relative to the wedge (see figure below). (a) Find a. (b) What would happen if the wedge were given a greater acceleration?

AP Physics: Newton's Laws 2
 Answer Section

MULTIPLE CHOICE

1. ANS: B

REF: Tipler4thed.p.106\#39
2. ANS: D REF: Tipler4thed.p.108\#54
3. ANS: A

REF: Tipler4thed.p.109\#59
4. ANS: D

REF: Tipler4thed.p.109\#67

PROBLEM

5. ANS:

In each case, consider the junction of the three strings.
(a) Set $\Sigma F_{x}=0, \Sigma F_{y}=0$

Solve for T_{1} and T_{2}

$$
M=T_{2} / g
$$

(b) Proceed as in part (a)
(c) Proceed as in part (a); note that $M g=T_{1}$

$$
\begin{aligned}
& 30 \mathrm{~N}=T_{1} \cos 60^{\circ} ; T_{1} \sin 60^{\circ}=T_{2} \\
& T_{1}=60 \mathrm{~N}, T_{2}=52 \mathrm{~N} \\
& M=5.3 \mathrm{~kg} \\
& T_{1} \sin 60^{\circ}=80 \cos 60^{\circ} \mathrm{N} ; T_{1} \cos 60^{\circ}+T_{2}=80 \sin 60^{\circ} \mathrm{N} \\
& T_{1}=(80 \mathrm{~N}) / \tan 60^{\circ}=46.2 \mathrm{~N} ; T_{2}=46.2 \mathrm{~N} \\
& M=(46.2 / 9.81) \mathrm{kg}=4.71 \mathrm{~kg} \\
& T_{1} \sin 30^{\circ}=T_{3} \sin 30^{\circ} ; T_{1}=T_{3} ; \\
& 2 T_{1} \cos 30^{\circ}=T_{2}=6 \times 9.81 \mathrm{~N} \\
& T_{1}=T_{3}=34 \mathrm{~N} ; M=(34 / 9.81) \mathrm{kg}=3.46 \mathrm{~kg}
\end{aligned}
$$

REF: Tipler4thed.p.108\#51
6. ANS:

- In Figure 4-34, the objects are attached to spring balances calibrated in newtons. Give the readings of the balances in each case, assuming that the strings are massless and the incline is frictionless.
(a) and (b) $F=98.1 \mathrm{~N}$. (c) F (per spring balance) $=49 \mathrm{~N}$. (d) $F=\left(98.1 \sin 30^{\circ}\right) \mathrm{N}=49 \mathrm{~N}$.

REF: Tipler4thed.p.108\#55
7. ANS:

We shall use a coordinate system with x pointing to the right and parallel to the inclined plane, y along F_{n}.

$$
\begin{array}{ll}
\text { (b) } \Sigma F_{x}=0 ; \Sigma F_{y}=0 & T=m g \sin \theta, F_{\mathrm{n}}=m g \cos \theta . \text { For } \theta=0^{\circ}, T=0, F_{\mathrm{n}}=m g, \\
\text { (a) Use results of }(b) \text { with } m=50 \mathrm{~kg}, \theta=60^{\circ} & \text { and for } \theta=90^{\circ}, T=m g \text { and } F_{\mathrm{n}}=0 \text {, as should be } \\
T=508 \mathrm{~N}, F_{\mathrm{n}}=245 \mathrm{~N}
\end{array}
$$

REF: Tipler4thed.p.109\#56
8. ANS:
(a) $a=0 ; w=m g=589 \mathrm{~N}$. (b) $a=-2 \mathrm{~m} / \mathrm{s}^{2} ; w=(60 \times 7.81) \mathrm{N}=469 \mathrm{~N}$. (c) Again, $a=-2 \mathrm{~m} / \mathrm{s}^{2}$ and $w=469 \mathrm{~N}$.

REF: Tipler4thed.p.109\#64
9. ANS:

Evidently, m_{1} will accelerate up, m_{2} to the right, and m_{3} down, with the same acceleration a.

1. Draw free-body diagrams for each box

(a) Write $\Sigma F=m_{i} a$ for each box

$$
\begin{aligned}
& T_{1}-1.5 g=1.5 a ; T_{3}-T_{1}=3.5 a ; 2.5 g-T_{3}=2.5 a \\
& a=(9.81 / 7.5) \mathrm{m} / \mathrm{s}^{2}=1.31 \mathrm{~m} / \mathrm{s}^{2} \\
& T_{1}=(1.5 \times 11.12) \mathrm{N}=16.7 \mathrm{~N}, T_{3}=(2.5 \times 8.5) \mathrm{N} \\
& =21.3 \mathrm{~N}
\end{aligned}
$$

(b) Use the three equations to find the tensions

REF: Tipler4thed.p.109\#68
10. ANS:
(a) $a=F /\left(m_{1}+m_{2}\right)$ and contact force $F_{c}=m_{2} a$. So $F_{c}=F m_{2} /\left(m_{1}+m_{2}\right)$.
(b) Substitute numerical values in above expressions. $a=(3.2 / 8) \mathrm{m} / \mathrm{s}^{2}=0.4 \mathrm{~m} / \mathrm{s}^{2} ; F_{c}=(3.2 \times 6 / 8) \mathrm{N}=2.4 \mathrm{~N}$.

REF: Tipler4thed.p.110\#69
11. ANS:

1. Total mass accelerated is $202 \mathrm{~kg} . F=m a$
$F=323.2 \mathrm{~N}$
2. Apply $F=m a$ at points A, B, and C
$F_{\mathrm{A}}=160 \mathrm{~N} ; F_{\mathrm{B}}=161.2 \mathrm{~N} ; F_{\mathrm{C}}=321.6 \mathrm{~N}$

REF: Tipler4thed.p.110\#71
12. ANS:

This is identical to Problem $4-72$ with $\theta=90^{\circ}$. Setting $\sin \theta=1$ in the expressions for a and T one obtains the above.

REF: Tipler4thed.p.111\#81
13. ANS:

1. Find the acceleration $a=2 \mathrm{~s} / \mathrm{t}^{2}$

$$
\begin{aligned}
& a=0.6 \mathrm{~m} / \mathrm{s}^{2} \\
& m_{1}=m_{2}[(g+a) /(g-a)]=m_{2}(10.41 / 9.21) \\
& m_{1}=1.356 \mathrm{~kg}, \text { or } m_{2}=1.06 \mathrm{~kg}
\end{aligned}
$$

2. Solve for m_{1}
3. Find the second mass for m_{2} or $m_{1}=1.2 \mathrm{~kg}$

REF: Tipler4thed.p.111\#82
14. ANS:
(a) The object will swing backward; see figure.
(b) $T_{x}=m a ; T_{y}=m g . T_{x} / T_{y}=\tan \theta=a / g . a=g \tan \theta$.
(c) The object will swing forward

Find $a=v^{2} / 2 s$
Find $\theta=\tan ^{-1}(a / g)$

REF: Tipler4thed.p.112\#95
15. ANS:
(a) Since $a_{y}=0, \Sigma F_{y}=\overline{0}$

Find $a=a_{x}=F_{n x} / m$
(b) For $a>17 \mathrm{~m} / \mathrm{s}^{2}$ block will move up the plane.

REF: Tipler4thed.p.112\#100

